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Abstract

This thesis is a study of the magnetic and thermal struguwaimd dynamics of the
solar corona. The work presented here is primarily spli tmio sections: Initially a study
of sausage oscillations of coronal structures in two geda®etThen the development of a
static model of a coronal active region. Initially the basimcepts involved in studying the
solar corona, in particular those relevant to this thesesjraroduced and explained.

In the second chapter sausage mode oscillations in a cgaldieometry are studied in
more detail. In particular a model of these oscillationsasedoped and used to study the
behaviour of these oscillations over a wide range of wagghen The use of a wide range
of wavelengths allows the resolution of a long-standingglisement between results found
in the long and short wavelength regions. The results of thdahdeveloped in chapter 2
are then compared with a novel analytical expansion of thgedlsion relation. In chapter 3
the study is extended to the slab geometry, and this is cadgarthe results found in the
cylindrical geometry.

The second section of work begins in chapter 4, we developdehad a static active region,
from magnetogram data taken by the Helioseismic and Magiretiger onboard the Solar
Dynamics Observatory (SODEMI). This was done using a NLFF magnetic field extrapo-
lation, and a 1-D hydrostatic model. The initial resultsto§tmodelling are also compared
to EUV observations of these active regions. In chapter 3d¢kelts and behaviour of this
model is explored in more detail. In particular the behavimfithe hydrostatic model with a
varying heating rate. Several individual loops are considérom the magnetic field model
and studied in more depth. Various potential diagnosticgie coronal heating function

are also considered.
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Chapter 1

Introduction

1.1 Overview of the Sun

The Sun is the dominant body in our solar system. Its massg@evhe central point about
which, in the zeroth order approximation, the rest of theaussystem orbits. It is also the
essential source of energy in the solar system, this enexayides heat and light to its
planets, including the Earth.

This energy is provided by an ongoing fusion process whialuiecat the Sun’s core. The
fusion process is caused due to the intense temperaturgsessires forcing atomic nuclei
together and releasing energy in the process. The trankthe @nergy through the solar
interior defines its structure.

The Sun'’s core extends to roughly2@f the solar radiusRs. The next~ 0.5Rg is known
as the radiative zone. As the name suggests, the dominangyanansfer process in this
region is radiation. However as the pressure in this regatill very large, individual pho-
tons are unable to travel very far before interacting wittelactron and being re-emitted in
another direction, leading to a lengthy “random walk” typeqess. This means it takes a
very long time for an individual photon to traverse this mgi
The boundary between the radiative zone and the convecting, zhe outermost of the
Sun’s interior regions, is known as the tachocline. It ishi point that the Sun begins to
rotate diferentially; the core and radiative zones rotate as a solity.b®his boundary is
thought to be important in the generation of the solar magffietd, acting as a dynamo.
Convection is the dominant energy transfer process in theemion zone, which makes
up the remainder of the solar interior. Giant convectivdscate formed in this region to
transport the energy to the solar surface.

The visible surface is known as the photosphere, it is hertelhie vast majority of the Sun’s
visible light is emitted. Everything above the photosplisrgenerally considered to be the



The Convection Zone

Energy continues o move toward ihe surface
‘through convection currents of heated and.
cooled gas in the convection zone.

The Radiative Zone ¢
Energy moves slowly outward—taking
more than 170,000 years to radiate through
the layer of the Sun known as the radiative
zon8.

is shaped by magnetic fisld lines into tapered
forms called coronal streamers, which extend
millions of miles into space.

The Gorona

The ionized elements within the corona glow in
the x-ray and extreme ultraviolet wavelengths.
NASA instruments can image the Sun’s corona at
these higher energies since the photosphere is
quite dim in these wavelengths.

Energy is generated by thermonuciear reactions
creating exireme femperaiures deep within the

’_.J Sun's core,

The Chromosphere

Tha relativaly thin layer of the Sun called the
chromosphere s sculpted by magnetic field lines
that restrain fhe electrically charged solar plasma.
Occasionally larger plasma features—called
prominences—form and extend far into the very
‘tenuous and hot corona, sometimes ejecting
material away from the Sun.

Figure 1.1: Schematic of the Sun, courtesy of NASA



solar atmosphere.

The lower part of the solar atmosphere is known as the chrpheos, and is characterised
by a decrease in pressure, and increase in temperaturele@tisto the transition region
where there is a very rapid increase in temperature andakeie pressure.

The corona makes up the bulk of the solar atmosphere, it igetfien above the transition
region. It is notable as it is significantly hotter than thelerlying chromosphere and pho-
tosphere. The temperature varies from about 6000 K in théophbere, before rising to
~ 30000 K at the base of the transition region, followed by adaigse to~ 1 MK in the
corona. The corona represents the main interest of thistrea®sl as such will be discussed
in much greater detail later.

The outermost layer of the solar atmosphere is the solar.wiihés represents the stream
of lower density plasma being emitted by the Sun in the radirakction. The exact mecha-
nism by which it is driven is unknown, and represents one®htlost important unanswered
guestions in solar physics.

1.2 Importance of solar physics

The Sun is essential to life on earth, and its study is veryontgmt. The Sun is crucial
in several ways, most obviously that it provides the heatlayid that make life on earth
possible. Society has become ever more reliant on sasetitdechnology that is taken for
granted everyday. These satellites exist in an environthahis very heavily controlled by
the solar atmosphere.

Of particular risk are solar flares and coronal mass ejes{GMES). As the name suggests
these are an ejection of plasma and other acceleratedlgartiom the corona. If this is
directed towards the earth it can cause severe damage lidesaiestems, and in extreme
cases even damage electrical and pipeline systems on tiés esarrface. An example of
this is the 1859 Carrington event, a powerful solar flareatire towards Earth that damaged
the few electrical systems across Europe and North Amehieeixisted at the time. They
are considered to be of ficient risk that the insurance underwriters Lloyds comroissd

a report into the risks they posed [Hapgood and Thomson,]2010

By studying solar physics, in particular the corona, we caim @ better understanding of
the processes by which these events occur, and as such mblelie belp predict them.
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Figure 1.2: EUV image of a coronal active region captured POBIA in its 171 A band.
The active region is NOAA 11897 captured on 4th November 2013

1.3 The corona

The corona was first observed during solar eclipses; it iaohally possible to observe it
in the visible spectrum as the underlying photosphere idnbighter. However during an
eclipse the moon blocks the light from the photosphere,imgathe more tenuous plasma
of the corona visible (indeed this is how the corona was naifmeed the Spanish word for
“crown” as it gives the impression of a golden crown surrangdhe moon).

When the corona was first studied it provided some confuserit is significantly hotter
than the underlying photosphere. At first glance this dogeapto be a very unusual
result, and has led to one of the most important topics irr @lgsics: the coronal heating
problem. The problem is essentially identifying the med$rmnby which the corona is
being heated. Over the years many theories have been sagigast it remains a hot topic
in solar physics to this day. [See Klimchuk, 2006; Walsh amtahd, 2003; Narain and
Ulmschneider, 1996, for reviews.]

As the corona was studied further, it was discovered that é& highly structured
environment. Fig. 1.2 shows an EUV image of the corona talgmguthe Atmospheric
Imaging Assembly [Lemen et al., 2012] on board the Solar Dyina Observatory; it is
clear from images like this that the corona is dominated lighber loop-like structures.
These structures are caused by the relatively low magneticdompared to the surround-



ing area, which combined with the low plas@éwvhich is the ratio of the gas and magnetic
pressures in the plasma) keep the plasma confined to theséustss. This causes the
plasma’s motion to be controlled by the variation of the netgrfield.

In terms of volume, however, these structures only take upaibn of the corona. These
regions are characterised by having “closed” magneticdjdfsat is magnetic field lines
which remain in the corona, as opposed to extending into tdervgolar system. In these
regions the magnetic field is closed to space on the outdidanagnetic field lines are in-
stead connected to the photosphere at both ends. In theityjafdhe corona this is not the
case, the magnetic field lines originate in the photosphatrexiend & away from the Sun.
These regions are know as the “open” corona, as the field liees are open to outside.
These regions are characterised by having a lower plasnsityland it is therefore much
more dificult to observe the processes which are occurring there.

These coronal loops appear so bright in the EUV images bedhagplasma they contain is
denser than the surrounding corona. These structuresitdnéamajority of the plasma in
the corona, and are central to most of the processes oggumrthe corona. Most of these
structures are formed of loops of strong magnetic field wisimhnect regions of opposite
polarities. Their exact geometry is often very varied ansllbd to their sub-categorisation.
A few of the more commonly observed structures are as follows

Helmet streamers are large structures, the lower half affvtonsist of several large loops,
and the upper half consists of a radially oriented stalk aépla streaming outwards, giving
the overall appearance of a helmet.

Coronal arcades occur where the regions of opposing pokxiend for a significant dis-
tance parallel to each other, this gives rise to a seriesopklperpendicular to these regions
of opposing polarity, but parallel to each other which oféetending for a significant dis-
tance.

Sigmoids occur when the photospheric flows apply a shear ipadedregion, leading to a
deformation of the coronal loops into large S-shapes.

Whilst not a static structure in the corona, solar flares alWEE could both be considered
to be important enough to be classified as coronal structitases are a release of energy
from an active region generally observed as a brightening-afy emission from the re-
gion. Flares are classified depending on the intensity adiyéreleased, with X-class flares
being the brightest. If a flare is of a significant magnitudeiit sometimes have an asso-
ciated CME; these CMEs involve large quantities of plasmagyejected from the corona
at high velocity. However, the association of flares and Ck#Esains a subject of intense
debate.

There are many very important scientific questions reggrttia corona that we do not fully
understand. It is for this reason that studying the coronaafly important. The following



is a list of some of these unanswered questions, as well aspdanation for their impor-
tance.

Firstly, as mentioned above arguably the most importamsimared question regarding the
corona is the coronal heating problem. As previously stHtecroblem is essentially that
the plasma in the corona is about three orders of magnitutdertiban that of the underly-
ing photosphere, which appears to be somewhat countétiietuStudies have considered
the energy required to heat the corona to its observed tettupes [Withbroe and Noyes,
1977], have found that flicient energy to heat the corona to the observed temperasures
being emitted from the photosphere; the problem is esdigntiee mechanism by which
this energy is deposited in the corona. There are broadlyntaio groups of theories as to
what this mechanism may be: AC or DC heating.

AC heating theories, as the name suggests, are those whjgestua heating rate that is
variable over observed time-scales. These generallyvavasing waves generated in the
photosphere and chromosphere travelling up towards tlemadrefore interacting with the
dense structures in the corona and depositing their energjyese structures. Some ex-
amples of AC heating mechanisms are described in: Hollw881L Ofman et al. [1995];
Inverarity and Priest [1995].

DC heating mechanisms are those which imply a heating ratehwi either constant in
time or varies on a time-scale much shorter than the conduoti radiative time-scales of
the loops, thus the heating rate could be considered cdngdthea classic example of a DC
heating rate is Parker’s nanoflare theory [Parker, 19838]19Bhis theory states that the
constant motion of the photosphere causes the field linesdorbe braided, and eventually
so tangled that they untangle themselves through a procesgnkas magnetic reconnec-
tion. This magnetic reconnection process involves brepild field lines and forming new
ones, as well as releasing some of the energy stored in the fiel

Some evidence for the nanoflares theory is provided by cerisgl statistics of observed
flares. These small scale heating events are known as nasofarthey are thought to op-
erate on broadly the same principle as the flares observiad sotar corona. If the statistics
for the observed flares are studied [Hudson, 1991] thereasvaiplaw relationship between
the amount of energy released and the frequency of flaressafttiength; that is to say that
less powerful flares are much more common than more powantg.oNaturally there is a
threshold flare magnitude below which observations arelartatdistinguish between the
background solar emission, however it is reasonable tovesshiat these small scale flares
occur even if they are unable to be detected and can be coegittebe Parker’s nanoflares.
The total energy released by these nanoflares is simply daipr of the magnitude of the
events and their frequency, both of which could be extrapdldrom the observed flare
statistics [Drake, 1971; Shimizu, 1995; Veronig et al., 200ashiro et al., 2006]. Unfor-
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Figure 1.3: Diagram showing the various stages of the stdnifi@re model. (From the
University of Warwick PX420 Solar MHD lecture notes)

tunately there is not a consensus in the solar physics coityrasto whether or not this
would provide stficient energy to heat the corona to the observed temperahowesver it
does not rule it out as a possibility either.

As previously mentioned flares could be considered to be whiogetly relevant to society
than any other topic of research in the corona, as they havedtential to cause significant
damage to both satellites in orbit around earth, as well gangially damaging electronics
on the earth’s surface. As such the prediction of these svsrd hugely important area
of research, as well as understanding the process by whighattcur and are triggered.
There are many éfierent flare models that have been proposed to explain thesoph
ena. However there is a model which is generally acceptedjasditheoretical basis from
which to start understanding the process by which flaresrodtis based on the work by
Carmichael [1964]; Sturrock [1966]; Hirayama [1974]; Kagpd Pneuman [1976], and as
such it is known as the CSHKP model, or it has also become krasathe standard flare
model.



Fig. 1.3 shows the stages through which a flare occurs. lipiaacool, dense fila-
ment is suspended above a magnetic neutral line by the daragnetic field. Magnetic
energy builds up in this coronal field until it becomes unigtand erupts, launching the
filament out of the corona, and opening the magnetic fieldlimeich were suspending the
filament upwards. As the magnetic field lines are stretchddanught together beneath the
filament they undergo a process known as magnetic recoonecthis essentially causes
the magnetic field lines to break and re-form as well as relgas lot of energy. This en-
ergy is produced in the form of direct heating of the plasmaé@reconnection site, causing
soft X-ray emission. The heat is spread along the magnelitlifes due to thermal con-
duction, and the acceleration of nonthermal particles dtwd follow the field lines. The
nonthermal particles going downward precipitate at th@wtosphere producing the hard
X-ray emission at the magnetic field lines’ footpoints. Tieommospheric heating causes
the chromospheric plasma to evaporate up into the cororia.fims the hot, dense loops
that are observed as flaring loops.

When dealing with the corona and its associated structitriesjseful to have a concept of
some of the typical parameters involved. The plasma in tihenab portion of loops has a
temperature of generally around 1 MK, but potentially vaui@ to 30 MK in flaring loops,
with electron densities of roughly §6- 10! cm3. The length scale of these structures can
also vary quite wildly, from tens of Mm up to hundreds. Sonpdsl parameters in regions
of open field lines are temperatures varying up to 1 MK, ancteda densities varying from

~ 10° cm~2 in the lower corona te- 10° cm™2 in the upper corona.

1.4 Theoretical tools used in studying the corona

1.4.1 Magnetohydrodynamics

In order to model the processes and structures within theneoit is necessary to have a
model to describe the behaviour of the plasma. The mostéeitescription of large-scale
long-durational processes in fully ionised plasmas is ratgjtydrodynamics (MHD). This
plasma model essentially just treats the plasma as a fluidrttesacts with (and is inter-
acted by) the underlying and self-induced magnetic fielde ihderlying equations were
developed as a combination of fluid dynamics equations andudiis laws.

The derivation of the MHD equations makes several assumgptbout the plasma, and as
such means that MHD is only applicable under certain camhti fortunately these condi-
tions are almost always satisfied for the physical procedisesissed in this thesis.

Firstly it is required for the characteristic time-scale fwocesses described to be much
larger than both the ion gyro-period (that is the time it taf@ an ion to orbit a magnetic

8



field line), and the inverse of the collision frequency (theam time a particle travels be-
tween interacting with other particles).

Secondly the characteristic length scale described mustumh longer than both the ion
Larmor (that is the radius of the orbit an ion follows arounchagnetic field line), and the
mean free path distance (the mean distance a particle indema travels between inter-
acting with another particle). This combined with the filst af criteria essentially say that
MHD is only suitable to describe processes in which the ptasan be treated as a fluid
and no small scale plasma processes are taken into account.

Finally it is also required that particles are not travelat relativistic velocities, as this is
a non-relativistic theory. The basic MHD equations are Hevs:

88_': LV (V) =0, (1.1)
Jo (98—\:+(V-V)V]:—Vp+jx8, (1.2)
d(p
p (/7) =0, (1.3)
oB
E—VX(VXB), (1.4)
j= iV x B, (1.5)
Ho
V-B=0, (1.6)

where,p is the plasma densityy is the fluid velocity,P is the plasma pressurg,s the
current density, an@® is the magnetic field. (1.1) is the condition of mass continuhis
ensures that no mass is created or destroyed in the modg).igthe equation of motion
from fluid mechanics, with an additional term on the RHS iatlitg the force exerted on the
plasma by the magnetic field. Note that a term for gravitaiidorce could be included on
the RHS of this equation, however for most studies the grwital force is much weaker
than the others and as such is neglected. (1.3) is the enguggien; there are many ways of
expressing this, the form shown is the simplest describdigbatic processes. The param-
etery is the ratio of specific heats, and is generally simplified 8. §1.4) is the induction
equation, describing how the magnetic field fieated by the motion of the plasma. (1.5)
provides a definition for the current density, and is neagska the equation of motion,
which is required to close the set of equations. The paramegis the permeability of free
space. Finally, (1.6) is the solenoidal constraint, whiokuges that there are no magnetic
charges.



1.4.2 Magnetohydrostatics

Whilst the corona is in many senses dominated by very dynawgaots, such as flares and
CMEs, the majority of the corona is fairly static most of tired. As such many attempts
to use static models to model coronal plasma have been nfeez inodels are described
as magnetohydrostatic.

The simplest static model that could be employed is simplgdwosider the corona as a
gravitationally stratified atmosphere, in this case thequee has a nearly exponential form:

h

p(h) = po eXp[——}, (1.7)
p(Te)(L+ &)

whereA,, is the pressure scale height, it is defined as:

2kg
HMHQo

Ap(Te) = Te. (1.8)
Here, the distance is measuredmashe height above the photosphe, is the pressure
at the photosphere is the average molecular mass in the corapais solar gravitational
constantRs is the solar radiuskg is Boltzmann’s constantyny is the mass of a hydrogen
nucleus,T¢ is the electron temperature of the plasma.

This model is not specific for the corona. In order to use thiglehto study the corona,
its implementation must be considered. A method of doing ihito treat the corona as
a series of isothermal, but thermally isolated atmosphallggacked together. This is a
reasonable model, as the plaspén the corona is small, and as such magnetic forces
dominate; moreover, in the absence of electrical redigtithe plasma is “frozen in” to the
magnetic field. As individual plasma ions can be thought oftaging restricted to their
own field line, the thermal conductivity along any field lirgghigh, but between field lines
is low. This keeps the plasma on a field line all the same teatyes, but each field line is
thermally isolated from the others. If the coronal magnééld is treated as being purely
radial this gives a series of atmospheres, the pressure iohwahe all described by (1.7),
but they will have difering values oft, as they are all at ffierent temperatures. It is then
possible to model the emission from this plasma, and comipdceobservations of the
corona. Such a study was performed using YoWBXT soft X-ray data by Aschwanden
and Acton [2001], and they found an empirical model for thaperature distribution that
provided a good match to the quiet corona.

A similar approach can also be used to model more complexhabstructures, typically
loops. A classic example of a hydrostatic loop model wasldgeel by Rosner et al. [1978].

10



The basis for this model is the energy balance equation:
1
EH+f-v:V-FC—ER+V((§pv2+U)V+pV), (1.9)

whereEy is the local heating raté,is the total external force exerted on the plasma, mainly
gravity, v is the plasma velocityk¢ is the energy flux due to thermal conduction [Spitzer,
1962], ER is the energy lost due to radiation,is the plasma density and is the plasma
thermal energy density. This equation describes all of trergy gains and losses at any
point in the loop. In order for (1.9) to be any use in modellapop it must be integrated
over the entire loop. Doing so gives:

f(EH +f ‘V)dgr == f ERd3r + Lfootpoints + Lsides (1.10)
\Y \Y

where Liootpoints aNd Lsiges are the energy losses and gains across the footpoints @ side
of the loop respectively. (1.10) therefore simply states throughout the entire loop any
heating applied and energy deposited by external forces$ beusalanced by radiation or
the energy lost through the boundaries of the loop. This kan be further simplified by
assuming that there is no energy transport through the sidide loop, this is reasonable
because, as before, the loop is thermally isolated fromebkeaf the corona. In addition,
one can assume that the plasma is static. This just leavdwetiing being balanced by
radiation and energy transported through the footpoints.

As previously stated the coronal heating problem is a majpictof interest in the solar
physics community, with many fierent heating mechanisms having been proposed. Each
of these heating mechanisms implies a descriptiokpfthe heating rate. It is therefore
not easy to find a definition fdg from any theoretical basis. In order to progress with the
analysis Rosner et al. [1978] simply assumed a con&ant

Next Rosner et al. [1978] modelled half of the loop, from fomht to apex, and assumed

it was symmetric. Then by considering the conductive fluxvatye point along the loop,
with the boundary conditions that the flux disappears at fiex,aand prescribing a photo-
spheric temperature, Rosner et al. [1978] were able torobtailing laws relating the peak
temperature, length, base pressure and heating rate:

Tmax ~ 1400@oL)? | (1.11)
7
Eno = 0.95x 107572, L2, (1.12)

these are known as the RTV scaling laws. The loop’s lengthpaadt temperature can be
estimated by observations, which would then allow an eséntabe made of the heating

11



rate and base pressure, which is assumed to be constanefentine loop in this model.
These laws do agree to some extent with observations ofestsmtt X-ray loops, no doubt
because the pressure is roughly constant in these shoojes. IdJnfortunately when the
scaling laws are applied to observations of longer EUV lpgpsh as those observed by
the 171A bandpass of SD@IA, it was found that the observed pressures at the apex of
the loops were much higher than those derived with the usleeoRTV scaling laws [As-
chwanden et al., 2000].

It is therefore clear that the assumptions made by Rosndr Et9& 8] are too restrictive
to properly describe most loops in the corona, as such soniesé assumptions must be
relaxed. The most obvious starting point is to soften thesuanption of a spatial uniform
heating rateEy; whilst a spatial uniform heating rate does make perforntirganalysis
to reach the scaling laws easier, it is not representatiheheating in the corona. An
attempt to relax this assumption was performed by Serio. ¢1881], in their work they
considered a heating rate of the form:

En = Eno exp(— (3)) (1.13)
SH
an exponential heating function, whetgg is the heating rate at the base of the lo8p,

is the heating scale height a&dis the distance along the loop. As with the derivation of
the RTV scaling laws, it is assumed that the loop is symmednd only half of the loop is
modelled at a time. Serio et al. [1981] also lifted the refibh of constant pressure along
the loop. This led to a generalised version of the RTV scdlgs, introducing a factor
that depended on the heating and pressure scale he@jhtend,. The updated scaling
laws were found to be a more accurate model of observed EWNSIbg Aschwanden et al.
[2000].

An interesting consequence of this exponential heatirgpaiposed by Serio et al. [1981]
is that as the heating scale height decreases, that is ttiegibacomes more focused in the
footpoints of the loops, the location along the loop whee tdmperature is a maximum
can move away from the apex of the loop. On the face of it thierhaps not a surprising
result: as less and less heating occurs at the apex of the dweptually a point further
down the loop where more heating occurs will become hotssyming that any changes
in the density profile are driven by varying the heating ratée consequence of this is
that loops where the peak temperature is not at the apex atable. This is due to the
density of the plasma above the point of maximum temperatwhich is no longer the
loop apex), becoming larger than the density of the plasmeitly beneath it, which leads
to the Rayleigh-Taylor instability. This gives the sitwatiwhere the static loop model
predicts that the loop cannot be static with the providecdmaters. This instability was
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studied by Winebarger et al. [2003].

More recent studies have extended this approach furthenarelbeen able to numerically
solve the energy equation for an arbitrary heating ratejrasgy a static solution exists.
An example of this was made by Schrijver and van Ballegodigfi05], which will be
considered in more depth in chapter 5.

1.4.3 Modelling coronal magnetic fields

Itis clear from observations that the magnetic field playargd role in shaping the corona,
and itis clear from the MHD equations that any attempt to maitically model the corona
will have to take into consideration the coronal magnetitdfieHence it would be very
useful to have an understanding of the coronal magnetic liieldre any modelling is at-
tempted. Unfortunately, whilst it is possible to measuse riagnetic field strength in the
photosphere by using Zeeman splitting of magnetically ifeesspectral lines, e.g. ke
6173.3 A as used by SOBMI [Scherrer et al., 2012], this technique does not, howeve
work in the corona. This is because these coronal emissgien &re optically thin, thus it is
not possible to know exactly where along the line-of-sigjet ineasurement is taking place,
as well as essentially having measurements from all polotgyathe line-of-sight. More-
over, the lines experience huge nonthermal broadeninghwhikes the Zeeman splitting
unresolvable. One possible method to estimate the coroaghaetic field is to use the ob-
served photospheric field as a boundary condition.

This leaves the problem set up essentially as follows: thgnmiic field in the photosphere
is known, and the magnetic field of the corona, (radially @rtyg from this boundary) is
what is it be estimated. Using Maxwell's laws it is clear ttas is insuficient information

to find a solution for the coronal magnetic field, thus somemggions must be made. The
main assumption is that the corona is force-free, what ttgams is that the plasma in the
corona is static andfctively feels no force. Consider (1.2); as previouslyestahe mag-
netic field is the most important parameter here and it ontpixin one termj x B, so let
us consider the size of the other terms relative to this:dffressure varies very little over
the area considered then the term can be neglected. The velocity terms on the LHS can
also be neglected, as considering typical coronal valuethéoparameters these terms are
expected to be small compared to fheB term. This just leaves:

jxB=0, (1.14)
now, using the definition of the current density (1.5):

ﬂio (VxB)xB=0. (1.15)
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Figure 1.4: EUV image of the entire corona captured by 0@in its 171 A band, with
magnetic field lines calculated using a PFSS model overlayealge courtesy of NASA.

For this equation to hol¥ x B must be parallel t@, that is to say:
V xB =aB, (1.16)

wherea is an arbitrary constant. There are a few situations imgiethis. Firstlya = 0,

in which casev x B = 0, this implies that the magnetic field is potential. Thislisiously

the simplest scenario that provides a solution to (1.14),aasuch is the easiest and fastest
to compute. However this magnetic field arrangement is thst moergetically #icient
arrangement for the given boundary conditions, and as $inasino magnetic free energy
to release. As all coronal heating theories involve theasseof magnetic free energy from
the coronal field, a potential field can obviously not be a detefy accurate representation
of the field.

Potential fields are however still widely used and provideasonable estimate for
the topology of the field. They are for instance used in paéfield source surface mod-
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els (PFSS) whereby the coronal magnetic field is assumed toropletely radial above
a certain height, providing an upper and lower boundary itimmdfor the magnetic field
[Schrijver and De Rosa, 2003]. These models can then be ossidulate the magnetic
field in the Sun’s entire corona see Fig. 1.4 for an exampé®, @chrijver et al., 2004] for
an example use of this kind of extrapolation.

A more complex type of force-free field to consider is one wheis a constant across the
entire modelled region. This is known as a linear force-frelel. It has the advantage over
the potential field in that the field does contain some magriete energy, as well as being
just as easy to compute, assuming the value of chosen. The problem is that it is not
easy to determine the appropriate valugpénd as such it is generally not that much more
useful than a potential field.

The remaining case is one in whiehis only constant along any given field line, but is
free to vary across fieldlines. This is known as a non-lineace-free field (NLFF field).
NLFF fields can hold dflicient magnetic free energy [Gary et al., 1987], and are uniqu
for a full set of vector magnetic field boundary conditionss guch they are very promis-
ing, however there are several issues that make deterntimémy a challenge. Firstly they
have a mare stringent requirement on boundary conditicens plotential fields. In order to
uniquely determine an NLFF field, all three components ofritagnetic field are required
on the boundary, whereas potential fields only require desitgmponent. These boundary
conditions are required on all boundaries of the modellgibre which can also provide
an obstacle, however there are methods to get around thish wiil be discussed in more
detail in chapter 5.

Even with all the required boundary conditions, whilst anA¥Lfield is uniquely deter-
mined, due to the non-linear nature of 1.14, it is not posdiblanalytically deduce the field
from the boundary condition, hence some sort of iteratiyer@gch is required. There are
several methods that have been suggested to calculate NS, fEchrijver et al. [2006];
Metcalf et al. [2008] tested a variety of methods on both @aktished test field [Low and
Lou, 1990] and a solar-like reference model [van BallegogiR004]

1.5 Coronal seismology

Coronal seismology is a relatively recent field of solar ptg;swhich involves studying

MHD oscillations in the corona, and using the parameterhe$d oscillations to deduce
information about the structure of the corona [see De Mbartd Nakariakov, 2012; Baner-
jee et al., 2007; Nakariakov and Verwichte, 2005, for regew

Many oscillations have been observed in the corona e.g. Peomet al. [1998]; Ofman

et al. [1997]; De Moortel et al. [2000]. The most common tygeoscillation observed
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in EUV images, such as those from the Atmospheric Imagingsdy (AlA) on board
the Solar Dynamics Observatory (SDO), are transverse Isoffiations, e.g. Nakariakov
et al. [1999]; White et al. [2012]. These generally occur whe impulsive event such as
a flare occurs close to a loop or bundle of loops, whifilsais the loop causing it to os-
cillate around its initial position. However many other égpof oscillations have also been
observed, such as quasi-periodic pulsations (QPPs) dfiares, which will be described
in more detail later on.

1.5.1 MHD oscillation theory

The theory behind coronal seismology is deeply rooted in MAIBst consider an equilib-
rium static uniform plasma; this gives the equilibrium cibioths about which oscillations
will take place, the equilibrium parameters are denoted sytescript 0. They ard?y, oo,
Bo andVy = 0, as we ignore equilibrium flows. It is clear that this edprilim satisfies
the MHD equations (1.1-1.6). To this equilibrium small pesations are made, which are
denoted by a subscript 1. This gives the following perturipeantities:

P=Po+ Pi(XY,zt),
p = po+p1(%Y,21),
B =Bo+Bi(xy,z1),
V =Vi(xy,z1).
We then put these quantities into the MHD equations and disghterms smaller than first

order in terms of perturbed quantities. It is also assumatiathy derivatives of equilibrium
guantities are zero.

_‘9(;1 +V - (poV1) = 0, (1.17)
oV 1
po—= = —VP; + — (V x B1) x By, (1.18)
ot Ho
0p1 0Py
Po— = pg—= 1.19
YPo—= = P07 (1.19)
B
% =V x (V1 xBg), (1.20)
V.B; =0. (1.21)
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Then, by taking (1.18), dlierentiating with respect th and using the other equations to
eliminateP, andp1 we obtain:

2V 1
po% = yPoV3Vq + - [(V x (V x (V1 % Bo))) x Bg] . (1.22)

This is the basic equation for studying MHD oscillations. pfogress, we assume pertur-
bations that are of the formA(r,t) = Apoexpi(wt — K - 1), whereAs o is a constantw is

the frequency anl = kX + Iy + mz is the wavevector. This Fourier decomposition has the
advantage that temporal derivatives can be replaced pbgnd spatial derivatives byik.
Then substituting these into (1.22) we get:

pow?V1 = yPok(k - V1) + ﬂ%[(k x (k x (V1 x Bo))) x Bal. (1.23)

The first mode to consider is an incompressible one, that iDdemvhere there are no
pressure or density variations from (1.57)V, = 0 hencek - V1 = 0, as such the first term
on the RHS of (1.23) is zero. By considering the two remainérms it is clear that/; and

Bo are perpendicular, hen&g - Bg = 0. By using the following vector triple product rules:

Ax(BxC)=(A-C)B-(A-B)C,
(AxB)xC=(A-C)B-(B-C)A,

and removing all the terms which are zero we get:

. 2
(k- Bo) Vi,
Lo

pow?Vq = (1.24)
Rewriting By asBoBo, whereBy is the unit vector in the direction of the magnetic field, and
cancelling theV this becomes a dispersion relation:

B2 R
w? = —2(k - Bg)? (1.25)
POMO

This describes transverse anisotropic oscillations whrdpagate preferentially in the di-
rection of the magnetic field. These oscillations are knosvAlfvén waves. The cdBcient
on the RHS of (1.25) gives the Alfvén spedda = \/%, which is an important plasma
parameter.
Now to return to (1.23) to consider compressible modes aflagon. As this is a vector
equation it is simpler to consider components of these vectp as to deal with scalar
equations. In the set-up of the problem there are only twaectons that have been defined:
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the direction of the magnetic field, which for simplicity wédhassume is oriented along the
z-axis,l%o = 7, and the direction of the wavevectdr, To proceed we take the dot product
of (1.23) first withz, and therk. Firstly -z gives:

w?V; = C2m(k - V), (1.26)

whereC2 = yp—F;" is the square of the sound speed, and theZ-component of the wavevec-

tor. Next,-k:

2

P02 vy + 5o [(k x (k x (V1 x 2))) x 2], (1.27)
POHO

Wik V1) = —
Po
whereK? = k - k. Using the definitions of the Alfvén and sound speed, as agihe vector

triple product rules, this simplifies to:
w?(k - V1) = (C2+ CHK?(k - V1) — mK?C3V,. (1.28)

Now substitutingV, from (1.26) into the final term of (1.28) will give a common facof

k - V1 inall terms. The case wheke- V; = 0 has already been considered, as it led to the
dispersion relation for Alfvén waves. We therefore coasitthe case whete- V; # 0 this
factor can then be cancelled leaving the following:

w* — K2w?(C2 + C4) + C3CanPK? = 0. (1.29)

This is quadratic inw?, so simply finding the roots gives us the dispersion reldtonhese
oscillations:

2_K2

> [Cé +Chx \/(Cé + C3)? — 4K2CZC3 co(0) |, (1.30)

w
whered is the angle between the wavevector and the magnetic fi@ghatameter arises as
n? = K2 cog(). This dispersion relation describes two modes of osiltatdepending on
the choice of sign in the RHS. The large root denotes the faginetoacoustic mode, the
smaller root the slow magnetoacoustic mode. As with the &ifwaves, these waves are
also anisotropic, due to the césferm in the dispersion relation.

Fig. 1.5.1 shows the phase speed of all three MHD modes ona g@gram,
demonstrating how the phase speed varies with the angleebetthe wave vector and the
magnetic field. Starting with = 0, that is parallel to the magnetic field, the phase speed
of the Alfvén mode is the Alfvén speed, the phase speedeo$lihw mode will always be
equal to the smaller a5 andCsg, in this caseCs. The phase speed of the fast mode will
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Figure 1.5: Polar diagram showing the phase velocity fortlinee MHD modes of a uni-
form plasma. The magnetic field is oriented in the horizodiedction. The solid line
represents the fast magnetoacoustic mode, the dottechiingldw magnetoacoustic mode
and the dashed line the Alfvén mode. Hetg, is normalised to 1, an@s = 0.7. In this
diagram the magnetic field is oriented in thelirection
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Figure 1.6: Diagram showing the magnetic cylinder as sety@ditsev and Stepanov
[1975]. (From the University of Warwick PX420 Solar MHD lecé notes)

always be equal to the larger of the two, in this c&3e, As 8 increases ta/2 the Alfvén
and slow mode’s phase speeds decrease until they becom® 8 at2, whereas the fast
mode’s increases tgy, = /C3 + Ca.

1.5.2 Theoretical basis for coronal loop oscillations

The oscillations detailed in the previous section, whiktywnice analytically, are not very
useful for modelling the corona. This is because the corsriderly not a homogeneous
environment, therefore not only is the starting equilibriunrealistic it is also not possible
to perform a Fourier transform in all directions.

A more realistic plasma geometry to model is that of a cylin@eich analysis was
performed by Zaitsev and Stepanov [1975]. They started bgidering a plasma cylinder
of infinite length embedded in a magnetic field aligned aldmay d@xis of the cylinder, as
illustrated in Fig. 1.6. The equilibrium parameters in thet-up are as follows: inside the
cylinder the pressure By, the density ipg and the magnetic field By = Bpz. The exterior
equilibrium parameters ar®, pe andBe. As before, check that the equilibrium parameters
satisfy the MHD equations; all are trivially satisfied asfd@mn (1.2), which is satisfied so
long as the interior and exterior magnetic and gas presbatasce, i.e:

B2 B2
Po+ =2 = Pe+ —2. 1.31
0 2#0 e 2110 ( )
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A similar approach is then followed as in the homogeneousnpéa taking the MHD equa-
tions, applying small perturbations and linearising. Theal perturbations are assumed
to be of the form:Aq(r, 0,z t) = A(r) explwt + imd + ikz) i.e. a Fourier transform is per-
formed in all directions aside from the radial direction,tlas equilibrium conditions are
constant in all these directions. After some algebra (seaits&v and Stepanov [1975]
or Roberts [1981a,b]; Edwin and Roberts [1983] for detait® following wave equa-
tion for the radial component of the divergence of the véjocie. R(r) where:V -V, =
R(r) expwt + imo + ik2), is reached:

d2R+ldR 2+m2
a2z Trar (T2

)R =0, (1.32)

where

,  (KRCZ-0A)(KCE - w?)

kS = , (1.33)
(C2+ Ci)(k2C$ - w?)
whereCs is the tube speed, and is defined as:
Cro_=Ca (1.34)

Jcircz

Note that for instance bothandCy will have different values outside and inside the cylin-
der. In keeping with convention, parameters of the extgrtzma are denoted by subscript
e, and internal equilibrium parameters are denoted with aaift O.

Equation (1.32) is Bessel's equation, which can in many vileysonsidered the cylindrical
analogue of the standard cartesian wave equation. For thesizan wave equation there
are two families of solutions, depending on the sign of theffment of the spatial deriva-
tive: either exponential (exg) and exp{x)), or sinusoidal (sinf) and cosk)). As Bessel’'s
equation is a cylindrical equivalent of this, its solutiaan also be considered equivalents
of these functions. k% < 0 then the solutions are the oscillatory functiords; and Y,
known as Bessel functions of the first and second kind respéct If x> > 0 then the
solutions are exponentialy, is exponentially growing ané, is exponentially decaying.
These are known as the modified Bessel functions of the ficssacond kind respectively.
A final important point to note about Bessel functions is tlhbf these functions have a
subscriptm denoting the order of the function; this is the samérom (1.32), as well as
being the azimuthal wavenumber. If we keep andz fixed, but varyg, that is travelling
around the cylinder, all quantities must be continuoug -at0, 2. In order to ensure this,
m must be an integer.

These functions can therefore be used to describe the lpatims inside and outside the
cylinder. In order to further restrict the solutions aviig we must apply boundary con-
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ditions. Starting with the cylinder’s interior, we requitteatR is bounded at the cylinder’s
axis,r = 0, this means that inside the cylinder the solutions are las\fe:

_ Im(mor) .M >0
R(r) = Ao{ o) e 0 }(r <d). (1.35)

The Bessel function chosen depends on Wheﬂgés positive or negative. Ilfr‘é is positive,
there is no oscillatory behaviour inside the cylinder, amel Bessel, function is used.
In the case Whermg > 0, the only oscillatory behaviour exists on the boundaryhef t
cylinder therefore these oscillations are known as sunfacees. Whemng < 0, the Bessel
Jm function is used. This function involves oscillatory betoav inside the cylinder, and as
such these modes are known body modes.

The first requirement imposed on the solution in the exteridine cylinder is thaR(r) — 0
asr — oo, which eliminates the Bessé}, function. We also require that this oscillation
be a standing wave of constant amplitude, hence the enertheisystem must remain
constant. The only input of energy is from the initial “pughf’applying the perturbation
att = 0, therefore we only consider solutions where no energypescthe cylinder. The
Bessell,, and Yy, functions describe oscillations, thus if either of thesections represent
solutions to the exterior of the cylinder, where there isamdial boundary to constrain them
they would transport energy away from the cylinder, esaliptdamping the cylinder’s
oscillation. Therefore the external solution must be:

R(r) = AcKp(mer), r>d. (1.36)

The final condition to be applied is thafr) should be continuous at the boundary d, that
is that (1.35) and (1.36) should match at the boundary. Tdnsbined with the equilibrium
pressure balance gives the following dispersion relations

Km(med) In(mod)
K2C2, — w? m = pe(K?C3.. — w?)Mmy- , 1.37
for the surface modes, and:
K/ (med J’ (nod
po(k2C2y - Mo ED _ (122 — 2y ko) (1.39)

Km(med) JIn(nod)”

for the body modes. These dispersion relations therefoserithe the modes of oscilla-
tion, as well as restricting the values ofandk that are allowed. The properties of these
oscillations depend heavily on the relative values of theereal and internal sound and
Alfvén speeds. Edwin and Roberts [1983] considered a watlecgon of possible scenar-
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Figure 1.7: Dispersion plot fod€ae = 6,Cp0 = 3,Cy = 1,Cs = 0.3, m= 0,1, 2, 3, the
solid line ism = 0, the dotted linen = 1, the dashed linen = 2, the dashed-dotted line
m = 3 and the horizontal lines are the characteristic speedsdafitstem. Only the highest
of the slow branches for each valuerofs plotted.

ios of solar conditions, we will however restrict ourseltes set of typical coronal values:
Cae > Cpo > Cy,Csx. We then use a numerical method (e.g. Newton-Raphson method
to find the roots to these dispersion relations, that is theegaofw, k andm for which a
solution exists (restrictingnto integer values as stated above). Fig. 1.7 is a disper$idn p
showing the modes of the cylinder. It is plotted as the phpsed against the wavenumber
to help visualise the regions where oscillations existerbe horizontal solid lines on the
plot represent the characteristic speeds of the cylin@gs;Cy, Cao andCae. There are
two distinct intervals of the phase speed which allow aatidhs. FirstlyCg < w/k < Cg:
these modes are analogous to the slow magnetoacoustic wioaemiform plasma; these
modes exist purely in the rang€rp < w/k < Cq, hereCrg = 0.949. All of these modes
exist for all values ok, and as such this is a very small range of phase speeds fbea# t
modes to be plotted in, hence it idfitult to distinguish individual modes. In fact for each
value ofmthere are an infinite number of modes, representing all didneonics, however
in this plot only one mode for each value mfis plotted. The consequence of all of these
modes being so close together is that it i§idilt to distinguish individual modes, and in
practice it would be impossible to only excite a single onthete slow modes without also
exciting many other modes. These slow modes are therefeemtially treated all together,
and are not ideal for further analysis.
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Moving our attention to the other region of Fig. 1.7 whereiltsons are allowedCag <
w/k < Cpe. These are modified fast magnetoacoustic modes, here masledieiently
spread out that distinguishing individual modes is clepdgsible, which suggests that it is
also possible to excite single modes. The other featureiofalyion of the plot that dliers
from the slow modes is that not all of the modes exist for dliea ofk; some of the modes
have “cut-df” values ofk, that is values ok below which the mode does not exist under
the assumptions made above.

In fact them = 0 mode has no branches that exist for all valuek, afhich is a very im-
portant property of this mode. The = 0 mode is known as the “sausage mode”, because
m = 0 describes axisymmetric behaviour, and the expansionga@mtdactions of the tube
along its length make it resemble a string of sausages. Tdiemwill be discussed in much
more detail in further chapters.

Them # 0 modes all have one branch that exists for all valuds tifeir fundamental mode,
all of which havew/k — a single value ak — 0. This is another characteristic speed of
the cylinder, known as the kink spedt}; and is defined as:

C2 + peC2
Ck = \/p—o Ao T Pene (1.39)
PO+ Pe

for the values used in Fig. 1k = 3.81. Them = 1 mode represents purely a displacement
of the cylinder, without deforming it, it is similar to a gaitstring being plucked. As such
it is known as the “kink mode” as it resembles a kink in thergér. Them > 1 modes
are known as the “fluting modes”, as for higher valuemdhe cylinder begins to resemble
a fluted column. These modes represent a complex deforndtidwe cylinder, which are
difficult to excite without also exciting the kink or sausage matiech would dominate, as
such these modes generally not considered when analysimgdtes of the cylinder.

The values for the ratios of sound and Alfvén speeds in Fig.ate not necessarily rep-
resentative of the corona, where we would expect the soueedspto be lower. However
changing the specific values does not alter qualitative \nehaof these modes; the most
important property is thafae > Cap > Cq, Cs, SO long as this holds the overall behaviour
remains unchanged.

One limitation of this model that could be lifted is that theeznal solution to 1.32 is
restricted to the Bessél, functions, so as there is no external wave transmittingggner
away from the cylinder. If we allow for the Bess¥l, function to be a solution outside
of the cylinder, this expands the range of possible solatitiis was considered by Cally
[1986]. The dfect of having an external oscillating solution is that asgyés transported
away the internal oscillation isfiectively damped, though it is important to note that no
actual damping occurs; the internal oscillation’s eneggyeérely transferred to the external
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oscillation. Hence the regions of the dispersion relatidgresg the external solution is the
BesselK, function will correspond to a complex value for These solutions are known as
leaky oscillations and occur on Fig. 1.7 fofk > Cae, acting as continuations of the modes
that have cutfi wavenumbers. This is particularly important for= 0, the sausage mode,
as it is the only value afn for which the fundamental mode has a diitwavenumber, thus
for ks below this value the only sausage mode that exists is leaky.
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Chapter 2

Sausage oscillations of a plasma
cylinder

2.1 Introduction

This section is concerned with the study of an axisymmetitsage mode oscillation of
a plasma cylinder. The most likely observational signawksausage oscillations in the
corona are the long period quasi-periodic pulsations (QRP/aring loops. Nakariakov
and Melnikov [2009] provide a recent review on the topic ofRBPQPPs are observed as
an oscillation in the intensity of radiation emitted durisgme flares. They have been ob-
served in many bands such as microwave and hard X-ray emjssid have been observed
as simultaneous in phase oscillations in both bands [eg.€isl., 2001]. QPPs have been
observed with a wide range of periods of oscillation varyiram fractions of a second
[Aschwanden, 1987; Fleishman et al., 2002; Tan, 2008] tersé¢wninutes [Foullon et al.,
2005; Kislyakov et al., 2006]. The underlying mechanisnt thiaves these oscillations is
not fully understood, and several mechanisms have beerestagly Given the wide range
of periods these oscillations display, it is reasonablestume that dierent mechanisms
could be responsible forfilerent QPPs. Nakariakov and Melnikov [2009] suggest digdin
the oscillations into two categories: the shdtt< 1s) period oscillations and longer period
oscillations. The shorter period oscillations are uniikel be caused by MHD oscillations,
and as such are of less interest to this study.

Sausage oscillations are an excellent candidate to exgane of these QPPs. The method
by which sausage oscillations could produce a modulatidmacd X-ray intensity was de-
scribed by Zaitsev and Stepanov [1982]. A description of thechanism is as follows:
during the flare a ‘kernel’ of very hot plasma forms at the apiethe loop, which increases
the gas pressure at this point causing the loop peak to expamnekll as reducing the mag-
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Figure 2.1: Fourier power spectra of the pulsations obskeat¢hree points along a loop by
NoRH on the 12th January 2000. Figure from Nakariakov e2&08].

netic field strength there. This reduced magnetic field foanmsagnetic trap holding the
energetic electrons in place. Now if a sausage mode is eaitdhe loop this will cause a
modulation in the magnetic field strength of the loop apexctvktherefore leads to a mod-
ulation in the &ectiveness of the magnetic trap. The trap therefore redemsrodulated
stream of electrons which travel down the loop towards theseglasma in the footpoints.
As the electrons crash into this plasma they are rapidlyldested and release hard X-rays
that are then observed, hence the sausage mode leads to &tiooda hard X-ray emis-
sion.

Sausage oscillations also provide a mechanism by which thewave emission from a
flare can be modulated. Microwave emission from a flare coaldaused by the gyrosyn-
chrotron mechanism. This is where mildly relativistic nibbermal electrons are caught
by the background magnetic field. As these very high speadretes orbit the magnetic
field line, they emit broadband microwave radiation. Thectpen of these microwaves
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is controlled by the electron’s speed and magnetic fieldhgtte As such modulating the
magnetic field strength e.g. by a sausage mode, will also tatalthe gyrosynchrotron
emission. Such an observation was made by Nakariakov e2G03] who studied a flare
on the solar limb on 12th of January 2000 using the NobeyanaioReliograph (NoRH)
[Nakajima et al., 1994]. NoRH measures microwave integsit the 17 and 34 GHz bands
with a spatial resolution of 10"-5” and a temporal resolntif 0.1 s; the excellent tempo-
ral resolution is very useful in studying QPPs, which canehpgriods of a few seconds.
Nakariakov et al. [2003] looked at the 17 GHz flux at three fsoaiong the loop: one point
in each of the legs and a point at the top of the loop. For thedaries of each of these
points, the overall trend was removed and a Fourier speabfuime remaining signal was
then made, the spectra are shown in Fig. 2.1. There is a derip all spectraat 1417 s
which is most prominent at the apex, this is likely to be thedlamental sausage mode.
There is a second peak at8.1 s, which is more prominent at the footpoints; it is therefo
possible that this could be the second spatial harmoniceofdlnsage mode.

An excellent example of a detailed study of a QPP observedth the microwave and
X-ray bands is provided by Inglis et al. [2008], using datarirNoRH as well as X-ray
observations from the Hard X-ray Telescope on-board thé&dolsatellite (YohkoHXT).
They found a good agreement between microwave and hard ¥hasgrvations, which led
to the conclusion that this QPP was caused by some form of MétiNation, of which the
sausage mode is the most likely candidate.

QPPs have also been observed in the visible portion of tharsipe, as shown by Srivastava
et al. [2008] who used H (6563 A) observations from the 15 cm Solar Tower Telescope
at Arybhatta Research Institute of Observational Scien€asy considered a flaring loop
from 2nd May 2001 and studied the intensity from a point nkarfootpoint as well as at
the apex. They found periodicity in the signal from both peinvhich they interpreted as
being caused by the fundamental sausage mode.

Observations of QPPs have not just been limited to the Suextample Mathioudakis et al.
[2003] studied an observation of a flare from RS CVn binarydgPa binary star system
130 light years from Earth. Using observations from the Ba@mn observatory they found
periodicity in the white light emission of 220 s, which colid explained by a sausage os-
cillation.

Very recently, periodic variations of the EUV emission weitgo interpreted in
terms of sausage oscillations [Van Doorsselaere et all; 28 et al., 2012]. In these inter-
pretations it is important to consider the line-of-sightration &ect, as recently pointed
out by Mossessian and Fleishman [2012] and Gruszecki e2@L2]. In particular, for a
line of sight perpendicular to the oscillating cylinder dada spatial resolution of the order
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of the diameter of the cylinder or poorer, the intensity ypdrations produced by a sausage
mode in the optically thin emission regime are negligible.

Theoretical modelling of sausage modes of coronal strasthas a long history. Sausage
modes are highly dispersive and their properties are dgpnghon the longitudinal wavenum-
ber (e.g., Zaitsev and Stepanov [1982]; Edwin and Robef83[t Roberts et al. [1984];
Selwa et al. [2004]). Depending upon the ratio of the lordjital wavelength (determined,
e.g., in the case of standing waves by the length of the asoij loop) to the radius of
the plasma cylinder, the mode can be either trapped or |eBtapped modes experience
total internal reflection at the cylinder surface and arenesaent outside the loop. The
period of standing trapped sausage modes, i.e., in denghiakdlaring loops, grows with
wavelength [Nakariakov et al., 2003; Aschwanden et al. 4208ausage modes of longer
wavelengths leak from the cylinder, forming a train of outsii;a propagating fast magne-
toacoustic waves outside the cylinder. This mechanism ekweakage is intrinsic and
different from the tunnelling caused by non-uniformity of théeexal medium (see, e.g.,
Verwichte et al. [2006]). The threshold value of the ratidref longitudinal wavelength to
the radius of the cylinder is defined by the ratio of the fasgneoacoustic speeds inside
and outside the cylinder [Zaitsev and Stepanov, 1982; E@wthRoberts, 1983]. Such a
behaviour was found to be weakly sensitive to the smoothoks transverse profile of
the fast speed [Pascoe et al., 2007a], fine structure in the & multiple coaxial shells
[Pascoe et al., 2007b], longitudinal variation of the og#n cross-section [Pascoe et al.,
2009b], and finites effects [Inglis et al., 2009].

However, sausage modes are still not entirely understaogaiticular, the dependence of
the time period on the longitudinal wavelength in the leadgime, information crucial for
the development of seismological techniques based upsmibile, is still debated. On the
one hand, analysis of dispersion relations for linear sgrgerturbations clearly showed
that in the long-wavelength regime the period of leaky sgesaodes is independent of
wavelength [e.g. Zaitsev and Stepanov, 1982; Cally, 198ytova et al., 2002, 2007]
and is determined by the ratio of the radius of the cylindaghtinternal value of the fast
speed. On the other hand, it was argued that the graduabs®ie wavelength from a
trapped regime value should lead to an increase in the ppiakariakov et al., 2003; As-
chwanden et al., 2004] for a fixed value of the radius of thandgr. Moreover, numerical
simulations of the initial-value problem demonstratedt tha period of the mode grows
with wavelength [e.g. Pascoe et al., 2007a; Inglis et al092@n both trapped and leaky
regimes. The situation is complicated byfdiulties in searching analytically for the com-
plex roots of the transcendental algebraic equations septing the dispersion relations
[Ruderman and Roberts, 2006].

In this section we aim to resolve this long-standing disaney. We analyse an initial-
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value problem, considering the evolution of an axially syetme perturbation of a straight
plasma cylinder embedded in a uniform magnetic field, as énvthrks of Pascoe et al.
[2007a]; Inglis et al. [2009]; Gruszecki et al. [2012]. Innt@ast to Pascoe et al. [2007a];
Inglis et al. [2009], where a plane plasma slab was condiderve study sausage modes
of a plasma cylinder. Moreover, we extend the range of thamaters of the problem,
considering ratios of the length of the perturbed cylindeitd diameter up to 60 and ratios
of the Alfvén speeds outside and inside the cylinder up to [2Oprevious studies these
parameters were considered up to 15 and 7, respectivelljs[ieigal., 2009]. In addition,
we study the dependence of the sausage mode period on tpeegseof the transverse
profile of the plasma in the cylinder. We consider a radiatiy+uniform plasma cylinder
embedded in a uniform and straight magnetic field in the peregime. We perform a
parametric study of the sausage mode of this plasma eduitibvarying the contrast of
the Alfvén (fast magnetoacoustic) speed inside and aaitkid cylinder and the steepness
of the plasma non-uniformity in the radial direction. We silered the transition from
the short-wavelength trapped regime to the long-wavelerggime, investigating how the
dependence of the period on the wavelength evolves to iepemtience.

2.2 Numerical model

Consider a smooth cylinder of zefoplasma, stretched along a uniform magnetic figgl,
directed in the-direction. The density of the plasrpa decreases with radial coordinate,
This is the standard setup for studying coronal loop oswla, as described in section 1
(Fig. 1.6). Unlike the cylinder considered in section 1 tHev@n speed is now continuous,
increasing in the radial direction, and is modelled by thecfion:

Ca(r) = _ B = Caco [1—6exp(—ﬁ) , (2.1)

vHopo(r) de

whereCa., is the Alfvén speed at infinity, & 6§ < 1 is the decrease in the Alfvén speed at

the axis of the cylinder, as comparedrte» . The indexa > 1 dictates the steepness of
the profile,d is the dfective radius of the cylinder (as— ~ the case considered by Edwin
and Roberts [1983] is recovered, athik the cylinder’s radius), and, is the permeability
of free space. The Alfvén speed at the cylinder’s axis isetfoee: Cap = Caco(1 — 0).
Thus by varying the parametefsand @ we change the contrast rati®ng/Ca. and the
steepness of the radial profile respectively. As the magrietid is uniform and the gas
pressure is taken to be negligible due to the z&@pproximation, the equilibrium total
pressure is constant everywhere. Hence the parafietdr— Cpag/Cac IS connected with
the contrast of the equilibrium plasma dengityat the cylinder’'s axis, and at infinity as
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Figure 2.2: Examples of the radial profiles of the Alfvén ehen the plasma cylinder
considered for dierent values of the parametersands, which control the steepness and
depth of the profile, respectively. The thick solid curveresponds ta = «, § = 0.8, the
thin solid curve tax = 2, 6 = 0.8, the dotted curve ta = 4, 6 = 0.8, the dashed curve to
a =4,5 =0.9, and the dot-dashed curveda= 4,5 = 0.5. The Alfvén speed is normalised
to its value at infinity and the radial distance is normalisedhe dfective radius of the
cylinder.

31



§ = 1—[po(0)/po(0)]*2. Itis important to note that as — o the step profile is recovered.
Fig. 2.2 shows examples of several Alfvén speed profilesguiis setup.

As previously we restrict ourselves to dissipationlesscesses, described by the ideal
MHD equations:

0 %+(V-V)V =jxB,
0B
— -V
it x (V x B),
dp
—+V-(V)=0

where the vector¥ andB are the plasma velocity and magnetic field, respectivelg,can
is the plasma density. In the momentum equation+Re term has been dropped, as it is
0 in the zerg8 approximation, which is a justifiable approximation for gtedy of sausage
modes of coronal loops [Inglis et al., 2009].

It is natural to use a cylindrical coordinate system, with ztaxis coinciding with the axis
of the cylinder and witly andr the azimuthal and radial coordinates, respectively. @bnsi
ering linear magetoacoustic perturbations of the cylzaréquilibrium given by (2.1); and
taking perturbations to be independent of the azimuthaleaggas we are only interested
in the sausage mode oscillations, we obtain the followimdHe perturbed quantities:

aVr BO aBr 8BZ
- = (= - ==, 2.2
ot ,uopo( 0z or ) (2:2)
0By ovy
— = By—, 2.3
ot Yoz (2:3)
0B, N Vi
2 By =+ 2.4
ot 0( ar r)’ (2.4)
o1
j=—(VxB), (2.5)
Ho

wherev; is the radial component of the plasma velocity, &)dand B, are the radial and
longitudinal components of the perturbed magnetic fielde Ghantities with index 0 are
the equilibrium quantities.

Then taking the time derivative of (2.2) and substituting litngitudinal derivative of (2.3)
and the radial derivative of (2.4), we obtain the fast magmebustic wave equation,

= + e
o2 pgpo(r)\ 022 or2 r or  r2

v By (0%, 8% 1ov vr)’ 2.6)

for sausage perturbations of the field aligned plasma ogtin8low magnetoacoustic per-
turbations are absent from this equation, as we ignore Jindféects.
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As the equilibrium is uniform along the axis of the cylindar the z-direction) we can per-
form a Fourier transformation with respect to this coorténassuming that the perturbed
physical quantities depend uppas cosk,z). These assumptions correspond to considering
standing modes with longitudinal wavelengtt/R,. Thus, we obtain the wave equation for
the fast magnetoacoustic perturbations harmonic in thgitladinal direction,

0%, 1dv

2 -2 —
+(kz+|’ )Vr_W_FW_O. (27)

v,
t2

CRA(r) 5

Equation (2.7) contains explicit dependence upon only teardinates, the timeand the
radial coordinate. In particular, (2.7) describes standing sausage wavesavélength
2r/kz, as observed in flaring coronal loops.

Due to the radial dependence of the Alfvén speed in (2.8)dblation in general does not
have analytical solutions, as such a numerical approachewstempted. An initial value
problem is solved with the initial condition:

Vi (r,t = 0) = Agr exp(r2/d?), (2.8)

where Ag is the amplitude of the initial pulse. This form of the initjgerturbation has
the same symmetry as the sausage mode as it is independdm afimuthal angleg
and the plasma velocity at the axis of the cylinder is zeroe Width of the perturbation
in the radial direction is taken to beffgiently large to avoid excitation of higher radial
harmonics; the shape of the perturbation is close to theteage structure of the lowest
mode (see, e.g., Pascoe et al. [20074a]; Inglis et al. [2008F one maximum of the radial
velocity perturbation in the radial direction. Higher raldsausage harmonics have more
than one extremum in the radial direction, and hence ardeskbly our driver (2.8) less
effectively. In the longitudinal direction, the initial perbation is described by a harmonic
function with wavenumbek,. Equation (2.8) is supplemented by the boundary conditions
Vi(r = 0,t) = V,(r = 50d,t) = 0. The former boundary condition is imposed by the
cylindrical geometry; the latter simulates the decreagb@perturbation to zero at a large
distance from the cylinder.

The evolution of the initial perturbation was calculatedrmauically using the functiompd-
solve of Maple 16, which implements a second-order (in space and timejaxgfihite dif-
ference scheme. The convergence of this method was chegl@albling the number of
grid points. The performance of this solver, in particuleg tadial structure of the sausage
mode and its period for a given wavelength, was tested by adngpwith the exact analyt-
ical results for a similar problem for a zefoplasma slab with a symmetric Epstein profile
of the density embedded in a straight magnetic field [Coopel,2003]. In the cylindrical
case considered in this section calculations were cartigihahe domain (O< r < 50d,
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Figure 2.3: Left panel: example of a trapped oscillationtaoted for the parameteks =
15,6 = 0.8, anda = 6. Right panel: example of a leaky oscillation fgr= 0.4, 5 = 0.7,
anda = 6. The time is measured in @yCa. and the radial distance th The vertical axis
shows the radial component of the plasma velocity measuanediis of the initial amplitude

Ao.

0 < t < NdCaw), whereN is suficiently large (e.g.N = 50) for confident resolution of
several periods of oscillation.

Two typical scenarios of the evolution of the initial peliation, leaky and trapped oscil-
lations, are shown in Fig. 2.3. The figure shows the time d\wiwof the radial structure
of the initial impulsive perturbation which has a harmongpdndence on the longitudinal
coordinate, co$¢z), for an arbitrary value of. It is evident that in the trapped regime the
initial excitation remains localised near the axis of thénder (r = 0) and is evanescent
for higher values of. In contrast, the leaky waves are radiated from the cylindehe
external medium as propagating fast magnetoacoustic whl@gever they can be seen in
the cylinder for some time after the excitation as decayigronic oscillations.

By analysing the signal at a chosen spatial position, eg.d, we obtain information about
the time evolution and hence the period of oscillations deddecay time. As the signal
decays quickly in the leaky regime, the preferred analytaal is to fit the time signal with
an exponentially decaying harmonic function using thetlsgaares method. In this study
we restrict our attention to the analysis of the dependefhtieecperiod on the parameters
of the cylinder and the initial excitation only.
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Figure 2.4: Dependence of the period of oscillations on theelength 2/k; for different
values of the parametérthat is connected with the density contrast inside and deitisie
cylinder. The dotted curve shows the céase 0.95, the dot-dashed curge= 0.9, triple dot-
dasheds = 0.8, dashed@ = 0.7, and the solid line is fof = 0.5. The diamonds represent
the specific measurements. The valuerdf 6 for all curves. The thick straight line shows
the cutdt, P = 27/(k;Ca). Other straight lines show the valuesPt 27/[k;Cac(1 — 6)]

for the various values aof. The long dashed line shows where the damping time is equal to
three periods of oscillation. The period is measured insuniil/Ca. and the wavelength

in units ofd.

2.3 Results

2.3.1 Dependence of the sausage mode period on the longituai wavelength

Figure. 2.4 shows the dependence of the period of sausaglatasts on the wavelength
2r/k;. This figure is in some ways analagous with Fig. 1.7, showhegdispersion relation
for the fundamental sausage mode. In the short wavelergtipe(Wwavenumber) limit the
dispersion curve is bounded by the internal wavespeéll, = Ca(r = 0), which is repre-
sented in the figure by the straight lines whose linestyletsimtheir dispersion curves, and
is given by the expressiof? = 2r/(k,Cas(1 — 6)). With increasing wavelength, the period
increases and thdfective phase speed is in the range between the Alfvén spdbd ten-
tre of the cylinder and at infinity, which is consistent willetreasoning in Nakariakov et al.
[2003]. As the wavelength increases, the growth of the pdsecomes less steep, gradually
approaching another asymptoke= 2r/(k,Ca), determined by the Alfvén speed outside
the cylinder. This asymptote is represented in the figurdbyihew/k; = Cas. AN impor-
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Normalised period, P
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Figure 2.5: The same as Figure. 2.4, but zoomed to show theddaregime.

tant feature of this dependence is the presence of &aatinie. At the cuté, the period is
egual to the ratio of the wavelength to the value of the Alfgpeed at infinity.

For wavelengths shorter than the diitealue, the oscillations are trapped and the period
grows with increasing wavelength. This is consistent wiith tesults obtained in the slab
geometry [Pascoe et al., 2007a; Inglis et al., 2009]. In tbakly leaky regime, for wave-
lengths slightly exceeding the ctifosalue, the period still grows with wavelength (see
Fig. 2.5), again in agreement with the case studeied by Pastcal. [2007a]. For long
wavelengths, the dependence of the period on the wavelesgiivs saturation, and the
period becomes independent of wavelength. Thisce is more pronounced for cylinders
with higher ratios of the external to internal Alfvén spegith other words a cylinder with a
deeper potential well in the radial profile of Alfvén spedthis €fect was not found in the
previous studies: Pascoe et al. [2007a]; Inglis et al. [Ra@Scause the wavelengths in the
simulation were insfliciently long to see the saturation of the sausage mode pétiog-
ever a more recent study [Hornsey et al., 2014, which is eaviermore depth in chapter 4]
found the same saturation in the slab case. In all casesdewad] for the same values of
wavelength and Alfvén speed at infinity, the sausage modedseare always longer for
cylinders with lower internal Alfvén speed. In the Iggwnodel considered, cylinders with
lower internal Alfvén speed are cylinders with denser iplas

The figure also contains a curve indicating where the dantpimgis equal to three periods
of oscillation. Above this curve, the oscillations are offsiently high quality to be easily
detectable in the data. Thus, leaky sausage oscillatiolengdense loops, with a high
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Figure 2.6: Dependence of the period of oscillations on theelength for dierent steep-
nesses of the radial profile, The thick solid line corresponds to= o, the thin solid line
to @ = 8, the triple dot-dashed line to = 6, the dashed line te = 4, and the dot-dashed
line to@ = 2. The value ob is 0.8 for all curves. The thin straight lines are the dtgo
P = 21/(k,Cac) @and P = 21/[k,Cas(1 — 6)]. The thick solid line shows the analytical
solution in the long-wavelength limit for the step-funetiprofile. The period is measured
in units ofd/Ca. and the wavelength in units df

ratio of Alfvén speeds, can also be offsciently high quality, with damping time much
longer than the period of oscillation to be easily deteetablthe data. We must point out
that the damping time considered here is connected with Vealage only. In addition,
the sausage mode can be subject to damping connected withs/dissipative processes,
which also reduce the quality of the oscillations. For exEnmphot and dense flaring loops
field aligned thermal conduction [Zaitsev and Stepanov2] 88y be such a process. This
effect is not considered in this study, as the equations usdédeak

2.3.2 Dependence of the sausage mode period on the steeprodgbe trans-
verse profile

Figure 2.6 shows theffect of the transverse profile steepness on the sausage muutk pe
A discussed in Section 2.3.1, for the step-function profilethe short-wavelength limit,
the period is determined by the ratio of the longitudinal @lemgth to the Alfvén speed
at its centre. Our calculations confirm this result, whichasrect for smooth profiles too.
For all values ofwx andk;, the period is shorter than the short-wavelength asympkte,
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21 /[k,Ca(1—0)]. For the same wavelength, the periods of sausage ogmiltain cylinders
with smoother Alfvén speed profiles, i.e. with lower indieg are evidently shorter. This
effect can be understood by considering the oscillations asvepaaket trapped in the
potential well. The distance the wavepacket travels batwefections is constant, as the
width of the well andk, are constant. However the mean wavespeed along the path is
changing, and is higher for lower values @f To understand this, consider two cases:
firstly whena — oo, and secondlyr < co. Fora — oo Ca(r) = Cag everywhere inside the
well. Thus everywhere inside the potential well the speeditsaminimal value. But for a
smooth profile whem < oo, then the value o€a(r) is larger tharCag = Ca(r = 0) for all
values ofr except at the very axis of the cylinder= 0. Hence the transverse travel time
between two reflections decreases, decreasing the wawel peri

Also, for steeper profiles, the cufovalue of the wavelength is found to be larger. For
comparison, we show the analytical result obtained foriadgl with a step function profile
that corresponds to the limit — oo in our consideration. Hence, as one would intuitively
expect, cylinders with steeper profiles are better wavexguiior fast magnetoacoustic waves
with azimuthal symmetry.

From Fig. 2.6 we find that theffect of the radial steepness of the plasma cylinder on
sausage oscillations is rather strong. Thfedénce in the values of the sausage mode
period between cylinders with a Gaussians 2) radial profile is more than twice as large
as for a given parameteér

2.3.3 The long-wavelength limit

In Fig. 2.7 we demonstrate the dependence of the period lotigewavelength limit, when
it becomes independent of wavelength, on the Alfvén speedi€nsity) contrast in the
cylinder and on the steepness of it radial profile. The peisoslystematically longer for
higher diferences between the Alfvén speeds inside and outsidelthdary and for steeper
profiles.

The thick solid line in Fig. 2.7 represents measurementsemiathg a step function as the
radial profile of the Alfvén speed. This is useful as it alfofer a direct comparison with
results obtained analytically. For example Kopylova et{2007] derived the following
expression for the period of sausage modes in the long waytbldimit:

2rd
nj \lcgo + Cao

wheren; are the zeroes of the Bessklfunction, for this calculation we takg ~ 2.4. In
our calculations we are also using the zgrapproximation, s&€Csp = 0. This gives the

P=
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Figure 2.7: Dependence of the period, in the long-wavelehgtit, on the ratio of external
to internal Alfvén speeds for fierent steepnesses. The dotted curve correspords 20.
The other curve styles correspond to those used in Fig. 216.tAick solid line shows the
analytical solution in the long-wavelength limit for theegtfunction profile. The period is
measured in units af/Ca. and the wavelength in units df
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following analytically obtained expression for the perindhe long-wavelength limit for a
step profile cylinder:
P ~ 27d/2.4Cpo, (2.9)

which agrees well with results obtained for— .

It is also evident that for smoother profiles the sausage rpeded becomes shorter (see
also the discussion in Section 2.3.2). The period grows witheasing ratidCas./Cao,
while for smaller values of the steepness parameténis dependence departs from the
linear relationship that appears in the— oo cases. For a fixed value of the ratio of the
Alfvén speeds, the dependence of the period on the steepagameter is seen to be
extremely nonlinear. In particular, f&a./Cao = 10, which is typical for flaring loops
(e.g., Nakariakov et al. [2003]), we get an estimated foemul

P ~ 26.1d tanh(log)). (2.10)

This is applicable to lows profiles steeper than Gaussiany 2, and is consistent with the
analytical result in thee — co limit.

2.4 Conclusions

We performed numerical simulations of the azimuthally syetnn initial-value problem
for a field-aligned lows plasma cylinder with a smooth radial profile of the densityd(a
hence of the Alfvén speed). The plasma cylinder was extijed symmetric perturbation
of the radial velocity of the plasma and of a harmonic shapiénongitudinal direction.
Fast magnetoacoustic sausage modes were found to be easigden both the trapped
and leaky regimes. The results obtained can be summarideticags.

1. With increasing longitudinal wavelength, the period lné sausage oscillations al
ways grows but this dependence is saturated in the longlerayth limit.

2. In the trapped regime, the period lies between two vakmsesponding to the ratio
of the dfective radius of the cylinder and the Alfvén speed at its axid at infinity,
and grows increasing in wavelength.

3. For wavelengths greater than the ¢bit@alue, sausage modes become leaky. In re-
sponse to an impulsive excitation in the cylinder, the lealywes show decaying
oscillatory behaviour with a period determined by the pastars of the cylinder (the
Alfvén speed contrast ratio and steepness). Outside tivedey, the leaky waves
form a wavetrain pattern that propagates outward at thareltélfven speed. As
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expected, deeper and steeper profiles of the Alfvén sperdspond to morefi-
cient trapping of the sausage modes: the ffutalue of the wavelength increases
with steepness and the density (or Alfvén speed) contadist r

4. In the leaky regime, the period is always longer than thimgef a trapped mode of
a shorter wavelength, and also is longer than thefEutdue (the ratio of the wave-
length and the Alfvén speed far from the cylinder). For klvaprofiles of the density
(and hence the Alfvén speed) and shorter wavelengths,atedpgrows with wave-
length in the leaky regime as well. In the long-wavelengthitli the period becomes
independent of wavelength and is determined by the deptstaegness of the radial
profile of the Alfvén speed: the period is approximatelyeirsely proportional to the
internal value of the Alfvén speed and depends on the sésspndex as tanh(lg).

Our findings resolve the longstanding problem of the depecel®r independence of the
period of sausage oscillations on wavelength. Indeed,Horter wavelengths, even in the
leaky regime, the period grows with wavelength. In particufor thick flaring coronal
loops with density contrast of about 10 (and hence with an&kfspeed contrast ratio of
about 316) and a length of about-56 times their diameters, as considered by Nakariakov
et al. [2003] and Aschwanden et al. [2004], the period of thedmental sausage mode
indeed increases with wavelength. But for longer wavelen@and higher density contrast
ratios), the dependence of the period on wavelength expersesaturation and becomes
consistent with the analytical results obtained by Zaitest Stepanov [1982]; Kopylova
et al. [2002, 2007]. Thus we infer that opposing conclusidirasvn previously concerning
the dependence of the sausage mode period on wavelengthiraene in diferent ranges
of the parameters of the problem, and hence are not cortivadidViore specifically, the
regime described in Pascoe et al. [2007a]; Inglis et al. $2@0rresponds to segments of
the solid and dashed curves near the thick solid line in figqugée On the other hand, the
regime described in Zaitsev and Stepanov [1982]; Kopyldwed. 2002, 2007] corresponds
to the saturation of the curves in the long wavelength pattatffigure.

This result has important implications for the seismolagtiagnostics of plasma in flar-
ing loops with the use of sausage oscillations. In partictiee pronounced dependence of
the sausage oscillation period upon the steepness of tie padfile of the Alfvén speed
provides us with a tool for probing that parameter. The warse steepness is vital for the
assessment of thdfiziency of kink wave damping in the solar corona (see, e.gasSens
etal. [2012] and references therein) and of associatedhabheating. An additional advan-
tage of seismological technigues utilising the sausageeriggorovided by its independence
of the length of the loop in the long-wavelength regime. Tisws one to exclude this pa-
rameter from consideration in the diagnostics of long démses. Moreover, equation 2.10
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gives us a tool for probing the transverse profile of the Atfspeed and density of sausage
oscillations in a coronal loop provided we are able to ge¢pehdent measurements of the
loop diameterd and the Alfvén spee@ao. In particular, the latter parameter can come
from the observation of a kink oscillation of the same loop.
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Chapter 3

Comparison with analytical
approximations

3.1 Introduction

The numerical model considered in Chapter 2 has also prosefilun verifying new an-
alytical studies of the sausage mode. An example of this \ea®ned by Vasheghani
Farahani et al. [2014], and is summarised as follows:

3.2 Model

The study considers the plasma cylinder as described imosett5.2 and Edwin and
Roberts [1983], under the zeprapproximation. The perturbations are assumed to be
axisymmetric and hence only the sausage oscillations axsidered. This is therefore
compatible with the model described in section 2.2 whenguaistep profile to describe the
Alfvén speed, that i — .

3.2.1 Solution at the cutdf wavenumber, k.

Starting from the dispersion relation as described by EdnihRoberts [1983] in the zep-
limit: ) )
po (Wao — @) me _ J1(nod) Ko(med)

pe (e — @?) No ~ Jo(nod) Kq(med)’ (3.1)

here we have used the property of Bessel functionsf(ad = —Ji(x), and similarly for
other Bessel functions. We have also introdueggd = kCae and wpag = kCpg, as the
frequencies associated with the Alfvén speeds of the syste use the same definitions
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of me andng as before, but in the zeg@limit Cs = 0.

202 2
_kCAe_w n2=—
_—C2 , o=

Ae

K2C2 _ )2
é+ (3.2)

AO
A solution to (3.1) is already known from considering Figr,that is that ak = k., the
cutaf wavenumberw/k = Cae. Around this poinimg is small, and therefor&y andK; can
be expanded using their expansion for small arguments [Atwatz et al., 1988]

1

Ko(med) = —In (%med), Ki(med) = mad’

substituting these, and replacipg/pe with C3,/C3 (3.1) becomes:

Che (@~ R me _ Ji(nod)
Cap (@? —wi) N Jo(nod)

med In (%(med)), (3.3)

from this it can be shown thak(ned) = 0 whenk = k., or using the definition ofig from
(3.2):

ked = ﬂ _ Jo1 (3.4)

2 2 D’

CAe - CAo

where jo1 is the first zero of the Bessel functialy andD is a factor that depends on the
density contrast ratio:

C2
D= R -0 _g_, 3
Cho pe

Here we have also used the notatioa pg/pe as first introduced in Van Doorsselaere et al.
[2004].

3.2.2 Leaky regime in the neighbourhood of the cutff wavenumber.

There are several regions where an approximate solutidmetdispersion relation can be
found. The first that will be considered is in the leaky regimthe neighbourhood d{.. In
Fig. 2.4 this is the region just to the right of the thick sdiitk. In this region the dispersion
relation (3.1) no longer holds, as now the exterior soluia propagating wave. Instead
the following dispersion relation is used:

Po (wio - (‘)2) Ne Ji(ngd) HéZ)(ned)

e _ : 35
Pe (W3e - w?) Mo Jo(Mod) HP(ned) &9
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where H,(ﬁ)(ner) = Jmn(ner) — iYm(ner) is the outwardly propagating wave solution. In the
ZeroB case again we have:

202 2

5 k CAe -w
ne —_ _C—z.
Ae

We are only interested in the regime surrounding thefEutterefore we re-write) = wae+
Aw andk = k; + Ak, whereAw and Ak are both considered small quantities. Substituting

these into the forms af, andng and neglecting terms with\w)? and (\k.)? we get:

5 wie + 2wpeAw — Ciekg - 2chieAk
e = , (3.6)
C2
Ae
2= [w%e + 2wpeAw — CE K — 2kCC/2AOAk). 3.7)
Cho

The expression fone can be simplified with use @bae = Caeke, Which gives:

/ZAe
Ne = 5 (38)
CAe

A_w_A_k)

where

Ae = wA (
he WAae ke

Then substitutinguae = Caekc into the expression famg, and factoring out the terms con-
taining the small parameters gives:

np = keD(1 + AS), (3.9)

where

ChekcAw—K:CZ Ak
(Che=Cho)ke

o (€ - %)

These expressions can then be substituted into (3.5) talggvdispersion relation around
the cutdf wavenumber. We also use the fact that the argument of theeBe&sction now

AS =
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consists of a large and a small parameter to perform a Tayparesion of these. We obtain:

2Ae
- K2D%(1+2As) V<2 _
Ae 2Ae k:D(1 + As)

(2 2A
HE (d Z2)

_(Jo(kedD) — Jo(kedD)  Ji(kedD) ) e (3.10)
Ji(k.dD) (kedD)J1(kedD)As Hf)(d %e) '

Using the fact thak.dD was shown to be a zero d in the previous section, as well as
simplifying gives:

c ch(1+As):_(_J2(kcdD)+ 1 )
A 2he J1(kedD) * (k.dD)AS

) Jo(d \fZE) - iYo(d /ZE) ‘ (3.11)

Ao Bl )

We use the expansions for the Bessel and Hankel functionsapAdwitz et al., 1988]

Jo(ned) = 1 - 1 (dzzﬁe),

4l Ch
1 2Ae
Ji(ned) = > d —2],
CAe
2 1 2Ae
d Ae
2
Yi(ned) = - ,
nd (2:%3
Ae

and substitute them in equation (3.11). We neglect highderadierms to obtain

1 2Ae . 2Cpe
—CacD?Kd| =d [ — +ii As
e {2 Cie nd VZAG}

_ vzfe[l_ ! m(ﬂeﬂ. (3.12)

2
2C%e
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In order to eliminateAe in the denominator of the left hand side of equation (3.13), w
multiply both sides byv2Ae, and therefore we obtain

dA .2C
—CAeDZ(—Ze +i Ae)As
Che nd

2Ae i (d?Ae
::Eail—;h{gaiﬂ. (3.13)

We substitute the expression fes andAeto obtain

1+iC,§e iln[kgdZ(Aw Ak)] Aw
HC%\O n 2 \wae ke Whe

_ i 0, [Kd? (Aw  AK\])| Ak

This provides an implicit and complex dispersion relatidiescribing the complex fre-
guency,w. Here the real part ab describes the frequency and the imaginary component
the decay rate. To proceed we must separate the real andnmmagiarts of (3.14). To
separate logarithms with complex arguments we use theitigtelmt(x + iy) = (1/2) In(x® +

y?) + i arctany/x). Applying this identity to the logarithm in (3.14) gives:

In {@ (A—w - A—k)} =iarcta 3(Aw) )

2 \wpe ke R(Aw) — CpeAk
1 [(KRR2\V[(R(Aw Ak [T(Aw)\?
*5'”{(7) [( o i) ) | 819

In (3.15) the arctan term can be neglected as compared toghéthmic term as we are
comparing the logarithm of a small quantity to a term lingathis small quantity, hence
we can define the argument of the logarithm as:

24212 2 2
o= () (R 2, (st 619
2 WApe kc Wape
which allows us to write (3.14):
Aw i iln(AW)
E?£“P+;_ 2 ]
iC2 iln(aw) |
X 1+77Ci0_ o l . (3.17)
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In order to make the denominator of (3.17) real, so it can parsg¢ed into real and imag-
inary terms, we multiply the numerator and denominator gy denominator’'s complex
conjugate:

Aw 2 2

C C
—=cAe[1+ he _ e |n(aw)
AK 72C2. " 272C2,

1 i . C§
+ = (IN(AW))? + L —j—he
A2 T HC%\O
4 2

-1
1 C
x1+i+—InA z—ilnA 3.18
2o * 3w - 22 In(aw (3.18)

Note that the term (2272) In(AE) has been neglected in comparison to the terA3)[In(AW)]?
when obtaining equation (3.18), because we assumiiibht« 1. This neglection is based
on the fact that the arguments of the logarithms are smaltathe absolute value of the
logarithm is large. Hence the square of the logarithm woeldnoich greater than the loga-
rithm itself.

Finally, the dependence of the sausage mode frequency artathping rate on the wave
number could be defined by two coupled implicit equations as:

R(Aw) _ CAe[1+ Che  Cheln(aw) . (In(AW))zl
AK x2C2,  2x2C2; 42
x |1+ Che + (In(AW))* _ Cheln(aw) (3.19)
HZCiO 472 7T2CE\O ’
Ak g Cio
<y, Che +(In(A\A0)2_Cieln(AW)l‘1 3.20)
ﬂzCio 472 ﬁZCio ’

for the frequency and damping rate, respectively. This Betoations is implicit and can
be solved numerically.

These equations are however still coupled, and as suclefuaisumptions are required to
reach a more useful form. In particular we are assuming adegisity contrast. This solu-
tion may be relevant for high density contrast jets [Cirtgtial., 2007], for very dense coro-
nal loops, and for chromospheric structures (where Mortal. §2011] recently measured
the cutdf wavenumber for sausage modes). To proceed we simplify {ressions for the
frequency and damping rate (3.19) and (3.20), by assumifig = (C3./C5,)* < 1 and
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then neglecting terms witho@3_/C3,, or Ca./Ca, in the denominator. This gives:

R(Aw) Cho fi- 1 ,n[@([mw) _ A_kr

Ak " Cpe 2 4 wWAe ke
xC?2 2
[_on£< )]} (3.21)
CAe kC

and

I(Aw) __7Cho
Ak CAe ’
for the frequency and the damping rates, respectively. Matithe decay rate is calculated
first, and is then substituted into the form of the frequemcsimplify (3.19). We can check
that the decay rate is sensible, as the right hand side d?)(&2lways negative. Hence

(3.22)

we only have a positive decay rate for a negafikethat is a wavenumber smaller than the
cutaf value.

It is also useful to formulate a definition for the phase spekthese oscillations. To
do this first the phase speed is defined in a similar manneretgtévious parameters:
V = Cae + AV, AV is then related tdhw and Ak by:

Aw AV
Ak = e * Che (3.23)
Substituting this into (3.21) gives:
R@AV)  Cho _ Che
Ak kCpe ke
c2 d* 2 [2C2 Ak
- A0 | k [%(AV] + —2’*0£< . (3.24)
2chAe 4 CAe CAe kC
Then asC3,/C3,) > 1 we neglect terms witB3 , which leaves:
k. (3.25)

3.2.3 Leaky regime in the long wavelength limit

Itis also of interest to find a similar expansion in the longr@langth limit. To do this first
we consider the dispersion relation in the ckseO:

po(@ho— B ne  Iu(nod)H{ (ned)

Pe (3= w3 N0 Jp(nod)HP (ned))”

(3.26)
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Figure 3.1: The frequency dependence of the sausage tieailtan the wavenumber. The
solid lines are the analytical expression derived in thg lvavelength limit and around the
cutaf. The dashed line is the results obtained from the numericalein The dot-dashed
line represents the external Aflvén speed, and therefan®dstrates the cufio The density
ratio was taken to bgg/pe = Cie/Cio = 25. All frequencies have been normalised by the
external Alfvén frequency at the ciifo

here,wp = w(k = 0) the frequency in the long wavelength limit, as in sectid\e showed
that the real part of this asymptotically approaches a emtisalue for small values & As

in section 3.2.2 we assume that the frequency and wavenusnd@onstants plus a small
perturbation from this point. Performing the expansion ef®ie yields:

Cre(1+ %) _ [3(5) + 555 ((857) - %2(&7)) 44

AAe - wod w d [
Cpo(1+ =57 [JO (C_io) ~ G (C,fo d) AA]
wod wod ((Uod) ((‘)Od)
ol ==1- 223 AAe - 1Y
[ O(CAe) Chae ! Che ° Che
N i‘é—"dvl(“’od)AA ][Jl(de)
Ae Ae
£ o) {2 el
N J J AAe-iY, (==
che{ O(CAe “\Che "\ Cre
a)od a)od) (UOd (a)od) ] -
Y, AAe + Y AAe| | 3.27
"' 2Che O(cAe "2Che 2\ Cre 527

where

2woAw — C2_(Ak)? 2woAw — C2(Ak)?
AAe = 0 2Ae( )’ AA = 0 2AO( )
Wo )

(3.28)
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This is a fairly unwieldy equation, and therefore furtheswaaptions will have to be made
to simplify it. Firstly we consider the zeroth order approxsition, that is to neglect all terms
containing small parameters. This leaves:

Cre _ 1(ED)  D(&)-1Wo(E)

Cro Jo(g8) u(&)-Ma(&)

(3.29)

This is very useful, as it allows us to find the valuauwgffor a givenCae andCag. As with

the case in the vicinity of the cufowe can proceed by assuming a high density contrast
ratio. We multiply out the fractions in (3.27) and neglectie which are linear or higher

in pe/po. This gives

1. {wed wod
=Jo J AA
2 (CAO) O( ) ©

+ i%Jl(‘“—od)Yl(‘”—Od)AA - 0. (3.30)

We then use the limiting expressions for the Bessel funstion

2
o=1- OV gy P (3:31)
4CAOe AO,e Two

and the definitions oAA andAAe, which gives:

- + —i
2 2 n2 2

4C5,  16C5.Cae 7C%

[1 . W2PC2, Wit C3

5Che = —gcz +32CA0—|7A6)(AK)2. (3.32)
A0

( 3wid®  wid? _zcgewo)
0

We then consider the solutions to (3.29), to find valuesdgr For some wave guiding
structures the imaginary part afy is much smaller than the real part. This means that
even in the long wavelength limit the oscillations have assoeably high quality. This
agrees with our findings in section 2.3, the thin long dasimlih Fig. 2.4 shows where
oscillations have a quality factor below 3, and for cylireleinth a reasonably high density
contrast ratio the dispersion curve never reaches this [liiés fact aids in the following
analysis, as it means the imaginary partgfcan be neglected with regards to the real part.
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Hence (3.32) simplifies to:

Aw :[c,%\e (R (w0)*d°CE, ic_;‘;e)

(AKk)? 2 8C3, n
342 2C2 -
X %(wo)——m(w)F—i—AewcuO)) : (3.33)
( 4Cio ”C/zxo

As before the denominator is made real by multiplying the exator and the denominator
by the denominator's complex conjugate. This then allovesr&al and imaginary parts to
be separated, giving:

R(Aw)  7Ch AChe _ (R(W)°? (3.34)
(AK?2 "~ 8C2 R(wo) |~ 72C3, Cho ) |
and
S(Aw) ( 7C3,
(AK? | 4C2 R (wo)
Coe(B(w0))°d?  3(R(wp))?c?
o S

3.2.4 Non-leaky regime in the vicinity of the cutdf frequency

The final region in which an approximation will be derivedristie vicinity of the cutff,
but in the trapped regime. To start we refer back to the dssperrelation in this regime
(3.1). We then proceed in the same manner as in the weakly tegkne, introducing\w
andAk as small parameters from the known poinh, k;), and use Taylor expansions for
the Bessel functions about this point, which gives:
—2Ae
2 D2k2(1 + 2A9) ez,
A (—2Ae)  k.D(1+As)
_ (Jo(kcdD) — ho(kedD) | Ji(k.dD) )
Ji(kedD) (kedD)J1(kcdD)As

Kofd )

X —————==, (3.36)
ka(d Z)
Further simplification, and the neglect of small terms in lihgh density contrast regime
leads to:

——1n

=~~~ 3.37

2

Aw Cho (k§d2

Aw Ak )
WAhe .
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Figure 3.2: The phase speed dependence of the sausagatioscitin the wavenumber.

The solid lines are the analytical expression derived atdba cutdf. The dashed line is

the results obtained from the numerical model. The dottetdmt-dashed line represents
the internal and external Aflven speeds respectively. Tdwsity ratio was taken to be
00/Pe = Cie/CiO = 25. All speed have been normalised by the external Alfvaedp

As well as showing that the imaginary part of the frequencyei®, i.e. the oscillation is
not damped.

3.3 Comparison with numerical simulations

Thus we derived analytical asymptotic approximations far frequency of the sausage
mode in three regions, either side of the dijtand in the long wavelength limit, as well as
the damping rate for the two regions in the leaky regime. Thesefore then allows us to
compare these solutions to the numerical model developsélciion 2.2.

Fig. 3.1 shows the variation in the real component of frequemith wavenumber,
both for the analytical expressions in the regions in whigytwere derived, and the numer-
ical results obtained using the method described in se2t®nThere is a good agreement
between the numerical and analytical results both arouaduldt (where the dashed and
solid lines intersect the dot-dashed line), and in the veaky regime.

We also used (3.24), the expression for the phase speeddatfeicutdt, to com-
pare the phase speed variation with the numerical casepassh Fig. 3.2. Again there is
a good agreement between the analytical and numerical. daselsoth these plots we used
a density contrast ratigag/pe = 25, allowing us to use the assumption of a high density
contrast ratio.
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Figure 3.3: The decay rate dependence of the sausage tiseilbam the wavenumber. The
solid lines are the analytical expression derived in theyla@mvelength limit and in the
weakly leaky regime. The dashed line is the results obtdimmed the numerical model. The
density ratio was taken to hg/pe = Cie/Cio = 25. The damping has been normalised by
the external Alfvén frequency at the ctito

Finally we considered the damping rate of these oscillatigiven by (3.22), this is
shown in Fig. 3.3. In order to calculate the damping rate ofllasions from our numerical
model we fit the peaks of the oscillation with a decaying exgmtial and use its decay rate
as the damping rate of the oscillation. There is a good ageaelretween the analytical
results in both the weakly and strongly leaky regimes.

3.4 Conclusions

In this chapter we have developed analytical asymptoticesgions for the real and imag-
inary parts of the dispersion relation for sausage osicifiatin three regions: the weakly
trapped, weakly leaky and strongly leaky regimes. Thisésgame dispersion relation as
considered in Chapter 2, where the oscillations were medgetind a modelled solutions to
the dispersion curve was deduced. The results of this canrhmarised as follows:

1. The analytical solutions for the real componenbaferived in this chapter were then
compared with the values fep obtained from the numerical model developed in
chapter 2. A good agreement was found between these twodoradidered regions.

2. The model developed in Chapter 2 was extended to alsodmirtsie decay rate of
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these oscillations in the leaky region.

3. The modelled decay rate was compared with the imaginampooent ofw in the

leaky regions that were considered using the analyticam®sipn. A good match was
found between these quantities.
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Chapter 4

Sausage oscillations of a slab
geometry

4.1 Introduction

The work presented in this chapter is based on Hornsey e2Gl4]. In chapter 2 a nu-
merical model for the sausage oscillation of a plasma cglimlas considered. However
the sausage oscillation is not purely restricted to thendyical geometry, a sausage 0s-
cillation can also appear in a slab geometry. The underlyiaghematics is very similar
to the cylindrical case and was performed for a step-funqgpimfile by Edwin and Roberts
[1982]. Indeed, in a number of cases the waveguiding coygdaama non-uniformity is bet-
ter described by a plane or curved slab than a cylinder. lticpdar, sausage perturbations
can readily occur in coronal streamers and other curremtshe.g. Smith et al., 1997], in
dark lanes in post-flare supra-arcades [e.g. Verwichte ,2@05; Costa, 2011], and global
oscillations of prominence slabs. Sausage modes in thimgyp have also been used to
explain various phenomena that have been observed in theacdFor example, Scott et al.
[2013] developed a model to explain the observed EUV emmssfdhe large vertical fans
above arcades. Their model involves a travelling sausagéati®n descending down a
flaring current sheet. This movement triggers peristaltimping, or a flow inside the sheet
causing by these axi-symmetric oscillations, which coeladito chromospheric evapora-
tion which fills the supra arcade fans with the hot plasmaireduo emit the EUV emission
that is observed.

Another example of sausage oscillations being used to iexplservations is provided by
Karlicky et al. [2013] who studied radio fibre bursts. Theyrpared radio spectra of these
events with artificial ones generated using a semi-empermiodel and a MHD model of a
sausage mode in a flaring current sheet. They found a goodragrg between observa-
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tions and their models and hence considered sausage tiagilla current sheets to be an
excellent candidate to explain this phenomena.

The aim of this chapter is to generalise the results obtaiméue previous chapter
and Nakariakov et al. [2012] on the slab geometry. We alsaaidevelop the work of Pas-
coe et al. [2007a] on the case of long wavelengths, studyiagransition between trapped
and leaky regimes, and comparison of the results obtaindmbtim the geometries. The
chapter is organised as follows. Section 4.2.1 descrilemtidel that was used to describe
these oscillations in the slab geometry. Section 4.2.2ilddtge results of measurements
made using this model, firstly studying how the period of tkeiltations varies with the
wavenumber for dferent shapes and depths of well, as well as how these valogsace
to the cylindrical case. Then th&ect of varying the steepness of the well was considered
in depth. Finally in this section the values of the dhitwavelength, that is the value of
the wavelength for which the oscillation transitions foirlgetrapped to being leaky, were
studied, and compared with analytical results in the case affinitely steep well. Section
4.2.3 summarises the conclusions.

4.2 Slab

4.2.1 Model

Consider a slab of a zeg@-plasma of infinite extent in the-direction. The plasma is
penetrated by a straight and uniform magnetic fiBlgldirected along thex axis. Here, the
index “0” denotes the equilibrium quantities. The equililbn density,o, is

2 a\1-2
00 = @ [1—5exp(—(%) )] , (4.2)

Cheo
1- 6exp(— (l—:)a)] , (4.2)

whereCa. is the Alfvén speed at a large distance from the slab, wtésethe slab half-
width, the parameter & & < 1 controls the value of the Alfvén speed at the centre of
the slab, and the parametercontrols the steepness of the profile of the Alfvén speed.
This is the same Alfvén speed profile as considered in thadrjtal case (see chapter 2).
This allows a direct comparison of the results obtained endylindrical and slab geome-
tries. There are no steady flows in the considered equititriine use of the zergimit

is justified by the previous numerical experiments that sftbthat properties of sausage
oscillations are practically independentgfprovided it is lower than unity [Inglis et al.,

and the Alfvén speed;(2), obeys

Ca(? = Cawo
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2009]. Asp is taken to zero, profile (4.2) of the Alfvén speed coincidéth the profile of
the fast magnetoacoustic spe€gasiviode= (C4 + C2)*/? ~ Ca, where the sound spees
is neglected in comparison with the Alfvén speed. Thussthak has a decrease in the fast
magnetoacoustic speed and hence can act as a fast magnetwmasaveguide [Nakariakov
and Roberts, 1995]. As the propagation of fast magnetoéicouaves is not sensitive to
whether the magnetic field is directed in the positive or tiegalirection along the«-axis
in the considered geometry, our model is also applicabl@ftaiiely thin current sheets
situated az = 0 and embedded in a plasma slab.

In the following we restrict ourselves to considering ideadcesses only, described
by the ideal zergg MHD equations, these are:

ov

o = -ﬂio [B x (V xB)], (4.3)

%—?ZVX(VXB), (4.4)
where the notations are standard. The mass continuity amd)\eequations that are not
needed for this study, are not shown.

We then proceed in a similar manner to the cylindriucal cageassuming small
perturbations to the equilibrium quantities, denoted byirattex, 1, then linearising the

equations we obtain:

ov 1
po— == [Box (VxBy)]. (45)
Ho
B
% =V x (v1 X B). (4.6)

For the components of the vector quantities we obtain thatems

’uopo% _ aBX aBZ

=—_-—= 4.7

By ot 0z ox’ (4.7)
0By OVy

X - B = 4.8

5 05 (4.8)
0B, OVy

—~% = —Bp—=. 4.9

ot 0 ox (4.9)

Differentiating Eq. (4.7) by, Eq. (4.8) byx and Eq. (4.9) by, eliminating the variables
B, and By, and assuming that the perturbations are periodic inxtdéection with the
wavelength z/ky, we obtain

o2 972

CA%(2 + kv, = 0. (4.10)
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Equation (4.10) is a 1D wave equation describing the evmiutif fast magnetoacoustic
oscillations of a given longitudinal wavelength /X in the transverse direction, in a field-
aligned zerg plasma slab with a smooth transverse profile of the plasmaitglerThis
equation is a Cartesian analogue of Eq. (2.6).

The Fourier transform in the-direction, made in the derivation of Eq. (4.10) is pos-
sible if the slab is uniform in the&-direction. This condition corresponds to the assumption
that the wavelength of the perturbations is shorter thamtmeuniformity along the mag-
netic field (e.g. the density scale height in the case of thtica¢ slab representing the stalk
of a helmet streamer). Also, the slab is assumed to be unifothe third,y-direction, that
is perpendicular to both the magnetic field and the plasmaityenon-uniformity gradi-
ent. This allows us to assume the perturbations to be indiemtof they-direction. These
assumptions are standard in modelling plasma non-unifisnin the solar corona, e.g.
current sheets in helmet streamers and above post-flaitages.

A parametric study of an initial value problem for Eq. (4. W3s performed numer-
ically using thepdsolve function of Maple 16 that implements a second order (in space and
time) centred finite dference scheme (see chapter 2 for details) The initial donditvere
chosen to be an impulsive anti-symmetric pulse centredeadixis of the slab,

V,(zt=0)= Aozexp[— (g)z] (4.12)

whereAg is the initial amplitude. The symmetry of the initial pettation excludes the
excitation of kink oscillations. All the energy of the irtipulse goes to sausage oscilla-
tions. As the initial pulse does not coincide with eigen fimts of the slab, it can excite
a number of transverse harmonics. However, as functiori)4lécreases monotonically
with the increase in the distance from the slab central pidmesfundamental mode that has
a similar structure is excited much morestively than higher transverse harmonics. In
the simulations the higher harmonics are practically absSere boundary conditions were
set as
VAz=0,1) =0, V,(z=50d,t) = Agzexp(—(50d)?), (4.12)

wherez = 50d is the transverse extent of the simulation domain. Thisa/&duthe boundary
condition was chosen so as there would not be a discontiimuitige initial perturbation,
as it is a requirement of the pdsolve function. (see chapfier getails). Thus, we use
the symmetry of the problem to consider the perturbationa half of the slab, in the
domainz = [0,50d] only. The spatial structure of the velocity oscillatiomsthe domain
z = [-50d, 0] is the same as in the considered domain, but in the aniephatime. The
external boundary of the simulation domain was taken faughdrom the slab axis, to
avoid the interaction of the excited oscillations with thées boundary in the duration of
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Figure 4.1: Time-distance plots of transverse flows in sgeisascillations. Left panel:
example of a trapped sausage oscillation in a plasma slélthatparametersi = 0.8 and

a = 6 for the wave numbet, = 1.5. Right panel: example of a leaky sausage oscillation in
a plasma slab with the parametefs= 0.7 anda = 6, for ky = 0.4. The spatial coordinate

is normalised such that the half-width of the sldb= 1, and the time is measured in the
unitsd/Ca, Whered is the slab half-width an€ .. is the Alfvén speed outside the slab.

the simulation.

Once excited, the perturbations oscillate almost harnatligi¢Fig. 4.1). As in the
cylindrical case, discussed in chapter 2, the simulatitnosvstwo regimes of oscillation:
trapped and leaky.

In the trapped regime the oscillation is completely corgdiby the plasma inho-
mogeneity. It is determined from the simulation as the atmgi of the oscillation inside
the well remains constant (Fig. 4.1, left panel). Thesel®esausage oscillations described
by Edwin and Roberts [1983], as shown in Fig. 1.7, who fourad these oscillations could
only exist whenCap < w/k < Caw, Which gives the extent of the trapped regime. These
limits are shown by the straight lines in Fig. 4.2, 4.3.

The leaky regime is characterised by oscillations whichator@main contained by
the plasma inhomogeneity, these oscillations continyoestite fast waves that propagate
away from the centre of the simulation towards the bound@hese oscillations are iden-
tified by their decreasing amplitude inside the inhomoggn&iig. 4.1, right panel). How-
ever these oscillations generally remain offisient quality for the period to be measured
and studied. This finding is consistent with the analyticdineation obtained in Terradas
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et al. [2005] for the long-wavelengtlkd <« 1) oscillations in a slab with a step-function
profile of the Alfvén speed. Using Eq. (12-14) from Terradaal. [2005], and converting
to the notation used in this study:

2r 2naCpc 2r 4a
=T x LA gngp= L 2 28 (4.13)
w) Cao wr  Cao

whererp is the decay time of the oscillationB,is the period, and); andwg are the imag-
inary and real parts of the oscillation frequency, respebti Consequently, the oscillation
quality can be estimated as:
Q=T0  ICAn _ T (1 51 (4.14)
P 2Cap 2

Thus, EQ. (4.14) witls = 0.5 givesQ = n. Our numerical results give, e.§ ~
4.02 fors = 0.5, a = 8 andky = 1. These two numbers arefBaiently close to each other.
The small discrepancy should be attributed to the finite Vesggh and finite smoothness
of the profile, used in the numerical simulations.

Moreover, sausage oscillations have been identified in ticeomave and hard X-
ray emission generated in the impulsive phase of solar flaeesNakariakov and Melnikov
[2009] for details). The observations do not show any ewsdenf the exponential damping,
and their duration is determined by the duration of the irspel phase of the flare. Our
simulations show that the decay time in a number of casegriffisantly longer than several
periods of oscillation. This makes the damping time norectable in the observations
limited by the duration of the impulsive phase of the flare.ildshapter 2 we concentrate
only on the dependence of the sausage oscillation periodeoparameters of the problem,
and do not discuss further the oscillation quality and thepiag time.

For ease of visualisation the following normalisations evesed: The spatial units
are normalised such that the half-width of the inhomoggnéit= 1, the temporal units
wered/Ca. WhereCa., = 1 is the external Alfvén speed. By order of magnitude, the
half-width could be about 1 Mm, and the external Alfvén spieabout 2—-3 Mifs.

4.2.2 Results

Fig. 4.2 shows the dependence of the sausage oscillatioodper the wavelength for dif-
ferent density ratios. This figure extends the results nbthin [Pascoe et al., 2007a] to
the case of long wavelengths. It shows that, similarly toaylndrical case, the sausage
oscillation period becomes gradually independent of theslesgth. This figure is the slab
equivalent to Fig. 2.4. Edwin and Roberts [1983] showedtthesausage oscillation exists
as a trapped oscillation whe@pg < w/ky < Casw. These are indicated by the straight lines
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Figure 4.2: The variation of the sausage oscillation pendt the wavelength in a plasma
slab witha = 6, for different values 08: the solid line corresponds = 0.5, the triple

dot-dashed line correspondsde= 0.7, the dashed line t6 = 0.8, and the dot-dashed line
tos = 0.9. The thick straight line showB = 1/Cae, that is the cutfi separating the trapped
and leaky regimes. The thinner straight lines stiow 1/Cpag that correspond to the short

wavelength asymptote in each case.
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radiating from the origin on the plot, any oscillation to tight of the thick straight line is
therefore leaky, and any to the left are trapped. It is comsisvith the conclusion drawn for
step-function profiles, that the same qualitative behavimobserved in the slab geometry
as in the cylindrical geometry [Edwin and Roberts, 1982,31981oreover, this similarity
remains valid in the leaky regime too. For a given densitiorét the periodP increases
monotonically with the wavelength. For a given wavelength, a slab with a higher density
ratio, in other words with a deeper well in the fast speedillases with a longer period.
The plot also demonstrates that the dependence saturates long wavelength limit for
all depths of the well. This similarity with the cylindricabse is expected, as the nature of
the oscillation has not changed.

An estimate for the typical period of sausage oscillatiomstypical coronal pa-
rameters can be obtained as follows. In a plasma slab ofadtfr d = 2,000 km and an
external Alfvéen speed d€a. = 1,000 kms? the normalised perio@saus~ 0.5d/Cac iS
about one second. For wider slabs, the period can be sewmed longer. This is consis-
tent with typical observations e.g. in the radio band [éNgkariakov and Melnikov, 2009].
Also, these typical periods are much shorter than the ty/[ifegtimes of oscillating plasma
non-uniformities, such as helmet streamers, flaring ctigkeets and supra-arcade flows.

Fig. 4.3 shows a comparison of the dependences of the sanszitiation period on
the wavelength for the slab and cylindrical geometriestifersame profile of the transverse
non-uniformity and its width. In the slab case the sausagigés longer. This result is
consistent with the estimates obtained analytically indhge of the step-function profiles
[Edwin and Roberts, 1982, 1983] in the trapped regime. Itlmillustrated, e.g., by the
cut-of values of the wave numbers that are (as obtained in sect@dioiBthe cylinder)

c2 -c2\"? 157, inasla
M) ~ ’ b (4.15)

kcd[ C2o 2.4, inacylinder

whereCae andCag are the Alfvén speed values outside and inside the wavegaitid is
the half-width of the waveguide (cf. the parameatdn Eq. (4.1)). The plasma inside and
outside is taken to be of zeg- It is clear that on the plane representing the dependence
of the phase speed of the sausage mode on the longitudinal nvaaber the dispersion
curve for a slab is situated lower than for a cylinder, whémpatameters of the slab and
the cylinder are the same. Thus, for the same wave humbephtige speed in the slab
case is lower than in the cylinder. Hence, the sausage atsmillperiod in a slab is longer
than in the cylinder. In the trapped regime, the quantiatifference between the slab and
cylindrical cases can be readily understood. In both cdsesdcillation is confined to the
non-uniformity, while in the cylindrical case this confinent is more #icient. If in the
slab case the energy outside the slab decreases expdgemi#he cylindrical case such
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Figure 4.3: Comparison of the variation of period of thesgllagions against longitudinal
wavelength in the slab and cylindrical cases, both curves tialues ofr = 6 ands = 0.5,

the dotted line represents the cylindrical case [Nakaxiakal., 2012], the solid line rep-
resents the slab. The thick straight line shd®vs 1/Ca., that is the cutfi separating the
trapped and leaky regimes. The thinner straight line shwsa/Cag which corresponds

to the short wavelength asymptote.
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Figure 4.4: The dependence of the period of trapped sausaijiations on the steepness
index, a, for different wave numbergky = 0.4 shown by the solid lingy = 0.7 shown by
the dotted line, an#ly = 1.4 by the dashed line. The solid line stops where the osditlati
becomes too leaky to accurately measure the period. Fdnealtdrves, the value of the
parametep was fixed as 8. The period is measured in normalised units, equd)@ne.,
whered is the slab half-width an€ .., is the Alfvén speed outside the slab.

an exponential decrease has the additioriedfactor, where is the transverse (e.g. radial)
coordinate. Our results show that this behaviour is alsa ge¢he leaky regime, and in
non-uniformities with smooth transverse profiles.

Fig. 4.4 shows the dependence of the sausage oscillatiamdp®aT the steepness of
the transverse profiley, for a fixed value of the parametér Each of the lines represents
a fixed value ok, for the lineky = 0.4 the oscillations are leaky for all values @f for
k« = 1.4 the oscillations are trapped for all valuesagfand fork, = 0.7 the oscillations
are leaky for values ofr lower than 25, yet trapped for largew. As expected for any
given value ofe a smaller value ok, and hence longer longitudinal wavelength, results
in a larger period of oscillation. This can be understood bgsidering the oscillations
as a wave packet trapped inside the potential well of thenfagmetoacoustic speed, being
reflected or refractedfbthe walls at either side, whilst also travelling along thdlwis the
longitudinal wavelength increases thieetive distance between two reflections increases,
resulting in the increase in the wave period.

As with the cylindrical case, for a fixed longitudinal wavenmloerk, a larger value
of @, and hence a steeper potential well, also results in a lqmgréod of oscillations. An
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Figure 4.5: The dependence of the dtitongitudinal wave number of a sausage oscillation
on the internal Alfvén speed (and hence the potential wegbtla) for a fixed value of the
external Alfvén speed and forfirent values of. The long dashed line corresponds to
a = 2, the triple-dot dashed line @ = 4, the dot dashed line t®@ = 6, the dashed line
to @ = 8, the dotted line ta = 10 and the solid line shows the step-function profile, i.e.
a — oo, The diamonds are the values for the ¢fitn the case of a step-function profile,
obtained analytically. The internal Alfvén speed is noliseal such that the external Alfvén
speedCae = 1, and the wavenumber is normalised such that the chaistatesxiidth of the
slab,d =1

explanation for this has already been discussed in chapiEre2same reasoning applies in
the slab case as in the cylindrical.

Fig. 4.5 shows the dependence of the @iwcave number on the depth of the po-
tential well in the slab geometry. The ctits defined as the value of the longitudinal wave
numberk; at which the oscillations transition from being trappeddaly. For the cutd
wave number, the phase speed of the sausage mode equal#ttvémespeed outside the
slab,Cae. Thus, at the cut®, the sausage oscillation period is

_4 &
CAe kaAe.

P (4.16)

It is evident that for all values of the steepness paramgténe cutdt value of the longi-

tudinal wave number increases with the increase in theehlfsppeed at the axis of the slab
(i.e. at the bottom of the potential well). This result carréadily understood, as it is easier
for the waves to escape a shallower potential well. Alsoctiteff wave number increases
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Figure 4.6: Comparison of the variation in the diitongitudinal wave number with the
internal Alfvén speed, in the slab and cylindrical case e step-function profileg; —

oo. The solid line represents the numerically calculated eslin the slab case, and the
diamonds the analytical values; the dotted line repregbetaumerically calculated values
in the cylindrical case [Nakariakov et al., 2012], and thesses the analytical values.

with the decrease in the steepness paramgtas a smoother transverse profile is more
suitable for fast wave leakage.

In Fig. 4.5, we also show the cufovalues determined analytically in the case of
a step-function profile [Edwin and Roberts, 1982], the daloon for the cylindrical case
is performed in 3.2. The analytical results are slightlffatent from the results obtained
numerically in the case — . This small discrepancy can be attributed to the intrinsic
difficulties in the determination of the cufforalue numerically: the transition from the
trapped to leaky regimes is rather smooth and is not easytéondiee precisely. However,
the numerical results show the main tendency very well amgédare reliable. In general,
our results show that in a slab, as well as in a cylinder [Nakav et al., 2012], the steeper
and deeper wells of the fast magnetoacoustic speed confisagaoscillations to a greater
degree.

Fig. 4.6 shows a comparison of the diittongitudinal wave numbers calculated
analytically and obtained numerically for both cylindtiead slab geometries, c.f. Fig. 4.5.
There is a good agreement between the analytical valuesasd bbtained numerically for
both the cylindrical and the slab geometries.

It is evident that the cutdlongitudinal wavenumber is larger in the cylindrical ge-
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ometry than in the slab geometry, hence these oscillati@isedter confined in a cylindrical
waveguide than a slab.

4.2.3 Conclusions

We studied sausage modes of a plasma slab stretched alomg¢jmetic field, considering
the dfect of the smooth transverse profile of the fast magnetoticosigeed. The slab
could contain a thin (much thinner than the transverse dizkeoslab) current sheet with
an anti-parallel magnetic field at its centre. Our attenisorestricted to the case of waves
propagating along the magnetic field in the z8mlasma. In this case, a localised increase
in the density of the plasma results in a localised decraatigei Alfvén speed, and hence
in the fast magnetoacoustic speed. A localised decreade ifast magnetoacoustic speed
makes the slab a fast magnetoacoustic waveguide. Bothetlegopd leaky regimes of the
oscillations were studied. It was found that sausage mofisklos have, in general, the
same properties as sausage modes of plasma cylindergdsiadhapter 2. Our results can
be summarised as follows:

1. Both leaky and trapped regimes of sausage oscillatiombeaeadily excited by an
initial impulsive driver. The leaky regime occurs for lohglinal wavelengths longer
than the trapped regime.

2. In the trapped regime, the sausage oscillation periodgith the increase in the
longitudinal wavelength. In the leaky regime, the dependeorf the period on the
wavelength experiences saturation, and the period becimesendent of the wave-
length. In the leaky regime the period is always longer timathhé trapped regime.

3. Inaplasma cylinder and a slab of the same half-width a@daime parameters of the
transverse profiles of the fast magnetoacoustic speedatlsage oscillation period
in the slab is always longer than in the cylinder. Théatence can reach 50%.

4. In slabs with steeper transverse profiles of the fast ntagoeustic speed, the sausage
oscillation periods are longer.

5. For a given depth of the potential well, smoother profiliethe fast magnetoacoustic
speed (with a smaller value of the parameat@r have bigger values of the cuifo
longitudinal wave numbers. The ciitwalues separate the leaky and trapped regimes.

6. For the same potential wells, the cfiitwave numbers in a cylinder are always larger
than in a slab.
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In the presence of the current sheet at the centre of thelstatesults remain the
same, as our formalism in this case remains exactly the shrdeed, the presence of the
current sheet causes a singularity at the centre of the thabgoes not fect the sausage
oscillations that have zero transverse flows at the slabreamd hence do not “feel” the
singularity.

We would like to stress that both leaky and trapped regimesa$age oscillations
of plasma slabs in the solar corona are well observable,eagudlity of leaky oscillations
can be high. Also, results obtained for a slab can be apptiezbtonal current sheets,
provided the magnetic field at either sides of the sheet ispamallel.
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Chapter 5

Developing a static model for a
coronal active region

5.1 Introduction

In this chapter we consider the coronal heating problem imenatetail. As previously
mentioned in Chapter 1 there are many coronal heating #®aitich have been proposed.
In this chapter we present a model for a coronal active regibich allows an arbitrary
empirically determined heating rate to be applied. This eh@dn then be compared to
EUV observations. This allows us to testfdrent heating mechanisms, as each of these
coronal heating theories suggest an underlying heatiegnelaited to the magnetic field and
the various other plasma parameters. This allows theseugamechanisms to be modelled
and compared to observational data for the solar corona dkitasiret al., 2000; Schrijver
et al., 2004].

Efforts to provide observational constraints on heating nsodale been made pos-
sible by the continuing development of solar X-ray and EUSstinmentation [e.g. Golub
et al., 1980; Fisher et al., 1998]. Simulations of the cofromagnetic fields and modelling
of the expected X-ray amok EUV emission for dierent coronal heating models have been
performed by previous authors. For instance, Schrijvel.g2@04] use a potential-field
source-surface (PFSS) model to model the entire coronahatiagield from SOHE@MDI
magnetograms, as well as a quasi-hydrostatic model forlgse@a. This information was
combined to produce simulations of EIT and SXT images, amipewe them to the obser-
vations. More recently Dudik et al. [2011] used a potemtiagnetic field model and scaling
laws to model an active region in EUV and X-ray bands. On tlmeemohand, Fludra and
Ireland [2003, 2008] studied global relationships betwieractive region integrated mag-
netic flux and EUV emission line intensities in a large nunmifeaictive regions. From this
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statistical analysis they obtained clear power laws ligkihese quantities, and assessed
their capability to constrain the heating rate. A subsetisamdy by Fludra and Warren
[2010] for the first time compared fully resolved images inEdV spectral line of &
63.0 nm with the photospheric magnetic field, leading to tenfification of a dominant,
ubiquitous variable component of the transition region E&fvission and a discovery of a
steady basal heating, and derived the following dependeftte basal heating ratey on

the photospheric magnetic flux densgtyand loop length_: Ey oc ¢%5L72.

In a most general approach, one would assume that the héatiagable in time
and leads to a dynamic behaviour of plasma confined in colonpk. Radiative hydro-
dynamic loop models with éfierent forms of the heating function have been studied by
many authors (see Reale [2014] for review). However, siheggmporal variability of the
heating rate needs to be arbitrarily prescribed, it adddditianal degree of freedom, in-
creasing the complexity of the problem. In this chapter veeaaidressing the ability of the
observations to provide constraints on models, thereferbegin with simpler, hydrostatic
models, reducing significantly the number of model pararset€his way, we are able to
study the €&ect of the spatial variability of the heating rate along thep on the resulting
EUV emission without the complications of the temporal &hiiity.

The magnetic field defines the geometry of coronal loops apdstulated to fiect
the heating rate in many heating models. Unfortunatel\hémbajority of cases at present it
is not possible to directly measure the magnetic field in tierta. It is however possible to
measure the magnetic field in the photosphere, one suchrmastit that currently provides
excellent photospheric magnetic field data is the Heliosieisand Magnetic Imager on
the Solar Dynamics Observatory [SIMMI, Scherrer et al., 2012]. This photospheric
magnetic field can then be extrapolated into the corona. iShierformed using a non-
linear force-free magnetic field model.

The other element required is modelling the thermodynamtpgrties of the plasma
in coronal loops. Many models have been proposed, frontstall models e.g. [Rosner
et al., 1978], to full 3-D MHD simulations e.g. [Pascoe et 2009a].

The aim of this chapter is to develop a diagnostic of the hgathechanisms in
coronal loops and evaluate the capability of the observel Ehission to provide con-
straints on the parameters of the heating model. We achiésdoy modelling a coronal
active region, firstly by extrapolating its magnetic fieldrfr the photospheric field, then
by using a 1-D hydrostatic model to model the plasma in seteaiagnetic flux tubes of
this active region. This model allows an arbitrary heatiatgy which was chosen to be a
function of the local magnetic field strength. By comparingdmslled EUV emission of
these loops to EUV images of the active region a diagnosticbeadeveloped to measure
the heating rate in the corona.
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SDO provides a unique opportunity to perform this studyngigivo of its instru-
ments, the Helioseismic and Magnetic Imager (HMI) and the/Etdager Atmospheric
Imaging Assembly (AIA) [Lemen et al., 2012]. HMI provideslifdisk vector magne-
tograms with 1"x1” pixel size every 12 minutes. This allovesarate measurements of the
photospheric magnetic field for any active region, whichl&sis for performing nonlinear
force-free (NLFF) extrapolations [Schou et al., 2012]. Adovides full disk EUV images
with seven diferent filters every twelve seconds, with a pixel size~00.6"x0.6” - this
allows for comparison with predicted EUV emission from ouwrdal.

This chapter is arranged as follows. In section 5.2.1 waudisthe NLFF extrapola-
tions then the hydrostatic loop modelling is discussed ati@e 5.2.2, leading to modelling
of the EUV emission, which is discussed in section 5.2.3. kémtuse all of these com-
ponents together to model the whole active region in se&igt. These models are then
discussed and compared to coronal observations in secon 5

5.2 Method

5.2.1 Magnetic field extrapolations

The first stage of the model is to extrapolate the coronal et@gfield. The theory behind
extrapolating force free fields was discussed in sectiotB1l.#he basic principle is that
force free fields must obey:

V x B = aB, (5.1)
V.-B=0. (5.2)

In this case we are assuming non-linear force free fieldsrevtie force free pa-
rameterg, can vary across field lines, but is constant on a given fiakl i

Various methods have been proposed to find solutions to thdimear system of
equations (5.1) and (5.2) [e.g Amari et al., 1997; Sakur@d811 Roumeliotis, 1996; As-
chwanden, 2013; Wheatland et al., 2000]. Schrijver et 8062 and Metcalf et al. [2008]
compared diferent NLFF magnetic field models and found that the optinteatode de-
veloped by Wiegelmann [2004] was the most accurate modeldeas well as being rea-
sonably computationallyficient.

The bottom boundary conditions for the NLFF extrapolatiogrevvector magne-
tograms obtained from SOBEMI. These contained the vector photospheric magnetic field
data with a 1"x1" resolution. A typical size of the box surnging the active region is 5x5
arcminutes, leaving a fiicient margin around the active region magnetic fields tauichel
all of the strong magnetic field lines as they expand into tirerra. An NLFF model was
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then used to extrapolate this field into the corona to givesimate of the coronal magnetic
field. The NLFF model used is described by Wiegelmann et 8L22 A brief overview of
the process is as follows:

Before the vector magnetograms can be used as boundartionedhe 180 de-
gree ambiguity must be resolved. This ambiguity arisesusxahen the magnetograms
are derived from the optical observations there are twdisols for the perpendicular com-
ponents of the magnetic field 180 degrees apart from each. offtes ambiguity must
therefore be resolved for each pixel in the magnetogram lgjnigna solution that is self
consistent. Many methods have been proposed for doingthigsgata products used in
this study already had this ambiguity resolved by using thiénimum Energy” method
[Hoeksema et al., 2014; Metcalf, 1994].

The first stage of the modelling is to ‘pre-process’ the viestagnetogram, in order
to obtain the best results from the NLFF model [see Wiegehmetral., 2006]. This pre-
processing involves making small adjustments to the veatgnetogram in order for the
NLFF model to be applied more accurately. This is justifiedosm as the data remains
within the measurement errors of the original magnetogthese are larger in a direction
perpendicular to the line-of-sight. As the consideredvaatégions are gficiently close to
the disk centre these directions are equivalent toxtrendy- directions, of the Cartesian
projection of the magnetogram, where thexis is the vertical direction.

The purpose of this pre-processing is to firstly make sureléita is consistent with
the force free approximation, obeying the criteria set gquily [1989], which are that the
total force on the boundary vanishes:

L BB dxdy = L ByB.dxdy = 0, (5.3)
fs (BZ + BY)dxdy = fs B2dxdy, (5.4)
and that the torque on the boundary vanished:
fs x(B + BY)dxdy = fs xBZdxdy, (5.5)
fS y(B + BY)dxdy = fS yBZdxdy, (5.6)
L BB dxdy = L XBy Bydxdy, (5.7)

whereS is a boundary of the modelled region, in this case the magreato
The other reason for the pre-processing is to smooth thetdateake it easier to
compute the NLFF field. This is particularly relevant arodine boundaries of the magne-
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togram, which should have a minimal impact on the final NLFFfie

Once the magnetogram has been pre-processed, the NLFF imeodédulated us-
ing the optimisation code developed by Wiegelmann [2004Y tested with SDO data
[Wiegelmann et al., 2012].

The optimisation technique initially only considers thetizal component of the
photospheric magnetic field, which is then used as the bayrmmdition for a potential
field. This potential field is then used as the boundary cardior the other five sides of
the computational domain, as well as the initial conditiforsthe optimisation process. A
parameterK, is used to optimise the field towards a force free field:

K= fvw(x, y.2) [B(V x B) x B + |V - B?| &V
+v f ((B = Bopg) - W - (B — Bgped?S, (5.8)
S

wherew(X, y, 2) is the weighting functiony is a Lagrangian multiplier and/(x, y) is a di-
agonal error matrixy is the entire volume of the modelled region e the boundary as
before. From this itis clear th& = 0 when the field is force-free and matches the observed
boundary conditions, the field is therefore iterated in saigbay to reducd<. The weight-
ing functionw is set to be equal to unity in the majority of the model regimmg decrease
to 0 through a boundary region toward the top and lateral daxies of the domain. The
purpose of this is to reduce the importance of these bourslari the final field as they are
essentially unknown. The second term in Eq. (5.8) ensusdghl modelled field matches
the observed field within observation errors. The error mal should be specified for
each instrument (SD®IMI in this case) and controls the rate which these boundanglie
tions are applied. A more detailed description of the tegimaican be found in Wiegelmann
and Inhester [2010]. The Lagrangian multiplier is usedrythe optimisation process, its
specific value is not important for the purposes of this study

This procedure provides a model for the coronal magnetid fiEthe active region.
The next stage is to define the loops traced by this field. e tadield line from each pixel
in the base of our field. To do this we use a fourth order Rungttakscheme to calculate
the direction at each step of the field line by using the dioactf the local magnetic field
as the line’s gradient. As this study is only interested ironal loops, we discard those
loops that do not reach a coronal height (2000 km), as wehasetloops which could not
be traced from photosphere to photosphere (i.e., thosdhwidficthe sides or top of the box
containing the modelled magnetic field).
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Figure 5.1: Full disk AIA 171 image from 4th November 2013. eTérea surrounding
NOAA 11897 which has been modelled using the NLFF optimisatbutine is shown by
the white box.

Example active region

In this section we demonstrate how this model is applied tbcampared with SDO obser-
vations. A similar test was performed and explained in dbiaiViegelmann et al. [2012].

To do this we must first select an active region to be modetleel chosen region
is NOAA 11897 from the 4th November 2013. Fig 5.1 shows a fiskdAIA 171 A im-
age from 4th November 2013 with the white box denoting tha arerounding the active
region to be modelled. This active region is a good candiftatthe modelling as its mag-
netic field is well isolated from any other region of stronggmetic field. Fig. 5.2 shows
the line-of-sight magnetogram for this active region, tize f this cut out is shown by the
white box in Fig. 5.1. We can see that the regions of stronggapberic magnetic field are
well contained in this cutout with a sizeable border of weakagnetic field surrounding it
towards the edge of the region to be modelled. This is impbda the weighting function
limits the importance of the magnetic field data towards thenolaries of the region con-
sidered, so itis important to restrict these to being thasaoé low magnetic field which are
less likely to influence the coronal magnetic structuresctviaire observed.

The optimisation routine as described was then applieddwéictor magnetogram
data of this region, after the vector magnetograms have peeprocessed as described.
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Figure 5.2: Line-of-sight magnetogram of NOAA 11897 frorh Mlovember 2013.

250

200

150

arcseconds

100

50

0 50 100 150 200 250
arcseconds

Figure 5.3: AIA 171 image of NOAA 11897, with selected fieldds modelled by the
NLFFF optimisation code overlaid.
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This gives us a cube of magnetic field data describing the etagfield above the pho-
tospheric region shown. From this cube of magnetic field €iatd lines can be traced,
and compared to the observed coronal structures. Fig. 5y8ssan AIA 171 image of the
selected region with selected field lines plotted on top, aresee that the geometry of the
modelled field appears to match very well with the observed Btductures.

5.2.2 Loop models

Once the magnetic topology has been defined by the NLFF mibeehlasma in the loops
must be modelled to derive electron temperature, densityflaw velocities. In the general
case of dynamic plasmas, magnetohydrodynamic modelliags® be performed. Under
the assumption of weak variation of the loop’s cross-saeti@area along the loop, hydro-
dynamic models considering the field aligned motions coddstificient. Examples of
hydrodynamic software codes include Oran et al. [1982]ne@oand Vaiana [1977], Tsik-
lauri et al. [2004]. The spatial and temporal variation o tieating along the loop is the
primary input required by these models. As this is normatiiykmown and needs to be pos-
tulated, a simpler approach is to investigate cases of etiatic loops, where the heating is
either constant in time or varies with a timescale shortanttne typical radiative cooling
and thermal conduction timescales, and therefore can @dmed constant. Many such
models are described in the literature [Rosner et al., 1Ré8je et al., 2000; Vesecky et al.,
1979].
More recently the validity of the assumption of steady heaih some categories of loops
has been questioned [Schrijver and van Ballegooijen, 2005ijle it is true that a multitude
of intermittent acts of energy release are observed in tt@nedn the form of small events
[Berghmans et al., 1998] possibly associated with nanaflg@arker, 1988], a study of the
heating observed at transition region temperatures by &laad Warren [2010] showed that
at least 25% of the area covered by active region magnetitsfatonger than 90 G undergo
guasi-steady heating, through some universal while noidgettified process which is the
same in all active regions. Moreover, examination of sdvBE0/AIA movies taken at
coronal temperatures shows that the observed loop inEssgémain constant over at least
10 minutes, which is longer than the timescales for the t@diand conductive cooling. In
this chapter we therefore investigate quasi-steady tgeasimg hydrostatic loop models.
We use a hydrostatic model code devoloped by van Ballegoffjehrijver and van
Ballegooijen, 2005]. This code finds a static solution to ¢éinergy balance equation in
1D, and allows for an arbitrary heating rate along the lodpmddels the loop from the
transition region at the first footpoint through the coroaiag back to the transition region
at the second footpoint. It sets the temperature at eacpdiitto 20000 K, twice the
temperature of the low chromosphere. The energy flux throgtboundary is calculated
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in the appendix of the cited paper. The model also assumeshiidoop cross section is
inversely proportional to local magnetic field strength.

For this study we use a volumetric heating rate of the folimniorm:

En(s) = Qal! (?)B, (5.9)
max
whereB(s) is the magnitude of the magnetic field at distasedong the loop, an®naxis a
constant, set to be 2500 G for this study, as that was largarahy magnetic field strength
considered which ensurd&y By is less than 1. This gives three parameters to control the
heating rateQQ,, 8 andA.

The range of values @fconsidered here is from2 to 2. These values include a case
of a constant heating along the logp £ 0), the predictions from the DC heating models
B =2, and intermediate values that include predictions of #atihg rate dependence Bn
from AC models. Sinc® decreases with height, positigagives heating concentrated near
the footpoints. We have therefore included also negativeegaofs which give heating
concentrated near the loop-top, as is suggested by somehgatiag theories [Ruderman
et al., 1997; Halberstadt and Goedbloed, 1995].

5.2.3 Modelling the coronal EUV emission

In order to compare the modelled active region loops withloggs observed by the current
or recent instruments, the EUV emission is modelled in twkedknt channels, the 171 A
and 335 A used by SD@IA, and the emission for the pure spectral linesxF&71 A and
Fexvi 335 A. The Fevi lines were routinely observed by the SOHO Coronal Diagnosti
Spectrometer at 360.8 A [Fludra and Ireland, 2003, 2008] asd at 335 A, while the
Hinode EIS spectrometer [Culhane et al., 2007] observesi263.0 A and Fex 171 A.

The temperature response for the AlA channels has beenaaiduy Lemen et al.
[2012] and is available in the SolarSoft library. The emisgiof the Ferx 171, Fexvi 335
and 360.7 A spectral lines has been derived using the ADAKagec[Summers, 2001]
and is also available in CHIANTI [Dere et al., 2009]. The msge functions for the AIA
171 & 335 channels, and Be171 A and Fevi 335 A lines are shown in Fig. 5.4. The
electron temperature and density of the plasma was thenlledddong each of the loops
in the active region for dierent values of); andp as described in the previous Section,
and these parameters were convolved with the responsdadusaif the various lines to
give the modelled emission.
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Figure 5.4: Temperature response of the considered/8RCfilters, 171 and 335, and
spectral lines Fex 171 A and Fexvi 335 A.

5.2.4 Bringing it all together

The final dificulty involves selecting sensible values for the paramseies andQ,. Fludra
and Warren [2010] found that = —0.5 was an appropriate value, so that was also used in
this study. Identifying the value @ was the main focus of this study, and therefore it
was not appropriate to prescribe a fixed value for this patammstead a range of values
were considered, as described in 5.2.2. The paran@@teontrols the overall magnitude
of the heating, its value was therefore selected to providenge of temperatures close
to the peak response of the chosen filter. This was done bygdke total heating along
each loop and assuming it is evenly distributed along thp,ltten using the RTV scaling
laws [Rosner et al., 1978], which were described in moreildat&€hapter 1, to estimate an
appropriate value aR,. The full model is then run with this estimat€}, and the range of
loop temperatures are recordégl, can then be manually adjusted if the initial estimate is
too high or low.

Once this modelled emission had been calculated for allddbis then projected
on a 2D plane in the same manner as would be observed by/8BR&s shown in Fig. 5.6.
Line of sight dfects are accounted for by assuming that our loops are nartbame the
pixels, and therefore assigning the total intensity of daop section to the nearest pixel.
This can be compared to the observed AIA 171 A image in Fig.I5iS important to note
that there are severalftirences between the modelled and observed images, due to the
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Figure 5.5: SDQAIA image of active region NOAA 11897 in 171 A filter, observed 4th
November 2013.

250
200

150

arcseconds

100

50

0 50 100 150 200 250
arcseconds

Figure 5.6: Example of an active region NOAA 11897 modelle@DQAIA 171 A filter
forg = 0.5.
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Figure 5.7: Example of an active region NOAA 11897 modelle@&DQAIA 335 A filter
forg = 0.5.

limitations of the model. Firstly, the longer loops on thghti hand side and in the bottom
left hand corner are not modelled in the artificial image bieeahey leave the volume of
the modelled data cube, hence the black areas of this imagig.i®.5. These long loops
are either open magnetic field lines or they close outsidentb@elled volume. Very short
loops, not reaching 2 Mm height, are also not included. Treaéso background emission
possibly from the coronal moss which is not modelled in théigial image, as this is

coming from the legs of the hot loops that are not present énatsumed model due to
centring the peak temperature distribution around 1.0 MK.

5.3 Results

This model can now be used to tedfeient heating rates and to compare théea&s on the

emission to EUV observations of the active region. This waitsally done by comparing

the images by eye to see which heating parameters gave thadieb. In Fig. 5.6 the value
of B was 05, this was chosen as it gave a distribution of bright loos thas the closest
match to the observed image.

We also modelled the active region in AlA's 335 A filter, thiasinitially performed
using a value foB = 0.5, as this was the value ¢f that appeared to shown the best
representation of the active region in the 171 A band. Thi@vn in Fig. 5.7, and can be
compared with the AlA observation in Fig. 5.8. This does mpear to provide an accurate
representation of the active region in the 335 A band. WHilstAIA image shows most
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Figure 5.8: SDQAIA image of active region NOAA 11897 in 335 A filter, observed 4th
November 2013.

of the emission concentrated in the centre of the activeoregi appears as though there
is a hotter core of loops emitting at 335 A beneath those cdotgs observed in 171A.
This behaviour is not reproduced in the modelled activeoregiere the emitting loops are
similar to those that were emitting at 171 A, with most of theission coming from longer
loops around the edge of the core of the active region. Tlygests that whilsg = 0.5 is a
sensible value to model the 171 A emission fiedient value may have to be used to model
335 A emission.

Testing various values fg8 to determine which appears to best reproduce the observed
335 A emission leads to Fig. 5.9, which shows the active regiodelled usingg = 1.5.
This provides a much more accurate looking representafitimecactive region, now more
of the emission is originating from the shorter more cenwaps, some of which have
become fairly bright. There is also still a faint emissioonfrthe longer outer loops, which
is also seen in the observed image.

5.4 Conclusions

In this chapter we have described a model for a static, wakied active region, which al-
lows an arbitrary heating rate. This enables a quick corapanith observations of active
regions, most notably observations made using S0&

The first stage of the modelling was to model the coronal miagfield using a non-linear

82



Figure 5.9: Example of an active region NOAA 11897 modelle@&DQAIA 335 A filter
forg = 15.

force-free extrapolation from vector magnetogram datalpced by SDZHMI. The ex-
trapolation was performed using the optimisation apprateseloped by Wiegelmann et al.
[2012], this approach was found to be the most accurate miodetest of various NLFF
models performed by Schrijver et al. [2006]. The model wdrksrelaxing” an initial po-
tential field-model to a force free one that matches the fdkor boundary conditions. This
model allows us to accurately model the coronal magnetid 6eany reasonably magneti-
cally isolated active region that is not too far from the digktre.

The next stage of the model is to convert the magnetic field ofeb loops. This is per-
formed by tracing the magnetic field from every point in théttom boundary of the mag-
netic field model. This allows us to determine the magnetid fiee coming through any
given spatial point. Not all of these loops were found to befuishowever, and several of
them are discarded. Those which leave through the top obsidedaries of the modelled
region are discarded as the hydrostatic model assumeshthéidps start and end in the
photosphere. Those which are not long enough for the hyatioshodel to properly model
are discarded as well.

Once the loops have all been defined properly, the plasmawtigy contain is then mod-
elled using a hydrostatic model developed by van Ballegooiit is described in Schrijver
and van Ballegooijen [2005]. For each loop it solves the ggnérlance equation for the
given heating rate. The model allows the heating rate todmdyfrchosen, it is at this point
that the heating rate is specified.

Finally the EUV emission for the modelled plasma can now tienagsed. Given the density
and temperature of the plasma calculated by the hydrostetael the emission in a given
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filter along each loop can be calculated using the filter'soase function. These calcu-
lated intensities are then projected into the plain as theyldvbe observed by SOBAIA.
These artificial images can then be compared with AIA obsems of the active region,
in each of AlAs filters. Initially the 171 A filter was modellie and an appropriate value
for 8 ~ 0.5 was identified by comparing the various images by eye. This performed
by ensuring that the parts of the active region where morbaegmission originated were
also brighter in the artificial image. This value®tioes not however appear to be able to
accurately reproduce the active region in the 335 A filtestdad a dterent value o ~ 1.5
gives a more accurate reproduction.

It is possible that this discrepancy has been caused assvalige> 1 preferentially heat
the shorter loops in the centre of the active region, whesezaller values oB heat the
longer loops preferentially. This suggests that the ctircbosen form of the heating rate
may not be able to fully explain the heating of these str@stufurther study may require
an examination of dierent forms of the heating function.

In order to further this investigation a more rigorous agpemust be made to compare the
modelled and observed images. As the geometry of the maddatid observed active re-
gion does not exactly align it is very challenging to perfamuantitative comparison of
these images. It is however possible to identify single $oapd to observe thefect that
varying the heating rate has on their emission.
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Chapter 6

Investigating the behaviour of single
loops in the model

6.1 Introduction

In this chapter, we use the model for an active region deeelap the previous chapter
to study single loops from the modelled active region in mdepth. This was initially
motivated as using the full active region models in the presichapter it was not possible
to form a qualitative comparison with the images of thosé&actgions. Only considering
single loops at a time provides a better understanding of th@vmodel behaves when
varying the parameters of the heating rate. Which allow®s ushsider specific observable
parameters which could be used as diagnostics of the cdneatihg function.

Initially this allows us to confirm that the hydrostatic mbdebehaving in the ex-
pected manner, by observing thi@eet that varying the heating rate in a simple manner for
a model of a typical loop has on the modelled emission frorhltap.

We can then proceed to develop a diagnostic for the heattedgosavarying a key
heating parameter and considering the variation in modielgission caused by this change
to discover an observable variation in the emission.

We are also able to consider loops witlffdient magnetic field strengths along their
length, observing thefiect that shape and magnitude of a loop’s magnetic field hatson i
modelled emission.

The chapter is arranged as follows: first, we discuss how théeimwvas set up to
consider single loops, and which loops were analysed, dsasealescribing those loops.
Then, we discuss the results of modelling these loops witkrdint heating rates. Finally
we present our conclusions.
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Figure 6.1: SDQAIA image of active region NOAA 11897 in 171 A filter, observed 4th
November 2013. Black lines show the NLFF modelled loopswrete studied further. The
solid line is loop A, the dashed line is loop B. Loops C and Dchiare are also considered
in this chapter are not shown on this plot for clarity.

6.2 Method

The model used in this chapter is the same as the model deddnbchapter 5. It is,
however, only used to model a single loop in the active regibany one time. As the
NLFF modelling for the active region has already been paréat the magnetic field data
can be used to identify loops which are good candidates ttividual modelling, as well
as providing the magnetic field strength along the loop.

Fig. 6.1 shows an AIA 171 image for the considered activeoregi-rom the mod-
elled magnetic field four loops were chosen for further stuty clarity, only two of these
loops, denoted A and B, are shown in Fig. 6.1. The magnetit $igengths along all four
loops are shown in Fig. 6.2. Loop A is in the upper fan of loapthis active region, whilst
loop B is in the downward fan. Loop B is fairly sho#, 75 Mm and its magnetic field
appears to be very symmetric about the loop top, as well dyg frong at its footpoints,
with a magnetic field strength 1300 G. Loop A by contrast is slightly longer,100 Mm
with a weaker and much less symmetric field500 G in one footpoint and 280 G in the
other footpoint. Loop C is an example of a longer loop, in ailsimocation in the active
region to loop B, but 150 Mm in length and has a magnetic figkshgith slightly larger than
loop A. Loop D is the shortest of the four loops, at roughly 4Nbng. It is located close
to loop B in the active region, and its magnetic field strerdjftribution difers from the
other three loops, as will be discussed in Section 6.3.2ptddand D allow us to consider
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Figure 6.2: The magnetic field strength along loop A (sohé)i loop B (dashed line), loop
C (dot-dashed line) and loop D (dotted line). These linestgre kept consistent throughout

this paper.

the dfect of varying the loop length. All four loops have magnetalds strengths fairly
typical for loops in this active region.

6.3 Results

6.3.1 EUV emission in coronal loops

Fig. 6.3 shows the emission in the e 335 A line along loop B for a fixed value gf= 0.5,

but varyingQ,. The values of, were selected so as to fix the peak temperature in the loop
at: Te = 1.5,1.75,2.0,2.25 and 25 MK. The peak of emission is initially located at the top
of the loop, with very limited emission towards the footgsifor lower peak temperatures.
This is due to the plasma at the centre of the loop being clogbe peak response of
the line, whilst the plasma closer to the footpoints is tool do significantly emit at this
wavelength. As the peak temperature increases, the piropat the loop significantly
emitting increases too, as whéag along the loop increases a larger segment of the loop
becomes hot enough to emit at this wavelength. As the peabaerture rises further the
emission at the top of the loop drops,and two peaks of emission form and move towards
the footpoints of the loop. This is due to the top of the loopdming too hot to emit
significantly at this wavelength, and the plasma of a more@pfate temperature being
located towards the footpoints. This overall behaviouncigies with results described in
Fludra and Ireland [2003], and suggests that the model iaviragp in a physically realistic
manner. This behaviour can also be reproduced by modelia@®85 A AIA and 171 A
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Figure 6.3: The variation of modelled emission in the spedime Fexvi 335 A along loop

B for 8 = 0.5. The solid line has a peak temperature & WK, the dotted line 75 MK,
the dashed line.@ MK, the dot-dashed line.25 MK and the triple dot-dashed®2MK. In
this plot the emission for each temperature is normalisett as the mean emission along
the loop is equal to unity.

AlA filters, however it is not as pronounced as the emissicakger these filters is much
broader than the pure Eer (which is the primary ion in the 335 A AIA filter).

It is of more interest for the diagnostic of the heating medtra to consider the
effect that varying3 has on the modelled loops. Figs. 6.4-6.7 show the plasmangaeas
for loop B and how they vary witl® for a fixed peak temperature, = 2 MK, as well
as modelled emission in the ke 335 A spectral line and the AIA 335 channel. As
increases, the distribution of temperature along the lagpines a little broader as more
heating is focused towards the footpoints which becomehfiit larger values g8. For the
highest value o = 0.75 the asymmetry of the magnetic field has caused the temperat
distribution to become asymmetric with the peak tempeeataw occurring at 20 Mm,
whilst the plasma at the centre of the loop is nevil.8 MK. This has caused the peak of
Fexvi emission to shift to- 30 Mm. For most of the considered valuesgpthe peak of
emission is located at the centre of the loop which steadihards ag increases, in the
same manner as the temperature.

The most noticeable change is the increase of the electnositdavith 8 which
changes by a factor of 2.5 at the loop top. As discussed later, this will lead to our tmos
important diagnostics of the heating mechanism.

There is little variation in the shape of the normalised Al353mission with3
as this filter has a fairly broad temperature response anais imfluenced by the density
distribution, which retains a broadly similar shape, thHotize values do vary this does not

88



10.0 .

P
9.5

9.0~ 7

log10(Ne)

85 7

8.0L ‘ ‘ ‘

0 20 40 60 80
Distance along loop (Mm)

Figure 6.4: Results of modelling loop B forftirent values of and the peak temperature
fixed at 2 MK. The solid line represens= —2.0, the dotted ling8 = -1.0, the dashed
line B8 = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling = 0.75. The electron
density along the loop is shown for theséelient parameters.
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Figure 6.5: Results of modelling loop B forftirent values of and the peak temperature
fixed at 2 MK. The solid line represents= —2.0, the dotted lingg = —1.0, the dashed
line 8 = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling = 0.75. The electron
temperature along the loop is shown for thedtedént parameters.
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Figure 6.6: Results of modelling loop B forftBrent values g and the peak temperature
fixed at 2 MK. The solid line represengs= —2.0, the dotted lingg = —1.0, the dashed line
B = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling = 0.75. The Fexvi 335 A
emission along the loop is shown for thes&atient parameters.
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Figure 6.7: Results of modelling loop B forftirent values of and the peak temperature
fixed at 2 MK. The solid line represengs= —2.0, the dotted lingg = —1.0, the dashed line
B = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling= 0.75.
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Figure 6.8: Results of modelling loop B forfterent values o8 and peak temperature
fixed at 1 MK. The solid line represengs= —2.0, the dotted lingg = —1.0, the dashed line
B = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling= 1.0. The electron density
along the loop is shown for thesdldirent parameters.

affect this plot as the emission is normalised. The AIA 335 raspds sensitive to low
temperatures, hence the emission near loop footpointsoisgly increased.

Figs. 6.8-6.11 show a similar series of plots, but for the AIA filter and the F&
171 A line, and with a lower loop peak temperature, 1 MK. Thedptemperature was
chosen as it is close to the peak response of this filter. Thevi@ur of the temperature
and density is broadly the same as in the 2 MK casep Agreases there is a broadening
of the temperature peak, until for the largest valug ef 1.0 the temperature distribution
becomes fairly asymmetric. A similar behaviour is also seethe density distribution as
with the hotter case, with the density steadily increasiiitty @by up to a factor ot 3, and
becoming asymmetric for the largest valuggdofThe plasma parameters are then combined
with the temperature response function for the AIA 171 filtes before for the largest value
of B8 there is a high degree of asymmetry, as well as a noticeaptanastry forg = 0.5.
Unlike the Fexvi case, the asymmetry in the modelled AIA 171 emission has phesite
behaviour to that of the temperature asymmetry, with thessionm peak towards the cooler
end of the loop. This is caused as the chosen peak tempefatuteese loops is above
the peak response of the filter (the peak response tempefatuhlA 171 is log({Te) = 5.8
[Lemen et al., 2012]), so the cooler plasma emits more.

This modelling was also performed for loop A. The overalldgbur of the plasma
parameters in both loops is similar. As the asymmetry is mooaounced in the magnetic
field for loop A, the modelled emission is more asymmetrictipalarly the modelled Fevr
emission.
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Figure 6.9: Results of modelling loop B forftérent values ofs and peak temperature
fixed at 2 MK. The solid line represens= —2.0, the dotted ling8 = -1.0, the dashed

line 8 = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling = 1.0. The electron

temperature along the loop is shown for thedtedent parameters.
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Figure 6.10: Results of modelling loop B forfitirent values o and peak temperature
fixed at 2 MK. The solid line represengs= —2.0, the dotted lingg = —1.0, the dashed line
B = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling = 1.0. The Fax 171 A
emission along the loop is shown for thesf&atient parameters.
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Figure 6.11: Results of modelling loop B forfidirent values of and peak temperature
fixed at 1 MK. The solid line represengs= —2.0, the dotted lingg = —1.0, the dashed line
B = 0.0, the dot-dashed ling = 0.5, the triple dot-dashed ling = 1.0. The SDQAIA
171 A band emission along the loop for thes@aiient parameters.

6.3.2 Diagnostics of the heating function

The aim of this chapter is to develop a diagnostic techniguieléntify the power index,

3, by comparing these models to coronal images. We are setkitgyelop a measurable
guantity that could provide a quantifiable comparison. Wea@mparing loops with the
same maximum temperature as the EUV filters will only showpsowhich have similar

temperatures.

There are two possible diagnostics to consider: one didigna®uld compare
changes of the distribution of the EUV emission along theoJdbe other would measure
the change of the total intensity.

Figures 6.11 and 6.7 show the normalised intensity alondpthefor different val-
ues ofg both for the AIA bands 171 and 335. While there are sonfiieidinces between
these distributions, they appear to be too small to distshgbetween dferent values of
B, especially in the expected presence of measurements @nrogal data. The same nor-
malised intensity distributions for the pure &el71 and Favi 335 A line emission are
shown in Figures 6.10 and 6.6. We conclude that the nornaadipatial distributions along
the loops are too similar to provide the required diagnesti/hilst the spatial emission
along the loop modelled as from the pure ions is slightly nemesitive to variations i,
overall it is still not sensitive enough to be a useful diagjito

The next measure to be considered was the total emissioclof@ap, and how this
behaves with a varying value gf The intensity for all points along the loop was summed,
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Total AIA 171 emission

Figure 6.12: The variation of total modelled emission vgtfor the AIA 171 band. Solid
line is loop A, dashed line is loop B, dot-dashed line is looprd dotted line is loop D.

Total Fe IX emission

Figure 6.13: The variation of total modelled emission witfor pure Fax. Solid line is
loop A, dashed line is loop B, dot-dashed line is loop C andkdidine is loop D.
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Total AIA 335 emission

ool......... [ [ [ 1

Figure 6.14: The variation of total modelled emission vgtfor the AIA 335 band. Solid
line is loop A, dashed line is loop B, dot-dashed line is looprd dotted line is loop D.

Total Fe XVI emission

Figure 6.15: The variation of total modelled emission v@tfor pure Fexvi. Solid line is
loop A, dashed line is loop B, dot-dashed line is loop C andkdidine is loop D.
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giving the total emission along the loop for each considéraad. These are shown for all
four loops in Figs. 6.12-6.15. It was found that the behaviou loops A, B and C was
similar, whereas loop D shows somewhdtatient behaviour. Therefore, we will initially
limit discussion to loops A, B and C. Asincreases from 0 to 1, for loops A, B and C, the
total intensity for all lines rises steeply by over a factbraughly 3, being clearly sensitive
to B (i.e. to the increasing concentration of heating toward@sftotpoints). Finally ag
increases towards and beyond 1 the model is unable to fintla stlution for these loops,
and therefore these lines stop on the plots, this instabditdiscussed in more detail in
section 6.3.3. Therefore, this appears to be a promisimgnditic of3. In contrast, for
values ofp decreasing from 0 to -2, there is only~ad40% decrease in the total intensity.
As the heating distribution changes from a uniform heatm@re concentrated near the
loop top, the conductivity ficiently redistributes the heat along the loop. While the 40%
change betweefi = -2 andp = 0 is measurable, the error bars on the deriged this
range would be significantly greater than in the range®< 1. We note that the curves in
Figs. 6.12-6.15 are normalised to 1 e 0. Therefore, the variation of the absolute total
intensity withg is not shown in these figures.

We have found that the dependence of the total loop intensifyis related to how
the magnetic field strength varies along the loop. The magfield strengths of all of the
loops we have considered could be reasonably modelled asutheof an exponentially
decaying component and a constant component. Loops A, B dral/€a magnetic field
which steeply decreases with height, with a low level of thestant component. When this
type of the dependence Bfs) is scaled to a shorter loop length, the resulligg-s depen-
dence is very similar, with the loss of stable solutions elog3 = 1 (see section 6.3.3). The
magnetic field along loop D, however, has a significantly aigbvel of the constant com-
ponent, which increases the ranggdbr which stable solutions exist. In the extreme case,
if the magnetic field strength is nearly constant along tiogJéhe heating ratB(s)® would
vary very little along the loop even for large valuesBpfesembling the case of nearly con-
stant heating rate. Such loops are found to have stabléswuip to large values @f> 10
but ofer very little diagnostics capability in the range<(8 < 2. A survey of a number of
loops in the active region under study reveals that suctsledth a flat distribution oB(s)
indeed appear to exist, particularly for shorter lengthsw&0 Mm. Whether this comes
from the complexity of the magnetic field in the active regamre or from an inadequate
spatial resolution of our 3D data cube is not clear. Theeefthre diagnostics presented in
Figs. 6.12-6.15 is applicable only to some of the loops widlegly decreasing(s) and a
low constant component @&{(s).

The dfect of varying the loop length on the total emission was fnttested by
taking loop B, and scaling its length by various factors - #ffect of this is shown in
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Fig. 6.16. The peak temperature here was kept fixed at 1 MKgehéime shape of the
temperature distribution remains similar for thé&elient loop sizes. However, the density
decreases substantially with the loop length, and since Etg\intensities are proportional
to the square of the density, this shows that increasingabp length causes the total
emission from the loop to decrease rapidly, as shown in Bds-6.20. For example, a
change of length from 40 Mm to 250 Mm decreases the total E21 A line intensity by a
factor of~ 10. This is greater than the maximum change of the total sitenaused by the
variation ofg (Figs. 6.17-6.20). Therefore, the loop length must be nredsaccurately to
allow the diagnostics @8 from Figs. 6.17-6.20.

6.3.3 Loss of stable solutions

In Figs. 6.17-6.20 we restricted the ranggdb below 12. The reason is that for larger val-
ues ofB the hydrostatic code does not find a stable solution for Idg@ and C. Schrijver
and van Ballegooijen [2005] also pointed out that for certeating rates there is no steady
solution of the energy balance equation. We investigatethevoss of stability depends on
the maximum loop temperature and the loop length. Fig. 6hdvs the largest maximum
temperature for each value gffor which a stable solution exists for loops A and B. The
plot shows the temperature rang® & log,(Te) < 7.0 as this fully covers the temperature
range of interest. Both loops show similar behaviour, with thaximum allowable temper-
ature rapidly dropping from above lggTe) = 7.0 to just~ 6.3, i.e. ~ 2 MK, in the range
0.6 < B < 1.0. The curves then flatten out@creases te- 1.5, before falling away below
the temperature of interest.

This thermal instability occurs as the heating becomes rooneentrated towards
the footpoints. As more heating is located at the footpahegpeak temperature is no longer
located at the top of the loop, which leads to coronal coretéors and a rapid cooling of the
plasma at the peak of the loop. The loop then undergoes a osatiten—evaporation cycle
with significant plasma flows [Mok et al., 2008]. This insiiiwas studied analytically by
Serio et al. [1981], for a half-loop with an exponentiallycdeasing heating function. They
found that the loops became unstable when the scale height dfeating rateSy, was
roughly one third the loop half length. We postulate thas tkithe same instability that is
causing our loops to become unstable at higher temperatndegalues gB. Unfortunately,

a direct comparison to this criterion is not possible as & xponential function is not a
goad fit to our heating rate. We have found that the exponesaiaponent of the magnetic
field strength has a scale height-02.8 Mm in one of the footpoints of loop B. For other
loops we found values of around5 to ~ 10 Mm. These values are much smaller than the
L/3 suggested by Serio et al. [1981]. However, the constanpooent ofB(s) ensures that
there is always a significant portion of heating occurrinthatloop apex and therefore the
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exponential component must be significantly steeper tgerighe instability.

This study of the existence of static solutions for a giveatimg rate can also pro-
vide information on the nature of the heating mechanismleraln [Mandrini et al., 2000]
provides a list of potential heating mechanisms, and thgieeted heating rate. This list
suggests that DC heating mechanisms tended to have a vadue &f which for the loops
we are considering would not provide a static solution. Hamuethe heating rates for AC
heating mechanisms usually have valueg &f 1, suggesting that these mechanisms could
provide static solutions for the loops considered here.

6.4 Conclusions

We have carried out simulations of coronal loops in a soltiv@cegion, seeking a diagnos-
tic method for the coronal heating rate. Our aim has beencersn whether observations
of individual coronal loops made in the EUV band are capabjgraviding constraints on
the coronal heating model. To reduce the number of free peteasiand arbitrary assump-
tions, we have considered a quasi-static model that rexjthies heating rate as a function
of position along the loop. Considerations of temporalatgitity of the heating that would
be required by the dynamic loop models have been deferrefitara paper.

Starting with a photospheric vector magnetogram from BfiMll, the coronal mag-
netic field was modelled using an NLFF extrapolation codee géometry of this field was
compared to an SD@IA 171 image of the same active region, and four loops thated
well were identified. The plasma in these loops was then nedieking a 1D hydrostatic
model capable of applying an arbitrary heating rate as aifumof magnetic field strength
along the loop. From the plasma parameters derived fronmtbdel, estimates of the EUV
emission in four wavelengths: SD@A 171 and 335 bands, and pure eand Fevi
spectral lines were made along the loop. The heating ratdheasvaried as a function of
the power indey (Eg. 5.9), and thefect this variation has on the modelled EUV emission
was observed.

We find the following characteristics of the modelled EUV ssin, similar in
loops with peak temperatures of 1 MK and 2 MK:

1. The distribution of the EUV intensities along the loopigarelatively little as a
function of the power indeg, therefore the shape of these distributions does not alkow u
to identify whether the heating is concentrated near thpfaots or the loop-top.

2. The total intensity of the EUV emission summed along thop lis much more
sensitive t@3. The range of sensitivity fg8 depends on the shape of the distribution of the
magnetic field strength along the loop. For steeply deangds(s) and lowerB(s) near the
loop-top, the achievable diagnostic range is @ < 1, where the total intensity increases
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by over a factor of 3. This provides a clear distinction betwea uniform heating and the
heating concentrated near the footpoints, and allowingrteasurement of the value gf
For the heating concentrated near the loop th<€ B8 < 0), the change of the total intensity
is up to 40% — this is measurable but due to the flat nature sfthit of the curve the error
bars on the determined valuesgivould be much larger.

3. For this category of loops, when the heating becomesgir@oncentrated near
the footpoints g > 1), there are no more stable solutions.

4. For loops with a flat distribution dB(s) over a significant portion of the loop,
the range of3 for which stable solutions exist increases and can reackesdtom 4 to 16
asB(s) becomes progressively more constant. However, valuggaéater than 2 are less
interesting for the diagnostic of coronal heating, and tbemalised intensities for these
loops change little foB < 2 even when the maximum rangeffs 4.

5. Loop length provides another factor to consider, as tieeelarge decrease in
density and the absolute total EUV emission for longer lcagshown in Fig. 6.16(b) and
Figs. 6.17-6.20. Therefore, the dependence of the tothgitly ons needs to be calculated
for each value of..

6. For loops considered in item 2 above, if the heating rapedds locally on the
magnetic field as in Eq. 5.9, the heating mechanisms thastmde static solutiong(< 1)
are likely to be AC heating models [Mandrini et al., 2000].eTBC heating models with
B = 2 would lead to non-steady solutions.
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Figure 6.17: The variation of total modelled emission witlp length for the AIA 171
band. This plot is generated by calculating the emissiom fitee scaled loop in Fig. 6.16.
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Figure 6.18: The variation of total modelled emission witbp length for pure Fs 171 A.
This plot is generated by calculating the emission from tiadesl loop in Fig. 6.16.
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Figure 6.19: The variation of total modelled emission witlop length for the AIA 335
band. This plot is generated by calculating the emissiom fitee scaled loop in Fig. 6.16.
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Figure 6.20: The variation of total modelled emission witlep length for pure Fevi
335 A. This plot is generated by calculating the emissiomftbe scaled loop in Fig. 6.16.
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Chapter 7

Conclusions

In this thesis we have broadly considered two distinct ané&slar Physics research, firstly
studying the behaviour of the axisymmetric, or ‘Sausageillations of coronal plasma
structures. Secondly using a combination of modellingnepkes to develop a model for
the EUV emission from a coronal active region based on vau@mgnetogram data of the
photosphere.

The common theme through both of these areas has been iropienglelatively simple
mathematical representations of complex physical problefhis allows these problems
to be modelled quickly without using large amounts of preaes power. This also allows
for a larger parameter space to be explored, which was pkatig useful when modelling
sausage oscillations.

We will finish by reviewing the work which has been describedss.

7.1 Sausage oscillations

The initial set up considered in the study of sausage osoiliswas that of a plasma cylin-
der. In this we considered a cylinder of denser plasma endaedda uniform magnetic
field aligned with the axis of the cylinder. The variation iragmetic field strength in the
radial direction, which is the only direction in which it ismying, gives a variation in the
Alfvén speed of the following form:

Ca(r) = Cawo [1 - 6exp(—;—Z)] , (7.2)

whereCa(r) is the Alfvén speedCa. is the Alfvén at an infinite radial distance,is the
index of steepness of the Alfvén speed profilés the characteristic width of the cylinder.
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An important feature of this profile to consider is thabas> oo this profile becomes a step
profile. This is important as the set up with the step profile bheen solved analytically by
Zaitsev and Stepanov [1975] and also by Edwin and Roberg&3]19

Using this profile we were able to reduce the problem to a 1-[E FR6), which could
easily be solved numerically for a variety of parameterds Blilowed us to study how the
period of these oscillations varies with longitudinal waarmber, which is directly related
to the length of the loop. We also accounted for tlfea that varying the shape of the
Alfvén speed profile has on the period.

The main result found in this section was to resolve the Idagding discrepancy be-
tween analytical results which had been calculated in tlengly leaky regime [Zaitsev
and Stepanov, 1982; Kopylova et al., 2002, 2007], and esaliculated using models in
the weakly leaky regime [Pascoe et al., 2007a; Inglis e2@D9]. This work was published
in Nakariakov et al. [2012].

This approach was then used to verify a novel analytical afpration of the dispersion
relation for sausage oscillations.

Analytical approximations for the dispersion relation evdound for three regimes: the
weakly trapped regime, the weakly leaky regime and the glydeaky regime. These ap-
proximations were developed by performing a Taylor expamsif the dispersion relation
about the relevant point and determining the appropriatetran of terms to consider. These
expansions were then separated into their real and complepanents to give expressions
for the real and complex parts of the frequency.

The model of the sausage oscillation was then used to genesilts to compare with the
analytical approximations. The real component of the feeqy was compared with the
modelled frequency around the cfit@and in the long-wavelength (strongly leaky) regime.
The complex component of the frequency was used to compdhnetlvé decay rate of the
leaky oscillations. In all regimes a good match was founavben the analytical approxi-
mations and the model. These results were published in fddtni Farahani et al., 2014].
The final consideration of sausage oscillations involvetkgalising the model to consider
the slab geometry. This was relevant as these oscillatimbelieve to be present in the
corona [Smith et al., 1997; Verwichte et al., 2005; Cost4,120

The set up considered here was very similar to that of thendsitial case. Instead of a
cylinder of plasma embedded in a uniform magnetic field, wesitered an infinite slab of
plasma aligned with the magnetic field. This set up allowsmlar form for the Alfvén
speed as before, but instead of varying radially it is varymthe direction perpendicular
to the slab (the-direction), its variation is described by (4.2).

This set up allowed the sausage oscillation in the slab gegrtebe modelled in the same
manner as in the cylindrical geometry. The variation of thaqu of these oscillations with
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the wavelength displayed qualitatively the same behawasun the cylindrical case. Over-
all it was found that the cylindrical geometry was bettereabl contain the oscillations, as
was in line with expectations. We were also able to compaetidf wavelength values

to those obtained analytically by considering the disjperselation, and found them to be
a good match.

7.2 Modelling coronal active regions

The other half of this thesis concerns developing a modeladranal active region. The
aim of this was to develop a model that allowed for an arbjtfaating function to be ap-
plied, and then the EUV emission of the modelled region cbeldalculated and compared
to EUV observations of the active region which had been mgdallyAIA.

The initial stage of this process involved modelling theotrad magnetic field. This was
done by using a non-linear force free model using the phbgrsp magnetic field, as mea-
sured by SD@HMI, as the bottom boundary condition. The method used toutatle this
model was the optimisation method developed by Wiegelmaah 2012].

From this magnetic field model, the underlying loops strreguwhich define the active re-
gion were traced. This was done by tracing the magnetic field the bottom boundary of
the modelled region back to the bottom boundary. Each ottleasps forms the underlying
structure for the rest of the modelling. As well as defining geometry of the active region.
The plasma inside these loops was then modelled using a Biostatic model developed
by van Ballegooijen [van Ballegooijen, 2004]. This moddled the energy balance equa-
tion for the loop given an arbitrary heating rate, the patticheating rate we chose to study
was:

B V |
QB) - @ gy L 72)
Finally the EUV emission from these loops needed to be medelhis was done by using
the temperature response function for the AlA filters, whach present in the SolarSoft
library for IDL. This function allowed for the emission froeach loop to be calculated
along its length. The modelled emission for the entire actegion was then calculated
by projecting each of these loops on to the plane on which éineyobserved by AlA, and
summing their emission.

These modelled AIA images where then compared to obsensatitade by AlA of the

modelled active regions. It was found thaffdient values gB were required to model the
emission as observed at the 335 A wavelength and at the 171vAleveyth. It was also
found to be dfficult for a direct quantitative comparison of images due esfight varia-
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tion in geometry between the modelled and observed region.

We then proceeded to model individual loops from the actdggon to gain a more in depth
understanding of how their behaviour varies with the vamatn the form of the heating
rate. This was initially done by keepigconstant and increasin@,, the variation in emis-
sion from the loop. As the heating, and therefore its tempesaincreased followed the
expected behaviour.

We then studied the variation in emissiongsaried, whilst the peak temperature of the
loop was kept constant. Here we found that the overall shipeeocemission along the
loops did not vary much, however gsincreased the overall emission from the loop did
increase.

In this section we also considered a limitation of the hytitas model, that for certain
loops and certain heating rates it is not possible to find ticssalution. This of course
reflects reality in that applying these heating rates wouwldlead to a stable loop. It is of
some interest to note for which heating rates the model ddimtba stable solution. Our
findings here agreed with the earlier work of Serio et al. []98

We conclude here the possibility of using the total overallssion for the loop as a diag-
nostic for the coronal heating rate, as it has showed a rah®gensitivity to the parameter

B.

7.3 Conclusion

Through this thesis various mathematical techniques haga hsed to model a wide range
of processes in the corona. These techniques have led td neefresults which further our
understanding of the many complex processes which arerirguhroughout the corona.

107



Bibliography

M. Abramowitz, I. A. Stegun, and R. H. Romer. Handbook of Mattatical Functions with
Formulas, Graphs, and Mathematical Tabkserican Journal of Physics, 56:958—-958,
October 1988. doi: 10.111R15378.

J. J. Aly. On the reconstruction of the nonlinear force-fceeonal magnetic field from
boundary data. Sol. Phys., 120:19-48, March 1989. doi:000/BF00148533.

T. Amari, J. J. Aly, J. F. Luciani, T. Z. Boulmezaoud, and Z.kMi Reconstructing the
Solar Coronal Magnetic Field as a Force-Free Magnetic Fietd. Phys., 174:129-149,
August 1997. doi: 10.1028:1004966830232.

A. Asai, M. Shimojo, H. Isobe, T. Morimoto, T. Yokoyama, K.iSasaki, and H. Nakajima.
Periodic Acceleration of Electrons in the 1998 November d@S-lare. ApJ, 562:L.103—
L106, November 2001. doi: 10.10838052.

M. J. Aschwanden. Theory of radio pulsations in coronal oopol. Phys., 111:113-136,
March 1987. doi: 10.100BF00145445.

M. J. Aschwanden. A Nonlinear Force-Free Magnetic Field rdgpnation Suitable for
Fast Forward-Fitting to Coronal Loops. I. Theory. Sol. Phe87:323-344, October
2013. doi: 10.100811207-012-0069-7.

M. J. Aschwanden and L. W. Acton. Temperature TomographhefSoft X-Ray Corona:
Measurements of Electron Densities, Tempuratures, afférBntial Emission Measure
Distributions above the Limb. ApJ, 550:475-492, March 20fdi: 10.1086319711.

M. J. Aschwanden, R. W. Nightingale, and D. Alexander. Eraefor Nonuniform Heat-
ing of Coronal Loops Inferred from Multithread Modeling oRRCE Data. ApJ, 541.:
1059-1077, October 2000. doi: 10.1(B®0486.

M. J. Aschwanden, V. M. Nakariakov, and V. F. Melnikov. Matgteydrodynamic
Sausage-Mode Oscillations in Coronal Loops. ApJ, 600:468-January 2004. doi:
10.1086379789.

108



D. Banerjee, R. Erdélyi, R. Oliver, and E. O'Shea. PresentRuture Observing Trends
in Atmospheric Magnetoseismology. Sol. Phys., 246:3-28ydwber 2007. doi:
10.1007s11207-007-9029-z.

D. Berghmans, F. Clette, and D. Moses. Quiet Sun EUV trah&igghtenings and tur-
bulence. A panoramic view by EIT on board SOHO. A&A, 336:16B955, August

1998.

P. S. Cally. Leaky and non-leaky oscillations in magnetix tiubes. Sol. Phys., 103:
277-298, February 1986. doi: 10.19BF00147830.

H. Carmichael. A Process for FlarddASA Special Publication, 50:451, 1964.

J. W. Cirtain, L. Golub, L. Lundquist, A. van Ballegooijen,. Savcheva, M. Shimojo,
E. DelLuca, S. Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kdndlarukage, and
K. Shibasaki. Evidence for Alfvén Waves in Solar X-ray Je&cience, 318:1580—,
December 2007. doi: 10.11&g8ience.1147050.

F. C. Cooper, V. M. Nakariakov, and D. R. Williams. Short pdrifast waves in solar
coronal loops. A&A, 409:325-330, October 2003. doi: 1014/0604-6361:20031071.

A. Costa. Topics on shock waves and coronal seismol&tgsma Physics and Controlled
Fusion, 53(7):074006, July 2011. doi: 10.108841-333%3/7/074006.

J. L. Culhane, L. K. Harra, A. M. James, K. Al-Janabi, L. J. diey, R. A. Chaudry,
K. Rees, J. A. Tandy, P. Thomas, M. C. R. Whillock, B. Winter,AG Doschek, C. M.
Korendyke, C. M. Brown, S. Myers, J. Mariska, J. Seely, J.d,a@. J. Kent, B. M.
Shaughnessy, P. R. Young, G. M. Simnett, C. M. Castelli, Shiwtzud, H. Mapson-
Menard, B. J. Probyn, R. J. Thomas, J. Davila, K. Dere, D. WiadShea, R. Hagood,
R. Moye, H. Hara, T. Watanabe, K. Matsuzaki, T. Kosugi, V. taen, and &. Wikstol.
The EUV Imaging Spectrometer for Hinode. Sol. Phys., 243619 June 2007. doi:
10.1007s01007-007-0293-1.

I. De Moortel and V. M. Nakariakov. Magnetohydrodynamic wsaand coronal seismol-
ogy: an overview of recent resultRoyal Society of London Philosophical Transactions
Series A, 370:3193-3216, July 2012. doi: 10.10%8a.2011.0640.

I. De Moortel, J. Ireland, and R. W. Walsh. Observation ofil@t@ns in coronal loops.
A&A, 355:L.23-1L.26, March 2000.

K. P. Dere, E. Landi, P. R. Young, G. Del Zanna, M. Landini, &hd. Mason. CHIANTI
- an atomic database for emission lines. IX. lonizationgatecombination rates, ioniza-

109



tion equilibria for the elements hydrogen through zinc apdaied atomic data. A&A,
498:915-929, May 2009. doi: 10.105004-6361200911712.

J. F. Drake. Characteristics of Soft Solar X-Ray Bursts.. Bhys., 16:152-185, January
1971. doi: 10.100BF00154510.

J. Dudik, E. Dzifcakova, M. Karlicky, and A. Kulinovas it possible to model observed
active region coronal emission simultaneously in EUV anda)({ilters? A&A, 531.:
A115, July 2011. doi: 10.1030004-6361201015947.

P. M. Edwin and B. Roberts. Wave propagation in a magneficatlictured atmosphere.
lll - The slab in a magnetic environment. Sol. Phys., 76:288; March 1982. doi:
10.1007BF00170986.

P. M. Edwin and B. Roberts. Wave propagation in a magnetimadgt. Sol. Phys., 88:
179-191, October 1983. doi: 10.10BF00196186.

G. H. Fisher, D. W. Longcope, T. R. Metcalf, and A. A. PevtsGeronal Heating in Active
Regions as a Function of Global Magnetic Variables. ApJ,:&8B-898, December
1998. doi: 10.108806435.

G. D. Fleishman, Q. J. Fu, G.-L. Huang, V. F. Melnikov, and Manyy. Discovery of
unusual large group delay in microwave millisecond ostiltpevents. A&A, 385:671—
685, April 2002. doi: 10.1050004-6361:20020172.

A. Fludra and J. Ireland. Inversion of the intensity-magnie¢ld relationship in solar active
regions. A&A, 398:297-303, January 2003. doi: 10.1/0604-6361:20021616.

A. Fludra and J. Ireland. Radiative and magnetic propeuiesolar active regions. I.
Global magnetic field and EUV line intensities. A&A, 483:6@21, May 2008. doi:
10.10510004-6361:20078183.

A. Fludra and H. Warren. Radiative and magnetic propertfesotar active regions. II.
Spatially resolved analysis of O V 62.97 nm transition ragémission. A&A, 523:A47,
November 2010. doi: 10.1081004-6361201014261.

C. Foullon, E. Verwichte, V. M. Nakariakov, and L. Fletchet:ray quasi-periodic pulsa-
tions in solar flares as magnetohydrodynamic oscillatiéw®sA, 440:L59-L62, Septem-
ber 2005. doi: 10.1030004-6361:200500169.

G. A. Gary, R. L. Moore, M. J. Hagyard, and B. M. Haisch. Nompmial features ob-
served in the magnetic field of an active region. ApJ, 314:782, March 1987. doi:
10.1086165104.

110



L. Golub, C. Maxson, R. Rosner, G. S. Vaiana, and S. Serio. netag fields and coronal
heating. ApJ, 238:343-348, May 1980. doi: 10.1086990.

M. Goossens, J. Andries, R. Soler, T. Van Doorsselaere,reghii, and J. Terradas. Sur-
face Alfvén Waves in Solar Flux Tubes. ApJ, 753:111, Julg20doi: 10.1088%004-
637X/7532/111.

M. Gruszecki, V. M. Nakariakov, and T. Van Doorsselaere. ergity variations asso-
ciated with fast sausage modes. A&A, 543:A12, July 2012. : d).10530004-
6361/201118168.

G. Halberstadt and J. P. Goedbloed. Alfven wave heating afnab loops: photospheric
excitation. A&A, 301:559, September 1995.

Mike Hapgood and Alan Thomsor§ace weather: itsimpact on Earth and implications
for business. Lloyds 360 Risk Insight, 2010.

T. Hirayama. Theoretical Model of Flares and ProminenceBvaporating Flare Model.
Sol. Phys., 34:323-338, February 1974. doi: 10.1BB00153671.

J. T. Hoeksema, Y. Liu, K. Hayashi, X. Sun, J. Schou, S. Catyid. Norton, M. Bobra,
R. Centeno, K. D. Leka, G. Barnes, and M. Turmon. The Helgms& and Magnetic
Imager (HMI) Vector Magnetic Field Pipeline: Overview andr®®rmance. Sol. Phys.,
289:3483-3530, September 2014. doi: 10.1607207-014-0516-8.

J. V. Hollweg. Resonance absorption of magnetohydrodynauiface waves Physical
discussion. ApJ, 312:880-885, January 1987. doi: 10/16846834.

C. Hornsey, V. M. Nakariakov, and A. Fludra. Sausage ogitiia of coronal plasma slabs.
A&A, 567:A24, July 2014. doi: 10.1030004-6361201423524.

H. S. Hudson. Solar flares, microflares, nanoflares, and abraating. Sol. Phys., 133:
357-369, June 1991. doi: 10.10BF00149894.

A. R. Inglis, V. M. Nakariakov, and V. F. Melnikov. Multi-walength spatially resolved
analysis of quasi-periodic pulsations in a solar flare. A&87:1147-1153, September
2008. doi: 10.105D004-6361:20079323.

A. R. Inglis, T. van Doorsselaere, C. S. Brady, and V. M. Nakav. Characteristics of
magnetoacoustic sausage modes. A&A, 503:569-575, Au@ast 2ioi: 10.105D004-
6361200912088.

111



G. W. Inverarity and E. R. Priest. Turbulent coronal heatihig Wave heating in coronal
loops. A&A, 302:567, October 1995.

M. Karlicky, H. Mészarosova, and P. Jelinek. Radioffibarsts and fast magnetoacoustic
wave trains. A&A, 550:A1, February 2013. doi: 10.108104-6361201220296.

A. G. Kislyakov, V. V. Zaitsev, A. V. Stepanov, and S. Urpo. tBe Possible Connection be-
tween Photospheric 5-Min Oscillation and Solar Flare Mi@ee Emission. Sol. Phys.,
233:89-106, January 2006. doi: 10.1I11207-006-2850-y.

J. A. Klimchuk. On Solving the Coronal Heating Problem. $ys., 234:41-77, March
2006. doi: 10.100811207-006-0055-z.

R. A. Kopp and G. W. Pneuman. Magnetic reconnection in ther@and the loop promi-
nence phenomenon. Sol. Phys., 50:85-98, October 19761@di007BF00206193.

Y. G. Kopylova, A. V. Stepanov, and Y. T. Tsap. Radial Ostitlas of Coronal Loops
and Microwave Radiation from Solar Flaresstronomy Letters, 28:783—791, November
2002. doi: 10.1134.1518717.

Y. G. Kopylova, A. V. Melnikov, A. V. Stepanov, Y. T. Tsap, afidB. Goldvarg. Oscilla-
tions of coronal loops and second pulsations of solar ragiggon. Astronomy Letters,
33:706-713, October 2007. doi: 10.1184063773707100088.

J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, JDFake, D. W. Duncan,
C. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. HutJbNr L. Katz, G. D.
Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeateS. Mitchell, R. A.
Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, T. D. &lrld.-P. Wuelser, C. J. Wolf-
son, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. CaldwellE. Deluca, R. Gates,
L. Golub, S. Park, W. A. Podgorski, R. I. Bush, P. H. ScheiverA. Gummin, P. Smith,
G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beagd\. Clapp, J. Lang, and
N. Waltham. The Atmospheric Imaging Assembly (AlA) on thd&®ynamics Obser-
vatory (SDO). Sol. Phys., 275:17-40, January 2012. dot(@¥s11207-011-9776-8.

B. C. Low and Y. Q. Lou. Modeling solar force-free magnetiddse ApJ, 352:343-352,
March 1990. doi: 10.108668541.

C. H. Mandrini, P. Démoulin, and J. A. Klimchuk. Magneticeki and Plasma Scaling
Laws: Their Implications for Coronal Heating Models. Ap30®99-1015, February
2000. doi: 10.108&08398.

112



M. Mathioudakis, J. H. Seiradakis, D. R. Williams, S. Avgabis, D. S. Bloomfield, and
R. T. J. McAteer. White-light oscillations during a flare diPkeg. A&A, 403:1101-1104,
June 2003. doi: 10.1081004-6361:20030394.

T. R. Metcalf. Resolving the 180-degree ambiguity in veatmgnetic field measure-
ments: The 'minimum’ energy solution. Sol. Phys., 155:288; December 1994. doi:
10.1007BF00680593.

T. R. Metcalf, M. L. De Rosa, C. J. Schrijver, G. Barnes, A. An\Ballegooijen, T. Wiegel-
mann, M. S. Wheatland, G. Valori, and J. M. McTtiernan. Nioadr Force-Free Model-
ing of Coronal Magnetic Fields. Il. Modeling a Filament Adesand Simulated Chromo-
spheric and Photospheric Vector Fields. Sol. Phys., 28#289, February 2008. doi:
10.1007s11207-007-9110-7.

Y. Mok, Z. Miki¢, R. Lionello, and J. A. Linker. The Formatioof Coronal Loops
by Thermal Instability in Three Dimensions. ApJ, 679:L16165, June 2008. doi:
10.1086589440.

R. J. Morton, R. Erdélyi, D. B. Jess, and M. Mathioudakis s@twations of Sausage Modes
in Magnetic Pores. ApJ, 729:L18, March 2011. doi: 10.72881-82057292/L.18.

G. Mossessian and G. D. Fleishman. Modeling of GyrosynobmdRadio Emission Pulsa-
tions Produced by Magnetohydrodynamic Loop OscillationSdlar Flares. ApJ, 748:
140, April 2012. doi: 10.1088004-637X7482/140.

H. Nakajima, M. Nishio, S. Enome, K. Shibasaki, T. Takano,Héanaoka, C. Torii,
H. Sekiguchi, T. Bushimata, S. Kawashima, N. Shinohararisdjiri, H. Koshiishi,
T. Kosugi, Y. Shiomi, M. Sawa, and K. Kai. The Nobeyama radiagraph. |IEEE
Proceedings, 82:705-713, May 1994,

V. M. Nakariakov and V. F. Melnikov. Quasi-Periodic Pulsas in Solar Flares.
Space Sci. Rev., 149:119-151, December 2009. doi: 10/400714-009-9536-3.

V. M. Nakariakov and B. Roberts. On Fast Magnetosonic CdrBasations. Sol. Phys.,
159:399-402, July 1995. doi: 10.10BF00686541.

V. M. Nakariakov and E. Verwichte. Coronal Waves and Ogidlfss. Living Reviews in
Solar Physics, 2:3, July 2005. doi: 10.12948sp-2005-3.

V. M. Nakariakov, L. Ofman, E. E. Deluca, B. Roberts, and JDMvila. TRACE observa-
tion of damped coronal loop oscillations: Implications éoronal heatingScience, 285:
862-864, August 1999. doi: 10.1186ience.285.5429.862.

113



V. M. Nakariakov, V. F. Melnikov, and V. E. Reznikova. Glolslusage modes of coronal
loops. A&A, 412:L7-L10, December 2003. doi: 10.108104-6361:20031660.

V. M. Nakariakov, C. Hornsey, and V. F. Melnikov. Sausageildions of Coronal Plasma
Structures. ApJ, 761:134, December 2012. doi: 10.AWRR-637X4761/2/134.

U. Narain and P. Ulmschneider. Chromospheric and Coronaitifte Mechanisms II.
Space Sci. Rev., 75:453-509, February 1996. doi: 10/BFD0833341.

L. Ofman, J. M. Davila, and R. S. Steinolfson. Coronal haptiy the resonant absorp-
tion of Alfven waves: Wavenumber scaling laws. ApJ, 444:4477, May 1995. doi:
10.1086175621.

L. Ofman, M. Romoli, G. Poletto, G. Noci, and J. L. Kohl. Ultralet Coronagraph Spec-
trometer Observations of Density Fluctuations in the Sélard. ApJ, 491:1.111-1114,
December 1997. doi: 10.1083.1067.

E. S. Oran, J. T. Mariska, and J. P. Boris. The condensatingtlbility in the solar transi-
tion region and corona. ApJ, 254:349-360, March 1982. dnil(86159739.

E. N. Parker. Magnetic Neutral Sheets in Evolving Fields it Favo - Formation of the
Solar Corona. ApJ, 264:642, January 1983. doi: 10./GR®B37.

E. N. Parker. Nanoflares and the solar X-ray corona. ApJ4338:479, July 1988. doi:
10.1086166485.

D. J. Pascoe, V. M. Nakariakov, and T. D. Arber. Sausagelasoits of coronal loops.
A&A, 461:1149-1154, January 2007a. doi: 10.1@&D4-6361:20065986.

D. J. Pascoe, V. M. Nakariakov, and T. D. Arber. Sausage l@soits in Multishell Coronal
Structures. Sol. Phys., 246:165-175, November 2007b.1001:007s11207-007-9055-
X.

D. J. Pascoe, |. de Moortel, and J. A. McLaughlin. Impulsivgenerated oscillations
in a 3D coronal loop. A&A, 505:319-327, October 2009a. doD.1D5Y0004-
6361200912270.

D. J. Pascoe, V. M. Nakariakov, T. D. Arber, and K. MurawskiauSage oscillations in
loops with a non-uniform cross-section. A&A, 494:1119-81February 2009b. doi:
10.10570004-6361:200810541.

F. Reale. Coronal Loops: Observations and Modeling of CedffillasmalLiving Reviews
in Solar Physics, 11:4, July 2014. doi: 10.129485p-2014-4.

114



F. Reale, G. Peres, S. Serio, R. M. Betta, E. E. DelLuca, andolulG A Brightening
Coronal Loop Observed by TRACE. Il. Loop Modeling and Caaisiis on Heating.
ApJ, 535:423-437, May 2000. doi: 10.10368817.

B. Roberts. Wave propagation in a magnetically structutegbaphere. | - Surface waves at
a magnetic interface. Sol. Phys., 69:27-38, January 1981a10.1007/BF00151253.

B. Roberts. Wave Propagation in a Magnetically Structureddsphere - Part Two - Waves
in a Magnetic Slab. Sol. Phys., 69:39-56, January 1981bh.1801007/BF00151254.

B. Roberts, P. M. Edwin, and A. O. Benz. On coronal oscillaioApJ, 279:857-865, April
1984. doi: 10.1088.61956.

R. Rosner and G. S. Vaiana. Hydrostatic and dynamic modedslaf coronal holes. ApJ,
216:141-157, August 1977. doi: 10.10865455.

R. Rosner, W. H. Tucker, and G. S. Vaiana. Dynamics of thesgeiat solar corona. ApJ,
220:643-645, March 1978. doi: 10.10865949.

G. Roumeliotis. The “Stress-and-Relax” Method for Recartding the Coronal Mag-
netic Field from Vector Magnetograph Data. ApJ, 473:1098cd&nber 1996. doi:
10.1086178219.

M. S. Ruderman and B. Roberts. Comment on “Note on the Irfidile Problem for
Coronal Loop Kink Waves” By P. S. Cally. Sol. Phys., 237:118%, August 2006. doi:
10.1007s11207-006-0192-4.

M. S. Ruderman, D. Berghmans, M. Goossens, and S. Poedext Bicitation of resonant
torsional Alfven waves by footpoint motions. A&A, 320:3@5L8, April 1997.

T. Sakurai. Calculation of force-free magnetic field witmrmbnstante. Sol. Phys., 69:
343-359, February 1981. doi: 10.10BF00149999.

P. H. Scherrer, J. Schou, R. |. Bush, A. G. Kosovichev, R. gaBJ. T. Hoeksema, Y. Liu,
T. L. Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tatheand S. Tomczyk. The
Helioseismic and Magnetic Imager (HMI) Investigation foetSolar Dynamics Observa-
tory (SDO). Sol. Phys., 275:207-227, January 2012. doitQ@}s11207-011-9834-2.

J. Schou, P. H. Scherrer, R. |. Bush, R. Wachter, S. CouvMa€. Rabello-Soares, R. S.
Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, D. J. Akin, B. Allard, J. W. Miles,
R. Rairden, R. A. Shine, T. D. Tarbell, A. M. Title, C. J. Walfs D. F. Elmore, A. A.

115



Norton, and S. Tomczyk. Design and Ground Calibration oHe&oseismic and Mag-
netic Imager (HMI) Instrument on the Solar Dynamics Obsemna(SDO). Sol. Phys.,
275:229-259, January 2012. doi: 10.13072207-011-9842-2.

C. J. Schrijver and M. L. De Rosa. Photospheric and heliogpheaagnetic fields.
Sol. Phys., 212:165-200, January 2003. doi: 10.182822908504100.

C. J. Schrijver and A. A. van Ballegooijen. Is the Quiet-Swrdha a Quasi-steady, Force-
free Environment? ApJ, 630:552-560, September 2005. @al086431754.

C. J. Schrijver, A. W. Sandman, M. J. Aschwanden, and M. L. BsaR The Coronal Heat-
ing Mechanism as Identified by Full-Sun Visualizations. A@D5:512-525, November
2004. doi: 10.108824028.

C. J. Schrijver, M. L. De Rosa, T. R. Metcalf, Y. Liu, J. McTiam, S. Régnier, G. Valori,
M. S. Wheatland, and T. Wiegelmann. Nonlinear Force-Fredéiing of Coronal Mag-
netic Fields Part I: A Quantitative Comparison of Methodsl. £hys., 235:161-190,
May 2006. doi: 10.100811207-006-0068-7.

R. B. Scott, D. W. Longcope, and D. E. McKenzie. Peristaltiomiping near Post-
coronal Mass Ejection Supra-arcade Current Sheets. ABI5Z,70ctober 2013. doi:
10.10830004-637X776§1/54.

M. Selwa, K. Murawski, and G. Kowal. Three-dimensional nugs simulations of im-
pulsively generated MHD waves in solar coronal loops. A&R24.067-1072, August
2004. doi: 10.105D004-6361:20047112.

S. Serio, G. Peres, G. S. Vaiana, L. Golub, and R. Rosner.e@losronal structures. Il -
Generalized hydrostatic model. ApJ, 243:288-300, Jarl@8y. doi: 10.1088.58597.

T. Shimizu. Energetics and Occurrence Rate of Active-Regi@ansient Brightenings and

Implications for the Heating of the Active-Region CoronaA3, 47:251-263, April
1995.

J. M. Smith, B. Roberts, and R. Oliver. Magnetoacoustic wan@pagation in current
sheets. A&A, 327:377-387, November 1997.

L. Spitzer. Physics of Fully lonized Gases. 1962.

A. K. Srivastava, T. V. Zagarashvili, W. Uddin, B. N. Dwivedind P. Kumar. Observa-
tion of multiple sausage oscillations in cool post-flarepodMNRAS, 388:1899-1903,
August 2008. doi: 10.117{11365-2966.2008.13532.x.

116



P. A. Sturrock. Model of the High-Energy Phase of Solar RHarblature, 211:695-697,
August 1966. doi: 10.103811695a0.

J. T. Su, Y. D. Shen, Y. Liu, Y. Liu, and X. J. Mao. Imaging Ohssions of Quasi-
periodic Pulsations in Solar Flare Loops with SIAOA. ApJ, 755:113, August 2012.
doi: 10.10880004-637X7552/113.

H. P. SummersThe ADAS manual, version 2-3, http:/Avmww.adas.ac.uk/. 2001.

B. Tan. Observable Parameters of Solar Microwave Puls&ingcture and Their Implica-
tions for Solar Flare. Sol. Phys., 253:117-131, Decembe82@oi: 10.100/11207-
008-9235-3.

J. Terradas, R. Oliver, and J. L. Ballester. On the excitatibtrapped and leaky modes in
coronal slabs. A&A, 441:371-378, October 2005. doi: 10110804-6361:20053198.

B. J. Thompson, S. P. Plunkett, J. B. Gurman, J. S. NewmarlC.Gst. Cyr, and D. J.
Michels. SOHQEIT observations of an Earth-directed coronal mass ejectioMay 12,
1997. Geophys. Res. Lett., 25:2465-2468, 1998. doi: 19/26851.50429.

D. Tsiklauri, M. J. Aschwanden, V. M. Nakariakov, and T. D.b&r. Radiative hydro-
dynamic modeling of the Bastille-Day flare (14 July, 2000)Numerical simulations.
A&A, 419:1149-1158, June 2004. doi: 10.108004-6361:20041088-1.

A. A. van Ballegooijen. Observations and Modeling of a Figarhon the Sun. ApJ, 612:
519-529, September 2004. doi: 10.1@&2512.

T. Van Doorsselaere, J. Andries, S. Poedts, and M. Goos&arsping of Coronal Loop
Oscillations: Calculation of Resonantly Damped Kink Qatibns of One-dimensional
Nonuniform Loops. ApJ, 606:1223-1232, May 2004. doi: 186883191.

T. Van Doorsselaere, A. De Groof, J. Zender, D. Berghmand,MinGoossens. LYRA
Observations of Two Oscillation Modes in a Single Flare. Ap@0:90, October 2011.
doi: 10.10880004-637X74(0'2/90.

S. Vasheghani Farahani, C. Hornsey, T. Van DoorsselaalévlaGoossens. Frequency and
Damping Rate of Fast Sausage Waves. ApJ, 781:92, Februady #0i: 10.1088004-
637X/781/2/92.

A. Veronig, M. Temmer, A. Hanslmeier, W. Otruba, and M. Messit Temporal aspects
and frequency distributions of solar soft X-ray flares. A&¥82:1070-1080, February
2002. doi: 10.105D004-6361:20011694.

117



E. Verwichte, V. M. Nakariakov, and F. C. Cooper. Transvavages in a post-flare supra-
arcade. A&A, 430:L65-L68, January 2005. doi: 10.10804-6361:200400133.

E. Verwichte, C. Foullon, and V. M. Nakariakov. Fast magaetmstic waves in curved
coronal loops. Il. Tunneling modes. A&A, 449:769-779, ARA06. doi: 10.105D004-
6361:20054398.

J. F. Vesecky, S. K. Antiochos, and J. H. Underwood. Numenezadeling of quasi-static
coronal loops. | - Uniform energy input. ApJ, 233:987-997QvBimber 1979. doi:
10.108¢157462.

R. W. Walsh and J. Ireland. The heating of the solar corona AA®ev., 12:1-41, 2003.
doi: 10.1007s00159-003-0021-9.

M. S. Wheatland, P. A. Sturrock, and G. Roumeliotis. An Ojtation Approach to Recon-
structing Force-free Fields. ApJ, 540:1150-1155, Septed®00. doi: 10.108809355.

R. S. White, E. Verwichte, and C. Foullon. First observatidm transverse vertical oscil-
lation during the formation of a hot post-flare loop. A&A, 54329, September 2012.
doi: 10.10510004-6361201219856.

T. Wiegelmann. Optimization code with weighting functioor fthe reconstruc-
tion of coronal magnetic fields. Sol. Phys., 219:87-108,udan 2004. doi:
10.1023B:SOLA.0000021799.39465.36.

T. Wiegelmann and B. Inhester. How to deal with measurementsand lacking data
in nonlinear force-free coronal magnetic field modelling®A4 516:A107, June 2010.
doi: 10.10510004-6361201014391.

T. Wiegelmann, B. Inhester, and T. Sakurai. Preprocesdingctor Magnetograph Data
for a Nonlinear Force-Free Magnetic Field Reconstructi@uol. Phys., 233:215-232,
February 2006. doi: 10.10011207-006-2092-z.

T. Wiegelmann, J. K. Thalmann, B. Inhester, T. Tadesse, X, @ad J. T. Hoeksema.
How Should One Optimize Nonlinear Force-Free Coronal Mtgméeld Extrapolations
from SDQHMI Vector Magnetograms? Sol. Phys., 281:37-51, NovemBé&22 doi:
10.1007s11207-012-9966-z.

A. R. Winebarger, H. P. Warren, and J. T. Mariska. Transitkegion and Coronal Ex-
plorer and Soft X-Ray Telescope Active Region Loop Obsé@wmat Comparisons with
Static Solutions of the Hydrodynamic Equations. ApJ, 589:4149, April 2003. doi:
10.1086368017.

118



G. L. Withbroe and R. W. Noyes. Mass and energy flow in the sctaomosphere and
corona. ARA&A, 15:363-387, 1977. doi: 10.1Y46nurev.aa.15.090177.002051.

S. Yashiro, S. Akiyama, N. Gopalswamy, and R. A. Howardfddent Power-Law Indices
in the Frequency Distributions of Flares with and withoutr@wl Mass Ejections. ApJ,
650:L143-L146, October 2006. doi: 10.10863876.

V. V. Zaitsev and A. V. Stepanov. On the origin of fast driftsabption bursts. A&A, 45:
135-140, December 1975.

V. V. Zaitsev and A. V. Stepanov. On the Origin of the Hard XyRRailsations during Solar
Flares.Soviet Astronomy Letters, 8:132—134, April 1982.

119



