

warwick.ac.uk/lib-publications

Original citation:
Jain, Abhishek Kumar, Maskell, Douglas L. and Fahmy, Suhaib A. (2016) Are coarse-grained
overlays ready for general purpose application acceleration on FPGAs? In: IEEE International
Conference on Pervasive Intelligence and Computing, Auckland, New Zealand, 8–12 August
2016. Published in: Proceedings of IEEE International Conference on Pervasive Intelligence
and Computing

Permanent WRAP URL:
http://wrap.warwick.ac.uk/80110

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
“© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/80110
mailto:wrap@warwick.ac.uk

Are Coarse-Grained Overlays Ready for General
Purpose Application Acceleration on FPGAs?

Abhishek Kumar Jain∗, Douglas L. Maskell∗ and Suhaib A. Fahmy†
∗School of Computer Engineering, Nanyang Technological University, Singapore

†School of Engineering, University of Warwick, United Kingdom
Email: {abhishek013, asdouglas}@ntu.edu.sg, s.fahmy@warwick.ac.uk

Abstract—Combining processors with hardware accelerators
has become a norm with systems-on-chip (SoCs) ever present in
modern compute devices. Heterogeneous programmable system
on chip platforms sometimes referred to as hybrid FPGAs,
tightly couple general purpose processors with high performance
reconfigurable fabrics, providing a more flexible alternative.
We can now think of a software application with hardware
accelerated portions that are reconfigured at runtime. While such
ideas have been explored in the past, modern hybrid FPGAs are
the first commercial platforms to enable this move to a more
software oriented view, where reconfiguration enables hardware
resources to be shared by multiple tasks in a bigger application.
However, while the rapidly increasing logic density and more
capable hard resources found in modern hybrid FPGA devices
should make them widely deployable, they remain constrained
within specialist application domains. This is due to both design
productivity issues and a lack of suitable hardware abstraction
to eliminate the need for working with platform-specific details,
as server and desktop virtualization has done in a more general
sense. To allow mainstream adoption of FPGA based accelerators
in general purpose computing, there is a need to virtualize FPGAs
and make them more accessible to application developers who are
accustomed to software API abstractions and fast development
cycles. In this paper, we discuss the role of overlay architectures
in enabling general purpose FPGA application acceleration.

I. INTRODUCTION

The internet of things has resulted in a diverse range
of computing requirements, but with one central focus, the
need for low power computing [1]. While much of this can
be handled by low power processors, possibly with cloud
offloading, more compute intensive applications will require
a different approach. High performance processors and/or
graphics processors (GPUs) are unable to meet the ever
increasing demand for computing power within the tight power
budget required by high performance embedded systems. Het-
erogeneous programmable systems on chip (PSoC) platforms,
which tightly couple general purpose processor(s) (GPPs) with
a high performance reconfigurable FPGA fabric [2], provide a
more flexible alternative to conventional system on chip (SoC)
architectures while providing better power and performance
characteristics than high performance CPUs and GPUs.

While this reconfigurable computing approach has been dis-
cussed before [3], [4], the more capable multicore processors
in these newer devices provides the ability to move the focus of
reconfigurable computing systems away from static (or quasi-
static) accelerators to a more software oriented view, where

reconfiguration is a key enabler for reusing available hardware
resources among multiple tasks. However, while the rapidly in-
creasing logic density and more capable hard resources found
in modern PSoC platforms, should make them applicable to
a wider range of domains, such platforms have not seen
significant use beyond specialist application domains, such
as digital signal processing and communications. Traditional
approaches to managing execution and scheduling of hardware
tasks are inappropriate and cumbersome for exploiting these
platforms. In addition, the design process is complex, requiring
low-level device expertise and specialist knowledge of both
hardware and software systems, resulting in major design
productivity issues.

One technique for addressing design productivity is to use
high-level synthesis (HLS) [5]. Advancements in HLS tools
have helped raise the level of programming abstraction from
the low register-transfer-level (RTL) used in hardware descrip-
tion languages (such as Verilog) to high level languages, such
as C or C++. However, achieving the desired performance
often still requires detailed low-level design engineering effort
that is difficult for non-experts. Additionally, even though HLS
tools have improved in efficiency, allowing designers to focus
on high level functionality instead of low-level implementation
details, the prohibitive compilation time (specifically the place
and route times in the backend flow) is a major impediment
which still limits productivity and mainstream adoption [6].

Another major stumbling block is the lack of a suitable
abstraction at the hardware computing level, to eliminate the
reliance on platform-specific detail, as has been achieved with
server and desktop virtualization. A key example of virtualiza-
tion in a modern paradigm is cloud computing, where virtual
resources are available on demand, with runtime mapping to
physical systems abstracted from the user. So far, virtualization
has focused primarily on conventional processor-based com-
puting systems where high level management of computing
tasks is supported by having a number of abstraction layers at
different abstraction levels. However there is no agreed upon
abstraction for FPGA fabrics.

To allow mainstream adoption of FPGA based accelerators
in general purpose computing and virtualized execution of
software and hardware tasks, there is a growing need to virtu-
alize FPGAs and make them more accessible to application de-
velopers who are accustomed to software API abstractions and
fast development cycles. The lack of platform abstraction and

application portability prevents design reuse and adoption of
these platforms for mainstream computing. Hence we require
a revised look at how to effectively exploit the key advantages
of reconfigurable hardware while abstracting implementation
details within a software-centric processor-based system.

One possible solution is to treat the execution and man-
agement of software and hardware tasks in the same way,
using a hypervisor or operating system (OS) such that the
hardware fabric is viewed as just another software-managed
task [7], [8]. This enables more shared use, while ensuring
better isolation and predictability. This run-time management,
including FPGA configuration and interprocess data communi-
cation, was recently demonstrated using both a hypervisor [9]
and within the Linux OS [10]. The use of a programmable
coarse-grained hardware abstraction layer, on top of the FPGA,
resulted in better application portability across devices, better
design reuse, and rapid reconfiguration that is orders of mag-
nitude faster than other reconfiguration approaches on FPGAs.
This hardware abstraction layer is referred to as an overlay as
it sits on top of the FPGA fabric allowing the user to program
different functionality to it.

In this paper, we discuss an execution platform based on
a virtual overlay sitting on top of the physical FPGA fabric
of a commercial hybrid FPGA that not only abstracts the
reconfigurable hardware details, such as the logic, memory,
and I/O interfaces and their placement, but also provides
runtime management support in order to facilitate virtualized
execution of software and hardware tasks. This enables small,
often used, sections of code to be mapped to dedicated
hardware accelerators on demand. We show that the current
state-of-the-art in FPGA overlays provides three orders of
magnitude improvement in the hardware mapping process
and the time required to switch between different hardware
accelerators (a hardware context switch) compared to that of
conventional approaches, while only suffering from a single
order of magnitude reduction in area efficiency.

The remainder of the paper is organized as follows: Sec-
tion II details the motivation for using overlays by providing a
basic understanding of FPGA architecture and the key barriers
to mainstream usage. Section III introduces the concept of
coarse-grained overlays followed by a description of the two
main types of overlay. Section IV provides a comparison of
some of the more recent overlays from the research literature,
as well as a comparison to a conventional FPGA-based hard-
ware implementation. Section V examines the use of an FPGA
overlay for general purpose application acceleration within a
hybrid FPGA. Finally, we conclude in Section VI.

II. BARRIERS TO MAINSTREAM USE OF FPGAS

To better understand why FPGA devices have not achieved
mainstream adoption among the wider computing community,
we must first understand how FPGAs differ from alternative
solutions, specifically traditional GPPs. The most fundamental
difference relates to how an application is mapped to the these
platforms. A GPP provides functionality to execute a compute
kernel as a list of sequential instructions, whereas an FPGA

architecture implements compute kernels by mapping them to
fine grained resources, such as configurable logic blocks, and
medium grained hard DSP blocks, Block RAMs, etc. These
resources are interconnected via a fine-grained programmable
island-style routing network to create a specialized datapath
which implements the compute kernel. By exploiting par-
allelism in the algorithm, significant performance gains are
possible.

A. Low Level Hardware Design

FPGA accelerators are normally designed at a low level
of abstraction (typically RTL) in order to obtain an efficient
implementation, and this can consume more time and make
reuse difficult when compared to a similar software design.
To build an FPGA accelerator, designers typically start by
manually converting the compute kernel into an fully pipelined
datapath, specified using a hardware description language
(HDL) such as Verilog or VHDL. The designer must specify
the detailed structure of the datapath and must also define
control for reading inputs from memories into buffers, stalling
the datapath when buffers are full or empty, writing outputs
to memory, and so on. For a typical FPGA device, a fully
pipelined datapath implementing just several lines of C code
may require 2-3 orders of magnitude more lines of HDL code,
but results in significantly better performance by pipelining
and exploiting parallelism. However this performance comes
at the cost of significant design effort.

Additionally, a design for a reconfigurable device does
not necessarily port well to the next hardware generation,
making reconfigurable systems more difficult to work with.
The designer must make a number of decisions, such as
how to best fit the application to the device, including the
datapath structure and the amount of parallelism. Applications
are normally optimized for a specific target device, and are
unable to execute on a smaller device or cannot take full
advantage of the additional resources on a larger device.

Once the designer has a working design it must be imple-
mented on the FPGA. The FPGA tool flow typically takes an
RTL description of the design and first performs technology
mapping to convert it into the fine-grained device resources,
followed by placement and routing (PAR). Due to the fine
granularity of the FPGA resources, the this process is complex
and for large designs results in very lengthy place and route
times.

B. Reconfiguration Latency

The FPGA fabric, being programmable, is able to adapt to
changing processing requirements, thus better utilising FPGA
resources, while providing a more software centric approach
to hardware design. This allows software applications to be
profiled and partitioned, with the resulting hardware acceler-
ator running on the FPGA fabric and the remaining software
running on the GPP, with significant performance improve-
ments. These accelerators can also be rapidly reconfigured by
utilizing the ability to partially and dynamically reconfigure
the functionality of the FPGA fabric. However, despite the

popularity and inherent capability of FPGAs for partial re-
configuration, whereby the FPGA operation is dynamically
adapted to changing application requirements, this feature is
not well supported by FPGA vendors and is hampered by
slow reconfiguration times, poor CAD tool support, and large
configuration file sizes. These issues make dynamic reconfigu-
ration difficult and inefficient, resulting in most FPGAs being
used with just a single configuration.

Initial implementations of dynamic reconfiguration [11],
[12] required the reconfiguration of the whole hardware fabric.
This resulted in significant configuration overhead, which
severely limited its usefulness. Xilinx introduced the concept
of dynamic partial reconfiguration (DPR) which reduced con-
figuration time by allowing a smaller region of the fabric
to be dynamically reconfigured at runtime. The concept of
DPR on FPGA is one way of virtualizing hardware to allow
implementiation of applications that are larger than the FPGA.
DPR significantly improved reconfiguration performance [13],
however the efficiency of the traditional design approach for
DPR is heavily impacted by how a design is partitioned and
floorplanned [14], tasks that require FPGA expertise. Further-
more, the commonly used configuration mechanism is highly
sub-optimal in terms of throughput [15]. Despite numerous
efforts in reducing reconfiguration times and improving CAD
tool support for dynamic reconfiguration of FPGA fabric [16],
[13], the implementation of rapidly reconfigurable hardware
accelerators is still difficult.

C. Coarse-Grained Reconfigurable Devices

The complexity in the FPGA tool flow due to the use of
fine-grained FPGA resources can be easily demonstrated by
example. Fig. 1(a) shows the placed and routed design of
a simple 4 input 16-bit adder. Here, the FPGA design tools
divide the design into basic circuit elements and map them
to the fine-grained configurable logic blocks (CLBs). On the
other hand, Fig 1(b) shows the placed and routed design of the
same application on a coarse-grained architecture where com-
pute blocks (or functional units (FU)) and interconnect have a
16-bit width, compared to single-bit tracks in the fine-grained
FPGA implementation. It is clear that the PAR complexity
is significantly reduced by using coarse-grained architectures,

Fig. 1: Placement of Routing on (a) Fine-grained (b)
Coarse-grained architecture.

thus reducing compilation time. Another benefit of using a
coarse-grained architecture is the reduced configuration data
size and hence reduced reconfiguration latency which can
allow faster context switching.

Because of this apparent advantage, researchers have ex-
plored a number of ASIC implementations of coarse-grained
reconfigurable architectures (CGRAs) [17], [18], [19], [20],
[21], [22], [23], [24], [25]. Some key features that enabled
these architectures to address signal processing and high
performance computing problems more efficiently include:
energy efficiency, ease of programming, fast compilation and
reconfiguration. The Rapid [19] architecture was designed to
implement computation-intensive and highly regular systolic
streaming applications using an array of computing cells, each
consisting of a multiplier, two ALUs, six general purpose
registers, and three small local memories. Morphosys[20] was
proposed as a coarse-grained, integrated reconfigurable SoC
targeting high throughput applications such as multimedia and
image processing. It consisted of a Tiny RISC processor core,
an 8×8 reconfigurable array, context memory, frame buffer and
a DMA controller. The REMARC CGRA was also proposed
for multimedia applications and consisted of a MIPS ISA
based core and an 8×8 reconfigurable logic array [26]. Each
processing element of the array consists of a 16-bit processor,
with processor execution controlled by instructions stored in
a small local instruction memory.

The key attraction of coarse-grained reconfigurable devices
is their near ASIC-like computational and energy efficiency
and software-like engineering efficiency. At least for commer-
cial products, the main market has been as a component in
SoCs for efficiently implementing a specific range of DSP
functions as part of a larger system. CGRAs have not been
successfully developed as stand-alone systems that designers
can incorporate at the board level because functional units
are often too application specific to be efficient and useful
for a wide range of applications. ASIC implementations of
coarse-grain architectures also suffer from the design-time
freeze of functional units and interconnect capabilities. It
is hard to find a particular configuration that suits a wide
enough set of applications for the approach to be viable as
a stand-alone product. Hence there is a need for a mechanism
where capabilities can be tailored to applications or adapted
at runtime based on application needs.

III. COARSE-GRAINED OVERLAY ARCHITECTURES

One solution that has been explored extensively by re-
searchers is to implement a coarse-grained reconfigurable
architecture on top of a commercial FPGA device, referred
to as a coarse-grained overlay. This allows the coarse-grained
elements and structure, specifically the functional units (FUs)
and interconnect to be modified at runtime according to appli-
cation requirements. Compared to traditional FPGA design,
a coarse-grained overlay architecture has several potential
advantages. These include: improved designer productivity,
better design portability, software-like programmability, faster
application switching and enhanced security. This is motivated

by the fact that programs can be written at a higher level
of abstraction with compilation to the overlay being several
orders of magnitude faster than for the fine grained FPGA
on which the overlay is implemented. That is, instead of
the requirement for a full cycle through the FPGA vendor
tools, overlay architectures present a simpler problem, that
of programming an interconnected array of FUs. However,
overlays are not intended to replace HLS tools and vendor-
implementation tools and are instead intended to support
FPGA usage models where programmability, abstraction, re-
source sharing, fast compilation, and design productivity are
critical issues.

Overlay

Fine Grained FPGA fabric

Coarse Grained Logic Blocks (DSPs)

Coarse Grained Array of Tiles

Fig. 2: Coarse-grained Overlay Architecture.

Overlays can be categorized based on their architecture,
using the classification in [27], where 4 categories are de-
fined: spatially configured, time multiplexed, packet switched,
and circuit switched. Though examples of packet switched
networks [27] and circuit switched networks exist, they are
generally very resource hungry, and are unsuitable for large
FPGA-based overlay architectures. As such, the majority of
overlays are restricted to just two classes: spatially configured
(SC) overlays; and time-multiplexed (TM) overlays, with both
the FU and interconnect falling within one of these two
categories.

A. Time-Multiplexed Overlays

In a TM overlay, the compute and interconnect logic of the
overlay change on a cycle by cycle basis while the compute
kernel being executed [28]. This time-multiplexing of overlay
resources among kernel operations eliminates the large FPGA
resource overhead associated with SC overlays, but results in
an initiation interval (II) between input data greater than one,
resulting in reduced throughput. To achieve the best perfor-
mance, the architecture must be carefully analyzed taking into
account the characteristics of the application kernels and the
underlying FPGA architecture.

Time multiplexed overlays normally have an instruction
memory within each FU, with each FU behaving like a conven-
tional processor core that is then time-multiplexed among mul-
tiple operations. Individual FUs are arranged into a (typically)
two dimensional array, interconnected via a programmable
interconnect. The interconnect structure is typically connects
nearest neighbors (NN), allowing FUs to communicate only
with neighboring FUs. The FUs themselves can be simple soft

Functional
Unit

Switch

CB

SB CB

Functional Unit

Vertical Channel

H
o

ri
zo

n
ta

l C
h

a
n

n
el

Fig. 3: Spatially-configured Overlay Tile Architectures: (a)
DySER, and (b) DSP based.

processors, such as the Xilinx Microblaze [29] or iDEA [30].
However, the movement of data and keeping the processors
busy with computation presents a complex scheduling prob-
lem, resulting in poor performance.

B. Spatially-Configured Overlays

The largest group of the coarse grained overlays in the
research literature consist of SC FUs and SC interconnect
networks [31], [32], [33], [34], which we refer to as an SCFU-
SCN overlay. In an SCFU-SCN overlay, an FU executes a
single arithmetic operation and data is transferred over a ded-
icated point-to-point links between FUs. That is, both the FU
and the interconnect are unchanged while a compute kernel is
executing, thus supporting maximum throughput by dedicating
an individual FU to each kernel operation. This results in a
fully pipelined, throughput oriented programmable datapath
executing one kernel iteration per clock cycle, thus having an II
of one. A number of different spatially configured interconnect
strategies have been proposed, with the most common being:
island style [31], [34], nearest neighbor (NN) [32], and to a
lesser extent linear interconnect [35], [36]. However, many
island style and nearest neighbor connected overlays suffer
from high area overheads due to the resources required for
the interconnect network and are unsuitable for large compute
kernels due to the limited size of the overlay that can be
mapped onto the FPGA fabric.

SC overlays have a number of advantages over time multi-
plexed overlays, such as the ability to exploit larger FPGAs to
deliver scalable performance for data-parallel and throughput
oriented applications. They are able to maintain extremely high
throughput by employing deep pipelining within the architec-
ture, as well as having drastically reduced compilation times
and configuration data sizes due to the requirement for just
one instruction per functional unit. But this flexibility comes
at a cost in terms of area and performance overheads. Hence, a
significant amount of research effort has recently been aimed
at reducing area overheads and improving performance. The
primary metrics considered include: the frequency and peak
throughput of the overlay [32], programmability cost [32],
peak throughput per unit area, the configuration data size, and
configuration time [31]. With these in mind, we now discuss
the key features, performance metrics, and overheads for a
number of spatially configured overlay architectures proposed
in the literature.

1) Intermediate Fabrics: An overlay architecture, referred
to as an intermediate fabric (IF) [37], was proposed to sup-
port near-instantaneous placement and routing. A generic IF
(consisting of 192 heterogeneous FUs with an island-style
interconnect) was implemented on an Altera Stratix III FPGA
in order to support fully parallel, pipelined implementations
of a set of image processing kernels [31]. The IF achieved
an Fmax of ≈125 MHz, resulting in a peak throughput of
just 24 Giga operations per second (GOPS). Compilation time
was improved by 700× compared to vendor tools, with an
additional FPGA resource cost of ≈40% (80K LUTs). The
IF was subsequently mapped to a Xilinx XC5VLX330, along
with a low overhead version of the interconnect with a channel
width (CW) of two [38]. The original overlay used 91K LUTs
and achieved an Fmax of 131 MHz while the low overhead
version used 50K LUTs with an Fmax of 148 MHz, resulting
in LUT/FU ratios of 465 and 255, respectively.

2) DySER Architecture: DySER [39], [40] was designed as
a heterogeneous array of 64 functional units interconnected
with a programmable network. The DySER RTL was in-
tegrated with the OpenSPARC T1 RTL and synthesized to
ASIC, demonstrating a reduction in energy consumption of
up to 70% and a speedup in application execution of up to
10×. The RTL of the DySER architecture was improved by
using homogeneous programmable FUs and along with the
OpenSPARC T1 RTL was implemented on a Xilinx Virtex-
5 XC5VLX110T [33]. Due to excessive LUT consumption,
it was only possible to fit a 2×2 32-bit DySER, a 4×4
8-bit DySER, or an 8×8 2-bit DySER, on the FPGA. An
adapted version of a 6×6 16-bit DySER was implemented
on a Xilinx Zynq XC7Z020 [41] by using DSP blocks as
the FU. A benchmark set of 8 simple compute kernels with
up to 23 operations required a 5×5 DySER, consuming 34K
LUTs (64% of the available LUTs) on the Zynq, resulting in
a LUT/FU count of 1360.

3) DSP Block Overlays: Many early SC overlays were
developed with little consideration for the underlying FPGA
architecture. The presence of hard DSP rich FPGA fabrics
in modern devices, and previous work [30] that demonstrated
how DSP blocks can be used for general processing at near
to their theoretical limits, suggested that DSP blocks should
be used as FUs to improve overlay resource usage. A fully
pipelined DSP block based throughput oriented overlay archi-
tecture [34] was mapped to a Xilinx Zynq XC7Z020 device.
The overlay uses the dynamic programmability of the DSP
block and maps up to three operations to each node (1 add/sub,
1 mul, 1 ALU op), resulting in a significant reduction in the
number of processing nodes required. The Zynq fabric is able
to accommodate an 8×8 overlay consuming 28K LUTs (52%
of the available LUTs) with an Fmax of 338 MHz, a peak
throughput of 65 GOPS and a LUT/FU count of 437. A 2×
improvement in peak throughput was demonstrated using 2
DSP blocks per FU [42].

Fig. 4: Physical mapping of overlay on Zynq Fabric.

IV. MAPPING OVERLAYS ONTO ZYNQ AND ANALYSIS

The Xilinx Zynq-7020 fabric consists of 220 DSP blocks,
with a theoretical maximum frequency of 400 MHz, and each
of these can support up to 3 arithmetic operations, resulting
in a peak throughput of 264 GOPS. To compare the various
overlays, we map the largest array possible to the Zynq device
and compare the resource utilization and peak throughput.
We observe that for the DySER [41] overlay, it is possible
to fit an array of 36 DSP blocks (16% of the total DSP
blocks), while for the 1-DSP/FU [34] and 2-DSP/FU [42]
DSP block based overlays it is possible to fit 64 (30%)
and 128 (60%) DSP blocks, respectively. In terms of the
Peak GOPS, DySER achieves 6.3 GOPS, while the 1-DSP/FU
and 2-DSP/FU overlays achieve 65 GOPS and 115 GOPS,
representing 2.4%, 25% and 44% of the maximum achievable
GOPS, respectively. Fig. 4 shows the mapping of the 2-
DSP/FU overlay, for different array sizes (from a single tile
up to an 8×8 array of tiles) onto the Zynq Fabric.

TABLE I: Quantitative Comparison of Overlays

Resource IF [38] IF (opt) [38] [41] [34] [42] [42]

Device XC5VLX330 XC5VLX330 XC7Z020 XC7Z020 XC7Z020 XC7VX690T

Slices|LUTs 51.8K|207K 51.8K|207K 13.3K|53K 13.3K|53K 13.3K|53K 108.3K|433.2K

Overlay 14×14 14×14 6×6 8×8 8×8 20×20

LUTs used 91K(44%) 50K(24%) 48K(90%) 28K(52%) 37K(70%) 228K(52%)

Fmax (MHz) 131 148 175 338 300 380

Max OPs 196 196 36 192 384 2400

Peak GOPS 25.6 29 6.3 65 115 912

LUTs/GOPS 3550 1725 7620 430 320 250

A quantitative comparison of the DSP based overlays with
others from the research literature is given in Table I. For
the different overlays we compare the frequency and peak
throughput of the overlay in GOPS. However, because of the
different FPGA fabrics and the different overlay architectures,
it is difficult to make meaningful comparisons between the
different overlays. Hence, we introduce a new comparison
metric: the interconnect resource used per unit peak throughput
(LUTs/GOPS), which allows us to quantify the area overhead
of the overlay interconnect architectures irrespective of the FU
implementation. Fig. 5 shows the LUTs/GOPS, for the various

overlays, and clearly shows that the more efficient island-
style overlay in [42] has a lower overhead that approaches
the ideal interconnect area overhead (of 200 LUTs/GOPS) for
the Zynq device. A resource balanced overlay on Zynq would
consist all of the 220 DSP blocks for computations (resulting
in 264 GOPS) and 53K LUTs for interconnect, resulting in
200 LUTs/GOPS.

[38] [38] [41] [34] [42] [42]
0

2,000

4,000

6,000

8,000

3,550

1,725

7,620

430 320 250

L
U

T
s/

G
O

PS

Fig. 5: Comparison of interconnect area overhead.

As a further comparison, we compare the performance, in
terms of throughput per unit area, of a conventional hardware
implementation with that of the overlay. To achieve this,
we generate both the RTL using Vivado HLS 2013.2 and
the vendor independent mapping to the overlay using our
automated custom tool chain for the benchmark set described
in [34]. Because the implementations we are attempting to
compare use different hardware resources, it is difficult to
compare them directly. Instead we normalize the hardware
resource utilization using a single equivalent slices (e-Slices)
metric, where we assume that 1 DSP block is equivalent to 60
slices based on the ratio of slices/DSP on the Zynq XC7Z02-
1CLG484C (which is approximate 60). We observe that the
average throughput per unit area for the RTL implementation
of the benchmark set is ≈ 10 MOPS/eSlice. In comparison,
the overlay in [42] achieves 2.2 MOPS/eSlice, which is around
22% of the HLS implementations. However, this 4.5× hard-
ware performance penalty needs to be considered in context
with the 1200× improvement in the place and route time and
the 1000× improvement in the kernel context switch time [42],
making the overlay concept a promising possibility for general
purpose on-demand application acceleration.

V. FPGA OVERLAYS FOR GENERAL PURPOSE
APPLICATION ACCELERATION

In the previous section, we showed that the area and perfor-
mance overheads of an overlay can be reduced drastically us-
ing an architecture aware design, such that the overheads com-
pared to a conventional hardware design are far outweighed
by the design and run-time improvements. These overlays can
then be combined with a host processor as a co-processor [10],
[8], as in Fig. 6, with run-time management, including overlay
configuration and data communication, being performed under
OS [10] or hypervisor [9] control.

This provides a significant advantage over conventional
FPGA accelerators as it now allows the use of multiple
independent accelerators, which can be very quickly mapped
to the overlay on demand, with software-like context switch
times, as the application runs. Due to long FPGA configuration
times, conventional FPGA accelerators usually require all
accelerator cores to be present on the FPGA fabric. This results
in the need for a large FPGA device, negating any power and
cost advantages associated with the use of these hardware
accelerators. Even if using dynamic partial reconfiguration,
the delay in swapping between accelerator implementations,
is much too slow for many applications.

As an example, consider the modified CODEZERO hy-
pervisor in [8], running on the dual core ARM processor
of the Xilinx Zynq, which was able to support multiple
hardware and software tasks running in different hypervisor
containers. Using this hypervisor with the 5×5 overlay in [34],
compute intensive parts of the application can be offloaded
in a transparent manner using the system shown in Fig. 6.
For this system, the programming and execution model is as
follows: First, the user profiles the application to identify code
hot-spots that can benefit from hardware acceleration (that is,
identify the kernels). Then they perform hardware software
partitioning, modifying the code, by inserting overlay API
calls, so that those portions run on the overlay rather than
the processor. Then, a compiler front-end, such as LLVM
Clang, is used to convert the kernel into a machine independent
optimized intermediate representation. Next, an FU-aware data
flow graph (DFG) is generated, after code restructuring and
additional loop-specific optimizations. Finally, a place and
route tool is used to map the DFG to the overlay, producing a
configuration that is used to program the overlay to implement
the kernel. In this way, the overlay acts as a streaming
accelerator, with data streamed from input BRAMs through
the overlay back to output BRAMs.

DDR

ARM Processor

DDR
Controller

Hard DMA

HP PortGP Port

Central
Interconnect

M M S S S S S S

FPGA Fabric

Configuration
Buffer

BRAM BRAM BRAM...

Overlay

AXI4

Soft DMA

Fig. 6: Block Diagram of the System.

unlock lockswitch

Overlay idle timeOverlay execution time for kernel 1 Overlay execution time for kernel 2

Com
pute

Data-readData-load
Kernel 1

Config-load
Com
pute

Data-readData-load
Kernel 2

Config-load
Load Overlay

bitstream

31 ms 11.5 us 20.5 us 2 us 5.12 us 11.5 us 10.25 us 2 us 5.12 us5.4 us

Fig. 7: Execution profile of tasks on overlay.

To demonstrate this process, we use an example scenario
where two application kernels (FFT and Kmeans) are required
to execute in a sequential manner, as shown in Fig. 7. Initially,
the FPGA bitstream describing the overlay, the BRAM mem-
ory, the configuration buffer and an FPGA-based Xilinx soft-
core DMA engine are loaded (once only) at power-on as the
hypervisor is booting. To support both kernel configurations,
we use four dual-port input BRAMs and a single dual-
port output BRAM, configured as a 512x64-bit memory. The
DMA engine uses a single 64-bit HP port on the ARM-
based processor system (PS). The total configuration time is
approximately 31 ms on the Zynq.

The hypervisor then schedules the first kernel (Kmeans)
to the overlay. The configuration size for the overlay is
287 Bytes (independent of the kernel) which when sent to
the configuration buffer via the GP port takes 11.5 us. The
Kmeans kernel has sixteen 16-bit inputs and one 16-bit output,
requiring all four 64-bit wide input BRAMs and one quarter
of the 64-bit output BRAM. Thus for each computation, we
transfer 16KB of input data and 1KB of output data. Using
the Xilinx soft-core DMA engine, it takes 5.12 us to transfer
the data from one BRAM to the external memory. Hence
input data transfer takes 20.5 us while output data transfer
takes 5.12 us (as for simplicity, we transfer the full BRAM
contents). For the 5×5 overlay operating at 250 MHz, it takes
approximately 2 us to process the streamed data. The data
transfer process then repeats, until the task is finished or the
Kmeans kernel is preempted.

Upon kernel preemption, the hypervisor unlocks the overlay,
performs a hardware context switch and locks it for the next
task, which takes 5.4 us (the worst case when the containers
having FFT and Kmeans are both running on the same core).
The hypervisor then schedules the second kernel (FFT) to
the overlay, which again requires 287 Bytes to be sent to the
configuration buffer and takes 11.5 us. The FFT kernel has
six 16-bit inputs and four 16-bit outputs, requiring that we
allocate two of the four 64-bit wide input BRAMs and the
full 64-bit wide output BRAM, again allowing us to process
512 data packets. Hence input data transfer takes 10.25 us,
data processing takes 2 us, while output data transfer takes
5.12 us. Again, the data transfer process repeats until the task
is finished or the FFT kernel is preempted.

In summary, as shown in Fig. 7, it takes approximately 31
ms to configure the FPGA with the overlay infrastructure at
start-up. It then takes the hypervisor approximately 11.5 us
to implement the Kmeans kernel on the overlay. The data

transfer/process/transfer cycle requires approximately 27.6 us
for 512 data packets. A non-preemptive hardware context
switch requires approximately 5.4 us. The hypervisor then
implements the FFT kernel which takes approximately 11.5 us,
followed by the FFT data transfer/process/transfer cycle which
requires approximately 17.4 us for 512 data packets.

From this example, it can be seen that the time to configure
the overlay, perform a hardware context switch, and reconfig-
ure the overlay for the next kernel is relatively insignificant (if
processing more than a single 512-deep data packet). However,
a closer examination of the data transfer/process/transfer cycle
shows that the DMA based data transfer is a major bottleneck,
with data transfer representing ≈ 93% of the cycle time for
the Kmeans kernel. This is using a relatively fast FPGA
soft core DMA engine which is 4–5× faster than the hard
DMA associated with the ARM-based processor system. This
transfer time could be improved by replicating DMA con-
trollers and using all four HP ports, overlapping computation
with communication or by implementing a streaming interface
directly to/from the FPGA using PCIe interfaces. However,
the important point to take away from this experiment is the
overlay is not the bottleneck that it once was, and is now able
to adequately support general purpose hardware acceleration
on FPGA.

VI. CONCLUSION

We have examined the use of overlays, a virtual abstraction
on top of the conventional FPGA fabric, for general purpose
on-demand application acceleration. We first presented an
efficient spatially configured overlay, with FUs implemented
using DSP blocks, which is better able to target the underlying
FPGA architecture. We showed that this overlay had a 4.5×
hardware performance penalty compared to a conventional
hardware implementation, but was able to achieve a 1200×
improvement in the place and route time and the 1000×
improvement in the hardware kernel context switch time,
making it a promising possibility for general purpose on-
demand application acceleration. We then explored embedding
the DSP-based overlay within a heterogeneous FPGA plat-
form, along with a modified hypervisor, for use as a rapidly
reconfigurable general purpose accelerator. Here we saw that
even with an efficient DMA controller, data transfer, and not
the overlay, was the bottleneck, clearly showing the benefits
of an overlay for supporting hardware acceleration of tasks. In
the future, we plan to investigate techniques for overcoming
the data communication bottleneck, and examine the power
and cost benefits of accelerator overlays.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V. Rajagopalan,
and R. Wittig, “A 16-nm multiprocessing system-on-chip field-
programmable gate array platform,” IEEE Micro, vol. 36, no. 2, pp.
48–62, 2016.

[3] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing ar-
chitectures,” Proceedings of the IEEE, vol. 103, no. 3, pp. 332–354,
2015.

[4] S. M. Trimberger, “Three ages of FPGAs: A retrospective on the first
thirty years of FPGA technology,” Proceedings of the IEEE, vol. 103,
no. 3, pp. 318–331, 2015.

[5] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–491, April 2011.

[6] G. Stitt, “Are field-programmable gate arrays ready for the mainstream?”
IEEE Micro, vol. 31(6), pp. 58–63, 2011.

[7] N. W. Bergmann, S. K. Shukla, and J. Becker, “QUKU: a dual-
layer reconfigurable architecture,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 1s, pp. 63:1–63:26, Mar. 2013.

[8] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell,
“Virtualized execution and management of hardware tasks on a hybrid
ARM-FPGA platform,” J. Signal Process. Syst., vol. 77, no. 1–2, pp.
61–76, 2014.

[9] K. D. Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell, “Micro-
kernel hypervisor for a hybrid ARM-FPGA platform,” in Proceedings
of the International Conference on Application-Specific Systems, Archi-
tecture Processors (ASAP), 2013, pp. 219–226.

[10] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and
dynamically composable architecture of CGRA,” in IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM), 2014.

[11] A. DeHon, “DPGA utilization and application,” in Proceedings of the
International Symposium on Field-Programmable Gate Arrays (FPGA),
1996, pp. 115–121.

[12] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-
multiplexed FPGA,” in IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), 1997, pp. 22–28.

[13] K. Vipin and S. A. Fahmy, “Mapping adaptive hardware systems with
partial reconfiguration using CoPR for Zynq,” in Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), June
2015, pp. 1–8.

[14] K. Vipin and S. A. Fahmy, “Architecture-aware reconfiguration-centric
floorplanning for partial reconfiguration,” in Proceedings of the Interna-
tional Symposium on Applied Reconfigurable Computing (ARC), 2012,
pp. 13–25.

[15] K. Vipin and S. A. Fahmy, “A high speed open source controller
for FPGA partial reconfiguration,” in Proceedings of International
Conference on Field Programmable Technology (FPT), 2012, pp. 61–66.

[16] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded Systems Letters, Jan.
2014.

[17] T. Callahan, J. Hauser, and J. Wawrzynek, “The Garp architecture and
C compiler,” Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000.

[18] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources,” in IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), Apr. 1996, pp. 157–166.

[19] C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD - reconfigurable
pipelined datapath,” in Field-Programmable Logic Smart Applications,
New Paradigms and Compilers, 1996, pp. 126–135.

[20] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho, “MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Transac-
tions on Computers, vol. 49, no. 5, pp. 465–481, 2000.

[21] J. M. P. Cardoso and M. Weinhardt, “XPP-VC: a c compiler with tempo-
ral partitioning for the PACT-XPP architecture,” in Field-Programmable
Logic and Applications: Reconfigurable Computing Is Going Main-
stream, Jan. 2002, pp. 864–874.

[22] P. Heysters and G. Smit, “Mapping of DSP algorithms on the MON-
TIUM architecture,” in Parallel and Distributed Processing Symposium,
2003.

[23] C. Liang and X. Huang, “SmartCell: an energy efficient coarse-grained
reconfigurable architecture for stream-based applications,” EURASIP
Journal on Embedded Systems, vol. 2009, no. 1, pp. 518–659, Jun. 2009.

[24] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“ADRES: an architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” in Field Programmable Logic and
Application, Jan. 2003, pp. 61–70.

[25] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and
S. Hauck, “SPR: an architecture-adaptive CGRA mapping tool,” in
Proceedings of the International Symposium on Field programmable
gate arrays (FPGA), 2009, pp. 191–200.

[26] T. Miyamori and K. Olukotun, “REMARC: reconfigurable multimedia
array coprocessor,” in IEICE Transactions on Information and Systems,
vol. 82, no. 2, 1999, pp. 389–397.

[27] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. Wilson,
M. Wrighton, and A. DeHon, “Packet switched vs. time multiplexed
FPGA overlay networks,” in IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM), 2006.

[28] C. Liu, H.-C. Ng, and H. K.-H. So, “QuickDough: a rapid fpga loop
accelerator design framework using soft CGRA overlay,” in Proceedings
of the International Conference on Field-Programmable Technology
(FPT), 2015.

[29] H.-P. Rosinger, “Connecting customized ip to the microblaze soft
processor using the fast simplex link (fsl) channel,” Xilinx Application
Note, 2004.

[30] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA
DSP block-based soft processor for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, pp. 19:1–
19:23, 2014.

[31] G. Stitt and J. Coole, “Intermediate fabrics: Virtual architectures for
near-instant FPGA compilation,” IEEE ESL, vol. 3(3), pp. 81–84, 2011.

[32] D. Capalija and T. S. Abdelrahman, “A high-performance overlay
architecture for pipelined execution of data flow graphs,” in Proceedings
of the International Conference on Field Programmable Logic and
Applications (FPL), 2013.

[33] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki,
and K. Sankaralingam, “Design, integration and implementation of
the DySER hardware accelerator into OpenSPARC,” in International
Symposium on High Performance Computer Architecture (HPCA), 2012.

[34] A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient Overlay
architecture based on DSP blocks,” in IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), 2015, pp. 25–28.

[35] J. Coole and G. Stitt, “Adjustable-cost overlays for runtime compila-
tion,” in IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM), 2015, pp. 21–24.

[36] D. Capalija and T. Abdelrahman, “Towards synthesis-free JIT compila-
tion to commodity FPGAs,” in IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), 2011.

[37] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for
circuit portability and fast placement and routing,” in Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), 2010, pp. 13–22.

[38] A. Landy and G. Stitt, “A low-overhead interconnect architecture for
virtual reconfigurable fabrics,” in Proceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), 2012, pp. 111–120.

[39] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in International
Symposium on High Performance Computer Architecture (HPCA), 2011,
pp. 503–514.

[40] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, no. 5, pp. 38–51, 2012.

[41] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell, “Adapting the
DySER architecture with DSP blocks as an overlay for the Xilinx Zynq,”
SIGARCH Comput. Archit. News, vol. 43, no. 4, pp. 28–33, Apr. 2016.

[42] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented FPGA
overlays using DSP blocks,” in Proceedings of the Design, Automation
and Test in Europe Conference (DATE), 2016, pp. 1628–1633.

