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Abstract

This thesis is a study of the magnetic and thermal structuring and dynamics of the

solar corona. The work presented here is primarily split into two sections: Initially a study

of sausage oscillations of coronal structures in two geometries. Then the development of a

static model of a coronal active region. Initially the basicconcepts involved in studying the

solar corona, in particular those relevant to this thesis, are introduced and explained.

In the second chapter sausage mode oscillations in a cylindrical geometry are studied in

more detail. In particular a model of these oscillations is developed and used to study the

behaviour of these oscillations over a wide range of wavelengths. The use of a wide range

of wavelengths allows the resolution of a long-standing disagreement between results found

in the long and short wavelength regions. The results of the model developed in chapter 2

are then compared with a novel analytical expansion of the dispersion relation. In chapter 3

the study is extended to the slab geometry, and this is compared to the results found in the

cylindrical geometry.

The second section of work begins in chapter 4, we develop a model of a static active region,

from magnetogram data taken by the Helioseismic and Magnetic Imager onboard the Solar

Dynamics Observatory (SDO/HMI). This was done using a NLFF magnetic field extrapo-

lation, and a 1-D hydrostatic model. The initial results of this modelling are also compared

to EUV observations of these active regions. In chapter 5 theresults and behaviour of this

model is explored in more detail. In particular the behaviour of the hydrostatic model with a

varying heating rate. Several individual loops are considered from the magnetic field model

and studied in more depth. Various potential diagnostics for the coronal heating function

are also considered.
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Chapter 1

Introduction

1.1 Overview of the Sun

The Sun is the dominant body in our solar system. Its mass provides the central point about

which, in the zeroth order approximation, the rest of the solar system orbits. It is also the

essential source of energy in the solar system, this energy provides heat and light to its

planets, including the Earth.

This energy is provided by an ongoing fusion process which occurs at the Sun’s core. The

fusion process is caused due to the intense temperatures andpressures forcing atomic nuclei

together and releasing energy in the process. The transfer of the energy through the solar

interior defines its structure.

The Sun’s core extends to roughly 0.2 of the solar radius,Rs. The next∼ 0.5Rs is known

as the radiative zone. As the name suggests, the dominant energy transfer process in this

region is radiation. However as the pressure in this region is still very large, individual pho-

tons are unable to travel very far before interacting with anelectron and being re-emitted in

another direction, leading to a lengthy “random walk” type process. This means it takes a

very long time for an individual photon to traverse this region.

The boundary between the radiative zone and the convection zone, the outermost of the

Sun’s interior regions, is known as the tachocline. It is at this point that the Sun begins to

rotate differentially; the core and radiative zones rotate as a solid body. This boundary is

thought to be important in the generation of the solar magnetic field, acting as a dynamo.

Convection is the dominant energy transfer process in the convection zone, which makes

up the remainder of the solar interior. Giant convective cells are formed in this region to

transport the energy to the solar surface.

The visible surface is known as the photosphere, it is here that the vast majority of the Sun’s

visible light is emitted. Everything above the photosphereis generally considered to be the
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Figure 1.1: Schematic of the Sun, courtesy of NASA
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solar atmosphere.

The lower part of the solar atmosphere is known as the chromosphere, and is characterised

by a decrease in pressure, and increase in temperature. Thisleads to the transition region

where there is a very rapid increase in temperature and decrease in pressure.

The corona makes up the bulk of the solar atmosphere, it is theregion above the transition

region. It is notable as it is significantly hotter than the underlying chromosphere and pho-

tosphere. The temperature varies from about 6000 K in the photosphere, before rising to

∼ 30000 K at the base of the transition region, followed by a rapid rise to∼ 1 MK in the

corona. The corona represents the main interest of this thesis, and as such will be discussed

in much greater detail later.

The outermost layer of the solar atmosphere is the solar wind. This represents the stream

of lower density plasma being emitted by the Sun in the radialdirection. The exact mecha-

nism by which it is driven is unknown, and represents one of the most important unanswered

questions in solar physics.

1.2 Importance of solar physics

The Sun is essential to life on earth, and its study is very important. The Sun is crucial

in several ways, most obviously that it provides the heat andlight that make life on earth

possible. Society has become ever more reliant on satellites for technology that is taken for

granted everyday. These satellites exist in an environmentthat is very heavily controlled by

the solar atmosphere.

Of particular risk are solar flares and coronal mass ejections (CMEs). As the name suggests

these are an ejection of plasma and other accelerated particles from the corona. If this is

directed towards the earth it can cause severe damage to satellite systems, and in extreme

cases even damage electrical and pipeline systems on the earth’s surface. An example of

this is the 1859 Carrington event, a powerful solar flare directed towards Earth that damaged

the few electrical systems across Europe and North America that existed at the time. They

are considered to be of sufficient risk that the insurance underwriters Lloyds commissioned

a report into the risks they posed [Hapgood and Thomson, 2010].

By studying solar physics, in particular the corona, we can gain a better understanding of

the processes by which these events occur, and as such may be able to help predict them.
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Figure 1.2: EUV image of a coronal active region captured by SDO/AIA in its 171 Å band.
The active region is NOAA 11897 captured on 4th November 2013.

1.3 The corona

The corona was first observed during solar eclipses; it is notnormally possible to observe it

in the visible spectrum as the underlying photosphere is much brighter. However during an

eclipse the moon blocks the light from the photosphere, leaving the more tenuous plasma

of the corona visible (indeed this is how the corona was namedfrom the Spanish word for

“crown” as it gives the impression of a golden crown surrounding the moon).

When the corona was first studied it provided some confusion,as it is significantly hotter

than the underlying photosphere. At first glance this does appear to be a very unusual

result, and has led to one of the most important topics in solar physics: the coronal heating

problem. The problem is essentially identifying the mechanism by which the corona is

being heated. Over the years many theories have been suggested, and it remains a hot topic

in solar physics to this day. [See Klimchuk, 2006; Walsh and Ireland, 2003; Narain and

Ulmschneider, 1996, for reviews.]

As the corona was studied further, it was discovered that it is a highly structured

environment. Fig. 1.2 shows an EUV image of the corona taken using the Atmospheric

Imaging Assembly [Lemen et al., 2012] on board the Solar Dynamics Observatory; it is

clear from images like this that the corona is dominated by brighter loop-like structures.

These structures are caused by the relatively low magnetic field compared to the surround-
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ing area, which combined with the low plasmaβ (which is the ratio of the gas and magnetic

pressures in the plasma) keep the plasma confined to these structures. This causes the

plasma’s motion to be controlled by the variation of the magnetic field.

In terms of volume, however, these structures only take up a fraction of the corona. These

regions are characterised by having “closed” magnetic fields, that is magnetic field lines

which remain in the corona, as opposed to extending into the wider solar system. In these

regions the magnetic field is closed to space on the outside, the magnetic field lines are in-

stead connected to the photosphere at both ends. In the majority of the corona this is not the

case, the magnetic field lines originate in the photosphere but extend off away from the Sun.

These regions are know as the “open” corona, as the field lineshere are open to outside.

These regions are characterised by having a lower plasma density and it is therefore much

more difficult to observe the processes which are occurring there.

These coronal loops appear so bright in the EUV images because the plasma they contain is

denser than the surrounding corona. These structures contain the majority of the plasma in

the corona, and are central to most of the processes occurring in the corona. Most of these

structures are formed of loops of strong magnetic field whichconnect regions of opposite

polarities. Their exact geometry is often very varied and has led to their sub-categorisation.

A few of the more commonly observed structures are as follows:

Helmet streamers are large structures, the lower half of which consist of several large loops,

and the upper half consists of a radially oriented stalk of plasma streaming outwards, giving

the overall appearance of a helmet.

Coronal arcades occur where the regions of opposing polarity extend for a significant dis-

tance parallel to each other, this gives rise to a series of loops perpendicular to these regions

of opposing polarity, but parallel to each other which oftenextending for a significant dis-

tance.

Sigmoids occur when the photospheric flows apply a shear to a dipole region, leading to a

deformation of the coronal loops into large S-shapes.

Whilst not a static structure in the corona, solar flares and CMEs could both be considered

to be important enough to be classified as coronal structures. Flares are a release of energy

from an active region generally observed as a brightening ofX-ray emission from the re-

gion. Flares are classified depending on the intensity of X-rays released, with X-class flares

being the brightest. If a flare is of a significant magnitude itwill sometimes have an asso-

ciated CME; these CMEs involve large quantities of plasma being ejected from the corona

at high velocity. However, the association of flares and CMEsremains a subject of intense

debate.

There are many very important scientific questions regarding the corona that we do not fully

understand. It is for this reason that studying the corona isvitally important. The following
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is a list of some of these unanswered questions, as well as an explanation for their impor-

tance.

Firstly, as mentioned above arguably the most important unanswered question regarding the

corona is the coronal heating problem. As previously statedthe problem is essentially that

the plasma in the corona is about three orders of magnitude hotter than that of the underly-

ing photosphere, which appears to be somewhat counter-intuitive. Studies have considered

the energy required to heat the corona to its observed temperatures [Withbroe and Noyes,

1977], have found that sufficient energy to heat the corona to the observed temperaturesis

being emitted from the photosphere; the problem is essentially the mechanism by which

this energy is deposited in the corona. There are broadly twomain groups of theories as to

what this mechanism may be: AC or DC heating.

AC heating theories, as the name suggests, are those which suggest a heating rate that is

variable over observed time-scales. These generally involve using waves generated in the

photosphere and chromosphere travelling up towards the corona before interacting with the

dense structures in the corona and depositing their energy in these structures. Some ex-

amples of AC heating mechanisms are described in: Hollweg [1987]; Ofman et al. [1995];

Inverarity and Priest [1995].

DC heating mechanisms are those which imply a heating rate which is either constant in

time or varies on a time-scale much shorter than the conductive or radiative time-scales of

the loops, thus the heating rate could be considered constant. The classic example of a DC

heating rate is Parker’s nanoflare theory [Parker, 1983, 1988]. This theory states that the

constant motion of the photosphere causes the field lines to become braided, and eventually

so tangled that they untangle themselves through a process known as magnetic reconnec-

tion. This magnetic reconnection process involves breaking old field lines and forming new

ones, as well as releasing some of the energy stored in the field.

Some evidence for the nanoflares theory is provided by considering statistics of observed

flares. These small scale heating events are known as nanoflares, as they are thought to op-

erate on broadly the same principle as the flares observed in the solar corona. If the statistics

for the observed flares are studied [Hudson, 1991] there is a power law relationship between

the amount of energy released and the frequency of flares of this strength; that is to say that

less powerful flares are much more common than more powerful ones. Naturally there is a

threshold flare magnitude below which observations are unable to distinguish between the

background solar emission, however it is reasonable to assume that these small scale flares

occur even if they are unable to be detected and can be considered to be Parker’s nanoflares.

The total energy released by these nanoflares is simply the product of the magnitude of the

events and their frequency, both of which could be extrapolated from the observed flare

statistics [Drake, 1971; Shimizu, 1995; Veronig et al., 2002; Yashiro et al., 2006]. Unfor-
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Figure 1.3: Diagram showing the various stages of the standard flare model. (From the
University of Warwick PX420 Solar MHD lecture notes)

tunately there is not a consensus in the solar physics community as to whether or not this

would provide sufficient energy to heat the corona to the observed temperatures, however it

does not rule it out as a possibility either.

As previously mentioned flares could be considered to be moredirectly relevant to society

than any other topic of research in the corona, as they have the potential to cause significant

damage to both satellites in orbit around earth, as well as potentially damaging electronics

on the earth’s surface. As such the prediction of these events is a hugely important area

of research, as well as understanding the process by which they occur and are triggered.

There are many different flare models that have been proposed to explain these phenom-

ena. However there is a model which is generally accepted as agood theoretical basis from

which to start understanding the process by which flares occur. It is based on the work by

Carmichael [1964]; Sturrock [1966]; Hirayama [1974]; Koppand Pneuman [1976], and as

such it is known as the CSHKP model, or it has also become knownas the standard flare

model.
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Fig. 1.3 shows the stages through which a flare occurs. Initially a cool, dense fila-

ment is suspended above a magnetic neutral line by the coronal magnetic field. Magnetic

energy builds up in this coronal field until it becomes unstable and erupts, launching the

filament out of the corona, and opening the magnetic field lines which were suspending the

filament upwards. As the magnetic field lines are stretched and brought together beneath the

filament they undergo a process known as magnetic reconnection. This essentially causes

the magnetic field lines to break and re-form as well as releasing a lot of energy. This en-

ergy is produced in the form of direct heating of the plasma inthe reconnection site, causing

soft X-ray emission. The heat is spread along the magnetic field lines due to thermal con-

duction, and the acceleration of nonthermal particles thatalso follow the field lines. The

nonthermal particles going downward precipitate at the chromosphere producing the hard

X-ray emission at the magnetic field lines’ footpoints. The chromospheric heating causes

the chromospheric plasma to evaporate up into the corona. This forms the hot, dense loops

that are observed as flaring loops.

When dealing with the corona and its associated structures,it is useful to have a concept of

some of the typical parameters involved. The plasma in the coronal portion of loops has a

temperature of generally around 1 MK, but potentially varies up to 30 MK in flaring loops,

with electron densities of roughly 108− 1011 cm−3. The length scale of these structures can

also vary quite wildly, from tens of Mm up to hundreds. Some typical parameters in regions

of open field lines are temperatures varying up to 1 MK, and electron densities varying from

∼ 109 cm−3 in the lower corona to∼ 106 cm−3 in the upper corona.

1.4 Theoretical tools used in studying the corona

1.4.1 Magnetohydrodynamics

In order to model the processes and structures within the corona it is necessary to have a

model to describe the behaviour of the plasma. The most suitable description of large-scale

long-durational processes in fully ionised plasmas is magnetohydrodynamics (MHD). This

plasma model essentially just treats the plasma as a fluid that interacts with (and is inter-

acted by) the underlying and self-induced magnetic field. The underlying equations were

developed as a combination of fluid dynamics equations and Maxwell’s laws.

The derivation of the MHD equations makes several assumptions about the plasma, and as

such means that MHD is only applicable under certain conditions; fortunately these condi-

tions are almost always satisfied for the physical processesdiscussed in this thesis.

Firstly it is required for the characteristic time-scale for processes described to be much

larger than both the ion gyro-period (that is the time it takes for an ion to orbit a magnetic

8



field line), and the inverse of the collision frequency (the mean time a particle travels be-

tween interacting with other particles).

Secondly the characteristic length scale described must bemuch longer than both the ion

Larmor (that is the radius of the orbit an ion follows around amagnetic field line), and the

mean free path distance (the mean distance a particle in the plasma travels between inter-

acting with another particle). This combined with the first set of criteria essentially say that

MHD is only suitable to describe processes in which the plasma can be treated as a fluid

and no small scale plasma processes are taken into account.

Finally it is also required that particles are not travelling at relativistic velocities, as this is

a non-relativistic theory. The basic MHD equations are as follows:

∂ρ

∂t
+ ∇ · (ρV) = 0, (1.1)

ρ

[

∂V
∂t
+ (V · ∇) V

]

= −∇p + j × B, (1.2)

d
dt

(

p
ργ

)

= 0, (1.3)

∂B
∂t
= ∇ × (V × B) , (1.4)

j =
1
µ0
∇ × B, (1.5)

∇ · B = 0, (1.6)

where,ρ is the plasma density,V is the fluid velocity,P is the plasma pressure,j is the

current density, andB is the magnetic field. (1.1) is the condition of mass continuity, this

ensures that no mass is created or destroyed in the model. (1.2) is the equation of motion

from fluid mechanics, with an additional term on the RHS indicating the force exerted on the

plasma by the magnetic field. Note that a term for gravitational force could be included on

the RHS of this equation, however for most studies the gravitational force is much weaker

than the others and as such is neglected. (1.3) is the energy equation; there are many ways of

expressing this, the form shown is the simplest describing adiabatic processes. The param-

eterγ is the ratio of specific heats, and is generally simplified to 5/3. (1.4) is the induction

equation, describing how the magnetic field is affected by the motion of the plasma. (1.5)

provides a definition for the current density, and is necessary for the equation of motion,

which is required to close the set of equations. The parameter µ0 is the permeability of free

space. Finally, (1.6) is the solenoidal constraint, which ensures that there are no magnetic

charges.
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1.4.2 Magnetohydrostatics

Whilst the corona is in many senses dominated by very dynamicevents, such as flares and

CMEs, the majority of the corona is fairly static most of the time. As such many attempts

to use static models to model coronal plasma have been made; these models are described

as magnetohydrostatic.

The simplest static model that could be employed is simply toconsider the corona as a

gravitationally stratified atmosphere, in this case the pressure has a nearly exponential form:

p(h) = p0 exp

















− h

λp(Te)(1+ h
Rs

)

















, (1.7)

whereλp is the pressure scale height, it is defined as:

λp(Te) =
2kB

µmHg⊙
Te. (1.8)

Here, the distance is measured ash, the height above the photosphere.p0 is the pressure

at the photosphere,µ is the average molecular mass in the corona,g⊙ is solar gravitational

constant,Rs is the solar radius,kB is Boltzmann’s constant,mH is the mass of a hydrogen

nucleus,Te is the electron temperature of the plasma.

This model is not specific for the corona. In order to use this model to study the corona,

its implementation must be considered. A method of doing this is to treat the corona as

a series of isothermal, but thermally isolated atmospheresall packed together. This is a

reasonable model, as the plasmaβ in the corona is small, and as such magnetic forces

dominate; moreover, in the absence of electrical resistivity, the plasma is “frozen in” to the

magnetic field. As individual plasma ions can be thought of asstaying restricted to their

own field line, the thermal conductivity along any field line is high, but between field lines

is low. This keeps the plasma on a field line all the same temperature, but each field line is

thermally isolated from the others. If the coronal magneticfield is treated as being purely

radial this gives a series of atmospheres, the pressure of which are all described by (1.7),

but they will have differing values ofλp, as they are all at different temperatures. It is then

possible to model the emission from this plasma, and compareit to observations of the

corona. Such a study was performed using Yohkoh/SXT soft X-ray data by Aschwanden

and Acton [2001], and they found an empirical model for the temperature distribution that

provided a good match to the quiet corona.

A similar approach can also be used to model more complex coronal structures, typically

loops. A classic example of a hydrostatic loop model was developed by Rosner et al. [1978].
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The basis for this model is the energy balance equation:

EH + f · v = ∇ · Fc − ER + ∇
((

1
2
ρv2 + U

)

v + ρv
)

, (1.9)

whereEH is the local heating rate,f is the total external force exerted on the plasma, mainly

gravity, v is the plasma velocity,Fc is the energy flux due to thermal conduction [Spitzer,

1962], ER is the energy lost due to radiation,ρ is the plasma density andU is the plasma

thermal energy density. This equation describes all of the energy gains and losses at any

point in the loop. In order for (1.9) to be any use in modellinga loop it must be integrated

over the entire loop. Doing so gives:

∫

V

(EH + f · v)d3r = −
∫

V

ERd3r + Lfootpoints+ Lsides, (1.10)

whereLfootpoints and Lsides are the energy losses and gains across the footpoints or sides

of the loop respectively. (1.10) therefore simply states that throughout the entire loop any

heating applied and energy deposited by external forces must be balanced by radiation or

the energy lost through the boundaries of the loop. This can then be further simplified by

assuming that there is no energy transport through the sidesof the loop, this is reasonable

because, as before, the loop is thermally isolated from the rest of the corona. In addition,

one can assume that the plasma is static. This just leaves theheating being balanced by

radiation and energy transported through the footpoints.

As previously stated the coronal heating problem is a major topic of interest in the solar

physics community, with many different heating mechanisms having been proposed. Each

of these heating mechanisms implies a description ofEH, the heating rate. It is therefore

not easy to find a definition forEH from any theoretical basis. In order to progress with the

analysis Rosner et al. [1978] simply assumed a constantEH.

Next Rosner et al. [1978] modelled half of the loop, from footpoint to apex, and assumed

it was symmetric. Then by considering the conductive flux at every point along the loop,

with the boundary conditions that the flux disappears at the apex, and prescribing a photo-

spheric temperature, Rosner et al. [1978] were able to obtain scaling laws relating the peak

temperature, length, base pressure and heating rate:

Tmax ∼ 1400(p0L)
1
3 , (1.11)

EH0 = 0.95× 10−6T
7
2
maxL

−2, (1.12)

these are known as the RTV scaling laws. The loop’s length andpeak temperature can be

estimated by observations, which would then allow an estimate to be made of the heating
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rate and base pressure, which is assumed to be constant for the entire loop in this model.

These laws do agree to some extent with observations of shorter soft X-ray loops, no doubt

because the pressure is roughly constant in these shorter loops. Unfortunately when the

scaling laws are applied to observations of longer EUV loops, such as those observed by

the 171Å bandpass of SDO/AIA, it was found that the observed pressures at the apex of

the loops were much higher than those derived with the use of the RTV scaling laws [As-

chwanden et al., 2000].

It is therefore clear that the assumptions made by Rosner et al. [1978] are too restrictive

to properly describe most loops in the corona, as such some ofthese assumptions must be

relaxed. The most obvious starting point is to soften their assumption of a spatial uniform

heating rate,EH; whilst a spatial uniform heating rate does make performingthe analysis

to reach the scaling laws easier, it is not representative ofthe heating in the corona. An

attempt to relax this assumption was performed by Serio et al. [1981], in their work they

considered a heating rate of the form:

EH = EH0 exp

(

−
(

S
S H

))

, (1.13)

an exponential heating function, whereEH0 is the heating rate at the base of the loop,S H

is the heating scale height andS is the distance along the loop. As with the derivation of

the RTV scaling laws, it is assumed that the loop is symmetric, and only half of the loop is

modelled at a time. Serio et al. [1981] also lifted the restriction of constant pressure along

the loop. This led to a generalised version of the RTV scalinglaws, introducing a factor

that depended on the heating and pressure scale heights,S H andλp. The updated scaling

laws were found to be a more accurate model of observed EUV loops by Aschwanden et al.

[2000].

An interesting consequence of this exponential heating rate proposed by Serio et al. [1981]

is that as the heating scale height decreases, that is the heating becomes more focused in the

footpoints of the loops, the location along the loop where the temperature is a maximum

can move away from the apex of the loop. On the face of it this isperhaps not a surprising

result: as less and less heating occurs at the apex of the loop, eventually a point further

down the loop where more heating occurs will become hotter, assuming that any changes

in the density profile are driven by varying the heating rate.The consequence of this is

that loops where the peak temperature is not at the apex are unstable. This is due to the

density of the plasma above the point of maximum temperature, (which is no longer the

loop apex), becoming larger than the density of the plasma directly beneath it, which leads

to the Rayleigh-Taylor instability. This gives the situation where the static loop model

predicts that the loop cannot be static with the provided parameters. This instability was
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studied by Winebarger et al. [2003].

More recent studies have extended this approach further andhave been able to numerically

solve the energy equation for an arbitrary heating rate, assuming a static solution exists.

An example of this was made by Schrijver and van Ballegooijen[2005], which will be

considered in more depth in chapter 5.

1.4.3 Modelling coronal magnetic fields

It is clear from observations that the magnetic field plays a large role in shaping the corona,

and it is clear from the MHD equations that any attempt to mathematically model the corona

will have to take into consideration the coronal magnetic field. Hence it would be very

useful to have an understanding of the coronal magnetic fieldbefore any modelling is at-

tempted. Unfortunately, whilst it is possible to measure the magnetic field strength in the

photosphere by using Zeeman splitting of magnetically sensitive spectral lines, e.g. Fei

6173.3 Å as used by SDO/HMI [Scherrer et al., 2012], this technique does not, however,

work in the corona. This is because these coronal emission lines are optically thin, thus it is

not possible to know exactly where along the line-of-sight the measurement is taking place,

as well as essentially having measurements from all points along the line-of-sight. More-

over, the lines experience huge nonthermal broadening which makes the Zeeman splitting

unresolvable. One possible method to estimate the coronal magnetic field is to use the ob-

served photospheric field as a boundary condition.

This leaves the problem set up essentially as follows: the magnetic field in the photosphere

is known, and the magnetic field of the corona, (radially outwards from this boundary) is

what is it be estimated. Using Maxwell’s laws it is clear thatthis is insufficient information

to find a solution for the coronal magnetic field, thus some assumptions must be made. The

main assumption is that the corona is force-free, what this means is that the plasma in the

corona is static and effectively feels no force. Consider (1.2); as previously stated the mag-

netic field is the most important parameter here and it only occurs in one term:j ×B, so let

us consider the size of the other terms relative to this: if the pressure varies very little over

the area considered then the∇P term can be neglected. The velocity terms on the LHS can

also be neglected, as considering typical coronal values for the parameters these terms are

expected to be small compared to thej × B term. This just leaves:

j × B = 0, (1.14)

now, using the definition of the current density (1.5):

1
µ0

(∇ × B) × B = 0. (1.15)
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Figure 1.4: EUV image of the entire corona captured by SDO/AIA in its 171 Å band, with
magnetic field lines calculated using a PFSS model overlayed. Image courtesy of NASA.

For this equation to hold∇ × B must be parallel toB, that is to say:

∇ × B = αB, (1.16)

whereα is an arbitrary constant. There are a few situations impliedby this. Firstlyα = 0,

in which case∇ × B = 0, this implies that the magnetic field is potential. This is obviously

the simplest scenario that provides a solution to (1.14), and as such is the easiest and fastest

to compute. However this magnetic field arrangement is the most energetically efficient

arrangement for the given boundary conditions, and as such it has no magnetic free energy

to release. As all coronal heating theories involve the release of magnetic free energy from

the coronal field, a potential field can obviously not be a completely accurate representation

of the field.

Potential fields are however still widely used and provide a reasonable estimate for

the topology of the field. They are for instance used in potential field source surface mod-
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els (PFSS) whereby the coronal magnetic field is assumed to becompletely radial above

a certain height, providing an upper and lower boundary condition for the magnetic field

[Schrijver and De Rosa, 2003]. These models can then be used to calculate the magnetic

field in the Sun’s entire corona see Fig. 1.4 for an example, also [Schrijver et al., 2004] for

an example use of this kind of extrapolation.

A more complex type of force-free field to consider is one whereα is a constant across the

entire modelled region. This is known as a linear force-freefield. It has the advantage over

the potential field in that the field does contain some magnetic free energy, as well as being

just as easy to compute, assuming the value ofα is chosen. The problem is that it is not

easy to determine the appropriate value ofα, and as such it is generally not that much more

useful than a potential field.

The remaining case is one in whichα is only constant along any given field line, but is

free to vary across fieldlines. This is known as a non-linear force-free field (NLFF field).

NLFF fields can hold sufficient magnetic free energy [Gary et al., 1987], and are unique

for a full set of vector magnetic field boundary conditions. As such they are very promis-

ing, however there are several issues that make determiningthem a challenge. Firstly they

have a more stringent requirement on boundary conditions than potential fields. In order to

uniquely determine an NLFF field, all three components of themagnetic field are required

on the boundary, whereas potential fields only require a single component. These boundary

conditions are required on all boundaries of the modelled region, which can also provide

an obstacle, however there are methods to get around this, which will be discussed in more

detail in chapter 5.

Even with all the required boundary conditions, whilst an NLFF field is uniquely deter-

mined, due to the non-linear nature of 1.14, it is not possible to analytically deduce the field

from the boundary condition, hence some sort of iterative approach is required. There are

several methods that have been suggested to calculate NLFF fields, Schrijver et al. [2006];

Metcalf et al. [2008] tested a variety of methods on both an established test field [Low and

Lou, 1990] and a solar-like reference model [van Ballegooijen, 2004]

1.5 Coronal seismology

Coronal seismology is a relatively recent field of solar physics, which involves studying

MHD oscillations in the corona, and using the parameters of these oscillations to deduce

information about the structure of the corona [see De Moortel and Nakariakov, 2012; Baner-

jee et al., 2007; Nakariakov and Verwichte, 2005, for reviews].

Many oscillations have been observed in the corona e.g. Thompson et al. [1998]; Ofman

et al. [1997]; De Moortel et al. [2000]. The most common type of oscillation observed
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in EUV images, such as those from the Atmospheric Imaging Assembly (AIA) on board

the Solar Dynamics Observatory (SDO), are transverse loop oscillations, e.g. Nakariakov

et al. [1999]; White et al. [2012]. These generally occur when an impulsive event such as

a flare occurs close to a loop or bundle of loops, which offsets the loop causing it to os-

cillate around its initial position. However many other types of oscillations have also been

observed, such as quasi-periodic pulsations (QPPs) duringflares, which will be described

in more detail later on.

1.5.1 MHD oscillation theory

The theory behind coronal seismology is deeply rooted in MHD. First consider an equilib-

rium static uniform plasma; this gives the equilibrium conditions about which oscillations

will take place, the equilibrium parameters are denoted by asubscript 0. They are:P0, ρ0,

B0 andV0 = 0, as we ignore equilibrium flows. It is clear that this equilibrium satisfies

the MHD equations (1.1-1.6). To this equilibrium small perturbations are made, which are

denoted by a subscript 1. This gives the following perturbedquantities:

P = P0 + P1(x, y, z, t),

ρ = ρ0 + ρ1(x, y, z, t),

B = B0 + B1(x, y, z, t),

V = V1(x, y, z, t).

We then put these quantities into the MHD equations and discard all terms smaller than first

order in terms of perturbed quantities. It is also assumed that any derivatives of equilibrium

quantities are zero.

∂ρ1

∂t
+ ∇ · (ρ0V1) = 0, (1.17)

ρ0
∂V1

∂t
= −∇P1 +

1
µ0

(∇ × B1) × B0, (1.18)

γP0
∂ρ1

∂t
= ρ0
∂P1

∂t
, (1.19)

∂B1

∂t
= ∇ × (V1 × B0) , (1.20)

∇ · B1 = 0. (1.21)
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Then, by taking (1.18), differentiating with respect tot, and using the other equations to

eliminateP1 andρ1 we obtain:

ρ0
∂2V1

∂t2
= γP0∇2V1 +

1
µ0

[(∇ × (∇ × (V1 × B0))) × B0] . (1.22)

This is the basic equation for studying MHD oscillations. Toprogress, we assume pertur-

bations that are of the form:A1(r , t) = A1,0 expi(ωt − k · r ), whereA1,0 is a constant,ω is

the frequency andk = kx̂ + lŷ + mẑ is the wavevector. This Fourier decomposition has the

advantage that temporal derivatives can be replaced byiω, and spatial derivatives by−ik.

Then substituting these into (1.22) we get:

ρ0ω
2V1 = γP0k(k · V1) +

1
µ0

[(k × (k × (V1 × B0))) × B0]. (1.23)

The first mode to consider is an incompressible one, that is a mode where there are no

pressure or density variations from (1.17)∇·V1 = 0 hence:k ·V1 = 0, as such the first term

on the RHS of (1.23) is zero. By considering the two remainingterms it is clear thatV1 and

B0 are perpendicular, henceV1 ·B0 = 0. By using the following vector triple product rules:

A × (B × C) = (A · C)B − (A · B)C,

(A × B) × C = (A · C)B − (B · C)A,

and removing all the terms which are zero we get:

ρ0ω
2V1 =

(k · B0)2

µ0
V1. (1.24)

RewritingB0 asB0B̂0, whereB̂0 is the unit vector in the direction of the magnetic field, and

cancelling theV1 this becomes a dispersion relation:

ω2 =
B2

0

ρ0µ0
(k · B̂0)2 (1.25)

This describes transverse anisotropic oscillations whichpropagate preferentially in the di-

rection of the magnetic field. These oscillations are known as Alfvén waves. The coefficient

on the RHS of (1.25) gives the Alfvén speed:CA =
B0√
ρ0µ0

, which is an important plasma

parameter.

Now to return to (1.23) to consider compressible modes of oscillation. As this is a vector

equation it is simpler to consider components of these vectors, so as to deal with scalar

equations. In the set-up of the problem there are only two directions that have been defined:
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the direction of the magnetic field, which for simplicity we will assume is oriented along the

z-axis,B̂0 = ẑ, and the direction of the wavevector,k. To proceed we take the dot product

of (1.23) first withẑ, and thenk. Firstly ·ẑ gives:

ω2Vz = C2
s m(k · V1), (1.26)

whereC2
s =

γP0
ρ0

is the square of the sound speed, andm is theZ-component of the wavevec-

tor. Next,·k:

ω4(k · V1) =
γP0

ρ0
K2(k · V1) +

B2
0

ρ0µ0
k · [(k × (k × (V1 × ẑ))) × ẑ], (1.27)

whereK2 = k ·k. Using the definitions of the Alfvén and sound speed, as wellas the vector

triple product rules, this simplifies to:

ω2(k · V1) = (C2
s +C2

A)K2(k · V1) − mK2C2
AVz. (1.28)

Now substitutingVz from (1.26) into the final term of (1.28) will give a common factor of

k · V1 in all terms. The case wherek · V1 = 0 has already been considered, as it led to the

dispersion relation for Alfvén waves. We therefore consider the case wherek · V1 , 0 this

factor can then be cancelled leaving the following:

ω4 − K2ω2(C2
s + C2

A) +C2
sC2

Am2K2 = 0. (1.29)

This is quadratic inω2, so simply finding the roots gives us the dispersion relationfor these

oscillations:

ω2 =
K2

2

[

C2
S +C2

A ±
√

(C2
s +C2

A)2 − 4K2C2
sC2

A cos2(θ)
]

, (1.30)

whereθ is the angle between the wavevector and the magnetic field, the parameter arises as

m2 = K2 cos2(θ). This dispersion relation describes two modes of oscillation, depending on

the choice of sign in the RHS. The large root denotes the fast magnetoacoustic mode, the

smaller root the slow magnetoacoustic mode. As with the Alfvén waves, these waves are

also anisotropic, due to the cos(θ) term in the dispersion relation.

Fig. 1.5.1 shows the phase speed of all three MHD modes on a polar diagram,

demonstrating how the phase speed varies with the angle between the wave vector and the

magnetic field. Starting withθ = 0, that is parallel to the magnetic field, the phase speed

of the Alfvén mode is the Alfvén speed, the phase speed of the slow mode will always be

equal to the smaller ofCA andCs, in this case,Cs. The phase speed of the fast mode will
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Figure 1.5: Polar diagram showing the phase velocity for thethree MHD modes of a uni-
form plasma. The magnetic field is oriented in the horizontaldirection. The solid line
represents the fast magnetoacoustic mode, the dotted line the slow magnetoacoustic mode
and the dashed line the Alfvén mode. Here,CA is normalised to 1, andCs = 0.7. In this
diagram the magnetic field is oriented in thex-direction
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Figure 1.6: Diagram showing the magnetic cylinder as set up by Zaitsev and Stepanov
[1975]. (From the University of Warwick PX420 Solar MHD lecture notes)

always be equal to the larger of the two, in this case,CA. As θ increases toπ/2 the Alfvén

and slow mode’s phase speeds decrease until they become 0 atθ = π/2, whereas the fast

mode’s increases tovph =

√

C2
s +C2

A.

1.5.2 Theoretical basis for coronal loop oscillations

The oscillations detailed in the previous section, whilst very nice analytically, are not very

useful for modelling the corona. This is because the corona is clearly not a homogeneous

environment, therefore not only is the starting equilibrium unrealistic it is also not possible

to perform a Fourier transform in all directions.

A more realistic plasma geometry to model is that of a cylinder. Such analysis was

performed by Zaitsev and Stepanov [1975]. They started by considering a plasma cylinder

of infinite length embedded in a magnetic field aligned along the axis of the cylinder, as

illustrated in Fig. 1.6. The equilibrium parameters in thisset-up are as follows: inside the

cylinder the pressure isP0, the density isρ0 and the magnetic field isB0 = B0ẑ. The exterior

equilibrium parameters are:Pe, ρe andBe. As before, check that the equilibrium parameters

satisfy the MHD equations; all are trivially satisfied asidefrom (1.2), which is satisfied so

long as the interior and exterior magnetic and gas pressuresbalance, i.e:

P0 +
B2

0

2µ0
= Pe +

B2
e

2µ0
. (1.31)
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A similar approach is then followed as in the homogeneous plasma: taking the MHD equa-

tions, applying small perturbations and linearising. The small perturbations are assumed

to be of the form:A1(r, θ, z, t) = A1(r) exp(iωt + imθ + ikz) i.e. a Fourier transform is per-

formed in all directions aside from the radial direction, asthe equilibrium conditions are

constant in all these directions. After some algebra (see. Zaitsev and Stepanov [1975]

or Roberts [1981a,b]; Edwin and Roberts [1983] for details)the following wave equa-

tion for the radial component of the divergence of the velocity, i.e. R(r) where:∇ · V1 =

R(r) exp(iωt + imθ + ikz), is reached:

d2R

dr2
+

1
r

dR
dr
−

(

κ2 +
m2

r2

)

R = 0, (1.32)

where

κ2 =
(k2C2

s − ω2)(k2C2
A − ω2)

(C2
s + C2

A)(k2C2
T − ω2)

, (1.33)

whereCT is the tube speed, and is defined as:

CT =
CsCA

√

C2
s +C2

A

. (1.34)

Note that for instance bothκ andCT will have different values outside and inside the cylin-

der. In keeping with convention, parameters of the externalplasma are denoted by subscript

e, and internal equilibrium parameters are denoted with a subscript 0.

Equation (1.32) is Bessel’s equation, which can in many waysbe considered the cylindrical

analogue of the standard cartesian wave equation. For the cartesian wave equation there

are two families of solutions, depending on the sign of the coefficient of the spatial deriva-

tive: either exponential (exp(x) and exp(−x)), or sinusoidal (sin(x) and cos(x)). As Bessel’s

equation is a cylindrical equivalent of this, its solutionscan also be considered equivalents

of these functions. Ifκ2 < 0 then the solutions are the oscillatory functions:Jm andYm,

known as Bessel functions of the first and second kind respectively. If κ2 > 0 then the

solutions are exponential:Im is exponentially growing andKm is exponentially decaying.

These are known as the modified Bessel functions of the first and second kind respectively.

A final important point to note about Bessel functions is thatall of these functions have a

subscriptm denoting the order of the function; this is the samem from (1.32), as well as

being the azimuthal wavenumber. If we keepr, t andz fixed, but varyθ, that is travelling

around the cylinder, all quantities must be continuous atθ = 0, 2π. In order to ensure this,

m must be an integer.

These functions can therefore be used to describe the perturbations inside and outside the

cylinder. In order to further restrict the solutions available, we must apply boundary con-
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ditions. Starting with the cylinder’s interior, we requirethatR is bounded at the cylinder’s

axis,r = 0, this means that inside the cylinder the solutions are as follows:

R(r) = A0















Im(m0r) ,m2
0 > 0

Jm(n0r) , n2
0 = −m2

0 > 0















(r < d). (1.35)

The Bessel function chosen depends on whetherm2
0 is positive or negative. Ifm2

0 is positive,

there is no oscillatory behaviour inside the cylinder, and the BesselIm function is used.

In the case wherem2
0 > 0, the only oscillatory behaviour exists on the boundary of the

cylinder therefore these oscillations are known as surfacemodes. Whenm2
0 < 0, the Bessel

Jm function is used. This function involves oscillatory behaviour inside the cylinder, and as

such these modes are known body modes.

The first requirement imposed on the solution in the exteriorof the cylinder is thatR(r)→ 0

asr → ∞, which eliminates the BesselIm function. We also require that this oscillation

be a standing wave of constant amplitude, hence the energy inthe system must remain

constant. The only input of energy is from the initial “push”of applying the perturbation

at t = 0, therefore we only consider solutions where no energy escapes the cylinder. The

BesselJm andYm functions describe oscillations, thus if either of these functions represent

solutions to the exterior of the cylinder, where there is no radial boundary to constrain them

they would transport energy away from the cylinder, essentially damping the cylinder’s

oscillation. Therefore the external solution must be:

R(r) = AeKn(mer), r > d. (1.36)

The final condition to be applied is thatR(r) should be continuous at the boundaryr = d, that

is that (1.35) and (1.36) should match at the boundary. This combined with the equilibrium

pressure balance gives the following dispersion relations:

ρ0(k2C2
A0 − ω2)me

K′m(med)
Km(med)

= ρe(k
2C2

Ae − ω2)m0
I′m(m0d)
Im(m0d)

, (1.37)

for the surface modes, and:

ρ0(k2C2
A0 − ω2)me

K′m(med)

Km(med)
= ρe(k

2C2
Ae − ω2)n0

J′m(n0d)

J′m(n0d)
, (1.38)

for the body modes. These dispersion relations therefore describe the modes of oscilla-

tion, as well as restricting the values ofω andk that are allowed. The properties of these

oscillations depend heavily on the relative values of the external and internal sound and

Alfvén speeds. Edwin and Roberts [1983] considered a wide selection of possible scenar-
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Figure 1.7: Dispersion plot forCAe = 6, CA0 = 3, Cs0 = 1, Cse = 0.3, m = 0, 1, 2, 3, the
solid line ism = 0, the dotted linem = 1, the dashed linem = 2, the dashed-dotted line
m = 3 and the horizontal lines are the characteristic speeds of the system. Only the highest
of the slow branches for each value ofm is plotted.

ios of solar conditions, we will however restrict ourselvesto a set of typical coronal values:

CAe > CA0 > Cs0,Cse. We then use a numerical method (e.g. Newton-Raphson method)

to find the roots to these dispersion relations, that is the values ofω, k andm for which a

solution exists (restrictingm to integer values as stated above). Fig. 1.7 is a dispersion plot

showing the modes of the cylinder. It is plotted as the phase speed against the wavenumber

to help visualise the regions where oscillations exist, note the horizontal solid lines on the

plot represent the characteristic speeds of the cylinder:Cse,Cs0,CA0 andCAe. There are

two distinct intervals of the phase speed which allow oscillations. FirstlyCse < ω/k < Cs0:

these modes are analogous to the slow magnetoacoustic modesof a uniform plasma; these

modes exist purely in the range:CT0 < ω/k < Cs0, hereCT0 = 0.949. All of these modes

exist for all values ofk, and as such this is a very small range of phase speeds for all these

modes to be plotted in, hence it is difficult to distinguish individual modes. In fact for each

value ofm there are an infinite number of modes, representing all of theharmonics, however

in this plot only one mode for each value ofm is plotted. The consequence of all of these

modes being so close together is that it is difficult to distinguish individual modes, and in

practice it would be impossible to only excite a single one ofthese slow modes without also

exciting many other modes. These slow modes are therefore essentially treated all together,

and are not ideal for further analysis.
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Moving our attention to the other region of Fig. 1.7 where oscillations are allowed:CA0 <

ω/k < CAe. These are modified fast magnetoacoustic modes, here modes are sufficiently

spread out that distinguishing individual modes is clearlypossible, which suggests that it is

also possible to excite single modes. The other feature of this region of the plot that differs

from the slow modes is that not all of the modes exist for all values ofk; some of the modes

have “cut-off” values ofk, that is values ofk below which the mode does not exist under

the assumptions made above.

In fact them = 0 mode has no branches that exist for all values ofk, which is a very im-

portant property of this mode. Them = 0 mode is known as the “sausage mode”, because

m = 0 describes axisymmetric behaviour, and the expansions andcontractions of the tube

along its length make it resemble a string of sausages. This mode will be discussed in much

more detail in further chapters.

Them , 0 modes all have one branch that exists for all values ofk, their fundamental mode,

all of which haveω/k → a single value ask → 0. This is another characteristic speed of

the cylinder, known as the kink speed,Ck and is defined as:

Ck =

√

ρ0C2
A0 + ρeC2

Ae

ρ0 + ρe
, (1.39)

for the values used in Fig. 1.7Ck = 3.81. Them = 1 mode represents purely a displacement

of the cylinder, without deforming it, it is similar to a guitar string being plucked. As such

it is known as the “kink mode” as it resembles a kink in the cylinder. Them > 1 modes

are known as the “fluting modes”, as for higher values ofm the cylinder begins to resemble

a fluted column. These modes represent a complex deformationof the cylinder, which are

difficult to excite without also exciting the kink or sausage modewhich would dominate, as

such these modes generally not considered when analysing the modes of the cylinder.

The values for the ratios of sound and Alfvén speeds in Fig. 1.7 are not necessarily rep-

resentative of the corona, where we would expect the sound speeds to be lower. However

changing the specific values does not alter qualitative behaviour of these modes; the most

important property is thatCAe > CA0 > Cs0,Cse, so long as this holds the overall behaviour

remains unchanged.

One limitation of this model that could be lifted is that the external solution to 1.32 is

restricted to the BesselKm functions, so as there is no external wave transmitting energy

away from the cylinder. If we allow for the BesselYm function to be a solution outside

of the cylinder, this expands the range of possible solutions; this was considered by Cally

[1986]. The effect of having an external oscillating solution is that as energy is transported

away the internal oscillation is effectively damped, though it is important to note that no

actual damping occurs; the internal oscillation’s energy is merely transferred to the external

24



oscillation. Hence the regions of the dispersion relation where the external solution is the

BesselKm function will correspond to a complex value forω. These solutions are known as

leaky oscillations and occur on Fig. 1.7 forω/k > CAe, acting as continuations of the modes

that have cutoff wavenumbers. This is particularly important form = 0, the sausage mode,

as it is the only value ofm for which the fundamental mode has a cutoff wavenumber, thus

for ks below this value the only sausage mode that exists is leaky.
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Chapter 2

Sausage oscillations of a plasma

cylinder

2.1 Introduction

This section is concerned with the study of an axisymmetric sausage mode oscillation of

a plasma cylinder. The most likely observational signatures of sausage oscillations in the

corona are the long period quasi-periodic pulsations (QPPs) in flaring loops. Nakariakov

and Melnikov [2009] provide a recent review on the topic of QPPs. QPPs are observed as

an oscillation in the intensity of radiation emitted duringsome flares. They have been ob-

served in many bands such as microwave and hard X-ray emission, and have been observed

as simultaneous in phase oscillations in both bands [e.g. Asai et al., 2001]. QPPs have been

observed with a wide range of periods of oscillation varyingfrom fractions of a second

[Aschwanden, 1987; Fleishman et al., 2002; Tan, 2008] to several minutes [Foullon et al.,

2005; Kislyakov et al., 2006]. The underlying mechanism that drives these oscillations is

not fully understood, and several mechanisms have been suggested. Given the wide range

of periods these oscillations display, it is reasonable to assume that different mechanisms

could be responsible for different QPPs. Nakariakov and Melnikov [2009] suggest dividing

the oscillations into two categories: the short (P < 1s) period oscillations and longer period

oscillations. The shorter period oscillations are unlikely to be caused by MHD oscillations,

and as such are of less interest to this study.

Sausage oscillations are an excellent candidate to explainsome of these QPPs. The method

by which sausage oscillations could produce a modulation ofhard X-ray intensity was de-

scribed by Zaitsev and Stepanov [1982]. A description of this mechanism is as follows:

during the flare a ‘kernel’ of very hot plasma forms at the apexof the loop, which increases

the gas pressure at this point causing the loop peak to expand, as well as reducing the mag-
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Figure 2.1: Fourier power spectra of the pulsations observed at three points along a loop by
NoRH on the 12th January 2000. Figure from Nakariakov et al. [2003].

netic field strength there. This reduced magnetic field formsa magnetic trap holding the

energetic electrons in place. Now if a sausage mode is excited in the loop this will cause a

modulation in the magnetic field strength of the loop apex, which therefore leads to a mod-

ulation in the effectiveness of the magnetic trap. The trap therefore releases a modulated

stream of electrons which travel down the loop towards the dense plasma in the footpoints.

As the electrons crash into this plasma they are rapidly decelerated and release hard X-rays

that are then observed, hence the sausage mode leads to a modulation in hard X-ray emis-

sion.

Sausage oscillations also provide a mechanism by which the microwave emission from a

flare can be modulated. Microwave emission from a flare could be caused by the gyrosyn-

chrotron mechanism. This is where mildly relativistic non-thermal electrons are caught

by the background magnetic field. As these very high speed electrons orbit the magnetic

field line, they emit broadband microwave radiation. The spectrum of these microwaves
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is controlled by the electron’s speed and magnetic field strength. As such modulating the

magnetic field strength e.g. by a sausage mode, will also modulate the gyrosynchrotron

emission. Such an observation was made by Nakariakov et al. [2003] who studied a flare

on the solar limb on 12th of January 2000 using the Nobeyama Radioheliograph (NoRH)

[Nakajima et al., 1994]. NoRH measures microwave intensities in the 17 and 34 GHz bands

with a spatial resolution of 10”-5” and a temporal resolution of 0.1 s; the excellent tempo-

ral resolution is very useful in studying QPPs, which can have periods of a few seconds.

Nakariakov et al. [2003] looked at the 17 GHz flux at three points along the loop: one point

in each of the legs and a point at the top of the loop. For the timeseries of each of these

points, the overall trend was removed and a Fourier spectrumof the remaining signal was

then made, the spectra are shown in Fig. 2.1. There is a clear peak in all spectra at 14−17 s

which is most prominent at the apex, this is likely to be the fundamental sausage mode.

There is a second peak at 8− 11 s, which is more prominent at the footpoints; it is therefore

possible that this could be the second spatial harmonic of the sausage mode.

An excellent example of a detailed study of a QPP observed in both the microwave and

X-ray bands is provided by Inglis et al. [2008], using data from NoRH as well as X-ray

observations from the Hard X-ray Telescope on-board the Yohkoh satellite (Yohkoh/HXT).

They found a good agreement between microwave and hard X-rayobservations, which led

to the conclusion that this QPP was caused by some form of MHD oscillation, of which the

sausage mode is the most likely candidate.

QPPs have also been observed in the visible portion of the spectrum, as shown by Srivastava

et al. [2008] who used Hα (6563 Å) observations from the 15 cm Solar Tower Telescope

at Arybhatta Research Institute of Observational Sciences. They considered a flaring loop

from 2nd May 2001 and studied the intensity from a point near the footpoint as well as at

the apex. They found periodicity in the signal from both points, which they interpreted as

being caused by the fundamental sausage mode.

Observations of QPPs have not just been limited to the Sun, for example Mathioudakis et al.

[2003] studied an observation of a flare from RS CVn binary II Peg, a binary star system

130 light years from Earth. Using observations from the Stephanion observatory they found

periodicity in the white light emission of 220 s, which couldbe explained by a sausage os-

cillation.

Very recently, periodic variations of the EUV emission werealso interpreted in

terms of sausage oscillations [Van Doorsselaere et al., 2011; Su et al., 2012]. In these inter-

pretations it is important to consider the line-of-sight integration effect, as recently pointed

out by Mossessian and Fleishman [2012] and Gruszecki et al. [2012]. In particular, for a

line of sight perpendicular to the oscillating cylinder andfor a spatial resolution of the order
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of the diameter of the cylinder or poorer, the intensity perturbations produced by a sausage

mode in the optically thin emission regime are negligible.

Theoretical modelling of sausage modes of coronal structures has a long history. Sausage

modes are highly dispersive and their properties are dependent upon the longitudinal wavenum-

ber (e.g., Zaitsev and Stepanov [1982]; Edwin and Roberts [1983]; Roberts et al. [1984];

Selwa et al. [2004]). Depending upon the ratio of the longitudinal wavelength (determined,

e.g., in the case of standing waves by the length of the oscillating loop) to the radius of

the plasma cylinder, the mode can be either trapped or leaky.Trapped modes experience

total internal reflection at the cylinder surface and are evanescent outside the loop. The

period of standing trapped sausage modes, i.e., in dense andthick flaring loops, grows with

wavelength [Nakariakov et al., 2003; Aschwanden et al., 2004]. Sausage modes of longer

wavelengths leak from the cylinder, forming a train of outwardly propagating fast magne-

toacoustic waves outside the cylinder. This mechanism of wave leakage is intrinsic and

different from the tunnelling caused by non-uniformity of the external medium (see, e.g.,

Verwichte et al. [2006]). The threshold value of the ratio ofthe longitudinal wavelength to

the radius of the cylinder is defined by the ratio of the fast magnetoacoustic speeds inside

and outside the cylinder [Zaitsev and Stepanov, 1982; Edwinand Roberts, 1983]. Such a

behaviour was found to be weakly sensitive to the smoothnessof the transverse profile of

the fast speed [Pascoe et al., 2007a], fine structure in the form of multiple coaxial shells

[Pascoe et al., 2007b], longitudinal variation of the cylinder cross-section [Pascoe et al.,

2009b], and finite-β effects [Inglis et al., 2009].

However, sausage modes are still not entirely understood. In particular, the dependence of

the time period on the longitudinal wavelength in the leaky regime, information crucial for

the development of seismological techniques based upon this mode, is still debated. On the

one hand, analysis of dispersion relations for linear sausage perturbations clearly showed

that in the long-wavelength regime the period of leaky sausage modes is independent of

wavelength [e.g. Zaitsev and Stepanov, 1982; Cally, 1986; Kopylova et al., 2002, 2007]

and is determined by the ratio of the radius of the cylinder tothe internal value of the fast

speed. On the other hand, it was argued that the gradual increase in wavelength from a

trapped regime value should lead to an increase in the period[Nakariakov et al., 2003; As-

chwanden et al., 2004] for a fixed value of the radius of the cylinder. Moreover, numerical

simulations of the initial-value problem demonstrated that the period of the mode grows

with wavelength [e.g. Pascoe et al., 2007a; Inglis et al., 2009] in both trapped and leaky

regimes. The situation is complicated by difficulties in searching analytically for the com-

plex roots of the transcendental algebraic equations representing the dispersion relations

[Ruderman and Roberts, 2006].

In this section we aim to resolve this long-standing discrepancy. We analyse an initial-
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value problem, considering the evolution of an axially symmetric perturbation of a straight

plasma cylinder embedded in a uniform magnetic field, as in the works of Pascoe et al.

[2007a]; Inglis et al. [2009]; Gruszecki et al. [2012]. In contrast to Pascoe et al. [2007a];

Inglis et al. [2009], where a plane plasma slab was considered, we study sausage modes

of a plasma cylinder. Moreover, we extend the range of the parameters of the problem,

considering ratios of the length of the perturbed cylinder to its diameter up to 60 and ratios

of the Alfvén speeds outside and inside the cylinder up to 20. In previous studies these

parameters were considered up to 15 and 7, respectively [Inglis et al., 2009]. In addition,

we study the dependence of the sausage mode period on the steepness of the transverse

profile of the plasma in the cylinder. We consider a radially non-uniform plasma cylinder

embedded in a uniform and straight magnetic field in the zero-β regime. We perform a

parametric study of the sausage mode of this plasma equilibrium, varying the contrast of

the Alfvén (fast magnetoacoustic) speed inside and outside the cylinder and the steepness

of the plasma non-uniformity in the radial direction. We considered the transition from

the short-wavelength trapped regime to the long-wavelength regime, investigating how the

dependence of the period on the wavelength evolves to its independence.

2.2 Numerical model

Consider a smooth cylinder of zero-β plasma, stretched along a uniform magnetic field,B0

directed in thez-direction. The density of the plasmaρ0 decreases with radial coordinate,r.

This is the standard setup for studying coronal loop oscillations, as described in section 1

(Fig. 1.6). Unlike the cylinder considered in section 1 the Alfvén speed is now continuous,

increasing in the radial direction, and is modelled by the function:

CA(r) =
B0

√

µ0ρ0(r)
= CA∞

[

1− δexp

(

− rα

dα

)]

, (2.1)

whereCA∞ is the Alfvén speed at infinity, 0< δ < 1 is the decrease in the Alfvén speed at

the axis of the cylinder, as compared tor → ∞. The index,α > 1 dictates the steepness of

the profile,d is the effective radius of the cylinder (asα→ ∞ the case considered by Edwin

and Roberts [1983] is recovered, andd is the cylinder’s radius), andµ0 is the permeability

of free space. The Alfvén speed at the cylinder’s axis is therefore: CA0 = CA∞(1 − δ).
Thus by varying the parametersδ andα we change the contrast ratioCA0/CA∞ and the

steepness of the radial profile respectively. As the magnetic field is uniform and the gas

pressure is taken to be negligible due to the zero-β approximation, the equilibrium total

pressure is constant everywhere. Hence the parameterδ = 1− CA0/CA∞ is connected with

the contrast of the equilibrium plasma densityρ0 at the cylinder’s axis, and at infinity as
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Figure 2.2: Examples of the radial profiles of the Alfvén speed in the plasma cylinder
considered for different values of the parametersα andδ, which control the steepness and
depth of the profile, respectively. The thick solid curve corresponds toα = ∞, δ = 0.8, the
thin solid curve toα = 2, δ = 0.8, the dotted curve toα = 4, δ = 0.8, the dashed curve to
α = 4, δ = 0.9, and the dot-dashed curve toα = 4, δ = 0.5. The Alfvén speed is normalised
to its value at infinity and the radial distance is normalisedto the effective radius of the
cylinder.
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δ = 1− [ρ0(∞)/ρ0(0)]1/2. It is important to note that asα→ ∞ the step profile is recovered.

Fig. 2.2 shows examples of several Alfvén speed profiles using this setup.

As previously we restrict ourselves to dissipationless processes, described by the ideal

MHD equations:

ρ

[

∂V
∂t
+ (V · ∇)V

]

= j × B,

∂B
∂t
= ∇ × (V × B),

∂ρ

∂t
+ ∇ · (ρV) = 0,

where the vectorsV andB are the plasma velocity and magnetic field, respectively, and ρ

is the plasma density. In the momentum equation the−∇P term has been dropped, as it is

0 in the zero-β approximation, which is a justifiable approximation for thestudy of sausage

modes of coronal loops [Inglis et al., 2009].

It is natural to use a cylindrical coordinate system, with the z-axis coinciding with the axis

of the cylinder and withφ andr the azimuthal and radial coordinates, respectively. Consid-

ering linear magetoacoustic perturbations of the cylindrical equilibrium given by (2.1); and

taking perturbations to be independent of the azimuthal angle, φ, as we are only interested

in the sausage mode oscillations, we obtain the following for the perturbed quantities:

∂vr

∂t
=

B0

µ0ρ0

(

∂Br

∂z
− ∂Bz

∂r

)

, (2.2)

∂Br

∂t
= B0

∂vr

∂z
, (2.3)

∂Bz

∂t
= −B0

(

∂vr

∂r
+

vr

r

)

, (2.4)

j =
1
µ0

(∇ × B) , (2.5)

wherevr is the radial component of the plasma velocity, andBr andBz are the radial and

longitudinal components of the perturbed magnetic field. The quantities with index 0 are

the equilibrium quantities.

Then taking the time derivative of (2.2) and substituting the longitudinal derivative of (2.3)

and the radial derivative of (2.4), we obtain the fast magnetoacoustic wave equation,

∂2vr

∂t2
=

B2
0

µ0ρ0(r)

(

∂2vr

∂z2
+
∂2vr

∂r2
+

1
r
∂vr

∂r
+

vr

r2

)

, (2.6)

for sausage perturbations of the field aligned plasma cylinder. Slow magnetoacoustic per-

turbations are absent from this equation, as we ignore finite-β effects.
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As the equilibrium is uniform along the axis of the cylinder (in thez-direction) we can per-

form a Fourier transformation with respect to this coordinate, assuming that the perturbed

physical quantities depend uponz as cos(kzz). These assumptions correspond to considering

standing modes with longitudinal wavelength 2π/kz. Thus, we obtain the wave equation for

the fast magnetoacoustic perturbations harmonic in the longitudinal direction,

C−2
A (r)

∂2vr

∂t2
+

(

k2
z + r−2

)

vr −
∂2vr

∂r2
− 1

r
∂vr

∂r
= 0. (2.7)

Equation (2.7) contains explicit dependence upon only two coordinates, the timet and the

radial coordinater. In particular, (2.7) describes standing sausage waves of wavelength

2π/kz, as observed in flaring coronal loops.

Due to the radial dependence of the Alfvén speed in (2.7) this equation in general does not

have analytical solutions, as such a numerical approach must be attempted. An initial value

problem is solved with the initial condition:

Vr(r, t = 0) = A0r exp(−r2/d2), (2.8)

whereA0 is the amplitude of the initial pulse. This form of the initial perturbation has

the same symmetry as the sausage mode as it is independent of the azimuthal angle,φ

and the plasma velocity at the axis of the cylinder is zero. The width of the perturbation

in the radial direction is taken to be sufficiently large to avoid excitation of higher radial

harmonics; the shape of the perturbation is close to the transverse structure of the lowest

mode (see, e.g., Pascoe et al. [2007a]; Inglis et al. [2009]), with one maximum of the radial

velocity perturbation in the radial direction. Higher radial sausage harmonics have more

than one extremum in the radial direction, and hence are excited by our driver (2.8) less

effectively. In the longitudinal direction, the initial perturbation is described by a harmonic

function with wavenumberkz. Equation (2.8) is supplemented by the boundary conditions

Vr(r = 0, t) = Vr(r = 50d, t) = 0. The former boundary condition is imposed by the

cylindrical geometry; the latter simulates the decrease ofthe perturbation to zero at a large

distance from the cylinder.

The evolution of the initial perturbation was calculated numerically using the functionpd-

solve of Maple 16, which implements a second-order (in space and time) centred finite dif-

ference scheme. The convergence of this method was checked by doubling the number of

grid points. The performance of this solver, in particular the radial structure of the sausage

mode and its period for a given wavelength, was tested by comparing with the exact analyt-

ical results for a similar problem for a zero-β plasma slab with a symmetric Epstein profile

of the density embedded in a straight magnetic field [Cooper et al., 2003]. In the cylindrical

case considered in this section calculations were carried out in the domain (0< r < 50d,
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Figure 2.3: Left panel: example of a trapped oscillation, obtained for the parameterskz =

1.5, δ = 0.8, andα = 6. Right panel: example of a leaky oscillation forkz = 0.4, δ = 0.7,
andα = 6. The time is measured in ind/CA∞ and the radial distance ind. The vertical axis
shows the radial component of the plasma velocity measured in units of the initial amplitude
A0.

0 < t < NdCA∞), whereN is sufficiently large (e.g.,N = 50) for confident resolution of

several periods of oscillation.

Two typical scenarios of the evolution of the initial perturbation, leaky and trapped oscil-

lations, are shown in Fig. 2.3. The figure shows the time evolution of the radial structure

of the initial impulsive perturbation which has a harmonic dependence on the longitudinal

coordinate, cos(kzz), for an arbitrary value ofz. It is evident that in the trapped regime the

initial excitation remains localised near the axis of the cylinder (r = 0) and is evanescent

for higher values ofr. In contrast, the leaky waves are radiated from the cylinderto the

external medium as propagating fast magnetoacoustic waves. However they can be seen in

the cylinder for some time after the excitation as decaying harmonic oscillations.

By analysing the signal at a chosen spatial position, e.g.,r = d, we obtain information about

the time evolution and hence the period of oscillations and the decay time. As the signal

decays quickly in the leaky regime, the preferred analytical tool is to fit the time signal with

an exponentially decaying harmonic function using the least-squares method. In this study

we restrict our attention to the analysis of the dependence of the period on the parameters

of the cylinder and the initial excitation only.
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Figure 2.4: Dependence of the period of oscillations on the wavelength 2π/kz for different
values of the parameterδ that is connected with the density contrast inside and outside the
cylinder. The dotted curve shows the caseδ = 0.95, the dot-dashed curveδ = 0.9, triple dot-
dashedδ = 0.8, dashedδ = 0.7, and the solid line is forδ = 0.5. The diamonds represent
the specific measurements. The value ofα is 6 for all curves. The thick straight line shows
the cutoff, P = 2π/(kzCA∞). Other straight lines show the values ofP = 2π/[kzCA∞(1− δ)]
for the various values ofδ. The long dashed line shows where the damping time is equal to
three periods of oscillation. The period is measured in units of d/CA∞ and the wavelength
in units ofd.

2.3 Results

2.3.1 Dependence of the sausage mode period on the longitudinal wavelength

Figure. 2.4 shows the dependence of the period of sausage oscillations on the wavelength

2π/kz. This figure is in some ways analagous with Fig. 1.7, showing the dispersion relation

for the fundamental sausage mode. In the short wavelength (large wavenumber) limit the

dispersion curve is bounded by the internal wavespeed,ω/kz = CA(r = 0), which is repre-

sented in the figure by the straight lines whose linestyles match their dispersion curves, and

is given by the expression:P = 2π/(kzCA∞(1− δ)). With increasing wavelength, the period

increases and the effective phase speed is in the range between the Alfvén speed in the cen-

tre of the cylinder and at infinity, which is consistent with the reasoning in Nakariakov et al.

[2003]. As the wavelength increases, the growth of the period becomes less steep, gradually

approaching another asymptote,P = 2π/(kzCA∞), determined by the Alfvén speed outside

the cylinder. This asymptote is represented in the figure by the lineω/kz = CA∞. An impor-
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Figure 2.5: The same as Figure. 2.4, but zoomed to show the trapped regime.

tant feature of this dependence is the presence of a cutoff value. At the cutoff, the period is

equal to the ratio of the wavelength to the value of the Alfvén speed at infinity.

For wavelengths shorter than the cutoff value, the oscillations are trapped and the period

grows with increasing wavelength. This is consistent with the results obtained in the slab

geometry [Pascoe et al., 2007a; Inglis et al., 2009]. In the weakly leaky regime, for wave-

lengths slightly exceeding the cutoff value, the period still grows with wavelength (see

Fig. 2.5), again in agreement with the case studeied by Pascoe et al. [2007a]. For long

wavelengths, the dependence of the period on the wavelengthshows saturation, and the

period becomes independent of wavelength. This effect is more pronounced for cylinders

with higher ratios of the external to internal Alfvén speeds, in other words a cylinder with a

deeper potential well in the radial profile of Alfvén speed.This effect was not found in the

previous studies: Pascoe et al. [2007a]; Inglis et al. [2009], because the wavelengths in the

simulation were insufficiently long to see the saturation of the sausage mode period. How-

ever a more recent study [Hornsey et al., 2014, which is covered in more depth in chapter 4]

found the same saturation in the slab case. In all cases considered, for the same values of

wavelength and Alfvén speed at infinity, the sausage mode periods are always longer for

cylinders with lower internal Alfvén speed. In the low-β model considered, cylinders with

lower internal Alfvén speed are cylinders with denser plasma.

The figure also contains a curve indicating where the dampingtime is equal to three periods

of oscillation. Above this curve, the oscillations are of sufficiently high quality to be easily

detectable in the data. Thus, leaky sausage oscillations inlong dense loops, with a high
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Figure 2.6: Dependence of the period of oscillations on the wavelength for different steep-
nesses of the radial profile,α. The thick solid line corresponds toα = ∞, the thin solid line
to α = 8, the triple dot-dashed line toα = 6, the dashed line toα = 4, and the dot-dashed
line to α = 2. The value ofδ is 0.8 for all curves. The thin straight lines are the cutoffs
P = 2π/(kzCA∞) and P = 2π/[kzCA∞(1 − δ)]. The thick solid line shows the analytical
solution in the long-wavelength limit for the step-function profile. The period is measured
in units ofd/CA∞ and the wavelength in units ofd.

ratio of Alfvén speeds, can also be of sufficiently high quality, with damping time much

longer than the period of oscillation to be easily detectable in the data. We must point out

that the damping time considered here is connected with waveleakage only. In addition,

the sausage mode can be subject to damping connected with various dissipative processes,

which also reduce the quality of the oscillations. For example in hot and dense flaring loops

field aligned thermal conduction [Zaitsev and Stepanov, 1982] may be such a process. This

effect is not considered in this study, as the equations used areideal.

2.3.2 Dependence of the sausage mode period on the steepnessof the trans-
verse profile

Figure 2.6 shows the effect of the transverse profile steepness on the sausage mode period.

A discussed in Section 2.3.1, for the step-function profile,in the short-wavelength limit,

the period is determined by the ratio of the longitudinal wavelength to the Alfvén speed

at its centre. Our calculations confirm this result, which iscorrect for smooth profiles too.

For all values ofα andkz the period is shorter than the short-wavelength asymptote,P =
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2π/[kzCA∞(1−δ)]. For the same wavelength, the periods of sausage oscillations in cylinders

with smoother Alfvén speed profiles, i.e. with lower indices α, are evidently shorter. This

effect can be understood by considering the oscillations as a wavepacket trapped in the

potential well. The distance the wavepacket travels between reflections is constant, as the

width of the well andkz are constant. However the mean wavespeed along the path is

changing, and is higher for lower values ofα. To understand this, consider two cases:

firstly whenα → ∞, and secondlyα < ∞. Forα → ∞ CA(r) = CA0 everywhere inside the

well. Thus everywhere inside the potential well the speed has its minimal value. But for a

smooth profile whenα < ∞, then the value ofCA(r) is larger thanCA0 = CA(r = 0) for all

values ofr except at the very axis of the cylinder,r = 0. Hence the transverse travel time

between two reflections decreases, decreasing the wave period.

Also, for steeper profiles, the cutoff value of the wavelength is found to be larger. For

comparison, we show the analytical result obtained for a cylinder with a step function profile

that corresponds to the limitα → ∞ in our consideration. Hence, as one would intuitively

expect, cylinders with steeper profiles are better waveguides for fast magnetoacoustic waves

with azimuthal symmetry.

From Fig. 2.6 we find that the effect of the radial steepness of the plasma cylinder on

sausage oscillations is rather strong. The difference in the values of the sausage mode

period between cylinders with a Gaussian (α = 2) radial profile is more than twice as large

as for a given parameterδ.

2.3.3 The long-wavelength limit

In Fig. 2.7 we demonstrate the dependence of the period in thelong-wavelength limit, when

it becomes independent of wavelength, on the Alfvén speed (or density) contrast in the

cylinder and on the steepness of it radial profile. The periodis systematically longer for

higher differences between the Alfvén speeds inside and outside the cylinder, and for steeper

profiles.

The thick solid line in Fig. 2.7 represents measurements made using a step function as the

radial profile of the Alfvén speed. This is useful as it allows for a direct comparison with

results obtained analytically. For example Kopylova et al.[2007] derived the following

expression for the period of sausage modes in the long wavelength limit:

P =
2πd

η j

√

C2
s0 + c2

A0

,

whereη j are the zeroes of the BesselJ0 function, for this calculation we takeη j ≈ 2.4. In

our calculations we are also using the zero-β approximation, soCS 0 = 0. This gives the
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Figure 2.7: Dependence of the period, in the long-wavelength limit, on the ratio of external
to internal Alfvén speeds for different steepnesses. The dotted curve corresponds toα = 20.
The other curve styles correspond to those used in Fig. 2.6. The thick solid line shows the
analytical solution in the long-wavelength limit for the step-function profile. The period is
measured in units ofd/CA∞ and the wavelength in units ofd.
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following analytically obtained expression for the periodin the long-wavelength limit for a

step profile cylinder:

P ≈ 2πd/2.4CA0, (2.9)

which agrees well with results obtained forα→ ∞.

It is also evident that for smoother profiles the sausage modeperiod becomes shorter (see

also the discussion in Section 2.3.2). The period grows withincreasing ratioCA∞/CA0,

while for smaller values of the steepness parameterα this dependence departs from the

linear relationship that appears in theα → ∞ cases. For a fixed value of the ratio of the

Alfvén speeds, the dependence of the period on the steepness parameterα is seen to be

extremely nonlinear. In particular, forCA∞/CA0 = 10, which is typical for flaring loops

(e.g., Nakariakov et al. [2003]), we get an estimated formula

P ≈ 26.1d tanh(log(α)). (2.10)

This is applicable to low-β profiles steeper than Gaussian,α > 2, and is consistent with the

analytical result in theα→ ∞ limit.

2.4 Conclusions

We performed numerical simulations of the azimuthally symmetric initial-value problem

for a field-aligned low-β plasma cylinder with a smooth radial profile of the density (and

hence of the Alfvén speed). The plasma cylinder was excitedby a symmetric perturbation

of the radial velocity of the plasma and of a harmonic shape inthe longitudinal direction.

Fast magnetoacoustic sausage modes were found to be easily excited in both the trapped

and leaky regimes. The results obtained can be summarised asfollows.

1. With increasing longitudinal wavelength, the period of the sausage oscillations al-

ways grows but this dependence is saturated in the long-wavelength limit.

2. In the trapped regime, the period lies between two values,corresponding to the ratio

of the effective radius of the cylinder and the Alfvén speed at its axis and at infinity,

and grows increasing in wavelength.

3. For wavelengths greater than the cutoff value, sausage modes become leaky. In re-

sponse to an impulsive excitation in the cylinder, the leakywaves show decaying

oscillatory behaviour with a period determined by the parameters of the cylinder (the

Alfvén speed contrast ratio and steepness). Outside the cylinder, the leaky waves

form a wavetrain pattern that propagates outward at the external Alfvén speed. As
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expected, deeper and steeper profiles of the Alfvén speed correspond to more effi-

cient trapping of the sausage modes: the cutoff value of the wavelength increases

with steepness and the density (or Alfvén speed) contrast ratio.

4. In the leaky regime, the period is always longer than the period of a trapped mode of

a shorter wavelength, and also is longer than the cutoff value (the ratio of the wave-

length and the Alfvén speed far from the cylinder). For shallow profiles of the density

(and hence the Alfvén speed) and shorter wavelengths, the period grows with wave-

length in the leaky regime as well. In the long-wavelength limit, the period becomes

independent of wavelength and is determined by the depth andsteepness of the radial

profile of the Alfvén speed: the period is approximately inversely proportional to the

internal value of the Alfvén speed and depends on the steepness indexα as tanh(lgα).

Our findings resolve the longstanding problem of the dependence or independence of the

period of sausage oscillations on wavelength. Indeed, for shorter wavelengths, even in the

leaky regime, the period grows with wavelength. In particular, for thick flaring coronal

loops with density contrast of about 10 (and hence with an Alfvén speed contrast ratio of

about 3.16) and a length of about 5− 6 times their diameters, as considered by Nakariakov

et al. [2003] and Aschwanden et al. [2004], the period of the fundamental sausage mode

indeed increases with wavelength. But for longer wavelengths (and higher density contrast

ratios), the dependence of the period on wavelength experiences saturation and becomes

consistent with the analytical results obtained by Zaitsevand Stepanov [1982]; Kopylova

et al. [2002, 2007]. Thus we infer that opposing conclusionsdrawn previously concerning

the dependence of the sausage mode period on wavelength weredrawn in different ranges

of the parameters of the problem, and hence are not contradictory. More specifically, the

regime described in Pascoe et al. [2007a]; Inglis et al. [2009] corresponds to segments of

the solid and dashed curves near the thick solid line in figure2.4. On the other hand, the

regime described in Zaitsev and Stepanov [1982]; Kopylova et al. [2002, 2007] corresponds

to the saturation of the curves in the long wavelength part ofthat figure.

This result has important implications for the seismological diagnostics of plasma in flar-

ing loops with the use of sausage oscillations. In particular, the pronounced dependence of

the sausage oscillation period upon the steepness of the radial profile of the Alfvén speed

provides us with a tool for probing that parameter. The transverse steepness is vital for the

assessment of the efficiency of kink wave damping in the solar corona (see, e.g., Goossens

et al. [2012] and references therein) and of associated coronal heating. An additional advan-

tage of seismological techniques utilising the sausage mode is provided by its independence

of the length of the loop in the long-wavelength regime. Thisallows one to exclude this pa-

rameter from consideration in the diagnostics of long denseloops. Moreover, equation 2.10
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gives us a tool for probing the transverse profile of the Alfv´en speed and density of sausage

oscillations in a coronal loop provided we are able to get independent measurements of the

loop diameter,d and the Alfvén speedCA0. In particular, the latter parameter can come

from the observation of a kink oscillation of the same loop.
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Chapter 3

Comparison with analytical

approximations

3.1 Introduction

The numerical model considered in Chapter 2 has also proved useful in verifying new an-

alytical studies of the sausage mode. An example of this was performed by Vasheghani

Farahani et al. [2014], and is summarised as follows:

3.2 Model

The study considers the plasma cylinder as described in section 1.5.2 and Edwin and

Roberts [1983], under the zero-β approximation. The perturbations are assumed to be

axisymmetric and hence only the sausage oscillations are considered. This is therefore

compatible with the model described in section 2.2 when using a step profile to describe the

Alfvén speed, that isα→ ∞.

3.2.1 Solution at the cutoff wavenumber,kc

Starting from the dispersion relation as described by Edwinand Roberts [1983] in the zero-β

limit:
ρ0

ρe

(ω2
A0 − ω2)

(ω2
Ae − ω2)

me

n0
=

J1(n0d)
J0(n0d)

K0(med)
K1(med)

, (3.1)

here we have used the property of Bessel functions thatJ′0(x) = −J1(x), and similarly for

other Bessel functions. We have also introducedωAe = kCAe andωA0 = kCA0, as the

frequencies associated with the Alfvén speeds of the system. We use the same definitions

43



of me andn0 as before, but in the zero-β limit Cs = 0.

m2
e =

k2C2
Ae − ω2

C2
Ae

, n2
0 = −

k2C2
A0 − ω2

C2
A0

. (3.2)

A solution to (3.1) is already known from considering Fig. 1.7, that is that atk = kc, the

cutoff wavenumber,ω/k = CAe. Around this pointme is small, and thereforeK0 andK1 can

be expanded using their expansion for small arguments [Abramowitz et al., 1988]

K0(med) = − ln

(

1
2

med

)

, K1(med) =
1

med
,

substituting these, and replacingρ0/ρe with C2
Ae/C

2
A0 (3.1) becomes:

C2
Ae

C2
A0

(ω2 − ω2
A0)

(ω2 − ω2
Ae)

me

n0
=

J1(n0d)
J0(n0d)

med ln

(

1
2

(med)

)

, (3.3)

from this it can be shown thatJ0(n0d) = 0 whenk = kc, or using the definition ofn0 from

(3.2):

kcd =
CA0 j0,1

√

C2
Ae −C2

A0

=
j0,1
D
, (3.4)

where j0,1 is the first zero of the Bessel functionJ0 andD is a factor that depends on the

density contrast ratio:

D2 =
C2

Ae

C2
A0

− 1 =
ρ0

ρe
− 1 = ξ − 1.

Here we have also used the notationξ = ρ0/ρe as first introduced in Van Doorsselaere et al.

[2004].

3.2.2 Leaky regime in the neighbourhood of the cutoff wavenumber.

There are several regions where an approximate solution to the dispersion relation can be

found. The first that will be considered is in the leaky regimein the neighbourhood ofkc. In

Fig. 2.4 this is the region just to the right of the thick solidline. In this region the dispersion

relation (3.1) no longer holds, as now the exterior solutionis a propagating wave. Instead

the following dispersion relation is used:

ρ0

ρe

(ω2
A0 − ω2)

(ω2
Ae − ω2)

ne

n0
=

J1(n0d)
J0(n0d)

H(2)
0 (ned)

H(2)
1 (ned)

, (3.5)
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whereH(2)
m (ner) = Jm(ner) − iYm(ner) is the outwardly propagating wave solution. In the

zero-β case again we have:

n2
e = −

k2C2
Ae − ω2

C2
Ae

.

We are only interested in the regime surrounding the cutoff, therefore we re-writeω = ωAe+

∆ω andk = kc + ∆k, where∆ω and∆k are both considered small quantities. Substituting

these into the forms ofne andn0 and neglecting terms with (∆ω)2 and (∆kc)2 we get:

n2
e =













ω2
Ae + 2ωAe∆ω −C2

Aek2
c − 2kcC2

Ae∆k

C2
Ae













, (3.6)

n2
0 =















ω2
Ae + 2ωAe∆ω −C2

A0k2
c − 2kcC2

A0∆k

C2
A0















. (3.7)

The expression forne can be simplified with use ofωAe = CAekc, which gives:

ne =

√

2∆e

C2
Ae

, (3.8)

where

∆e = ω2
Ae

(

∆ω

ωAe
− ∆k

kc

)

.

Then substitutingωAe = CAekc into the expression forn0, and factoring out the terms con-

taining the small parameters gives:

n0 = kcD(1+ ∆s), (3.9)

where

∆s =
CAekc∆ω−kcC2

A0∆k

(C2
Ae−C2

A0)2k2
c

= 1
D2

(

ξ ∆ω
ωAe
− ∆k

kc

)

.

These expressions can then be substituted into (3.5) to givethe dispersion relation around

the cutoff wavenumber. We also use the fact that the argument of the Bessel J function now
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consists of a large and a small parameter to perform a Taylor expansion of these. We obtain:

C2
Ae

k2
c D2(1+ 2∆s)

2∆e

√

2∆e
C2

Ae

kcD(1+ ∆s)
=

−
(

J0(kcdD) − J2(kcdD)
J1(kcdD)

+
J1(kcdD)

(kcdD)J1(kcdD)∆s

)H(2)
0

(

d
√

2∆e
C2

Ae

)

H(2)
1

(

d
√

2∆e
C2

Ae

) . (3.10)

Using the fact thatkcdD was shown to be a zero ofJ0 in the previous section, as well as

simplifying gives:

CAeD
kc(1+ ∆s)√

2∆e
= −

(

− J2(kcdD)
J1(kcdD)

+
1

(kcdD)∆s

)

×



























J0

(

d
√

2∆e
C2

Ae

)

− iY0

(

d
√

2∆e
C2

Ae

)

J1

(

d
√

2∆e
C2

Ae

)

− iY1

(

d
√

2∆e
C2

Ae

)



























. (3.11)

We use the expansions for the Bessel and Hankel functions [Abramowitz et al., 1988]

J0(ned) = 1− 1
4













d2 2∆e

C2
Ae













,

J1(ned) =
1
2

















d

√

2∆e

C2
Ae

















,

Y0(ned) =
2
π

ln

















1
2

d

√

2∆e

C2
Ae

















Y1(ned) = − 2

πd
√

2∆e
C2

Ae

,

and substitute them in equation (3.11). We neglect higher order terms to obtain

−CAeD2k2
cd

















1
2

d

√

2∆e

C2
Ae

+ i
2CAe

πd
√

2∆e

















∆s

=
√

2∆e













1− i
π

ln













d2∆e

2C2
Ae

























. (3.12)
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In order to eliminate∆e in the denominator of the left hand side of equation (3.12), we

multiply both sides by
√

2∆e, and therefore we obtain

−CAeD2













d∆e

C2
Ae

+ i
2CAe

πd













∆s

=
2∆e

k2
cd













1− i
π

ln













d2∆e

2C2
Ae

























. (3.13)

We substitute the expression for∆s and∆e to obtain















1+ i
C2

Ae

πC2
A0

− i
π

ln

[

k2
cd2

2

(

∆ω

ωAe
− ∆k

kc

)]















∆ω

ωAe

=

{

1+
i
π
− i
π

ln

[

k2
c d2

2

(

∆ω

ωAe
− ∆k

kc

)]}

∆k
kc
. (3.14)

This provides an implicit and complex dispersion relation,describing the complex fre-

quency,ω. Here the real part ofω describes the frequency and the imaginary component

the decay rate. To proceed we must separate the real and imaginary parts of (3.14). To

separate logarithms with complex arguments we use the identity: ln(x + iy) = (1/2) ln(x2 +

y2) + i arctan(y/x). Applying this identity to the logarithm in (3.14) gives:

ln

{

k2
c d2

2

(

∆ω

ωAe
− ∆k

kc

)}

= i arctan

( ℑ(∆ω)
ℜ(∆ω) −CAe∆k

)

+
1
2

ln















(

k2
cd2

2

)2 













(ℜ(∆ω
ωAe

− ∆k
kc

)2

+

(ℑ(∆ω)
ωAe

)2


























. (3.15)

In (3.15) the arctan term can be neglected as compared to the logarithmic term as we are

comparing the logarithm of a small quantity to a term linear in this small quantity, hence

we can define the argument of the logarithm as:

∆W =

(

k2
cd2

2

)2 













(ℜ(∆ω)
ωAe

− ∆k
kc

)2

+

(ℑ(∆ω)
ωAe

)2














, (3.16)

which allows us to write (3.14):

∆ω

∆k
=CAe

[

1+
i
π
− i ln(∆W)

2π

]

×














1+
iC2

Ae

πC2
A0

− i ln(∆W)
2π















−1

. (3.17)
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In order to make the denominator of (3.17) real, so it can be separated into real and imag-

inary terms, we multiply the numerator and denominator by the denominator’s complex

conjugate:

∆ω

∆k
=CAe

[

1+
C2

Ae

π2C2
A0

−
C2

Ae

2π2C2
A0

ln(∆W)

+
1

4π2
(ln(∆W))2 +

i
π
− i

C2
Ae

πC2
A0

]

×














1+
C4

Ae

π2C4
A0

+
1

4π2
(ln(∆W))2 −

C2
Ae

π2C2
A0

ln(∆W)















−1

. (3.18)

Note that the term (1/2π2) ln(∆E) has been neglected in comparison to the term (1/4π2)[ln(∆W)]2

when obtaining equation (3.18), because we assume that|∆ω| ≪ 1. This neglection is based

on the fact that the arguments of the logarithms are small so that the absolute value of the

logarithm is large. Hence the square of the logarithm would be much greater than the loga-

rithm itself.

Finally, the dependence of the sausage mode frequency and the damping rate on the wave

number could be defined by two coupled implicit equations as:

ℜ(∆ω)
∆k

=CAe















1+
C2

Ae

π2C2
A0

−
C2

Ae ln(∆W)

2π2C2
A0

+
(ln(∆W))2

4π2















×














1+
C4

Ae

π2C4
A0

+
(ln(∆W))2

4π2
−

C2
Ae ln(∆W)

π2C2
A0















−1

, (3.19)

ℑ(∆ω)
∆k

= − CAe

π















C2
Ae

C2
A0

− 1















×














1+
C4

Ae

π2C4
A0

+
(ln(∆W))2

4π2
−

C2
Ae ln(∆W)

π2C2
A0















−1

, (3.20)

for the frequency and damping rate, respectively. This set of equations is implicit and can

be solved numerically.

These equations are however still coupled, and as such further assumptions are required to

reach a more useful form. In particular we are assuming a highdensity contrast. This solu-

tion may be relevant for high density contrast jets [Cirtainet al., 2007], for very dense coro-

nal loops, and for chromospheric structures (where Morton et al. [2011] recently measured

the cutoff wavenumber for sausage modes). To proceed we simplify the expressions for the

frequency and damping rate (3.19) and (3.20), by assumingρe/ρ0 = (C2
Ae/C

2
A0)
−1 ≪ 1 and
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then neglecting terms withoutC2
Ae/C

2
A0, or C4

Ae/C
4
A0 in the denominator. This gives:

ℜ(∆ω)
∆k

≈
C2

A0

CAe

{

1− 1
2

ln
[k4

c d4

4

(

[ℜ(∆ω)
ωAe

− ∆k
kc

]2

+















πC2
A0

C2
Ae

∆k
kc















2
)]}

, (3.21)

and
ℑ(∆ω)
∆k

= −
πC2

A0

CAe
, (3.22)

for the frequency and the damping rates, respectively. Notethat the decay rate is calculated

first, and is then substituted into the form of the frequency to simplify (3.19). We can check

that the decay rate is sensible, as the right hand side of (3.22) is always negative. Hence

we only have a positive decay rate for a negative∆k, that is a wavenumber smaller than the

cutoff value.

It is also useful to formulate a definition for the phase speedof these oscillations. To

do this first the phase speed is defined in a similar manner to the previous parameters:

V = CAe + ∆V, ∆V is then related to∆ω and∆k by:

∆ω

∆k
= kc
∆V
∆k
+CAe. (3.23)

Substituting this into (3.21) gives:

ℜ(∆V)
∆k

≈
C2

A0

kcCAe
− CAe

kc

−
C2

A0

2kcCAe
ln















k4
cd4

4

















[ℜ(∆V
CAe

]2

+















πC2
A0

C2
Ae

∆k
kc















2




























. (3.24)

Then as (C2
Ae/C

2
A0) ≫ 1 we neglect terms withC2

A0, which leaves:

ℜ(∆V)
∆k

≈ −CAe

kc
. (3.25)

3.2.3 Leaky regime in the long wavelength limit

It is also of interest to find a similar expansion in the long wavelength limit. To do this first

we consider the dispersion relation in the casek = 0:

ρ0

ρe

(ω2
A0 − ω2

0)

(ω2
Ae − ω2

0)

ne

n0
=

J1(n0d)H(2)
0 (ned)

J0(n0d)H(2)
1 (ned)

, (3.26)
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Figure 3.1: The frequency dependence of the sausage oscillation on the wavenumber. The
solid lines are the analytical expression derived in the long wavelength limit and around the
cutoff. The dashed line is the results obtained from the numerical model. The dot-dashed
line represents the external Aflvén speed, and therefore demonstrates the cutoff. The density
ratio was taken to beρ0/ρe = C2

Ae/C
2
A0 = 25. All frequencies have been normalised by the

external Alfvén frequency at the cutoff.

here,ω0 = ω(k = 0) the frequency in the long wavelength limit, as in section 2.3 we showed

that the real part of this asymptotically approaches a constant value for small values ofk. As

in section 3.2.2 we assume that the frequency and wavenumberare constants plus a small

perturbation from this point. Performing the expansion as before yields:

CAe(1+ ∆A
2 )

CA0(1+ ∆Ae
2 )
=

[

J1

(

ω0d
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{
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∆Ae + i
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)
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, (3.27)

where

∆Ae =
2ω0∆ω −C2

Ae(∆k)2

ω2
0

, ∆A =
2ω0∆ω −C2

A0(∆k)2

ω2
0

. (3.28)

50



This is a fairly unwieldy equation, and therefore further assumptions will have to be made

to simplify it. Firstly we consider the zeroth order approximation, that is to neglect all terms

containing small parameters. This leaves:

CAe

CA0
=

J1

(

ω0d
CA0

)

J0

(

ω0d
CA0

) ×
J0

(

ω0d
CAe

)

− iY0

(

ω0d
CAe

)

J1

(

ω0d
CAe

)

− iY1

(

ω0d
CAe

) . (3.29)

This is very useful, as it allows us to find the value ofω0 for a givenCAe andCA0. As with

the case in the vicinity of the cutoff we can proceed by assuming a high density contrast

ratio. We multiply out the fractions in (3.27) and neglect terms which are linear or higher

in ρe/ρ0. This gives

1
2
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(
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(
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)
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)

∆A = 0. (3.30)

We then use the limiting expressions for the Bessel functions:

J0 = 1− (ω0d)2

4C2
A0,e

, J1 =
1
2
ω0d
CA0,e

, Y1 = −
2CAe

πω0
, (3.31)

and the definitions of∆A and∆Ae, which gives:
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(∆k)2. (3.32)

We then consider the solutions to (3.29), to find values forω0. For some wave guiding

structures the imaginary part ofω0 is much smaller than the real part. This means that

even in the long wavelength limit the oscillations have a reasonably high quality. This

agrees with our findings in section 2.3, the thin long dashed line in Fig. 2.4 shows where

oscillations have a quality factor below 3, and for cylinders with a reasonably high density

contrast ratio the dispersion curve never reaches this line. This fact aids in the following

analysis, as it means the imaginary part ofω0 can be neglected with regards to the real part.
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Hence (3.32) simplifies to:
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As before the denominator is made real by multiplying the numerator and the denominator

by the denominator’s complex conjugate. This then allows the real and imaginary parts to

be separated, giving:
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3.2.4 Non-leaky regime in the vicinity of the cutoff frequency

The final region in which an approximation will be derived is in the vicinity of the cutoff,

but in the trapped regime. To start we refer back to the dispersion relation in this regime

(3.1). We then proceed in the same manner as in the weakly leaky regime, introducing∆ω

and∆k as small parameters from the known point (ωAe, kc), and use Taylor expansions for

the Bessel functions about this point, which gives:
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Further simplification, and the neglect of small terms in thehigh density contrast regime

leads to:
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∆k
≈ −
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Figure 3.2: The phase speed dependence of the sausage oscillation on the wavenumber.
The solid lines are the analytical expression derived around the cutoff. The dashed line is
the results obtained from the numerical model. The dotted and dot-dashed line represents
the internal and external Aflvén speeds respectively. The density ratio was taken to be
ρ0/ρe = C2

Ae/C
2
A0 = 25. All speed have been normalised by the external Alfvén speed.

As well as showing that the imaginary part of the frequency iszero, i.e. the oscillation is

not damped.

3.3 Comparison with numerical simulations

Thus we derived analytical asymptotic approximations for the frequency of the sausage

mode in three regions, either side of the cutoff, and in the long wavelength limit, as well as

the damping rate for the two regions in the leaky regime. Thistherefore then allows us to

compare these solutions to the numerical model developed insection 2.2.

Fig. 3.1 shows the variation in the real component of frequency with wavenumber,

both for the analytical expressions in the regions in which they were derived, and the numer-

ical results obtained using the method described in section2.2. There is a good agreement

between the numerical and analytical results both around the cutoff (where the dashed and

solid lines intersect the dot-dashed line), and in the very leaky regime.

We also used (3.24), the expression for the phase speed around the cutoff, to com-

pare the phase speed variation with the numerical case, as shown in Fig. 3.2. Again there is

a good agreement between the analytical and numerical cases. For both these plots we used

a density contrast ratio,ρ0/ρe = 25, allowing us to use the assumption of a high density

contrast ratio.
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Figure 3.3: The decay rate dependence of the sausage oscillation on the wavenumber. The
solid lines are the analytical expression derived in the long wavelength limit and in the
weakly leaky regime. The dashed line is the results obtainedfrom the numerical model. The
density ratio was taken to beρ0/ρe = C2

Ae/C
2
A0 = 25. The damping has been normalised by

the external Alfvén frequency at the cutoff.

Finally we considered the damping rate of these oscillations, given by (3.22), this is

shown in Fig. 3.3. In order to calculate the damping rate of oscillations from our numerical

model we fit the peaks of the oscillation with a decaying exponential and use its decay rate

as the damping rate of the oscillation. There is a good agreement between the analytical

results in both the weakly and strongly leaky regimes.

3.4 Conclusions

In this chapter we have developed analytical asymptotic expressions for the real and imag-

inary parts of the dispersion relation for sausage oscillations in three regions: the weakly

trapped, weakly leaky and strongly leaky regimes. This is the same dispersion relation as

considered in Chapter 2, where the oscillations were modelled, and a modelled solutions to

the dispersion curve was deduced. The results of this can be summarised as follows:

1. The analytical solutions for the real component ofω derived in this chapter were then

compared with the values forω obtained from the numerical model developed in

chapter 2. A good agreement was found between these two in allconsidered regions.

2. The model developed in Chapter 2 was extended to also consider the decay rate of
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these oscillations in the leaky region.

3. The modelled decay rate was compared with the imaginary component ofω in the

leaky regions that were considered using the analytical expansion. A good match was

found between these quantities.
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Chapter 4

Sausage oscillations of a slab

geometry

4.1 Introduction

The work presented in this chapter is based on Hornsey et al. [2014]. In chapter 2 a nu-

merical model for the sausage oscillation of a plasma cylinder was considered. However

the sausage oscillation is not purely restricted to the cylindrical geometry, a sausage os-

cillation can also appear in a slab geometry. The underlyingmathematics is very similar

to the cylindrical case and was performed for a step-function profile by Edwin and Roberts

[1982]. Indeed, in a number of cases the waveguiding coronalplasma non-uniformity is bet-

ter described by a plane or curved slab than a cylinder. In particular, sausage perturbations

can readily occur in coronal streamers and other current sheets [e.g. Smith et al., 1997], in

dark lanes in post-flare supra-arcades [e.g. Verwichte et al., 2005; Costa, 2011], and global

oscillations of prominence slabs. Sausage modes in this geometry have also been used to

explain various phenomena that have been observed in the corona. For example, Scott et al.

[2013] developed a model to explain the observed EUV emission of the large vertical fans

above arcades. Their model involves a travelling sausage oscillation descending down a

flaring current sheet. This movement triggers peristaltic pumping, or a flow inside the sheet

causing by these axi-symmetric oscillations, which could lead to chromospheric evapora-

tion which fills the supra arcade fans with the hot plasma required to emit the EUV emission

that is observed.

Another example of sausage oscillations being used to explain observations is provided by

Karlický et al. [2013] who studied radio fibre bursts. They compared radio spectra of these

events with artificial ones generated using a semi-emperical model and a MHD model of a

sausage mode in a flaring current sheet. They found a good agreement between observa-
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tions and their models and hence considered sausage oscillation in current sheets to be an

excellent candidate to explain this phenomena.

The aim of this chapter is to generalise the results obtainedin the previous chapter

and Nakariakov et al. [2012] on the slab geometry. We also aimto develop the work of Pas-

coe et al. [2007a] on the case of long wavelengths, studying the transition between trapped

and leaky regimes, and comparison of the results obtained inboth the geometries. The

chapter is organised as follows. Section 4.2.1 describes the model that was used to describe

these oscillations in the slab geometry. Section 4.2.2 details the results of measurements

made using this model, firstly studying how the period of the oscillations varies with the

wavenumber for different shapes and depths of well, as well as how these values compare

to the cylindrical case. Then the effect of varying the steepness of the well was considered

in depth. Finally in this section the values of the cutoff wavelength, that is the value of

the wavelength for which the oscillation transitions for being trapped to being leaky, were

studied, and compared with analytical results in the case ofan infinitely steep well. Section

4.2.3 summarises the conclusions.

4.2 Slab

4.2.1 Model

Consider a slab of a zero-β plasma of infinite extent in thex-direction. The plasma is

penetrated by a straight and uniform magnetic field,B0 directed along thex axis. Here, the

index “0” denotes the equilibrium quantities. The equilibrium density,ρ0, is

ρ0 =
4πB2

0

C2
A∞

[

1− δexp

(

−
( | z |

d

)α)]−2

, (4.1)

and the Alfvén speed,CA(z), obeys

CA(z) = CA∞

[

1− δexp

(

−
( | z |

d

)α)]

, (4.2)

whereCA∞ is the Alfvén speed at a large distance from the slab, whered is the slab half-

width, the parameter 0< δ < 1 controls the value of the Alfvén speed at the centre of

the slab, and the parameterα controls the steepness of the profile of the Alfvén speed.

This is the same Alfvén speed profile as considered in the cylindrical case (see chapter 2).

This allows a direct comparison of the results obtained in the cylindrical and slab geome-

tries. There are no steady flows in the considered equilibrium. The use of the zero-β limit

is justified by the previous numerical experiments that showed that properties of sausage

oscillations are practically independent ofβ, provided it is lower than unity [Inglis et al.,
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2009]. Asβ is taken to zero, profile (4.2) of the Alfvén speed coincideswith the profile of

the fast magnetoacoustic speed,CFastMode= (C2
A +C2

s)1/2 ≈ CA , where the sound speed,Cs

is neglected in comparison with the Alfvén speed. Thus, theslab has a decrease in the fast

magnetoacoustic speed and hence can act as a fast magnetoacoustic waveguide [Nakariakov

and Roberts, 1995]. As the propagation of fast magnetoacoustic waves is not sensitive to

whether the magnetic field is directed in the positive or negative direction along thex-axis

in the considered geometry, our model is also applicable to infinitely thin current sheets

situated atz = 0 and embedded in a plasma slab.

In the following we restrict ourselves to considering idealprocesses only, described

by the ideal zero-β MHD equations, these are:

ρ
∂v
∂t
= − 1
µ0

[B × (∇ × B)] , (4.3)

∂B
∂t
= ∇ × (v × B) , (4.4)

where the notations are standard. The mass continuity and energy equations that are not

needed for this study, are not shown.

We then proceed in a similar manner to the cylindriucal case,by assuming small

perturbations to the equilibrium quantities, denoted by anindex, 1, then linearising the

equations we obtain:

ρ0
∂v1

∂t
= − 1
µ0

[B0 × (∇ × B1)] , (4.5)

∂B1

∂t
= ∇ × (v1 × B0) . (4.6)

For the components of the vector quantities we obtain the equations

µ0ρ0

B0

∂vz

∂t
=
∂Bx

∂z
− ∂Bz

∂x
, (4.7)

∂Bx

∂t
= −B0

∂vz

∂z
, (4.8)

∂Bz

∂t
= −B0

∂vz

∂x
. (4.9)

Differentiating Eq. (4.7) byt, Eq. (4.8) byx and Eq. (4.9) byz, eliminating the variables

Bz and Bx, and assuming that the perturbations are periodic in thex-direction with the

wavelength 2π/kx, we obtain

C−2
A (z)

∂2vz

∂t2
− ∂

2vz

∂z2
+ k2

xvz = 0. (4.10)
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Equation (4.10) is a 1D wave equation describing the evolution of fast magnetoacoustic

oscillations of a given longitudinal wavelength 2π/kx in the transverse direction, in a field-

aligned zero-β plasma slab with a smooth transverse profile of the plasma density. This

equation is a Cartesian analogue of Eq. (2.6).

The Fourier transform in thex-direction, made in the derivation of Eq. (4.10) is pos-

sible if the slab is uniform in thex-direction. This condition corresponds to the assumption

that the wavelength of the perturbations is shorter than thenon-uniformity along the mag-

netic field (e.g. the density scale height in the case of the vertical slab representing the stalk

of a helmet streamer). Also, the slab is assumed to be uniformin the third,y-direction, that

is perpendicular to both the magnetic field and the plasma density non-uniformity gradi-

ent. This allows us to assume the perturbations to be independent of they-direction. These

assumptions are standard in modelling plasma non-uniformities in the solar corona, e.g.

current sheets in helmet streamers and above post-flaring arcades.

A parametric study of an initial value problem for Eq. (4.10)was performed numer-

ically using thepdsolve function ofMaple 16 that implements a second order (in space and

time) centred finite difference scheme (see chapter 2 for details) The initial conditions were

chosen to be an impulsive anti-symmetric pulse centred at the axis of the slab,

vz(z, t = 0) = A0z exp

[

−
( z
d

)2
]

, (4.11)

whereA0 is the initial amplitude. The symmetry of the initial perturbation excludes the

excitation of kink oscillations. All the energy of the initial pulse goes to sausage oscilla-

tions. As the initial pulse does not coincide with eigen functions of the slab, it can excite

a number of transverse harmonics. However, as function (4.11) decreases monotonically

with the increase in the distance from the slab central plane, the fundamental mode that has

a similar structure is excited much more effectively than higher transverse harmonics. In

the simulations the higher harmonics are practically absent. The boundary conditions were

set as

vz(z = 0, t) = 0, vz(z = 50d, t) = A0z exp
(

−(50d)2
)

, (4.12)

wherez = 50d is the transverse extent of the simulation domain. This value for the boundary

condition was chosen so as there would not be a discontinuityin the initial perturbation,

as it is a requirement of the pdsolve function. (see chapter 2for details). Thus, we use

the symmetry of the problem to consider the perturbations ina half of the slab, in the

domainz = [0, 50d] only. The spatial structure of the velocity oscillations in the domain

z = [−50d, 0] is the same as in the considered domain, but in the anti-phase in time. The

external boundary of the simulation domain was taken far enough from the slab axis, to

avoid the interaction of the excited oscillations with the outer boundary in the duration of
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Figure 4.1: Time-distance plots of transverse flows in sausage oscillations. Left panel:
example of a trapped sausage oscillation in a plasma slab with the parameters:δ = 0.8 and
α = 6 for the wave numberkx = 1.5. Right panel: example of a leaky sausage oscillation in
a plasma slab with the parameters:δ = 0.7 andα = 6, for kx = 0.4. The spatial coordinate
is normalised such that the half-width of the slab,d = 1, and the time is measured in the
unitsd/CA∞, whered is the slab half-width andCA∞ is the Alfvén speed outside the slab.

the simulation.

Once excited, the perturbations oscillate almost harmonically (Fig. 4.1). As in the

cylindrical case, discussed in chapter 2, the simulations show two regimes of oscillation:

trapped and leaky.

In the trapped regime the oscillation is completely contained by the plasma inho-

mogeneity. It is determined from the simulation as the amplitude of the oscillation inside

the well remains constant (Fig. 4.1, left panel). These are the sausage oscillations described

by Edwin and Roberts [1983], as shown in Fig. 1.7, who found that these oscillations could

only exist whenCA0 < ω/k < CA∞, which gives the extent of the trapped regime. These

limits are shown by the straight lines in Fig. 4.2, 4.3.

The leaky regime is characterised by oscillations which do not remain contained by

the plasma inhomogeneity, these oscillations continuously excite fast waves that propagate

away from the centre of the simulation towards the boundary.These oscillations are iden-

tified by their decreasing amplitude inside the inhomogeneity (Fig. 4.1, right panel). How-

ever these oscillations generally remain of sufficient quality for the period to be measured

and studied. This finding is consistent with the analytical estimation obtained in Terradas
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et al. [2005] for the long-wavelength (kxd ≪ 1) oscillations in a slab with a step-function

profile of the Alfvén speed. Using Eq. (12-14) from Terradaset al. [2005], and converting

to the notation used in this study:

τD =
2π
ωI
≈ 2πaCA∞

C2
A0

, andP =
2π
ωR
≈ 4a

CA0
, (4.13)

whereτD is the decay time of the oscillations,P is the period, andωI andωR are the imag-

inary and real parts of the oscillation frequency, respectively. Consequently, the oscillation

quality can be estimated as:

Q =
τD

P
≈ π

2
CA∞
CA0

=
π

2
(1− δ)−1 . (4.14)

Thus, Eq. (4.14) withδ = 0.5 givesQ = π. Our numerical results give, e.g.Q ≈
4.02 for δ = 0.5, α = 8 andkx = 1. These two numbers are sufficiently close to each other.

The small discrepancy should be attributed to the finite wavelength and finite smoothness

of the profile, used in the numerical simulations.

Moreover, sausage oscillations have been identified in the microwave and hard X-

ray emission generated in the impulsive phase of solar flares(see Nakariakov and Melnikov

[2009] for details). The observations do not show any evidence of the exponential damping,

and their duration is determined by the duration of the impulsive phase of the flare. Our

simulations show that the decay time in a number of cases is significantly longer than several

periods of oscillation. This makes the damping time non-detectable in the observations

limited by the duration of the impulsive phase of the flare. Asin chapter 2 we concentrate

only on the dependence of the sausage oscillation period on the parameters of the problem,

and do not discuss further the oscillation quality and the damping time.

For ease of visualisation the following normalisations were used: The spatial units

are normalised such that the half-width of the inhomogeneity, d = 1, the temporal units

were d/CA∞ whereCA∞ = 1 is the external Alfvén speed. By order of magnitude, the

half-width could be about 1 Mm, and the external Alfvén speed is about 2–3 Mm/s.

4.2.2 Results

Fig. 4.2 shows the dependence of the sausage oscillation period on the wavelength for dif-

ferent density ratios. This figure extends the results obtained in [Pascoe et al., 2007a] to

the case of long wavelengths. It shows that, similarly to thecylindrical case, the sausage

oscillation period becomes gradually independent of the wavelength. This figure is the slab

equivalent to Fig. 2.4. Edwin and Roberts [1983] showed thatthe sausage oscillation exists

as a trapped oscillation whenCA0 < ω/kx < CA∞. These are indicated by the straight lines
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Figure 4.2: The variation of the sausage oscillation periodwith the wavelength in a plasma
slab withα = 6, for different values ofδ: the solid line corresponds toδ = 0.5, the triple
dot-dashed line corresponds toδ = 0.7, the dashed line toδ = 0.8, and the dot-dashed line
to δ = 0.9. The thick straight line showsP = λ/CAe, that is the cutoff separating the trapped
and leaky regimes. The thinner straight lines showP = λ/CA0 that correspond to the short
wavelength asymptote in each case.
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radiating from the origin on the plot, any oscillation to theright of the thick straight line is

therefore leaky, and any to the left are trapped. It is consistent with the conclusion drawn for

step-function profiles, that the same qualitative behaviour is observed in the slab geometry

as in the cylindrical geometry [Edwin and Roberts, 1982, 1983]. Moreover, this similarity

remains valid in the leaky regime too. For a given density ratio δ, the periodP increases

monotonically with the wavelengthλ. For a given wavelength, a slab with a higher density

ratio, in other words with a deeper well in the fast speed, oscillates with a longer period.

The plot also demonstrates that the dependence saturates inthe long wavelength limit for

all depths of the well. This similarity with the cylindricalcase is expected, as the nature of

the oscillation has not changed.

An estimate for the typical period of sausage oscillations for typical coronal pa-

rameters can be obtained as follows. In a plasma slab of half-width d = 2, 000 km and an

external Alfvén speed ofCA∞ = 1, 000 kms−1 the normalised periodPsaus≈ 0.5d/CA∞ is

about one second. For wider slabs, the period can be several times longer. This is consis-

tent with typical observations e.g. in the radio band [e.g.,Nakariakov and Melnikov, 2009].

Also, these typical periods are much shorter than the typical life-times of oscillating plasma

non-uniformities, such as helmet streamers, flaring current sheets and supra-arcade flows.

Fig. 4.3 shows a comparison of the dependences of the sausageoscillation period on

the wavelength for the slab and cylindrical geometries, forthe same profile of the transverse

non-uniformity and its width. In the slab case the sausage period is longer. This result is

consistent with the estimates obtained analytically in thecase of the step-function profiles

[Edwin and Roberts, 1982, 1983] in the trapped regime. It canbe illustrated, e.g., by the

cut-off values of the wave numbers that are (as obtained in section 3.2 for the cylinder)
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1.57, in a slab,

2.4, in a cylinder,
(4.15)

whereCAe andCA0 are the Alfvén speed values outside and inside the waveguide, andd is

the half-width of the waveguide (cf. the parameterd in Eq. (4.1)). The plasma inside and

outside is taken to be of zero-β. It is clear that on the plane representing the dependence

of the phase speed of the sausage mode on the longitudinal wave number the dispersion

curve for a slab is situated lower than for a cylinder, when all parameters of the slab and

the cylinder are the same. Thus, for the same wave number, thephase speed in the slab

case is lower than in the cylinder. Hence, the sausage oscillation period in a slab is longer

than in the cylinder. In the trapped regime, the quantitative difference between the slab and

cylindrical cases can be readily understood. In both cases the oscillation is confined to the

non-uniformity, while in the cylindrical case this confinement is more efficient. If in the

slab case the energy outside the slab decreases exponentially, in the cylindrical case such
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Figure 4.3: Comparison of the variation of period of these oscillations against longitudinal
wavelength in the slab and cylindrical cases, both curves have values ofα = 6 andδ = 0.5,
the dotted line represents the cylindrical case [Nakariakov et al., 2012], the solid line rep-
resents the slab. The thick straight line showsP = λ/CA∞, that is the cutoff separating the
trapped and leaky regimes. The thinner straight line showsP = λ/CA0 which corresponds
to the short wavelength asymptote.
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Figure 4.4: The dependence of the period of trapped sausage oscillations on the steepness
index,α, for different wave numbers:kx = 0.4 shown by the solid line,kx = 0.7 shown by
the dotted line, andkx = 1.4 by the dashed line. The solid line stops where the oscillation
becomes too leaky to accurately measure the period. For all the curves, the value of the
parameterδ was fixed as 0.8. The period is measured in normalised units, equal tod/CA∞,
whered is the slab half-width andCA∞ is the Alfvén speed outside the slab.

an exponential decrease has the additional 1/r-factor, wherer is the transverse (e.g. radial)

coordinate. Our results show that this behaviour is also seen in the leaky regime, and in

non-uniformities with smooth transverse profiles.

Fig. 4.4 shows the dependence of the sausage oscillation period on the steepness of

the transverse profile,α, for a fixed value of the parameterδ. Each of the lines represents

a fixed value ofkx, for the linekx = 0.4 the oscillations are leaky for all values ofα, for

kx = 1.4 the oscillations are trapped for all values ofα, and forkx = 0.7 the oscillations

are leaky for values ofα lower than 2.5, yet trapped for largerα. As expected for any

given value ofα a smaller value ofkx, and hence longer longitudinal wavelength, results

in a larger period of oscillation. This can be understood by considering the oscillations

as a wave packet trapped inside the potential well of the fastmagnetoacoustic speed, being

reflected or refracted off the walls at either side, whilst also travelling along the well. As the

longitudinal wavelength increases the effective distance between two reflections increases,

resulting in the increase in the wave period.

As with the cylindrical case, for a fixed longitudinal wave numberkx a larger value

of α, and hence a steeper potential well, also results in a longerperiod of oscillations. An
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Figure 4.5: The dependence of the cutoff longitudinal wave number of a sausage oscillation
on the internal Alfvén speed (and hence the potential well depth) for a fixed value of the
external Alfvén speed and for different values ofα. The long dashed line corresponds to
α = 2, the triple-dot dashed line toα = 4, the dot dashed line toα = 6, the dashed line
to α = 8, the dotted line toα = 10 and the solid line shows the step-function profile, i.e.
α → ∞. The diamonds are the values for the cutoff in the case of a step-function profile,
obtained analytically. The internal Alfvén speed is normalised such that the external Alfvén
speed,CAe = 1, and the wavenumber is normalised such that the characteristic width of the
slab,d = 1

explanation for this has already been discussed in chapter 2. The same reasoning applies in

the slab case as in the cylindrical.

Fig. 4.5 shows the dependence of the cutoff wave number on the depth of the po-

tential well in the slab geometry. The cutoff is defined as the value of the longitudinal wave

numberkc at which the oscillations transition from being trapped to leaky. For the cutoff

wave number, the phase speed of the sausage mode equals to theAlfvén speed outside the

slab,CAe. Thus, at the cut-off, the sausage oscillation period is

P =
λ

CAe
=

2π
kxCAe

. (4.16)

It is evident that for all values of the steepness parameterα, the cutoff value of the longi-

tudinal wave number increases with the increase in the Alfv´en speed at the axis of the slab

(i.e. at the bottom of the potential well). This result can bereadily understood, as it is easier

for the waves to escape a shallower potential well. Also, thecutoff wave number increases
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Figure 4.6: Comparison of the variation in the cutoff longitudinal wave number with the
internal Alfvén speed, in the slab and cylindrical cases with the step-function profiles,α→
∞. The solid line represents the numerically calculated values in the slab case, and the
diamonds the analytical values; the dotted line representsthe numerically calculated values
in the cylindrical case [Nakariakov et al., 2012], and the crosses the analytical values.

with the decrease in the steepness parameterα, as a smoother transverse profile is more

suitable for fast wave leakage.

In Fig. 4.5, we also show the cutoff values determined analytically in the case of

a step-function profile [Edwin and Roberts, 1982], the calculation for the cylindrical case

is performed in 3.2. The analytical results are slightly different from the results obtained

numerically in the caseα → ∞. This small discrepancy can be attributed to the intrinsic

difficulties in the determination of the cut-off value numerically: the transition from the

trapped to leaky regimes is rather smooth and is not easy to determine precisely. However,

the numerical results show the main tendency very well and hence are reliable. In general,

our results show that in a slab, as well as in a cylinder [Nakariakov et al., 2012], the steeper

and deeper wells of the fast magnetoacoustic speed confine sausage oscillations to a greater

degree.

Fig. 4.6 shows a comparison of the cutoff longitudinal wave numbers calculated

analytically and obtained numerically for both cylindrical and slab geometries, c.f. Fig. 4.5.

There is a good agreement between the analytical values and those obtained numerically for

both the cylindrical and the slab geometries.

It is evident that the cutoff longitudinal wavenumber is larger in the cylindrical ge-
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ometry than in the slab geometry, hence these oscillations are better confined in a cylindrical

waveguide than a slab.

4.2.3 Conclusions

We studied sausage modes of a plasma slab stretched along themagnetic field, considering

the effect of the smooth transverse profile of the fast magnetoacoustic speed. The slab

could contain a thin (much thinner than the transverse size of the slab) current sheet with

an anti-parallel magnetic field at its centre. Our attentionis restricted to the case of waves

propagating along the magnetic field in the zero-β plasma. In this case, a localised increase

in the density of the plasma results in a localised decrease in the Alfvén speed, and hence

in the fast magnetoacoustic speed. A localised decrease in the fast magnetoacoustic speed

makes the slab a fast magnetoacoustic waveguide. Both trapped and leaky regimes of the

oscillations were studied. It was found that sausage modes of slabs have, in general, the

same properties as sausage modes of plasma cylinders, studied in chapter 2. Our results can

be summarised as follows:

1. Both leaky and trapped regimes of sausage oscillations can be readily excited by an

initial impulsive driver. The leaky regime occurs for longitudinal wavelengths longer

than the trapped regime.

2. In the trapped regime, the sausage oscillation period grows with the increase in the

longitudinal wavelength. In the leaky regime, the dependence of the period on the

wavelength experiences saturation, and the period becomesindependent of the wave-

length. In the leaky regime the period is always longer than in the trapped regime.

3. In a plasma cylinder and a slab of the same half-width and the same parameters of the

transverse profiles of the fast magnetoacoustic speed, the sausage oscillation period

in the slab is always longer than in the cylinder. The difference can reach 50%.

4. In slabs with steeper transverse profiles of the fast magnetoacoustic speed, the sausage

oscillation periods are longer.

5. For a given depth of the potential well, smoother profiles of the fast magnetoacoustic

speed (with a smaller value of the parameterα), have bigger values of the cutoff

longitudinal wave numbers. The cutoff values separate the leaky and trapped regimes.

6. For the same potential wells, the cutoff wave numbers in a cylinder are always larger

than in a slab.
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In the presence of the current sheet at the centre of the slab the results remain the

same, as our formalism in this case remains exactly the same.Indeed, the presence of the

current sheet causes a singularity at the centre of the slab,that does not affect the sausage

oscillations that have zero transverse flows at the slab centre and hence do not “feel” the

singularity.

We would like to stress that both leaky and trapped regimes ofsausage oscillations

of plasma slabs in the solar corona are well observable, as the quality of leaky oscillations

can be high. Also, results obtained for a slab can be applied to coronal current sheets,

provided the magnetic field at either sides of the sheet is anti-parallel.
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Chapter 5

Developing a static model for a

coronal active region

5.1 Introduction

In this chapter we consider the coronal heating problem in more detail. As previously

mentioned in Chapter 1 there are many coronal heating theories which have been proposed.

In this chapter we present a model for a coronal active regionwhich allows an arbitrary

empirically determined heating rate to be applied. This model can then be compared to

EUV observations. This allows us to test different heating mechanisms, as each of these

coronal heating theories suggest an underlying heating rate, related to the magnetic field and

the various other plasma parameters. This allows these various mechanisms to be modelled

and compared to observational data for the solar corona [Mandrini et al., 2000; Schrijver

et al., 2004].

Efforts to provide observational constraints on heating models have been made pos-

sible by the continuing development of solar X-ray and EUV instrumentation [e.g. Golub

et al., 1980; Fisher et al., 1998]. Simulations of the coronal magnetic fields and modelling

of the expected X-ray and/or EUV emission for different coronal heating models have been

performed by previous authors. For instance, Schrijver et al. [2004] use a potential-field

source-surface (PFSS) model to model the entire coronal magnetic field from SOHO/MDI

magnetograms, as well as a quasi-hydrostatic model for the plasma. This information was

combined to produce simulations of EIT and SXT images, and compare them to the obser-

vations. More recently Dudı́k et al. [2011] used a potentialmagnetic field model and scaling

laws to model an active region in EUV and X-ray bands. On the other hand, Fludra and

Ireland [2003, 2008] studied global relationships betweenthe active region integrated mag-

netic flux and EUV emission line intensities in a large numberof active regions. From this
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statistical analysis they obtained clear power laws linking these quantities, and assessed

their capability to constrain the heating rate. A subsequent study by Fludra and Warren

[2010] for the first time compared fully resolved images in anEUV spectral line of Ov

63.0 nm with the photospheric magnetic field, leading to the identification of a dominant,

ubiquitous variable component of the transition region EUVemission and a discovery of a

steady basal heating, and derived the following dependenceof the basal heating rateEH on

the photospheric magnetic flux densityφ and loop lengthL: EH ∝ φ0.5L−1.

In a most general approach, one would assume that the heatingis variable in time

and leads to a dynamic behaviour of plasma confined in coronalloops. Radiative hydro-

dynamic loop models with different forms of the heating function have been studied by

many authors (see Reale [2014] for review). However, since the temporal variability of the

heating rate needs to be arbitrarily prescribed, it adds an additional degree of freedom, in-

creasing the complexity of the problem. In this chapter we are addressing the ability of the

observations to provide constraints on models, therefore we begin with simpler, hydrostatic

models, reducing significantly the number of model parameters. This way, we are able to

study the effect of the spatial variability of the heating rate along the loop on the resulting

EUV emission without the complications of the temporal variability.

The magnetic field defines the geometry of coronal loops and ispostulated to affect

the heating rate in many heating models. Unfortunately, in the majority of cases at present it

is not possible to directly measure the magnetic field in the corona. It is however possible to

measure the magnetic field in the photosphere, one such instrument that currently provides

excellent photospheric magnetic field data is the Helioseismic and Magnetic Imager on

the Solar Dynamics Observatory [SDO/HMI, Scherrer et al., 2012]. This photospheric

magnetic field can then be extrapolated into the corona. Thisis performed using a non-

linear force-free magnetic field model.

The other element required is modelling the thermodynamic properties of the plasma

in coronal loops. Many models have been proposed, from static 1-D models e.g. [Rosner

et al., 1978], to full 3-D MHD simulations e.g. [Pascoe et al., 2009a].

The aim of this chapter is to develop a diagnostic of the heating mechanisms in

coronal loops and evaluate the capability of the observed EUV emission to provide con-

straints on the parameters of the heating model. We achieve this by modelling a coronal

active region, firstly by extrapolating its magnetic field from the photospheric field, then

by using a 1-D hydrostatic model to model the plasma in selected magnetic flux tubes of

this active region. This model allows an arbitrary heating rate, which was chosen to be a

function of the local magnetic field strength. By comparing modelled EUV emission of

these loops to EUV images of the active region a diagnostic can be developed to measure

the heating rate in the corona.
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SDO provides a unique opportunity to perform this study, using two of its instru-

ments, the Helioseismic and Magnetic Imager (HMI) and the EUV imager Atmospheric

Imaging Assembly (AIA) [Lemen et al., 2012]. HMI provides full disk vector magne-

tograms with 1”x1” pixel size every 12 minutes. This allows accurate measurements of the

photospheric magnetic field for any active region, which is abasis for performing nonlinear

force-free (NLFF) extrapolations [Schou et al., 2012]. AIAprovides full disk EUV images

with seven different filters every twelve seconds, with a pixel size of∼ 0.6”x0.6” - this

allows for comparison with predicted EUV emission from our model.

This chapter is arranged as follows. In section 5.2.1 we discuss the NLFF extrapola-

tions then the hydrostatic loop modelling is discussed in section 5.2.2, leading to modelling

of the EUV emission, which is discussed in section 5.2.3. We then use all of these com-

ponents together to model the whole active region in section5.2.4. These models are then

discussed and compared to coronal observations in section 5.3.

5.2 Method

5.2.1 Magnetic field extrapolations

The first stage of the model is to extrapolate the coronal magnetic field. The theory behind

extrapolating force free fields was discussed in section 1.4.3. The basic principle is that

force free fields must obey:

∇ × B = αB, (5.1)

∇ · B = 0. (5.2)

In this case we are assuming non-linear force free fields, where the force free pa-

rameter,α, can vary across field lines, but is constant on a given field line.

Various methods have been proposed to find solutions to the non-linear system of

equations (5.1) and (5.2) [e.g Amari et al., 1997; Sakurai, 1981; Roumeliotis, 1996; As-

chwanden, 2013; Wheatland et al., 2000]. Schrijver et al. [2006] and Metcalf et al. [2008]

compared different NLFF magnetic field models and found that the optimisation code de-

veloped by Wiegelmann [2004] was the most accurate model tested, as well as being rea-

sonably computationally efficient.

The bottom boundary conditions for the NLFF extrapolation were vector magne-

tograms obtained from SDO/HMI. These contained the vector photospheric magnetic field

data with a 1”x1” resolution. A typical size of the box surrounding the active region is 5x5

arcminutes, leaving a sufficient margin around the active region magnetic fields to include

all of the strong magnetic field lines as they expand into the corona. An NLFF model was
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then used to extrapolate this field into the corona to give an estimate of the coronal magnetic

field. The NLFF model used is described by Wiegelmann et al. [2012]. A brief overview of

the process is as follows:

Before the vector magnetograms can be used as boundary conditions the 180 de-

gree ambiguity must be resolved. This ambiguity arises because when the magnetograms

are derived from the optical observations there are two solutions for the perpendicular com-

ponents of the magnetic field 180 degrees apart from each other. This ambiguity must

therefore be resolved for each pixel in the magnetogram by finding a solution that is self

consistent. Many methods have been proposed for doing this,the data products used in

this study already had this ambiguity resolved by using the “Minimum Energy” method

[Hoeksema et al., 2014; Metcalf, 1994].

The first stage of the modelling is to ‘pre-process’ the vector magnetogram, in order

to obtain the best results from the NLFF model [see Wiegelmann et al., 2006]. This pre-

processing involves making small adjustments to the vectormagnetogram in order for the

NLFF model to be applied more accurately. This is justified solong as the data remains

within the measurement errors of the original magnetogram,these are larger in a direction

perpendicular to the line-of-sight. As the considered active regions are sufficiently close to

the disk centre these directions are equivalent to thex- andy- directions, of the Cartesian

projection of the magnetogram, where thez- axis is the vertical direction.

The purpose of this pre-processing is to firstly make sure thedata is consistent with

the force free approximation, obeying the criteria set out by Aly [1989], which are that the

total force on the boundary vanishes:

∫

S
BxBzdxdy =

∫

S
ByBzdxdy = 0, (5.3)

∫

S
(B2

x + B2
y)dxdy =

∫

S
B2

z dxdy, (5.4)

and that the torque on the boundary vanished:

∫

S
x(B2

x + B2
y)dxdy =

∫

S
xB2

z dxdy, (5.5)
∫

S
y(B2

x + B2
y)dxdy =

∫

S
yB2

z dxdy, (5.6)
∫

S
BxBzdxdy =

∫

S
xByBxdxdy, (5.7)

whereS is a boundary of the modelled region, in this case the magnetogram.

The other reason for the pre-processing is to smooth the datato make it easier to

compute the NLFF field. This is particularly relevant aroundthe boundaries of the magne-
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togram, which should have a minimal impact on the final NLFF field.

Once the magnetogram has been pre-processed, the NLFF modelis calculated us-

ing the optimisation code developed by Wiegelmann [2004], and tested with SDO data

[Wiegelmann et al., 2012].

The optimisation technique initially only considers the vertical component of the

photospheric magnetic field, which is then used as the boundary condition for a potential

field. This potential field is then used as the boundary condition for the other five sides of

the computational domain, as well as the initial conditionsfor the optimisation process. A

parameter,K, is used to optimise the field towards a force free field:

K =
∫

V
w(x, y, z)

[

B−2|(∇ × B) × B|2 + |∇ · B|2
]

d3V

+ν

∫

S
((B − Bobs) ·W · (B − Bobs)d2S, (5.8)

wherew(x, y, z) is the weighting function,ν is a Lagrangian multiplier andW(x, y) is a di-

agonal error matrix,V is the entire volume of the modelled region andS is the boundary as

before. From this it is clear thatK = 0 when the field is force-free and matches the observed

boundary conditions, the field is therefore iterated in sucha way to reduceK. The weight-

ing functionw is set to be equal to unity in the majority of the model region,and decrease

to 0 through a boundary region toward the top and lateral boundaries of the domain. The

purpose of this is to reduce the importance of these boundaries on the final field as they are

essentially unknown. The second term in Eq. (5.8) ensures that the modelled field matches

the observed field within observation errors. The error matrix W should be specified for

each instrument (SDO/HMI in this case) and controls the rate which these boundary condi-

tions are applied. A more detailed description of the technique can be found in Wiegelmann

and Inhester [2010]. The Lagrangian multiplier is used during the optimisation process, its

specific value is not important for the purposes of this study.

This procedure provides a model for the coronal magnetic field of the active region.

The next stage is to define the loops traced by this field. We trace a field line from each pixel

in the base of our field. To do this we use a fourth order Runge-Kutta scheme to calculate

the direction at each step of the field line by using the direction of the local magnetic field

as the line’s gradient. As this study is only interested in coronal loops, we discard those

loops that do not reach a coronal height (2000 km), as well as those loops which could not

be traced from photosphere to photosphere (i.e., those which left the sides or top of the box

containing the modelled magnetic field).
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Figure 5.1: Full disk AIA 171 image from 4th November 2013. The area surrounding
NOAA 11897 which has been modelled using the NLFF optimisation routine is shown by
the white box.

Example active region

In this section we demonstrate how this model is applied to and compared with SDO obser-

vations. A similar test was performed and explained in detail by Wiegelmann et al. [2012].

To do this we must first select an active region to be modelled,the chosen region

is NOAA 11897 from the 4th November 2013. Fig 5.1 shows a full disk AIA 171 Å im-

age from 4th November 2013 with the white box denoting the area surrounding the active

region to be modelled. This active region is a good candidatefor the modelling as its mag-

netic field is well isolated from any other region of strong magnetic field. Fig. 5.2 shows

the line-of-sight magnetogram for this active region, the size of this cut out is shown by the

white box in Fig. 5.1. We can see that the regions of strong photospheric magnetic field are

well contained in this cutout with a sizeable border of weaker magnetic field surrounding it

towards the edge of the region to be modelled. This is important as the weighting function

limits the importance of the magnetic field data towards the boundaries of the region con-

sidered, so it is important to restrict these to being the areas of low magnetic field which are

less likely to influence the coronal magnetic structures which are observed.

The optimisation routine as described was then applied to the vector magnetogram

data of this region, after the vector magnetograms have beenpre-processed as described.
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Figure 5.2: Line-of-sight magnetogram of NOAA 11897 from 4th November 2013.

Figure 5.3: AIA 171 image of NOAA 11897, with selected field lines modelled by the
NLFFF optimisation code overlaid.
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This gives us a cube of magnetic field data describing the magnetic field above the pho-

tospheric region shown. From this cube of magnetic field datafield lines can be traced,

and compared to the observed coronal structures. Fig. 5.3 shows an AIA 171 image of the

selected region with selected field lines plotted on top, we can see that the geometry of the

modelled field appears to match very well with the observed EUV structures.

5.2.2 Loop models

Once the magnetic topology has been defined by the NLFF model,the plasma in the loops

must be modelled to derive electron temperature, density and flow velocities. In the general

case of dynamic plasmas, magnetohydrodynamic modelling needs to be performed. Under

the assumption of weak variation of the loop’s cross-sectional area along the loop, hydro-

dynamic models considering the field aligned motions could be sufficient. Examples of

hydrodynamic software codes include Oran et al. [1982], Rosner and Vaiana [1977], Tsik-

lauri et al. [2004]. The spatial and temporal variation of the heating along the loop is the

primary input required by these models. As this is normally not known and needs to be pos-

tulated, a simpler approach is to investigate cases of quasi-static loops, where the heating is

either constant in time or varies with a timescale shorter than the typical radiative cooling

and thermal conduction timescales, and therefore can be considered constant. Many such

models are described in the literature [Rosner et al., 1978;Reale et al., 2000; Vesecky et al.,

1979].

More recently the validity of the assumption of steady heating in some categories of loops

has been questioned [Schrijver and van Ballegooijen, 2005]. While it is true that a multitude

of intermittent acts of energy release are observed in the corona in the form of small events

[Berghmans et al., 1998] possibly associated with nanoflares [Parker, 1988], a study of the

heating observed at transition region temperatures by Fludra and Warren [2010] showed that

at least 25% of the area covered by active region magnetic fields stronger than 90 G undergo

quasi-steady heating, through some universal while not yetidentified process which is the

same in all active regions. Moreover, examination of several SDO/AIA movies taken at

coronal temperatures shows that the observed loop intensities remain constant over at least

10 minutes, which is longer than the timescales for the radiative and conductive cooling. In

this chapter we therefore investigate quasi-steady heating using hydrostatic loop models.

We use a hydrostatic model code devoloped by van Ballegooijen [Schrijver and van

Ballegooijen, 2005]. This code finds a static solution to theenergy balance equation in

1D, and allows for an arbitrary heating rate along the loop. It models the loop from the

transition region at the first footpoint through the corona,and back to the transition region

at the second footpoint. It sets the temperature at each footpoint to 20000 K, twice the

temperature of the low chromosphere. The energy flux throughthe boundary is calculated

77



in the appendix of the cited paper. The model also assumes that the loop cross section is

inversely proportional to local magnetic field strength.

For this study we use a volumetric heating rate of the following form:

EH(s) = QaLλ
(

B(s)
Bmax

)β

, (5.9)

whereB(s) is the magnitude of the magnetic field at distances along the loop, andBmax is a

constant, set to be 2500 G for this study, as that was larger than any magnetic field strength

considered which ensuresB/Bmax is less than 1. This gives three parameters to control the

heating rate,Qa, β andλ.

The range of values ofβ considered here is from−2 to 2. These values include a case

of a constant heating along the loop (β = 0), the predictions from the DC heating models

β = 2, and intermediate values that include predictions of the heating rate dependence onB

from AC models. SinceB decreases with height, positiveβ gives heating concentrated near

the footpoints. We have therefore included also negative values ofβ which give heating

concentrated near the loop-top, as is suggested by some waveheating theories [Ruderman

et al., 1997; Halberstadt and Goedbloed, 1995].

5.2.3 Modelling the coronal EUV emission

In order to compare the modelled active region loops with real loops observed by the current

or recent instruments, the EUV emission is modelled in two different channels, the 171 Å

and 335 Å used by SDO/AIA, and the emission for the pure spectral lines Feix 171 Å and

Fexvi 335 Å. The Fexvi lines were routinely observed by the SOHO Coronal Diagnostic

Spectrometer at 360.8 Å [Fludra and Ireland, 2003, 2008] andalso at 335 Å, while the

Hinode EIS spectrometer [Culhane et al., 2007] observes Fexvi 263.0 Å and Feix 171 Å.

The temperature response for the AIA channels has been calculated by Lemen et al.

[2012] and is available in the SolarSoft library. The emissivity of the Feix 171, Fexvi 335

and 360.7 Å spectral lines has been derived using the ADAS package [Summers, 2001]

and is also available in CHIANTI [Dere et al., 2009]. The response functions for the AIA

171 & 335 channels, and Feix 171 Å and Fexvi 335 Å lines are shown in Fig. 5.4. The

electron temperature and density of the plasma was then modelled along each of the loops

in the active region for different values ofQa andβ as described in the previous Section,

and these parameters were convolved with the response functions of the various lines to

give the modelled emission.

78



Figure 5.4: Temperature response of the considered SDO/AIA filters, 171 and 335, and
spectral lines Feix 171 Å and Fexvi 335 Å.

5.2.4 Bringing it all together

The final difficulty involves selecting sensible values for the parameters,λ, β andQa. Fludra

and Warren [2010] found thatλ = −0.5 was an appropriate value, so that was also used in

this study. Identifying the value ofβ was the main focus of this study, and therefore it

was not appropriate to prescribe a fixed value for this parameter. Instead a range of values

were considered, as described in 5.2.2. The parameterQa controls the overall magnitude

of the heating, its value was therefore selected to provide arange of temperatures close

to the peak response of the chosen filter. This was done by taking the total heating along

each loop and assuming it is evenly distributed along the loop, then using the RTV scaling

laws [Rosner et al., 1978], which were described in more detail in Chapter 1, to estimate an

appropriate value ofQa. The full model is then run with this estimatedQa and the range of

loop temperatures are recorded,Qa can then be manually adjusted if the initial estimate is

too high or low.

Once this modelled emission had been calculated for all loops it is then projected

on a 2D plane in the same manner as would be observed by SDO/AIA, as shown in Fig. 5.6.

Line of sight effects are accounted for by assuming that our loops are narrower than the

pixels, and therefore assigning the total intensity of eachloop section to the nearest pixel.

This can be compared to the observed AIA 171 Å image in Fig. 5.5. It is important to note

that there are several differences between the modelled and observed images, due to the
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Figure 5.5: SDO/AIA image of active region NOAA 11897 in 171 Å filter, observedon 4th
November 2013.

Figure 5.6: Example of an active region NOAA 11897 modelled in SDO/AIA 171 Å filter
for β = 0.5.
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Figure 5.7: Example of an active region NOAA 11897 modelled in SDO/AIA 335 Å filter
for β = 0.5.

limitations of the model. Firstly, the longer loops on the right hand side and in the bottom

left hand corner are not modelled in the artificial image because they leave the volume of

the modelled data cube, hence the black areas of this image inFig. 5.5. These long loops

are either open magnetic field lines or they close outside themodelled volume. Very short

loops, not reaching 2 Mm height, are also not included. Thereis also background emission

possibly from the coronal moss which is not modelled in the artificial image, as this is

coming from the legs of the hot loops that are not present in the assumed model due to

centring the peak temperature distribution around 1.0 MK.

5.3 Results

This model can now be used to test different heating rates and to compare their effects on the

emission to EUV observations of the active region. This was initially done by comparing

the images by eye to see which heating parameters gave the best match. In Fig. 5.6 the value

of β was 0.5, this was chosen as it gave a distribution of bright loops that was the closest

match to the observed image.

We also modelled the active region in AIA’s 335 Å filter, this was initially performed

using a value forβ = 0.5, as this was the value ofβ that appeared to shown the best

representation of the active region in the 171 Å band. This isshown in Fig. 5.7, and can be

compared with the AIA observation in Fig. 5.8. This does not appear to provide an accurate

representation of the active region in the 335 Å band. Whilstthe AIA image shows most
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Figure 5.8: SDO/AIA image of active region NOAA 11897 in 335 Å filter, observedon 4th
November 2013.

of the emission concentrated in the centre of the active region, it appears as though there

is a hotter core of loops emitting at 335 Å beneath those cooler loops observed in 171Å.

This behaviour is not reproduced in the modelled active region, here the emitting loops are

similar to those that were emitting at 171 Å, with most of the emission coming from longer

loops around the edge of the core of the active region. This suggests that whilstβ = 0.5 is a

sensible value to model the 171 Å emission a different value may have to be used to model

335 Å emission.

Testing various values forβ to determine which appears to best reproduce the observed

335 Å emission leads to Fig. 5.9, which shows the active region modelled usingβ = 1.5.

This provides a much more accurate looking representation of the active region, now more

of the emission is originating from the shorter more centralloops, some of which have

become fairly bright. There is also still a faint emission from the longer outer loops, which

is also seen in the observed image.

5.4 Conclusions

In this chapter we have described a model for a static, well isolated active region, which al-

lows an arbitrary heating rate. This enables a quick comparison with observations of active

regions, most notably observations made using SDO/AIA.

The first stage of the modelling was to model the coronal magnetic field using a non-linear
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Figure 5.9: Example of an active region NOAA 11897 modelled in SDO/AIA 335 Å filter
for β = 1.5.

force-free extrapolation from vector magnetogram data produced by SDO/HMI. The ex-

trapolation was performed using the optimisation approachdeveloped by Wiegelmann et al.

[2012], this approach was found to be the most accurate modelin a test of various NLFF

models performed by Schrijver et al. [2006]. The model worksby “relaxing” an initial po-

tential field-model to a force free one that matches the full vector boundary conditions. This

model allows us to accurately model the coronal magnetic field of any reasonably magneti-

cally isolated active region that is not too far from the diskcentre.

The next stage of the model is to convert the magnetic field data into loops. This is per-

formed by tracing the magnetic field from every point in the bottom boundary of the mag-

netic field model. This allows us to determine the magnetic field line coming through any

given spatial point. Not all of these loops were found to be useful however, and several of

them are discarded. Those which leave through the top or sideboundaries of the modelled

region are discarded as the hydrostatic model assumes that the loops start and end in the

photosphere. Those which are not long enough for the hydrostatic model to properly model

are discarded as well.

Once the loops have all been defined properly, the plasma which they contain is then mod-

elled using a hydrostatic model developed by van Ballegooijen, it is described in Schrijver

and van Ballegooijen [2005]. For each loop it solves the energy balance equation for the

given heating rate. The model allows the heating rate to be freely chosen, it is at this point

that the heating rate is specified.

Finally the EUV emission for the modelled plasma can now be estimated. Given the density

and temperature of the plasma calculated by the hydrostaticmodel the emission in a given
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filter along each loop can be calculated using the filter’s response function. These calcu-

lated intensities are then projected into the plain as they would be observed by SDO/AIA.

These artificial images can then be compared with AIA observations of the active region,

in each of AIA’s filters. Initially the 171 Å filter was modelled, and an appropriate value

for β ∼ 0.5 was identified by comparing the various images by eye. This was performed

by ensuring that the parts of the active region where more of the emission originated were

also brighter in the artificial image. This value ofβ does not however appear to be able to

accurately reproduce the active region in the 335 Å filter, instead a different value ofβ ∼ 1.5

gives a more accurate reproduction.

It is possible that this discrepancy has been caused as values of β > 1 preferentially heat

the shorter loops in the centre of the active region, whereassmaller values ofβ heat the

longer loops preferentially. This suggests that the current chosen form of the heating rate

may not be able to fully explain the heating of these structures, further study may require

an examination of different forms of the heating function.

In order to further this investigation a more rigorous attempt must be made to compare the

modelled and observed images. As the geometry of the modelled and observed active re-

gion does not exactly align it is very challenging to performa quantitative comparison of

these images. It is however possible to identify single loops and to observe the effect that

varying the heating rate has on their emission.
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Chapter 6

Investigating the behaviour of single

loops in the model

6.1 Introduction

In this chapter, we use the model for an active region developed in the previous chapter

to study single loops from the modelled active region in moredepth. This was initially

motivated as using the full active region models in the previous chapter it was not possible

to form a qualitative comparison with the images of those active regions. Only considering

single loops at a time provides a better understanding of howthe model behaves when

varying the parameters of the heating rate. Which allows us to consider specific observable

parameters which could be used as diagnostics of the coronalheating function.

Initially this allows us to confirm that the hydrostatic model is behaving in the ex-

pected manner, by observing the effect that varying the heating rate in a simple manner for

a model of a typical loop has on the modelled emission from that loop.

We can then proceed to develop a diagnostic for the heating rate by varying a key

heating parameter and considering the variation in modelled emission caused by this change

to discover an observable variation in the emission.

We are also able to consider loops with different magnetic field strengths along their

length, observing the effect that shape and magnitude of a loop’s magnetic field has on its

modelled emission.

The chapter is arranged as follows: first, we discuss how the model was set up to

consider single loops, and which loops were analysed, as well as describing those loops.

Then, we discuss the results of modelling these loops with different heating rates. Finally

we present our conclusions.

85



Figure 6.1: SDO/AIA image of active region NOAA 11897 in 171 Å filter, observedon 4th
November 2013. Black lines show the NLFF modelled loops thatwere studied further. The
solid line is loop A, the dashed line is loop B. Loops C and D which are are also considered
in this chapter are not shown on this plot for clarity.

6.2 Method

The model used in this chapter is the same as the model described in chapter 5. It is,

however, only used to model a single loop in the active regionat any one time. As the

NLFF modelling for the active region has already been performed the magnetic field data

can be used to identify loops which are good candidates for individual modelling, as well

as providing the magnetic field strength along the loop.

Fig. 6.1 shows an AIA 171 image for the considered active region. From the mod-

elled magnetic field four loops were chosen for further study. For clarity, only two of these

loops, denoted A and B, are shown in Fig. 6.1. The magnetic field strengths along all four

loops are shown in Fig. 6.2. Loop A is in the upper fan of loops in this active region, whilst

loop B is in the downward fan. Loop B is fairly short,∼ 75 Mm and its magnetic field

appears to be very symmetric about the loop top, as well as fairly strong at its footpoints,

with a magnetic field strength∼ 1300 G. Loop A by contrast is slightly longer,∼ 100 Mm

with a weaker and much less symmetric field,∼ 500 G in one footpoint and∼ 280 G in the

other footpoint. Loop C is an example of a longer loop, in a similar location in the active

region to loop B, but 150 Mm in length and has a magnetic field strength slightly larger than

loop A. Loop D is the shortest of the four loops, at roughly 40 Mm long. It is located close

to loop B in the active region, and its magnetic field strengthdistribution differs from the

other three loops, as will be discussed in Section 6.3.2. Loops C and D allow us to consider
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Figure 6.2: The magnetic field strength along loop A (solid line), loop B (dashed line), loop
C (dot-dashed line) and loop D (dotted line). These linestyles are kept consistent throughout
this paper.

the effect of varying the loop length. All four loops have magnetic fields strengths fairly

typical for loops in this active region.

6.3 Results

6.3.1 EUV emission in coronal loops

Fig. 6.3 shows the emission in the Fexvi 335 Å line along loop B for a fixed value ofβ = 0.5,

but varyingQa. The values ofQa were selected so as to fix the peak temperature in the loop

at: Te = 1.5, 1.75, 2.0, 2.25 and 2.5 MK. The peak of emission is initially located at the top

of the loop, with very limited emission towards the footpoints for lower peak temperatures.

This is due to the plasma at the centre of the loop being close to the peak response of

the line, whilst the plasma closer to the footpoints is too cool to significantly emit at this

wavelength. As the peak temperature increases, the proportion of the loop significantly

emitting increases too, as whenTe along the loop increases a larger segment of the loop

becomes hot enough to emit at this wavelength. As the peak temperature rises further the

emission at the top of the loop drops off, and two peaks of emission form and move towards

the footpoints of the loop. This is due to the top of the loop becoming too hot to emit

significantly at this wavelength, and the plasma of a more appropriate temperature being

located towards the footpoints. This overall behaviour coincides with results described in

Fludra and Ireland [2003], and suggests that the model is behaving in a physically realistic

manner. This behaviour can also be reproduced by modelling the 335 Å AIA and 171 Å
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Figure 6.3: The variation of modelled emission in the spectral line Fexvi 335 Å along loop
B for β = 0.5. The solid line has a peak temperature of 1.5 MK, the dotted line 1.75 MK,
the dashed line 2.0 MK, the dot-dashed line 2.25 MK and the triple dot-dashed 2.5 MK. In
this plot the emission for each temperature is normalised such as the mean emission along
the loop is equal to unity.

AIA filters, however it is not as pronounced as the emission peak for these filters is much

broader than the pure Fexvi (which is the primary ion in the 335 Å AIA filter).

It is of more interest for the diagnostic of the heating mechanism to consider the

effect that varyingβ has on the modelled loops. Figs. 6.4-6.7 show the plasma parameters

for loop B and how they vary withβ for a fixed peak temperatureTe = 2 MK, as well

as modelled emission in the Fexvi 335 Å spectral line and the AIA 335 channel. Asβ

increases, the distribution of temperature along the loop becomes a little broader as more

heating is focused towards the footpoints which become hotter for larger values ofβ. For the

highest value ofβ = 0.75 the asymmetry of the magnetic field has caused the temperature

distribution to become asymmetric with the peak temperature now occurring at∼ 20 Mm,

whilst the plasma at the centre of the loop is now∼ 1.8 MK. This has caused the peak of

Fexvi emission to shift to∼ 30 Mm. For most of the considered values ofβ, the peak of

emission is located at the centre of the loop which steadily expands asβ increases, in the

same manner as the temperature.

The most noticeable change is the increase of the electron density with β which

changes by a factor of∼ 2.5 at the loop top. As discussed later, this will lead to our most

important diagnostics of the heating mechanism.

There is little variation in the shape of the normalised AIA 335 emission withβ

as this filter has a fairly broad temperature response and is more influenced by the density

distribution, which retains a broadly similar shape, though the values do vary this does not
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Figure 6.4: Results of modelling loop B for different values ofβ and the peak temperature
fixed at 2 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed
line β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 0.75. The electron
density along the loop is shown for these different parameters.

Figure 6.5: Results of modelling loop B for different values ofβ and the peak temperature
fixed at 2 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed
line β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 0.75. The electron
temperature along the loop is shown for these different parameters.
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Figure 6.6: Results of modelling loop B for different values ofβ and the peak temperature
fixed at 2 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed line
β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 0.75. The Fexvi 335 Å
emission along the loop is shown for these different parameters.

Figure 6.7: Results of modelling loop B for different values ofβ and the peak temperature
fixed at 2 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed line
β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 0.75.
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Figure 6.8: Results of modelling loop B for different values ofβ and peak temperature
fixed at 1 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed line
β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 1.0. The electron density
along the loop is shown for these different parameters.

affect this plot as the emission is normalised. The AIA 335 response is sensitive to low

temperatures, hence the emission near loop footpoints is strongly increased.

Figs. 6.8-6.11 show a similar series of plots, but for the AIA171 filter and the Feix

171 Å line, and with a lower loop peak temperature, 1 MK. The lower temperature was

chosen as it is close to the peak response of this filter. The behaviour of the temperature

and density is broadly the same as in the 2 MK case. Asβ increases there is a broadening

of the temperature peak, until for the largest value ofβ = 1.0 the temperature distribution

becomes fairly asymmetric. A similar behaviour is also seenin the density distribution as

with the hotter case, with the density steadily increasing with β by up to a factor of∼ 3, and

becoming asymmetric for the largest value ofβ. The plasma parameters are then combined

with the temperature response function for the AIA 171 filter. As before for the largest value

of β there is a high degree of asymmetry, as well as a noticeable asymmetry forβ = 0.5.

Unlike the Fexvi case, the asymmetry in the modelled AIA 171 emission has the opposite

behaviour to that of the temperature asymmetry, with the emission peak towards the cooler

end of the loop. This is caused as the chosen peak temperaturefor these loops is above

the peak response of the filter (the peak response temperature for AIA 171 is log(Te) = 5.8

[Lemen et al., 2012]), so the cooler plasma emits more.

This modelling was also performed for loop A. The overall behaviour of the plasma

parameters in both loops is similar. As the asymmetry is morepronounced in the magnetic

field for loop A, the modelled emission is more asymmetric, particularly the modelled Fexvi

emission.
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Figure 6.9: Results of modelling loop B for different values ofβ and peak temperature
fixed at 2 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed
line β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 1.0. The electron
temperature along the loop is shown for these different parameters.

Figure 6.10: Results of modelling loop B for different values ofβ and peak temperature
fixed at 2 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed line
β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 1.0. The Feix 171 Å
emission along the loop is shown for these different parameters.
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Figure 6.11: Results of modelling loop B for different values ofβ and peak temperature
fixed at 1 MK. The solid line representsβ = −2.0, the dotted lineβ = −1.0, the dashed line
β = 0.0, the dot-dashed lineβ = 0.5, the triple dot-dashed lineβ = 1.0. The SDO/AIA
171 Å band emission along the loop for these different parameters.

6.3.2 Diagnostics of the heating function

The aim of this chapter is to develop a diagnostic technique to identify the power index,

β, by comparing these models to coronal images. We are seekingto develop a measurable

quantity that could provide a quantifiable comparison. We are comparing loops with the

same maximum temperature as the EUV filters will only show loops which have similar

temperatures.

There are two possible diagnostics to consider: one diagnostic would compare

changes of the distribution of the EUV emission along the loop, the other would measure

the change of the total intensity.

Figures 6.11 and 6.7 show the normalised intensity along theloop for different val-

ues ofβ both for the AIA bands 171 and 335. While there are some differences between

these distributions, they appear to be too small to distinguish between different values of

β, especially in the expected presence of measurements errors in real data. The same nor-

malised intensity distributions for the pure Feix 171 and Fexvi 335 Å line emission are

shown in Figures 6.10 and 6.6. We conclude that the normalised spatial distributions along

the loops are too similar to provide the required diagnostics. Whilst the spatial emission

along the loop modelled as from the pure ions is slightly moresensitive to variations inβ,

overall it is still not sensitive enough to be a useful diagnostic.

The next measure to be considered was the total emission of each loop, and how this

behaves with a varying value ofβ. The intensity for all points along the loop was summed,
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Figure 6.12: The variation of total modelled emission withβ for the AIA 171 band. Solid
line is loop A, dashed line is loop B, dot-dashed line is loop Cand dotted line is loop D.

Figure 6.13: The variation of total modelled emission withβ for pure Feix. Solid line is
loop A, dashed line is loop B, dot-dashed line is loop C and dotted line is loop D.
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Figure 6.14: The variation of total modelled emission withβ for the AIA 335 band. Solid
line is loop A, dashed line is loop B, dot-dashed line is loop Cand dotted line is loop D.

Figure 6.15: The variation of total modelled emission withβ for pure Fexvi. Solid line is
loop A, dashed line is loop B, dot-dashed line is loop C and dotted line is loop D.
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giving the total emission along the loop for each consideredband. These are shown for all

four loops in Figs. 6.12-6.15. It was found that the behaviour for loops A, B and C was

similar, whereas loop D shows somewhat different behaviour. Therefore, we will initially

limit discussion to loops A, B and C. Asβ increases from 0 to 1, for loops A, B and C, the

total intensity for all lines rises steeply by over a factor of roughly 3, being clearly sensitive

to β (i.e. to the increasing concentration of heating towards the footpoints). Finally asβ

increases towards and beyond 1 the model is unable to find a stable solution for these loops,

and therefore these lines stop on the plots, this instability is discussed in more detail in

section 6.3.3. Therefore, this appears to be a promising diagnostic ofβ. In contrast, for

values ofβ decreasing from 0 to -2, there is only a∼ 40% decrease in the total intensity.

As the heating distribution changes from a uniform heating to one concentrated near the

loop top, the conductivity efficiently redistributes the heat along the loop. While the 40%

change betweenβ = −2 andβ = 0 is measurable, the error bars on the derivedβ in this

range would be significantly greater than in the range 0< β < 1. We note that the curves in

Figs. 6.12-6.15 are normalised to 1 forβ = 0. Therefore, the variation of the absolute total

intensity withβ is not shown in these figures.

We have found that the dependence of the total loop intensityonβ is related to how

the magnetic field strength varies along the loop. The magnetic field strengths of all of the

loops we have considered could be reasonably modelled as thesum of an exponentially

decaying component and a constant component. Loops A, B and Chave a magnetic field

which steeply decreases with height, with a low level of the constant component. When this

type of the dependence ofB(s) is scaled to a shorter loop length, the resultingItot −β depen-

dence is very similar, with the loss of stable solutions close toβ = 1 (see section 6.3.3). The

magnetic field along loop D, however, has a significantly higher level of the constant com-

ponent, which increases the range ofβ for which stable solutions exist. In the extreme case,

if the magnetic field strength is nearly constant along the loop, the heating rateB(s)β would

vary very little along the loop even for large values ofβ, resembling the case of nearly con-

stant heating rate. Such loops are found to have stable solutions up to large values ofβ > 10

but offer very little diagnostics capability in the range 0< β < 2. A survey of a number of

loops in the active region under study reveals that such loops with a flat distribution ofB(s)

indeed appear to exist, particularly for shorter lengths below 60 Mm. Whether this comes

from the complexity of the magnetic field in the active regioncore or from an inadequate

spatial resolution of our 3D data cube is not clear. Therefore, the diagnostics presented in

Figs. 6.12-6.15 is applicable only to some of the loops with steeply decreasingB(s) and a

low constant component ofB(s).

The effect of varying the loop length on the total emission was further tested by

taking loop B, and scaling its length by various factors - theeffect of this is shown in
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Fig. 6.16. The peak temperature here was kept fixed at 1 MK, hence the shape of the

temperature distribution remains similar for the different loop sizes. However, the density

decreases substantially with the loop length, and since EUVline intensities are proportional

to the square of the density, this shows that increasing the loop length causes the total

emission from the loop to decrease rapidly, as shown in Figs.6.17-6.20. For example, a

change of length from 40 Mm to 250 Mm decreases the total Feix 171 Å line intensity by a

factor of∼ 10. This is greater than the maximum change of the total intensity caused by the

variation ofβ (Figs. 6.17-6.20). Therefore, the loop length must be measured accurately to

allow the diagnostics ofβ from Figs. 6.17-6.20.

6.3.3 Loss of stable solutions

In Figs. 6.17-6.20 we restricted the range ofβ to below 1.2. The reason is that for larger val-

ues ofβ the hydrostatic code does not find a stable solution for loopsA, B and C. Schrijver

and van Ballegooijen [2005] also pointed out that for certain heating rates there is no steady

solution of the energy balance equation. We investigate howthe loss of stability depends on

the maximum loop temperature and the loop length. Fig. 6.21 shows the largest maximum

temperature for each value ofβ for which a stable solution exists for loops A and B. The

plot shows the temperature range 5.0 < log10(Te) < 7.0 as this fully covers the temperature

range of interest. Both loops show similar behaviour, with the maximum allowable temper-

ature rapidly dropping from above log10(Te) = 7.0 to just∼ 6.3, i.e.∼ 2 MK, in the range

0.6 < β < 1.0. The curves then flatten out asβ increases to∼ 1.5, before falling away below

the temperature of interest.

This thermal instability occurs as the heating becomes moreconcentrated towards

the footpoints. As more heating is located at the footpointsthe peak temperature is no longer

located at the top of the loop, which leads to coronal condensation, and a rapid cooling of the

plasma at the peak of the loop. The loop then undergoes a condensation–evaporation cycle

with significant plasma flows [Mok et al., 2008]. This instability was studied analytically by

Serio et al. [1981], for a half-loop with an exponentially decreasing heating function. They

found that the loops became unstable when the scale height ofthe heating rate,S H, was

roughly one third the loop half length. We postulate that this is the same instability that is

causing our loops to become unstable at higher temperaturesand values ofβ. Unfortunately,

a direct comparison to this criterion is not possible as a pure exponential function is not a

good fit to our heating rate. We have found that the exponential component of the magnetic

field strength has a scale height of∼ 2.8 Mm in one of the footpoints of loop B. For other

loops we found values of around∼ 5 to∼ 10 Mm. These values are much smaller than the

L/3 suggested by Serio et al. [1981]. However, the constant component ofB(s) ensures that

there is always a significant portion of heating occurring atthe loop apex and therefore the
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exponential component must be significantly steeper to trigger the instability.

This study of the existence of static solutions for a given heating rate can also pro-

vide information on the nature of the heating mechanism. Table 5 in [Mandrini et al., 2000]

provides a list of potential heating mechanisms, and their expected heating rate. This list

suggests that DC heating mechanisms tended to have a value ofβ = 2, which for the loops

we are considering would not provide a static solution. However, the heating rates for AC

heating mechanisms usually have values ofβ ≤ 1, suggesting that these mechanisms could

provide static solutions for the loops considered here.

6.4 Conclusions

We have carried out simulations of coronal loops in a solar active region, seeking a diagnos-

tic method for the coronal heating rate. Our aim has been to ascertain whether observations

of individual coronal loops made in the EUV band are capable of providing constraints on

the coronal heating model. To reduce the number of free parameters and arbitrary assump-

tions, we have considered a quasi-static model that requires the heating rate as a function

of position along the loop. Considerations of temporal variability of the heating that would

be required by the dynamic loop models have been deferred to afuture paper.

Starting with a photospheric vector magnetogram from SDO/HMI, the coronal mag-

netic field was modelled using an NLFF extrapolation code. The geometry of this field was

compared to an SDO/AIA 171 image of the same active region, and four loops that matched

well were identified. The plasma in these loops was then modelled using a 1D hydrostatic

model capable of applying an arbitrary heating rate as a function of magnetic field strength

along the loop. From the plasma parameters derived from thismodel, estimates of the EUV

emission in four wavelengths: SDO/AIA 171 and 335 bands, and pure Feix and Fexvi

spectral lines were made along the loop. The heating rate wasthen varied as a function of

the power indexβ (Eq. 5.9), and the effect this variation has on the modelled EUV emission

was observed.

We find the following characteristics of the modelled EUV emission, similar in

loops with peak temperatures of 1 MK and 2 MK:

1. The distribution of the EUV intensities along the loop varies relatively little as a

function of the power indexβ, therefore the shape of these distributions does not allow us

to identify whether the heating is concentrated near the footpoints or the loop-top.

2. The total intensity of the EUV emission summed along the loop is much more

sensitive toβ. The range of sensitivity forβ depends on the shape of the distribution of the

magnetic field strength along the loop. For steeply decreasing B(s) and lowerB(s) near the

loop-top, the achievable diagnostic range is 0< β < 1, where the total intensity increases

98



by over a factor of 3. This provides a clear distinction between a uniform heating and the

heating concentrated near the footpoints, and allowing themeasurement of the value ofβ.

For the heating concentrated near the loop top (−2 < β < 0), the change of the total intensity

is up to 40% — this is measurable but due to the flat nature of this part of the curve the error

bars on the determined values ofβ would be much larger.

3. For this category of loops, when the heating becomes strongly concentrated near

the footpoints (β > 1), there are no more stable solutions.

4. For loops with a flat distribution ofB(s) over a significant portion of the loop,

the range ofβ for which stable solutions exist increases and can reach values from 4 to 16

asB(s) becomes progressively more constant. However, values ofβ greater than 2 are less

interesting for the diagnostic of coronal heating, and the normalised intensities for these

loops change little forβ < 2 even when the maximum range ofβ is 4.

5. Loop length provides another factor to consider, as thereis a large decrease in

density and the absolute total EUV emission for longer loopsas shown in Fig. 6.16(b) and

Figs. 6.17-6.20. Therefore, the dependence of the total intensity onβ needs to be calculated

for each value ofL.

6. For loops considered in item 2 above, if the heating rate depends locally on the

magnetic field as in Eq. 5.9, the heating mechanisms that givestable static solutions (β < 1)

are likely to be AC heating models [Mandrini et al., 2000]. The DC heating models with

β = 2 would lead to non-steady solutions.
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Figure 6.16: Electron temperature (top) and density (bottom) for loops of varying length,
produced by scaling loop A. The peak temperature was fixed at 1MK, andβ = 0. The solid
line represents the loop being scaled by a factor of 0.2, the dotted line represents a scaling
factor of 0.5, the dashed line: 1, the dot-dashed line: 2, thetriple dot-dashed: 3 and the long
dashed: 4.
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Figure 6.17: The variation of total modelled emission with loop length for the AIA 171
band. This plot is generated by calculating the emission from the scaled loop in Fig. 6.16.

Figure 6.18: The variation of total modelled emission with loop length for pure Feix 171 Å.
This plot is generated by calculating the emission from the scaled loop in Fig. 6.16.
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Figure 6.19: The variation of total modelled emission with loop length for the AIA 335
band. This plot is generated by calculating the emission from the scaled loop in Fig. 6.16.

Figure 6.20: The variation of total modelled emission with loop length for pure Fexvi
335 Å. This plot is generated by calculating the emission from the scaled loop in Fig. 6.16.
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Figure 6.21: The variation in maximum temperature for stable solutions found with this
model withβ for loop A (continuous line) and loop B (dashed line).
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Chapter 7

Conclusions

In this thesis we have broadly considered two distinct areasof Solar Physics research, firstly

studying the behaviour of the axisymmetric, or ‘Sausage’ oscillations of coronal plasma

structures. Secondly using a combination of modelling techniques to develop a model for

the EUV emission from a coronal active region based on vectormagnetogram data of the

photosphere.

The common theme through both of these areas has been in developing relatively simple

mathematical representations of complex physical problems. This allows these problems

to be modelled quickly without using large amounts of processing power. This also allows

for a larger parameter space to be explored, which was particularly useful when modelling

sausage oscillations.

We will finish by reviewing the work which has been described so far.

7.1 Sausage oscillations

The initial set up considered in the study of sausage oscillations was that of a plasma cylin-

der. In this we considered a cylinder of denser plasma embedded in a uniform magnetic

field aligned with the axis of the cylinder. The variation in magnetic field strength in the

radial direction, which is the only direction in which it is varying, gives a variation in the

Alfvén speed of the following form:

CA(r) = CA∞

[

1− δexp

(

− rα

dα

)]

, (7.1)

whereCA(r) is the Alfvén speed,CA∞ is the Alfvén at an infinite radial distance,α is the

index of steepness of the Alfvén speed profile,d is the characteristic width of the cylinder.
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An important feature of this profile to consider is that asα→ ∞ this profile becomes a step

profile. This is important as the set up with the step profile has been solved analytically by

Zaitsev and Stepanov [1975] and also by Edwin and Roberts [1983].

Using this profile we were able to reduce the problem to a 1-D PDE (2.6), which could

easily be solved numerically for a variety of parameters. This allowed us to study how the

period of these oscillations varies with longitudinal wavenumber, which is directly related

to the length of the loop. We also accounted for the effect that varying the shape of the

Alfvén speed profile has on the period.

The main result found in this section was to resolve the long standing discrepancy be-

tween analytical results which had been calculated in the strongly leaky regime [Zaitsev

and Stepanov, 1982; Kopylova et al., 2002, 2007], and results calculated using models in

the weakly leaky regime [Pascoe et al., 2007a; Inglis et al.,2009]. This work was published

in Nakariakov et al. [2012].

This approach was then used to verify a novel analytical approximation of the dispersion

relation for sausage oscillations.

Analytical approximations for the dispersion relation were found for three regimes: the

weakly trapped regime, the weakly leaky regime and the strongly leaky regime. These ap-

proximations were developed by performing a Taylor expansion of the dispersion relation

about the relevant point and determining the appropriate number of terms to consider. These

expansions were then separated into their real and complex components to give expressions

for the real and complex parts of the frequency.

The model of the sausage oscillation was then used to generate results to compare with the

analytical approximations. The real component of the frequency was compared with the

modelled frequency around the cutoff, and in the long-wavelength (strongly leaky) regime.

The complex component of the frequency was used to compare with the decay rate of the

leaky oscillations. In all regimes a good match was found between the analytical approxi-

mations and the model. These results were published in [Vasheghani Farahani et al., 2014].

The final consideration of sausage oscillations involved generalising the model to consider

the slab geometry. This was relevant as these oscillations are believe to be present in the

corona [Smith et al., 1997; Verwichte et al., 2005; Costa, 2011].

The set up considered here was very similar to that of the cylindrical case. Instead of a

cylinder of plasma embedded in a uniform magnetic field, we considered an infinite slab of

plasma aligned with the magnetic field. This set up allows a similar form for the Alfvén

speed as before, but instead of varying radially it is varying in the direction perpendicular

to the slab (thez-direction), its variation is described by (4.2).

This set up allowed the sausage oscillation in the slab geometry to be modelled in the same

manner as in the cylindrical geometry. The variation of the period of these oscillations with
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the wavelength displayed qualitatively the same behaviouras in the cylindrical case. Over-

all it was found that the cylindrical geometry was better able to contain the oscillations, as

was in line with expectations. We were also able to compare the cutoff wavelength values

to those obtained analytically by considering the dispersion relation, and found them to be

a good match.

7.2 Modelling coronal active regions

The other half of this thesis concerns developing a model of acoronal active region. The

aim of this was to develop a model that allowed for an arbitrary heating function to be ap-

plied, and then the EUV emission of the modelled region couldbe calculated and compared

to EUV observations of the active region which had been made by SDO/AIA.

The initial stage of this process involved modelling the coronal magnetic field. This was

done by using a non-linear force free model using the photospheric magnetic field, as mea-

sured by SDO/HMI, as the bottom boundary condition. The method used to calculate this

model was the optimisation method developed by Wiegelmann et al. [2012].

From this magnetic field model, the underlying loops structures which define the active re-

gion were traced. This was done by tracing the magnetic field from the bottom boundary of

the modelled region back to the bottom boundary. Each of these loops forms the underlying

structure for the rest of the modelling. As well as defining the geometry of the active region.

The plasma inside these loops was then modelled using a 1-D hydrostatic model developed

by van Ballegooijen [van Ballegooijen, 2004]. This model solved the energy balance equa-

tion for the loop given an arbitrary heating rate, the particular heating rate we chose to study

was:

Q(B) = Qa

(

B
Bmax

)β

Lλ. (7.2)

Finally the EUV emission from these loops needed to be modelled. This was done by using

the temperature response function for the AIA filters, whichare present in the SolarSoft

library for IDL. This function allowed for the emission fromeach loop to be calculated

along its length. The modelled emission for the entire active region was then calculated

by projecting each of these loops on to the plane on which theyare observed by AIA, and

summing their emission.

These modelled AIA images where then compared to observations made by AIA of the

modelled active regions. It was found that different values ofβ were required to model the

emission as observed at the 335 Å wavelength and at the 171 Å wavelength. It was also

found to be difficult for a direct quantitative comparison of images due to the slight varia-
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tion in geometry between the modelled and observed region.

We then proceeded to model individual loops from the active region to gain a more in depth

understanding of how their behaviour varies with the variation in the form of the heating

rate. This was initially done by keepingβ constant and increasingQa, the variation in emis-

sion from the loop. As the heating, and therefore its temperature, increased followed the

expected behaviour.

We then studied the variation in emission asβ varied, whilst the peak temperature of the

loop was kept constant. Here we found that the overall shape of the emission along the

loops did not vary much, however asβ increased the overall emission from the loop did

increase.

In this section we also considered a limitation of the hydrostatic model, that for certain

loops and certain heating rates it is not possible to find a static solution. This of course

reflects reality in that applying these heating rates would not lead to a stable loop. It is of

some interest to note for which heating rates the model cannot find a stable solution. Our

findings here agreed with the earlier work of Serio et al. [1981].

We conclude here the possibility of using the total overall emission for the loop as a diag-

nostic for the coronal heating rate, as it has showed a reasonable sensitivity to the parameter

β.

7.3 Conclusion

Through this thesis various mathematical techniques have been used to model a wide range

of processes in the corona. These techniques have led to useful new results which further our

understanding of the many complex processes which are occurring throughout the corona.
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