A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/80142

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk

Evaluating Technologies and Techniques for
Transitioning Hydrodynamics Applications to

Future Generations of Supercomputers

by

Andrew Colin Mallinson

A thesis submitted to The University of Warwick
in partial fulfilment of the requirements
for admission to the degree of

Doctor of Philosophy

Department of Computer Science
The University of Warwick

May 2016

Abstract

Current supercomputer development trends present severe challenges for
scientific codebases. Moore’s law continues to hold, however, power constraints
have brought an end to Dennard scaling, forcing significant increases in overall
concurrency. The performance imbalance between the processor and memory
sub-systems is also increasing and architectures are becoming significantly more
complex. Scientific computing centres need to harness more computational
resources in order to facilitate new scientific insights and maintaining their
codebases requires significant investments. Centres therefore have to decide
how best to develop their applications to take advantage of future architectures.
To prevent vendor “lock-in” and maximise investments, achieving portable-
performance across multiple architectures is also a significant concern.

Efficiently scaling applications will be essential for achieving improvements
in science and the MPI (Message Passing Interface) only model is reaching its
scalability limits. Hybrid approaches which utilise shared memory programming
models are a promising approach for improving scalability. Additionally PGAS
(Partitioned Global Address Space) models have the potential to address pro-
ductivity and scalability concerns. Furthermore, OpenCL has been developed
with the aim of enabling applications to achieve portable-performance across a
range of heterogeneous architectures.

This research examines approaches for achieving greater levels of perfor-
mance for hydrodynamics applications on future supercomputer architectures.
The development of a Lagrangian-Fulerian hydrodynamics application is pre-
sented together with its utility for conducting such research. Strategies for im-
proving application performance, including PGAS- and hybrid-based approaches
are evaluated at large node-counts on several state-of-the-art architectures.

Techniques to maximise the performance and scalability of OpenMP-based hy-

ii

brid implementations are presented together with an assessment of how these
constructs should be combined with existing approaches. OpenCL is evaluated
as an additional technology for implementing a hybrid programming model
and improving performance-portability. To enhance productivity several tools
for automatically hybridising applications and improving process-to-topology
mappings are evaluated.

Power constraints are starting to limit supercomputer deployments, poten-
tially necessitating the use of more energy efficient technologies. Advanced
processor architectures are therefore evaluated as future candidate technologies,
together with several application optimisations which will likely be necessary.
An FPGA-based solution is examined, including an analysis of how effectively
it can be utilised via a high-level programming model, as an alternative to the

specialist approaches which currently limit the applicability of this technology.

Acknowledgements

The completion of this thesis, and the research work contained within it, was
made possible by the support of a number of people. Their academic advice
and personal support throughout my time at Warwick, has helped to maintain
my research focus.

I would like to thank AWE plc for funding this work. Specifically Andy
Herdman and Wayne Gaudin for providing guidance throughout; you have both
been a pleasure to work for.

My beloved partner Ruth, to whom I am eternally grateful, deserves huge
credit for all her love and support during my Ph.D. without which I would not
have been able to complete this work. Additionally, for their continued and
invaluable support throughout, I would also like to thank my Mum, Dad, Sister
and Brother-in-law.

Within my research group at Warwick I am very grateful to Dr. Oliver
Perks, David Beckingsale, Robert Bird, Dr. John Pennycook and James Davis
for their advice and constructive critiques of my ideas. Finally, I would also like
to thank Prof. Stephen Jarvis for accepting me onto the Ph.D. programme and

for supervising my research.

iv

Declarations

This thesis is submitted to the University of Warwick in support of the author’s
application for the degree of Doctor of Philosophy. It has been composed by the
author and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried

out by the author except in the cases outlined below:

e The collection of the execution times of the OpenCL version of CloverLeaf
on the Teller platform at SNL, was performed by Andy Herdman of AWE
ple.

Parts of this thesis have been previously published by the author in the following:

1. A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, J. M.
Levesque and S. A. Jarvis. CloverLeaf: Preparing Hydrodynamics Codes
for Exascale, In Proceedings of the Cray User Group 2013 (CUG), Napa
Valley, USA, May 2013 [132].

2. A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman and
S. A. Jarvis. Towards Portable Performance for Explicit Hydrodynamics
Codes, In Proceedings of the International Workshop on OpenCL 2013
(IWOCL), Atlanta, USA, May 2013 [131].

3. W. P. Gaudin, A. C. Mallinson, O. Perks, J. A. Herdman, D. A. Beck-
ingsale, J. M. Levesque, M. Boulton, S. McIntosh-Smith and S. A. Jarvis.
Optimising Hydrodynamics applications for the Cray XC30 with the ap-
plication tool suite, In Proceedings of the Cray User Group 2014 (CUG),
Lugano, Switzerland, May 2014 [69]. Awarded best research paper.

4. A. C. Mallinson, W. P. Gaudin, J. A. Herdman and S. A. Jarvis. Ex-
periences at scale with PGAS versions of a Hydrodynamics Application,
In Proceedings of the 8" International Conference on Partitioned Global
Address Space Programming Models (PGAS2014), Eugene, Oregon, USA,
Oct 2014 [133].

5. J. A. Herdman, W. P. Gaudin, D. A. Beckingsale, A. C. Mallinson, M.
Boulton, S. McIntosh-Smith and S. A. Jarvis. Accelerating Hydrocodes
with OpenACC, OpenCL and CUDA, In Proceedings of the 3rd Interna-
tional Workshop on Performance Modelling, Benchmarking and Simula-
tion, (PMBS12), Salt Lake City, Utah, USA, Nov 2012 [104].

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

e UK Atomic Weapons Establishment, under grants:
“The Production of Predictive Models for Future Computing
Requirements” (CDK0660)
“AWE Technical Outreach Programme” (CDK0724)
“AWE CASE studentship” (ref. 30197965)

vii

Abbreviations

ADRES
AMD
API
APU
ASIC
AVX
AWE
BG/Q
BSP
CAAR
CAF
CCE
CFD
CPU
CUDA
DARPA
DDR
DMA
DOD
DOE
DRAM
DSP
EDA
ESL
FLOP/s
FPGA

Architecture for Dynamically Reconfigurable Embedded Systems
Advanced Micro Devices

Application Programming Interface
Accelerated Processing Unit

Application Specific Integrated Circuit
Advanced Vector Extensions

Atomic Weapons Establishment, UK

Blue Gene Q

Bulk Synchronous Parallel

Center for Application Acceleration Readiness
Co-array Fortran

Cray Compilation Environment
Computational Fluid Dynamics

Central Processing Unit

Compute Unified Device Architecture
Defence Advanced Research Projects Agency
Double Data Rate

Direct Memory Access

Department of Defence

Department of Energy

Dynamic Random Access Memory

Digital Signal Processor

Electronic Design Automation

Electric System Level

Floating-Point Operations per Second

Field Programmable Gate Array

viii

(GP)GPU
HDD
HDL
HMC
HMPP
HPC
IB
IBM
IEEE
IFE
LANL
LLC
LLNL
LLVM
LUT
MPI
MTTI
MW
NIC
NIF
NOC
NUMA
ORNL
oS
PCle
PGAS
PGI
PRAM
PTX
RAM

(General Purpose) Graphics Processing Unit
Hard Disk Drive

Hardware Description Language

Hybrid Memory Cube

Hybrid Multicore Parallel Programming
High-Performance Computing

InfiniBand

International Business Machines Corporation
Institute of Electrical Engineers

Inertial Fusion Energy

Los Alamos National Laboratory

Last Level Cache

Lawrence Livermore National Laboratory
Low Level Virtual Machine

Look Up Table

Message Passing Interface

Mean Time to Interruption

Megawatt

Network Interface Card

National Ignition Facility, USA

Network on a chip

Non-Uniform Memory Access

Oak Ridge National Laboratory

Operating System

Peripheral Component Interconnect Express
Partitioned Global Address Space

Portland Group Incorporated

Parallel Random Access Machine

Parallel Thread Execution

Random Access Memory

RDMA Remote Direct Memory Access

RTL Register Transfer Level
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SMP Symmetric Multi-Processor
SNL Sandia National Laboratories
SOC System on a Chip
SPH Smoothed Particle Hydrodynamics
SPMD Single Program Multiple Data
SSE Streaming SIMD Extensions
TDP Total Power Draw
TLB Translation Lookaside Buffer
UPC Unified Parallel C

VHDL Very High Speed Integrated Circuit Hardware Description Language

Definitions

Collective

Refers to a communication event, within parallel application programming, in
which more than two end-points are involved. Communication of this type can
potentially involve multiple source or destination end-points (or both).
Computational Kernel

A collection of application program code, such as multiple loop-block struc-
tures, which has been logically co-located within the same program function or
subroutine, and collectively performs a particular well-defined task or operation.
Compute Bound

Is a term used to refer to one or a series of operations whose overall runtime is
dominated by the length of time required to process the particular instructions
and associated data-values within the computational device.

Exascale

Is a term which refers to high performance computing systems which are capable
of executing a thousand Petaflops or a quintillion (10'®) floating point operations
per second.

Elemental Function

Denotes a function which operates on a scalar argument or single array element
but can also be applied in parallel to a series of, potentially multi-dimensional,
array elements.

Energy to Solution

Refers to the total energy (Joules) consumed by an application during the course
of its execution on a particular processing architecture.

Global Address Space

In parallel programming this relates to the ability of any thread of execution to

directly access any memory location, which as been designated as being globally

xi

accessible, within the overall parallel application.

Halo Cells

The design of parallel applications often involves the decomposition of the overall
problem domain across multiple processors, such that each process is respon-
sible for a distinct subset of the domain. The operations performed by each
processor, however, often require data-values from parts of the problem domain
which are managed by other processes within the overall computation. This
frequently occurs on the boundary between the contiguous domains managed
by different processes. To minimise the accesses to remote memory locations
on other processes, boundary data cells from logically adjacent processes are
often replicated in a layer of cells around the domain managed by each process.
This additional layer of cells is referred to as a “halo” region and can be of
varying depths depending on the requirements of the algorithm currently being
executed.

Kernel Driver

A program which is able to unit-test a particular computational kernel routine
in terms of both its overall performance and correctness.

Memory Bound

Is a term used to refer to one or a series of operations whose overall runtime
is dominated by the length of time required to load (or store) the particular
instructions and associated data-values from the memory sub-system rather
than to actually process them within the computational device.

Network On a Chip (NOC)

Is a term used to refer to the inclusion of a dedicated interconnection network
between the processing components of a System On a Chip design i.e. within
the same integrated circuit.

Non-Uniform Memory Access (NUMA)

Refers to a particular design of multi-processing system in which the time to
access individual memory locations varies depending on the proximity of the

particular memory locations to the accessing processor. A “NUMA” region is

used to refer to a collection of memory locations which all have the same access
time relative to a particular processor.

Parallel Speedup

Is calculated by the time recorded for the execution of the application in serial
divided by the execution time of the application when run in parallel.

T (serial)

S(paTallel) = W

Petascale

Is a term which refers to high performance computing systems which are capable
of executing one quadrillion (10'%) floating point operations per second.
Point-to-Point

Refers to a communication event, within parallel application programming,
between a distinct pair of end-points i.e. with a well-defined source and a
destination.

Portable Performance

Refers to the goal of achieving optimal or acceptable levels of performance
across multiple different types of system architectures from a single source
code representative of an application, that is without including optimisations or
modifications for specific architectures.

Remote Direct Memory Access (RDMA)

Is a form of communication in which the initiating CPU sends information
regarding the message transfer (length, remote memory address etc) to its local
NIC, which then manages the actual data transfer across the network [22].
Communication is one-sided and consequently the remote CPU is not involved
in the data transmission, the network hardware at the destination handles all of
the processing involved in the receipt of the data and committing it to memory.
Strong Scaling

Solving a fixed problem size by utilising an increasing amount of computational

resources.

System On a Chip (SOC)

Is a term used to refer to an integrated circuit that incorporates all of the
necessary components required for a computational device within a single chip
substrate.

Wall-clock

A measure of application performance (the actual length of execution time)
recorded by an observer external to the application. This is different to CPU or
user time which relates to the total amount of time processor devices actually
spend executing applications.

Weak Scaling

In these studies the overall simulated problem size is increased proportionally

in line with the computational resources employed in the computation.

Contents

Abstract ii
Acknowledgements iv
Declarations v
Sponsorship and Grants vii
Abbreviations viii
Definitions xi
List of Figures xxii
List of Tables xxiii
1 Introduction 1
1.1 Motivations and Problem Statement 3
1.2 Domain 5
1.3 Research Questions and Hypothesis 6
1.4 Research Methodology 7
1.5 Thesis Contributions 10
1.6 CloverLeaf 13
1.6.1 Implementation 13

1.7 Thesis Structure Lo o 15
1.8 Project Availability L oo 16

2 Background Information 18
2.1 Hardware Background and Trends 18
2.1.1 Power Consumption 18

XV

2.1.2 HPC Interconnect Technology
2.1.3 Processor Subsystem Technology
2.1.4 Memory Subsystem Technology
2.2 Software Background and Trends
221 OpenMP
222 OpenCL e
223 CUDA e
224 OpenACC
2.2.5 VHDL and Verilog
2.2.6 BSP Programming Model
2.2.7 MPI Programming Model
2.2.8 PGAS Programming Model
2.2.9 Hybrid Programming Models
2.2.10 Current & Future Trends
2.3 Hydrodynamics Mathematical Foundations & Applications
2.3.1 Euler’s Equations of Compressible Fluid Dynamics
2.3.2 Motivations for Improving the State-of-the-art

2.4 SUMIMATY . . . v vt e e e e e

Intra-Node Performance Optimisations

3.1 Related Work

3.2 OpenMP-based Optimisations Examined
3.2.1 First-touch Memory Placement
3.2.2 Array-of-arrays Data Structure
3.2.3 Data Alignment & Cache Line Padding
3.2.4 High-level OpenMP Parallel Region
3.2.5 Duplicating Constant Data per NUMA-region
3.2.6 Explicit Loop Schedules
3.2.7 Inter-thread Synchronisation Elimination

3.2.8 Reducing Inter-thread Synchronisation

3.2.9 Thread-private Temporary Variables
3.2.10 Loop Vectorisation
3.2.11 Accelerate Kernel Optimisations
3.2.12 Update-Halo Kernel Optimisations
3.2.13 Automatic Application Hybridisation
3.3 Results Analysis
3.3.1 Individual Kernel Optimisation Analysis
3.3.2 Application Performance Analysis

3.4 Summary e e

Achieving Efficient Application Execution at Extreme Scale
4.1 Related Work oo oo
4.2 MPI-only Based Versions
4.2.1 Optimisations Examined
4.2.2 Power Consumption Instrumentation
4.3 Hybrid (MPI4+-OpenMP) Based Versions
4.3.1 Optimisations Examined
4.4 Results Analysis
4.4.1 MPI-only Results Analysis
4.4.2 Hybrid (MPI+OpenMP) Results Analysis

4.5 Summary

Evaluating the Utility of PGAS-based Approaches

5.1 Related Worko o o

5.2 SHMEM Implementation

5.3 CAF Implementation

54 Results Analysis L o
5.4.1 First Strong-scaling Experiment Results Analysis
5.4.2 Second Strong-scaling Experiment Results Analysis. . . .

5.5 SUMMATY . . .« . v e e e e

66
66
68
69
76
(s
78
80
81
95
107

111
111
113
114
116
117
123

6 Portable Performance Through OpenCL

6.1 Related Work

6.2 OpenCL Implementation

6.3

6.2.1
6.2.2

Reduction Operators

Optimisations oL

Results Analysis

6.3.1
6.3.2
6.3.3

Optimisations Analysis
Single-node Performance Analysis

Multi-node Performance Analysis

6.4 Summary

7 Evaluating FPGAs as Low Power Processing Solutions

7.1
7.2

7.3

7.4

Related Worko

FPGA Targeted OpenCL Implementations

7.2.1

Optimisations Examined

Results Analysis L

7.3.1 Optimisations Analysis
7.3.2 Time to Solution Analysis
7.3.3 Energy to Solution Analysis
Summaryo

8 Conclusion

8.1 Contributions

8.2
8.3

8.1.1 Mini-app Development and Utilisation
8.1.2 Evaluation of PGAS Programming Models
8.1.3 Examination of Hybrid Programming Models
8.1.4 Development of Application Optimisations
8.1.5 Supercomputer Architecture Analysis
Beneficiaries L
Limitations oo
8.3.1 Application Characteristics

126
126
128
130
133
139
140
151
154
159

162
162
164
164
175
176
184
186
188

8.3.2 The Utility of FPGA Architectures 197

84 Future Worko o 198
8.4.1 Extending the PGAS Language Evaluation 198

8.4.2 Intra-node Programming Models 199

8.4.3 Energy Efficient Processing Technologies 200
Bibliography 202
Appendices 223
A Experimental Platforms/Architectures 224
A.1 Production Supercomputer Platforms. 224
A1l HECToR 224

A12 Archer 225

A1.3 Spruce 225

A4 Mira 226

Al15 Titan 226

A16 Vulean oo 227

A2 Test-bed Platforms 227
A.2.1 Teller, Compton & Shannon 227

A22 Chilean Pine o 229

A23 Tuck 230

A3 Summary 230

List of Figures

1.1 Staggered grid employed in CloverLeaf 14
2.1 The Euler equations of compressible low 35
3.1 The modified “first-touch” memory initialisation approach 41
3.2 OpenMP point-to-point synchronisation approach 46
3.3 The “vectorising” version of the Calc-DT kernel 48
3.4 Optimisations to the Cell-Advection kernel 53
3.5 Optimisations to the Momentum-Advection kernel 54
3.6 Optimisations to the Accelerate kernel 55
3.7 Optimisations to the Cale-DT kernel 56
3.8 Optimisations to the PdV kernel 56
3.9 Optimisations to the Update-Halo kernel 57
3.10 Optimisations to the Field-Summary kernel 58

3.11 Application optimisations on the dual-socket CPU architecture . 59

3.12 Application optimisations on the Xeon Phi co-processor 60
4.1 CloverLeaf heap memory consumption per process 69
4.2 Cell calculation order for communication-computation overlap . . 72
4.3 MPI rank reordering strategy 75
4.4 Vertical decomposition optimisation 78
4.5 Distributed meta-data optimisation performance improvement . . 81
4.6 MPI processes / node configuration options on Vulcan 82
4.7 Huge-pages, hyper-threads and consolidated reduction 83
4.8 Message aggregation and early transmition optimisations 84
4.9 Performance of MPI-only Optimisations on Vulcan 85
4.10 Pre-posting MPI receives on Archer 86

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Performance of computation/communication overlap on Archer .
Early-sending & communication overlap optimisations on Vulcan
Performance of MPI v3.0 constructs on Archer
MPI rank reordering on Archer
Performance due to the distributed meta-data optimisation

Energy to solution analysis on Archer(XC30) and Mira(BG/Q) .
Hybrid (MPI4+OMP) performance on Archer
Performance of the MPI+OMP implementation on Vulcan
Message aggregation for the MPI+OMP version on Archer. . . .
Message aggregation for the MPI+OMP version on Vulcan
Optimisations to the hybrid versions on Archer
Optimisations to the hybrid version on Vulcan
Hybrid version produced by Reveal on Archer

Hybrid version produced by Reveal on Vulcan

PGAS implementations: Array- and buffer-exchange versions
Equivalent MPI, OpenSHMEM and CAF performance
Local & global synchronisation approaches
SHMEM volatile variables & fence/quiet optimisations
CAF pgas defer_sync construct & communication overlap . . .

SHMEM non-blocking, huge-pages & CAF FTL

Components of the OpenCL version of the Ideal_gas kernel . . .
OpenCL Reduction Implmentation for GPUs
OpenCL Reduction Implmentation for CPUs
The new device code for the Ideal_gas kernel.
Buffer packing strong scaling performance (9602 cell problem) . .
Strong-scaling performance (15,3602 cell problem)
Speedup, relative to OpenACC, of CUDA and OpenCL

Weak-scaling performance (3,840% cell/node problem)

88
89
90
92
93
94
96
97
99

. 100

101
102
105
106

. 117

119
120
121
122
123

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Vector shift operation implemented within the FPGA
Data caching across loop iterations on the FPGA
Optimisations to the Ideal-gas kernel on the Altera FPGA
Optimisations to the Accelerate kernel on the Altera FPGA . . .
Ideal-gas kernel time-to-solution analysis
Accelerate kernel time-to-solution analysis
Power consumption: Ideal-gas kernel

Ideal-gas kernel energy-to-solution analysis

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Al
A2
A3
A4
A5

OpenCL optimisations on the Nvidia K20X 140
OpenCL optimisations on the Intel Xeon E3-2620 141
OpenCL optimisations on the Intel Xeon Phi 7120P 142
OpenCL optimisations on the AMD Opteron 6272 143

Optimal work-group sizes for each OpenCL CloverLeaf kernel . . 149
Runtime of the OpenCL implementation for the 3,840% problem 152

Runtime of the OpenCL implementation for the 960? problem . . 153

Accelerate kernel profiling statistcs on the Altera FPGA 182
UK-based experimental platform system specifications 225
Specifications of platforms located at ORNL, ANL & LLNL . . . 226
Specifications of the experimental platforms located at SNL . . . 228
Chilean Pine platform system specifications 229
System specifications of the Tuck experimental platform 230

xxiil

CHAPTER 1

Introduction

The use of scientific computing / HPC has grown significantly over the last
decades and increasingly organisations and national governments are recognising
that it is crucial to their competitiveness and future prosperity [153, 11]. The
field promises to improve scientific insight and reduce product development
cycles by enabling more experiments (higher throughput) to be conducted in
significantly reduced time frames and overall operating budgets, whilst reducing
the need for more expensive physical tests. Additionally it enables experiments
to be conducted, potentially at higher fidelities and which couple multiple
different physics packages, that were previously not possible due to their sheer
size, complexity or cost [153, 206]. Increasingly HPC is also being utilised
to simulate particular problems which are impossible or extremely impractical
to test physically due to either the regulatory environment or safety concerns.
This has led to simulation being widely recognised as the third pillar of scientific
discovery alongside theory and experimentation [64, 167].

Several scientific “grand challenge” problems have been identified that will
require systems capable of delivering exascale levels of computational perfor-
mance in order to effectively simulate them and produce the required advances in
science [128, 206]. These include the solution of vastly more accurate predictive
models to improve scientific understanding within, for example, the fields of:
climate/weather forecasting; efficient low-carbon transportation; nuclear and
renewable energy; the certification of nuclear stockpiles; materials science; na-
tional security; and the advancement of certain biology/medical applications
such as effectively simulating the human brain [153, 128, 206].

Historically these systems were exclusively the preserve of large multi-national
organisations and government laboratories, primarily due to the costs associated
with procuring and operating them. The increasing commoditisation of the
technologies used to construct HPC systems has, however, facilitated significant
reductions in their overall cost and enabled smaller commercial organisations
and universities to gain access to them [11]. This has simultaneously enabled
substantially larger, more computationally capable and power-consuming sys-
tems to be constructed for organisations at the forefront of the field.

Despite the growing requirements for the use of HPC / scientific computing
technologies the field faces numerous significant challenges as organisations con-
tinue to push towards the construction of systems capable of delivering exascale

levels of computational performance [11, 128, 206]. The improvements in pro-

1. Introduction

cessor clock speeds, seen over the last decades, have proved to be unsustainable
due to their power and cooling requirements [153, 11]. System designers have
therefore been forced to significantly increase the amount of parallelism available
at all system levels, in order to continue to improve computational performance
capabilities. Overall system power consumption continues to become a major
concern to large HPC sites as systems become larger [153, 11, 206]. Due to these
increased scales, system MTTI (Mean Time to Interruption) is reducing to levels
below the time required to perform a check-point and restart operation, resulting
in overall system resiliency becoming increasingly problematic. Research into
fault resilient programming models for applications is therefore becoming in-
creasingly necessary [153, 11, 128]. At the processing chip/device level transistor
feature sizes continue to decrease in order to reduce energy requirements and
increase the computational capabilities of the associated devices. Similarly
advanced architectures such as GPGPUs, which exhibit even larger degrees of
parallelism, are increasingly being considered to further improve performance.
As the floating-point computational capabilities of processing devices improve
in terms of both execution time and power consumption, actually performing
these operations is becoming relatively inexpensive, whilst the cost of moving
data is becoming extremely expensive [153, 11, 128, 206, 115]. Consequently
memory bandwidth/latency and inter-node communication speeds are increas-
ingly limiting application performance and accounting for the most significant
proportion of overall power consumption [11].

The rapid technological change, currently being experienced by supercom-
puter architectures, represents a significant challenge to HPC application code
teams. Approaches based on the concept of “co-design” have been proposed
to address these challenges [153, 11, 206]. The growth in on-chip parallelism is
forcing algorithms/applications to move away from their existing coarse-grained
BSP (Bulk Synchronous Parallel) based models of concurrency, towards a more
fine-grained model of parallelism and to rely more on strong scaling [153, 11,
128]. Whilst weak-scaling simulation configurations will still be important on
exascale systems, it is highly likely that in order to reduce simulation time-
to-solution to currently required levels, the ability to effectively strong-scale
applications across future multi-petascale or exascale platforms will be essential
if these classes of machine are to be fully utilised for improved science. Irrespec-
tive of the nodal hardware employed in a particular supercomputer architecture,
there is a common requirement for improving the scalability of communication
mechanisms within future systems [10, 79, 11, 128]. Scientific application code
bases are also increasingly large and extremely complex; consequently porting
them to advanced novel architectures, in a manner which delivers portable per-

formance across different platforms, is becoming increasingly problematic [153,

1. Introduction

11, 115]). Effectively utilising the increased concurrency available will also be
vital if existing scientific applications are to harness the increased computational
capabilities present within future supercomputer architectures. Additionally,
simply maintaining them productively given current limited financial and devel-
opment resources also presents challenges and requires significant investments.

Given these trends and the pressing need to improve the performance of
key scientific codes on existing and future system architectures this thesis fo-
cuses on evaluating the utility of particular newly proposed technologies for the
advancement of explicit hydrodynamics applications. In particular it strives
to evaluate both software and hardware technologies and techniques that will
enable this class of applications to achieve greater overall performance and
scalability. Achieving these aims will facilitate improvements in the science
which it is possible to accomplish by improving overall scientific throughput

(time-to-solution) as well as current simulation resolutions.

1.1 Motivations and Problem Statement

The scientific need to develop more advanced, potentially exascale-class, com-
putational facilities is well documented, see Section 1 for more details. Actually
achieving the successful construction of future multi-petascale or exascale capa-
ble supercomputer systems and developing scientific simulation and modelling
applications which are able to effectively take advantage of their capabilities,
however, currently presents a number of significant challenges [11].

These include but are not limited to, addressing the overall power efficiency
of existing supercomputers to enable future larger and more computationally
powerful systems to be constructed [11]. Employing today’s technology to
construct a system capable of delivering an exaflop of computation would require
more than 1IGW of power [153]. The DOE (Department of Energy), in the USA,
has set the HPC industry the challenge of delivering an exascale capable solution
within an overall power budget of 20MW, necessitating an improvement of
>150% in power efficiency over current technology [153]. At the same time some
observers do not believe that the 20MW target is achievable [114]. A practical
limit of approximately 100MW exists, however, as the largest data-centres
currently in existence only have access to this amount of power [48]. Regardless
of the exact power budget figure, achieving a solution which lies within this
range will still require a huge improvement in computational power efficiency
over current technological solutions [153, 79, 10].

Actually developing and maintaining scientific applications and their under-
lying software components, to enable them to effectively utilise future supercom-

puting architectures will also become increasingly challenging. The creation of

1. Introduction

new programming paradigms designed to support more fine-grained parallelism
and deeper memory hierarchies may, therefore potentially be required [153, 11].
Additionally, it is recognised that achieving the necessary computational power
efficiencies will require future systems to use significantly different processor
architectures to current generations of systems [153, 11]. Supercomputer archi-
tectures are thus at present experiencing a transitional period. Potential future
candidate technologies include the use of accelerator devices such as GPGPUs,
many-core CPU devices with lower clock frequencies such as the Intel Xeon
Phi or the use of lower-power technologies from the mobile and embedded
computing sectors, such as ARM processors or FPGAs (Field Programmable
Gate Arrays) [183, 142]. Regardless of which approaches prevail achieving
optimal performance for existing applications and software stacks on these
advanced architectures will be extremely problematic [153, 11]. Additionally,
enabling applications to deliver portable performance across a range of future
architectures, which is a requirement of large HPC sites to avoid vendor “lock
in”, also presents significant challenges [11].

Furthermore scaling applications and systems to the levels of concurrency
which will be required to achieve exascale-levels of computational performance
also represents a significant challenge [153, 79, 10, 11]. It has been argued
that existing software approaches, mainly based on the MPI-only model of
computation, are already starting to reach the limits of their scalability, due
to the number of MPI ranks competing for shared interconnect and memory
resources, necessitating additional research into alternative programming mod-
els and techniques [18, 11]. Additionally, on machines incorporating accelerator
technologies, MPI-only is not a viable solution and precludes their use [11].
Hybrid programming models, which are able to make use of accelerators and
the shared memory capabilities available within nodes, represent a promising
area of research for improving performance by reducing the overall number of
MPI ranks involved in the computation. They may also enable applications
to be better adapted to future system architectures which are likely to exhibit
significant reductions in the memory capacity, memory bandwidth and network
bandwidth resources available per processing core [11].

It has also been recognised that if certain classes of application were able to
increase the levels of asynchronicity inherent within them, by fully exploiting
their potential to overlap communication and computation, then it would be
possible to utilise significantly lower performance interconnects for these ap-
plications, without negatively impacting performance [175, 11]. Additionally
the increased complexity of modern interconnects is forcing us to examine
topology-aware communication mechanisms and the placement of application

processes within the network in order to achieve optimal performance [4, 35, 11].

1. Introduction

Unlike the MPI model which utilises a two-sided model of communication,
PGAS (Partitioned Global Address Space) based approaches such as CAF (Co-
array Fortran) or OpenSHMEM rely on a lightweight one-sided communication
model and a global memory address space [40, 148]. This model represents
another promising area of research for improving the performance and scalability
of applications as well as programmer productivity [11]. It may also potentially
deliver further performance advantages by facilitating a reduction in the overall
memory footprint of applications through, for example, the elimination of com-
munication buffers. Historically, effectively utilising a PGAS-based approach
often required the use of a proprietary interconnect technology, incorporating
explicit hardware support, such as those commercialised in the past by Cray
and Quadrics [200]. Although the body of work which examines PGAS-based
applications on these technologies is still relatively small, substantially less
research exists which examines their performance on systems constructed from
commodity-based technologies such as Infiniband. It is likely that this analysis
will become increasingly important in the future given that Intel recently pro-
cured both the Cray Aries and Qlogic Infiniband interconnect technologies and
the potential for these technologies to converge within future Intel SOC (System
On a Chip) designs [96, 95]. Research is therefore needed to assess the relative
merits of PGAS-based programming models and future hardware evolutions to
ensure that the performance of scientific applications is optimised [11].

The task of developing, porting and optimising applications for future gen-
erations of HPC systems is becoming increasingly complicated as architectures
evolve [153, 11]. Developing and maintaining MPI-only applications is also
becoming increasingly problematic due to their complexity and the analysis of
legacy applications in order to convert them to hybrid models is non-trivial [11].
Even with an in-depth knowledge of the algorithm and target hardware, extract-
ing the maximum concurrency is a difficult, time-consuming task. Improving
the tool-suite available to developers which assists with this task will be essential

if optimal performance is to be achieved productively [153, 11].

1.2 Domain

This thesis is exclusively concerned with improving the performance of hydro-
dynamics applications and the identification of the most appropriate processing
solutions to facilitate their execution on future supercomputer system architec-
tures. The research undertaken is therefore focused on the fields of scientific
and high performance computing and is concerned with the performance, in
terms of overall time-to-solution, of a suite of applications of interest to the

sponsor of this work. Additionally it also focuses on the computational resources

1. Introduction

(e.g. memory capacity /bandwidth and power/energy consumption) consumed
by these applications whilst executing on particular architectures of interest.
Many of the research topics which are examined in this thesis have signif-
icantly wider applicability to other application domains within the scientific
computing field. The applications utilised within these domains exhibit similar
performance characteristics to the hydrodynamics applications examined within
this work, and researchers are also pursuing similar directions for improving the
current state-of-the-art, e.g. utilising PGAS and hybrid programming models.
Additionally other communities, such as the mobile and embedded computing
sectors may also potentially benefit from this research, as these fields already
extensively utilise several of the technologies examined in this research, e.g.
FPGAs. Similarly the research methodology employed in this work has much
broader applicability than to just scientific computing applications and tech-
nologies. This thesis is, however, deliberately constrained to the advancement
of explicit hydrodynamics applications within the scientific computing field
in order to adequately explore the applicability of the examined techniques,

optimisations and technologies to this domain of interest.

1.3 Research Questions and Hypothesis

The trends and challenges, outlined in Section 1.1 motivate the author’s research
and the work presented in this thesis specifically examines the following research

questions within the domain documented in Section 1.2:

1. Is it possible to improve the scalability of hydrodynamics applications, and
thereby their performance, by enabling these applications to execute more
efficiently on larger scale supercomputer resources, through the utilisation
of alternative design and implementation approaches. These include utilis-
ing optimisation techniques such as overlapping the execution of communi-
cation and computation constructs; evaluating alternative communication
strategies which are not based on the BSP-model; improving the mapping
between application processes and the underlying machine interconnect
topology; and employing a distributed approach for the management of

computational mesh meta-data.

2. Does the use of a hybrid programming model, based on either OpenMP
and OpenCL, enable the performance and scalability of this class of sci-
entific applications to be significantly improved, and if so to determine
how these models should be combined with existing approaches to achieve

optimal performance.

1. Introduction

3. Can the utilisation of PGAS-based programming models deliver any per-
formance and programmer productivity benefits for these hydrodynamics
applications, and if so to establish how this class of scientific applications
should be developed in order to maximise any potential benefits from the

use of this technology.

4. Determine which prospective supercomputer architectures currently rep-
resent the most performant and also energy efficient processing solution
for the execution of hydrodynamics applications. In particularly whether
x86 CPUs, IBM BG/Q CPUs, AMD APUs (Accelerated Processing Unit),
GPU-based accelerators, or the Intel Xeon Phi many-core accelerator, are

currently the most optimal choice for these applications.

5. Is it possible to utilise the OpenCL programming model to improve the
performance portability of hydrodynamics applications across a range of
prospective supercomputer architectures, including platforms based on

CPU, GPU, APU or many-core accelerator technologies.

6. Finally, to determine whether FPGAs currently represent a viable pro-
cessing technology which could be utilised within future supercomputer
systems in order to improve the overall energy consumption of these
applications, thus potentially enabling the construction of larger, more

computationally capable systems within a fixed power budget.

The primary research hypothesis of this work is that:
The performance of computational hydrodynamics simulations can be improved
through the use and implementation of the aforementioned technologies and

optimisation techniques on current generations of supercomputer platforms.

The overall objective of this research is therefore to improve the performance
of key hydrodynamics simulation applications through the examination of these
research questions and the testing of this hypothesis. Thereby potentially
facilitating advances in the scientific knowledge which it is currently possible
to generate through their use, either by delivering improvements in overall
scientific throughput by reducing the time-to-solution of existing simulations,
or by enabling larger more sophisticated simulations to be conducted which are

not currently feasible.

1.4 Research Methodology

The research documented in this thesis was undertaken using the following re-

search methodology to address the problems and challenges listed in Section 1.1

1. Introduction

within the domain outlined in Section 1.2.

To enable the research objective of this thesis to be completed in a reasonable
time efficient manner an approach based on the use of a mini-application (or
mini-app) was employed. Mini-apps are small, self contained programs that
embody essential performance characteristics of larger applications, and thus
provide a viable way to conduct more rapid experimentation [84]. This work
utilises and further develops a simplified but still representative structured,
explicit hydrodynamic mini-app known as CloverLeaf (Section 1.6) [132]. At-
tempting this work using fully functional legacy production codes has in the
past been found to be time consuming and impractical, due to the number of
potential solutions available and the time required to port the codebases to the
new technologies [84, 11]. A more rapid, lower risk approach for investigating the
solution space is therefore extremely desirable. The use of a mini-app enables
this rapid development and exploration of new technologies, architectures and
techniques, in a manner which is still representative of the main production
codebases which CloverLeaf represents.

Evaluating the utility of each of the different programming models and
techniques involved in this research required the development of numerous new
versions of CloverLeaf. Each new version examined one particular technique or
programming model enhancement, which ensured that changes in results can be
accurately attributed to particular modifications within the codebase. During
development the functionality and correctness of these additional versions was
regularly and frequently validated against the original version of the codebase
to ensure that bit-wise identical results, or results to within an acceptable error
tolerance, were produced at each stage. These validation tests were frequently
executed at small experimental scales (e.g. <64 nodes), however, during each
subsequent large-scale experiment the original CloverLeaf codebase was also
executed alongside the modified versions, enabling the results produced by all
additional versions to be validated at each stage of this work.

To examine the success of each candidate code optimisation technique, pro-
gramming model or technology, quantitative assessment methods using results
obtained from experiments on actual existing supercomputer hardware systems
were employed at each stage, rather than relying on the use of simulation envi-
ronments. Due to the scales of some of the experiments involved in this research,
system noise, caused by OS (Operating System) jitter and other concurrently
executing jobs, contending for globally shared system resources on several of
the key architectures under consideration, became a factor in the analysis of
the obtained experimental results. Specifically, it was therefore possible for the
jobs of other users, which were simultaneously executing on the experimental

platforms, to perturb these experimental results. To mitigate the effects of

1. Introduction

this system noise these experiments utilised, whenever possible, experimental
platforms in a fully dedicated mode. This ensured that only experiments related
to this research had access to the globally shared resources within a particular
supercomputing system, thus minimising any system noise caused by other
simultaneously executing applications. Additionally each experiment was also
repeated several (typically three) times and the results averaged to produce a
final value, before any analysis was conducted, thus further limiting the effects
of any system noise on the obtained results and conclusions. To mitigate the
influence of different network topologies and node allocations from the batch
schedulers managing the various supercomputer platforms examined in this
work, experiments at a particular scale were aggregated and executed within
the same allocations.

The range of experimental architectures and platforms involved in this re-
search were also selected to provide an extensive range of candidate technologies,
at both the node and system levels, which could potentially be utilised to
construct future generations of systems. Similarly experiments were selected
to enable conclusions to be drawn regarding the performance of a particular
technology or technique at a range of experimental scales. This included exper-
iments which examined performance on 1 node through to the largest job sizes
which it was practical to obtain on a particular platform, up to 8,192 nodes
(131,072 cores) in certain cases. These large scale experiments were essential
in enabling the utility of particular approaches to be accurately assessed as
potential candidates for enabling future applications to achieve exascale-levels
of computational performance.

The PowerInsight [119] technology was selected in order to conduct exper-
iments to accurately assess the power consumption/efficiency of the individual
technology components involved in this research. This has been developed and
appropriately validated to accurately monitor, at a sufficiently high sampling
frequency (maximum of 1,000MHz), the power drawn by all of the power rails
supplying each particular component. This includes the power drawn over the
PClIe bus connections which particular component cards use to interface with
the main circuit (“mother”) board on the nodes of supercomputer systems. It is
possible for components to draw up to 75W over these PCle connections, which
is potentially a significant proportion of their overall power consumption [121].
Additionally, PowerInsight also enables the actual power supply lines into the
other node components to be accurately monitored, including CPU and memory
devices, HDD devices and the PCle cards. Use of this technology enables out-
of-band power consumption traces to be generated for applications executing on
a particular technology without perturbing their actual execution, which would

potentially further effect overall power consumption. It also enables power mon-

1. Introduction

itoring research to be conducted without relying on the power/energy consump-
tion counters available within some processing devices, which are potentially
inaccurate. Additionally, devices which do not contain these built-in monitoring
subsystems can also be measured consistently. Whilst this technology is able
to accurately measure the power consumption of individual components at the
node level it is not able to produce accurate power consumption measurements
for large-scale experiments on actual supercomputer platforms. The power
monitoring capabilities available natively on the IBM BG/Q [201] and the Cray
XC30 [135] platforms were therefore employed in order to conduct this aspect
of this research.

1.5 Thesis Contributions

Specifically, to address the challenges and motivations discussed in Section 1.1
and answer the research questions documented in Section 1.3, this thesis makes

the following key contributions:

Mini-app Development and Utilisation

It reports on how the CloverLeaf mini-app, which is documented in detail
in Section 1.6, was further developed and utilised as part of this work in or-
der to conduct the necessary research into potential application optimisations,
candidate programming models and prospective supercomputer architecture
choices. Additionally, it also documents how the general planning and decision
making relating to the future development of scientific applications can be
improved through the use of mini-apps. This research contributed significantly
to CloverLeaf being accepted as part of the Mantevo mini-applications suite
from Sandia National Labs [84], which was recognised as one of the top 100 most
technologically significant innovations in 2013 by R&D Magazine [171, 184]. It
was also the UK’s only contribution to the initiative and is currently being
actively utilised by a large number of HPC centres, vendors and researchers

across the world.

Evaluation of PGAS Programming Models

Utilising PGAS-based programming models is recognised as a potential ap-
proach for improving the performance and scalability of applications and en-
abling them to achieve exascale-levels of computational performance. A further
contribution of this thesis is to examine whether two such PGAS programming
models (OpenSHMEM and CAF) can deliver any performance or scalability
improvements for this class of application. The implementation of CloverLeaf

in both PGAS programming models is documented together with experiences

10

1. Introduction

gained during the conversion from the original MPI-based implementation to
these models. This included the development of 10 distinct OpenSHMEM- and 8
distinct CAF-based versions, each of which examine alternative implementation
approaches.

A performance analysis is presented to provide both a comparison of each
programming model and to assess how the communication constructs within
each can best be incorporated into existing parallel applications. This examines
the performance of these versions, at considerable scale (up to 49,152 cores)
under a strong-scaling experimental scenario, on two state-of-the-art system
architectures and vendor implementations (SGI and Cray). To assess the utility
of these PGAS implementations against the dominant programming paradigm
used in existing parallel scientific applications a performance comparison against
an equivalent MPI-based implementation of CloverLeaf is presented. This infor-
mation will be useful to developers of future OpenSHMEM and CAF applica-
tions. Similarly, based on these results, recommendations to improve both the
OpenSHMEM specification and potentially future CAF compiler and runtime

systems are also identified.

Examination of Hybrid Programming Models
The incorporation of hybrid programming model constructs, based on both
OpenMP and OpenCL, into this class of application is examined together with
a quantitative assessment of whether these models can deliver benefits in terms
of improved application performance or scalability. A detailed description of
CloverLeaf’s hydrodynamics algorithm, and its implementation in both OpenMP
and OpenCL is presented, together with a description of how both models
integrate with the existing MPI-based Fortran code. Comparisons of the per-
formance of the MPI4+OpenMP and MPI+OpenCL versions of CloverLeaf are
presented, relative to the original MPI-only version, at considerable scale on
a number of system architectures including, two alternative Cray system ar-
chitectures, an SGI ICE-X platform and an IBM BG/Q. A smaller-scale (1
node) analysis is also conducted across a broader range of potential candidate
HPC architectures. For both programming models a number of optimisations to
improve performance and portability are documented and their effects analysed.

The ability of the OpenCL programming model to deliver portable applica-
tion performance from a single code base across a broad range of future candi-
date supercomputer architectures is assessed. Additionally the viability of both
approaches for expressing large scientific codebases and achieving acceptable
levels of programmer productivity is also analysed.

To potentially improve programmer productivity tools to automatically hy-

bridise MPI-only codebases using OpenMP constructs are being developed.

11

1. Introduction

The utility of the Reveal software tool from Cray is therefore also evaluated
as a technology for achieving this, by automatically hybridising the MPI-only
version of CloverLeaf and comparing its performance to that of a hand-optimised
MPI+OpenMP implementation.

Development of Application Optimisations

The effect of several candidate optimisation techniques on the performance
and scalability of the MPI-only versions of this class of scientific application,
are also examined and quantitatively assessed at considerable scale on three
candidate system architectures: IBM BG/Q, Cray XC30 and SGI ICE-X. These
optimisations include the examination of the effect of: utilising an implementa-
tion based on the use of distributed mesh meta-data information; overlapping
communications and computational operations; several recently standardised
MPI v3.0 constructs; as well as several message aggregation and early data
transmission communication strategies. Additionally, the effect of optimising
the placement of MPI ranks within the supercomputer interconnect fabric is
explored together with the effectiveness of employing software tools from Cray

in achieving this rank remapping.

Supercomputer Architecture Analysis
This thesis examines a range of technologies which are currently available for
the construction of supercomputer platforms and provides an evaluation of the
suitability of several intra- and inter-node processing architectures for the exe-
cution of explicit hydrodynamics applications. This enables the solution space
of candidate technologies, which will likely be available for the construction of
future exascale capable supercomputer systems, to be explored in order to assess
their potential utility for delivering the performance improvements required for
the scientific applications which are the focus of this research. Performance
results from the execution of CloverLeaf are presented and analysed under
a range of programming models on discrete GPGPU solutions from Nvidia
and AMD, Intel Xeon Phi coprocessors, AMD APU based systems as well as
CPU-based solutions from Intel and AMD. A performance comparison of the
OpenCL version of CloverLeaf, against optimised native versions (OpenMP and
CUDA), is also included as well as the effect of various optimisation techniques.
Additionally, the performance and behaviour of numerous versions of the
application (MPI-only, MPI+OpenMP, MPI+CUDA, MPI4OpenCL, PGAS-
based) are also assessed at scale on several existing large-scale system architec-
tures incorporating different interconnect topologies and technologies. These
include a Cray XC30 (Aries Dragonfly), a Cray XK7 (Gemini 3D-torus), an
IBM BG/Q (5D-torus) and an SGI ICE-X (IB 7D-hypercube) platform.

12

1. Introduction

As well as assessing candidate technologies in terms of overall performance
(time-to-solution), this thesis also examines the power consumption of several of
these technologies and presents an analysis of the energy consumed in achieving
a solution on a range of different technologies. This analysis is conducted at
both small- (1 node) and large-scale (>2,048 nodes) using a variety of power-
measurement solutions.

Furthermore the viability of FPGAs devices from Altera, as candidate tech-
nologies to employ in future system architectures, is also examined. This
includes an examination of how to optimally express particular explicit hydrody-
namics computational kernels in order to maximise performance on these FPGA
devices using the OpenCL compiler and runtime systems developed by Altera.
A quantitative assessment is also conducted of whether this technology is able to
deliver significant reductions in the energy required to achieve a solution, whilst
delivering acceptable levels of performance, relative to existing state-of-the-art
processing solutions, which are currently commonly utilised for this class of

application.

1.6 CloverLeaf

Mini-apps are small, self-contained codes, which emulate key algorithmic com-
ponents of much larger and more complex production codes. One of the main
contributions of this research was the significant enhancements made to the
development of the CloverLeaf mini-application, which was extensively used as
a research tool through this work. CloverLeaf was originally developed with the
explicit purpose of assessing new technologies and programming models both
at the inter- and intra-node system levels. This section provides details of the
implementation of the mini-app. Further information on the specific hydrody-

namics scheme simulated within the application can be found in Section 2.3.

1.6.1 Implementation

CloverLeaf employs a Lagrangian-Eulerian scheme to solve Euler’s equations
of compressible fluid dynamics [87, 42], using the ideal-gas equation of state,
in two spatial dimensions. The equations are solved on a staggered grid (see
Figure 1.1a) in which each cell centre stores three quantities: energy, density
and pressure; and each node stores a velocity vector. An explicit finite-volume
method is used to discretise the Euler equations and facilitate their solution with
second-order accuracy. The system is hyperbolic, meaning that the equations
can be solved using explicit numerical methods, without the need to invert a

matrix. Currently only single material cells are simulated within CloverLeaf.

13

1. Introduction

" 'R Jv.-l>

cb—\\Fi(%_‘. : H\\Ff):r*'

(b) Vertices move during the ~ (c) Material motion calcu-

a) The staggered-grid with
(a) sgered-gnd wi Lagrangian step lated in the advective remap

material flow

Figure 1.1: Staggered grid employed in CloverLeaf

The solution is advanced forward in time repeatedly until the desired end
time is reached. Unlike the computational grid, the solution in time is not
staggered, with both the vertex and cell data being advanced to the same point
in time by the end of each computational step. One iteration, or timestep, of

CloverLeaf proceeds as follows (see Figure 1.1):

1. a Lagrangian step advances the solution in time using a predictor-corrector
scheme, with the cells becoming distorted as the vertices move due to the
fluid flow;

2. an advection step then restores the cells to their original positions and

calculates the amount of material which passed through each cell face.

This is accomplished using two sweeps, one in the horizontal dimension and the
other in the vertical, using Van Leer advection [199]. The direction of the initial
sweep in each step alternates in order to preserve second order accuracy.

The computational mesh is spatially decomposed into rectangular mesh
chunks and distributed across processes within the application, in a manner
which attempts to minimise the communication surface area between processes.
The implementation also simultaneously attempts to assign a similar number
of cells to each process in order to balance computational load. As with the
majority of block-structured, distributed, scientific applications which solve
systems of partial differential equations, data that is required for the various
computational steps that is non-local to a particular process is stored in outer
layers of halo cells within each mesh chunk. To keep these halo cells updated
data exchanges, between logically neighbouring processes within the decomposi-
tion, occur multiple times during each timestep with varying depths. To reduce
synchronisation requirements, data is only exchanged when explicitly required
by the subsequent phase of the algorithm, first in the horizontal and then in the
vertical dimension. A global reduction operation is required by the algorithm
during the calculation of the minimum stable timestep, which is calculated once

per iteration.

14

1. Introduction

The codebase of CloverLeaf is predominantly Fortran based and its com-
putational intensive sections are implemented via fourteen individual kernels.
In this instance, kernel refers to a self-contained function which carries out
one specific step of the overall hydrodynamics algorithm. Each kernel iterates
over the staggered grid, updating the appropriate quantities using the required
stencil operation. The kernels contain no subroutine calls and avoid the use
of complex features such as Fortran derived types. Twelve of CloverLeaf’s
kernels only perform computational operations, with communication operations
residing within the overall control code and two other kernels. One of these
kernels is called repeatedly throughout each iteration of the application, and
is responsible for exchanging the halo data associated with one (or more) data
fields, as required by the hydrodynamics algorithm. The second carries out the
global reduction operation required for the calculation of the minimum timestep
value. A further reduction is carried out to report intermediate results, but this
is not essential to the numerical algorithm.

During the initial development of the code, the algorithm was engineered to
ensure that all loop-level dependencies within the kernels were eliminated and
data parallelism was maximised. Most of the dependencies were removed by
refactoring large loops into smaller parts, adding extra temporary storage where
necessary; replacing branches inside loops where possible; replacing atomic
operations and critical sections with reduction operations; memory accesses
were also optimised to remove all scatter operations and minimise memory
stride for gather operations. The computational intensity per memory access in
CloverLeaf is low which typically makes the code limited by memory bandwidth
and latency speeds.

In the experiments documented in this thesis (Chapters 3 to 7) CloverLeaf
was configured to simulate the effects of a small, high-density region of ideal
gas expanding into a larger, low-density region of the same gas, which causes a
shock-front to form. The configuration can be altered by varying the number of
cells employed in the computational mesh; increasing mesh resolution generally

increases both the runtime and memory usage of the simulation.

1.7 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 provides background information and a future trends analysis
relating to several of the research areas examined in this thesis, including the
hardware platforms utilised, the software technologies examined and the explicit
hydrodynamics applications on which this work has focused.

The research work which examined optimisations to improve the perfor-

15

1. Introduction

mance of the OpenMP-based versions of the CloverLeaf codebase is presented
in Chapter 3, and includes an analysis of their performance at high thread
counts on the Intel Xeon Phi architecture. This contributed towards answering
research question 2. The work presented in this chapter also extends research
documented in publications 1 and 3, as listed in the Declarations section of this
thesis.

The research conducted to improve the performance of the CloverLeaf mini-
app at extreme scale and thus answer research question 1.7 is documented in
Chapter 4. The work presented in this chapter is based on research previously
published in papers 1 and 3.

The implementation of the PGAS programming model based versions of
CloverLeaf are documented in Chapter 5 together with an analysis of their
performance against equivalent MPI-based versions, at significant scale on two
candidate system architectures (Section 5.4). This chapter examines research
question 3 and the work extends the research previously published in paper 4.

Chapter 6 examines the use of the OpenCL programming model and as-
sesses its utility for delivering portable application performance for explicit
hydrodynamics applications on a range of current processing architectures. It
addresses research question 5 and extends the work previously documented in
publications 2 and 5.

The suitability of utilising FPGAs as candidate processing solutions for
explicit hydrodynamics applications within future architectures (research ques-
tion 6) is examined in Chapter 7.

Chapter 8 presents the conclusions which this thesis has facilitated, together
with its key contributions (Section 8.1) and limitations (Section 8.3). It also
outlines some potential directions for future research (Section 8.4). Research
question 2 is examined by Chapters 3 to 7 but the overall conclusion derived
through this work is documented in this chapter.

Finally, Appendix A documents in detail the experimental architectures and

platforms utilised throughout this research.

1.8 Project Availability

This research work was conducted as part of the overall CloverLeaf mini-app de-
velopment project. In keeping with the ethos of the project all of the codebases
developed as part of this specific research can be found within the main Clover-
Leaf Github development repository at https://github.com/Warwick-PCAV/
CloverLeaf. Each major version of the codebase which was developed as part of
this work, e.g. all of the CAF-based versions, are made available within separate

sub-repositories. Minor versions which e.g. examine a specific optimisation or

16

1. Introduction

technique within these broader categories, are then generally made available as
separate branches within these sub-repositories. It is hoped that making this
work as open and accessible as possible will foster greater collaborations within
the scientific research community, enable others to learn and benefit from the
derived conclusions and general approach, as well as to also ultimately improve

upon it.

17

CHAPTER 2

Background Information

This chapter presents background information on the hardware (Section 2.1) and
software (Section 2.2) technologies employed and examined in this research, as
well as information on the hydrodynamics applications and algorithms studied
(Section 2.3). Historical information is provided together with existing issues

and current, as well as likely future, development trends.

2.1 Hardware Background and Trends

This section provides background information on the three major hardware
subsystems, within a HPC platform, which the research documented in this
thesis interacts most closely with. These include interconnect technologies (Sec-
tion 2.1.2) as well as the processor (Section 2.1.3) and memory (Section 2.1.4)
subsystems. It also discusses what many consider to be the single most signifi-
cant challenge currently facing the construction of exascale systems, their power

consumption (Section 2.1.1).

2.1.1 Power Consumption

It has been widely recognised that power consumption will be the primary
constraint governing the design of HPC systems in the future [11, 206, 128].
Several existing large-scale systems are currently consuming of the order of
10MW of power [114], with ORNL’s Titan and Riken’s K computer consum-
ing ~8MW and ~12.6MW respectively, whilst Tianhe-2 in China consumes
~17.8MW [194]. Employing today’s technology to construct a system capable
of delivering an exaflop of computation per second would require more than
1GW of power [153]. To address this issue the DOE in the USA has set the
HPC industry the challenge of delivering an exascale capable solution within an
overall power budget of 20MW, necessitating an improvement of >150x in power
efficiency over current technologies and equating to approximately $20 million in
electricity costs annually [153, 129, 206]. Whilst some observers do not believe
that the 20MW target is achievable [114], a practical limit of approximately
100MW would appear to exist, as the largest data-centres currently in existence
only have access to this amount of power [48]. Regardless of the exact power
budget figure, achieving a solution which lies within this range will still require

a huge improvement in computational power efficiency and require considerable

18

2. Background Information

research and development, but would potentially deliver considerable financial
savings if achieved [153, 79, 10].

2.1.2 HPC Interconnect Technology

The interconnect technology has always been a key component of HPC sys-
tems and this trend will only continue as the cost of communication (moving
data) starts to dominate performance in future system architectures [11, 196].
Historically HPC systems employed proprietary interconnect technologies from
vendors such as Quadrics [161], Cray [9, 31, 65], IBM[41], Fujitsu [3] and
Myricom [70]. These technologies generally incorporated proprietary ASICs
(Application Specific Integrated Circuits) on dedicated NICs (Network Interface
Cards) and delivered improved performance in terms of reduced latencies and
higher bandwidth over commodity solutions by offloading some of the com-
munication processing to the NICs. They often provided support in hardware
for operations commonly required by scientific applications, such as collective,
atomic and one-sided Remote Direct Memory Access (RDMA) communication
operations, which were not generally available in alternative commodity so-
lutions. Additionally, they also supported topologies which closely mirrored
the communication patterns of scientific applications, or enabled systems to be
scaled to larger processor counts, such as 3 [9, 31], 5 [41] and 6 [3] dimensional
tori; “fat” trees [161, 70]; and dragonflies [65]. The Quadrics network, for
example, offloaded the processing of MPI (Message Passing Interface) commu-
nications onto the NIC processor via the Elan Tports interface enabling the host
processor to undertake additional tasks during communication operations. The
QsNetllI solution was capable of autonomously completing MPI message match-
ing operations, although the performance of the raw RDMA Elan interfaces was
shown to be faster [23].

Driven primarily by reductions in costs from higher volumes, the HPC
industry has more recently been moving away from proprietary interconnect
technologies and towards more open standards-based, commodity technologies
primarily based on Infiniband [94]. The use of Infiniband in systems ranked in
the Top500 has risen from <1% in 2004 to >40% at present [194]. Although
originally a storage interconnect design targeted at data-centre solutions it now
incorporates many of the hardware facilities required by scientific applications,
such as native support for RDMA operations and the offloading of communica-
tion operations to dedicated NICs. Infiniband has also been shown to enable
some of the overheads of the two-sided communication model to be avoided [105,
176]. These include the requirement for the remote processes to be involved in

the communications, handshake synchronisations, queue maintenance, message

19

2. Background Information

tag matching and flow control.

Cray and IBM have been able to sustain their interconnect product lines,
although IBM recently announced that it would be discontinuing production
of its Blue Gene series machines [183] and Cray recently sold its interconnect
business to Intel [96]. By contrast, Fujitsu recently announced that it would be
continuing development of its Tofu interconnect [67].

To reduce power consumption and improve performance there has been
a growing trend (although no products have thus far reached general avail-
ability) for chip manufacturers to develop SOC designs which incorporate the
network interface logic previously located on the dedicated NICs. Intel recently
purchased the Cray and Qlogic interconnect technologies [96, 95], whilst IBM
announced plans through the OpenPOWER initiative [89] to incorporate Mel-
lanox Infiniband technologies onto its Power processor architecture and Fujitsu
outlined plans to incorporate its Tofu2 interconnect into its next generation of

processors [67].

Future Trends

CPU processing capabilities, memory access latencies and hard disk seek times
have gradually improved over time, however, inter-node message latencies across
communications interconnects and their associated software overheads have
not [22]. Additionally, in future systems the relative cost of data movement will
be considerably higher than for floating point operations, as the energy required
for the former is not improving at the same rate as for the latter, necessitating
the creation of more power efficient interconnect designs [11, 206, 196]. The
incorporation of interconnect technologies within future SOC designs should fa-
cilitate improvements, although additional technologies such as silicon photonics
may still be required. Nevertheless within future systems the interconnect fabric
is likely to be increasingly viewed as yet another level of the overall memory
hierarchy.

It has been recognised that in order to achieve the required levels of applica-
tion performance the levels of support for asynchronous data transmission and
the movement of non-contiguous data will need to be improved within future
interconnect designs [11, 128]. Additionally, improving support for the transfer
of small data packets will also be increasingly important as the levels of overall
parallelism increase and strong-scaling simulations become more prevalent [11].
There is also a trend towards more constrained, scalable topologies, such as
multi-dimensional tori or dragonflies, to enable the construction of larger, more
parallel systems [11]. The larger numbers of processing elements being incorpo-

rated within future SOC designs will necessitate the inclusion of interconnects

20

2. Background Information

within these chips (networks-on-a-~chip). These systems will also be increasingly
limited by the communication infrastructure both within and between these
nodes, and it is therefore likely that communication will be the main perfor-

mance bottleneck at exascale levels of computational performance [11, 128].

2.1.3 Processor Subsystem Technology

After it was originally proposed in 1974 Dennard scaling held for over 30 years
and started to breakdown in approximately 2005 [52]. It states that the power
density of transistors remains constant as their size is scaled down and therefore
the total chip power consumed per unit area remained the same from one man-
ufacturing process generation to the next [134]. Post 2005, energy constraints
in particular the significant increase in leakage current caused by the reductions
in transistor feature sizes, have brought an end to Dennard scaling [11, 196].
Consequently, as the dynamic power consumption of a processor is proportional
to its operating frequency, it is no longer possible to realise significant increases
in overall CPU clock speeds.

With Moore’s Law continuing to hold and the number of transistors per unit
area doubling approximately every 18 months, manufacturers are increasingly
being forced to incorporate more parallelism into their chip designs. Over recent
years this has manifested itself most noticeably as increases in the number
of cores (or explicit parallel processing elements) on a chip, which have been
doubling approximately every 18-24 months [11, 206]. Most manufacturers now
only offer multi-core designs for their processor offerings, such as the offerings
from IBM [74] and Fujitsu [136] for their HPC platforms. Additionally there
is a continuing trend to incorporate wider vector processing elements into CPU
designs, necessitating applications to be able to use SIMD operations in order
to achieve optimal performance [100].

Due to their greater power efficiency accelerator and co-processor solutions,
such as GPGPUs from Nvidia [152] and AMD [13] as well as the Intel Xeon
Phi [101], are also becoming increasingly utilised within the HPC community.
It has also been argued that their use will be crucial in order for exascale systems
to be realised [11, 128]. This will also require significant increases in fine-grained
parallelism and the use of lightweight threading or task models [11, 206, 128].
GPUs support this style of parallelism particularly well, although they have been
recognised as being considerably harder to program than alternative approaches
such as the Xeon Phi [50].

At present, these devices are generally employed as separate discrete pro-
cessing elements alongside traditional CPU devices, usually connected to the

main system board over a PCle link. As part of their Fusion APU processor

21

2. Background Information

line, however, AMD have combined a CPU and GPU onto the same silicon
chip [14]. Other manufacturers have also announced plans to produce similar
hybrid devices, including project Denver [72] from Nvidia and IBM who are
planning to incorporate Nvidia GPU devices onto Power-based processors as
part of the OpenPOWER initiative [89]. Intel has also announced that future
versions of its Xeon Phi processor will be “self-hosting” and will therefore not
require a traditional CPU alongside them [21].

The power consumption of existing processors is also forcing manufacturers
and researchers to consider low-power technologies from the embedded and
mobile computing sectors, which have evolved to be more power efficient due
to the additional power constraints within these environments [195]. These
technologies, such as processors based on technologies from ARM [15], are
starting to be considered for HPC systems and generally have higher sales
volumes enabling their costs to be kept low [142]. ARM are also developing their
designs to incorporate 64-bit processors in order to potentially gain additional
business from new sectors such as HPC [195].

FPGAs incorporate large collections of generic logic and memory blocks
connected via a reconfigurable interconnect fabric. By changing the routing con-
figurations of this interconnect they enable customised processor designs to be
created which are specifically tailored to implement applications using dedicated
logic. This approach potentially delivers significant performance advantages
whilst consuming substantially less power. The technology is found throughout
the embedded computing sector meaning that the chips are produced in high
volumes, which significantly lowers their overall costs.

Historically it has only been possible to “program” FPGAs via low-level ap-
proaches such as VHDL [91] and Verilog [90], which require extremely specialist
knowledge and takes considerable development resources. More recently compil-
ers have been developed to translate high-level languages, such as OpenCL, to
these low-level languages, which potentially enables a broader range of scientific
applications to be targeted at these devices.

FPGA manufacturers have also seen the potential to grow their business
into new sectors such as HPC. Altera has recently announced that their latest
Generation 10 products can now natively support IEEE 754 compliant single-
precision floating point arithmetic, using dedicated hardware circuitry in each
DSP (Digital Signal Processing) block within the FPGA fabric [8]. Similarly
existing processor manufacturers have also realised the potential of FPGA based
solutions with Intel recently announcing that it plans to incorporate an FPGA
into future versions of its Xeon products [99] and IBM partnering with Altera
through the OpenPOWER initiative [89].

22

2. Background Information

Future Trends

Future processor designs are expected to continue the trend of increasing the
number of processing elements which they contain as well as incorporating wider
vector units [11, 206, 196]. This will necessitate the exposure of even greater
levels of parallelism within applications in order to achieve optimal performance
on future system architectures. It has also been recognised that the intra-node
parallelism, delivered by the processor and memory sub-systems, will need to
increase by 3 orders of magnitude if exascale systems are to be successfully
realised, compared to only 1 order of magnitude for inter-node parallelism [206,
11, 196, 115, 128]. Consequently the execution of over 1 billion simultaneous
instruction streams will likely be required within future systems in order to
achieve exascale levels of computational performance [11, 206, 128].

Additionally, processor chip designs are likely to become increasingly hetero-
geneous, potentially incorporating sophisticated interconnects between the pro-
cessing elements as well as the functionality historically performed by dedicated
NICs. Due to energy constraints it is also becoming increasingly impractical
for chip designs to provide uniform memory access bandwidth and latencies
between processor elements, necessitating architectures to increase the number
of NUMA domains and become more non-uniform [11, 196]. The use of so-called
“dark silicon”, in which specialised components are incorporated into processor
designs and only powered-up when required to save energy, is also a potential
possibility [191].

Employing a design methodology based on the principles of “co-design”
to improve the integration between all of the various hardware and software
elements is also likely to be crucial in realising effective exascale systems [206,
11, 115, 128].

2.1.4 Memory Subsystem Technology

The density of DRAM and processor off-chip bandwidth are not currently
increasing at the same rate as processor logic densities and this imbalance
between computation and memory access speeds is forecast to continue to
grow [11, 206, 128]. Consequently it is increasingly likely that future systems
will incorporate significantly reduced memory capacities as well as access band-
width and latencies per processor element. The performance of the memory
sub-system is therefore likely to increasingly limit the performance of scientific
applications on future platforms. These trends will necessitate the development
of deeper memory hierarchies, which may potentially require the use of explicit
memory space management constructs within applications, such as software

managed caches [11, 206, 196]. The inclusion of transactional memory mecha-

23

2. Background Information

nisms and additional atomic memory operations are also likely to be required
in future systems [11].

Additionally it is likely that utilising technologies such as the Hybrid Mem-
ory Cube [141] from Micron will be required in order to improve memory system
capacity and performance. This technology also offers the potential to conduct
processing closer to the memory subsystem to further improve performance
through reductions in data-motion. Fujitsu recently announced plans to sup-
port the technology in their forthcoming processor designs [67] and existing
implementations which utilise FPGAs already exist [5]. The incorporation of
faster and larger memories onto the actual processor die, through the potential
utilisation of 3-dimensional stacking technologies, is another direction of poten-
tial development which should further reduce data access speeds and the energy
consumed by moving data [58].

Again the use of a “co-design” methodology to holistically design the soft-
ware, processor and memory sub-systems is likely to be crucial if these technolo-
gies are to be utilised optimally within future exascale system architectures [11,
206, 115, 128].

2.2 Software Background and Trends

Background information on each of the programming models examined as part of
this research is presented in this section, together with information on existing
and likely future trends in their development. The intra-node programming
models are examined initially followed by those which can be utilised to imple-

ment inter-node parallelism.

2.2.1 OpenMP

OpenMP is an Application Program Interface (API) and has become the de facto
standard in shared memory programming [156]. The technology is supported by
all the major compiler vendors and is based on a fork-join model of concurrency.
It consists of a set of pragmas that can be added to existing source code to
express parallelism. An OpenMP-enabled compiler is able to use this additional
information to parallelise these annotated sections of code.

The model is primarily focused at implementing intra-node parallelism, with
OpenMP programs requiring a shared memory-space to be addressable by all
threads. At present the technology only supports CPU-based devices although
proposals exist in OpenMP version 4.0 for the inclusion of additional directives
to target accelerator based devices such as GPUs [187]. This has been imple-

mented to varying levels in a number of compilers.

24

2. Background Information

2.2.2 OpenCL

OpenCL is an open standard that enables parallel programming of hetero-
geneous architectures. Managed by the Khronos group and implemented by
over ten vendors—including AMD [12], Intel [98], IBM [88], and Nvidia [150]—
OpenCL code can be run on many architectures without recompilation. The
programming model is similar to CUDA, developed by Nvidia.

The programming model distinguishes between a host CPU and an attached
accelerator device such as a GPU. The host CPU executes code written in
either C or C++, with this code initiating function calls into an OpenCL
library in order to control, communicate with, and execute functions on one
or more attached devices, or on the CPU itself. The target device executes
these functions (or kernels), which are written in a subset of C99, and can
be compiled just-in-time, or loaded from a cached binary if one exists for the
target platform. The concepts of devices, compute units, processing elements,
work-groups, and work-items are employed to control how OpenCL kernels are
executed by the target hardware. The mapping of these concepts to hardware
is controlled by the OpenCL runtime.

Generally, an OpenCL device maps to an entire CPU socket or an attached
accelerator. Additionally, on CPU architectures it is normal for both compute
units and processing elements to be mapped to the individual CPU cores. On
GPUs, however, this division can vary, with compute units typically being
mapped to a core on the device, and processing elements to functional units
within these cores.

Kernels are executed in a SPMD manner across a one, two or three di-
mensional range of work-items, with collections of work-items being grouped
together into work-groups. Work-groups map directly onto a compute unit and
the work-items which they contain are executed by the compute unit’s associated
processing elements. The work-groups which make up a particular kernel can
be dispatched for execution on any available compute units in any order. On a
CPU, the work-items within a work-group are generally scheduled for execution
within one core, although this is not a strict requirement. If vector code has
been generated, the work-items will be scheduled using SIMD instructions to
utilise the vector unit within the particular CPU core. On a GPU, work-groups
are generally assigned to individual cores and their work-items executed in
collections across the processing-elements within the core. The collection size or
width depends on the specific device vendor; Nvidia devices utilise collections
of 32 work-items whereas AMD devices use collections of 64.

The programming model provides no global synchronisation mechanism be-

tween work-groups, although it is possible to synchronise within a work-group,

25

2. Background Information

which enables OpenCL applications to scale up or down to fit different hardware
configurations. It also includes a sophisticated queuing mechanism, which is
able to express complex dependencies between kernels and manage multiple
target devices. OpenCL is therefore able to easily express both task and data

parallelism within applications.

2.2.3 CUDA

Nvidia’s CUDA [149] is currently a well established technology for enabling
applications to utilise Nvidia GPU devices. CUDA employs an offload-based
programming model in which control code, executing on a host CPU, launches
parallel portions of an application (kernels) onto an attached GPU device.

CUDA kernels are functions written in a subset of the C programming
language, and are comprised of an array of lightweight threads, each of which is
assigned a unique global-id. Threads are grouped into thread-blocks that each
execute on a single GPU multi-processor contained within an Nvidia GPU,
although several thread-blocks can reside concurrently on each multi-processor.
Kernels are thus executed as a grid of thread-blocks which collectively contain all
the aforementioned threads. Threads within a thread-block can cooperate and
synchronise via shared memory which is local to a particular multiprocessor,
however, there is no support for global synchronisation between threads in differ-
ent thread-blocks. This explicit programming model requires applications to be
restructured in order to make the most efficient use of the GPU architecture and
thus take advantage of the massive parallelism inherent in them. Constructing
applications in this manner also enables kernels to scale up or down to arbitrary
sized GPU devices.

CUDA is currently a proprietary standard controlled by Nvidia. Whilst this
allows Nvidia to enhance CUDA quickly and enables programmers to harness
new hardware developments in Nvidia’s latest GPU devices, it does have appli-

cation portability implications.

2.2.4 OpenACC

OpenACC [155] is a high-level, pragma based programming model intended to
provide support for many-core technologies from within standard Fortran, C
and C++. Driven by the CAAR team at ORNL [27] and supported by an
initial group of three compiler vendors, although one vendor (CAPS) has since
ceased trading. The technology enables developers to add directives into their
source code to specify how portions of their applications should be parallelised
and off-loaded onto attached accelerator devices. This approach minimises the

modifications required to existing codebases and eases programmability, whilst

26

2. Background Information

also providing a portable, open standards-based solution for many-core technolo-
gies. The technology potentially provides a solution for targeting applications
at complicated hardware technologies without the requirement for developers to
learn complex, sometimes vendor specific, languages or to understand intricate
hardware details. The standard is still, however, relatively new and implemen-
tations are still maturing.

Prior to a common OpenACC standard being agreed, Cray, PGI and CAPS
had each developed their own proprietary accelerator directives, which formed
the basis of their OpenACC implementations. PGI developed their region
construct, within their original Accelerator model [162] for Nvidia GPUs, into
their implementation of the OpenACC Kernel construct. Whilst Cray origi-
nally proposed accelerator extensions to the OpenMP standard [44] to target
GPGPUs through their CCE compiler, they developed their proposal into the
Parallel construct within the OpenACC standard. CAPS originally developed
support for accelerator devices through their OpenHMPP directive model [39],
although their OpenACC compiler still required the utilisation of a third-party
host compiler.

Each implementation now supports both the Kernel and Parallel Ope-
nACC constructs. The main differences between these constructs relate to how
they map the parallelism, present in the particular code region which is being
accelerated, to the underlying hardware. The Parallel construct is explicit,
requiring the programmer to highlight loops for parallelisation within the code
region; it closely resembles several OpenMP constructs, such as the OpenMP
parallel do pragma. The Kernel construct, however, enables code to be
parallelised and accelerated implicitly.

The three implementations also utilise a range of different “back-end” code
representations in order to actual execute OpenACC applications on target
hardware devices. The CAPS compiler translated code directly to either CUDA
or OpenCL, whilst PGI originally only supported CUDA they have since also
released support for OpenCL. The generated CUDA code can, therefore, only
be utilised to target applications at Nvidia GPU devices through the NVCC
compiler, however, the use of OpenCL enables a larger range of devices to be
supported. Cray CCE, however, only generates low-level Nvidia PTX [151]
instructions from the OpenACC directives, which consequently constrains their

implementation to Cray architectures with attached Nvidia GPU devices.

2.2.5 VHDL and Verilog

VHDL [91] and Verilog [90] are both low-level HDLs (Hardware Definition
Languages) originally developed by the DOD and Cadence Design Systems,

27

2. Background Information

respectively. They are now both standardised by the IEEE and used heavily
within the EDA (Electronic Design Automation) community to describe logic
circuits in a textual format, predominantly at the register transfer level. Digital
systems can therefore be designed and verified using these languages, although
they can also be employed for mixed-signal and analogue system designs.

Although loosely based on procedural programming languages, Ada and C
respectively, their models differ significantly from traditional procedural pro-
gramming languages, as they contain mechanisms to describe electrical signal
propagation times and strengths, rather than just logical functionality. Both
languages employ a data-flow model of computation and enable parallel/con-
current systems of circuits to be described.

Circuit designs described in either language can be tested using logic sim-
ulators. Synthesis tools can then subsequently be employed to generate actual
hardware circuit representations which can then be used to create ASICs or
to program FPGA devices. Developing solutions using either of these low-
level approaches requires high levels of expertise and experience and is often
extremely time/resource consuming and error prone. This usually precludes
their use within the scientific application development community. Although
these technologies can potentially enable extremely performant solutions to be

developed.

2.2.6 BSP Programming Model

The BSP programming model was originally proposed by Valiant [197] as an
abstraction model for the design of parallel applications. The model bridges
the divide between software and hardware by abstracting some of the details of
the underlying parallel computing devices. It improves on other models such as
the PRAM (Parallel Random Access Machine) by enabling communication and
synchronisation costs to be accounted for.

The model is comprised of a collection of processing resources which have
access to their own dedicated local memories and an interconnect fabric to
facilitate pair-wise communication and synchronisation between all or a subset
of the processing elements. An overall computation is formed from a series of
global “supersteps” in which processing elements may each concurrently perform
computation on their local memory resources. Communications, which can
either be one- or two-sided operations, can occur between processes during each
superstep, these do not need to be ordered and may also be overlapped with
computation. A barrier operation exists at the end of each superstep which
causes all processes to be synchronised before they proceed to the next superstep.

All computation and communication from the preceding superstep is therefore

28

2. Background Information

completed before the next one commences. The model thus maps well onto
the architectures of most modern HPC systems and has become the de facto

approach for developing parallel applications for them.

2.2.7 MPI Programming Model

As cluster-based designs have become the predominant architecture for HPC
systems, the MPI programming model has become the de facto standard for
developing parallel applications for these platforms. Standardised by the MPI
Forum, the interface is implemented as a parallel library alongside existing se-
quential programming languages [144]. MPI programs are based on the MPMD
(Multiple Program Multiple Data) paradigm in which each process (or rank)
asynchronously executes a separate (but potentially identical) program, with
each rank therefore able to independently follow different execution paths within
their associated programs. Each process makes calls directly into the MPI
library in order to make use of the communication and synchronisation functions
that it provides; both point-to-point and collective communication operations
are provided by the library.

The technology is thus able to express both intra- and inter-node parallelism.
Current implementations generally use optimised shared memory constructs for
communication within a node and explicit message passing for communication
between nodes. Communications are generally two-sided, meaning that all ranks
involved in the communication need to collaborate in order to complete it.
Although support for one-sided communication has been available since version
2.0 of the standard, these constructs are not currently widely used and have
been enhanced significantly in version 3.0. MPI version 3.0 also introduced
several new collective operations such as neighbourhood and non-blocking col-
lectives, which although not widely supported yet, claim to offer performance

and productivity benefits in particular circumstances.

2.2.8 PGAS Programming Model

PGAS-based programming models aim to provide the ease of shared memory ap-
proaches such as OpenMP (Section 2.2.1) whilst also providing the performance
and scalability of message passing based approaches such as MPI (Section 2.2.7).
To implement shared memory constructs they utilise a global address space and
a one-sided communication model to potentially enable processes to access any
memory location. This global address space is, however, logically partitioned
with each segment assigned to a particular processing element within the overall
application. The model is thus able to express memory access locality and

maps well to the architecture of current generations of HPC platforms, which

29

2. Background Information

facilitates improved performance and scalability, potentially equivalent to or
greater than that of the message passing model. It has also been recognised
that the per-message overheads of models such as MPI may not be reducing
sufficiently for MPI to be practicable on exascale system architectures, poten-
tially necessitating the use of PGAS-based approaches [11].

Numerous PGAS languages and programming models are currently in ex-
istence including but not limited to: UPC, Global Arrays, X10 and Chapel;
each of which is targeted at a different user-base and is subtly different in
their particular implementation of the general PGAS approach. This thesis
examines the applicability of two additional PGAS implementations, CAF and
OpenSHMEM, to explicit hydrodynamics applications and provides background

information on each of these models in the following sections.

The CAF Programming Model

Several CAF extensions have been incorporated into the Fortran 2008 standard,
the additions aim to make parallelism a first class feature of the Fortran lan-
guage. These extensions were originally proposed in 1998 by Numrich and Reid
as a means of adding PGAS concepts into the main Fortran language, using
only minimal additional syntax [148].

CAF continues to follow the SPMD (Single Process Multiple Data) language
paradigm with a program being split into a number of communicating processes
known as images. The number of images is defined at runtime and is static
throughout the execution of the program; no language facility exists yet for
dynamic émage creation. Communications are all one-sided, with each process
able to use a global address space to access memory regions on other processes,
without the involvement of the remote processes. The “=” operator is over-
loaded for local assignments and also for remote loads and stores. Increasingly,
off-image loads and stores are being viewed as yet another level of the memory
hierarchy [19]. In contrast to OpenSHMEM, CAF employs a predominantly
compiler/language based approach (no separate communications library), in
which parallelism is explicitly part of the Fortran 2008 language. Consequently
the Fortran compiler is potentially able to reorder the inter-image loads and
stores with those local to a particular image.

The CAF language also enforces a local view of computation, requiring
programmers to explicitly manage data locality and communication. Objects
are declared to be co-arrays using an additional syntax operator “/ /7. Any
object, both arrays and scalars, can be declared as a co-array and when declared
as such a copy of this object must exist, and be of the same size, on each image

within the overall CAF program. The square brackets essentially assign an

30

2. Background Information

additional dimension (potentially multiple dimensions) to a particular object,
enabling the object to be uniquely referenced by other images. Images can
use the “()” notation to access the elements of a local array but must use a
combination of both notations “()/]” in order to access the elements of remote
co-array objects, whether they reside within the local or a remote node.

Two forms of synchronisation are available within the language, the sync
all construct provides a global synchronisation capability, whilst the sync
images construct provides functionality to synchronise particular subsets of
images. Collective operators have not yet been standardised, although Cray
have implemented their own versions of several commonly used operations.
Additionally no support exists for image “teams” or communicators within the

current Fortran 2008 standard.

The OpenSHMEM Programming Model

The SHMEM programming model was originally developed by Cray for their
T3D systems [81]. Although the technology has existed for some time, it was
only recently standardised in 2012 as part of the OpenSHMEM initiative [40,
157]. Under the OpenSHMEM programming model, communications between
processes are all one-sided and are referred to as “puts” (remote writes) and
“gets” (remote reads). The technology is able to express both intra- and inter-
node parallelism, with the latter generally requiring explicit RDMA support
from the underlying system layers. These constructs also purport to offer
potentially lower latency and higher bandwidth than alternative approaches.

OpenSHMEM is not explicitly part of the Fortran and C language standards
and is implemented as part of a library alongside these existing sequential
languages. Processes within OpenSHMEM programs make calls into the library
to utilise its communication and synchronisation functionality, in a similar
manner to how MPI libraries are utilised. The programming model operates
at a much lower-level than other PGAS models, such as CAF, and enables
developers to utilise functionality significantly closer to the actual underlying
hardware primitives. It also makes considerably more functionality available to
application developers.

The concept of a symmetric address space is intrinsic to the programming
model. Each process makes areas of memory accessible to the other processes
within the overall application, through the global address space supported by
the programming model. It is generally implementation-dependent how this
functionality is realised; however it is often achieved using collective functions
to allocate memory at the same relative address on each process.

Only a global process synchronisation primitive is provided natively. To

31

2. Background Information

implement point-to-point synchronisation it is necessary to utilise explicit “flag”
variables, or potentially use OpenSHMEM’s extensive locking routines, to con-
trol access to globally accessible memory locations. The concept of memory
“fences”, which ensure the ordering of operations on remote memory locations,
are also intrinsic to the programming model. Collective operations are part of
the standard, although currently no all-to-one operations are defined, just their

all-to-all equivalents.

2.2.9 Hybrid Programming Models

Hybrid, potentially multi-resolution, programming approaches have been recog-
nised as promising areas of research for enabling applications to achieve the scal-
ability required for exascale levels of computation on future platforms [11, 206,
128]. They typically utilise models such as OpenMP or OpenCL (Sections 2.2.1
and 2.2.2) to express intra-node parallelisation, together with MPT or the PGAS
approaches (Sections 2.2.7 and 2.2.8) for inter-node communication.

A purported advantage of these approaches is that they potentially facili-
tate reductions in overall memory usage, which will be crucial given the trend
towards reduced memory capacities and access bandwidths in future system
architectures (Section 2.1). The use of these programming models can achieve
these reductions by enabling data structures to be shared between different
threads of execution within the individual systems nodes, which would otherwise
be duplicated within each MPI/PGAS process. The number of MPI/PGAS
processes can also be substantially reduced through the utilisation of these
models, which potentially facilitates improvements in scalability by reducing
the overall amount of memory required by the inter-node communication run-
time systems. Additionally inter-node communication messages can also be
aggregated into fewer larger messages, potentially improving performance in
particular situations, and reducing message injection rate requirements.

This is an extremely active area of research and it has been recognised that
it will be necessary to improve the integration of the inter- and intra-node
runtime systems in order to achieve exascale levels of computation [11, 128].
Additionally, it has also been shown that the optimal ratio of OpenMP to
MPI can change depending on specific application characteristics, the problem
size being simulated and the scale of the particular experiment, necessitating
further research [11]. Similarly how to optimally combine the constructs of
both models within applications is also a subject of much debate. It has been
shown, for example, that for some applications, performance can be improved by
incorporating calls to the MPI routines within OpenMP threaded code regions

rather than within serial code regions [11].

32

2. Background Information

2.2.10 Current & Future Trends

The trend towards many-core devices (Section 2.1.3) and the potential incorpo-
ration of accelerators into future exascale systems will necessitate the creation of
new programming abstractions, including new threading models with improved
thread control semantics for thread placement, launching and synchronisation
as well as more scalable runtime systems [11, 206]. Improving support for
more fine-grained, potentially nested, parallelism within programming models
will also likely become increasingly important [11, 206, 128]. It has also been
recognised that the exclusive use of existing relatively heavy-weight threads
will not be able to meet exascale requirements, necessitating the development
of more light-weight models supporting task parallelism [11, 206, 128]. This,
together with the fact that it is argued that the scalability of OpenMP imple-
mentations needs to be significantly improved in order to facilitate the creation
of exascale systems, indicates that the exploration of programming models
similar to OpenCL may be worthwhile [11]. The ability to coordinate dynamic
task teams is also likely to be required on future system architectures and future
NOC processor designs will likely necessitate the inclusion of topology awareness
within applications at the node level [11, 128].

Data movement has been forecast to be extremely expensive relative to
the cost of floating-point operations in future supercomputer system designs
(Section 2.1.2). This may potentially necessitate the creation of programming
models which are able to capture the cost of data movement and can better
express data locality, in order to reduce the amount of data actually trans-
ferred [11, 206, 196, 115, 128]. The creation of intelligent runtime systems to
handle data movement are also likely to be required, together with increasing
the levels of asynchronicity within applications [11, 128].

Due to the increased levels of parallelism, the consequences of load imbal-
ances are also likely to be considerably more significant at exascale. This may
potentially require new programming models to be considered as alternatives
to SPMD, which may be too restrictive. Strong-scaling is also likely to become
increasingly important in inter-process parallelism, potentially further necessi-
tating a move towards more fine-grained parallel models. Developing topology-
aware communication mechanisms and optimising the mapping of application
processes within the overall interconnect fabric will therefore be increasingly
required. Additionally, undertaking research to improve the underlying scala-
bility of algorithms and software (including both one- and two-sided models)
is also likely to become increasingly important. Similarly programming models
will need to be able to scale from one node up to the full machine size of

an exascale-class system, and it is recognised that both unified and hybrid

33

2. Background Information

programming models are still candidates for achieving this [11].

The portability and productivity of a programming model, across both
machine architectures and applications domains, as well as its ability to deliver
portable performance have been recognised as crucial requirements. Further-
more it is also the case that this will become increasingly difficult to achieve
on future machine architectures. It is therefore likely that improving the hi-
erarchical interoperability between languages and programming models will be
required, together with an increased use of auto-tuning solutions to improve
the performance portability of applications. Similarly approaches that en-
able expert, performance orientated programmers, as well as domain scientists
(non-expert programmers) to simultaneously collaborate on the development of
software at different levels of abstraction, are likely to be necessary [11, 128].
Maintaining a clear separation of concerns between the development of sys-
tem components, which has been shown to boost productivity, may also be
required [11, 128].

It has been forecast that the resilience or reliability of future supercomputing
systems will likely become increasingly problematic as the scale, and the levels
of inherent parallelism within them, increase. Applications are unlikely to
be able to rely exclusively on hardware-based error detection and correction
approaches and may therefore need to incorporate explicit mechanisms within
the software [11, 115]. Additionally it is also forecast that the check-point restart
resiliency approach will not scale to exascale capable systems, necessitating

applications to be designed to tolerate hardware failures [11, 128].

2.3 Hydrodynamics Mathematical Foundations
& Applications

This section presents background information on the system of hydrodynamics
equations (Section 2.3.1) which the CloverLeaf mini-application (Section 1.6)
solves. Motivational factors for improving the state-of-the-art within this area

of science are also documented within Section 2.3.2.

2.3.1 Euler’s Equations of Compressible Fluid Dynamics

Euler’s equations of compressible flow [87, 42] are a system of three partial differ-
ential equations and are mathematical statements of the conservation of mass,
momentum and energy, Equations 2.1 to 2.3 within Figure 2.1 present these
statements respectively. These are expressed in conservation form although
the numerical method employed in CloverLeaf (Section 1.6) does not conserve

kinetic energy and therefore also the total energy within the system. This is

34

2. Background Information

dp
E+V~(pu) =0 (2.1)
8(aptu) +V-(u®(pu))+Vp=0 (2.2)
OF
StV +p) =0 (2.3)
pV =nRT (2.4)
in which:

p denotes the mass density

u denotes the velocity vector

FE is the total energy per unit volume

p represent pressure

® is a tensor product

0 is the zero vector

V represents volume

n denotes the amount of the gas in moles
R is the universal gas constant

T represents temperature

Figure 2.1: The Euler equations of compressible flow

a natural consequence of the use of a staggered grid (Figure 1.1a), in which
velocities are modeled at the nodes and kinetic energy is modelled separately
to internal energy [24]. Consequently it is only possible to conserve momentum
(mv) and not kinetic energy (mwv?). Internal energy refers to the temperature
of the material within each cell, whereas kinetic energy captures the energy due
to the motion of the material. The greater the internal energy of a cell, the
harder it is to compress.

The right hand sides of Equations 2.1 to 2.3 each sum to 0, this captures
the fact that each particular physical quantity (e.g. mass) is being conserved
and therefore that overall the particular physical property is neither being
created or destroyed. Equation 2.1 states that the rate of change of density
is equal to the divergence of the product of density and velocity. The flow
of density throughout the system therefore has to balance out and sum to zero
overall. Equation 2.2 states that the rate of change of momentum is equal to the
divergence of momentum plus the acceleration term (Vp). Specifically, that the
momentum of a cell depends on its existing momentum and the force (F = ma)
which is being exerted on it due to the pressure gradient. Finally, Equation 2.3
captures the conservation of energy principle and states that the rate of change
of energy is equal to the divergence of energy plus pressure, and therefore that

the overall energy of a cell depends on the work being done to it.

35

2. Background Information

A fourth auxiliary equation of state, such as the ideal-gas equation of state
(Equation 2.4), is employed to close the system of equations and enables the
derivation of a unique solution. The ideal-gas equation of state captures the
relationship between the constituent variables in Equations 2.1 to 2.3. It thus
enables the exact physical condition of matter to be modelled, due to the
particular set of properties currently being simulated. For example, it enables
the pressure of each cell to be calculated based on properties such as the internal
energy of each cell. Emile Clapeyron first proposed the ideal-gas law in 1834 as
a combination of Boyle’s law, Charles’ law and Avogadro’s law [208]. Currently
within CloverLeaf the system is solved for three unknown variables: energy,
density and momentum.

The Euler equations are capable of modelling, convecting and creating vor-
ticity and consequently they are often employed to simulate vortical flows caused
by either shocks or artificial mechanisms such as fixed stagnation points [168].
Additionally, they also represent an intermediate point in the hierarchy of
equations which lead to the Navier Stokes equations.

The equations are generally solved using explicit numerical methods due to
the fact that stable hydrodynamics simulation time-steps scale proportionally
to 1/(overall mesh size), which makes explicit time-stepping computationally
tractable. Explicit methods also generally produce second order accurate solu-
tions in both time and space, in contrast to implicit methods which are generally
only first order accurate. Additionally, the use of explicit methods enables
the equations to be solved without the requirement to globally invert a matrix
within the simulating application, thus avoiding a computationally expensive
operation. Implicit methods also do not model physical discontinuities—such as
shock waves or density jumps—very accurately, and can lead to the smearing of

these distinct feature and oscillations.

2.3.2 Motivations for Improving the State-of-the-art

Lagrangian-Eulerian simulation methods have established themselves as one of
the most dominant approaches for solving the hydrodynamic equations for com-
pressible flow [173]. To achieve accurate numerical solutions, a converged mesh
resolution is required. Lagrangian-based approaches can achieve accurate solu-
tions to problems involving multiple materials and moving boundaries, as the
mesh is able to move naturally in unison with the motion of the material [127]. A
purely Lagrangian-based approach can be problematic due to vorticity or strong
shearing forces within the simulation, causing the computational mesh to distort
and potentially become tangled [127, 173]. This necessitates the incorporation of

Eulerian-based approaches to reset or relax the mesh in order to achieve more

36

2. Background Information

accurate solutions. Additionally, for complex flows that generate interacting
shock waves, the mesh resolution required around shock fronts can be very
small when compared to the size of the entire domain.

It is widely recognised that achieving accurate solutions to some of the most
significant challenges in Lagrangian-Eulerian explicit hydrodynamics simula-
tions, across a wide range of scientific domains, require computational resources
that are not currently available [97, 127, 77]. In particular the simulation of
the high-energy hydrodynamic physics processes which scientists rely upon to
understand, for example, the properties of supernovas or space weather, and
the inertial fusion energy (IFE) gain from projects such as the National Igni-
tion Facility (NIF) in the USA, require such scales of computational facilities.
Similarly it has also been recognised that improving current hydrodynamic
simulation capabilities could enable significant advancements in medicine, po-
tentially facilitating the delivery of “real-time” simulations during surgery [117].
To reach the required resolutions/fidelities and reductions in time-to-solution,
huge numbers of floating-point operations and very large amounts of memory are
therefore required. Calculations at this scale require extreme levels of processing
resources, which will only become available with exascale supercomputers.

Exascale capable supercomputing systems will therefore be needed to reach
the required levels of simulation accuracy, and current methods (specifically
algorithms and codes) need to be re-evaluated and significantly improved, if
researchers are to have access to applications which can effectively utilise the
computational capabilities of future computational platforms. Designing and
preparing codes, which can achieve such calculations across a large domain
requires significant additional community research. To date insufficient work
has been undertaken to examine how explicit hydrodynamics applications can
be optimised to achieve exascale levels of performance and, into the supporting
programming models and technologies which can best facilitate this transition.
CloverLeaf (Section 1.6) is representative of a wide-class of explicit Lagrangian-
Eulerian hydrodynamics applications, including those used to model high-energy

physics processes.

2.4 Summary

This chapter has documented details of the previous, current and likely future
development trends of the hardware components used to construct HPC sys-
tems, as well as the primary design constraints which are currently influencing
their development. The implications of these trends for the future development
of scientific applications, and the software technologies used to construct them,

are also discussed.

37

2. Background Information

Additional background information was presented on several state-of-the-art
intra-node programming models, which are examined within this research. Some
of these are already well-established within the HPC community, whilst others
are relatively new and aim to deliver some of the advanced features (such
as fine-grained parallelism and improved application portability) which will
be necessitated by current hardware development trends, in order for appli-
cations to optimally utilise future hardware platforms. The de facto inter-node
programming model used within HPC application development, MPI, is also
discussed together with several issues which may constrain its scalability on
future system architectures. Furthermore, information on several proposed
alternative solutions (hybrid-programming and PGAS models), which purport
to resolve some of these issues, were also presented. Specifically, the CAF and
OpenSHMEM PGAS models, which are evaluated within this research, were
documented.

Finally, the system of hydrodynamics equations solved by the scientific
applications, which are the focus of this work, were described together with
several motivating factors for improving the capabilities of these applications

for simulating complex phenomena on future platforms.

38

CHAPTER 3

Intra-Node Performance Optimisations

This chapter documents the work undertaken as part of this research to de-
velop techniques for improving the intra-node performance of the CloverLeaf
mini-application, and to thereby also improve the larger production explicit
hydrodynamics applications which it represents. The work focuses exclusively
on the OpenMP-based version of the codebase and examines several candidate
optimisations, ultimately the end goal was to develop an optimal OpenMP-based
version of the codebase. In particular several key objectives included developing
optimisations to improve the performance of the codebase on the Intel Xeon
Phi architecture and in situations in which OpenMP parallelism is employed
across multiple processor sockets and NUMA (Non-Uniform Memory Access)
domains within individual compute nodes. The chapter initially discusses some
related and motivating work within this arena (Section 3.1) and then, in Sec-
tion 3.2, documents the current implementation of the mini-app in the OpenMP
programming model as well as each candidate optimisation examined. The
performance of these potential optimisations on two current state-of-the-art
processor architectures is analysed in Section 3.3. Finally, Section 3.4 concludes

the chapter.

3.1 Related Work

Optimising OpenMP-based applications has been studied extensively for a num-
ber of years and improvements to enhance data locality and NUMA region
affinity [188, 53] as well as iteration partitioning and scheduling strategies [154]
have been proposed. The performance of nested-parallelism within OpenMP
was studied in [54, 190] using a range of applications and micro-benchmarks.
The scalability of barrier and synchronisation algorithms for OpenMP has also
been examined and various approaches for improving the available synchroni-
sation constructs have been proposed [146]. These include approaches based
on Phasers [181, 180] and point-to-point synchronisation [36]. Developing an
OpenMP implementation for a SOC incorporating a large number of processor
cores was also studied extensively in [49)].

Additionally in [126] Liu et al. examine an approach based on the privati-
sation of array sub-sections as a mechanism for converting OpenMP programs
to an SPMD style of computation. To facilitate the implementation of similar

optimisations Hernandez et al. have also developed a tool to analyse the memory

39

3. Intra-Node Performance Optimisations

access patterns of OpenMP programs [83]. Several studies have also evaluated
the performance of the OpenMP programming model at high thread counts on
the Intel Xeon Phi co-processor [170, 37, 43]. The importance of appropriately
vectorising applications on the Xeon Phi co-processor is emphasised in [16, 193],
together with several techniques for improving the levels of vectorisation within

existing applications.

3.2 OpenMP-based Optimisations Examined

This section documents the reference implementation of the OpenMP-based ver-
sion of CloverLeaf as well as the techniques examined (Sections 3.2.1 to 3.2.12)
to improve the single-node performance of the codebase.

The reference implementation is an evolution of the serial version of the code-
base in which OpenMP constructs are utilised to provide intra-node parallelism.
OpenMP parallel regions are employed within each of the 14 computational
kernels i.e. at the lowest level within the call-graph of the application. To
minimise the fork/join overheads inherent in the OpenMP programming model
one parallel region is employed per kernel; each region therefore potentially
encompasses several loop-blocks. To enable individual loop-blocks within the
computational kernels to be parallelised over the available threads, additional
OpenMP do constructs are employed, generally around the outer-loops of each
loop-block. OpenMP private constructs are specified where necessary to create
temporary variables that are unique to each thread, whilst reduction primitives
are employed to implement intra-node reduction operations at two locations.

During this research certain optimisations were applied only to particular
kernels—these are clearly identified in the following sections—whilst others
were implemented throughout the entire codebase. Each technique was initially
utilised in isolation to implement alternative versions of the codebase, however,
several of these techniques were subsequently combined to produce further
versions of the application. Additionally, Section 3.2.13 also describes research
undertaken with the Cray Reveal tool in order to automatically generate an
OpenMP based version of the codebase. Section 3.3 analyses the effect of each

of these alternative approaches on the performance of the mini-app.

3.2.1 First-touch Memory Placement

Modern multi-processor systems generally exhibit non-uniform memory access
times between the local memory sub-system of a processor and those located on
different processors within the same node. When executing threaded programs

across multiple sockets it is therefore important to ensure that threads primarily

40

3. Intra-Node Performance Optimisations

1$OMP PARALLEL
1$OMP DO
DO k=y_-min ,y_-max
DO j=x_min ,x_max
array (j,k)=0.0

1$OMP PARALLEL
array=0.0

ENDDO
!1$OMP END DO

!1$OMP END PARALLEL 1SOMP END PARALLEL

(a) Reference (b) First-touch

Figure 3.1: The modified “first-touch” memory initialisation approach

access memory resources located in the memory sub-system of their local pro-
cessor and therefore minimise inter-socket memory accesses. Memory locations
allocated by an application are also only mapped into actual physical memory
once they are first accessed or “touched”. Once accessed these allocations will
be mapped into the memory sub-system physically local to the processor on
which the particular accessing thread is executing.

The reference implementation originally employed an approach which ini-
tialised each entire 2D-array using Fortran 90 array assignment syntax within
an OpenMP parallel region (Figure 3.1a). This created a data-race condition
in which each OpenMP thread attempted to initialise all array elements. This
was not detrimental to performance when threads were contained within one
processor socket as regardless of the thread execution orderings all memory
locations were mapped to the same physical memory sub-system of the local
processor. The initialisation code was also located outside of the main timing
loop of the application. In situations in which OpenMP parallelism is utilised
across multiple sockets, however, this approach resulted in significant memory
affinity problems.

To address this situation a modified approach (Figure 3.1b) was implemented
which ensured that each thread only initialised the memory locations for which
it was directly responsible, thus ensuring that these memory locations were
physically mapped as close as possible to the particular thread. In this modified
implementation the additional double-loop block and the OpenMP do paralleli-
sation construct ensures that individual threads will only access particular sets
of rows from the 2D-array (named “array” in Figure 3.1) and that these sets will
be contiguous but non-overlapping between different threads. Versions which
employ this modified “NUMA-aware” approach contain the acronym ft (First

Touch) within their descriptions in Section 3.3.

41

3. Intra-Node Performance Optimisations

3.2.2 Array-of-arrays Data Structure

Memory allocations are, however, physically mapped into the memory sub-
system of a node at the granularity of individual memory pages. This occurs
when a memory location allocated within the particular memory page is first
accessed, the page is then mapped into the memory sub-system which is directly
connected to the processor on which the accessing thread is executing. It
is therefore possible, and often the case, for the contiguous sets of memory
locations accessed by different threads to reside within the same memory page.
This does not usually represent a problem when OpenMP is only utilised within
individual sockets, as no matter which thread “touches” this memory first,
the page containing the memory locations for all of the threads will always be
mapped into the same memory sub-system, which is local to all of the executing
threads. When OpenMP is utilised across multiple sockets, however, this can
result in the creation of race conditions between threads located on different
sockets, potentially allowing the particular memory locations to be mapped onto
any of the sockets within the node, depending on thread execution orderings.
This is particularly problematic when huge-pages are utilised to reduce pressure
on the TLB (Translation Lookaside Buffer) sub-system and can result in large
amounts of memory being mapped onto the wrong sockets in a sub-optimal
manner. This causes threads to incur additional overheads by having to access
memory locations across the inter-socket bus network.

To ensure that the memory locations managed by different threads are always
allocated on different memory pages, the data structures within the application
were modified from standard 2D-arrays into an “array-of-arrays” configuration.
In this approach each 2D-array, which contains information on a particular
physical property (e.g. density), is split into one “top-level” array which contains
multiple sub-arrays, one for each row of the original 2D-array. The sub-arrays
are each allocated and initialised separately by the thread which is responsible
for managing those particular memory locations, ensuring that each is located
on a separate memory page. Thus each sub-array will be mapped within the
local memory sub-system of the processor on which its managing thread resides,
regardless of any differences in thread execution orderings. This optimisation
is therefore mainly targeted at improving application performance in situations
when OpenMP is employed across multiple sockets within each system node
(e.g. one MPI process per node). Within Section 3.3 versions which employed
this optimisation contain the acronym AoA (Array of Arrays) within their

descriptions.

42

3. Intra-Node Performance Optimisations

3.2.3 Data Alignment & Cache Line Padding

To potentially increase the efficiency of load and store memory operations as well
as to assist compilers with the implementation of optimisation techniques such
as automatic vectorisation, additional versions of the codebase were created
which incorporated specific directives to align all data arrays on appropriate
byte boundaries. This was achieved under the Intel software tool-chain using
a combination of compiler options (e.g. —align arraynbyte) and source code
directives (!dir$ attributes align:64 :: array) to inform the compiler to
align the particular data arrays. As compilers cannot generally assume that
arbitrary data passed into subroutine calls is appropriately aligned, additional
source code directives (e.g. !dir$ attributes align:64 :: array and !dir$
vector aligned) were also employed, at the required locations throughout the
codebase.

To eliminate any “false sharing” of cache lines between OpenMP threads and
further improve data alignment additional versions were created which inserted
redundant memory locations into the array allocations. These “padded” the
rows of the arrays such that each starts on an appropriately aligned cache line
boundary. This ensures, therefore, that no cache lines are shared for writing,
between two different threads. Versions which employed this optimisation con-
tain the word Cpadd within their descriptions in Section 3.3, whereas versions
which utilise the previous data alignment optimisations are denoted using the

word Align.

3.2.4 High-level OpenMP Parallel Region

When a process encounters an OpenMP parallel region a number of threads
are created, or “forked”. An implicit global synchronisation operation also exists
at the end of each parallel region, at which point threads are “joined” back
into the main process thread and control continues serially. The reference
implementation employs a design strategy in which one parallel region is
utilised per computational kernel. Consequently the invocation of each kernel
routine forces the OpenMP runtime to initially “fork” control to the required
number of threads at the start and “oin” these threads back into the main
process at the end of its execution. This potentially incurs significant additional
overheads particular for large thread counts.

To potentially alleviate these threading overheads an additional version was
developed which raised the OpenMP parallel regions from each bottom-level
kernel and combined them within the main top-level application routine. In
this modified approach the start of the one remaining parallel region is only

encountered once during the execution of the application. The threads created

43

3. Intra-Node Performance Optimisations

within this region are thus maintained throughout the entire execution of the
application and are only “oined” back into the main process at the end of
this “top-level” routine, i.e. when the application is terminated. This also
required the inclusion of additional OpenMP directives such as !$omp master
and !$omp barrier at critical points throughout the program, and the creation
of additional thread-private variables, in order to prevent race-conditions
and ensure program correctness. Versions which incorporated this candidate
optimisation are denoted by the acronym hlpr (High Level Parallel Region)

within their descriptions in Section 3.3.

3.2.5 Duplicating Constant Data per NUMA-region

CloverLeaf utilises several 1D-arrays to store particular properties relating to
the simulated mesh cells. Once initialised the values stored within these arrays
remain constant throughout the execution of the application. When the refer-
ence OpenMP implementation is utilised across multiple sockets these arrays are
generally stored such that half of the elements in each array are located within
each NUMA-region. All of the values within these arrays are required by each
application thread; consequently this results in significant numbers of memory
accesses across the inter-socket communication bus to the remote NUMA-region.

As the contents of these arrays remain constant throughout the execution
of the application it is possible to create copies of each array which reside
exclusively within a particular NUMA-region and for each application thread
to be configured to only access its local copy of a particular array. To examine
the effect of eliminating these remote memory references on the performance
of the application, additional versions were developed which incorporate this
optimisation (denoted by the word dupConst within Section 3.3). In these
versions the array copies are created during the initialisation phases of the appli-
cation, pointers—which are declared as private to each application thread—are
then initialised to reference the local copy of a particular array within each
thread. Threads thus proceed to access these arrays through the appropriate
local pointer. The implementation of the High-level OpenMP Parallel Region
optimisation described in Section 3.2.4 is required in order for the contents of

these pointer variables to persist throughout the execution of the application.

3.2.6 Explicit Loop Schedules

To automatically parallelise the loop iterations across the available threads,
the reference implementation utilises OpenMP do directives, generally on the
outer loop of the double loop-blocks within each kernel. In this approach the

OpenMP runtime system calculates how to actually partition the iterations

44

3. Intra-Node Performance Optimisations

of each loop-block when the corresponding do directive is encountered, based
on the total number of iterations and whether particular schedule clauses are
specified. An additional optimisation was therefore implemented, which utilised
explicit iteration allocations between threads for each loop-block, to remove
any overheads incurred due to the OpenMP runtime loop partitioning and
scheduling. These schedules are pre-calculated during application initialisation,
depending on the particular problem size being simulated, and are stored within
pairs of dedicated arrays which each contain one entry for each OpenMP thread.
One array contains the starting iteration number of each thread for a particular
loop-block, whilst the second array stores the final iteration number. Upon
encountering a particular loop-block each thread uses its identification number
to access its unique location within these arrays and to obtain the iteration range
which it should process (Figure 3.2). The OpenMP do directives can thus be
completely removed from the loop-blocks. Versions which employ this candidate
optimisation contain the initials FLS (Explicit Loop Schedules) within their

descriptions in Section 3.3.

3.2.7 Inter-thread Synchronisation Elimination

Reducing synchronisation within applications is recognised as a potential op-
timisation to increase the scalability of OpenMP applications. OpenMP do
constructs contain an implicit global synchronisation at the end of each con-
struct, which is often not required by the application. In situations in which
no dependencies exist between threads, nowait directives were added to the do
constructs to remove the implicit synchronisation operations. Versions which
employ this technique contain the word mowait within their descriptions in
Section 3.3.

3.2.8 Reducing Inter-thread Synchronisation

In situations in which dependencies do exist between threads it is frequently the
case that these are only present between immediately adjacent pairs of threads,
e.g. due to stencil operations in the y-dimension of the mesh. Consequently
global barrier operations, which synchronise all of the threads, are often not
required, potentially computationally expensive and do not allow for the exe-
cution of different code regions to be overlapped between different threads. To
examine whether alternative approaches, which reduce overall synchronisation
requirements, could deliver any performance benefits an approach, similar to
the pseudo code in Figure 3.2 was implemented. This utilises explicit point-to-
point synchronisation operations between threads, and was implemented for the
Cell-Advection kernel within CloverLeaf.

45

3. Intra-Node Performance Optimisations

!$OMP PARALLEL
tid = omp-_get_thread_num ()

k=loopblockl_ystart (tid)
DO j=x_-min , x_max

loopblockl code
ENDDO

!1$OMP FLUSH(data arrays)
Update loopblock2_locks (tid —1)
I$OMP FLUSH(loopblock2_locks)
DO k=loopblockl_ystart (tid)+1,loopblockl_yend (tid)
DO j=x_min ,x_max
loopblockl code
ENDDO
ENDDO
DO k=loopblock2_ystart (tid),loopblock2_yend (tid)—1
DO j=x_min , x_-max
loopblock2 code

ENDDO
ENDDO

I$OMP FLUSH(loopblock2_locks)
Busy-wait on loopblock2_locks (tid)
Reset loopblock2_locks (tid)
!1$OMP FLUSH(data arrays)
k=loopblock2_yend (tid)
DO j=x_-min , x_-max

loopblock2 code
ENDDO

!1$OMP END PARALLEL

Figure 3.2: OpenMP point-to-point synchronisation approach

To achieve this an array of lock variables was created for each loop-block
which has a potential dependency on a loop iteration executed by another
thread. These arrays are appropriately aligned and include sufficient memory
padding to ensure that each lock resides on a completely separate cache line to
avoid access conflicts and excessive cache-coherency traffic. Threads set these
lock variables to indicate to their neighbouring threads that they have completed
a particular operation and written their results to memory. Consumer threads
are configured to continue execution until they require data produced by another
thread, at which point they utilise “busy-wait” operations on the appropriate
lock. OpenMP flush directives are employed to ensure data and locks are
appropriately written back to, and read from, memory rather than cache. This
approach also requires the utilisation of the explicit loop schedules described in
Section 3.2.6.

Frequently it is the case that these inter-thread dependencies only exist
between the first iteration of a loop-block in one thread and the last iteration of
a subsequent loop-block in another thread. Figure 3.2 depicts such a situation.

In cases such as these it is possible to separate the first iteration of loop-block

46

3. Intra-Node Performance Optimisations

1 from the main body of the loop and to update the appropriate lock variable
immediately following its execution, to communicate that the dependency is
satisfied. As only the last iteration of the second loop-block contains the
inter-thread dependency, this can also be separated from the main loop body,
with a “busy-wait” operation being employed between them to ensure that
the dependency is satisfied before a particular thread executes this iteration.
Assuming computational load is well-balanced between threads, and the runtime
interleaves thread executions fairly, this arrangement should ensure that threads
do not have to synchronise (“busy-wait”), as by the time the last iteration of
the second loop is reached, its dependencies should generally have already have
been satisfied. This approach contributes to increasingly asynchronicity levels
within applications as well as overlapping thread executions. Versions which
incorporate these point-to-point synchronisation approaches are denoted using
the word p2psync within Section 3.3.

Additionally, to completely eliminate any inter-thread synchronisation con-
structs the use of an explicit recalculation approach was also examined. In
this approach when a dependency exists between two threads the code was
re-factored to enable the “consuming” thread to actually calculate the required
values rather than relying on the original “producing” thread. This typically
involved a thread temporarily recalculating values for a row which is either
immediately above or below it in the overall mesh. These would originally have
been produced by the immediately adjacent threads within the overall decom-
position. The threads store the recalculated values within temporary variables,
with the original thread producing the final values which are ultimately stored
within main memory. Versions which incorporate the recalculation approach
to reduce inter-thread synchronisation are denoted using the word recalc in
Section 3.3.

3.2.9 Thread-private Temporary Variables

Several computationally intensive kernels in the reference implementation utilise
global 2D-arrays to store temporary intermediary values required throughout
the execution of a particular kernel. Through the use of OpenMP thread-private
temporary variables it was possible to reduce, and in some cases eliminate, the
use of these temporary arrays. This ultimately has the effect of reducing the
overall number of global memory operations within these kernels and also the
overall memory storage requirements of the application. A detailed analysis
of the codebase enabled this optimisation to be applied to the Cell-Advection,
Momentum-Advection, PdV, Accelerate and Calc-DT kernels, which each per-

form a particular phase of the overall hydrodynamic simulation implemented

47

3. Intra-Node Performance Optimisations

I$OMP DO PRIVATE(..., temp_array) REDUCTION(MIN : dt-min_val)
DO k=y_-min ,y_-max
!DIR$ SIMD VECTORLENGTH(CALCDTVECTORLENGTH)
DO j=x_min,x_max

temp_array (MOD(j —1,CALCDTVECTORLENGTH)) = MIN(...)
dt_-min_val = MIN(dt_-min_val MINVAL(temp_array))

ENDDO

ENDDO
!1$OMP END DO

Figure 3.3: The “vectorising” version of the Calc-DT kernel

within CloverLeaf. Versions which utilised this optimisation are denoted using
the description private Vars within Section 3.3. Implementing this optimisation
frequently required the merging of loop-blocks within each kernel, when this
was required for a particular version it is denoted using the word merge in the

descriptions within Section 3.3.

3.2.10 Loop Vectorisation

An analysis of the vectorisation reports produced by the compiler for the refer-
ence implementation identified that the second loop-block within the Calc-DT
kernel, which contained a reduction operation, could not be successfully vec-
torised. To enable this kernel to be fully vectorised by the compiler a subsequent
version was developed (see Figure 3.3) in which the reduction loop was merged
into the main loop-block of the kernel and the 2D-temporary array replaced
with a smaller array of the same size as the vector length of the particular
architecture. A !'dir$ simd vectorlength(calcdtvectorlength) directive
was then applied to the inner loop of the kernel in order to ensure that the
compiler generated vectorised operations of a particular width, equal to the value
of calcdtvectorlength. This was passed into the kernel via the compiler’s
pre-processor facility. The array was populated using the inner loop index to
ensure that adjacent iterations store their values in different but contiguous
array locations. This array variable was also declared as private to ensure that
each thread maintained its own copy in which to accumulate temporary values.
On the system containing the Xeon Phi processor architecture a later version
of the Intel compiler was available which was able to successfully vectorise this
kernel after only the loop merger and temporary 2D-array elimination optimi-
sations. The versions denoted by Kernel_Opts within Section 3.3 incorporate
these optimisations.

This analysis also identified that the Field-Summary kernel was also not be-

ing successfully vectorised by the compiler. The vectorisation reports produced

48

3. Intra-Node Performance Optimisations

by the compiler identified that this was due to a perceived iteration dependency
within a double loop-block nested within the main kernel loop-block. Manually
unrolling this nested inner loop-block enabled the compiler to successfully vec-
torise the kernel. The versions denoted by the description Kernel_Opts within

Section 3.3 also incorporate this optimisation.

3.2.11 Accelerate Kernel Optimisations

The reference implementation of the Accelerate kernel was implemented as
a series of five consecutive loop-blocks each of which was parallelised using
OpenMP do constructs. To potentially improve the performance of this kernel
several candidate optimisations were examined, including applying OpenMP
nowait directives to each loop-block to eliminate the synchronisation operations
between them, versions which utilised this optimisation are denoted using the
description nowait within Section 3.3. A subsequent version (denoted by the
word merge) also examined the effect of manually merging these loop blocks
together into one larger loop-block. Building on this an additional version
(denoted by the word private Vars) examined a further optimisation which em-
ployed several temporary thread-private variables to eliminate the use of a global
2D-array, which was used to store temporary values within the original kernel.
This also reduced the number of global memory operations required to update
the persistent global 2D-arrays. The versions denoted by Kernel Opts within

Section 3.3 also incorporate these optimisations.

3.2.12 Update-Halo Kernel Optimisations

The Update-Halo kernel performs boundary reflections around the edges of the
mesh region assigned to each process. In the reference version this kernel is
implemented via collections of four double-nested loop blocks (one for each mesh
edge). This arrangement is also repeated for each data-field whose values need
to be reflected. As the z-dimension of each mesh is stored within contiguous
memory locations it is generally more efficient for each thread to access memory
sequentially along the rows of each array. This necessitates that the inner j-loops
traverse each row and for the OpenMP parallelism to be applied to the outer
k-loops which iterate over individual rows. For the halo-updates to the top and
bottom mesh edges this arrangement would involve the OpenMP parallelism
being applied to a loop with a very short trip-count and therefore only gener-
ating a small number of threads, which would be inefficient. Consequently the
reference implementation is constructed using inner k-loops and outer j-loops
for the top and bottom halo-exchanges, which results in a sub-optimal memory

access pattern. To potentially improve on this arrangement an additional version

49

3. Intra-Node Performance Optimisations

(referred to as UHinter) was therefore created. In this modified version the
original loops for the top and bottom mesh exchanges were interchanged, and
an OpenMP collapse(2) directive was applied on the now outer k-loops. This
causes the two loops to be coalesced into one larger iteration space and for this
modified loop-structure to then be parallelised across application threads.

When OpenMP thread teams are utilised across multiple sockets this also re-
sults in the top and bottom mesh edges each being stored exclusively within the
local memory locations of different processors, assuming two sockets per node.
Performing the memory copy operations on each of these edges sequentially, as
the reference implementation does, thus results in half of the threads accessing
memory locations on the remote socket. A further potential optimisation was
therefore examined which enabled this kernel to operate on both mesh edges
simultaneously. The memory locations of each edge are therefore processed
by only a subset of the threads which have an affinity to the processor that
is strictly local to the memory locations of the particular edge. This was
implemented using two levels of nested-parallelism and OpenMP v4.0 thread
placement constructs. The first level of parallelism specifies that two threads
should be created (num_threads(2)); and that by using the proc_bind (spread)
directive each should be located on different processor sockets. Two lower-level
OpenMP parallel regions were then subsequently employed, one per edge,
each of which was contained within a separate OpenMP sections construct.
A further num_threads(X) proc_bind(close) directive was utilised on these
lower-level parallel regions to ensure that the required number of threads is
created with an affinity to only the particular local processor. Versions which
employed this candidate optimisation are denoted by the word UHnested within
their description in Section 3.3.

The reference kernel implementation also performs a global synchronisation
operation after each loop-block which operates on a particular edge of the mesh.
To potentially reduce the number of synchronisation operations required, the
kernel was restructured into two distinct phases. The first phase performed the
necessary memory operations on both the top and bottom mesh edges, whilst
the second operated exclusively on only the left and right edges. OpenMP
nowait directives were applied to each loop-block within the kernel to remove
the implicit synchronisation operation which occurs by default at the end of each
OpenMP do construct. One OpenMP barrier construct was then employed
between the two phases to provide the minimum synchronisation required by
the hydrodynamics algorithm and ensure correct execution orderings. Versions
which employed this optimisation are referred to using the word UHnowait

within the descriptions in Section 3.3.

50

3. Intra-Node Performance Optimisations

3.2.13 Automatic Application Hybridisation

It has been recognised that incorporating OpenMP directives into existing ap-
plications can be an extremely complex and time-consuming task. To alleviate
this problem Cray developed the Reveal tool to automatically hybridise applica-
tions. Reveal provides functionality to perform an automated scope analysis of
particular loop-blocks and to insert suggested OpenMP directives, for variable
scoping and loop partitioning, into the codebase. As part of this research the
tool was utilised to automatically hybridise the serial version of the CloverLeaf
codebase, in order to produce a new hybrid version, denoted with the description
reveal within Section 3.3. The tool successfully scoped all of the loop-blocks
with the exception of three variables, for which it requested user assistance and
correctly recognised all of the required reduction constructs. After additional
scoping information was specified the generated code was verified to be correct
and its performance is analysed within Section 3.3. The data-parallel nature of
the CloverLeaf kernels does make it significantly easier for Reveal to generate
the required scoping information also the tool is not yet able to automatically
generate code which incorporates multiple loop-blocks within the same OpenMP

parallel region.

3.3 Results Analysis

The aim of this research was to explore techniques for improving the time-to-
solution achievable using the OpenMP-based version of CloverLeaf, therefore
the results presented here are expressed in terms of execution wall-time. This
analysis was conducted in two parts, firstly the utility of certain candidate
optimisations within individual application kernels was assessed. This utilised
the kernel driver functionality contained within the CloverLeaf software suite;
Section 3.3.1 presents the results of this analysis. Secondly, the effectiveness of
the successful optimisations on the full application codebase was then examined,
together with several additional candidate optimisations; Section 3.3.2 contains
the results of this analysis.

To examine the effectiveness of these optimisations at improving the per-
formance of the codebase, when OpenMP parallelisation constructs are utilised
across NUMA-domains, the dual-socket nodes of the Archer platform (which
are based on Intel Xeon processors) were utilised. Additionally, in order to
assess their utility on a current state-of-the-art high core count processor de-
vice, a series of experiments were also conducted using the Intel Xeon Phi
co-processor within the Tuck system. This enabled the determination of whether

certain optimisation techniques will be required within future applications, as

o1

3. Intra-Node Performance Optimisations

the construction of HPC platforms progresses towards processing devices which
integrate larger numbers of CPU cores, which is a current trend within the
HPC/Scientific computing field. Section A.1 contains more detailed information
on the architectures of both of these experimental platforms.

The 3,8402 cell problem, from the standard CloverLeaf benchmarking suite,
was examined in these experiments. Additionally to reduce the effects of system
noise, unless otherwise noted, the results presented here are averages from 3
separate executions of each experiment. Version 14.0 of the Intel compiler
suite was utilised throughout this work and all of the experiments on the Xeon
Phi co-processor were conducted with the platform in “native” mode. On the
CPU-based nodes of Archer each experiment utilised 24 OpenMP threads and
the KMP_AFFINITY environment variable was set to explicitly bind each thread to
a specific processor core. On the Xeon Phi platform, however, each experiment
was conducted using 120 OpenMP threads with two consecutive threads exe-
cuted on successive processor cores (KMP_AFFINITY=granularity=fine, balan-
ced; KMP_PLACE_THREADS=60c,2t). Previous experiments have shown this to
be the most performant configuration for this architecture. The IEEE floating-
point mathematics options were also enabled in all experiments on Archer,

whilst on the Xeon Phi these options were disabled.

3.3.1 Individual Kernel Optimisation Analysis

The following sections and Figures 3.4 to 3.10 each examine the effect on perfor-
mance of applying particular optimisation techniques to individual application

kernels.

Cell- Advection Kernel Optimisations

The effect of applying a series of optimisations to the Cell-Advection kernel was
explored in a number of experiments. This involved examining the utility of
the NoWait construct (Section 3.2.7), the explicit loop schedules (Section 3.2.6)
and the point-to-point synchronisation mechanisms (Section 3.2.8), as well as
the wvariable privatisation techniques (Section 3.2.9). In these experiments the
kernel was executed for 1,000 and 500 iterations on the CPU and Xeon Phi
architectures respectively, Figure 3.4 presents the results of these experiments.

Although the results contain some similar trends on both architectures they
also exhibit some important differences. Implementing the variable privatisation
optimisation to eliminate four 2D temporary arrays and the associated global
memory operations delivers significant performance advantages on both archi-
tectures. The results show that this improves performance by as much as 27.2%
on the CPU architecture and by 7.8% on the Xeon Phi platform.

52

3. Intra-Node Performance Optimisations

Reference

NoWait

ELS_X

ELS_Y _barrier
barrier

ELS_Y _p2psync
barrier

ELS_Y _p2psync
p2psync

ELS_Y _recalc
barrier

Dual-socket Xeon [J] Xeon Phi

Ao

AR AR AR AR AR AR AR AR AR AR AR AR AR

0000000500000050005002520520520242024 20420242024 2022222229

AR AR

7 T 7700000000 000207

7 000000000000000005000000000050005 0004004 00400040002004224)

ELS_Y _recalc

p2psync

PrivateVars

//j

| | | | | |
20 40 60 80 100

wall-time (secs)

=]

Figure 3.4: Optimisations to the Cell-Advection kernel

Applying the NoWait optimisation to the z-direction loop-blocks within the
kernel and the explicit loop schedules optimisation to both the z- and y-direction
loops (FLS_X and ELS_Y_barrier_barrier), however, does not have a significant
effect on the overall performance of the kernel on either architecture.

Employing the point-to-point synchronisation optimisations (Section 3.2.8),
affects performance differently on both processor architectures. The advection
phase of the kernel in the y-direction contains three loop-blocks and this tech-
nique was utilised to reduce the synchronisation operations between successive
pairs of these loop-blocks. The naming conventions used in Figure 3.4 indicates
For

example, the ELS_Y_recalc_p2psync experiment employs the recalculation tech-

which technique was used between each particular pair of loop-blocks.

nique between the first two loop-blocks and the point-to-point synchronisation
technique between the second pair of loop-blocks.

On the CPU architecture these candidate optimisation techniques do not
deliver any significant performance benefits as the results show that execution
time is virtually identical, allowing for system noise, to that of the reference
implementation. The results from the experiments on the Xeon Phi architecture,
however, show that employing either the p2psync or recalc techniques between

the first two loop-blocks and the p2psync technique between the second pair

53

3. Intra-Node Performance Optimisations

Dual-socket Xeon [J] Xeon Phi

77 e
357 777 m 777
220 227 27 A2 rr
L fos 22 M A 777
~ 150 222 22 A 22 A
@ 220 22 A 120 A
220 22 A 12 A
3 250 22 A A A
1] 22 22 A A A
220 2% 27 /2 252
— %7 2% A A A
222 22 A 12 A
Q 100 |- Fees Y 057 277 227
E 777 777 lr7z , 77 777
457 22 A A A
B= 220 22 A 12 A
+~ 777 777 i 77 277 ’77
] 2% 254 05l 12 A
- 250 2% A A A
— 777 772 iy 77 777 777
< 220 22 A A A
g 50 (22 252 2 227 2%
220 22 A A A
337 22 2 A A
220 22 A A A
%7 22 A 150 A
222 22 A 12 A
220 22 A 12 A
220 22 A A A
0 T T T T T
Reference Merge Loops Merge Loops Private Private
Direction 1 Direction 2 Variables Variables &

Merge Loops

Figure 3.5: Optimisations to the Momentum-Advection kernel

of loop-blocks does delivery some performance advantages on this platform. In
these experiments the reference implementation required 122.8s on average to
complete the required iterations with a standard deviation (o) of 0.49s. The
optimised version which utilised the p2psync synchronisation technique between
both loop-blocks (ELS_Y_p2psync_p2psync), however, improved performance by
3.7s (3.0%) on average, and a o value of 0.3s was recorded. Additionally,
the ELS_Y_recalc_p2psync version increased performance by 3.2s (2.6%) on
average, with a o of 0.13s. The performance of the versions which employed a
global OpenMP barrier operation between at least one pair of loop-blocks was
practically identical to that of the reference implementation.

Although these performance improvements are relatively small the fact that
they only occur at the large thread counts utilised on the Xeon Phi co-processor
indicate that these techniques may become increasingly important as the archi-
tecture of future processor devices forces application developers to significantly
increase the levels of “threading” within their software designs. It should also be
noted that the kernels of this application have already been heavily optimised
and therefore achieving any performance improvements is both extremely chal-
lenging and worthwhile. Additionally, even small percentage improvements in
performance can result in considerable financial cost savings when applications

are executed at considerable scale.

Momentum-Advection Kernel Optimisations

As part of this research the effect on performance of merging particular loop-
blocks within the Momentum-Advection kernel was examined in a series of
experiments. Additionally, the use of the techniques described in Section 3.2.9,
for reducing the use of global array data structures to store intermediary results
within the kernel was also examined. Figure 3.5 presents the results from these

experiments.

54

3. Intra-Node Performance Optimisations

777 77
55 55
A 227
. AN A
12} 777 777
o 100 A A Dual-socket Xeon
[} 777 777
z 2% 250 [| Xeon Phi
55 55
A 227
9 ’77 777
g %% 2 7%
e 2% 2%
222 222 2%
1 |
= 90 722 %2
= 5% 2%
222 222
z 55 55
222 227
55 A
Y A
222 222
257 257
0 52 52
T T T
Reference NoWait MergeLoops MergeLoops &
PrivateVars

Figure 3.6: Optimisations to the Accelerate kernel

The results show that on the CPU architecture merging several of the loop-
blocks within both the z- and y-directions of the kernel delivers a 2.7% and
a 1.7% improvement in performance respectively. Additionally applying the
Private Variables optimisation to eliminate one global 2D temporary array, and
the associated global memory accesses, delivers a further 2.4% performance
improvement. Combining these optimisations improves the overall performance
of the kernel by 7.74% relative to the reference implementation. On the Xeon
Phi architecture, however, these improvements are less successful. The imple-
mentation of the Private Variables technique and the optimisation to merge the
z-direction loops only deliver a ~1% improvement in performance. The merging
of the loops in the y-direction, however, actually has a slightly detrimental effect
on performance of -0.2%. Collectively these optimisations only improved the

performance of the kernel on the Xeon Phi architecture by <1%.

Accelerate Kernel Optimisations

The effect of applying the Loop-merger and Private Variables optimisations to
the reference implementation of the Acceleration kernel, as well as employing
OpenMP NoWait directives to remove synchronisation operations, are shown in
Figure 3.6. In these experiments the kernel was executed for 4,000 iterations
on the CPU architecture and for 2,000 iterations on the Xeon Phi processor.
The results indicate that on both the CPU and Xeon Phi processor architectures
employing the NoWait directives delivers negligible performance benefits for this
kernel. Manually merging the loop-blocks within the kernel, however, delivers
significant performance improvements, with these reaching 1.8x and 1.34x on
the CPU and Xeon Phi architectures respectively. Additionally, combining this
technique together with the optimisation to convert global temporary arrays
to Thread-private variables delivers further performance benefits of 1.2x and

1.1x respectively.

55

3. Intra-Node Performance Optimisations

Dual-socket Xeon [J] Xeon Phi Dual-socket Xeon [J Xeon Phi
77 100 |~ 222
— 2% 77 — % A
8 100 | [2% 3 %7 2%
2 % % 2 % %
= 2 5% < 2% 7
o A 227 © % %
£ E 5ol [
+ 777 r77 + 777 d
-~ 50| [%) A %%
— 777 r77 -~ 777 777
[} 277 2727 < 277 777
E % % B % %
0 T T 0 T T
Reference MergeLoops & Reference Private
Vectorised Variables
Figure 3.7: Optimisations to Figure 3.8: Optimisations to the
the Cale-DT kernel PdV kernel

Calc-DT Kernel Optimisations

Applying the Loop-merging and Vectorisation optimisations described in Sec-
tion 3.2.10 to the Calc-DT kernel improves performance on both processor archi-
tectures examined here. Figure 3.7 presents the results from these experiments
and shows that these optimisations reduced the runtime of the kernel by 12.9%
on the CPU architecture and by 11.7% on the Xeon Phi. In these experiments
the kernel was executed for 10,000 and 2,000 iterations on the CPU and Xeon

Phi processor architectures respectively.

PdV Kernel Optimisations

Similarly applying the optimisation described in Section 3.2.9 to convert the
global arrays, utilised within the PdV kernel to store temporary values, to
Thread-private temporary variables also delivers similar performance improve-
ments. Figure 3.8 presents the results of this analysis and shows that this
optimisation improves the performance of the PdV kernel by 13.0% on the CPU
architecture and by 7.1% on the Xeon Phi. In these experiments the kernel was
executed for 5,000 iterations on the CPU architecture, whilst on the Xeon Phi

it was executed for 3,000 iterations.

Update-Halo Kernel Optimisations

The performance of the optimisations described in Section 3.2.12 to the Update-
Halo kernel was also examined in a series of experiments, the results of which
are presented in Figure 3.9. In these experiments the kernel was executed
for 500,000 iterations on the CPU architecture and for 50,000 on the Xeon
Phi processor. The results show that employing the OpenMP v4.0 process

56

3. Intra-Node Performance Optimisations

—
77
2
150 2
— 2
" 2
8 Dual-socket Xeon 7
Q 77
@ || Xeon Phi A
o 100 |- 707 2
& 25 2
5% %
4?' 257 2
= 707 75
< 50 257 777 75
g 29 %2
2 Y 2
2% 220 2
2 Y 2
555 22 2
2% 22 2
555 % 2 2
0 2% 22 22 I 27

I I I I
Reference UHInter UHnowait UHnested

Figure 3.9: Optimisations to the Update-Halo kernel

placement constructs together with Nested-parallelism to restructure the com-
putation across the NUMA-domains within the node, actually has a detrimental
effect on performance. This caused a 1.67x slowdown, relative to the reference
implementation, on the CPU architecture.

Manually reordering certain loops within the kernel and employing the Coll-
apse OpenMP directive to improve the memory access patterns of the kernel
delivers a performance improvement of 1.13x on the CPU architecture, however,
on the Xeon Phi co-processor it causes a performance slowdown of 1.1x. An
analysis of the vectorisation reports produced by the compiler indicates that
this is likely due to the compiler generating more optimal vector code for the
reference implementation, as on this architecture it is able to automatically
permute the loops within this original implementation.

Restructuring the kernel into two distinct phases to reduce the number of
global synchronisation operations from a worst case of 60 down to 2, however,
delivers significant performance improvements on both platforms. On the CPU
architecture the results show that this optimisation delivers a 1.96x improve-
ment in kernel performance compared to the reference implementation, whilst

on the Xeon Phi it achieves a 2.35x speedup.

Field-Summary Kernel Optimisations

Figure 3.10 presents the results of the experiments which examined the effect
of applying the optimisations described in Section 3.2.10 to the Field-Summary
kernel. In these experiments the Field-Summary kernel was executed for 10,000
and 2,000 iterations on the CPU and Xeon Phi architectures respectively. The
results show that by enabling this kernel to be successfully vectorised delivered a
1.14x improvement in the performance of this kernel on the CPU architecture.
On the Xeon Phi architecture, however, the performance improvement was
significantly greater, reaching 4.77x relative to the performance of the reference
version. This demonstrates the importance of fully vectorising loop-blocks on

the Xeon Phi co-processor.

57

3. Intra-Node Performance Optimisations

100
[7] Dual-socket Xeon
= Xeon Phi

2 777
2 70
222
— 60 g
< /07
£ :
40 [
D) 22
= i
g o2
20 /0
A

A .
22
A
252

0 T T
Reference Loop Unrolled &

Vectorised

Figure 3.10: Optimisations to the Field-Summary kernel

3.3.2 Application Performance Analysis

Following the performance analysis conducted using the individual application
kernels a series of experiments was subsequently undertaken using the full
CloverLeaf codebase. These examined the effectiveness of a series of optimi-
sations which targeted the entire codebase as well as the effect of incorporating
the most successful individual kernel optimisations into the full application.
In these experiments the application was configured to simulate the 3,8402 cell
problem for 87 timesteps, which is a standard configuration from the CloverLeaf
benchmarking suite. Figures 3.11 and 3.12 present the results from these ex-
periments on both the dual-socket CPU and Xeon Phi processor architectures
respectively. Each of the following sections analyses the utility of a specific

optimisation technique.

First-touch Memory Placement

The results show that when the reference OpenMP implementation is executed
across multiple CPU sockets it experiences a significant degradation in perfor-
mance due to sub-optimal data placement across the different NUMA-domains.
Applying the first-touch memory placement optimisation (Section 3.2.1) im-
proves performance, relative to the reference implementation, by 14.8% on the
dual-CPU architecture. On the Xeon Phi co-processor, however, this optimisa-
tion does not deliver any performance benefits and the runtime of this version is
practically identical to that of the reference implementation. All subsequent ver-
sions examined in these experiments therefore include this first-touch memory

placement optimisation.

Array-of-arrays Data Structure

As memory is allocated at the granularity of individual memory pages it is

possible for the locations directly managed by a particular thread to be located

58

3. Intra-Node Performance Optimisations

Dual-socket Xeon

Reference 12222222202222000222000020000002200002200000000000002000002200002200000220000222272220

FirstTouch —rmmmmrrr oo rros oo s rrsos s s s s s s ss s os oo osossd)

AOA | //j

(@)oY b W A YY)

Cpadd Ahgn B AR AR AR AR A AR A AR AR AR AR AR A AR AR AR AR AR

hlpr R Y Y Y]

FITEIT I I I T 77
hlpr_reduceSync |]

hlpr_reduceSync
dupConst

R vy

D PR I AR AR A AR AR A A AR AR A A A AR AR A A AR AR A A A AR A A AR AR AR AAAAAAAAAAAAAAAAR

Reveal F'T —0rrmrorr o rororrrororr o s s ror o s s s s so s s s se o s s s se s rrsd]

Full_Var
Scoping

B AR AR AR AR AR AR A AR AR AR AR AR AR A AR A AR A AR A AR AARAAAAAARARAAARAARAAAR)

NoWait oo o s oo s s r o s oo

Kernel Opts]

0 5 10 15 20 25 30 35 40

wall-time (secs)

Figure 3.11: Application optimisations on the dual-socket CPU architecture

within the remote NUMA-domain of the node. This is due to these locations
being assigned to a memory page which is accessed first by a thread located on
the other CPU socket. An experiment was therefore conducted using a code
variant which incorporated the Array-of-arrays modification (Section 3.2.2) to
the codebase to potentially alleviate this problem. The results, however, show
that constructing the codebase to utilise this data structure actually leads to a
reduction in performance of 3.5% on the CPU architecture. Any performance
benefits resulting from the more optimal data placement were negated by the
reductions in performance from accessing the array data through this modified
structure e.g. due to the additional levels of indirection involved. On the
Xeon Phi architecture the performance of this implementation was substantially
worse, and caused a slowdown in performance of 3.3x relative to the reference

implementation.

Cache Line Padding & Memory Access Alignment

The results also show that introducing cache line “padding” into the application,
in order to ensure that threads to do not share the same cache lines and experi-
ence “false sharing”, had no significant effect on overall performance on the CPU

architecture. On the Xeon Phi co-processor, however, this modification actually

59

3. Intra-Node Performance Optimisations

Xeon Phi

Reference 7//ﬂ
N Nt T R A O sy
Cpadd i
D) RN I I Yy Yy Yy Y Y Y Y Y Yy
RCVCal 7//]

Reveal FT {22222722072000007000000070700000000200020020000020020020020020020020020022020022222222229

Full_Var
Sconi T TR T T T T T T s e TR T e TR e T e T e a n]
N iy [FFFIIFIITIIIIIIIITIIFIITIIFIFFTIFTFFFIFFIFTFFFIFFFFFFFFIFFFFFFFFFFFIFF7FFTFTIFFTFTTF7
oWait {2 2020000000000000002007
K erneLOpts A NN

\ \ \ \ \ \ \
0 10 20 30 40 50 60 70

wall-time (secs)

0 20 40 60 80 100 120 140 160 180 200 220

T T T T T T T T T T T
AoA 2T T T T T T e I T T e e T T I T e e e i 7
NSO S S Y Y Y Y YY Y Y Y V YYYYYYY,
hlpr
B T S Y|
reduceSync

Figure 3.12: Application optimisations on the Xeon Phi co-processor

slightly reduced performance by 4.7%. Combining this optimisation with the
Intel proprietary directives to align data placement and memory accesses did,
however, deliver some small but measurable performance improvements of 1.7%
on the CPU architecture.

High-level OpenMP Parallel Regions

The results from the experiments with the versions of the codebase which
employed a High-level OpenMP Parallel Region (Section 3.2.4) show that on
average this optimisation technique was not able to deliver any performance
advantages for this codebase when it is used to simulate this particular problem
size. On the CPU architecture the performance of the version containing the
initial High-level Parallel Region optimisation was slower than the First-touch
implementation by 0.17 seconds. Whilst the average runtime of the version with
reduced synchronisation was fractionally faster, it was still marginally slower
than the original reference version.

Interestingly, applying the technique of duplicating the 1D data arrays—
which remain constant throughout the execution of the application—within each
NUMA-domain (Section 3.2.5), actually fractionally improved average perfor-

mance by 0.4 seconds (1.2%). This indicates that small improvements in code

60

3. Intra-Node Performance Optimisations

performance can be obtained for applications by minimising remote NUMA-
domain memory accesses.

Surprisingly, the performance of the High-level Parallel Region-based im-
plementations on the Xeon Phi co-processors was significantly worse than the
reference version, delivering as much as a 2.8x degradation in overall perfor-

mance.

Explicit Loop Schedules

The effect on performance of employing Explicit Loop Schedules (Section 3.2.6)
throughout the entire application, instead of relying on the OpenMP runtime
system to partition loop-blocks, was also examined in these experiments. The
results indicate that in these experiments this optimisation only delivered a
fractional overall improvement in performance of 0.22 seconds on the CPU
architecture, whilst on the Xeon Phi co-processor a marginal reduction in per-

formance of 1.07 seconds was recorded.

Automatic Application Hybridisation

To assess the effectiveness of the Reveal tool at automatically incorporating the
OpenMP parallelisation constructs into the application a series of additional
experiments was conducted. Initially the implementation produced by Reveal
performed poorly on the CPU architecture delivering a ~1.98% reduction in
performance relative to the First-touch version (this result is omitted from
Figure 3.11 for brevity). A subsequent performance analysis of the codebase,
however, identified that this was due to similar data placement problems to
those experienced with the original reference implementation. Consequently a
further version was developed which incorporated the First-touch data place-
ment optimisations discussed in Section 3.2.1. This significantly improved the
performance of this implementation on the CPU architecture to be within 0.14
seconds of the manually developed version.

On the Xeon Phi co-processor the initial version did not experience the same
NUMA-related memory access problems and the performance of both versions
was practically identical (within 0.24 seconds of each other). Similarly, in these
experiments the performance of the versions produced by Reveal was fraction-
ally slower than the reference implementation, although their performance was
within 2% of this implementation. These performance discrepancies are likely
attributable to the fact that Reveal generates code with one OpenMP parallel
region per loop-block, whereas the reference implementation minimises the num-
ber of these regions by incorporating multiple loop-blocks within each kernel into

these constructs.

61

3. Intra-Node Performance Optimisations

Full OpenMP Scoping Information

A further version of the codebase was developed in which full OpenMP scoping
information was specified for each OpenMP directive. The default (none)
directive was added to each OpenMP construct and scoping information (e.g.
the shared or private qualifiers) defined for each additional variable or data
structure accessed within a particular parallel region. On the CPU architec-
ture this implementation delivered almost identical performance to the reference
implementation, with only a 0.1 second improvement in performance being
recorded on average relative to the reference implementation. On the Xeon Phi
co-processor, however, this optimisation actually resulted in a slight reduction

in performance of 1.5 seconds relative to the reference implementation.

Synchronisation Elimination

The effect of applying the optimisation technique described in Section 3.2.7 to
remove, where possible, the global OpenMP barrier operations throughout the
codebase was also examined in these experiments. The results show that on the
CPU architecture this candidate optimisation only fractionally improved per-
formance, reducing the runtime of the application by only 0.13 seconds relative
to the initial First-touch version. On the Xeon Phi architecture, however, a

fractional performance degradation of 0.87 seconds was recorded.

Individual Kernel Optimisations

The optimisations to the individual application kernels developed as part of
this research and analysed in Section 3.3.1 were subsequently incorporated into
the full application codebase to produce a further optimised version. With
the exception of the point-to-point synchronisation optimisations to the Cell-
Advection kernel, all of the optimisations examined in Section 3.3.1 were incor-
porated into this version (labelled Kernel Opts within Figures 3.11 and 3.12).
The experimental results show that on the CPU architecture the use of these
optimisations improved the overall performance of the full application codebase
by 15.5% relative to the initial First-touch implementation. These optimisations
also improved the performance of the application on the Xeon Phi co-processor
by 4.6% compared to the reference implementation. As these optimisations
deliver a consistent performance improvement on both processor architectures

these changes will be utilised within future versions of the codebase.

62

3. Intra-Node Performance Optimisations

3.4 Summary

This chapter has documented the findings from the research which was under-
taken to improve the intra-node performance of the OpenMP-based versions of
CloverLeaf. It presents a detailed description of the current OpenMP-based im-
plementation of the mini-application together with each potential modification
which has been examined. This includes optimisations focused on individual
kernels as well as those which apply to the entire codebase. The performance
of each of these alternative approaches is examined on a range of current state-
of-the-art processor technologies, specifically a dual-socket Intel Xeon based
platform and an Intel Xeon Phi co-processor.

The experimental results show that the performance of the various alterna-
tive approaches can vary significantly on the two architectures examined in this
work. On the CPU-based architecture, due to its multiple NUMA-domains,
optimising the placement of data within the application using “first-touch”
initialisation techniques delivered a 14.8% improvement in performance. This
is a significant performance improvement for an already highly optimised code-
base and enabled the performance achievable when OpenMP threading con-
structs are utilised across multiple NUMA-domains, to match the performance
recorded with the MPI-only model. Manually merging loop-blocks and im-
proving the levels of vectorisation delivered significant additional performance
improvements for several key application kernels. Reducing global memory
operations and overall memory consumption by converting temporary 2D data-
arrays to “thread-private” variables also proved to be a key approach for im-
proving application performance. When these optimisations were subsequently
applied to the full application codebase they resulted in an overall performance
improvement of 15.5% on the CPU architecture and 4.6% on the Xeon Phi
CO-Processor.

Employing point-to-point thread synchronisation and data re-calculation tech-
niques to reduce and avoid synchronisation operations within key application
kernels delivered some small performance benefits (~3%) at the high thread
counts examined on the Xeon Phi co-processor. On the CPU-based architecture,
however, the performance of the versions which incorporated these techniques
was almost identical to that of the reference implementation. This indicates that
the use of these techniques may potentially become increasingly required in order
to achieve optimal performance for applications which utilise large numbers of
threads on future processor architectures. Existing research has demonstrated
that the overheads associated with globally synchronising all application threads
increases with the number of threads involved in the particular synchronisation

operations [146].

63

3. Intra-Node Performance Optimisations

Additionally, this research demonstrated that utilising an array-of-arrays
data structure in order to optimise memory-layout across the different NUMA-
regions is not able to improve overall application performance on the Intel Xeon
E5-2620 CPU architecture. Furthermore in these experiments this modification
resulted in a substantial performance degradation of 3.3x on the Xeon Phi
CO-Processor.

Surprisingly, converting the application to utilise an OpenMP SPMD con-
struction using the High-level Parallel Region optimisation, in order to reduce
thread synchronisation and fork/join overheads, also resulted in a significant
reduction (2.8x) in performance on the Xeon Phi architecture. On the CPU
architecture, whilst the performance of this version was able to match that of
the reference implementation, it required the use of additional techniques, such
as the duplication of constant data within both NUMA regions, in order to
deliver any performance benefits.

The results also indicate that the use of the Fxplicit Loop Schedules optimisa-
tion did not deliver any significant performance benefits on the CPU architecture
and resulted in a fractional slowdown in performance on the Xeon Phi. Similarly
introducing “padding” into the data-arrays to reduce false sharing resulted in
no significant performance benefits on the CPU-based platform and a small
slowdown in performance on the Xeon Phi co-processor. The incorporation
of memory alignment constructs also only appears to fractionally improve the
performance of this codebase on the CPU architecture.

This research also demonstrated that with minimal manual intervention the
Cray Reveal tool is capable of automatically generating parallel code based on
OpenMP directives, the performance of which is able to closely match that of
manually developed code. It should be noted that the data-parallel nature of
the CloverLeaf kernels does make it significantly easier for Reveal to generate
the required code and that the tool is not yet able to automatically incorporate
multiple loop-blocks within the same OpenMP parallel region. Nevertheless,
the use of this and similar tools, should help to improve the overall productivity
of the developers of parallel applications which incorporate OpenMP paralleli-
sation constructs.

Through this research it was possible to improve the overall performance of
the application, relative to the initial reference implementation, by 28.0% and
4.6% on the CPU and Xeon Phi processor architectures, respectively. It should
also be noted that this codebase has already been highly optimised by both
academic and industrial partners and therefore achieving any further optimisa-
tions is both challenging and worthwhile. Even small percentage optimisations
are important in contributing to achieving one of the goals of this research, i.e.

developing a fully optimal version of the codebase, and can result in considerable

64

3. Intra-Node Performance Optimisations

financial cost savings when applications are executed at extreme scale.
Although the techniques examined in this work were developed exclusively
within the CloverLeaf mini-app, the optimisations are also generally applicable
to a significantly wider range of scientific applications which exhibit similar per-
formance characteristics. In particular these include applications which utilise
regular collections of loop-blocks to process data which is stored predominantly

in a structured manner within n-dimensional arrays.

65

CHAPTER 4

Achieving Efficient Application Execution at Extreme Scale

This chapter documents the research which was undertaken, at high processor
counts, to develop and evaluate techniques for improving the performance and
scalability of the CloverLeaf mini-application, and therefore to also improve the
performance of the explicit hydrodynamics applications for which CloverLeaf
functions as a proxy application. The work focuses primarily on the MPI-based
version of the codebase and examines several candidate optimisations including
hybridising the code using OpenMP. The chapter initially discusses some related
and motivating work within this arena (Section 4.1). Section 4.2 documents
the current implementation of the mini-app in the MPI-only programming
model, together with a description of each candidate optimisation examined
for this particular variant of the codebase. The implementation of the hybrid
(MPI4+OpenMP) version of the mini-app, is then presented in Section 4.3,
together with the candidate optimisations techniques which were examined
for this particular implementation of the codebase. The performance of these
potential optimisations on a range of architectures is subsequently analysed
in Section 4.4, together with an assessment of their effect on overall energy

consumption. Finally, Section 4.5 concludes the chapter.

4.1 Related Work

Minimising communication operations within applications has been recognised
as a key approach for improving the scalability and performance of scientific
applications [123]. Yun et al. examined various approaches and optimisations
for improving the performance of large-scale jobs on Cray platforms [78]. The
aggregation of small messages, when possible, has previously been identified as
the ideal communication strategy for scientific applications [22]. In [20], how-
ever, Barrett et al. present work which examines alternatives to the message ag-
gregation strategies generally employed within BSP programming model based
applications. Their work, which examines an application similar to CloverLeaf,
is motivated by current development trends in HPC interconnect technologies for
existing, and future exascale, system designs. They show that their alternative
approach, which communicates data as soon as possible after it is modified, de-
livers a considerable improvement in application performance at scale on several
current system architectures, compared to the original BSP-based approach.

It is also recognised that increasing the levels of asynchronicity within ap-

66

4. Achieving Efficient Application Execution at Extreme Scale

plications, through the overlapping of computation and communication oper-
ations, can deliver performance advantages. Several techniques for achieving
the overlap of these operations are examined in [175], together with a quan-
titative analysis of their benefits for a range of applications. Jiang et al.
show that employing an RDMA based approach can improve the overlap of
communication and computation operations [105]. Similarly Bell discusses the
benefits of overlapping communication operations with computation and further
communication operations through message pipelining, on a range of network
architectures [22]. Overlapping communications with computation at a finer
granularity has also been shown to deliver performance benefits by interspersing
more of the communication events with computation, whilst also decreasing
message size and increasing the injection rate [23]. The effectiveness of both the
one- and two-sided communication models at overlapping communication and
computation operations has also been analysed with the former, when expressed
using UPC, performing favourably compared to the latter when implemented
with MPI [23, 147]. Additionally, Potluri et al. examined using MPI one- and
two-sided operations to overlap communication and computation and were able
to achieve a speedup of 10-12% in application performance [165].

New communication constructs have also been developed within version 3.0
of the MPI standard to potentially improve the performance and scalability of
applications [144]. Hoefler et al. were able to achieve a significant performance
improvement of up to 40% over existing approaches using their own implementa-
tions of several MPT 3.0 neighborhood collective communication operations [85].
Similarly, Gerstenberger et al. document their work developing an MPI 3.0 com-
pliant implementation (FOMPI), which utilises scalable buffer-less protocols,
and achieves equivalent or superior performance to UPC and CAF [71].

A considerable body of work also exists which has examined the advan-
tages and disadvantages of the hybrid (MPI4+OpenMP) programming model
compared to other multi-level paradigms or the MPI-only model [110, 73].
These studies have generally focused on different scientific domains; classes
of applications; and different hardware platforms, to those examined is this
research. Results have also varied significantly, with some authors achieving
significant speed-ups by employing hybrid constructs [203, 179, 106], whilst
others experience performance degradations [82, 38, 130] .

In particular, Kornyei presents details on the hybridisation of a combustion
chamber simulation which employs similar methods to CloverLeaf. The ap-
plication domain and the scales of the experiments are, however, significantly
different to those examined here. Drosinos et al. also present a comparison
of several hybrid parallelisation models (both coarse- and fine-grained) against

the MPI-only approach [59]. Again, their work focuses on a different class

67

4. Achieving Efficient Application Execution at Extreme Scale

of application, at significantly lower scales and on a different experimental
platform to this research. Nakajima compares the hybrid and MPI-only pro-
gramming models for preconditioned iterative solver applications within the
linear elasticity problem space [145]. In this research the application domain,
the scales of the experiments (<512 PEs) and the choice of platform (T2K HPC
architecture) are again significantly different to those examined here. Although
the application examined by Lavallée et al. has similarities to CloverLeaf and
they compare several hybrid approaches against an MPI-only based approach,
their work focuses on a significantly different hardware platform [120]. Addi-
tionally, Adhianto et al. discuss their work on performance modelling hybrid
MPI+OpenMP applications and demonstrate its potential for facilitating the
optimisation of scientific applications [2].

The energy consumption of supercomputer platforms is increasingly becom-
ing a major concern to large HPC sites [153, 11, 129]. Consequently there is
currently significant interest in the fine grained monitoring and analysis of the
power consumption of scientific applications. Both Cray and IBM have recently
incorporated such facilities into their latest supercomputer solutions [135, 201].
Hart and Wallace document their experiences utilising these technologies to
successfully analyse the power consumption of applications on the Cray XC30
and IBM Blue Gene/Q respectively [76, 202]. Additionally, Li et al. exam-
ine employing a hybrid programming approach to achieve more power-efficient

implementations of particular benchmarks [123].

4.2 MPI-only Based Versions

This section documents the implementation of the reference MPI-only based
version of CloverLeaf and the optimisations applied to it as part of this research
(Section 4.2.1). Details on how the codebase was instrumented to enable its
power consumption to be analysed are also presented (Section 4.2.2).

The MPI-based implementations of CloverLeaf employ a block-structured
decomposition (see Section 1.6.1) in which each MPI task is responsible for
one rectangular region of the computational mesh. The halo-exchange routine
performs the required halo cell communications, during which multiple fields
(2D-arrays each representing a particular physical property e.g. density) can be
exchanged with varying depths of cells (1, 2...etc), depending on the require-
ments of the algorithm at that stage of its computation. Processes perform these
halo exchanges using the MPI_ISend and MPI_IRecv communication operations
with their logically immediate neighbours, first in the horizontal dimension
and then in the vertical dimension. Communications are therefore two-sided,

with MPI_WaitAll operations being employed to provide local synchronisation

68

4. Achieving Efficient Application Execution at Extreme Scale

4,000

ﬁzl Archer (Cray XC30)
92}

@ 3,000 -

2

8,

~

£ 2,000 -

g —}— Reference_version
E —¢— Modified_version
@

= 1,000 |-

<

&

=

a

8

i or

B B B B SO R

I S|
S R G
N A RN

F I L&y L
S & N O N o O N & b
&YW P O N LN QY X

SESSFITS
MPI ranks N

Figure 4.1: CloverLeaf heap memory consumption per process

between the data exchange phases. Consequently no explicit global synchro-
nisation operations (MPI_Barrier functions) are present in the hydrodynamics
timestep. In the reference version of CloverLeaf the halo-exchange routine em-
ploys an approach in which the halo-cell data from individual fields is exchanged
separately.

To implement global reductions between the MPI processes, the MPI_Reduce
and MPI_Al1Reduce operations are employed. These are required respectively
for the calculation of the timestep value (d¢) during each iteration and the
production of periodic intermediary results. The MPI-based implementations
therefore utilise MPI communication constructs to express both intra- and inter-

node parallelism.

4.2.1 Optimisations Examined

The techniques examined as part of this research to improve the scalability
and performance of the MPI-only version of CloverLeaf at high node counts
are presented here. These techniques were initially employed in isolation to
implement alternative versions of the codebase; several were then subsequently
combined to produce further versions of the application. Section 4.4 analyses
the effect of each of these potential optimisation techniques on the performance

of the mini-app.

69

4. Achieving Efficient Application Execution at Extreme Scale

Distributed Meta-data

A memory consumption analysis of the mini-app was conducted following initial
strong-scaling experiments with the codebase, using the 15,3602 cell problem
from the standard CloverLeaf benchmarking suite, on the Archer and Mira
platforms (see Section A.1). The CrayPat [46] performance analysis tool avail-
able on the Archer platform was employed to conduct this analysis. This was
utilised to examine the “high-water” mark of the total memory consumed from
the heap memory region by each MPI rank of the mini-application as process
counts were increased. Figure 4.1 presents the results from this analysis.

Given that this is a strong-scaling experimental configuration the memory
consumption per MPI process should decrease as the scale of the experiments
is increased. The results for the reference implementation in Figure 4.1, do
initially show this trend. Beyond approximately 4,096 MPI ranks, however, the
memory consumption per process starts to grow significantly.

A subsequent investigation to identify the source of this additional memory
consumption determined that this was due to the scaling characteristics of
the data structures within the codebase. These were originally designed to
enable the computational mesh to be over-decomposed, with multiple mesh
regions or chunks being assigned to each MPI rank. In the original reference
implementation, however, a one-to-one mapping between mesh regions and
ranks was specified. This was implemented using a strategy which required
each rank to maintain meta-data information on each mesh region within the
overall decomposition, regardless of whether a particular rank was required to
actually manage these regions or not. Each MPI process was therefore required
to create an array—called chunks within the source code—of O(the number of
mesh regions within the overall decomposition).

This array stores the meta-data relating to the individual mesh regions, with
each location able to store an additional derived type data structure (called
field_type), if the process is required to actually manage that particular region
of the computational mesh. The additional field_type derived type contains the
actual data fields (2D-arrays) which model the particular physical quantities
contained within the computational mesh. The size of the field_type components
decrease as the scale of the experiments is increased; however, the size of
the “top-level” chunks array increases linearly with the number of MPI ranks
involved in the particular simulation. At relatively small scales, <4,096 ranks,
this does not have a significant affect on the overall memory consumption of each
process. Beyond this point, however, the additional meta-data storage locations
start to consume significant amounts of memory. Under this configuration if

1,048,576 MPI ranks were employed, the memory “high-water” mark of the

70

4. Achieving Efficient Application Execution at Extreme Scale

heap region on each rank would reach ~3.5GB and the overall simulation would
require ~3.5PB of main memory. It should also be noted that the ~3.5GB
total is a per-process memory consumption figure and therefore overall node-
level memory consumption would be proportion to the number of MPI ranks
employed per-node, i.e. significantly higher.

To improve this implementation an additional version of the codebase, which
employed a distributed meta-data strategy, was implemented as part of this
research. This required each MPI rank to only maintain meta-data for the
number of computational mesh regions which it was actually required to directly
manage and simulate. Consequently, the size of the chunks array on each MPI
rank became O(the number of mesh regions which each process is required to
manage). The effect of this optimisation on the total memory “high-water”
mark of the heap region within each MPI rank can be seen in Figure 4.1
(modified version). Section 4.4.1 also contains an assessment of the effect of
this optimisation on the actual performance of the mini-app. All subsequent
results presented within Section 4.4 are, however, from versions of the mini-app

which incorporate this optimisation technique.

Communicating Multiple Fields Simultaneously

The approach employed in the reference implementation of the halo-exchange
routine results in two MPI_WaitAll statements being executed for each field
whose boundary cells need to be exchanged. Consequently, multiple synchroni-
sations occur between communicating processes (two per field exchange) when
boundary cells from multiple fields need to be exchanged during one invo-
cation of the routine. These additional synchronisations are unnecessary as
the boundary exchanges for each field are independent operations within each
dimension (horizontal and vertical). It is therefore possible to restructure the
halo-exchange routine to perform the horizontal halo exchanges for all fields
simultaneously, followed by only one synchronisation and then repeat this in the
vertical dimension. This approach results in no more than two synchronisation
operations per invocation of the halo-exchange routine, whilst retaining the
one MPI operation/message per field approach. Versions which employed this
optimisation are denoted by the abbreviation MF (Multiple Fields) within their

descriptions in Section 4.4.

Pre-posting MPI Receives

Previous studies have shown performance benefits from pre-posting MPI receive
calls before the corresponding send calls [209]. In the reference halo-exchange

implementation routine all MPI send calls are executed before their correspond-

71

4. Achieving Efficient Application Execution at Extreme Scale

Figure 4.2: Cell calculation order for communication-computation overlap

ing receive calls. Additional versions of CloverLeaf were therefore created which
pre-post their MPI receive calls as early as practicable within the codebase. For
most versions it was possible to completely remove the MPI receive calls from the
halo-exchange routine and execute them before the computation kernel which
immediately precedes the particular call to the halo-exchange routine. This
ensures that a sufficient amount of computation occurs between each pre-posted

MPI receive operation and the execution of its corresponding send operation.

Diagonal Communications

The reference implementation of the halo-exchange routine also requires the
horizontal communication phase to be completed before the vertical communi-
cations in order to achieve an implicit communication between logically diagonal
neighbouring processes. The synchronisation requirement between the phases
can, however, be removed by employing an explicit communication between
logically diagonal processes. This approach requires additional communication
buffers and MPI communication operations to be initiated, but enables all
communications in all directions to occur simultaneously, with only one syn-
chronisation required at the end of the halo-exchange routine. Versions which
employed this communication strategy are denoted by the letters DC within

their descriptions in Section 4.4.

Overlapping Communications and Computation

The reference implementation is based on the BSP model (Section 2.2.6) with
separate computation and communication phases. Additional versions which
attempt to overlap the communication and computation phases were also devel-

oped as part of this research. This was achieved by moving the communication

72

4. Achieving Efficient Application Execution at Extreme Scale

operations at particular phases of the algorithm inside the computational kernels
which immediately precede them. The loop iterations within these kernels
were also reordered in order to compute the outer halo cells, which need to be
communicated, before the inner region of cells (Figure 4.2). In these modified
implementations once the outer halo-cells have been computed non-blocking
communication primitives are then employed to initiate the data transfers. This
approach also relies on the implementation of the diagonal communication oper-
ations (Section 4.2.1). Each computational kernel then completes the remaining
calculations, with these computations being potentially fully overlapped with
the preceding communication operations. Versions which employ this technique
contain the word QOwverlap within their descriptions in Section 4.4. Some MPI
implementations also provide dedicated “progress” threads to potentially aid
this process, versions which utilised these additional facilities are denoted by

the acronym PT within Section 4.4.

MPI v3.0 Construct Evaluation

The MPI v3.0 standard defines a set of new collective operations which initiate
communications between immediate neighbouring processes within a virtual
process topology. Such process topologies, created via the MPI_Cart_Create or
MPI_Graph_Create routines, have existed for sometime within the standard. The
new neighbourhood collectives, however, enable the communications between
immediate neighbours (one hop within the virtual topology) to be completed
with only one MPI operation and purport to enable the MPI compiler and
runtime system to be able to implement additional optimisations.

The MPI_Neighbor_A11ToAllV collective operator was selected to implement
this optimisation as it enables communications of differing sizes to occur directly
between all the neighbouring processes within the topology. This operation
replaces all of the MPI point-to-point and synchronisation operations within
the halo-exchange routine. As the meighbourhood collectives require all com-
munications to occur simultaneously this necessitated the use of direct com-
munications between logically diagonal neighbouring processes (Section 4.2.1).
It was therefore also necessary to utilise the graph virtual process topology
to create communication links between each process and all of its immediate
neighbours, up to a maximum of eight edges per process, as the cartesian virtual
topology does not support this level of connectivity. MPI Info objects were
also employed to provide additional information on the required memory access
and communication patterns. Versions which employed these neighbourhood
collective operations are denoted by the word nColl within their descriptions in
Section 4.4.

73

4. Achieving Efficient Application Execution at Extreme Scale

The non-blocking reduction operation (MPI_IReduce) was also utilised within
subsequent versions to implement the reduction operations required to produce
the intermediary results printouts. Use of this non-blocking collective adds
more asynchronicity into the application and enables it to potentially continue
to make forward progress whilst these reduction operations are being completed,
with this additional work being overlapped with the communication operations.
The computational operations which make use of the intermediate result data
values were therefore relocated, such that they occur after subsequent phases of
the application, whilst ensuring program correctness. A MPI_WaitAll operation
was also employed immediately prior to their execution to ensure that the non-
blocking reductions complete successfully before the dependent computational
operations are executed. It was not possible to utilise this approach for the
calculation of the timestep value as this is required immediately after the existing
reduction operation. Versions which employed the non-blocking MPI_IReduce
operation are denoted using the acronym NBR within their descriptions in
Section 4.4.

Message Aggregation

The reference implementation of the halo-exchange routine utilises shared com-
munication buffers, one for each communication direction. These MPI buffers
can be reused for multiple fields as the halo cells of only one field are exchanged
at once. Buffer sharing is not possible when fields are exchanged simultaneously
and each field therefore requires its own communication buffers, one for each
direction. Message aggregation reduces the number of communication buffers,
as well as the number of MPI send and receive calls required to one per direction,
by combining messages into fewer but larger buffers. This technique was applied
to produce additional versions of CloverLeaf, which send multiple messages
simultaneously in each direction, by first aggregating all of the smaller messages
into larger communication buffers. Versions which employed this technique are
denoted by the letters MA (Message Aggregation) within their descriptions in
Section 4.4.

Eager Transmission of Data

Additional versions were also subsequently developed to determine whether the
implementation of a communication strategy, which attempts to transmit data
to neighbouring processes as soon as it is updated, can deliver performance
advantages for the applications which CloverLeaf represents. A similar strategy
was employed by Barrett et al. in [20] and achieved significant performance

advantages by enabling applications to transition away from the BSP model

74

4. Achieving Efficient Application Execution at Extreme Scale

I 0 A -
(a) Original strategy (b) Improved strategy

B MPI ranks on node 0 — Node boundaries — Problem chunk boundaries

Figure 4.3: MPI rank reordering strategy

and to utilise advanced features within modern interconnect designs. Versions
which employed this advanced communication strategy are denoted using the
abbreviation EDT (Eager Data Transmission) within their descriptions in Sec-
tion 4.4.

The implementation of this technique requires communication and computa-
tion operations to be overlapped in versions which previously did not implement
this approach. Communication operations were therefore again relocated to the
computational kernel which immediately preceded their current location. The
kernels were however restructured such that the calculations on certain fields
were completed earlier than others, whilst still maintaining program semantics,
enabling their data items to be transmitted sooner. The required asynchronous
communication operations were therefore interspersed throughout these kernels
to facilitate the earlier data transmissions.

A slightly modified strategy was adopted in order to apply this candidate
optimisation to existing versions which already attempt to overlap computation
and communication. As part of this approach kernels were restructured such
that only the calculations of the halo-cells of the particular data fields which
actually need to be communicated, were completed before fields which did not
need to be transmitted. Additional asynchronous communication operations
were also inserted immediately after the point in the program code where each
set of halo-cells becomes ready for transmission. This generally enabled the
communication operations to occur earlier in the computational kernel and

provided more opportunities for overlapping these operations.

MPI Rank Reordering

The reference CloverLeaf implementation assigns chunks of the two dimensional
computational mesh to MPI ranks sequentially, by traversing the decomposition

first in the z-dimension starting in the lower left corner. Once one row of

(0]

4. Achieving Efficient Application Execution at Extreme Scale

chunks has been completely assigned the allocation process restarts from the
chunk on the left-hand side of the decomposition which is one row higher than
the previous row in the y-dimension, and again proceeds sequentially along the
z-dimension. The allocation process continues until all chunks of the mesh have
been completely assigned.

This potentially results in a chunk-to-node mapping which does not reflect
the two dimensional nature of the overall problem and therefore is unable to
take full advantage of the physical locality inherent in it. Figure 4.3a depicts a
typical default mapping of a 384 rank job on current system architectures with
24 processor cores per node, although this is system-dependent. In this arrange-
ment communications in the y-dimension are all inter-node and each process
only has a maximum of 2 neighbouring processes located within its local node.
A disproportionate number of chunks, which are not physically close within
the computational mesh, are therefore co-located within cluster nodes. This
potentially results in a situation where local memory communication resources,
which are usually substantially faster than inter-node communication resources,
are not effectively utilised.

It is possible to use MPI rank reordering facilities to change the placement
of MPI ranks within a given node allocation. Figure 4.3b depicts an alternative
mapping strategy for the same 384 rank job. This better reflects the two
dimensional communication pattern inherent within the application, by at-
tempting to increase intra-node communications whilst also reducing inter-node
communications. Versions which employ this “blocked” rank reordering strategy

are referred to using the acronym RR within their descriptions in Section 4.4.

MPI Reduction Consolidation

To periodically produce intermediate results the reference implementation em-
ploys a series of five separate, but consecutive, global MPI reduction opera-
tions. These calculate the sum of five individual data fields (arrays) within
the application. To improve the efficiency of this operation, these reduction
operations were consolidated into one operation which operates on a vector
of five values. Versions which employed this candidate optimisation technique

contain the abbreviation RedCon in their descriptions within Section 4.4.

4.2.2 Power Consumption Instrumentation

Power monitoring facilities are not available on all available system architec-
tures, however, both the Cray XC30 and IBM BG/Q platforms provide this
functionality [135, 201]. On the BG/Q, IBM provides a dedicated API which

applications can use to query the underlying power monitoring infrastructure.

76

4. Achieving Efficient Application Execution at Extreme Scale

Cray, however, make this information available via dedicated files within the
/sys/cray file-system. These are continuously refreshed to reflect the accumu-
lated energy consumption of the application on the particular node and can be
read directly by an application.

As part of this research the MPI-only versions of CloverLeaf were instru-
mented to enable the power/energy consumption of the application to be mea-
sured at specific points during its execution, on both the XC30 and BG/Q
architectures. The main hydrodynamics iteration loop, which is also timed to
produce the runtime of the application, was instrumented at its start and end
positions to enable the energy consumption of only the main computational
sections of interest to be measured. The results from this energy consumption

analysis can be found in Figure 4.16.

4.3 Hybrid (MPI+OpenMP) Based Versions

This section documents the reference implementation of the MPI+OpenMP
version of CloverLeaf as well as the potential optimisation techniques (Sec-
tion 4.3.1), which have been examined as part of this research. This version is an
evolution of the MPI-only codebase in which OpenMP is utilised to provide the
majority of intra-node parallelism, whilst MPI still provides the inter-node and
potentially some intra-node communications. The ratio of OpenMP threads
to MPI processes can be varied to suit different platform architectures and
problem classes. This approach reduces the memory consumed per node by
the halo-cells as these are only required for communication operations between
“top-level” MPI processes. Additional data structure can also be shared across
OpenMP threads rather than duplicated between MPI processes, further reduc-
ing memory consumption.

The reference version of this implementation employs OpenMP parallel
regions within each of the 14 computational kernels. To minimise the fork
and join overheads of the OpenMP programming model one parallel region is
employed around all of the loop-blocks within a particular kernel. To enable the
individual loop-blocks within the computational kernels to be parallelised over
the available threads, additional OpenMP do constructs are utilised, generally
around the outer-loops within the kernel. OpenMP private constructs are
specified where necessary to create temporary variables that are unique to each
thread, additionally reduction primitives are also utilised to implement intra-

node reduction operations.

7

4. Achieving Efficient Application Execution at Extreme Scale

(a) Original strategy (b) Modified strategy

- - Intra-node processor boundary = Node boundaries — Mesh cells

Figure 4.4: Vertical decomposition optimisation

4.3.1 Optimisations Examined

The techniques examined as part of this research to improve the single-node per-
formance of the OpenMP version are presented in Sections 3.2.1 to 3.2.13. These
techniques were initially used in isolation to implement alternative versions of
the codebase, however, several were also subsequently combined to produce a
more optimal version of the application. The motivations for conducting this
work included ascertaining whether a hybrid implementation could be devel-
oped to deliver performance advantages over the MPI-only version and also to
determine the optimal ratio of OpenMP threads to MPI processes for particular
problem classes. A further key objective was to examine whether it is possible to
improve the OpenMP implementation such that utilising these constructs across
entire system nodes is a viable solution. The following sections also describe
additional optimisation techniques which were examined as potential approaches
for further improving the performance of the codebase. Section 4.4.2 analyses
the effect of each of these candidate optimisation techniques on the performance

of the mini-app.

Vertical Rectangular Decomposition

In order to reduce inter-process communication volumes the reference imple-
mentation attempts to decompose the overall problem such that mesh “chunks”
which are as square as possible, are assigned to the individual MPI processes,
whilst also distributing the computational load as equally as possible. Each
process subsequently utilises OpenMP parallelism to further decompose its as-
signed mesh region, with each thread being assigned a contiguous number of

rows (Figure 4.4a). For particular problem sizes and MPI process counts it is

78

4. Achieving Efficient Application Execution at Extreme Scale

not possible to assign perfectly square mesh “chunks”, necessitating the use
of rectangular regions. These rectangular regions are, by default, assigned
such that their longer side is orientated in the z-dimension of the mesh. The
OpenMP parallelisation constructs are, however, applied to the individual mesh
regions in the y-dimension, such that each thread accesses a contiguous block of
memory. Due to the larger surface area between adjacent rows of the mesh
within a particular node boundary, this arrangement requires greater levels
of inter-thread communication (Figure 4.4a) and potentially causes additional
communication traffic across the inter-socket interconnect, when OpenMP par-
allelisation is utilised across multiple processor sockets, which incurs additional
overheads. To reduce the levels of inter-thread communication in these scenarios
an additional version was developed which decomposes the mesh such that the
rectangular “chunks” are orientated in the y-dimension (Figure 4.4b). Versions
which incorporated this candidate optimisation are referred to using the word

Vdecomp within their descriptions in Section 4.4.

MPI Construct Integration

The reference implementation employs the mpi_thread_single approach in
which MPI communication constructs are only utilised within serial sections
of the application, despite the actual (un)packing of communication buffers
being parallelised using OpenMP parallel constructs. To evaluate the ef-
fectiveness of alternative approaches an additional version was created which
utilises an OpenMP parallel region directly around the MPI functions within
the codebase. A sections directive was utilised to enable each MPI function
to be executed in parallel on a separate thread and the MPI runtime was also
initialised using the mpi_thread multiple option. The version which utilised

this approach is denoted as ThreadMultiple within Section 4.4.

Alternative Communication Buffer (Un)Packing Approaches

The communication buffer (un)packing routines are similar in structure to those
employed in the update-halo kernel (Section 3.2.12). The optimisations applied
to this kernel are therefore also broadly applicable to the functionality required
for the communication buffers. A modified version was therefore developed in
which the (un)packing routines which operate on the communication buffers for
the top and bottom mesh edges were restructured such that the OpenMP do
directives were relocated to the outer k-loop which has a significantly shorter
trip-count. A collapse(2) directive was also specified to ensure appropriate
levels of parallelism are generated, with a potentially improved memory access

pattern. Versions which employ this modified approach are referred to as

79

4. Achieving Efficient Application Execution at Extreme Scale

BufferCollapse within Section 4.4.

A further version was also created to examine alternative approaches for
potentially improving the efficiency of the communication buffer (un)packing, in
cases in which OpenMP parallelism is utilised across multiple processor sockets.
In this version the code was restructured to allow the top and bottom buffers
to be (un)packed simultaneously using half of the available threads to operate
on each buffer. An identical approach to that described in Section 3.2.12, which
utilises nested-parallelism and OpenMP v4.0 thread placement directives, was
therefore again employed. To ensure that the top and bottom communication
buffers were each exclusively located within the correct memory sub-systems, the
buffers were initialised (“first-touched”) by threads with the correct processor
affinity. The version which employed this approach is denoted by the description
IntelOMPNested within Section 4.4.

4.4 Results Analysis

To assess the performance, at scale, of the MPI-only and hybrid (MPI+OpenMP)
programming models and the various optimisation techniques examined as part
of this research, a series of experiments were conducted. Sections 4.4.1 and 4.4.2
document the results of these experiments for both codebases. In these, perfor-
mance was assessed using the 15,3602 cell problem, executed for 2,955 timesteps,
from the standard CloverLeaf benchmarking suite. This was strong-scaled to
high node counts on a range of state-of-the-art system architectures, specifically
the Archer, Mira and Vulcan platforms (Section A.1).

During a particular experiment on each platform, all versions of the mini-app
were executed within the same node allocation to eliminate any performance
effects due to different topology allocations from the batch scheduling systems.
Additionally, to reduce the effects of system noise, unless otherwise noted,
the results presented here are averages from three separate executions of each
individual experiment. For clarity, the performance results are also expressed
in terms of the “speedup” which each version achieved relative to the reference
implementation. In these charts values greater than 1 represent a performance
improvement, whilst values below 1 indicate a degradation in performance.

In the experiments on Archer, version 8.3.3 of the Cray CCE compiler and
version 7.0.3 of the Cray MPICH communications library were utilised. To
provide baseline performance results several experiments were also conducted
using older versions of these technologies, specifically version 8.2.1 of Cray CCE
and version 6.1.1 of Cray MPICH. Additionally, no huge memory pages were
utilised apart from the experiments which explicitly examined the performance

effects of this particular technology; in these 4MB huge memory pages were

80

4. Achieving Efficient Application Execution at Extreme Scale

— Archer (Cray XC30)
g s00f
(]
£ —%— Modified_version
ge
% 200 - —}— Reference_version
2
=]
8
s 100
.3
2,
o
<

o | | | | | |

128 256 512 1024 2048 4096
Sockets

~ 1,500 |- Mira (IBM BG/Q)
Q
.g 1,000 |- —%— Modified_version
?Is —}— Reference_version
S
g
e 500 |-
]
2
2,
o
< e

O | -

| | | | |
512 1024 2048 4096 8192

Sockets
Figure 4.5: Distributed meta-data optimisation performance improvement

utilised. In the experiments on both Mira and Vulcan version 14.1 of the IBM
XL Fortran compiler and version 12.1 of the IBM XL C compiler were employed,
together with IBM’s MPI communication library for the BG/Q, which is based
on MPICH2 version 1.4.

4.4.1 MPI-only Results Analysis

The following sections analyse the performance of the MPI-only versions of
the codebase and the candidate optimisations which have been applied to it.
Additionally the energy-efficiency of two of the experimental platforms is also

examined.

Distributed Meta-data

Figure 4.5 presents the performance improvement obtained through the appli-
cation of the distributed meta-data optimisation (Section 4.2.1) to the original

implementation, on both the Archer and Mira platforms.

81

4. Achieving Efficient Application Execution at Extreme Scale

MPI-16ppn [l MPI.32ppn [[] MPI.64ppn
Speedup

2.5

Vulcan (IBM BG/Q)
2 B : o

1024 2048 4096 8192
Sockets

Figure 4.6: MPI processes / node configuration options on Vulcan

On Archer the scaling of both versions is initially (<512 sockets) broadly
equivalent, however, beyond this point the distributed meta-data approach
delivers significant performance advantages. The performance of the original
reference implementation “turns-over” at approximately 1,024 sockets whilst
the modified implementation continues to scale up to 4,096 processor sockets.
During the 2,048 and 4,096 processor socket experiments this optimisation
resulted in a 4.1x and 8.99x improvement in performance respectively, relative
to the original implementation.

On the BG/Q architecture of Mira, however, the performance disparity
between the two versions is even more severe. Scaling the original application
from 512 to 1,024 sockets actually causes application execution time to increase
by ~1.8x and to completely fail beyond 1,024 sockets due to the more limited
memory resources available per node on the BG/Q architecture. On this plat-
form utilising the distributed meta-data optimisation improved the performance
of the application by 7.2x and 26.0x in the 512 and 1,024 socket experiments
respectively and enabled the application to be scaled successfully from 512 up
to 8,192 processor sockets.

All the experiments documented in subsequent sections of this chapter utilise
versions of both the MPI-only and hybrid (MPI4+OpenMP) codebases which
employ this distributed meta-data optimisation. Henceforth, this version is

therefore referred to as the new “reference” implementation.

Utilisation of Hardware Threads and Huge Memory Pages

To determine the optimal approach with which to execute the MPI-only version

of the codebase on the BG/Q architecture a series of experiments were conducted

82

I

. Achieving Efficient Application Execution at Extreme Scale

MPI |l HP [HT [] RedCon

Speedup
1.1
Archer (Cray XC30)
1 7 m e T 77 _] 8 1 R 77
7 y - 7 - 7 7
; ’ 40T : p ’
; y y ; Z ’
; ’ p g p ’
; ’ , , , ,
; y p g y ;
; , , , , ’
09 [A ; ¥ Z ;
; y y 7 y ;
; , p . p ’
; y Y 7 y ;
; ’ p . p ’
’ . ’ o of /| . 7 . ’ o of /|
; : Bl % 7l 1K 7 : Bl % ’
’ . ’ o of /) . 7 . ’ o of /|
. : Bl % 7l 1K 7 : Bl % p
08 ’ . ’ o of /) . i . ’ o of /|
; : Bl % 7l 1K / : Bl % ;
; : Bl % 7l 1K . : Bl % ’
; : Bl % 7l 1K ; : Bl % ;
; : Bl % 7l 1K ; : Bl % ’
; : Bl % 7l 1K y : 2l % ’
; : Bl % 7l 1K ; : Bl % p
0.7 |2 : Al I "l B ; : Al I /M~
’ . ’ o of /) . 7 . ’ o of /| .
; : Bl % 7l 1K 7 : Bl % 7l 1B
’ . ’ o o /| . i . ’ o o /| .
4 . ’ o of /| . i . 4 o of /| .
; : Bl % 7l 1K ; : Bl % 7l 1
; : Bl % 7l 1K ; : Bl % 7l 1
, : Al = 7l IE ; : Bl % 2l 1B
0.6 T T T T T T
128 256 512 1024 2048 4096

Sockets
Figure 4.7: Huge-pages, hyper-threads and consolidated reduction

on Vulcan to examine the use of varying numbers of hardware threads. Exper-
iments were therefore conducted using 1, 2 and 4 hardware threads per core,
which equates to 16, 32 and 64 MPI processes per node respectively. Figure 4.6
presents the results of these experiments. The results show that the use of
the additional hardware threads is indeed beneficial for this codebase at all the
experimental scales examined. Their use provides a greater performance benefit
in the smaller scale experiments, i.e. when each node/process has a larger allo-
cation of the overall computational mesh and the performance of the codebase is
limited more by computational resources. During the 64 socket experiment util-
ising 2 hardware threads per core improved application performance by ~1.6x
whilst utilising all 4 hardware threads improved performance by ~2.0x. In the
8,192 socket experiment these performance improvements reduced to ~1.1x and
~1.2x respectively. Based on these results all subsequent experiments with the
MPI-only codebase on the BG/Q architecture were configured to utilise all 4
hardware threads (64 MPI processes per node).

A series of experiments was subsequently undertaken on Archer to examine
the use of the additional hardware threads (Intel Hyper-threads) available on the
Cray XC30 architecture. Figure 4.7 presents the results of these experiments,
in which the abbreviation HT is used to denote versions which employed this
technology. These results demonstrate a significantly different trend to those
obtained from the Vulcan platform, specifically that the use of the additional
hardware threads does not affect application performance in the smaller scale
experiments (<1,024 sockets). In the larger scale experiments (>1,024 sockets),
however, the use of this technology caused a significant degradation in appli-
cation performance, resulting in a 1.15x and 1.44x slowdown in the 2,048 and

4,096 socket experiments respectively.

83

4. Achieving Efficient Application Execution at Extreme Scale

MPI | DC] DC-MF [l DC-MF-EDT
B MF [MF-MA MF_MA_EDT
Speedup
1.2
Archer (Cray XC30) o
A _
_ t C
0 b E
_ L _ t c _
INEZT = il . Hilyzl [EP. d mmEcm oM o pA]
0] ? 7 4 F £ : t
] V ; g F c c
J - Z g F £ - t -
v Z g F c c
V ; g F £ c
J : g F t t
V Z g F t c
J Ho| g4 F t E
V t|s g F t c
/ to|s q ¢ t E
V tols g F c c
J ; g F £ t
0.8 4 z §oF : :
V ; g F £ c
J : g F c t
’ Z g F t c
J Ho| g4 F t E
V t|s g F t c
/ to|s q ¢ £ t
’ tls g F c c
J ; qF £ t
] sl [§ R 4 FiIN: £ : £ ;
[+ o - /| . L ’ . [y 1~ . L . L P
b C S E Al 1B 2l 1B c : t :
0.6 = T 1 T T
128 256 512 1024 2048 4096

Sockets
Figure 4.8: Message aggregation and early transmition optimisations

Additionally, the use of huge memory pages was also examined in a series of
experiments on the Archer platform. The results (Figure 4.7) from these exper-
iments (denoted using the abbreviation HP) do not demonstrate a discernible
performance trend. In the majority of the experiments, however, employing this
technology resulted in significant performance degradations of up to ~1.2x and
only relatively minor performance improvements (<3%) in the 1,024 and 2,048

socket experiments.

Message Aggregation

The results from the experiments which examined the effect of the MPI message
aggregation optimisation are shown in Figures 4.8 and 4.9 for the Archer and
Vulcan platforms respectively. The charts document the speedup achieved by
each version relative to the reference MPI-only implementation which is shown
with a speedup of 1 for all experimental scales examined. The results show
that the use of this technique facilitated significant performance improvements
for the application as the scales of the experiments were increased on Archer,
reaching 1.14x and 1.1x at 4,096 and 1,024 sockets respectively. At the smaller
scales examined the performance of these versions matched or slightly exceeded
(<1%) that of the reference MPI-only implementation.

This trend is repeated on Vulcan with the results showing a consistent
increase in the speedup achieved through the use of this technique as the scale
of the experiments is increased. In the 512 processor socket experiments this
optimisation delivered on average a 1.07x improvement in performance, which
increased to 1.3x on average in the 8,192 socket experiments.

This demonstrates that reducing overall message transmission overheads, by

84

4. Achieving Efficient Application Execution at Extreme Scale

Reference [f] DC] MF [M DC+MF
B MF+MA] MF+MA+DC [J RedCon

Speedup
4

Vulcan (IBM BG/Q)

—_
]
J

|

1

0.8

0.6

0.4

0.2

TRFEEFrPFErrrFFEErEFFEEFEFEFET
S TTTTTTSITTTISSTTTISIITTISTY
NN NN

AR AR AR AR AR AAAR R R A AR

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

R R R R R R RN

NN NN NN NNNNNNNNNN |

FEFFTTTLTErErrrrrrrTrLrrrrrrr]

| DN NN NNNNNNNN|

0 : : 2zl I8 ‘ : £ B t : :
512 1024 2048 4096 8192
Sockets

Figure 4.9: Performance of MPI-only Optimisations on Vulcan

aggregated data into fewer larger messages, can deliver significant improvements

in performance for this class of applications.

Diagonal Communications & Communicating

Multiple Fields Simultaneously

Figures 4.8 and 4.9 also show the effect on application performance of the
“Diagonal Communications” and “Communicating Multiple Fields Simultane-
ously” optimisations on the Archer and Vulcan platforms respectively. The
results show that at the higher socket counts examined on Archer the use of
diagonal communications has a detrimental effect on application performance,
reaching a 5.6% and 6.6% performance degradation in the 4,096 and 2,048 socket
experiments respectively. In the smaller scale experiments (<1,024 sockets),
however, the performance of this version matches that of the reference MPI-only
implementation.

The results recorded on Vulcan show that this optimisation had a detrimental
effect on overall application performance at all of the experimental scales exam-
ined, with the effect increasing as the scales of the experiments were increased.
At 8,192 processor sockets the slowdown in application performance reached
8.7% relative to the reference MPI-only implementation. It is also evident that
combining this optimisation with the version which employs the “Message Ag-
gregation” strategy also significantly reduces performance at scale. This version
now only achieved a 1.14x speedup over the reference MPI implementation at
8,192 processor sockets, compared to a 1.3x speedup achieved by the version
which only utilised the “Message Aggregation” optimisation. This indicates that

for this class of application the overheads incurred by sending the additional

85

4. Achieving Efficient Application Execution at Extreme Scale

MPI Il MF [J DC.MF [[] MF.MA

Speedup
1
Archer (Cray XC30) ;
2
’
2
; _
y
g
4 m
1 e — i 5 — [Tl ‘‘m|:
zZl Ix - - - M ;
Zl 1% , , y
%l I¥ p - 7 - ;
%l I¥ y y 7 , ’
A ; y 7 ; 2
; y ’ g ’ g
; y Y g ; ’
; y ’ g y g
; , , 7 ; ;
2 y y 7 : y
; , ’ 7 ; y
A y Y 7 : ’
; y y 7 y y
09} | ; Z ¥ Z ;
A ; y 7 ; 2
7 y y 7 y ;
A y ’ 7 , ,
; y ’ g y g
; , , 7 ; ;
; y y 7 : ’
; , ’ . ; y
A y y 7 : ’
; y y 7 y ;
A ; Y 7 : y
%l I¥ Al ¥ il B Zl & 2l ¥ i B
% ¥ Bl 1% 7l B #l & Bl 1% 7 |B
%l I¥ AR 4l B Zl I8 AR 4 B
0.8 T T T T T T
128 256 512 1024 2048 4096

Sockets
Figure 4.10: Pre-posting MPI receives on Archer

very small diagonal communication messages outweigh the savings made by
reducing synchronisation operations between the communication phases of the
application.

Additionally, the results also demonstrate that the “Communicating Multiple
Fields Simultaneously” optimisation also generally has a detrimental effect on
application performance. On Vulcan the performance of this version is consis-
tently worse than the reference MPI implementation at all of the experimental
scales examined, with the performance degradation reaching 6.2% and 6.3% in
the 4,096 and 8,192 socket experiments respectively. The results from the Archer
platform do not, however, exhibit this trend with the performance of the version
which incorporates this optimisation matching that of the reference MPI-only
implementation at all of the experimental scales examined. This indicates that
on the BG/Q architecture it is more efficient to spread the network message
injections out over multiple communication phases, and to employ additional
synchronisation operations between these phases, rather than attempting to
inject all of the messages into the network simultaneously. Furthermore, that
the Aries NIC present in the Cray XC30 has greater capabilities at injecting
messages into the communication interconnect than the NIC available within
the BG/Q architecture.

Pre-posting MPI Receives

A series of experiments was also conducted to examine the effect on performance
of pre-posting MPI receive operations, Figure 4.10 presents the results of these
experiments. Due to time and supercomputer allocation limitations these ex-

periments were only undertaken on the Archer experimental platform and not

86

4. Achieving Efficient Application Execution at Extreme Scale

on either the Vulcan or Mira BG/Q platforms. This chart presents the results
in terms of the speedup obtained by applying the pre-posting optimisation to
a particular version of the MPI-only codebase relative to an identical version
without the pre-posting optimisation applied to it.

The results show that for the four code variants examined in this research
the pre-posting optimisation has a minimal effect on application performance in
all of the experiments conducted up to the 2,048 socket experiment. In the 4,096
socket experiment, however, the results show some significant improvements in
performance for all 4 code versions. These improvements reached 7.3% for the
version which applied the pre-posting optimisation to the reference MPI-only

implementation.

Overlapping Communications & Computation

To assess the utility of the optimisation technique which attempts to overlap
communication and computational operations a series of experiments was con-
ducted on both the Archer and Vulcan experimental platforms. Figures 4.11
and 4.12 present the results from these experiments on the Archer and Vulcan
experimental platforms respectively. Results obtained on the Archer platform
by applying this optimisation to MPI-only versions of the codebase which do
not aggregate communication messages, are presented in Figure 4.11a, whilst
results obtained through the use of this optimisation with versions which do
aggregate MPI messages are presented in Figure 4.11b.

The results documented in Figure 4.11 show that on Archer the use of
this optimisation generally results in a small but consistent degradation in
application performance relative to equivalent versions which do not incorporate
this optimisation. In all of the experiments below 512 processor sockets the
performance of the code versions which attempt to overlap communication op-
erations with computation are worse than that of the equivalent non-overlapping
version. The experiments at these scales have a larger computational mesh size
per MPI process and will thus be more affected by the sub-optimal memory
access patterns resulting from this optimisation. This is due to the fact that
proportionally less of the computational mesh will fit within the processor caches
compared with the larger scale experiments. At the larger experimental scales
(>1,024 sockets) the trends in the results are less clear, with some of the versions
which incorporate the overlapping technique matching and fractionally, but not
significantly, exceeding the performance of the reference implementation. Gener-
ally, however, the performance of the versions which incorporate the overlapping
optimisation are worse than that of the reference implementation. This is due to

the additional message transmission overheads which these versions incur and

87

4. Achieving Efficient Application Execution at Extreme Scale

MPI_DC_MF B +Overlap F] +Overlap_.EDT
Speedup [+Overlap.PToHT [+Overlap.PToSepCore

Archer (Cray XC30)

0.9 -

NN
NN NN NN |
RS
R RN
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]

NN NN

0.8 —

T
128 256 512 1024 2048 4096
Sockets

(a) Non-aggregated Message Version

MF-MA.DC W +Overlap [[] +Overlap.MPItune
Speedup [M +Overlap.PToHT [+Overlap.PToHT _MPItune [] +Overlap_PToSepCore

1.1

Archer (Cray XC30)

0.9 -

0.8 [

\\\\\\\\\\\\\\\\\\\\\\\\\\\j
\\\\\\\\\\\\\\\\\\\\\\\\\\\j
NN NN NN
Ty
R R R R R RN

R R RS RRRSY

0.7 LMk = - = I T
128 256 512 1024 2048 4096
Sockets

(b) Aggregated Message Version
Figure 4.11: Performance of computation/communication overlap on Archer

88

4. Achieving Efficient Application Execution at Extreme Scale

Reference W DC+MF [7] DC+MF+EDT [DC+MF+Overlap
E DC+MF+Overlap+EDT [MF+MA+DC MF+MA+4DC+Overlap
A Speedup
12 Vulcan (IBM BG/Q)
-
- <
_ F £
]. F7] g 77 L 77 Ly 71 F71 L
W c ZI o < ZIrom F ; A £
0.8 /@I £ % £ 4 FE | - Z .
7’ L {7 /| L 7’ L 4 o of 7 L
G £ % £ : e : Z £
0.6 7 H K goor o : £
f € % . ; FE Z Z £
0.4 |7 £ % £ ; Fe ; Z £
f c % £ ; Fe ; Z £
0.2 |7 X % £ ; Fe ; ; £
7’ . }- I 7 .)— / . —}- ’ = L ’ . 5—
0 T T T
512 1024 2048 4096 8192

Sockets

Figure 4.12: Early-sending & communication overlap optimisations on Vulcan

also the reduction in performance caused by the sub-optimal memory access
pattern which they require.

Additionally, these results also indicate that the use of the explicit “progress
threads” supported by the Cray MPI communication library does not deliver
any significant performance benefits or facilitate greater overlap between the
communication and computation operations. The performance delivered by the
code versions which utilised this technology (denoted by the abbreviation PT') is
broadly the same as the equivalent versions which did not. The results also show
that explicitly dedicating a separate CPU processor core to execute a progress
thread (PToSepCore), at the expense of using this processing resource for
the main application workload, delivers significantly worse overall performance
than utilising a CPU hyper-thread to execute the progress thread (PToHT).
Similarly the results show that increasing the number of internal communication
buffers within the Cray MPI communication layer and the threshold below
which messages will be sent using the “eager” communication protocol (version
denoted by the abbreviation MPItune) also does not significantly affect overall
application performance either positively or detrimentally.

The results obtained from the experiments on the Vulcan platform show
a similar trend in performance. At the smaller experimental scales (<2,048
sockets) examined as part of this research the versions which incorporate the
overlapping optimisation perform fractionally, but consistently, worse than the
equivalent versions which do not incorporate the optimisation. In the exper-
iments beyond 2,048 sockets; however, this performance disparity disappears
and the performance of these versions matches, but does not exceed, that of the

equivalent versions which do not incorporate the optimisation.

89

4. Achieving Efficient Application Execution at Extreme Scale

MPI H XNBR] nCollCart [[] DC
E DC_nCollDistGraph E DC_nCollGraph
Speedup
1.1
Archer (Cray XC30)

1m& p— 1 m 7 P2 I zzl [E 1
Z Z 7 7 Z A
Z # - 9 /| Z Z
A 2l % 7l P J ; ;
Z 7l |8 é : | Z Z
Y / 7 ’ Z Z
A ‘ 7 J A A
Z ; 7 ’ Z Z
A ‘ 7 J ‘ A
Z 7 7 ’ Z Z
A ’ 7 J A Z
Z ; . ; Z Z
0.9 [1 ; ’ ; : ;
Z 7 7 ’ Z Z
Z 7 @ ’ Z Z
A ‘ 7 J A A
Z 7 7 ’ Z Z
A ‘ 7 J A A
Z ; ’ ’ Z Z
A A 7 J A Z
Z 7 7 ’ Z Z
: 7 7 J ; ;
Z 7 7 ’ Z Z
’ o of ’ fo o 17 . /| . ’ . 4
LEZIML: Zl I8 4 : M Al IS 4

0.8 T 1 1 1 1

128 256 512 1024 2048
Sockets

Figure 4.13: Performance of MPI v3.0 constructs on Archer

Eager Data Transmission

As part of this research a series of experiments was also conducted to examine
the effect on performance of the “Eager Data Transmission” optimisation de-
scribed in Section 4.2.1. The results from experiments on the Archer platform
with versions which incorporate this optimisation technique are presented in
Figures 4.8 and 4.11, whilst Figure 4.12 documents results obtained by employ-
ing this optimisation on the Vulcan platform. It is clear that on both platforms
the use of this optimisation consistently delivers a performance degradation
relative to equivalent versions which do not incorporate it. Figure 4.8 shows that
on Archer the use of this candidate optimisation can result in a performance
degradation of up to 6% in overall application performance.

On Vulcan, however, the performance obtained by applying this optimisation
to a code variant which already incorporates the “diagonal communications”
and “communicating multiple fields simultaneously” optimisations, results in
virtually identical performance being delivered in all of the experiments <2,048
sockets. In the larger scale experiments (>4,096 sockets), however, the use of
this optimisation results in a significant degradation in performance, reaching
a 22.7% increase in application runtime in the 8,192 socket experiment. Ad-
ditionally the results show that applying this optimisation to a code variant
which employs the “overlapping communications” technique, also does not sig-
nificantly affect overall performance, either beneficially or detrimentally, at any

of the experimental scales examined as part of this research.

90

4. Achieving Efficient Application Execution at Extreme Scale

MPI v3.0 Constructs

To examine whether the use of the MPI v3.0 communication constructs de-
scribed in Section 4.2.1 could deliver any performance benefits for this class
of application a series of experiments was conducted on the Archer platform.
Figure 4.13 presents the results from these experiments. The IBM MPI commu-
nication library available on the BG/Q does not yet support these constructs
which prevents similar experiments from being undertaken on this architecture.
The results show that the use of the non-blocking MPI reduction operation
does not have a significant effect on application performance in the experiments
<1,024 sockets, as the run-times are on average virtually identical to those
of the reference MPI-only implementation. The use of this construct in the
larger scale experiments can, however, deliver some modest improvements in
application performance, in these experiments run-times were reduced by 4.6%
and 1.6% respectively in the 2,048 and 4,096 socket cases.

The performance of the version which employed the cartesian neighbourhood
collective operations (labelled “nCollCart” in Figure 4.13) was virtually identi-
cal to the reference implementation at the smaller experimental scales examined.
As the scale of the experiments was increased, however, the performance of this
version was generally not able to match that of the reference implementation;
in the 4,096 socket experiment its performance was 10.5% slower. The perfor-
mance of the versions which utilised the graph-based neighbourhood collective
operations (“DC_nCollDistGraph” and “DC_nCollGraph”) was also generally
superior to that of the versions which employed the equivalent cartesian oper-
ations. The code variant which utilised the distributed graph communication
construct (“DC_nCollDistGraph”) was the most performant, compared to the
equivalent version which incorporated the fully connected graph communication
constructs (“DC_nCollGraph”), and was able to match the performance of the
reference implementation at all the experimental scales examined. At no point in
these experiments, however, did the use of any of the MPI v3.0 neighbourhood
collective operations deliver any significant improvements in overall applica-
tion performance relative to the reference implementation. This indicates that
although these constructs deliver programmer productivity benefits through
reductions in the number of MPI library calls required to complete a particular
operation, reducing the number of these calls does not deliver any performance
improvements for this class of applications. The Cray MPI runtime system,
present on the Archer platform, is also not yet able to utilise the additional
information provided by these new constructs (e.g. the communication topology

of the application) in order to improve overall application performance.

91

4. Achieving Efficient Application Execution at Extreme Scale

MPI MPLRR‘

Speedup
1
Archer (Cray XC30)

1 7 y 7 7 7 7

: y : 2 y 2

y y y ; G ;

: y : : y :

y y y ; G ;

: y : : y :

y y ’ y y ;

; y : : y :

’ y y y y g

; g ; Z y Z

0.9 ; / Y ; / ;

, y , ; , ;

: y : Z y 7

y y y ; G ;

: y : : y :

y y ’ 7 G 7

; y : : y :

’ y ’ y y ;

: y : : y :

’ y ’ g y ;

| , g ; ; y Z

0.8 s / ; ; J ;

, y , ; G ;

: y : Z y 7

y y ; ; G ;

: y : : y :

y y ’ ; G ;

; y : : y :

’ y ’ y y 7

: y : Z y Z

’ Y ’ ’ ’ ’

0.7 T T T T T T
128 256 512 1024 2048 4096

Sockets
Figure 4.14: MPI rank reordering on Archer

MPI Rank Reordering

To assess the effect on performance of the rank reordering optimisation (Sec-
tion 4.2.1) a series of experiments were conducted using the Archer Cray XC30
platform. On Cray platforms the environment variable Mpich Rank Reorder -
Method determines the order in which MPI ranks are assigned to cores. Within
an allocation the number assigned to a particular core corresponds to the MPI
rank which will ultimately be executed on it. By default (Mpich Rank Reorder -
Method=1) cores are numbered consecutively within a node with this numbering
continuing on subsequent nodes. Custom mappings can be specified using a rank
reorder file (Mpich Rank Reorder Method=3) and these can be generated either
manually or automatically using Cray tools.

In these experiments the Grid_order tool was employed to manually generate
a custom rank mapping file. As Archer has 24 cores per node, the blocks assigned
to each node were specified to have dimensions of 6 x4 chunks (Figure 4.3b). The
reference MPI implementation was then executed using both the default and
customised rank placement settings. Figure 4.14 presents the results of these
experiments and shows that in these experiments this optimisation improved
overall application performance by 5.1% and 7.7% in the 2,048 and 4,096 socket
experiments respectively.

This demonstrates that modifying the layout of application processes within
a particular supercomputer node allocation to better reflect the communication
pattern of an application can deliver significant improvements in performance.
As the scales of the experiments are increased the rank reordering optimisation
also delivers a greater improvement in overall performance relative to the default

ordering. These performance improvements are realised through applications

92

4. Achieving Efficient Application Execution at Extreme Scale

“n 300
Q
2
(&)
g —— Archer
=)
% 200 |- —— Mira
2
o
2
=
L 100 |~
2
o
<

0 |

! ! ! ! ! ! !
128 256 512 1024 2048 4096 8192

Sockets

Figure 4.15: Performance due to the distributed meta-data optimisation

being able to better utilise the shared memory resources, available within the
nodes of particular supercomputer platforms, for inter-process communication
rather than having to exclusively rely upon slower inter-node message transmis-

sions to move data across larger distances.

Reduction Consolidation

Figures 4.7 and 4.9 present the results from the experiments conducted on
Archer and Vulcan respectively to examine the performance of the “Consol-
idated Reduction” optimisation (Section 4.2.1). The results show an almost
identical trend on both system architectures, that is that the incorporation of
this optimisation into the application does not significantly affect performance
either beneficially or detrimentally. The performance of the code variant which
includes this optimisation is identical to that of the reference implementation
even as the scales of the experiments are increased to 4,096 and 8,192 sockets

on Archer and Vulcan respectively.

Architecture Comparison

Figure 4.15 shows the performance results obtained from the experiments with
the MPI-only codebase on both the Archer (Cray XC30) and Mira (IBM BG/Q)
experimental platforms. They demonstrate that approximately 2-4x more pro-
cessor sockets are required for the runtime performance of the application on
the BG/Q architecture to match that of the Cray XC30 architecture.

Using the application power consumption instrumentation facilities available

on both the Archer and Mira platforms (Section 4.2.2) a series of experiments

93

4. Achieving Efficient Application Execution at Extreme Scale

-106
8
Cray-MPI B Cray-MPI.RM
[[] BG/Q-MPI.32ppn [[] BG/Q-MPI.64ppn
6 7 #
= 2 ;
A z
- ’ 7z
S / .
2 : ; z
& : ; 2
2 g :
: G 2
0 T T T T T
128 256 1024 2048 4096

Sockets
Figure 4.16: Energy to solution analysis on Archer(XC30) and Mira(BG/Q)

were undertaken to examine the energy consumed by the nodes of each platform
in achieving equivalent numerical solutions. The results of this analysis are
shown in Figure 4.16. On the Archer platform average figures from three
separate runs of each experiment are presented, however, due to time and
machine allocation limitations it was only possible to obtain one run for each of
the results shown for the Mira platform.

The results from Archer show that the energy-to-solution profile decreasing
consistently as the application is scaled from 128 to 2,048 processor sockets.
Beyond this point, however, this profile “turns-over” and the energy required
to achieve a solution on 4,096 processor sockets is actually significantly greater
(1.3x) than that required to achieve the same solution on 2,048 sockets. This
occurs despite the fact that the actual runtime performance of the application
continues to decrease between the 2,048 and 4,096 socket experiments. This
reduction in runtime is, however, lessened by the fact that the communication
operations within the application are becoming increasingly dominant and lim-
iting its scalability, and it is therefore not sufficiently large enough to offset the
approximate doubling of power consumption which occurs between the 2,048
and 4,096 socket experiments.

The results also show that the MPI rank reordering optimisation delivers
approximately a 1.1x reduction in energy consumption in the 4,096 sockets
experiment by reducing the actual runtime of the application and thus its overall
energy consumption. The energy consumed by this version was, however, prac-
tically identical to the reference implementation in all the other experimental
scales examined.

Additionally, the results from the Mira platform demonstrate that—for the
data-points which it was possible to collect as part of this research—the BG/Q
architecture is able to deliver significant advantages over the Cray XC30 archi-

tecture in terms of the energy required to achieve equivalent solutions for this

94

4. Achieving Efficient Application Execution at Extreme Scale

application. These energy-to-solution advantages reached as high as 1.7x in

these experiments.

4.4.2 Hybrid (MPI+OpenMP) Results Analysis

Building on the research documented in Chapter 3 a series of experiments was
conducted to assess whether the MPI4+OpenMP hybrid programming model can
deliver any performance advantages for this class of applications, specifically at
large-scale. Additionally, these experiments also examined the utility of the
candidate optimisation techniques outlined in Section 4.3. The performance of
this codebase and each optimisation technique are examined in the following

sections.

MPI-only and MPI+OpenMP Comparison

To determine whether the hybrid (MPI+OMP) version of the codebase can
deliver any performance advantages compared to the reference MPI-only ver-
sion a series of experiments was conducted on both the Archer and Vulcan
platforms. On both architectures these experiments examined the performance
of the hybrid version when executed using a range of different ratios between the
number of MPI processes and OpenMP threads employed per node. Figures 4.17
and 4.18 present the results of these experiments; additionally on the Archer
platform separate experiments were also conducted using a range of different
Cray MPI and compiler versions.

Figure 4.17a shows the results from the experiments on Archer using the
older version of the Cray MPI library and compiler infrastructure; please refer
to Section 4.4 for more details on the specific versions employed. The results
show that in the smaller scale experiments (128 and 256 sockets) employing the
hybrid programming model can deliver significant performance advantages over
the MPI-only approach. In these experiments this performance advantage was as
much as 1.2x in the 128 socket experiment but declined to 1.1x in the 256 socket
experiment. This decline in performance relative to the MPI-only version of the
codebase continued as the scales of the experiments were increased resulting in
the MPI-only approach delivering superior performance in all of the experiments
>512 sockets. The results show that the performance of the hybrid versions
was inversely proportional to the number of OpenMP threads utilised in the
experiments, with the performance of the 12MPIx20penMP configuration being
consistently superior and the 1MPIx240penMP ratio the least performant. In
the 4,096 socket experiment the performance of these versions was 1.1x and
1.6x worse than the MPI-only version of the codebase.

This performance trend is, however, not matched in the results obtained

95

4. Achieving Efficient Application Execution at Extreme Scale

MPI | 1x24 [2x12 [[] 4x6 [F 6x4 [12x2

Speedup
1.2
_ Archer (Cray XC30)
1 [~ 7] 7 _ F7l 71 7]
; 7 . ’ y ;
, , 7 - , - , ,
; ; 7 Jq 0 y ;
, , 7 A , ,
; ; . ; Z - ;
; ; 7 ; y y
p , 7 p p ,
0.8 |2 ; - Z Z Z
, , 7 ’ , ,
; ; 7 p p y
, , 7 , , ,
; ; 7 p ; ;
Z ; " ; Z Z
, , 7 ’ , ,
Z ; - ; Z Z
0.6 iz ; - Z Z Z
, , 7 , , ,
; ; 7 p ; p
, , 7 , , ,
; ; 7 y ; y
Z ; " Z Z Z
, , 7 ’ , ,
AR ’ / Zl B M ’
0.4 T T T T
128 256 512 1024 2048
Sockets
(d) Cray MPI v6.1.1
Speedup
1.1
Archer (Cray XC30)
R T 71 —[T] 77 M 77 F7 Wl 71
ml: 2] - ? _ y 7
2l % , 7 ’ 2 — ,
4 7 17 7] 7 . ’
p , 2 d0r ’ ,
, ; 7 I y y
, ; 2 p p p
Z ; - Z Z ;
, , 7 , , ,
; ; 7 p ; ’ _
0.8 | 1/ ’ ; ; ; A =
p , : ’ , q =
; 7/ 7 ; y y
p , 7 p p ,
, ’ @ ; y y
p , 7 ’ p ,
Z , 7 ’ , ,
; ; . ; ; ;
; ; 7 ’ ; ;
, , 7 , , ,
Ry ‘ 7 ; ; y
0.6 |1 ; A ’ ; ;
p , 7 p p ,
, , @ ; y y
p ; 7 ’ p ,
, , 7 ’ , ,
; ; . ; ; ;
; ; . ; ; ;
’ ’ ; gl B ’ ’
0.4 == T T T T T
128 256 512 1024 2048 4096

Sockets

(b) Cray MPI v7.0.3
Figure 4.17: Hybrid (MPI+OMP) performance on Archer

from the experiments on Archer with the more recent versions of the Cray MPI
library and compiler software (Figure 4.17b). These results indicate that im-
provements in the Cray MPI library now enable the performance of the MPI-only
codebase to match that of the hybrid variants in the small scale experiments
and to continue to exceed the performance of the hybrid versions in the 4,096
socket experiment by as much as 1.5x. For the hybrid versions the ratio of
12MPIx20penMP is again the most performant in the larger scale experiments
(2,048 and 4,096 sockets); however, the 6MPIx4OpenMP and 4MPIx60penMP
ratios now deliver slightly superior performance in the smaller scale experiments
(<2,048 sockets). The hybrid version which employs 24 OpenMP threads across
the 2 processor sockets within each node is again the least performant configura-

tion; however the performance of this version is able to match the other hybrid

96

4. Achieving Efficient Application Execution at Extreme Scale

MPI | 1x32 [2x16 [[] 4x8 [8x4 [§ 16x2

Speedup
1.2
Vulcan (IBM BG/Q)
1~ F7) Z 77 71
] p - g ; p
’ o of K4 | 4 7’
y y y - 7/ y
; , y ; ;
L |2 ; y 2 Tmill 2l =l
0.8 1t : : : 2l %
: s y A ;
’ y y ; y
: ; y 7 ;
B7 ’ / ’ ’
0.6 It ’ / ’ ’
: y y : ;
y , y ; ;
: y y A s
y y y 7/ y
: s y A ;
0.4 g / 2 :
y y y ; y
y y y ; y
’ y y 7/ y
; , y ; ;
: y y : :
0.2 2 ; 1 ; ;
y y y ; ;
: ; y 7 ;
y y y ; y
;] ; / 7 : 7]
0 == T T T T
512 1024 2048 4096 8192
Sockets
(a) Vulcan 32ppn
MpPI | 1x64 [7] 2x32 [4x16 [8x8 [] 16x4
Speedup
1.2
Vulcan (IBM BG/Q)
1 I] — F71 - A [73 7
’] 7’ ~— | 7 4
2 [- y ; y
Y y y ; ,
z y y _ : z
; , y ; - ;
| I y y 7 q -
0.8 : ’ : mr
’ y y 7/ y
: ; y 7 ;
’ y y 7/ y
; ; J ; ;
0.6 / A Y ; ;
; , y 7/ ;
: y y ; s
y y y ; y
: s y A ;
0.4 -2 ; J ; ;
; ; Y ; ;
’ y y ; y
; , y ; ,
: y y : ;
0.2 ; / 2 :
; ; J ; ;
y y y ; y
: ; y 7 ;
; | ; / ; ;
0 == T T T T
512 1024 2048 4096 8192
Sockets

(b) Vulcan 64ppn
Figure 4.18: Performance of the MPI+OMP implementation on Vulcan

configurations in the smaller scale experiments. Although certain experiments
do show some of the hybrid versions delivering superior performance compared
to the MPI-only implementation, these performance improvements are generally
<4%.

The results obtained from the equivalent experiments on the Vulcan platform
(Figure 4.18) show a similar performance trend to that observed on Archer
with the more recent version the Cray MPI library. In these experiments the
performance of the hybrid code variants is again able to match that of the MPI-
only version in the small scale experiments on 512 sockets. As the scale of the
experiments is increased; however, the relative performance of the hybrid version
decreases, and in the 8,192 socket experiment this implementation is 1.16-1.2x

slower than the reference MPI-only implementation. This performance trend is

97

4. Achieving Efficient Application Execution at Extreme Scale

observable in the experiments with both 32 (Figure 4.18a) and 64 (Figure 4.18b)
processes per node.

This demonstrates that with less efficient MPI implementations hybridising
codebases with OpenMP can deliver significant performance advantages when
application performance is dominated by computational operations, as it is in
the smaller scale experiments examined here. This is due to the hybrid approach
facilitating the more efficient use of the shared memory resources within the
nodes of the supercomputer. Furthermore, it is possible to improve the efficiency
of an MPI implementation such that the application performance, which is
achievable with the MPI-only model, is able to match that of a hybrid approach.
The results also show that due to the additional threading overheads (e.g.
OpenMP fork/join and synchronisation overheads etc.) which are a consequence
of the hybrid approach, the MPI-only approach is significantly more performant
at high node counts for this class of application. In these particular experiments
the size of the computational mesh assigned to each node is significantly smaller
than in the low node count experiments and consequently the performance of
the application is increasingly dominated by communication operations. Addi-
tionally as the memory footprint required per node is considerably smaller,
the benefits due to the use of the threading constructs, which result from
the more efficient utilisation of the shared memory resources, are substantially
reduced and do not offset the additional overheads caused by the use of a hybrid
approach. The results also demonstrate that the overheads due to the use of
the OpenMP constructs increase with the number of threads utilised per MPI

rank.

Message Aggregation

To examine whether the optimisation of aggregating MPI messages can also
provide a performance benefit for the MPI4+OpenMP versions of the codebase
a series of further experiments was conducted on both the Archer and Vul-
can platforms using a variant of the hybrid codebase which incorporated this
optimisation. Figures 4.19 and 4.20 present the results of these experiments.
In these charts the speedup due to the “Message Aggregation” optimisation is
calculated relative to the performance of the reference implementation, when
executed using the same MPI to OpenMP ratio.

The results show that on Archer this optimisation also delivers significant
performance benefits for the hybrid version of the codebase, with the perfor-
mance improvements growing as the scale of the experiments is increased. In
the 128 socket experiment the performance of the reference implementation

matches that of the version which incorporates this optimisation. With the

98

4. Achieving Efficient Application Execution at Extreme Scale

1x24 [2x12 [4x6 [[] 6x4 [12x2
Speedup

1.3

Archer (Cray XC30)

1.1 M

]

0.8 -

0.7 -

AN
NNNYUNNUNNNNNNNNNNNNNNNNNNNY
\\\\\\\\\\\\\\\\\\\\\\\\\\\]

NN

NN

0.6 L. : L : : * :
128 256 512 1024 2048 4096
Sockets

Figure 4.19: Message aggregation for the MPI+OMP version on Archer

exception of the 2,048 socket experiment, however, the results show a consistent
increase in the speedup achieved due to message aggregation as the scale of the
experiments is increased. In the 4,096 socket experiment the speedup due to this
optimisation is as high as 1.22x the performance of the original implementation.

A similar trend can also be observed on the Vulcan platform for the 32
and 64 processes per node experiments (Figures 4.20a and 4.20b). The results
again show the performance of the reference hybrid implementation matching
that of the version which incorporates the message aggregation optimisation
in the smaller scale experiments (512 processor sockets). As the scale of the
experiments are increased the performance speedup due to this optimisation
again increases, reaching up to a ~1.27x improvement in the 8,192 socket

experiment.

Individual Kernel OpenMP Optimisations

A series of experiments was undertaken to examine whether the individual
kernel optimisations, identified in Chapter 3, can deliver any performance ben-
efits when CloverLeaf is executed at significant scale on the Archer platform.
Figure 4.21 presents the results of these experiments. In these charts the results
labeled “KernelOpts” refer to the particular version which incorporates these
optimisations. The results show that for the experiments which utilised the
1MPIx240MP and 4MPIx60MP configurations, employing these optimisations
can deliver significant performance improvements in the smaller scale exper-
iments, relative to the reference MPI-only and hybrid implementations. In
the 128 socket experiment these optimisations achieved a ~1.10x and ~1.12x

improvement in performance relative to the reference MPI-only implementa-

99

4. Achieving Efficient Application Execution at Extreme Scale

1x32 | 2x16 [7] 4x8 [[] 8x4 [16x2

Speedup

1.4

12l Vulcan (IBM BG/Q) ——

0.6 [~

0.4

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\j
R R R R R R R R RS
PN NN

NN NN

: * & :
512 1024 2048 4096 8192
Sockets

(a) Vulcan 32ppn

1x64 [l 2x32 [4x16 []] 8x8 [16x4

Speedup

1.4

12l Vulcan (IBM BG/Q) _ MM

0.8 -

0.6 -

0.2 |-

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\j
AR R R R R R R R R RS RRS|
RN NN NN

NN NN NN

\ \ T T
512 1024 2048 4096 8192
Sockets

(b) Vulcan 64ppn

Figure 4.20: Message aggregation for the MPI+OMP version on Vulcan

tion for the 1IMPIx240MP and 4MPIx60MP configurations respectively. As
the scale of the experiments is increased, however, the results show that this
optimisation becomes less effective with relative application performance falling
back to approximately match that of the reference hybrid implementation.
This indicates that these optimisations are more effective when the amount
of computational work, which each thread has to perform, is greater relative to
the levels of communication operations, which is the case in the smaller scale

experiments.

High-level Parallel Region

To determine whether the “High-level Parallel Region” optimisation discussed

in Section 3.2.4, could deliver any performance benefits as the execution scales

100

4. Achieving Efficient Application Execution at Extreme Scale

MPI
B KernelOpts []

1x24 E] Vdecomp [D] HLPR
IntelOMP IntelOMP_Nested

EN

1.2

Archer (Cray XC30)

0.8 H

0.6

TRy
P NN NN AN NN

IR
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\j

T
AN NS

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

creeceer

i : ‘ : : : : : :
128 256 512 1024 2048 4096
Sockets

(a) 1 MPI process x 24 OMP threads / node

MPI | 4x6 [f] BufferCollapse
[HLPR [KernelOpts [J] ThreadMultiple

Speedup

1.2

Archer (Cray XC30)

0.8 |~

NN
\\\\\\\\\\\\\\\\\\\\\\\\\\\\]
NN NN |

Ty
R R R R R R

A R R R RSSS|

0.6 U & i :d 4 ‘ ::
128 256 512 1024 2048 4096
Sockets

(b) 4 MPI processes x 6 OMP threads / node
Figure 4.21: Optimisations to the hybrid versions on Archer

101

4. Achieving Efficient Application Execution at Extreme Scale

16x4 [l Scopinglnfo [f] BufferCollapse
[0 HLPR [§ ThreadMultiple [MPI64ppn
Speedup
1.4
Vulcan (IBM BG/Q)
1.2 +
J o— — N N -
k4 o o 7 d 7 7|
Bl |E y y y y
y Z y Z y
y y y ’ y
0.8 1~ ; ; ; y
y ; y ; y
y / y : y
y ; y y y
y y y y y
0.6 [{~ ; ; ; J
’ y y y y
Y Z Y Z y
y y y p y
5 ; ; ; /
0.4 ; ; y y
/ , y / y
y ; y ; y
y Z y p y
y ; y y y
Y Z Y Z 7
0.2 2 ’ ’ ’
y y y y y
; ; ; ; 7
; ; ; i ; : J :
0 == T 1 T 1
512 1024 2048 4096 8192
Sockets
(a) Vulcan 4MPIx160MP configuration
1x64 [l Scopinglnfo [f] HLPR [[] MPI64ppn
Speedup
1.4
Vulcan (IBM BG/Q) _ M
1.2 + m
1~ mmm | : 74 77 73
Z i 7 z p
; y / ; y
Z g 7 7 y
; y / ; y
0.8 1 2 y ’ ; ;
; y 7 ; y
: y / / y
; y / ; y
, g / , y
0.6 - 2 J ’ ; ;
; y / ; y
Z y 7 7 y
; y / ; y
; y 7 7 ;
0.4 2 J . ; ;
: y # 7 y
; y / ; y
Z y / , y
; y / ; y
0.2 2 J ’ ; ;
Z y 7 7 Y
; y / ; y
7] . /| . 17 . ’ . 7’ o o
gl IR ANl Zl % Zl I¥] |3
0 1 T 1 T 1
512 1024 2048 4096 8192

Sockets
(b) Vulcan 1IMPIx640OMP configuration
Figure 4.22: Optimisations to the hybrid version on Vulcan

of the application are increased, a series of experiments was conducted on both
Archer and Vulcan. The version labelled "HLPR” within Figures 4.21 and 4.22
shows the effect of this optimisation on the performance of CloverLeaf.

The results from the Archer platform show that the performance of this
version is approximately equivalent to the reference hybrid version in the smaller
scale experiments on 128 and 256 processor sockets. As the scale of the exper-
iments is increased, however, the version incorporating this optimisation starts
to consistently outperform the reference hybrid implementation for both the
1MPIx240MP and 4MPIx60MP experimental configurations. In the 4,096
socket experiments this optimisation delivered respective performance improve-

ments of ~1.3x and ~1.1x relative to the reference hybrid implementation. In

102

4. Achieving Efficient Application Execution at Extreme Scale

several experiments with the AMPIx60MP configuration employing this opti-
misation also enabled the hybrid implementation to outperform the reference
MPI-only implementation, although only by ~2.9%.

A similar performance trend is also exhibited in the results obtained from
employing this optimisation on the Vulcan platform. These results (Figure 4.22)
show that the version which incorporates this optimisation consistently delivers
superior performance compared to the reference hybrid implementation, and
that the performance disparity grows significantly as the scale of the experiments
is increased. In the 512 socket experiment this optimisation improved the perfor-
mance of the hybrid codebase by ~2.7% and ~1.2% for the 16MPIx4OMP and
1MPIx640MP configurations respectively. The improvement in performance,
however, increases to ~9% and ~11% for these configurations in the 2,048 to
8,192 socket experiments respectively. Similarly employing this optimisation
also enabled the hybrid implementation (16MPIx4OMP configuration) to out
perform the MPI-only implementation by 3.4% and 3.6%, in the 512 and 1,024
socket experiments, respectively.

The fact that this optimisation delivers significantly more performance ben-
efits in the larger scale experiments is likely due to the OpenMP synchronisation
overheads representing proportionally more of the overall computational work-
load at these scales. As this optimisation contributes to reducing the levels of
synchronisation within the hybrid codebase, it is therefore more effective in the
experiments on the higher processor counts, as during these the size of the mesh
processed by each thread is considerably reduced relative to the smaller scale

experiments.

Vertical Rectangular Decomposition

To analyse the performance of the “Vertical Rectangular Decomposition” can-
didate optimisation (Section 4.3.1) a series of experiments were performed on
the Archer platform using the 1IMPI x 240OpenMP threads configuration. The
version labelled “ChangeDecomp” in Figure 4.21a presents the results of these
experiments. The results show that the performance of this version is virtually
identical to that of the reference hybrid implementation in the 128 to 2,048
sockets experiments. The result from the 4,096 socket experiment, however,
demonstrates that this version achieved a ~9.9% performance improvement on
average over the reference hybrid implementation. This indicates that this opti-
misation may deliver some performance advantages when OpenMP parallelism
is utilised across multiple sockets and the amount of computational work per
node is sufficiently small, such that minimising the data transfers across the

inter-socket buses becomes important in achieving optimal performance.

103

4. Achieving Efficient Application Execution at Extreme Scale

MPI-OpenMP Integration Options Exploration

The experimental results obtained with the version of the hybrid implementa-
tion which employs the MPI-OpenMP integration optimisations described in
Section 4.3.1 are shown in Figure 4.21 and 4.22a for the Archer and Vulcan
platforms respectively. In both figures the version labelled “ThreadMultiple”
presents the results obtained with this version. The results from the experiments
on the Archer platform show that the performance of the version which incor-
porates this modification matches that of the reference hybrid implementation
in the smaller scale experiments (128 and 256 sockets). In the larger scale ex-
periments, however, as the performance of the application becomes increasingly
dominated by the communication operations, this version performs consistently
worse than the reference hybrid implementation. The results obtained from
Vulcan demonstrate that on this platform the use of this construct also results
in a performance degradation; however the reduction in performance is not as
great as was observed on the Cray XC30 architecture.

Overall as this optimisation relates to how the communication operations
are utilised within the application, this result indicates that the approach of
initiating multiple MPI communication operations in parallel and in close tem-
poral proximity, using OpenMP constructs, is not as performant as the original
method utilised within in the reference version. This is due to additional
mutual exclusion/locking overheads which are required within the MPI library
in order to coordinate access to the underlying communication resources for
each OpenMP thread. Additionally, as a significantly smaller reduction in per-
formance is observed on the IBM BG/Q due to the utilisation of this approach,
compared to the Cray XC30, this indicates that the implementation of the

multi-threaded constructs within the MPI library is also more efficient on the

BG/Q.

Alternative Communication Buffer Packing Approaches

The performance of the modified hybrid version which utilises OpenMP Nested
Parallelism and the OpenMP v4.0 thread placement constructs (Section 4.3.1),
with the aim of improving the performance of the communication buffer packing
operations was examined in a series of experiments on the Archer platform. As
the Cray OpenMP runtime system does not yet support the OpenMP v4.0
thread placement constructs, the Intel compiler and OpenMP runtime systems
(version 14.0.4) were utilised for these experiments. Figure 4.21a presents
these results together with those from an experiment with the reference hybrid
implementation compiled using the Intel tool-chain in order to provide a baseline

against which to compare the performance of the modified approach. The results

104

4. Achieving Efficient Application Execution at Extreme Scale

2x12 B 2x12.Reveal [I] 4x6
[0 4x6-Reveal [6x4 [3 6x4_Reveal
Speedup
1.1
Archer (Cray XC30)
1im m w1 1 IR I ol [
Z ; . A ’ _ Z ;
; - ; : ’ ; ;
; ; . ; ; A
0.9 |-}/ ; . ; A A
A 7 7 ’ ; ;
; ’ ’ ; ’ ’
08| ’ ’ ; ; ;
Z ; 4 ’ ; ;
il [g il i 0 B z z
0.7 = = T = T T
128 256 512 1024 2048 4096

Sockets

Figure 4.23: Hybrid version produced by Reveal on Archer

show that in all of the application scales examined the performance of the
modified version is significantly worse than that of the reference hybrid im-
plementation. In the 4,096 socket experiment the use of this modified approach
results in a slowdown in overall application performance of ~1.8x relative to
the reference hybrid implementation. This demonstrates that the use of nested
parallelism currently results in too much additional overhead for this modified
approach to be viable for this class of application.

Additionally, Figures 4.21b and 4.22a also present results, from Archer and
Vulcan respectively, of experiments with the version of the hybrid codebase
which incorporates the modified (using loop inter-change and the collapse
directive) communication buffer packing functionality described in Section 4.3.1.
This version is labelled as “CommsBufferCollapse” within these charts. The
results from both Archer and Vulcan show that the use of this modification
does not significantly affect the overall performance of the codebase as in both
cases the performance of the modified version is equivalent to that of the
reference hybrid implementation in all of the experiments conducted as part

of this research.

Automatic Hybridisation

To assess the performance at scale of the hybrid codebase produced automat-
ically by the Cray Reveal tool (Section 3.2.13) a series of experiments was
conducted on both the Archer and Vulcan platforms. Figures 4.23 and 4.24
present the performance results obtained through the use of this codebase on
Archer and Vulcan respectively, and compare it against the reference hybrid

implementation. The results from the Archer platform show that in the smaller

105

4. Achieving Efficient Application Execution at Extreme Scale

16x2 || 16x2_Reveal [[] 16x4 [J] 16x4_Reveal

Speedup

1.2

Vulcan (IBM BG/Q) - _ —

0.8 -

0.6 [~

0.2 |-

NN NN RN
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]
R R R RSN
PN NN
NN

0 ‘I ‘Z ‘ZZ ‘ZZ ‘I

512 1024 2048 4096 8192
Sockets

Figure 4.24: Hybrid version produced by Reveal on Vulcan

scale experiments on 128 sockets the performance of the version produced by
Reveal is within ~7.0% of the performance of the reference hybrid implemen-
tation. As the scale of the experiments is increased, however, this performance
disparity reduces and in the largest experiment conducted (4,096 sockets) the
version produced by Reveal actually significantly outperforms the reference
hybrid implementation by as much as 7.3%, in each of the three configurations
examined (2MPIx120MP, 4MPIx60MP and 6MPIx4OMP).

The results produced on Vulcan, however, demonstrate a significantly differ-
ent performance trend. On this platform the performance of the hybrid version
produced by Reveal is able to match that of the reference hybrid implementation
in the smaller scale (512 socket) experiment. As the scales of the experiments
are increased, the hybrid version produced by Reveal starts to deliver superior
performance compared to the reference hybrid implementation for both the
examined configurations (16MPIx20MP and 16MPIx4OMP). In the largest
experiment conducted on the BG/Q architecture (8,192 processor sockets) the
hybrid version produced by Reveal is ~12.1% faster than the reference hybrid
implementation for the 16MPIx4OMP configuration.

These results indicate that the structure of the hybrid implementation pro-
duced by Reveal (i.e. one nested loop block per parallel region) may de-
liver some performance advantages over the structure implemented within the
reference hybrid version in situations in which the size of the computational
mesh processed by each thread is significantly reduced. This is the case in the
experiments on the BG/Q architecture due to the larger numbers of threads
involved in the overall computation and in the larger scale experiments on the
Cray XC30.

The Reveal tool also employs the default(done) OpenMP directive on

106

4. Achieving Efficient Application Execution at Extreme Scale

each parallelised loop block and also specifies additional scoping information
for each variable within this block, whilst the reference hybrid implementation
only specifies the minimal amount of variable scoping information. To eliminate
this as a factor causing the observed performance differences on the BG/Q
architecture, the additional variable scoping information was manually added
to the reference hybrid implementation, including the default (none) directive.
Using this modified version an additional experiment was conducted on the
Vulcan platform, the results of which are shown in Figure 4.22b. These demon-
strate that the performance of this modified version (labelled “Scopinglnfo”) is
identical to that of the original reference hybrid implementation at all of the
experimental scales examined. This indicates, therefore, that the inclusion of
the additional variable scoping information does not provide any performance

benefits for the hybrid version produced by Reveal.

4.5 Summary

This chapter documented the research which was undertaken to improve the
performance of the CloverLeaf mini-application at extreme scale (up to 131,072
processor cores) on several current state-of-the-art supercomputer architectures,
and thereby to also improve the performance and scalability of the main ap-
plications which it represents. Several pieces of related work are identified and
analysed first, and information is then provided on the actual implementations of
the MPI-only and hybrid (MPI4+OpenMP) versions of the CloverLeaf codebase.
Additionally, each of the candidate optimisations, developed as part of this
research, are also extensively documented.

A detailed analysis of the performance results, which were recorded during
the experiments with these codebases, is presented in the results analysis section
of this chapter. This analysis showed that selecting application data structures
which are able to scale to large process counts without consuming significantly
more memory resources is crucial in enabling applications to execute efficiently
at scale. This research identified that, for CloverLeaf specifically, adopting a dis-
tributed approach for mesh meta-data management enabled the performance of
the application to be significantly improved at scale and for significant memory
savings to be achieved compared to the original implementation.

Of the candidate optimisations examined for both the MPI-only and hybrid
codebases, the strategy of aggregating communication data into larger message
sizes and delaying their transmission until all the data items are ready, was
the most optimal approach for CloverLeaf. This approach achieved signif-
icant performance improvements over the reference implementation on both

supercomputer architectures examined. The strategy of communicating data

107

4. Achieving Efficient Application Execution at Extreme Scale

as soon as it is ready for transmission, which was found to be beneficial by
other researchers examining similar types of applications, actually resulted in
significant reductions in performance when it was applied to CloverLeaf.

Fully utilising the available hardware threads on the BG/Q architecture was
found to be beneficial for both the MPI-only and hybrid codebases, particularly
in the smaller experimental scales examined. During these experiments the
performance of the application is predominantly dominated by computational,
rather than communication, operations. In contrast the use of the Intel Hyper-
threads, on the Cray XC30 architecture, did not however affect performance in
the smaller scale experiments and their use resulted in a substantial reduction
in overall performance when the application was executed at scale. Similarly
the use of huge-memory pages on the XC30 generally resulted in degradations
in overall performance.

Utilising small message communications directly between logical diagonally
neighbouring processes in order to reduce synchronisation operations within the
application proved to be an inferior approach on both system architectures,
compared to the approach employed in the reference implementation. In this
version an implicit diagonal communication is achieved by exchanging data first
in z-dimension of the mesh and then, following a synchronisation operation, in
the y-dimension. The experimental results also show that when the performance
of CloverLeaf is dominated by the time required for inter-process communication
operations (e.g. when the application is executed at scale on the Cray XC30
platform), the pre-posting of MPI receive operations can deliver significant
performance improvements.

The results presented here also show that the techniques which were de-
veloped as part of this research to overlap communication and computation
operations within CloverLeaf, actually have a detrimental effect on the overall
performance of the application on both supercomputer architectures examined.
Additionally, the use of dedicated Progress Threads, which are available on the
Cray architecture to potentially improve the overlap of computation and com-
munication operations, do not significantly improve application performance,
at least in these experiments. Executing these Progress Threads on additional
hyper-threads also appears to be the most efficient approach compared with
utilising a completely separate, dedicated compute core within each node.

On Archer employing the non-blocking reduction MPI v3.0 operations within
CloverLeaf appears to provide some modest performance improvements for the
application. The use of the neighbourhood collective operations, however, did
not deliver any performance benefits in any of the experiments conducted.
Similarly the candidate optimisation to consolidate the number of reduction

operations within the application also did not provide any additional perfor-

108

4. Achieving Efficient Application Execution at Extreme Scale

mance benefits.

Reordering MPI ranks to improve the utilisation of shared memory commu-
nication resources and reduce the number of inter-node communication opera-
tions was shown to improve the performance of CloverLeaf. During the large
scale experiments on the Cray XC30 platform, these performance improvements
increased linearly with the size of the experiments. This approach represents
a relatively straightforward mechanism with which to improve the performance
of applications at scale, as it does not involve any changes to the source code
of the application, and a suite of tools is available to rapidly generate the MPI
rank mapping files.

Using these results to directly compare the two supercomputer architectures
examined in this research shows that it is necessary to employ approximately
2-4x more processor sockets on the BG/Q architecture in order to achieve com-
parable performance to the Cray XC30 architecture. The experimental results,
however, show that the BG/Q architecture can deliver superior performance,
in terms of the energy required to achieve an equivalent solution. Additionally,
the energy-to-solution profile of CloverLeaf on the Cray XC30 demonstrates an
optimal job size with which to execute the application in order to minimise
overall energy consumption.

The hybrid version of CloverLeaf initially delivered performance improve-
ments at the smaller experimental scales examined on the Cray XC30 plat-
form. The release of a later version of the Cray MPI communication layer,
however, subsequently improved the performance of the MPI-only codebase
to approximately match that of the hybrid versions. Additionally, on the
BG/Q architecture and in the larger scale experiments on the Cray XC30,
the MPI-only approach was always the most performant. The experimental
results also show that the optimisations documented in Chapter 3 can deliver
significant performance improvements for the hybrid versions of CloverLeaf
when the application is executed across multiple nodes and performance is
dominated by computation, rather than communication, operations.

The optimisation of combining OpenMP parallel regions higher up in
the call-chain of the application was shown to consistently deliver significant
performance improvements on both experimental platforms, particularly as the
scales of the experiments were increased and OpenMP synchronisation over-
heads become a larger proportion of the overall runtime of the application.
Additionally, changing the decomposition strategy within the hybrid version, to
orientate the rectangular array sections in the vertical dimension, and thereby
minimise inter-socket communication, was also shown to deliver some perfor-
mance benefits at scale when OpenMP threading constructs were being utilised

across multiple processor sockets on the Cray XC30.

109

4. Achieving Efficient Application Execution at Extreme Scale

Utilising the ThreadMultiple construct to enable MPI operations to be ini-
tiated in parallel by multiple OpenMP threads resulted in a significant reduction
in performance on both architectural platforms. Similarly, employing OpenMP
v4.0 thread placement constructs together with Nested Parallelism for the com-
munication buffer packing operations also resulted in a substantial performance
penalty in the experiments in which OpenMP threads were employed across
multiple processor sockets.

This research also demonstrated that the Reveal tool from Cray can provide
a viable solution for rapidly and automatically hybridising codebases. Further-
more, the performance of the automatically generated codebase is generally
within ~7% of the manually written version on the Cray architecture. On
the BG/Q platform and in specific configurations on the Cray XC30, however,
the automatically generated codebase is able to deliver superior performance

compared to the manually developed versions.

110

CHAPTER b
Evaluating the Utility of PGAS-based Approaches

This chapter documents work undertaken to assess whether PGAS-based pro-
gramming models can deliver any performance advantages, particularly at large
scale, for explicit Lagrangian-Eulerian hydrodynamics codes. Section 5.1 as-
sesses existing work relating to this research area. The PGAS-based imple-
mentations of CloverLeaf which were developed as part of this work, are then
documented in Sections 5.2 and 5.3. The results of several experiments, under-
taken to assess the utility of these models against the de facto MPI approach,
are presented in Section 5.4. Finally, Section 5.5 concludes the chapter.

5.1 Related Work

In the one-sided RDMA-based communication models utilised by PGAS lan-
guages, the communication initiator generally provides all relevant information
regarding the operation. This alleviates the destination processor of any involve-
ment, which has been recognised as an important factor in reducing communi-
cation latency [23]. It has also been argued that these models can potentially
deliver additional benefits over standard message passing solutions, including,
eliminating message matching and synchronisation overheads, improving en-
ergy consumption through reductions in data-motion, relaxing message ordering
guarantees and reducing memory consumption by removing communications
buffers [71, 23]. Minimising communication operations within applications has
been recognised as a key approach for improving the scalability and performance
of scientific applications [51].

Background information on the OpenSHMEM and CAF programming mod-
els can be found in Section 2.2.8. Additionally, although CAF has only relatively
recently been incorporated into the official Fortran standard, earlier versions of
the technology have existed for some time. Researchers are also actively seeking
to further improve the existing standard with proposed changes to the program-
ming model and communication constructs [140]. Similarly, although several
distinct SHMEM implementations have existed since the model was originally
developed by Cray in 1993 for the T3D supercomputer architecture [81], the
technology has only been officially standardised very recently as part of the
OpenSHMEM initiative [157, 40].

Consequently, a number of studies have already examined these technologies.

These have generally focused, however, on different scientific domains to the

111

5. Evaluating the Utility of PGAS-based Approaches

one examined in this research, and on applications which implement alternative
algorithms or exhibit different performance characteristics. Additionally, rela-
tively little work has been carried out to assess these technologies since their
standardisation and on the hardware platforms examined in this work. Overall,
substantially less work exists which directly evaluates the MPI, OpenSHMEM
and CAF programming models when applied to the same application. The
results from previous studies have also varied significantly, with some authors
achieving significant speedups by employing PGAS-based constructs, whilst
others present performance degradations.

Several studies which do directly evaluate particular PGAS and MPI pro-
gramming models at considerable scale are from Preissl [166], Mozdzynski [143]
and Shan [178]. Preissl et al. present work which demonstrates a CAF-based im-
plementation of a Gyrokinetic Tokamak simulation code delivering significantly
improved performance compared to an equivalent MPI-based implementation
on up to 131,000 processor cores. Similarly, Mozdzynski et al. document their
work using CAF to improve the performance of the ECMWF IFS weather
forecasting code, relative to the original MPI implementation, on over 50,000
cores. Whilst Shan demonstrates CAF and UPC versions of the IMPACT-T
and MILC applications significantly outperforming equivalent MPI versions.
Additionally, a UPC version of the NAS FT benchmark has also been shown to
significantly outperform an equivalent MPI implementation [23, 147].

Stone et al. were, however, unable to improve the performance of the MPI
application on which their work focused by employing the CAF constructs; in-
stead they experienced a significant performance degradation [186]. Their work
examined on the CGPOP mini-application, which represents the Parallel Ocean
Program [107] from Los Alamos National Laboratory. Whilst the application
examined by Lavallée et al. has similarities to CloverLeaf, their work compares
several hybrid approaches against an MPI-only based approach [120]; addition-
ally they focus on a different hardware platform and do not examine either CAF-
or OpenSHMEM-based approaches. Henty also provides a comparison between
MPI and CAF using several micro-benchmarks [80].

Using “lower-level” one-sided communication APIs has been shown to deliver
performance improvements for parallel applications which send large numbers
of small messages [22]. OpenSHMEM delivered some performance advantages
relative to MPI for Bethune et al., however, they examined the Jacobi method
for solving a system of linear equations and utilised a previous generation of the
Cray architecture (XE6) in their experiments [26]. In [172] Reyes et al. discuss
their experiences porting the GROMACS molecular dynamics application to
OpenSHMEM. Their experiments show consistent performance degradations

(up to ~12% in particular experiments) relative to the original MPI implemen-

112

5. Evaluating the Utility of PGAS-based Approaches

tation, additionally they also utilised the Cray XE6 architecture.

Baker et al. examined a hybrid approach using OpenACC within a SHMEM-
based application; however, they concentrated primarily on hybridising the
application and their results were collected on the Cray XK7 architecture (Ti-
tan) [17]. A comparison of the use of one-sided MPI, UPC and SHMEM
communication constructs within a distributed hash table application on the
Cray XE6 architecture is provided by Maynard [138]. In [109] Jose et al. also
studied the implementation of a high performance unified communication library
that supports both the OpenSHMEM and MPI programming models on the
Infiniband architecture.

5.2 SHMEM Implementation

The OpenSHMEM-based versions of CloverLeaf created as part of this research
utilise one of two general communication strategies. These involve employing

the OpenSHMEM communication constructs to exchange data:

1. Between dedicated communication buffers. This data is generally aggre-
gated from non-contiguous memory regions into one contiguous space,
before being written into the corresponding receive buffers on the neigh-
bouring processes, using shmem_put64 operations. Following synchroni-
sation operations this data then has to be unpacked by the destination

process.

2. Directly between the original source and final destination memory ad-
dresses. To communicate data stored contiguously within multi-dimensional
arrays shmem put64 operations are used, whilst strided shmem iput64
operations are utilised to transmit data which is stored non-contiguously.
On the platforms examined in this research it is necessary to employ two
separate calls to the shmem_iput64 operation in order to transmit two

columns of halo data rather than one call to the shmem_iput128 operation.

In Section 5.4 versions which employ the first strategy are denoted by the
word buffers in their descriptions, whereas versions which employ the second
are referred to as arrays. Additional versions were also created as part of this
research which utilise the proprietary Cray non-blocking SHMEM “put” opera-
tions; within Section 5.4 these are referred to using the suffix nb (non-blocking).
The two-dimensional data arrays and communication buffers are symmetrically
allocated when necessary using the shpalloc operator. All other scalar variables
and arrays which are required to be globally addressable are defined within

Fortran common blocks to ensure they are appropriately accessible.

113

5. Evaluating the Utility of PGAS-based Approaches

The only synchronisation primitive which OpenSHMEM provides natively
is a global operation (shmem barrier_all) which synchronises all of the pro-
cesses involved. Versions developed as part of this research which employ this
synchronisation strategy are denoted by the word global within their descrip-
tions in Section 5.4. All other versions employ a point-to-point synchronisation
strategy in which processes only synchronise with their immediate neighbours.
Integer “flag” variables, which are set on a remote process after the original
communication operation completes, are employed to achieve this. To ensure the
correct ordering of remote memory operations either shmem fence or shmem -
quiet operations are utilised. Versions which employ shmem quiet contain the
word quiet within their descriptions in Section 5.4; all other versions employ
the shmem fence operation.

To prevent data access race conditions two methods of delaying process
execution, until the associated “flag” variable is set, are examined. Several
versions employ a call to shmem_int4 wait_until using the particular “flag”
variable, these are referred to using shmemwait within their description in Sec-
tion 5.4. Alternative versions utilise an approach in which the “flag” variables
are explicitly declared as volatile and processes perform “busy waits” until
their values are set remotely by the initiating process. Versions which employ
this latter strategy are denoted by the word volatilevars within their descriptions
in Section 5.4.

The native OpenSHMEM collective operations shmem real8_sum _to_all and
shmem real8 min to_all were utilised to provide the required global reduction
facilities. The shmem_sum_to_all function was used despite the application only
requiring a reduction to the master process. Two distinct sets of symmetrically
allocated pSync and pWork arrays are employed for use with all the OpenSH-
MEM collective functions. These are initialised to the required default values
using the Fortran data construct and the application alternates between each

set on successive calls to an OpenSHMEM collective operation.

5.3 CAF Implementation

The CAF-based implementations of CloverLeaf created as part of this research
all utilise one-sided asynchronous CAF “put” operations. The image responsible
for particular halo data, remotely writes this into the appropriate memory
regions of its neighbouring images; no equivalent receive operations are therefore
required. Unless otherwise stated the top-level Fortran type data structure
within CloverLeaf (a structure of arrays based construct), which contains all
data-fields and communication buffers, is declared as a co-array object. Ad-

ditional versions were, however, created to examine the effect of moving the

114

5. Evaluating the Utility of PGAS-based Approaches

data-fields and communication buffers contained within this derived-type outside
of this data structure and declaring them as individual co-array objects. Within
Section 5.4 of this chapter, versions which employed this modified approach are
denoted by the acronym F'TL within their descriptions.

All of the versions employed in this study utilise the same general com-
munication strategies as the OpenSHMEM implementations, which were out-
lined in Section 5.2. Again code variants which employ the communication
buffer based strategy contain the word buffers within their descriptions in
Section 5.4, whereas versions which employ the direct memory access strategy
are denoted by the word arrays. In the versions which employ this latter strategy
multi-dimensional Fortran array sections are specified in the “put” operations.
These may require the CAF runtime systems to transmit data which is stored
non-contiguously in memory, potentially using strided memory operations.

Synchronisation constructs are employed to prevent race conditions between
the images. Each version can be configured to use either the global sync
all construct or the point-to-point sync images construct between immediate
neighbouring processes. The selection between these synchronisation primitives
is controlled by compile-time pre-processor directives. Versions employing both
the direct memory access data exchange strategy (referred to as arrays) and the
sync images synchronisation construct require the inclusion of an additional
synchronisation operation between logical diagonally neighbouring images. In
Section 5.4, versions which employ the global synchronisation construct con-
tain the word “global” within their descriptions; all other versions utilise the
alternative point-to-point synchronisation construct.

Versions which explicitly attempt to overlap communication and computa-
tion operations, using the PGAS constructs together with the approach outlined
in Section 4.2.1, were also developed as part of this research. Within Section 5.4
these implementations are denoted by the word overlap within their descrip-
tions. Additional versions which utilise the proprietary Cray pgas defer_sync
directive were also developed; these can be identified by the word defer within
their descriptions in Section 5.4. This directive purports to ensure that the
synchronisation of PGAS operations is delayed until as late as possible, typically
the next fence instruction [45].

The CAF versions examined as part of this research each employ the pro-
prietary Cray collective operations to implement the required global reduction
operations. Alternative hybrid versions, which utilise MPI collective operations,
were also developed in order to ensure the portability of these codebases to
additional CAF runtime implementations. This thesis, however, only reports on
the performance of the purely CAF-based versions in order to provide a direct

comparison between the CAF and MPI programming models; additionally only

115

5. Evaluating the Utility of PGAS-based Approaches

the Cray architecture is examined during experiments involving the CAF-based

versions of CloverLeaf.

5.4 Results Analysis

To assess whether the OpenSHMEM and CAF programming models can im-
prove (reduce) the overall time-to-solution of explicit hydrodynamics appli-
cations, a series of experiments were undertaken. The performance of the
PGAS-based versions of CloverLeaf, were examined on two distinct hardware
platforms with significantly different architectures, a Cray XC30 (Archer) and
an SGI ICE-X (Spruce). These machine architectures were selected for these
experiments as they each contain state-of-the-art technology and also both pro-
vide native support for PGAS programming models within the vendor supplied
system software. The hardware and system software configuration of these
machines is detailed in Appendix A.1. Additionally version 8.2.2 of the Cray
CCE compiler and version 6.3.0 of the Cray Mpich2 and Shmem communication
libraries were utilised in these experiments. The 15,3602 cell problem, which is a
standard configuration from the CloverLeaf benchmarking suite, was simulated
in these experiments and was executed for 2,955 timesteps (see Section 1.6.1
for more details). This was strong-scaled to large processor counts on both
architectures, in order to stress the inter-process communication infrastructure
provided by each programming model.

These experiments were conducted in two phases, with the second set of
experiments conducted specifically to further explore particular observations
which were made during the results analysis of the first set of experiments. The
results produced from both sets of experiments are presented in Sections 5.4.1
and 5.4.2 and examine the effect of employing each programming model on the
runtime of the application. For clarity the results presented here (Figures 5.1
to 5.6) are expressed in terms of the number of nodes on which an experiment
was conducted, and the rate of application iterations / second which the partic-
ular version achieved (i.e. 2,955 iterations / application wall-time). In order to
reduce the effects of system noise and jitter, unless otherwise noted the presented
results are averages of three repeated executions of each experiment.

To eliminate any performance effects due to different topological allocations
from the batch system, each version was executed within the same node allo-
cation, for each specific job size which was examined. The experiments which
utilised the Spruce platform were also conducted with the system in a fully
dedicated mode, which should significantly reduce the effects of any system
noise on the recorded results. Unfortunately this was not possible on Archer,

and therefore no direct comparisons are provided in this thesis between the

116

5. Evaluating the Utility of PGAS-based Approaches

200 |- Archer (Cray XC30) -
o Shmem_arrays_shmemwait
0(5) 150 |- [Shmem.arrays_volatilevars ';’ .
~ E] Shmem-_buffers_.shmemwait Z N
7 :
8 [l CAF-arrays ; :
7 :
.g 100 [~] CAF.arrays.FTL ; :
e [J CAF_buffers , Al B
7 7 :
B 2 Al 18
=1 50 A z .
/ 7 :
7 y :
7’ ’ .
; 7 :
7’ ’ .
7 7
0 i
2048
nodes
300
Spruce (SGI ICE-X) B
O
@
2 00|
0 Shmem_-arrays_shmemwait
5 B Shmem_arrays_volatilevars
1
= 100 |~ | Shmem- buffers_shmemwait
—
5} 7
= 4 :
Z |8 ; :
0 =mo 1M Z L9
T T T T T T
64 128 256 512 1024 2048

nodes

Figure 5.1: PGAS implementations: Array- and buffer-exchange versions

performance of the two system architectures. In these experiments each version
was also configured to utilise enhanced IEEE precision support for floating point
mathematics operations, available under the particular compilation environment
employed on each platform. On Archer all PGAS versions were also built
and executed with support for 2MB huge memory pages enabled and 512MB
of symmetric heap space available. Huge page support was not enabled for
the standard MPI versions, as previous work did not observe these features

delivering any performance benefits for these implementations [132].

5.4.1 First Strong-scaling Experiment Results Analysis

This section analyses the performance results obtained during the first phase of
the PGAS experiments.

Communications Buffer & Array-sections Approaches

The results from the experiments with the PGAS versions, which employ either
the communications buffer or array-sections data exchange approaches, are
shown in Figure 5.1. These charts show the positive effect which employing
communications buffers can have, particularly at high node counts, on both the

Spruce and Archer platforms. In the 2,048 node experiments on the Spruce plat-

117

5. Evaluating the Utility of PGAS-based Approaches

form the OpenSHMEM version, which employs communication buffers, achieved
an average of 278.14 iterations/sec. An improvement of 1.2-1.3x over the
equivalent array-section based approaches, which achieved 224.31 and 209.33
iterations/sec. The OpenSHMEM and CAF results from Archer also exhibit a
similar pattern, at 2,048 nodes (49,152 cores) the communications buffer based
OpenSHMEM version achieved 197.49 iterations/sec. Compared to the equiv-
alent array-section based approaches which achieved only 159.23 and 163.24
respectively, an improvement of up to 1.24x. The CAF-based versions exhibit
a significantly larger performance disparity, with the communication buffers
approach achieving 3.4x the performance of the array-section based approach,
the results show that these achieved 68.04 and 19.95 iterations/sec respectively
in these experiments.

This demonstrates that the performance of applications, implemented within
either the OpenSHMEM or CAF PGAS models, can be significantly improved
through the aggregation of communication data into larger transmission buffers,
rather than moving data directly from its original memory locations using
considerably larger volumes of smaller messages and potentially strided memory

operations.

Co-array Object Selection Options

These results also show (Figure 5.1) the performance improvement delivered by
moving the data field definitions from within the original Fortran derived data
type, which was originally defined as a co-array, to be individual top-level data
structures, each separately defined as co-array objects. This optimisation (la-
beled FTL) improves the performance of the CAF array-section based approach
by 3.39x (from 19.95 to 67.70 iterations/sec) at 2,048 nodes on Archer. It
also enabled the array-section based approach to deliver equivalent performance
to the communications-buffer based approach in the 1,024 and 2,048 node
experiments, and to slightly exceed it in the 64 to 512 nodes cases.

To ascertain the cause of this performance disparity a detailed inspection
of the intermediate code representations, produced by the Cray compiler, was
conducted. This indicated that this disparity is due to the compiler having to
make conservative assumptions regarding the calculation of the remote addresses
of the co-array objects on the remote images. For each remote “put” operation
within the FTL version of the code, the compiler produces a single loop block
containing one __pgas memput_nb and one __pgas_sync_nb operation. In the
original array-exchange version, however, the compiler generates three addi-
tional __pgas_get_nb and __pgas_sync_nb operations prior to the loop containing

the “put” operation, with a further set of these operations within the actual loop

118

5. Evaluating the Utility of PGAS-based Approaches

Archer (Cray XC30) —?
200 - y
o] 7|
% ’
~ 150 |- ﬁ
12} MPI 7 ;
‘S‘ l Shmem_buffers_shmemwait 2 ;
= 100 - L] CAF_buffers 7 ; ’
g ’ ’ 1 B
a 50 |- : : ¢ H
64 128 256 512 1024 2048
nodes
300
Spruce (SGI ICE-X)
3
~ 200 -
2}
g MPI
%‘ 100 | | Shmem buffers shmemwait]
E I
= =l] | I /
T T T T T T
64 128 256 512 1024 2048

nodes

Figure 5.2: Equivalent MPI, OpenSHMEM and CAF performance

and an additional nested loop block containing a __pgas_put_nbi operation.
Unfortunately the precise functionality of each of these operations is not
clear, as Cray does not publish this information. This analysis, however, appears
to indicate that the compiler is forced to insert additional “get” operations due
to the extra complexity (i.e. the additional levels of indirection involved) of the
original data structures. These additional operations are required to retrieve
the memory addresses from the remote images, to which a particular image
should write the required data to, despite these addresses remaining constant
throughout the execution of the program. The creation of an additional compiler
directive may therefore prove to be useful here, as it would enable developers
to inform the compiler that the original data structure remains constant, and

therefore allow it to make less conservative decisions during code generation.

PGAS and MPI Performance Comparison

Figure 5.2 presents the results from the experiments conducted to assess the
performance of the PGAS implementations relative to equivalent MPI-based
versions. These charts document a significantly different performance trend
on the two system architectures examined here. The performance recorded
on Spruce from both the OpenSHMEM and MPI implementations is virtually
identical at all the node counts examined (64 to 2,048 nodes), reaching 278.14
and 276.49 iterations/sec respectively on 2,048 nodes. On Archer, however, the

119

5. Evaluating the Utility of PGAS-based Approaches

200 Archer (Cray XC30)
8
i 150 [Shmem _buffers_global
0 . Shmem_buffers_.shmemwait
g 100 |E caF-butfersglobal
Ué [CAF._buffers
£ 50
0
64 128 256 512 1024 2048
nodes
300
Spruce (SGI ICE-X)
Q
@
— 200 -
12}
.g Shmem_buffers_global
3 100 - |M Shmem_buffers_shmemwait ;
:‘E I é
T

T T T T
64 128 256 512 1024 2048

nodes

Figure 5.3: Local & global synchronisation approaches

performance of the two PGAS versions is not able to match that of the equivalent
MPI implementation, with the performance disparity widening as the scale of
the experiments is increased. The OpenSHMEM implementation delivers the
closest levels of performance to the MPI implementation and also significantly
outperforms the CAF-based implementation. The results show it achieving
197.49 iterations/sec on 2,048 nodes compared to 230.08 iterations/sec for the
MPI implementation, an improvement of 1.17x. The CAF implementation,
however, only delivers 68.04 iterations/sec on 2,048 nodes a slowdown of 2.9x

relative to the equivalent OpenSHMEM implementation.

Synchronisation Approaches

To assess the effect of employing either the global or point-to-point synchronisa-
tion constructs on the performance of the PGAS versions, the results obtained
from experiments on both platforms involving versions which employed the com-
munications buffer data exchange approach together with either synchronisation
construct, were analysed. The OpenSHMEM versions examined here utilised
the shmemuwait approach to implement the point-to-point synchronisation op-
erations. Figure 5.3 provides a performance comparison of the results obtained
from the experiments with each of these versions.

On both platforms it is clear that employing point-to-point synchronisation

can deliver significant performance benefits, particularly as the scale of the

120

5. Evaluating the Utility of PGAS-based Approaches

200 Archer (Cray XC30) ~I:
@ 150 |- buffers_shmemwait_dc_mf ;
~ [l buffers.shmemwait-dc-mf_quiet 2 .
0 :
=] [7] buffers_volatilevars_dc_mf 4 :
9 100 g :
e [0 buffers_volatilevars_de_mf_quiet ’ :
< ; ’ :
5] ; ’ :
R= 50 |- 7 4 :
; ’ :
; A :
; 4 :
0 T T
64 128 256 512 1024 2048
nodes
300
Spruce (SGI ICE-X) CIm T
’ :
5} ’
2 ’
i 200 buffers_shmemwait_dc_mf 4
g . buffers_shmemwait_-dc.mf_quiet 2
’
el [-] buffers_volatilevars-dc-mf 2
*é 100 | |[0 buffers_volatilevars.dc.mf_quiet / 2
5] A ’
7 ; ’
A ; ’
0 S wmcam M0 IBH] A LAl
T T T T T T
64 128 256 512 1024 2048
nodes

Figure 5.4: SHMEM volatile variables & fence/quiet optimisations

experiments is increased. At 64 nodes there is relatively little difference between
the performance of each version. On Spruce (1,280 cores) both OpenSHMEM
implementations achieve 9.13 and 8.90 iterations/sec respectively, whilst on
Archer (1,536 cores) the point-to-point synchronisation versions of the Open-
SHMEM and CAF implementations achieve 9.84 and 7.73 iterations/sec respec-
tively. Compared to the equivalent global synchronisation versions which each
achieve 9.34 and 7.31 iterations/sec respectively. At 2,048 nodes (40,960 cores)
on Spruce the performance disparity between the two OpenSHMEM versions
increases to 278.13 and 159.97 iterations/sec respectively, a difference of ap-
proximately 1.74x. On Archer, however, the performance disparity between the
OpenSHMEM versions is even greater reaching 2.10x in the 2,048 node (49,152
cores) experiments, 197.49 and 93.91 iterations/sec were recorded respectively.

Interestingly the CAF-based versions do not exhibit the same performance
differences, with the point-to-point synchronisation version achieving only a
1.29x improvement (68.04 and 52.84 iterations/sec respectively). This indicates
that