

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/80142

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

UNIVERSITAS WARWICENSIS

Evaluating Technologies and Techniques for

Transitioning Hydrodynamics Applications to

Future Generations of Supercomputers

by

Andrew Colin Mallinson

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

May 2016

Abstract

Current supercomputer development trends present severe challenges for

scientific codebases. Moore’s law continues to hold, however, power constraints

have brought an end to Dennard scaling, forcing significant increases in overall

concurrency. The performance imbalance between the processor and memory

sub-systems is also increasing and architectures are becoming significantly more

complex. Scientific computing centres need to harness more computational

resources in order to facilitate new scientific insights and maintaining their

codebases requires significant investments. Centres therefore have to decide

how best to develop their applications to take advantage of future architectures.

To prevent vendor “lock-in” and maximise investments, achieving portable-

performance across multiple architectures is also a significant concern.

E�ciently scaling applications will be essential for achieving improvements

in science and the MPI (Message Passing Interface) only model is reaching its

scalability limits. Hybrid approaches which utilise shared memory programming

models are a promising approach for improving scalability. Additionally PGAS

(Partitioned Global Address Space) models have the potential to address pro-

ductivity and scalability concerns. Furthermore, OpenCL has been developed

with the aim of enabling applications to achieve portable-performance across a

range of heterogeneous architectures.

This research examines approaches for achieving greater levels of perfor-

mance for hydrodynamics applications on future supercomputer architectures.

The development of a Lagrangian-Eulerian hydrodynamics application is pre-

sented together with its utility for conducting such research. Strategies for im-

proving application performance, including PGAS- and hybrid-based approaches

are evaluated at large node-counts on several state-of-the-art architectures.

Techniques to maximise the performance and scalability of OpenMP-based hy-

ii

brid implementations are presented together with an assessment of how these

constructs should be combined with existing approaches. OpenCL is evaluated

as an additional technology for implementing a hybrid programming model

and improving performance-portability. To enhance productivity several tools

for automatically hybridising applications and improving process-to-topology

mappings are evaluated.

Power constraints are starting to limit supercomputer deployments, poten-

tially necessitating the use of more energy e�cient technologies. Advanced

processor architectures are therefore evaluated as future candidate technologies,

together with several application optimisations which will likely be necessary.

An FPGA-based solution is examined, including an analysis of how e↵ectively

it can be utilised via a high-level programming model, as an alternative to the

specialist approaches which currently limit the applicability of this technology.

Acknowledgements

The completion of this thesis, and the research work contained within it, was

made possible by the support of a number of people. Their academic advice

and personal support throughout my time at Warwick, has helped to maintain

my research focus.

I would like to thank AWE plc for funding this work. Specifically Andy

Herdman and Wayne Gaudin for providing guidance throughout; you have both

been a pleasure to work for.

My beloved partner Ruth, to whom I am eternally grateful, deserves huge

credit for all her love and support during my Ph.D. without which I would not

have been able to complete this work. Additionally, for their continued and

invaluable support throughout, I would also like to thank my Mum, Dad, Sister

and Brother-in-law.

Within my research group at Warwick I am very grateful to Dr. Oliver

Perks, David Beckingsale, Robert Bird, Dr. John Pennycook and James Davis

for their advice and constructive critiques of my ideas. Finally, I would also like

to thank Prof. Stephen Jarvis for accepting me onto the Ph.D. programme and

for supervising my research.

iv

Declarations

This thesis is submitted to the University of Warwick in support of the author’s

application for the degree of Doctor of Philosophy. It has been composed by the

author and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried

out by the author except in the cases outlined below:

• The collection of the execution times of the OpenCL version of CloverLeaf

on the Teller platform at SNL, was performed by Andy Herdman of AWE

plc.

v

Parts of this thesis have been previously published by the author in the following:

1. A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, J. M.

Levesque and S. A. Jarvis. CloverLeaf: Preparing Hydrodynamics Codes

for Exascale, In Proceedings of the Cray User Group 2013 (CUG), Napa

Valley, USA, May 2013 [132].

2. A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman and

S. A. Jarvis. Towards Portable Performance for Explicit Hydrodynamics

Codes, In Proceedings of the International Workshop on OpenCL 2013

(IWOCL), Atlanta, USA, May 2013 [131].

3. W. P. Gaudin, A. C. Mallinson, O. Perks, J. A. Herdman, D. A. Beck-

ingsale, J. M. Levesque, M. Boulton, S. McIntosh-Smith and S. A. Jarvis.

Optimising Hydrodynamics applications for the Cray XC30 with the ap-

plication tool suite, In Proceedings of the Cray User Group 2014 (CUG),

Lugano, Switzerland, May 2014 [69]. Awarded best research paper.

4. A. C. Mallinson, W. P. Gaudin, J. A. Herdman and S. A. Jarvis. Ex-

periences at scale with PGAS versions of a Hydrodynamics Application,

In Proceedings of the 8th International Conference on Partitioned Global

Address Space Programming Models (PGAS2014), Eugene, Oregon, USA,

Oct 2014 [133].

5. J. A. Herdman, W. P. Gaudin, D. A. Beckingsale, A. C. Mallinson, M.

Boulton, S. McIntosh-Smith and S. A. Jarvis. Accelerating Hydrocodes

with OpenACC, OpenCL and CUDA, In Proceedings of the 3rd Interna-

tional Workshop on Performance Modelling, Benchmarking and Simula-

tion, (PMBS12), Salt Lake City, Utah, USA, Nov 2012 [104].

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• UK Atomic Weapons Establishment, under grants:

“The Production of Predictive Models for Future Computing

Requirements” (CDK0660)

“AWE Technical Outreach Programme” (CDK0724)

“AWE CASE studentship” (ref. 30197965)

vii

Abbreviations

ADRES Architecture for Dynamically Reconfigurable Embedded Systems

AMD Advanced Micro Devices

API Application Programming Interface

APU Accelerated Processing Unit

ASIC Application Specific Integrated Circuit

AVX Advanced Vector Extensions

AWE Atomic Weapons Establishment, UK

BG/Q Blue Gene Q

BSP Bulk Synchronous Parallel

CAAR Center for Application Acceleration Readiness

CAF Co-array Fortran

CCE Cray Compilation Environment

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DARPA Defence Advanced Research Projects Agency

DDR Double Data Rate

DMA Direct Memory Access

DOD Department of Defence

DOE Department of Energy

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

EDA Electronic Design Automation

ESL Electric System Level

FLOP/s Floating-Point Operations per Second

FPGA Field Programmable Gate Array

viii

(GP)GPU (General Purpose) Graphics Processing Unit

HDD Hard Disk Drive

HDL Hardware Description Language

HMC Hybrid Memory Cube

HMPP Hybrid Multicore Parallel Programming

HPC High-Performance Computing

IB InfiniBand

IBM International Business Machines Corporation

IEEE Institute of Electrical Engineers

IFE Inertial Fusion Energy

LANL Los Alamos National Laboratory

LLC Last Level Cache

LLNL Lawrence Livermore National Laboratory

LLVM Low Level Virtual Machine

LUT Look Up Table

MPI Message Passing Interface

MTTI Mean Time to Interruption

MW Megawatt

NIC Network Interface Card

NIF National Ignition Facility, USA

NOC Network on a chip

NUMA Non-Uniform Memory Access

ORNL Oak Ridge National Laboratory

OS Operating System

PCIe Peripheral Component Interconnect Express

PGAS Partitioned Global Address Space

PGI Portland Group Incorporated

PRAM Parallel Random Access Machine

PTX Parallel Thread Execution

RAM Random Access Memory

RDMA Remote Direct Memory Access

RTL Register Transfer Level

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SMP Symmetric Multi-Processor

SNL Sandia National Laboratories

SOC System on a Chip

SPH Smoothed Particle Hydrodynamics

SPMD Single Program Multiple Data

SSE Streaming SIMD Extensions

TDP Total Power Draw

TLB Translation Lookaside Bu↵er

UPC Unified Parallel C

VHDL Very High Speed Integrated Circuit Hardware Description Language

Definitions

Collective

Refers to a communication event, within parallel application programming, in

which more than two end-points are involved. Communication of this type can

potentially involve multiple source or destination end-points (or both).

Computational Kernel

A collection of application program code, such as multiple loop-block struc-

tures, which has been logically co-located within the same program function or

subroutine, and collectively performs a particular well-defined task or operation.

Compute Bound

Is a term used to refer to one or a series of operations whose overall runtime is

dominated by the length of time required to process the particular instructions

and associated data-values within the computational device.

Exascale

Is a term which refers to high performance computing systems which are capable

of executing a thousand Petaflops or a quintillion (1018) floating point operations

per second.

Elemental Function

Denotes a function which operates on a scalar argument or single array element

but can also be applied in parallel to a series of, potentially multi-dimensional,

array elements.

Energy to Solution

Refers to the total energy (Joules) consumed by an application during the course

of its execution on a particular processing architecture.

Global Address Space

In parallel programming this relates to the ability of any thread of execution to

directly access any memory location, which as been designated as being globally

xi

accessible, within the overall parallel application.

Halo Cells

The design of parallel applications often involves the decomposition of the overall

problem domain across multiple processors, such that each process is respon-

sible for a distinct subset of the domain. The operations performed by each

processor, however, often require data-values from parts of the problem domain

which are managed by other processes within the overall computation. This

frequently occurs on the boundary between the contiguous domains managed

by di↵erent processes. To minimise the accesses to remote memory locations

on other processes, boundary data cells from logically adjacent processes are

often replicated in a layer of cells around the domain managed by each process.

This additional layer of cells is referred to as a “halo” region and can be of

varying depths depending on the requirements of the algorithm currently being

executed.

Kernel Driver

A program which is able to unit-test a particular computational kernel routine

in terms of both its overall performance and correctness.

Memory Bound

Is a term used to refer to one or a series of operations whose overall runtime

is dominated by the length of time required to load (or store) the particular

instructions and associated data-values from the memory sub-system rather

than to actually process them within the computational device.

Network On a Chip (NOC)

Is a term used to refer to the inclusion of a dedicated interconnection network

between the processing components of a System On a Chip design i.e. within

the same integrated circuit.

Non-Uniform Memory Access (NUMA)

Refers to a particular design of multi-processing system in which the time to

access individual memory locations varies depending on the proximity of the

particular memory locations to the accessing processor. A “NUMA” region is

used to refer to a collection of memory locations which all have the same access

time relative to a particular processor.

Parallel Speedup

Is calculated by the time recorded for the execution of the application in serial

divided by the execution time of the application when run in parallel.

S(parallel) =
T (serial)

T (parallel)
(1)

Petascale

Is a term which refers to high performance computing systems which are capable

of executing one quadrillion (1015) floating point operations per second.

Point-to-Point

Refers to a communication event, within parallel application programming,

between a distinct pair of end-points i.e. with a well-defined source and a

destination.

Portable Performance

Refers to the goal of achieving optimal or acceptable levels of performance

across multiple di↵erent types of system architectures from a single source

code representative of an application, that is without including optimisations or

modifications for specific architectures.

Remote Direct Memory Access (RDMA)

Is a form of communication in which the initiating CPU sends information

regarding the message transfer (length, remote memory address etc) to its local

NIC, which then manages the actual data transfer across the network [22].

Communication is one-sided and consequently the remote CPU is not involved

in the data transmission, the network hardware at the destination handles all of

the processing involved in the receipt of the data and committing it to memory.

Strong Scaling

Solving a fixed problem size by utilising an increasing amount of computational

resources.

System On a Chip (SOC)

Is a term used to refer to an integrated circuit that incorporates all of the

necessary components required for a computational device within a single chip

substrate.

Wall-clock

A measure of application performance (the actual length of execution time)

recorded by an observer external to the application. This is di↵erent to CPU or

user time which relates to the total amount of time processor devices actually

spend executing applications.

Weak Scaling

In these studies the overall simulated problem size is increased proportionally

in line with the computational resources employed in the computation.

Contents

Abstract ii

Acknowledgements iv

Declarations v

Sponsorship and Grants vii

Abbreviations viii

Definitions xi

List of Figures xxii

List of Tables xxiii

1 Introduction 1

1.1 Motivations and Problem Statement 3

1.2 Domain . 5

1.3 Research Questions and Hypothesis 6

1.4 Research Methodology . 7

1.5 Thesis Contributions . 10

1.6 CloverLeaf . 13

1.6.1 Implementation . 13

1.7 Thesis Structure . 15

1.8 Project Availability . 16

2 Background Information 18

2.1 Hardware Background and Trends 18

2.1.1 Power Consumption . 18

xv

2.1.2 HPC Interconnect Technology 19

2.1.3 Processor Subsystem Technology 21

2.1.4 Memory Subsystem Technology 23

2.2 Software Background and Trends 24

2.2.1 OpenMP . 24

2.2.2 OpenCL . 25

2.2.3 CUDA . 26

2.2.4 OpenACC . 26

2.2.5 VHDL and Verilog . 27

2.2.6 BSP Programming Model 28

2.2.7 MPI Programming Model 29

2.2.8 PGAS Programming Model 29

2.2.9 Hybrid Programming Models 32

2.2.10 Current & Future Trends 33

2.3 Hydrodynamics Mathematical Foundations & Applications . . . 34

2.3.1 Euler’s Equations of Compressible Fluid Dynamics 34

2.3.2 Motivations for Improving the State-of-the-art 36

2.4 Summary . 37

3 Intra-Node Performance Optimisations 39

3.1 Related Work . 39

3.2 OpenMP-based Optimisations Examined 40

3.2.1 First-touch Memory Placement 40

3.2.2 Array-of-arrays Data Structure 42

3.2.3 Data Alignment & Cache Line Padding 43

3.2.4 High-level OpenMP Parallel Region 43

3.2.5 Duplicating Constant Data per NUMA-region 44

3.2.6 Explicit Loop Schedules 44

3.2.7 Inter-thread Synchronisation Elimination 45

3.2.8 Reducing Inter-thread Synchronisation 45

3.2.9 Thread-private Temporary Variables 47

3.2.10 Loop Vectorisation . 48

3.2.11 Accelerate Kernel Optimisations 49

3.2.12 Update-Halo Kernel Optimisations 49

3.2.13 Automatic Application Hybridisation 51

3.3 Results Analysis . 51

3.3.1 Individual Kernel Optimisation Analysis 52

3.3.2 Application Performance Analysis 58

3.4 Summary . 63

4 Achieving E�cient Application Execution at Extreme Scale 66

4.1 Related Work . 66

4.2 MPI-only Based Versions . 68

4.2.1 Optimisations Examined 69

4.2.2 Power Consumption Instrumentation 76

4.3 Hybrid (MPI+OpenMP) Based Versions 77

4.3.1 Optimisations Examined 78

4.4 Results Analysis . 80

4.4.1 MPI-only Results Analysis 81

4.4.2 Hybrid (MPI+OpenMP) Results Analysis 95

4.5 Summary . 107

5 Evaluating the Utility of PGAS-based Approaches 111

5.1 Related Work . 111

5.2 SHMEM Implementation . 113

5.3 CAF Implementation . 114

5.4 Results Analysis . 116

5.4.1 First Strong-scaling Experiment Results Analysis 117

5.4.2 Second Strong-scaling Experiment Results Analysis 123

5.5 Summary . 124

6 Portable Performance Through OpenCL 126

6.1 Related Work . 126

6.2 OpenCL Implementation . 128

6.2.1 Reduction Operators . 130

6.2.2 Optimisations . 133

6.3 Results Analysis . 139

6.3.1 Optimisations Analysis 140

6.3.2 Single-node Performance Analysis 151

6.3.3 Multi-node Performance Analysis 154

6.4 Summary . 159

7 Evaluating FPGAs as Low Power Processing Solutions 162

7.1 Related Work . 162

7.2 FPGA Targeted OpenCL Implementations 164

7.2.1 Optimisations Examined 164

7.3 Results Analysis . 175

7.3.1 Optimisations Analysis 176

7.3.2 Time to Solution Analysis 184

7.3.3 Energy to Solution Analysis 186

7.4 Summary . 188

8 Conclusion 190

8.1 Contributions . 191

8.1.1 Mini-app Development and Utilisation 191

8.1.2 Evaluation of PGAS Programming Models 191

8.1.3 Examination of Hybrid Programming Models 192

8.1.4 Development of Application Optimisations 194

8.1.5 Supercomputer Architecture Analysis 195

8.2 Beneficiaries . 196

8.3 Limitations . 196

8.3.1 Application Characteristics 196

8.3.2 The Utility of FPGA Architectures 197

8.4 Future Work . 198

8.4.1 Extending the PGAS Language Evaluation 198

8.4.2 Intra-node Programming Models 199

8.4.3 Energy E�cient Processing Technologies 200

Bibliography 202

Appendices 223

A Experimental Platforms/Architectures 224

A.1 Production Supercomputer Platforms 224

A.1.1 HECToR . 224

A.1.2 Archer . 225

A.1.3 Spruce . 225

A.1.4 Mira . 226

A.1.5 Titan . 226

A.1.6 Vulcan . 227

A.2 Test-bed Platforms . 227

A.2.1 Teller, Compton & Shannon 227

A.2.2 Chilean Pine . 229

A.2.3 Tuck . 230

A.3 Summary . 230

List of Figures

1.1 Staggered grid employed in CloverLeaf 14

2.1 The Euler equations of compressible flow 35

3.1 The modified “first-touch” memory initialisation approach 41

3.2 OpenMP point-to-point synchronisation approach 46

3.3 The “vectorising” version of the Calc-DT kernel 48

3.4 Optimisations to the Cell-Advection kernel 53

3.5 Optimisations to the Momentum-Advection kernel 54

3.6 Optimisations to the Accelerate kernel 55

3.7 Optimisations to the Calc-DT kernel 56

3.8 Optimisations to the PdV kernel 56

3.9 Optimisations to the Update-Halo kernel 57

3.10 Optimisations to the Field-Summary kernel 58

3.11 Application optimisations on the dual-socket CPU architecture . 59

3.12 Application optimisations on the Xeon Phi co-processor 60

4.1 CloverLeaf heap memory consumption per process 69

4.2 Cell calculation order for communication-computation overlap . . 72

4.3 MPI rank reordering strategy . 75

4.4 Vertical decomposition optimisation 78

4.5 Distributed meta-data optimisation performance improvement . . 81

4.6 MPI processes / node configuration options on Vulcan 82

4.7 Huge-pages, hyper-threads and consolidated reduction 83

4.8 Message aggregation and early transmition optimisations 84

4.9 Performance of MPI-only Optimisations on Vulcan 85

4.10 Pre-posting MPI receives on Archer 86

xx

4.11 Performance of computation/communication overlap on Archer . 88

4.12 Early-sending & communication overlap optimisations on Vulcan 89

4.13 Performance of MPI v3.0 constructs on Archer 90

4.14 MPI rank reordering on Archer 92

4.15 Performance due to the distributed meta-data optimisation . . . 93

4.16 Energy to solution analysis on Archer(XC30) and Mira(BG/Q) . 94

4.17 Hybrid (MPI+OMP) performance on Archer 96

4.18 Performance of the MPI+OMP implementation on Vulcan 97

4.19 Message aggregation for the MPI+OMP version on Archer 99

4.20 Message aggregation for the MPI+OMP version on Vulcan . . . 100

4.21 Optimisations to the hybrid versions on Archer 101

4.22 Optimisations to the hybrid version on Vulcan 102

4.23 Hybrid version produced by Reveal on Archer 105

4.24 Hybrid version produced by Reveal on Vulcan 106

5.1 PGAS implementations: Array- and bu↵er-exchange versions . . 117

5.2 Equivalent MPI, OpenSHMEM and CAF performance 119

5.3 Local & global synchronisation approaches 120

5.4 SHMEM volatile variables & fence/quiet optimisations 121

5.5 CAF pgas defer sync construct & communication overlap . . . 122

5.6 SHMEM non-blocking, huge-pages & CAF FTL 123

6.1 Components of the OpenCL version of the Ideal gas kernel . . . 129

6.2 OpenCL Reduction Implmentation for GPUs 131

6.3 OpenCL Reduction Implmentation for CPUs 132

6.4 The new device code for the Ideal gas kernel. 134

6.5 Bu↵er packing strong scaling performance (9602 cell problem) . . 154

6.6 Strong-scaling performance (15,3602 cell problem) 155

6.7 Speedup, relative to OpenACC, of CUDA and OpenCL 156

6.8 Weak-scaling performance (3,8402 cell/node problem) 158

7.1 Vector shift operation implemented within the FPGA 166

7.2 Data caching across loop iterations on the FPGA 174

7.3 Optimisations to the Ideal-gas kernel on the Altera FPGA 177

7.4 Optimisations to the Accelerate kernel on the Altera FPGA . . . 180

7.5 Ideal-gas kernel time-to-solution analysis 185

7.6 Accelerate kernel time-to-solution analysis 185

7.7 Power consumption: Ideal-gas kernel 186

7.8 Ideal-gas kernel energy-to-solution analysis 187

List of Tables

6.1 OpenCL optimisations on the Nvidia K20X 140

6.2 OpenCL optimisations on the Intel Xeon E3-2620 141

6.3 OpenCL optimisations on the Intel Xeon Phi 7120P 142

6.4 OpenCL optimisations on the AMD Opteron 6272 143

6.5 Optimal work-group sizes for each OpenCL CloverLeaf kernel . . 149

6.6 Runtime of the OpenCL implementation for the 3, 8402 problem 152

6.7 Runtime of the OpenCL implementation for the 9602 problem . . 153

7.1 Accelerate kernel profiling statistcs on the Altera FPGA 182

A.1 UK-based experimental platform system specifications 225

A.2 Specifications of platforms located at ORNL, ANL & LLNL . . . 226

A.3 Specifications of the experimental platforms located at SNL . . . 228

A.4 Chilean Pine platform system specifications 229

A.5 System specifications of the Tuck experimental platform 230

xxiii

CHAPTER 1
Introduction

The use of scientific computing / HPC has grown significantly over the last

decades and increasingly organisations and national governments are recognising

that it is crucial to their competitiveness and future prosperity [153, 11]. The

field promises to improve scientific insight and reduce product development

cycles by enabling more experiments (higher throughput) to be conducted in

significantly reduced time frames and overall operating budgets, whilst reducing

the need for more expensive physical tests. Additionally it enables experiments

to be conducted, potentially at higher fidelities and which couple multiple

di↵erent physics packages, that were previously not possible due to their sheer

size, complexity or cost [153, 206]. Increasingly HPC is also being utilised

to simulate particular problems which are impossible or extremely impractical

to test physically due to either the regulatory environment or safety concerns.

This has led to simulation being widely recognised as the third pillar of scientific

discovery alongside theory and experimentation [64, 167].

Several scientific “grand challenge” problems have been identified that will

require systems capable of delivering exascale levels of computational perfor-

mance in order to e↵ectively simulate them and produce the required advances in

science [128, 206]. These include the solution of vastly more accurate predictive

models to improve scientific understanding within, for example, the fields of:

climate/weather forecasting; e�cient low-carbon transportation; nuclear and

renewable energy; the certification of nuclear stockpiles; materials science; na-

tional security; and the advancement of certain biology/medical applications

such as e↵ectively simulating the human brain [153, 128, 206].

Historically these systems were exclusively the preserve of large multi-national

organisations and government laboratories, primarily due to the costs associated

with procuring and operating them. The increasing commoditisation of the

technologies used to construct HPC systems has, however, facilitated significant

reductions in their overall cost and enabled smaller commercial organisations

and universities to gain access to them [11]. This has simultaneously enabled

substantially larger, more computationally capable and power-consuming sys-

tems to be constructed for organisations at the forefront of the field.

Despite the growing requirements for the use of HPC / scientific computing

technologies the field faces numerous significant challenges as organisations con-

tinue to push towards the construction of systems capable of delivering exascale

levels of computational performance [11, 128, 206]. The improvements in pro-

1

1. Introduction

cessor clock speeds, seen over the last decades, have proved to be unsustainable

due to their power and cooling requirements [153, 11]. System designers have

therefore been forced to significantly increase the amount of parallelism available

at all system levels, in order to continue to improve computational performance

capabilities. Overall system power consumption continues to become a major

concern to large HPC sites as systems become larger [153, 11, 206]. Due to these

increased scales, system MTTI (Mean Time to Interruption) is reducing to levels

below the time required to perform a check-point and restart operation, resulting

in overall system resiliency becoming increasingly problematic. Research into

fault resilient programming models for applications is therefore becoming in-

creasingly necessary [153, 11, 128]. At the processing chip/device level transistor

feature sizes continue to decrease in order to reduce energy requirements and

increase the computational capabilities of the associated devices. Similarly

advanced architectures such as GPGPUs, which exhibit even larger degrees of

parallelism, are increasingly being considered to further improve performance.

As the floating-point computational capabilities of processing devices improve

in terms of both execution time and power consumption, actually performing

these operations is becoming relatively inexpensive, whilst the cost of moving

data is becoming extremely expensive [153, 11, 128, 206, 115]. Consequently

memory bandwidth/latency and inter-node communication speeds are increas-

ingly limiting application performance and accounting for the most significant

proportion of overall power consumption [11].

The rapid technological change, currently being experienced by supercom-

puter architectures, represents a significant challenge to HPC application code

teams. Approaches based on the concept of “co-design” have been proposed

to address these challenges [153, 11, 206]. The growth in on-chip parallelism is

forcing algorithms/applications to move away from their existing coarse-grained

BSP (Bulk Synchronous Parallel) based models of concurrency, towards a more

fine-grained model of parallelism and to rely more on strong scaling [153, 11,

128]. Whilst weak-scaling simulation configurations will still be important on

exascale systems, it is highly likely that in order to reduce simulation time-

to-solution to currently required levels, the ability to e↵ectively strong-scale

applications across future multi-petascale or exascale platforms will be essential

if these classes of machine are to be fully utilised for improved science. Irrespec-

tive of the nodal hardware employed in a particular supercomputer architecture,

there is a common requirement for improving the scalability of communication

mechanisms within future systems [10, 79, 11, 128]. Scientific application code

bases are also increasingly large and extremely complex; consequently porting

them to advanced novel architectures, in a manner which delivers portable per-

formance across di↵erent platforms, is becoming increasingly problematic [153,

2

1. Introduction

11, 115]. E↵ectively utilising the increased concurrency available will also be

vital if existing scientific applications are to harness the increased computational

capabilities present within future supercomputer architectures. Additionally,

simply maintaining them productively given current limited financial and devel-

opment resources also presents challenges and requires significant investments.

Given these trends and the pressing need to improve the performance of

key scientific codes on existing and future system architectures this thesis fo-

cuses on evaluating the utility of particular newly proposed technologies for the

advancement of explicit hydrodynamics applications. In particular it strives

to evaluate both software and hardware technologies and techniques that will

enable this class of applications to achieve greater overall performance and

scalability. Achieving these aims will facilitate improvements in the science

which it is possible to accomplish by improving overall scientific throughput

(time-to-solution) as well as current simulation resolutions.

1.1 Motivations and Problem Statement

The scientific need to develop more advanced, potentially exascale-class, com-

putational facilities is well documented, see Section 1 for more details. Actually

achieving the successful construction of future multi-petascale or exascale capa-

ble supercomputer systems and developing scientific simulation and modelling

applications which are able to e↵ectively take advantage of their capabilities,

however, currently presents a number of significant challenges [11].

These include but are not limited to, addressing the overall power e�ciency

of existing supercomputers to enable future larger and more computationally

powerful systems to be constructed [11]. Employing today’s technology to

construct a system capable of delivering an exaflop of computation would require

more than 1GW of power [153]. The DOE (Department of Energy), in the USA,

has set the HPC industry the challenge of delivering an exascale capable solution

within an overall power budget of 20MW, necessitating an improvement of

>150⇥ in power e�ciency over current technology [153]. At the same time some

observers do not believe that the 20MW target is achievable [114]. A practical

limit of approximately 100MW exists, however, as the largest data-centres

currently in existence only have access to this amount of power [48]. Regardless

of the exact power budget figure, achieving a solution which lies within this

range will still require a huge improvement in computational power e�ciency

over current technological solutions [153, 79, 10].

Actually developing and maintaining scientific applications and their under-

lying software components, to enable them to e↵ectively utilise future supercom-

puting architectures will also become increasingly challenging. The creation of

3

1. Introduction

new programming paradigms designed to support more fine-grained parallelism

and deeper memory hierarchies may, therefore potentially be required [153, 11].

Additionally, it is recognised that achieving the necessary computational power

e�ciencies will require future systems to use significantly di↵erent processor

architectures to current generations of systems [153, 11]. Supercomputer archi-

tectures are thus at present experiencing a transitional period. Potential future

candidate technologies include the use of accelerator devices such as GPGPUs,

many-core CPU devices with lower clock frequencies such as the Intel Xeon

Phi or the use of lower-power technologies from the mobile and embedded

computing sectors, such as ARM processors or FPGAs (Field Programmable

Gate Arrays) [183, 142]. Regardless of which approaches prevail achieving

optimal performance for existing applications and software stacks on these

advanced architectures will be extremely problematic [153, 11]. Additionally,

enabling applications to deliver portable performance across a range of future

architectures, which is a requirement of large HPC sites to avoid vendor “lock

in”, also presents significant challenges [11].

Furthermore scaling applications and systems to the levels of concurrency

which will be required to achieve exascale-levels of computational performance

also represents a significant challenge [153, 79, 10, 11]. It has been argued

that existing software approaches, mainly based on the MPI-only model of

computation, are already starting to reach the limits of their scalability, due

to the number of MPI ranks competing for shared interconnect and memory

resources, necessitating additional research into alternative programming mod-

els and techniques [18, 11]. Additionally, on machines incorporating accelerator

technologies, MPI-only is not a viable solution and precludes their use [11].

Hybrid programming models, which are able to make use of accelerators and

the shared memory capabilities available within nodes, represent a promising

area of research for improving performance by reducing the overall number of

MPI ranks involved in the computation. They may also enable applications

to be better adapted to future system architectures which are likely to exhibit

significant reductions in the memory capacity, memory bandwidth and network

bandwidth resources available per processing core [11].

It has also been recognised that if certain classes of application were able to

increase the levels of asynchronicity inherent within them, by fully exploiting

their potential to overlap communication and computation, then it would be

possible to utilise significantly lower performance interconnects for these ap-

plications, without negatively impacting performance [175, 11]. Additionally

the increased complexity of modern interconnects is forcing us to examine

topology-aware communication mechanisms and the placement of application

processes within the network in order to achieve optimal performance [4, 35, 11].

4

1. Introduction

Unlike the MPI model which utilises a two-sided model of communication,

PGAS (Partitioned Global Address Space) based approaches such as CAF (Co-

array Fortran) or OpenSHMEM rely on a lightweight one-sided communication

model and a global memory address space [40, 148]. This model represents

another promising area of research for improving the performance and scalability

of applications as well as programmer productivity [11]. It may also potentially

deliver further performance advantages by facilitating a reduction in the overall

memory footprint of applications through, for example, the elimination of com-

munication bu↵ers. Historically, e↵ectively utilising a PGAS-based approach

often required the use of a proprietary interconnect technology, incorporating

explicit hardware support, such as those commercialised in the past by Cray

and Quadrics [200]. Although the body of work which examines PGAS-based

applications on these technologies is still relatively small, substantially less

research exists which examines their performance on systems constructed from

commodity-based technologies such as Infiniband. It is likely that this analysis

will become increasingly important in the future given that Intel recently pro-

cured both the Cray Aries and Qlogic Infiniband interconnect technologies and

the potential for these technologies to converge within future Intel SOC (System

On a Chip) designs [96, 95]. Research is therefore needed to assess the relative

merits of PGAS-based programming models and future hardware evolutions to

ensure that the performance of scientific applications is optimised [11].

The task of developing, porting and optimising applications for future gen-

erations of HPC systems is becoming increasingly complicated as architectures

evolve [153, 11]. Developing and maintaining MPI-only applications is also

becoming increasingly problematic due to their complexity and the analysis of

legacy applications in order to convert them to hybrid models is non-trivial [11].

Even with an in-depth knowledge of the algorithm and target hardware, extract-

ing the maximum concurrency is a di�cult, time-consuming task. Improving

the tool-suite available to developers which assists with this task will be essential

if optimal performance is to be achieved productively [153, 11].

1.2 Domain

This thesis is exclusively concerned with improving the performance of hydro-

dynamics applications and the identification of the most appropriate processing

solutions to facilitate their execution on future supercomputer system architec-

tures. The research undertaken is therefore focused on the fields of scientific

and high performance computing and is concerned with the performance, in

terms of overall time-to-solution, of a suite of applications of interest to the

sponsor of this work. Additionally it also focuses on the computational resources

5

1. Introduction

(e.g. memory capacity/bandwidth and power/energy consumption) consumed

by these applications whilst executing on particular architectures of interest.

Many of the research topics which are examined in this thesis have signif-

icantly wider applicability to other application domains within the scientific

computing field. The applications utilised within these domains exhibit similar

performance characteristics to the hydrodynamics applications examined within

this work, and researchers are also pursuing similar directions for improving the

current state-of-the-art, e.g. utilising PGAS and hybrid programming models.

Additionally other communities, such as the mobile and embedded computing

sectors may also potentially benefit from this research, as these fields already

extensively utilise several of the technologies examined in this research, e.g.

FPGAs. Similarly the research methodology employed in this work has much

broader applicability than to just scientific computing applications and tech-

nologies. This thesis is, however, deliberately constrained to the advancement

of explicit hydrodynamics applications within the scientific computing field

in order to adequately explore the applicability of the examined techniques,

optimisations and technologies to this domain of interest.

1.3 Research Questions and Hypothesis

The trends and challenges, outlined in Section 1.1 motivate the author’s research

and the work presented in this thesis specifically examines the following research

questions within the domain documented in Section 1.2:

1. Is it possible to improve the scalability of hydrodynamics applications, and

thereby their performance, by enabling these applications to execute more

e�ciently on larger scale supercomputer resources, through the utilisation

of alternative design and implementation approaches. These include utilis-

ing optimisation techniques such as overlapping the execution of communi-

cation and computation constructs; evaluating alternative communication

strategies which are not based on the BSP-model; improving the mapping

between application processes and the underlying machine interconnect

topology; and employing a distributed approach for the management of

computational mesh meta-data.

2. Does the use of a hybrid programming model, based on either OpenMP

and OpenCL, enable the performance and scalability of this class of sci-

entific applications to be significantly improved, and if so to determine

how these models should be combined with existing approaches to achieve

optimal performance.

6

1. Introduction

3. Can the utilisation of PGAS-based programming models deliver any per-

formance and programmer productivity benefits for these hydrodynamics

applications, and if so to establish how this class of scientific applications

should be developed in order to maximise any potential benefits from the

use of this technology.

4. Determine which prospective supercomputer architectures currently rep-

resent the most performant and also energy e�cient processing solution

for the execution of hydrodynamics applications. In particularly whether

x86 CPUs, IBM BG/Q CPUs, AMD APUs (Accelerated Processing Unit),

GPU-based accelerators, or the Intel Xeon Phi many-core accelerator, are

currently the most optimal choice for these applications.

5. Is it possible to utilise the OpenCL programming model to improve the

performance portability of hydrodynamics applications across a range of

prospective supercomputer architectures, including platforms based on

CPU, GPU, APU or many-core accelerator technologies.

6. Finally, to determine whether FPGAs currently represent a viable pro-

cessing technology which could be utilised within future supercomputer

systems in order to improve the overall energy consumption of these

applications, thus potentially enabling the construction of larger, more

computationally capable systems within a fixed power budget.

The primary research hypothesis of this work is that:

The performance of computational hydrodynamics simulations can be improved

through the use and implementation of the aforementioned technologies and

optimisation techniques on current generations of supercomputer platforms.

The overall objective of this research is therefore to improve the performance

of key hydrodynamics simulation applications through the examination of these

research questions and the testing of this hypothesis. Thereby potentially

facilitating advances in the scientific knowledge which it is currently possible

to generate through their use, either by delivering improvements in overall

scientific throughput by reducing the time-to-solution of existing simulations,

or by enabling larger more sophisticated simulations to be conducted which are

not currently feasible.

1.4 Research Methodology

The research documented in this thesis was undertaken using the following re-

search methodology to address the problems and challenges listed in Section 1.1

7

1. Introduction

within the domain outlined in Section 1.2.

To enable the research objective of this thesis to be completed in a reasonable

time e�cient manner an approach based on the use of a mini-application (or

mini-app) was employed. Mini-apps are small, self contained programs that

embody essential performance characteristics of larger applications, and thus

provide a viable way to conduct more rapid experimentation [84]. This work

utilises and further develops a simplified but still representative structured,

explicit hydrodynamic mini-app known as CloverLeaf (Section 1.6) [132]. At-

tempting this work using fully functional legacy production codes has in the

past been found to be time consuming and impractical, due to the number of

potential solutions available and the time required to port the codebases to the

new technologies [84, 11]. A more rapid, lower risk approach for investigating the

solution space is therefore extremely desirable. The use of a mini-app enables

this rapid development and exploration of new technologies, architectures and

techniques, in a manner which is still representative of the main production

codebases which CloverLeaf represents.

Evaluating the utility of each of the di↵erent programming models and

techniques involved in this research required the development of numerous new

versions of CloverLeaf. Each new version examined one particular technique or

programming model enhancement, which ensured that changes in results can be

accurately attributed to particular modifications within the codebase. During

development the functionality and correctness of these additional versions was

regularly and frequently validated against the original version of the codebase

to ensure that bit-wise identical results, or results to within an acceptable error

tolerance, were produced at each stage. These validation tests were frequently

executed at small experimental scales (e.g. <64 nodes), however, during each

subsequent large-scale experiment the original CloverLeaf codebase was also

executed alongside the modified versions, enabling the results produced by all

additional versions to be validated at each stage of this work.

To examine the success of each candidate code optimisation technique, pro-

gramming model or technology, quantitative assessment methods using results

obtained from experiments on actual existing supercomputer hardware systems

were employed at each stage, rather than relying on the use of simulation envi-

ronments. Due to the scales of some of the experiments involved in this research,

system noise, caused by OS (Operating System) jitter and other concurrently

executing jobs, contending for globally shared system resources on several of

the key architectures under consideration, became a factor in the analysis of

the obtained experimental results. Specifically, it was therefore possible for the

jobs of other users, which were simultaneously executing on the experimental

platforms, to perturb these experimental results. To mitigate the e↵ects of

8

1. Introduction

this system noise these experiments utilised, whenever possible, experimental

platforms in a fully dedicated mode. This ensured that only experiments related

to this research had access to the globally shared resources within a particular

supercomputing system, thus minimising any system noise caused by other

simultaneously executing applications. Additionally each experiment was also

repeated several (typically three) times and the results averaged to produce a

final value, before any analysis was conducted, thus further limiting the e↵ects

of any system noise on the obtained results and conclusions. To mitigate the

influence of di↵erent network topologies and node allocations from the batch

schedulers managing the various supercomputer platforms examined in this

work, experiments at a particular scale were aggregated and executed within

the same allocations.

The range of experimental architectures and platforms involved in this re-

search were also selected to provide an extensive range of candidate technologies,

at both the node and system levels, which could potentially be utilised to

construct future generations of systems. Similarly experiments were selected

to enable conclusions to be drawn regarding the performance of a particular

technology or technique at a range of experimental scales. This included exper-

iments which examined performance on 1 node through to the largest job sizes

which it was practical to obtain on a particular platform, up to 8,192 nodes

(131,072 cores) in certain cases. These large scale experiments were essential

in enabling the utility of particular approaches to be accurately assessed as

potential candidates for enabling future applications to achieve exascale-levels

of computational performance.

The PowerInsight [119] technology was selected in order to conduct exper-

iments to accurately assess the power consumption/e�ciency of the individual

technology components involved in this research. This has been developed and

appropriately validated to accurately monitor, at a su�ciently high sampling

frequency (maximum of 1,000MHz), the power drawn by all of the power rails

supplying each particular component. This includes the power drawn over the

PCIe bus connections which particular component cards use to interface with

the main circuit (“mother”) board on the nodes of supercomputer systems. It is

possible for components to draw up to 75W over these PCIe connections, which

is potentially a significant proportion of their overall power consumption [121].

Additionally, PowerInsight also enables the actual power supply lines into the

other node components to be accurately monitored, including CPU and memory

devices, HDD devices and the PCIe cards. Use of this technology enables out-

of-band power consumption traces to be generated for applications executing on

a particular technology without perturbing their actual execution, which would

potentially further e↵ect overall power consumption. It also enables power mon-

9

1. Introduction

itoring research to be conducted without relying on the power/energy consump-

tion counters available within some processing devices, which are potentially

inaccurate. Additionally, devices which do not contain these built-in monitoring

subsystems can also be measured consistently. Whilst this technology is able

to accurately measure the power consumption of individual components at the

node level it is not able to produce accurate power consumption measurements

for large-scale experiments on actual supercomputer platforms. The power

monitoring capabilities available natively on the IBM BG/Q [201] and the Cray

XC30 [135] platforms were therefore employed in order to conduct this aspect

of this research.

1.5 Thesis Contributions

Specifically, to address the challenges and motivations discussed in Section 1.1

and answer the research questions documented in Section 1.3, this thesis makes

the following key contributions:

Mini-app Development and Utilisation

It reports on how the CloverLeaf mini-app, which is documented in detail

in Section 1.6, was further developed and utilised as part of this work in or-

der to conduct the necessary research into potential application optimisations,

candidate programming models and prospective supercomputer architecture

choices. Additionally, it also documents how the general planning and decision

making relating to the future development of scientific applications can be

improved through the use of mini-apps. This research contributed significantly

to CloverLeaf being accepted as part of the Mantevo mini-applications suite

from Sandia National Labs [84], which was recognised as one of the top 100 most

technologically significant innovations in 2013 by R&D Magazine [171, 184]. It

was also the UK’s only contribution to the initiative and is currently being

actively utilised by a large number of HPC centres, vendors and researchers

across the world.

Evaluation of PGAS Programming Models

Utilising PGAS-based programming models is recognised as a potential ap-

proach for improving the performance and scalability of applications and en-

abling them to achieve exascale-levels of computational performance. A further

contribution of this thesis is to examine whether two such PGAS programming

models (OpenSHMEM and CAF) can deliver any performance or scalability

improvements for this class of application. The implementation of CloverLeaf

in both PGAS programming models is documented together with experiences

10

1. Introduction

gained during the conversion from the original MPI-based implementation to

these models. This included the development of 10 distinct OpenSHMEM- and 8

distinct CAF-based versions, each of which examine alternative implementation

approaches.

A performance analysis is presented to provide both a comparison of each

programming model and to assess how the communication constructs within

each can best be incorporated into existing parallel applications. This examines

the performance of these versions, at considerable scale (up to 49,152 cores)

under a strong-scaling experimental scenario, on two state-of-the-art system

architectures and vendor implementations (SGI and Cray). To assess the utility

of these PGAS implementations against the dominant programming paradigm

used in existing parallel scientific applications a performance comparison against

an equivalent MPI-based implementation of CloverLeaf is presented. This infor-

mation will be useful to developers of future OpenSHMEM and CAF applica-

tions. Similarly, based on these results, recommendations to improve both the

OpenSHMEM specification and potentially future CAF compiler and runtime

systems are also identified.

Examination of Hybrid Programming Models

The incorporation of hybrid programming model constructs, based on both

OpenMP and OpenCL, into this class of application is examined together with

a quantitative assessment of whether these models can deliver benefits in terms

of improved application performance or scalability. A detailed description of

CloverLeaf’s hydrodynamics algorithm, and its implementation in both OpenMP

and OpenCL is presented, together with a description of how both models

integrate with the existing MPI-based Fortran code. Comparisons of the per-

formance of the MPI+OpenMP and MPI+OpenCL versions of CloverLeaf are

presented, relative to the original MPI-only version, at considerable scale on

a number of system architectures including, two alternative Cray system ar-

chitectures, an SGI ICE-X platform and an IBM BG/Q. A smaller-scale (1

node) analysis is also conducted across a broader range of potential candidate

HPC architectures. For both programming models a number of optimisations to

improve performance and portability are documented and their e↵ects analysed.

The ability of the OpenCL programming model to deliver portable applica-

tion performance from a single code base across a broad range of future candi-

date supercomputer architectures is assessed. Additionally the viability of both

approaches for expressing large scientific codebases and achieving acceptable

levels of programmer productivity is also analysed.

To potentially improve programmer productivity tools to automatically hy-

bridise MPI-only codebases using OpenMP constructs are being developed.

11

1. Introduction

The utility of the Reveal software tool from Cray is therefore also evaluated

as a technology for achieving this, by automatically hybridising the MPI-only

version of CloverLeaf and comparing its performance to that of a hand-optimised

MPI+OpenMP implementation.

Development of Application Optimisations

The e↵ect of several candidate optimisation techniques on the performance

and scalability of the MPI-only versions of this class of scientific application,

are also examined and quantitatively assessed at considerable scale on three

candidate system architectures: IBM BG/Q, Cray XC30 and SGI ICE-X. These

optimisations include the examination of the e↵ect of: utilising an implementa-

tion based on the use of distributed mesh meta-data information; overlapping

communications and computational operations; several recently standardised

MPI v3.0 constructs; as well as several message aggregation and early data

transmission communication strategies. Additionally, the e↵ect of optimising

the placement of MPI ranks within the supercomputer interconnect fabric is

explored together with the e↵ectiveness of employing software tools from Cray

in achieving this rank remapping.

Supercomputer Architecture Analysis

This thesis examines a range of technologies which are currently available for

the construction of supercomputer platforms and provides an evaluation of the

suitability of several intra- and inter-node processing architectures for the exe-

cution of explicit hydrodynamics applications. This enables the solution space

of candidate technologies, which will likely be available for the construction of

future exascale capable supercomputer systems, to be explored in order to assess

their potential utility for delivering the performance improvements required for

the scientific applications which are the focus of this research. Performance

results from the execution of CloverLeaf are presented and analysed under

a range of programming models on discrete GPGPU solutions from Nvidia

and AMD, Intel Xeon Phi coprocessors, AMD APU based systems as well as

CPU-based solutions from Intel and AMD. A performance comparison of the

OpenCL version of CloverLeaf, against optimised native versions (OpenMP and

CUDA), is also included as well as the e↵ect of various optimisation techniques.

Additionally, the performance and behaviour of numerous versions of the

application (MPI-only, MPI+OpenMP, MPI+CUDA, MPI+OpenCL, PGAS-

based) are also assessed at scale on several existing large-scale system architec-

tures incorporating di↵erent interconnect topologies and technologies. These

include a Cray XC30 (Aries Dragonfly), a Cray XK7 (Gemini 3D-torus), an

IBM BG/Q (5D-torus) and an SGI ICE-X (IB 7D-hypercube) platform.

12

1. Introduction

As well as assessing candidate technologies in terms of overall performance

(time-to-solution), this thesis also examines the power consumption of several of

these technologies and presents an analysis of the energy consumed in achieving

a solution on a range of di↵erent technologies. This analysis is conducted at

both small- (1 node) and large-scale (>2,048 nodes) using a variety of power-

measurement solutions.

Furthermore the viability of FPGAs devices from Altera, as candidate tech-

nologies to employ in future system architectures, is also examined. This

includes an examination of how to optimally express particular explicit hydrody-

namics computational kernels in order to maximise performance on these FPGA

devices using the OpenCL compiler and runtime systems developed by Altera.

A quantitative assessment is also conducted of whether this technology is able to

deliver significant reductions in the energy required to achieve a solution, whilst

delivering acceptable levels of performance, relative to existing state-of-the-art

processing solutions, which are currently commonly utilised for this class of

application.

1.6 CloverLeaf

Mini-apps are small, self-contained codes, which emulate key algorithmic com-

ponents of much larger and more complex production codes. One of the main

contributions of this research was the significant enhancements made to the

development of the CloverLeaf mini-application, which was extensively used as

a research tool through this work. CloverLeaf was originally developed with the

explicit purpose of assessing new technologies and programming models both

at the inter- and intra-node system levels. This section provides details of the

implementation of the mini-app. Further information on the specific hydrody-

namics scheme simulated within the application can be found in Section 2.3.

1.6.1 Implementation

CloverLeaf employs a Lagrangian-Eulerian scheme to solve Euler’s equations

of compressible fluid dynamics [87, 42], using the ideal-gas equation of state,

in two spatial dimensions. The equations are solved on a staggered grid (see

Figure 1.1a) in which each cell centre stores three quantities: energy, density

and pressure; and each node stores a velocity vector. An explicit finite-volume

method is used to discretise the Euler equations and facilitate their solution with

second-order accuracy. The system is hyperbolic, meaning that the equations

can be solved using explicit numerical methods, without the need to invert a

matrix. Currently only single material cells are simulated within CloverLeaf.

13

1. Introduction

u

P,⇢
E

Flow

(a) The staggered-grid with
material flow

Flow

(b) Vertices move during the
Lagrangian step

Flow

(c) Material motion calcu-
lated in the advective remap

Figure 1.1: Staggered grid employed in CloverLeaf

The solution is advanced forward in time repeatedly until the desired end

time is reached. Unlike the computational grid, the solution in time is not

staggered, with both the vertex and cell data being advanced to the same point

in time by the end of each computational step. One iteration, or timestep, of

CloverLeaf proceeds as follows (see Figure 1.1):

1. a Lagrangian step advances the solution in time using a predictor-corrector

scheme, with the cells becoming distorted as the vertices move due to the

fluid flow;

2. an advection step then restores the cells to their original positions and

calculates the amount of material which passed through each cell face.

This is accomplished using two sweeps, one in the horizontal dimension and the

other in the vertical, using Van Leer advection [199]. The direction of the initial

sweep in each step alternates in order to preserve second order accuracy.

The computational mesh is spatially decomposed into rectangular mesh

chunks and distributed across processes within the application, in a manner

which attempts to minimise the communication surface area between processes.

The implementation also simultaneously attempts to assign a similar number

of cells to each process in order to balance computational load. As with the

majority of block-structured, distributed, scientific applications which solve

systems of partial di↵erential equations, data that is required for the various

computational steps that is non-local to a particular process is stored in outer

layers of halo cells within each mesh chunk. To keep these halo cells updated

data exchanges, between logically neighbouring processes within the decomposi-

tion, occur multiple times during each timestep with varying depths. To reduce

synchronisation requirements, data is only exchanged when explicitly required

by the subsequent phase of the algorithm, first in the horizontal and then in the

vertical dimension. A global reduction operation is required by the algorithm

during the calculation of the minimum stable timestep, which is calculated once

per iteration.

14

1. Introduction

The codebase of CloverLeaf is predominantly Fortran based and its com-

putational intensive sections are implemented via fourteen individual kernels.

In this instance, kernel refers to a self-contained function which carries out

one specific step of the overall hydrodynamics algorithm. Each kernel iterates

over the staggered grid, updating the appropriate quantities using the required

stencil operation. The kernels contain no subroutine calls and avoid the use

of complex features such as Fortran derived types. Twelve of CloverLeaf’s

kernels only perform computational operations, with communication operations

residing within the overall control code and two other kernels. One of these

kernels is called repeatedly throughout each iteration of the application, and

is responsible for exchanging the halo data associated with one (or more) data

fields, as required by the hydrodynamics algorithm. The second carries out the

global reduction operation required for the calculation of the minimum timestep

value. A further reduction is carried out to report intermediate results, but this

is not essential to the numerical algorithm.

During the initial development of the code, the algorithm was engineered to

ensure that all loop-level dependencies within the kernels were eliminated and

data parallelism was maximised. Most of the dependencies were removed by

refactoring large loops into smaller parts, adding extra temporary storage where

necessary; replacing branches inside loops where possible; replacing atomic

operations and critical sections with reduction operations; memory accesses

were also optimised to remove all scatter operations and minimise memory

stride for gather operations. The computational intensity per memory access in

CloverLeaf is low which typically makes the code limited by memory bandwidth

and latency speeds.

In the experiments documented in this thesis (Chapters 3 to 7) CloverLeaf

was configured to simulate the e↵ects of a small, high-density region of ideal

gas expanding into a larger, low-density region of the same gas, which causes a

shock-front to form. The configuration can be altered by varying the number of

cells employed in the computational mesh; increasing mesh resolution generally

increases both the runtime and memory usage of the simulation.

1.7 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 provides background information and a future trends analysis

relating to several of the research areas examined in this thesis, including the

hardware platforms utilised, the software technologies examined and the explicit

hydrodynamics applications on which this work has focused.

The research work which examined optimisations to improve the perfor-

15

1. Introduction

mance of the OpenMP-based versions of the CloverLeaf codebase is presented

in Chapter 3, and includes an analysis of their performance at high thread

counts on the Intel Xeon Phi architecture. This contributed towards answering

research question 2. The work presented in this chapter also extends research

documented in publications 1 and 3, as listed in the Declarations section of this

thesis.

The research conducted to improve the performance of the CloverLeaf mini-

app at extreme scale and thus answer research question 1.7 is documented in

Chapter 4. The work presented in this chapter is based on research previously

published in papers 1 and 3.

The implementation of the PGAS programming model based versions of

CloverLeaf are documented in Chapter 5 together with an analysis of their

performance against equivalent MPI-based versions, at significant scale on two

candidate system architectures (Section 5.4). This chapter examines research

question 3 and the work extends the research previously published in paper 4.

Chapter 6 examines the use of the OpenCL programming model and as-

sesses its utility for delivering portable application performance for explicit

hydrodynamics applications on a range of current processing architectures. It

addresses research question 5 and extends the work previously documented in

publications 2 and 5.

The suitability of utilising FPGAs as candidate processing solutions for

explicit hydrodynamics applications within future architectures (research ques-

tion 6) is examined in Chapter 7.

Chapter 8 presents the conclusions which this thesis has facilitated, together

with its key contributions (Section 8.1) and limitations (Section 8.3). It also

outlines some potential directions for future research (Section 8.4). Research

question 2 is examined by Chapters 3 to 7 but the overall conclusion derived

through this work is documented in this chapter.

Finally, Appendix A documents in detail the experimental architectures and

platforms utilised throughout this research.

1.8 Project Availability

This research work was conducted as part of the overall CloverLeaf mini-app de-

velopment project. In keeping with the ethos of the project all of the codebases

developed as part of this specific research can be found within the main Clover-

Leaf Github development repository at https://github.com/Warwick-PCAV/

CloverLeaf. Each major version of the codebase which was developed as part of

this work, e.g. all of the CAF-based versions, are made available within separate

sub-repositories. Minor versions which e.g. examine a specific optimisation or

16

1. Introduction

technique within these broader categories, are then generally made available as

separate branches within these sub-repositories. It is hoped that making this

work as open and accessible as possible will foster greater collaborations within

the scientific research community, enable others to learn and benefit from the

derived conclusions and general approach, as well as to also ultimately improve

upon it.

17

CHAPTER 2
Background Information

This chapter presents background information on the hardware (Section 2.1) and

software (Section 2.2) technologies employed and examined in this research, as

well as information on the hydrodynamics applications and algorithms studied

(Section 2.3). Historical information is provided together with existing issues

and current, as well as likely future, development trends.

2.1 Hardware Background and Trends

This section provides background information on the three major hardware

subsystems, within a HPC platform, which the research documented in this

thesis interacts most closely with. These include interconnect technologies (Sec-

tion 2.1.2) as well as the processor (Section 2.1.3) and memory (Section 2.1.4)

subsystems. It also discusses what many consider to be the single most signifi-

cant challenge currently facing the construction of exascale systems, their power

consumption (Section 2.1.1).

2.1.1 Power Consumption

It has been widely recognised that power consumption will be the primary

constraint governing the design of HPC systems in the future [11, 206, 128].

Several existing large-scale systems are currently consuming of the order of

10MW of power [114], with ORNL’s Titan and Riken’s K computer consum-

ing ⇠8MW and ⇠12.6MW respectively, whilst Tianhe-2 in China consumes

⇠17.8MW [194]. Employing today’s technology to construct a system capable

of delivering an exaflop of computation per second would require more than

1GW of power [153]. To address this issue the DOE in the USA has set the

HPC industry the challenge of delivering an exascale capable solution within an

overall power budget of 20MW, necessitating an improvement of>150⇥ in power

e�ciency over current technologies and equating to approximately $20 million in

electricity costs annually [153, 129, 206]. Whilst some observers do not believe

that the 20MW target is achievable [114], a practical limit of approximately

100MW would appear to exist, as the largest data-centres currently in existence

only have access to this amount of power [48]. Regardless of the exact power

budget figure, achieving a solution which lies within this range will still require

a huge improvement in computational power e�ciency and require considerable

18

2. Background Information

research and development, but would potentially deliver considerable financial

savings if achieved [153, 79, 10].

2.1.2 HPC Interconnect Technology

The interconnect technology has always been a key component of HPC sys-

tems and this trend will only continue as the cost of communication (moving

data) starts to dominate performance in future system architectures [11, 196].

Historically HPC systems employed proprietary interconnect technologies from

vendors such as Quadrics [161], Cray [9, 31, 65], IBM[41], Fujitsu [3] and

Myricom [70]. These technologies generally incorporated proprietary ASICs

(Application Specific Integrated Circuits) on dedicated NICs (Network Interface

Cards) and delivered improved performance in terms of reduced latencies and

higher bandwidth over commodity solutions by o✏oading some of the com-

munication processing to the NICs. They often provided support in hardware

for operations commonly required by scientific applications, such as collective,

atomic and one-sided Remote Direct Memory Access (RDMA) communication

operations, which were not generally available in alternative commodity so-

lutions. Additionally, they also supported topologies which closely mirrored

the communication patterns of scientific applications, or enabled systems to be

scaled to larger processor counts, such as 3 [9, 31], 5 [41] and 6 [3] dimensional

tori; “fat” trees [161, 70]; and dragonflies [65]. The Quadrics network, for

example, o✏oaded the processing of MPI (Message Passing Interface) commu-

nications onto the NIC processor via the Elan Tports interface enabling the host

processor to undertake additional tasks during communication operations. The

QsNetII solution was capable of autonomously completing MPI message match-

ing operations, although the performance of the raw RDMA Elan interfaces was

shown to be faster [23].

Driven primarily by reductions in costs from higher volumes, the HPC

industry has more recently been moving away from proprietary interconnect

technologies and towards more open standards-based, commodity technologies

primarily based on Infiniband [94]. The use of Infiniband in systems ranked in

the Top500 has risen from <1% in 2004 to >40% at present [194]. Although

originally a storage interconnect design targeted at data-centre solutions it now

incorporates many of the hardware facilities required by scientific applications,

such as native support for RDMA operations and the o✏oading of communica-

tion operations to dedicated NICs. Infiniband has also been shown to enable

some of the overheads of the two-sided communication model to be avoided [105,

176]. These include the requirement for the remote processes to be involved in

the communications, handshake synchronisations, queue maintenance, message

19

2. Background Information

tag matching and flow control.

Cray and IBM have been able to sustain their interconnect product lines,

although IBM recently announced that it would be discontinuing production

of its Blue Gene series machines [183] and Cray recently sold its interconnect

business to Intel [96]. By contrast, Fujitsu recently announced that it would be

continuing development of its Tofu interconnect [67].

To reduce power consumption and improve performance there has been

a growing trend (although no products have thus far reached general avail-

ability) for chip manufacturers to develop SOC designs which incorporate the

network interface logic previously located on the dedicated NICs. Intel recently

purchased the Cray and Qlogic interconnect technologies [96, 95], whilst IBM

announced plans through the OpenPOWER initiative [89] to incorporate Mel-

lanox Infiniband technologies onto its Power processor architecture and Fujitsu

outlined plans to incorporate its Tofu2 interconnect into its next generation of

processors [67].

Future Trends

CPU processing capabilities, memory access latencies and hard disk seek times

have gradually improved over time, however, inter-node message latencies across

communications interconnects and their associated software overheads have

not [22]. Additionally, in future systems the relative cost of data movement will

be considerably higher than for floating point operations, as the energy required

for the former is not improving at the same rate as for the latter, necessitating

the creation of more power e�cient interconnect designs [11, 206, 196]. The

incorporation of interconnect technologies within future SOC designs should fa-

cilitate improvements, although additional technologies such as silicon photonics

may still be required. Nevertheless within future systems the interconnect fabric

is likely to be increasingly viewed as yet another level of the overall memory

hierarchy.

It has been recognised that in order to achieve the required levels of applica-

tion performance the levels of support for asynchronous data transmission and

the movement of non-contiguous data will need to be improved within future

interconnect designs [11, 128]. Additionally, improving support for the transfer

of small data packets will also be increasingly important as the levels of overall

parallelism increase and strong-scaling simulations become more prevalent [11].

There is also a trend towards more constrained, scalable topologies, such as

multi-dimensional tori or dragonflies, to enable the construction of larger, more

parallel systems [11]. The larger numbers of processing elements being incorpo-

rated within future SOC designs will necessitate the inclusion of interconnects

20

2. Background Information

within these chips (networks-on-a-chip). These systems will also be increasingly

limited by the communication infrastructure both within and between these

nodes, and it is therefore likely that communication will be the main perfor-

mance bottleneck at exascale levels of computational performance [11, 128].

2.1.3 Processor Subsystem Technology

After it was originally proposed in 1974 Dennard scaling held for over 30 years

and started to breakdown in approximately 2005 [52]. It states that the power

density of transistors remains constant as their size is scaled down and therefore

the total chip power consumed per unit area remained the same from one man-

ufacturing process generation to the next [134]. Post 2005, energy constraints

in particular the significant increase in leakage current caused by the reductions

in transistor feature sizes, have brought an end to Dennard scaling [11, 196].

Consequently, as the dynamic power consumption of a processor is proportional

to its operating frequency, it is no longer possible to realise significant increases

in overall CPU clock speeds.

With Moore’s Law continuing to hold and the number of transistors per unit

area doubling approximately every 18 months, manufacturers are increasingly

being forced to incorporate more parallelism into their chip designs. Over recent

years this has manifested itself most noticeably as increases in the number

of cores (or explicit parallel processing elements) on a chip, which have been

doubling approximately every 18-24 months [11, 206]. Most manufacturers now

only o↵er multi-core designs for their processor o↵erings, such as the o↵erings

from IBM [74] and Fujitsu [136] for their HPC platforms. Additionally there

is a continuing trend to incorporate wider vector processing elements into CPU

designs, necessitating applications to be able to use SIMD operations in order

to achieve optimal performance [100].

Due to their greater power e�ciency accelerator and co-processor solutions,

such as GPGPUs from Nvidia [152] and AMD [13] as well as the Intel Xeon

Phi [101], are also becoming increasingly utilised within the HPC community.

It has also been argued that their use will be crucial in order for exascale systems

to be realised [11, 128]. This will also require significant increases in fine-grained

parallelism and the use of lightweight threading or task models [11, 206, 128].

GPUs support this style of parallelism particularly well, although they have been

recognised as being considerably harder to program than alternative approaches

such as the Xeon Phi [50].

At present, these devices are generally employed as separate discrete pro-

cessing elements alongside traditional CPU devices, usually connected to the

main system board over a PCIe link. As part of their Fusion APU processor

21

2. Background Information

line, however, AMD have combined a CPU and GPU onto the same silicon

chip [14]. Other manufacturers have also announced plans to produce similar

hybrid devices, including project Denver [72] from Nvidia and IBM who are

planning to incorporate Nvidia GPU devices onto Power-based processors as

part of the OpenPOWER initiative [89]. Intel has also announced that future

versions of its Xeon Phi processor will be “self-hosting” and will therefore not

require a traditional CPU alongside them [21].

The power consumption of existing processors is also forcing manufacturers

and researchers to consider low-power technologies from the embedded and

mobile computing sectors, which have evolved to be more power e�cient due

to the additional power constraints within these environments [195]. These

technologies, such as processors based on technologies from ARM [15], are

starting to be considered for HPC systems and generally have higher sales

volumes enabling their costs to be kept low [142]. ARM are also developing their

designs to incorporate 64-bit processors in order to potentially gain additional

business from new sectors such as HPC [195].

FPGAs incorporate large collections of generic logic and memory blocks

connected via a reconfigurable interconnect fabric. By changing the routing con-

figurations of this interconnect they enable customised processor designs to be

created which are specifically tailored to implement applications using dedicated

logic. This approach potentially delivers significant performance advantages

whilst consuming substantially less power. The technology is found throughout

the embedded computing sector meaning that the chips are produced in high

volumes, which significantly lowers their overall costs.

Historically it has only been possible to “program” FPGAs via low-level ap-

proaches such as VHDL [91] and Verilog [90], which require extremely specialist

knowledge and takes considerable development resources. More recently compil-

ers have been developed to translate high-level languages, such as OpenCL, to

these low-level languages, which potentially enables a broader range of scientific

applications to be targeted at these devices.

FPGA manufacturers have also seen the potential to grow their business

into new sectors such as HPC. Altera has recently announced that their latest

Generation 10 products can now natively support IEEE 754 compliant single-

precision floating point arithmetic, using dedicated hardware circuitry in each

DSP (Digital Signal Processing) block within the FPGA fabric [8]. Similarly

existing processor manufacturers have also realised the potential of FPGA based

solutions with Intel recently announcing that it plans to incorporate an FPGA

into future versions of its Xeon products [99] and IBM partnering with Altera

through the OpenPOWER initiative [89].

22

2. Background Information

Future Trends

Future processor designs are expected to continue the trend of increasing the

number of processing elements which they contain as well as incorporating wider

vector units [11, 206, 196]. This will necessitate the exposure of even greater

levels of parallelism within applications in order to achieve optimal performance

on future system architectures. It has also been recognised that the intra-node

parallelism, delivered by the processor and memory sub-systems, will need to

increase by 3 orders of magnitude if exascale systems are to be successfully

realised, compared to only 1 order of magnitude for inter-node parallelism [206,

11, 196, 115, 128]. Consequently the execution of over 1 billion simultaneous

instruction streams will likely be required within future systems in order to

achieve exascale levels of computational performance [11, 206, 128].

Additionally, processor chip designs are likely to become increasingly hetero-

geneous, potentially incorporating sophisticated interconnects between the pro-

cessing elements as well as the functionality historically performed by dedicated

NICs. Due to energy constraints it is also becoming increasingly impractical

for chip designs to provide uniform memory access bandwidth and latencies

between processor elements, necessitating architectures to increase the number

of NUMA domains and become more non-uniform [11, 196]. The use of so-called

“dark silicon”, in which specialised components are incorporated into processor

designs and only powered-up when required to save energy, is also a potential

possibility [191].

Employing a design methodology based on the principles of “co-design”

to improve the integration between all of the various hardware and software

elements is also likely to be crucial in realising e↵ective exascale systems [206,

11, 115, 128].

2.1.4 Memory Subsystem Technology

The density of DRAM and processor o↵-chip bandwidth are not currently

increasing at the same rate as processor logic densities and this imbalance

between computation and memory access speeds is forecast to continue to

grow [11, 206, 128]. Consequently it is increasingly likely that future systems

will incorporate significantly reduced memory capacities as well as access band-

width and latencies per processor element. The performance of the memory

sub-system is therefore likely to increasingly limit the performance of scientific

applications on future platforms. These trends will necessitate the development

of deeper memory hierarchies, which may potentially require the use of explicit

memory space management constructs within applications, such as software

managed caches [11, 206, 196]. The inclusion of transactional memory mecha-

23

2. Background Information

nisms and additional atomic memory operations are also likely to be required

in future systems [11].

Additionally it is likely that utilising technologies such as the Hybrid Mem-

ory Cube [141] from Micron will be required in order to improve memory system

capacity and performance. This technology also o↵ers the potential to conduct

processing closer to the memory subsystem to further improve performance

through reductions in data-motion. Fujitsu recently announced plans to sup-

port the technology in their forthcoming processor designs [67] and existing

implementations which utilise FPGAs already exist [5]. The incorporation of

faster and larger memories onto the actual processor die, through the potential

utilisation of 3-dimensional stacking technologies, is another direction of poten-

tial development which should further reduce data access speeds and the energy

consumed by moving data [58].

Again the use of a “co-design” methodology to holistically design the soft-

ware, processor and memory sub-systems is likely to be crucial if these technolo-

gies are to be utilised optimally within future exascale system architectures [11,

206, 115, 128].

2.2 Software Background and Trends

Background information on each of the programming models examined as part of

this research is presented in this section, together with information on existing

and likely future trends in their development. The intra-node programming

models are examined initially followed by those which can be utilised to imple-

ment inter-node parallelism.

2.2.1 OpenMP

OpenMP is an Application Program Interface (API) and has become the de facto

standard in shared memory programming [156]. The technology is supported by

all the major compiler vendors and is based on a fork-join model of concurrency.

It consists of a set of pragmas that can be added to existing source code to

express parallelism. An OpenMP-enabled compiler is able to use this additional

information to parallelise these annotated sections of code.

The model is primarily focused at implementing intra-node parallelism, with

OpenMP programs requiring a shared memory-space to be addressable by all

threads. At present the technology only supports CPU-based devices although

proposals exist in OpenMP version 4.0 for the inclusion of additional directives

to target accelerator based devices such as GPUs [187]. This has been imple-

mented to varying levels in a number of compilers.

24

2. Background Information

2.2.2 OpenCL

OpenCL is an open standard that enables parallel programming of hetero-

geneous architectures. Managed by the Khronos group and implemented by

over ten vendors—including AMD [12], Intel [98], IBM [88], and Nvidia [150]—

OpenCL code can be run on many architectures without recompilation. The

programming model is similar to CUDA, developed by Nvidia.

The programming model distinguishes between a host CPU and an attached

accelerator device such as a GPU. The host CPU executes code written in

either C or C++, with this code initiating function calls into an OpenCL

library in order to control, communicate with, and execute functions on one

or more attached devices, or on the CPU itself. The target device executes

these functions (or kernels), which are written in a subset of C99, and can

be compiled just-in-time, or loaded from a cached binary if one exists for the

target platform. The concepts of devices, compute units, processing elements,

work-groups, and work-items are employed to control how OpenCL kernels are

executed by the target hardware. The mapping of these concepts to hardware

is controlled by the OpenCL runtime.

Generally, an OpenCL device maps to an entire CPU socket or an attached

accelerator. Additionally, on CPU architectures it is normal for both compute

units and processing elements to be mapped to the individual CPU cores. On

GPUs, however, this division can vary, with compute units typically being

mapped to a core on the device, and processing elements to functional units

within these cores.

Kernels are executed in a SPMD manner across a one, two or three di-

mensional range of work-items, with collections of work-items being grouped

together into work-groups. Work-groups map directly onto a compute unit and

the work-items which they contain are executed by the compute unit’s associated

processing elements. The work-groups which make up a particular kernel can

be dispatched for execution on any available compute units in any order. On a

CPU, the work-items within a work-group are generally scheduled for execution

within one core, although this is not a strict requirement. If vector code has

been generated, the work-items will be scheduled using SIMD instructions to

utilise the vector unit within the particular CPU core. On a GPU, work-groups

are generally assigned to individual cores and their work-items executed in

collections across the processing-elements within the core. The collection size or

width depends on the specific device vendor; Nvidia devices utilise collections

of 32 work-items whereas AMD devices use collections of 64.

The programming model provides no global synchronisation mechanism be-

tween work-groups, although it is possible to synchronise within a work-group,

25

2. Background Information

which enables OpenCL applications to scale up or down to fit di↵erent hardware

configurations. It also includes a sophisticated queuing mechanism, which is

able to express complex dependencies between kernels and manage multiple

target devices. OpenCL is therefore able to easily express both task and data

parallelism within applications.

2.2.3 CUDA

Nvidia’s CUDA [149] is currently a well established technology for enabling

applications to utilise Nvidia GPU devices. CUDA employs an o✏oad-based

programming model in which control code, executing on a host CPU, launches

parallel portions of an application (kernels) onto an attached GPU device.

CUDA kernels are functions written in a subset of the C programming

language, and are comprised of an array of lightweight threads, each of which is

assigned a unique global-id. Threads are grouped into thread-blocks that each

execute on a single GPU multi-processor contained within an Nvidia GPU,

although several thread-blocks can reside concurrently on each multi-processor.

Kernels are thus executed as a grid of thread-blocks which collectively contain all

the aforementioned threads. Threads within a thread-block can cooperate and

synchronise via shared memory which is local to a particular multiprocessor,

however, there is no support for global synchronisation between threads in di↵er-

ent thread-blocks. This explicit programming model requires applications to be

restructured in order to make the most e�cient use of the GPU architecture and

thus take advantage of the massive parallelism inherent in them. Constructing

applications in this manner also enables kernels to scale up or down to arbitrary

sized GPU devices.

CUDA is currently a proprietary standard controlled by Nvidia. Whilst this

allows Nvidia to enhance CUDA quickly and enables programmers to harness

new hardware developments in Nvidia’s latest GPU devices, it does have appli-

cation portability implications.

2.2.4 OpenACC

OpenACC [155] is a high-level, pragma based programming model intended to

provide support for many-core technologies from within standard Fortran, C

and C++. Driven by the CAAR team at ORNL [27] and supported by an

initial group of three compiler vendors, although one vendor (CAPS) has since

ceased trading. The technology enables developers to add directives into their

source code to specify how portions of their applications should be parallelised

and o↵-loaded onto attached accelerator devices. This approach minimises the

modifications required to existing codebases and eases programmability, whilst

26

2. Background Information

also providing a portable, open standards-based solution for many-core technolo-

gies. The technology potentially provides a solution for targeting applications

at complicated hardware technologies without the requirement for developers to

learn complex, sometimes vendor specific, languages or to understand intricate

hardware details. The standard is still, however, relatively new and implemen-

tations are still maturing.

Prior to a common OpenACC standard being agreed, Cray, PGI and CAPS

had each developed their own proprietary accelerator directives, which formed

the basis of their OpenACC implementations. PGI developed their region

construct, within their original Accelerator model [162] for Nvidia GPUs, into

their implementation of the OpenACC Kernel construct. Whilst Cray origi-

nally proposed accelerator extensions to the OpenMP standard [44] to target

GPGPUs through their CCE compiler, they developed their proposal into the

Parallel construct within the OpenACC standard. CAPS originally developed

support for accelerator devices through their OpenHMPP directive model [39],

although their OpenACC compiler still required the utilisation of a third-party

host compiler.

Each implementation now supports both the Kernel and Parallel Ope-

nACC constructs. The main di↵erences between these constructs relate to how

they map the parallelism, present in the particular code region which is being

accelerated, to the underlying hardware. The Parallel construct is explicit,

requiring the programmer to highlight loops for parallelisation within the code

region; it closely resembles several OpenMP constructs, such as the OpenMP

parallel do pragma. The Kernel construct, however, enables code to be

parallelised and accelerated implicitly.

The three implementations also utilise a range of di↵erent “back-end” code

representations in order to actual execute OpenACC applications on target

hardware devices. The CAPS compiler translated code directly to either CUDA

or OpenCL, whilst PGI originally only supported CUDA they have since also

released support for OpenCL. The generated CUDA code can, therefore, only

be utilised to target applications at Nvidia GPU devices through the NVCC

compiler, however, the use of OpenCL enables a larger range of devices to be

supported. Cray CCE, however, only generates low-level Nvidia PTX [151]

instructions from the OpenACC directives, which consequently constrains their

implementation to Cray architectures with attached Nvidia GPU devices.

2.2.5 VHDL and Verilog

VHDL [91] and Verilog [90] are both low-level HDLs (Hardware Definition

Languages) originally developed by the DOD and Cadence Design Systems,

27

2. Background Information

respectively. They are now both standardised by the IEEE and used heavily

within the EDA (Electronic Design Automation) community to describe logic

circuits in a textual format, predominantly at the register transfer level. Digital

systems can therefore be designed and verified using these languages, although

they can also be employed for mixed-signal and analogue system designs.

Although loosely based on procedural programming languages, Ada and C

respectively, their models di↵er significantly from traditional procedural pro-

gramming languages, as they contain mechanisms to describe electrical signal

propagation times and strengths, rather than just logical functionality. Both

languages employ a data-flow model of computation and enable parallel/con-

current systems of circuits to be described.

Circuit designs described in either language can be tested using logic sim-

ulators. Synthesis tools can then subsequently be employed to generate actual

hardware circuit representations which can then be used to create ASICs or

to program FPGA devices. Developing solutions using either of these low-

level approaches requires high levels of expertise and experience and is often

extremely time/resource consuming and error prone. This usually precludes

their use within the scientific application development community. Although

these technologies can potentially enable extremely performant solutions to be

developed.

2.2.6 BSP Programming Model

The BSP programming model was originally proposed by Valiant [197] as an

abstraction model for the design of parallel applications. The model bridges

the divide between software and hardware by abstracting some of the details of

the underlying parallel computing devices. It improves on other models such as

the PRAM (Parallel Random Access Machine) by enabling communication and

synchronisation costs to be accounted for.

The model is comprised of a collection of processing resources which have

access to their own dedicated local memories and an interconnect fabric to

facilitate pair-wise communication and synchronisation between all or a subset

of the processing elements. An overall computation is formed from a series of

global “supersteps” in which processing elements may each concurrently perform

computation on their local memory resources. Communications, which can

either be one- or two-sided operations, can occur between processes during each

superstep, these do not need to be ordered and may also be overlapped with

computation. A barrier operation exists at the end of each superstep which

causes all processes to be synchronised before they proceed to the next superstep.

All computation and communication from the preceding superstep is therefore

28

2. Background Information

completed before the next one commences. The model thus maps well onto

the architectures of most modern HPC systems and has become the de facto

approach for developing parallel applications for them.

2.2.7 MPI Programming Model

As cluster-based designs have become the predominant architecture for HPC

systems, the MPI programming model has become the de facto standard for

developing parallel applications for these platforms. Standardised by the MPI

Forum, the interface is implemented as a parallel library alongside existing se-

quential programming languages [144]. MPI programs are based on the MPMD

(Multiple Program Multiple Data) paradigm in which each process (or rank)

asynchronously executes a separate (but potentially identical) program, with

each rank therefore able to independently follow di↵erent execution paths within

their associated programs. Each process makes calls directly into the MPI

library in order to make use of the communication and synchronisation functions

that it provides; both point-to-point and collective communication operations

are provided by the library.

The technology is thus able to express both intra- and inter-node parallelism.

Current implementations generally use optimised shared memory constructs for

communication within a node and explicit message passing for communication

between nodes. Communications are generally two-sided, meaning that all ranks

involved in the communication need to collaborate in order to complete it.

Although support for one-sided communication has been available since version

2.0 of the standard, these constructs are not currently widely used and have

been enhanced significantly in version 3.0. MPI version 3.0 also introduced

several new collective operations such as neighbourhood and non-blocking col-

lectives, which although not widely supported yet, claim to o↵er performance

and productivity benefits in particular circumstances.

2.2.8 PGAS Programming Model

PGAS-based programming models aim to provide the ease of shared memory ap-

proaches such as OpenMP (Section 2.2.1) whilst also providing the performance

and scalability of message passing based approaches such as MPI (Section 2.2.7).

To implement shared memory constructs they utilise a global address space and

a one-sided communication model to potentially enable processes to access any

memory location. This global address space is, however, logically partitioned

with each segment assigned to a particular processing element within the overall

application. The model is thus able to express memory access locality and

maps well to the architecture of current generations of HPC platforms, which

29

2. Background Information

facilitates improved performance and scalability, potentially equivalent to or

greater than that of the message passing model. It has also been recognised

that the per-message overheads of models such as MPI may not be reducing

su�ciently for MPI to be practicable on exascale system architectures, poten-

tially necessitating the use of PGAS-based approaches [11].

Numerous PGAS languages and programming models are currently in ex-

istence including but not limited to: UPC, Global Arrays, X10 and Chapel;

each of which is targeted at a di↵erent user-base and is subtly di↵erent in

their particular implementation of the general PGAS approach. This thesis

examines the applicability of two additional PGAS implementations, CAF and

OpenSHMEM, to explicit hydrodynamics applications and provides background

information on each of these models in the following sections.

The CAF Programming Model

Several CAF extensions have been incorporated into the Fortran 2008 standard,

the additions aim to make parallelism a first class feature of the Fortran lan-

guage. These extensions were originally proposed in 1998 by Numrich and Reid

as a means of adding PGAS concepts into the main Fortran language, using

only minimal additional syntax [148].

CAF continues to follow the SPMD (Single Process Multiple Data) language

paradigm with a program being split into a number of communicating processes

known as images. The number of images is defined at runtime and is static

throughout the execution of the program; no language facility exists yet for

dynamic image creation. Communications are all one-sided, with each process

able to use a global address space to access memory regions on other processes,

without the involvement of the remote processes. The “=” operator is over-

loaded for local assignments and also for remote loads and stores. Increasingly,

o↵-image loads and stores are being viewed as yet another level of the memory

hierarchy [19]. In contrast to OpenSHMEM, CAF employs a predominantly

compiler/language based approach (no separate communications library), in

which parallelism is explicitly part of the Fortran 2008 language. Consequently

the Fortran compiler is potentially able to reorder the inter-image loads and

stores with those local to a particular image.

The CAF language also enforces a local view of computation, requiring

programmers to explicitly manage data locality and communication. Objects

are declared to be co-arrays using an additional syntax operator “[]”. Any

object, both arrays and scalars, can be declared as a co-array and when declared

as such a copy of this object must exist, and be of the same size, on each image

within the overall CAF program. The square brackets essentially assign an

30

2. Background Information

additional dimension (potentially multiple dimensions) to a particular object,

enabling the object to be uniquely referenced by other images. Images can

use the “()” notation to access the elements of a local array but must use a

combination of both notations “()[]” in order to access the elements of remote

co-array objects, whether they reside within the local or a remote node.

Two forms of synchronisation are available within the language, the sync

all construct provides a global synchronisation capability, whilst the sync

images construct provides functionality to synchronise particular subsets of

images. Collective operators have not yet been standardised, although Cray

have implemented their own versions of several commonly used operations.

Additionally no support exists for image “teams” or communicators within the

current Fortran 2008 standard.

The OpenSHMEM Programming Model

The SHMEM programming model was originally developed by Cray for their

T3D systems [81]. Although the technology has existed for some time, it was

only recently standardised in 2012 as part of the OpenSHMEM initiative [40,

157]. Under the OpenSHMEM programming model, communications between

processes are all one-sided and are referred to as “puts” (remote writes) and

“gets” (remote reads). The technology is able to express both intra- and inter-

node parallelism, with the latter generally requiring explicit RDMA support

from the underlying system layers. These constructs also purport to o↵er

potentially lower latency and higher bandwidth than alternative approaches.

OpenSHMEM is not explicitly part of the Fortran and C language standards

and is implemented as part of a library alongside these existing sequential

languages. Processes within OpenSHMEM programs make calls into the library

to utilise its communication and synchronisation functionality, in a similar

manner to how MPI libraries are utilised. The programming model operates

at a much lower-level than other PGAS models, such as CAF, and enables

developers to utilise functionality significantly closer to the actual underlying

hardware primitives. It also makes considerably more functionality available to

application developers.

The concept of a symmetric address space is intrinsic to the programming

model. Each process makes areas of memory accessible to the other processes

within the overall application, through the global address space supported by

the programming model. It is generally implementation-dependent how this

functionality is realised; however it is often achieved using collective functions

to allocate memory at the same relative address on each process.

Only a global process synchronisation primitive is provided natively. To

31

2. Background Information

implement point-to-point synchronisation it is necessary to utilise explicit “flag”

variables, or potentially use OpenSHMEM’s extensive locking routines, to con-

trol access to globally accessible memory locations. The concept of memory

“fences”, which ensure the ordering of operations on remote memory locations,

are also intrinsic to the programming model. Collective operations are part of

the standard, although currently no all-to-one operations are defined, just their

all-to-all equivalents.

2.2.9 Hybrid Programming Models

Hybrid, potentially multi-resolution, programming approaches have been recog-

nised as promising areas of research for enabling applications to achieve the scal-

ability required for exascale levels of computation on future platforms [11, 206,

128]. They typically utilise models such as OpenMP or OpenCL (Sections 2.2.1

and 2.2.2) to express intra-node parallelisation, together with MPI or the PGAS

approaches (Sections 2.2.7 and 2.2.8) for inter-node communication.

A purported advantage of these approaches is that they potentially facili-

tate reductions in overall memory usage, which will be crucial given the trend

towards reduced memory capacities and access bandwidths in future system

architectures (Section 2.1). The use of these programming models can achieve

these reductions by enabling data structures to be shared between di↵erent

threads of execution within the individual systems nodes, which would otherwise

be duplicated within each MPI/PGAS process. The number of MPI/PGAS

processes can also be substantially reduced through the utilisation of these

models, which potentially facilitates improvements in scalability by reducing

the overall amount of memory required by the inter-node communication run-

time systems. Additionally inter-node communication messages can also be

aggregated into fewer larger messages, potentially improving performance in

particular situations, and reducing message injection rate requirements.

This is an extremely active area of research and it has been recognised that

it will be necessary to improve the integration of the inter- and intra-node

runtime systems in order to achieve exascale levels of computation [11, 128].

Additionally, it has also been shown that the optimal ratio of OpenMP to

MPI can change depending on specific application characteristics, the problem

size being simulated and the scale of the particular experiment, necessitating

further research [11]. Similarly how to optimally combine the constructs of

both models within applications is also a subject of much debate. It has been

shown, for example, that for some applications, performance can be improved by

incorporating calls to the MPI routines within OpenMP threaded code regions

rather than within serial code regions [11].

32

2. Background Information

2.2.10 Current & Future Trends

The trend towards many-core devices (Section 2.1.3) and the potential incorpo-

ration of accelerators into future exascale systems will necessitate the creation of

new programming abstractions, including new threading models with improved

thread control semantics for thread placement, launching and synchronisation

as well as more scalable runtime systems [11, 206]. Improving support for

more fine-grained, potentially nested, parallelism within programming models

will also likely become increasingly important [11, 206, 128]. It has also been

recognised that the exclusive use of existing relatively heavy-weight threads

will not be able to meet exascale requirements, necessitating the development

of more light-weight models supporting task parallelism [11, 206, 128]. This,

together with the fact that it is argued that the scalability of OpenMP imple-

mentations needs to be significantly improved in order to facilitate the creation

of exascale systems, indicates that the exploration of programming models

similar to OpenCL may be worthwhile [11]. The ability to coordinate dynamic

task teams is also likely to be required on future system architectures and future

NOC processor designs will likely necessitate the inclusion of topology awareness

within applications at the node level [11, 128].

Data movement has been forecast to be extremely expensive relative to

the cost of floating-point operations in future supercomputer system designs

(Section 2.1.2). This may potentially necessitate the creation of programming

models which are able to capture the cost of data movement and can better

express data locality, in order to reduce the amount of data actually trans-

ferred [11, 206, 196, 115, 128]. The creation of intelligent runtime systems to

handle data movement are also likely to be required, together with increasing

the levels of asynchronicity within applications [11, 128].

Due to the increased levels of parallelism, the consequences of load imbal-

ances are also likely to be considerably more significant at exascale. This may

potentially require new programming models to be considered as alternatives

to SPMD, which may be too restrictive. Strong-scaling is also likely to become

increasingly important in inter-process parallelism, potentially further necessi-

tating a move towards more fine-grained parallel models. Developing topology-

aware communication mechanisms and optimising the mapping of application

processes within the overall interconnect fabric will therefore be increasingly

required. Additionally, undertaking research to improve the underlying scala-

bility of algorithms and software (including both one- and two-sided models)

is also likely to become increasingly important. Similarly programming models

will need to be able to scale from one node up to the full machine size of

an exascale-class system, and it is recognised that both unified and hybrid

33

2. Background Information

programming models are still candidates for achieving this [11].

The portability and productivity of a programming model, across both

machine architectures and applications domains, as well as its ability to deliver

portable performance have been recognised as crucial requirements. Further-

more it is also the case that this will become increasingly di�cult to achieve

on future machine architectures. It is therefore likely that improving the hi-

erarchical interoperability between languages and programming models will be

required, together with an increased use of auto-tuning solutions to improve

the performance portability of applications. Similarly approaches that en-

able expert, performance orientated programmers, as well as domain scientists

(non-expert programmers) to simultaneously collaborate on the development of

software at di↵erent levels of abstraction, are likely to be necessary [11, 128].

Maintaining a clear separation of concerns between the development of sys-

tem components, which has been shown to boost productivity, may also be

required [11, 128].

It has been forecast that the resilience or reliability of future supercomputing

systems will likely become increasingly problematic as the scale, and the levels

of inherent parallelism within them, increase. Applications are unlikely to

be able to rely exclusively on hardware-based error detection and correction

approaches and may therefore need to incorporate explicit mechanisms within

the software [11, 115]. Additionally it is also forecast that the check-point restart

resiliency approach will not scale to exascale capable systems, necessitating

applications to be designed to tolerate hardware failures [11, 128].

2.3 Hydrodynamics Mathematical Foundations

& Applications

This section presents background information on the system of hydrodynamics

equations (Section 2.3.1) which the CloverLeaf mini-application (Section 1.6)

solves. Motivational factors for improving the state-of-the-art within this area

of science are also documented within Section 2.3.2.

2.3.1 Euler’s Equations of Compressible Fluid Dynamics

Euler’s equations of compressible flow [87, 42] are a system of three partial di↵er-

ential equations and are mathematical statements of the conservation of mass,

momentum and energy, Equations 2.1 to 2.3 within Figure 2.1 present these

statements respectively. These are expressed in conservation form although

the numerical method employed in CloverLeaf (Section 1.6) does not conserve

kinetic energy and therefore also the total energy within the system. This is

34

2. Background Information

@⇢

@t

+r · (⇢u) = 0 (2.1)

@(⇢u)

@t

+r · (u⌦ (⇢u)) +rp = 0 (2.2)

@E

@t

+r · (u(E + p)) = 0 (2.3)

pV = nRT (2.4)

in which:
⇢ denotes the mass density
u denotes the velocity vector
E is the total energy per unit volume
p represent pressure
⌦ is a tensor product
0 is the zero vector
V represents volume
n denotes the amount of the gas in moles
R is the universal gas constant
T represents temperature

Figure 2.1: The Euler equations of compressible flow

a natural consequence of the use of a staggered grid (Figure 1.1a), in which

velocities are modeled at the nodes and kinetic energy is modelled separately

to internal energy [24]. Consequently it is only possible to conserve momentum

(mv) and not kinetic energy (mv

2). Internal energy refers to the temperature

of the material within each cell, whereas kinetic energy captures the energy due

to the motion of the material. The greater the internal energy of a cell, the

harder it is to compress.

The right hand sides of Equations 2.1 to 2.3 each sum to 0, this captures

the fact that each particular physical quantity (e.g. mass) is being conserved

and therefore that overall the particular physical property is neither being

created or destroyed. Equation 2.1 states that the rate of change of density

is equal to the divergence of the product of density and velocity. The flow

of density throughout the system therefore has to balance out and sum to zero

overall. Equation 2.2 states that the rate of change of momentum is equal to the

divergence of momentum plus the acceleration term (rp). Specifically, that the

momentum of a cell depends on its existing momentum and the force (F = ma)

which is being exerted on it due to the pressure gradient. Finally, Equation 2.3

captures the conservation of energy principle and states that the rate of change

of energy is equal to the divergence of energy plus pressure, and therefore that

the overall energy of a cell depends on the work being done to it.

35

2. Background Information

A fourth auxiliary equation of state, such as the ideal-gas equation of state

(Equation 2.4), is employed to close the system of equations and enables the

derivation of a unique solution. The ideal-gas equation of state captures the

relationship between the constituent variables in Equations 2.1 to 2.3. It thus

enables the exact physical condition of matter to be modelled, due to the

particular set of properties currently being simulated. For example, it enables

the pressure of each cell to be calculated based on properties such as the internal

energy of each cell. Émile Clapeyron first proposed the ideal-gas law in 1834 as

a combination of Boyle’s law, Charles’ law and Avogadro’s law [208]. Currently

within CloverLeaf the system is solved for three unknown variables: energy,

density and momentum.

The Euler equations are capable of modelling, convecting and creating vor-

ticity and consequently they are often employed to simulate vortical flows caused

by either shocks or artificial mechanisms such as fixed stagnation points [168].

Additionally, they also represent an intermediate point in the hierarchy of

equations which lead to the Navier Stokes equations.

The equations are generally solved using explicit numerical methods due to

the fact that stable hydrodynamics simulation time-steps scale proportionally

to 1/(overall mesh size), which makes explicit time-stepping computationally

tractable. Explicit methods also generally produce second order accurate solu-

tions in both time and space, in contrast to implicit methods which are generally

only first order accurate. Additionally, the use of explicit methods enables

the equations to be solved without the requirement to globally invert a matrix

within the simulating application, thus avoiding a computationally expensive

operation. Implicit methods also do not model physical discontinuities–such as

shock waves or density jumps–very accurately, and can lead to the smearing of

these distinct feature and oscillations.

2.3.2 Motivations for Improving the State-of-the-art

Lagrangian-Eulerian simulation methods have established themselves as one of

the most dominant approaches for solving the hydrodynamic equations for com-

pressible flow [173]. To achieve accurate numerical solutions, a converged mesh

resolution is required. Lagrangian-based approaches can achieve accurate solu-

tions to problems involving multiple materials and moving boundaries, as the

mesh is able to move naturally in unison with the motion of the material [127]. A

purely Lagrangian-based approach can be problematic due to vorticity or strong

shearing forces within the simulation, causing the computational mesh to distort

and potentially become tangled [127, 173]. This necessitates the incorporation of

Eulerian-based approaches to reset or relax the mesh in order to achieve more

36

2. Background Information

accurate solutions. Additionally, for complex flows that generate interacting

shock waves, the mesh resolution required around shock fronts can be very

small when compared to the size of the entire domain.

It is widely recognised that achieving accurate solutions to some of the most

significant challenges in Lagrangian-Eulerian explicit hydrodynamics simula-

tions, across a wide range of scientific domains, require computational resources

that are not currently available [97, 127, 77]. In particular the simulation of

the high-energy hydrodynamic physics processes which scientists rely upon to

understand, for example, the properties of supernovas or space weather, and

the inertial fusion energy (IFE) gain from projects such as the National Igni-

tion Facility (NIF) in the USA, require such scales of computational facilities.

Similarly it has also been recognised that improving current hydrodynamic

simulation capabilities could enable significant advancements in medicine, po-

tentially facilitating the delivery of “real-time” simulations during surgery [117].

To reach the required resolutions/fidelities and reductions in time-to-solution,

huge numbers of floating-point operations and very large amounts of memory are

therefore required. Calculations at this scale require extreme levels of processing

resources, which will only become available with exascale supercomputers.

Exascale capable supercomputing systems will therefore be needed to reach

the required levels of simulation accuracy, and current methods (specifically

algorithms and codes) need to be re-evaluated and significantly improved, if

researchers are to have access to applications which can e↵ectively utilise the

computational capabilities of future computational platforms. Designing and

preparing codes, which can achieve such calculations across a large domain

requires significant additional community research. To date insu�cient work

has been undertaken to examine how explicit hydrodynamics applications can

be optimised to achieve exascale levels of performance and, into the supporting

programming models and technologies which can best facilitate this transition.

CloverLeaf (Section 1.6) is representative of a wide-class of explicit Lagrangian-

Eulerian hydrodynamics applications, including those used to model high-energy

physics processes.

2.4 Summary

This chapter has documented details of the previous, current and likely future

development trends of the hardware components used to construct HPC sys-

tems, as well as the primary design constraints which are currently influencing

their development. The implications of these trends for the future development

of scientific applications, and the software technologies used to construct them,

are also discussed.

37

2. Background Information

Additional background information was presented on several state-of-the-art

intra-node programming models, which are examined within this research. Some

of these are already well-established within the HPC community, whilst others

are relatively new and aim to deliver some of the advanced features (such

as fine-grained parallelism and improved application portability) which will

be necessitated by current hardware development trends, in order for appli-

cations to optimally utilise future hardware platforms. The de facto inter-node

programming model used within HPC application development, MPI, is also

discussed together with several issues which may constrain its scalability on

future system architectures. Furthermore, information on several proposed

alternative solutions (hybrid-programming and PGAS models), which purport

to resolve some of these issues, were also presented. Specifically, the CAF and

OpenSHMEM PGAS models, which are evaluated within this research, were

documented.

Finally, the system of hydrodynamics equations solved by the scientific

applications, which are the focus of this work, were described together with

several motivating factors for improving the capabilities of these applications

for simulating complex phenomena on future platforms.

38

CHAPTER 3
Intra-Node Performance Optimisations

This chapter documents the work undertaken as part of this research to de-

velop techniques for improving the intra-node performance of the CloverLeaf

mini-application, and to thereby also improve the larger production explicit

hydrodynamics applications which it represents. The work focuses exclusively

on the OpenMP-based version of the codebase and examines several candidate

optimisations, ultimately the end goal was to develop an optimal OpenMP-based

version of the codebase. In particular several key objectives included developing

optimisations to improve the performance of the codebase on the Intel Xeon

Phi architecture and in situations in which OpenMP parallelism is employed

across multiple processor sockets and NUMA (Non-Uniform Memory Access)

domains within individual compute nodes. The chapter initially discusses some

related and motivating work within this arena (Section 3.1) and then, in Sec-

tion 3.2, documents the current implementation of the mini-app in the OpenMP

programming model as well as each candidate optimisation examined. The

performance of these potential optimisations on two current state-of-the-art

processor architectures is analysed in Section 3.3. Finally, Section 3.4 concludes

the chapter.

3.1 Related Work

Optimising OpenMP-based applications has been studied extensively for a num-

ber of years and improvements to enhance data locality and NUMA region

a�nity [188, 53] as well as iteration partitioning and scheduling strategies [154]

have been proposed. The performance of nested-parallelism within OpenMP

was studied in [54, 190] using a range of applications and micro-benchmarks.

The scalability of barrier and synchronisation algorithms for OpenMP has also

been examined and various approaches for improving the available synchroni-

sation constructs have been proposed [146]. These include approaches based

on Phasers [181, 180] and point-to-point synchronisation [36]. Developing an

OpenMP implementation for a SOC incorporating a large number of processor

cores was also studied extensively in [49].

Additionally in [126] Liu et al. examine an approach based on the privati-

sation of array sub-sections as a mechanism for converting OpenMP programs

to an SPMD style of computation. To facilitate the implementation of similar

optimisations Hernandez et al. have also developed a tool to analyse the memory

39

3. Intra-Node Performance Optimisations

access patterns of OpenMP programs [83]. Several studies have also evaluated

the performance of the OpenMP programming model at high thread counts on

the Intel Xeon Phi co-processor [170, 37, 43]. The importance of appropriately

vectorising applications on the Xeon Phi co-processor is emphasised in [16, 193],

together with several techniques for improving the levels of vectorisation within

existing applications.

3.2 OpenMP-based Optimisations Examined

This section documents the reference implementation of the OpenMP-based ver-

sion of CloverLeaf as well as the techniques examined (Sections 3.2.1 to 3.2.12)

to improve the single-node performance of the codebase.

The reference implementation is an evolution of the serial version of the code-

base in which OpenMP constructs are utilised to provide intra-node parallelism.

OpenMP parallel regions are employed within each of the 14 computational

kernels i.e. at the lowest level within the call-graph of the application. To

minimise the fork/join overheads inherent in the OpenMP programming model

one parallel region is employed per kernel; each region therefore potentially

encompasses several loop-blocks. To enable individual loop-blocks within the

computational kernels to be parallelised over the available threads, additional

OpenMP do constructs are employed, generally around the outer-loops of each

loop-block. OpenMP private constructs are specified where necessary to create

temporary variables that are unique to each thread, whilst reduction primitives

are employed to implement intra-node reduction operations at two locations.

During this research certain optimisations were applied only to particular

kernels—these are clearly identified in the following sections—whilst others

were implemented throughout the entire codebase. Each technique was initially

utilised in isolation to implement alternative versions of the codebase, however,

several of these techniques were subsequently combined to produce further

versions of the application. Additionally, Section 3.2.13 also describes research

undertaken with the Cray Reveal tool in order to automatically generate an

OpenMP based version of the codebase. Section 3.3 analyses the e↵ect of each

of these alternative approaches on the performance of the mini-app.

3.2.1 First-touch Memory Placement

Modern multi-processor systems generally exhibit non-uniform memory access

times between the local memory sub-system of a processor and those located on

di↵erent processors within the same node. When executing threaded programs

across multiple sockets it is therefore important to ensure that threads primarily

40

3. Intra-Node Performance Optimisations

!$OMP PARALLEL
array=0.0

!$OMP END PARALLEL

(a) Reference

!$OMP PARALLEL
!$OMP DO
DO k=y min , y max

DO j=x min , x max
array (j , k)=0.0

ENDDO
ENDDO
!$OMP END DO

!$OMP END PARALLEL

(b) First-touch

Figure 3.1: The modified “first-touch” memory initialisation approach

access memory resources located in the memory sub-system of their local pro-

cessor and therefore minimise inter-socket memory accesses. Memory locations

allocated by an application are also only mapped into actual physical memory

once they are first accessed or “touched”. Once accessed these allocations will

be mapped into the memory sub-system physically local to the processor on

which the particular accessing thread is executing.

The reference implementation originally employed an approach which ini-

tialised each entire 2D-array using Fortran 90 array assignment syntax within

an OpenMP parallel region (Figure 3.1a). This created a data-race condition

in which each OpenMP thread attempted to initialise all array elements. This

was not detrimental to performance when threads were contained within one

processor socket as regardless of the thread execution orderings all memory

locations were mapped to the same physical memory sub-system of the local

processor. The initialisation code was also located outside of the main timing

loop of the application. In situations in which OpenMP parallelism is utilised

across multiple sockets, however, this approach resulted in significant memory

a�nity problems.

To address this situation a modified approach (Figure 3.1b) was implemented

which ensured that each thread only initialised the memory locations for which

it was directly responsible, thus ensuring that these memory locations were

physically mapped as close as possible to the particular thread. In this modified

implementation the additional double-loop block and the OpenMP do paralleli-

sation construct ensures that individual threads will only access particular sets

of rows from the 2D-array (named “array” in Figure 3.1) and that these sets will

be contiguous but non-overlapping between di↵erent threads. Versions which

employ this modified “NUMA-aware” approach contain the acronym ft (First

Touch) within their descriptions in Section 3.3.

41

3. Intra-Node Performance Optimisations

3.2.2 Array-of-arrays Data Structure

Memory allocations are, however, physically mapped into the memory sub-

system of a node at the granularity of individual memory pages. This occurs

when a memory location allocated within the particular memory page is first

accessed, the page is then mapped into the memory sub-system which is directly

connected to the processor on which the accessing thread is executing. It

is therefore possible, and often the case, for the contiguous sets of memory

locations accessed by di↵erent threads to reside within the same memory page.

This does not usually represent a problem when OpenMP is only utilised within

individual sockets, as no matter which thread “touches” this memory first,

the page containing the memory locations for all of the threads will always be

mapped into the same memory sub-system, which is local to all of the executing

threads. When OpenMP is utilised across multiple sockets, however, this can

result in the creation of race conditions between threads located on di↵erent

sockets, potentially allowing the particular memory locations to be mapped onto

any of the sockets within the node, depending on thread execution orderings.

This is particularly problematic when huge-pages are utilised to reduce pressure

on the TLB (Translation Lookaside Bu↵er) sub-system and can result in large

amounts of memory being mapped onto the wrong sockets in a sub-optimal

manner. This causes threads to incur additional overheads by having to access

memory locations across the inter-socket bus network.

To ensure that the memory locations managed by di↵erent threads are always

allocated on di↵erent memory pages, the data structures within the application

were modified from standard 2D-arrays into an “array-of-arrays” configuration.

In this approach each 2D-array, which contains information on a particular

physical property (e.g. density), is split into one “top-level” array which contains

multiple sub-arrays, one for each row of the original 2D-array. The sub-arrays

are each allocated and initialised separately by the thread which is responsible

for managing those particular memory locations, ensuring that each is located

on a separate memory page. Thus each sub-array will be mapped within the

local memory sub-system of the processor on which its managing thread resides,

regardless of any di↵erences in thread execution orderings. This optimisation

is therefore mainly targeted at improving application performance in situations

when OpenMP is employed across multiple sockets within each system node

(e.g. one MPI process per node). Within Section 3.3 versions which employed

this optimisation contain the acronym AoA (Array of Arrays) within their

descriptions.

42

3. Intra-Node Performance Optimisations

3.2.3 Data Alignment & Cache Line Padding

To potentially increase the e�ciency of load and store memory operations as well

as to assist compilers with the implementation of optimisation techniques such

as automatic vectorisation, additional versions of the codebase were created

which incorporated specific directives to align all data arrays on appropriate

byte boundaries. This was achieved under the Intel software tool-chain using

a combination of compiler options (e.g. -align arraynbyte) and source code

directives (!dir$ attributes align:64 :: array) to inform the compiler to

align the particular data arrays. As compilers cannot generally assume that

arbitrary data passed into subroutine calls is appropriately aligned, additional

source code directives (e.g. !dir$ attributes align:64 :: array and !dir$

vector aligned) were also employed, at the required locations throughout the

codebase.

To eliminate any “false sharing” of cache lines between OpenMP threads and

further improve data alignment additional versions were created which inserted

redundant memory locations into the array allocations. These “padded” the

rows of the arrays such that each starts on an appropriately aligned cache line

boundary. This ensures, therefore, that no cache lines are shared for writing,

between two di↵erent threads. Versions which employed this optimisation con-

tain the word Cpadd within their descriptions in Section 3.3, whereas versions

which utilise the previous data alignment optimisations are denoted using the

word Align.

3.2.4 High-level OpenMP Parallel Region

When a process encounters an OpenMP parallel region a number of threads

are created, or “forked”. An implicit global synchronisation operation also exists

at the end of each parallel region, at which point threads are “joined” back

into the main process thread and control continues serially. The reference

implementation employs a design strategy in which one parallel region is

utilised per computational kernel. Consequently the invocation of each kernel

routine forces the OpenMP runtime to initially “fork” control to the required

number of threads at the start and “join” these threads back into the main

process at the end of its execution. This potentially incurs significant additional

overheads particular for large thread counts.

To potentially alleviate these threading overheads an additional version was

developed which raised the OpenMP parallel regions from each bottom-level

kernel and combined them within the main top-level application routine. In

this modified approach the start of the one remaining parallel region is only

encountered once during the execution of the application. The threads created

43

3. Intra-Node Performance Optimisations

within this region are thus maintained throughout the entire execution of the

application and are only “joined” back into the main process at the end of

this “top-level” routine, i.e. when the application is terminated. This also

required the inclusion of additional OpenMP directives such as !$omp master

and !$omp barrier at critical points throughout the program, and the creation

of additional thread-private variables, in order to prevent race-conditions

and ensure program correctness. Versions which incorporated this candidate

optimisation are denoted by the acronym hlpr (High Level Parallel Region)

within their descriptions in Section 3.3.

3.2.5 Duplicating Constant Data per NUMA-region

CloverLeaf utilises several 1D-arrays to store particular properties relating to

the simulated mesh cells. Once initialised the values stored within these arrays

remain constant throughout the execution of the application. When the refer-

ence OpenMP implementation is utilised across multiple sockets these arrays are

generally stored such that half of the elements in each array are located within

each NUMA-region. All of the values within these arrays are required by each

application thread; consequently this results in significant numbers of memory

accesses across the inter-socket communication bus to the remote NUMA-region.

As the contents of these arrays remain constant throughout the execution

of the application it is possible to create copies of each array which reside

exclusively within a particular NUMA-region and for each application thread

to be configured to only access its local copy of a particular array. To examine

the e↵ect of eliminating these remote memory references on the performance

of the application, additional versions were developed which incorporate this

optimisation (denoted by the word dupConst within Section 3.3). In these

versions the array copies are created during the initialisation phases of the appli-

cation, pointers—which are declared as private to each application thread—are

then initialised to reference the local copy of a particular array within each

thread. Threads thus proceed to access these arrays through the appropriate

local pointer. The implementation of the High-level OpenMP Parallel Region

optimisation described in Section 3.2.4 is required in order for the contents of

these pointer variables to persist throughout the execution of the application.

3.2.6 Explicit Loop Schedules

To automatically parallelise the loop iterations across the available threads,

the reference implementation utilises OpenMP do directives, generally on the

outer loop of the double loop-blocks within each kernel. In this approach the

OpenMP runtime system calculates how to actually partition the iterations

44

3. Intra-Node Performance Optimisations

of each loop-block when the corresponding do directive is encountered, based

on the total number of iterations and whether particular schedule clauses are

specified. An additional optimisation was therefore implemented, which utilised

explicit iteration allocations between threads for each loop-block, to remove

any overheads incurred due to the OpenMP runtime loop partitioning and

scheduling. These schedules are pre-calculated during application initialisation,

depending on the particular problem size being simulated, and are stored within

pairs of dedicated arrays which each contain one entry for each OpenMP thread.

One array contains the starting iteration number of each thread for a particular

loop-block, whilst the second array stores the final iteration number. Upon

encountering a particular loop-block each thread uses its identification number

to access its unique location within these arrays and to obtain the iteration range

which it should process (Figure 3.2). The OpenMP do directives can thus be

completely removed from the loop-blocks. Versions which employ this candidate

optimisation contain the initials ELS (Explicit Loop Schedules) within their

descriptions in Section 3.3.

3.2.7 Inter-thread Synchronisation Elimination

Reducing synchronisation within applications is recognised as a potential op-

timisation to increase the scalability of OpenMP applications. OpenMP do

constructs contain an implicit global synchronisation at the end of each con-

struct, which is often not required by the application. In situations in which

no dependencies exist between threads, nowait directives were added to the do

constructs to remove the implicit synchronisation operations. Versions which

employ this technique contain the word nowait within their descriptions in

Section 3.3.

3.2.8 Reducing Inter-thread Synchronisation

In situations in which dependencies do exist between threads it is frequently the

case that these are only present between immediately adjacent pairs of threads,

e.g. due to stencil operations in the y-dimension of the mesh. Consequently

global barrier operations, which synchronise all of the threads, are often not

required, potentially computationally expensive and do not allow for the exe-

cution of di↵erent code regions to be overlapped between di↵erent threads. To

examine whether alternative approaches, which reduce overall synchronisation

requirements, could deliver any performance benefits an approach, similar to

the pseudo code in Figure 3.2 was implemented. This utilises explicit point-to-

point synchronisation operations between threads, and was implemented for the

Cell-Advection kernel within CloverLeaf.

45

3. Intra-Node Performance Optimisations

!$OMP PARALLEL
t i d = omp get thread num ()

k=l oopb l o ck1 y s t a r t (t i d)
DO j=x min , x max

. . . l oopb lock1 code . . .
ENDDO

!$OMP FLUSH(data arrays)
Update l o opb l o ck2 l o ck s (t id �1)
!$OMP FLUSH(loopb l o c k2 l o ck s)

DO k=loopb l o ck1 y s t a r t (t i d)+1 , loopblock1 yend (t i d)
DO j=x min , x max

. . . l oopb lock1 code . . .
ENDDO

ENDDO

DO k=loopb l o ck2 y s t a r t (t i d) , loopblock2 yend (t i d)�1
DO j=x min , x max

. . . l oopb lock2 code . . .
ENDDO

ENDDO

!$OMP FLUSH(loopb l o c k2 l o ck s)
Busy wait on l o opb l o ck2 l o ck s (t i d)
Reset l o opb l o ck2 l o ck s (t i d)
!$OMP FLUSH(data arrays)

k=loopblock2 yend (t i d)
DO j=x min , x max

. . . l oopb lock2 code . . .
ENDDO

!$OMP END PARALLEL

Figure 3.2: OpenMP point-to-point synchronisation approach

To achieve this an array of lock variables was created for each loop-block

which has a potential dependency on a loop iteration executed by another

thread. These arrays are appropriately aligned and include su�cient memory

padding to ensure that each lock resides on a completely separate cache line to

avoid access conflicts and excessive cache-coherency tra�c. Threads set these

lock variables to indicate to their neighbouring threads that they have completed

a particular operation and written their results to memory. Consumer threads

are configured to continue execution until they require data produced by another

thread, at which point they utilise “busy-wait” operations on the appropriate

lock. OpenMP flush directives are employed to ensure data and locks are

appropriately written back to, and read from, memory rather than cache. This

approach also requires the utilisation of the explicit loop schedules described in

Section 3.2.6.

Frequently it is the case that these inter-thread dependencies only exist

between the first iteration of a loop-block in one thread and the last iteration of

a subsequent loop-block in another thread. Figure 3.2 depicts such a situation.

In cases such as these it is possible to separate the first iteration of loop-block

46

3. Intra-Node Performance Optimisations

1 from the main body of the loop and to update the appropriate lock variable

immediately following its execution, to communicate that the dependency is

satisfied. As only the last iteration of the second loop-block contains the

inter-thread dependency, this can also be separated from the main loop body,

with a “busy-wait” operation being employed between them to ensure that

the dependency is satisfied before a particular thread executes this iteration.

Assuming computational load is well-balanced between threads, and the runtime

interleaves thread executions fairly, this arrangement should ensure that threads

do not have to synchronise (“busy-wait”), as by the time the last iteration of

the second loop is reached, its dependencies should generally have already have

been satisfied. This approach contributes to increasingly asynchronicity levels

within applications as well as overlapping thread executions. Versions which

incorporate these point-to-point synchronisation approaches are denoted using

the word p2psync within Section 3.3.

Additionally, to completely eliminate any inter-thread synchronisation con-

structs the use of an explicit recalculation approach was also examined. In

this approach when a dependency exists between two threads the code was

re-factored to enable the “consuming” thread to actually calculate the required

values rather than relying on the original “producing” thread. This typically

involved a thread temporarily recalculating values for a row which is either

immediately above or below it in the overall mesh. These would originally have

been produced by the immediately adjacent threads within the overall decom-

position. The threads store the recalculated values within temporary variables,

with the original thread producing the final values which are ultimately stored

within main memory. Versions which incorporate the recalculation approach

to reduce inter-thread synchronisation are denoted using the word recalc in

Section 3.3.

3.2.9 Thread-private Temporary Variables

Several computationally intensive kernels in the reference implementation utilise

global 2D-arrays to store temporary intermediary values required throughout

the execution of a particular kernel. Through the use of OpenMP thread-private

temporary variables it was possible to reduce, and in some cases eliminate, the

use of these temporary arrays. This ultimately has the e↵ect of reducing the

overall number of global memory operations within these kernels and also the

overall memory storage requirements of the application. A detailed analysis

of the codebase enabled this optimisation to be applied to the Cell-Advection,

Momentum-Advection, PdV, Accelerate and Calc-DT kernels, which each per-

form a particular phase of the overall hydrodynamic simulation implemented

47

3. Intra-Node Performance Optimisations

!$OMP DO PRIVATE(. . . , temp array) REDUCTION(MIN : dt min va l)
DO k=y min , y max

!DIR$ SIMD VECTORLENGTH(CALCDTVECTORLENGTH)
DO j=x min , x max

.

.

.
temp array (MOD(j �1,CALCDTVECTORLENGTH)) = MIN(. . .)
dt min va l = MIN(dt min val ,MINVAL(temp array))

ENDDO
ENDDO

!$OMP END DO

Figure 3.3: The “vectorising” version of the Calc-DT kernel

within CloverLeaf. Versions which utilised this optimisation are denoted using

the description privateVars within Section 3.3. Implementing this optimisation

frequently required the merging of loop-blocks within each kernel, when this

was required for a particular version it is denoted using the word merge in the

descriptions within Section 3.3.

3.2.10 Loop Vectorisation

An analysis of the vectorisation reports produced by the compiler for the refer-

ence implementation identified that the second loop-block within the Calc-DT

kernel, which contained a reduction operation, could not be successfully vec-

torised. To enable this kernel to be fully vectorised by the compiler a subsequent

version was developed (see Figure 3.3) in which the reduction loop was merged

into the main loop-block of the kernel and the 2D-temporary array replaced

with a smaller array of the same size as the vector length of the particular

architecture. A !dir$ simd vectorlength(calcdtvectorlength) directive

was then applied to the inner loop of the kernel in order to ensure that the

compiler generated vectorised operations of a particular width, equal to the value

of calcdtvectorlength. This was passed into the kernel via the compiler’s

pre-processor facility. The array was populated using the inner loop index to

ensure that adjacent iterations store their values in di↵erent but contiguous

array locations. This array variable was also declared as private to ensure that

each thread maintained its own copy in which to accumulate temporary values.

On the system containing the Xeon Phi processor architecture a later version

of the Intel compiler was available which was able to successfully vectorise this

kernel after only the loop merger and temporary 2D-array elimination optimi-

sations. The versions denoted by Kernel Opts within Section 3.3 incorporate

these optimisations.

This analysis also identified that the Field-Summary kernel was also not be-

ing successfully vectorised by the compiler. The vectorisation reports produced

48

3. Intra-Node Performance Optimisations

by the compiler identified that this was due to a perceived iteration dependency

within a double loop-block nested within the main kernel loop-block. Manually

unrolling this nested inner loop-block enabled the compiler to successfully vec-

torise the kernel. The versions denoted by the description Kernel Opts within

Section 3.3 also incorporate this optimisation.

3.2.11 Accelerate Kernel Optimisations

The reference implementation of the Accelerate kernel was implemented as

a series of five consecutive loop-blocks each of which was parallelised using

OpenMP do constructs. To potentially improve the performance of this kernel

several candidate optimisations were examined, including applying OpenMP

nowait directives to each loop-block to eliminate the synchronisation operations

between them, versions which utilised this optimisation are denoted using the

description nowait within Section 3.3. A subsequent version (denoted by the

word merge) also examined the e↵ect of manually merging these loop blocks

together into one larger loop-block. Building on this an additional version

(denoted by the word privateVars) examined a further optimisation which em-

ployed several temporary thread-private variables to eliminate the use of a global

2D-array, which was used to store temporary values within the original kernel.

This also reduced the number of global memory operations required to update

the persistent global 2D-arrays. The versions denoted by Kernel Opts within

Section 3.3 also incorporate these optimisations.

3.2.12 Update-Halo Kernel Optimisations

The Update-Halo kernel performs boundary reflections around the edges of the

mesh region assigned to each process. In the reference version this kernel is

implemented via collections of four double-nested loop blocks (one for each mesh

edge). This arrangement is also repeated for each data-field whose values need

to be reflected. As the x -dimension of each mesh is stored within contiguous

memory locations it is generally more e�cient for each thread to access memory

sequentially along the rows of each array. This necessitates that the inner j -loops

traverse each row and for the OpenMP parallelism to be applied to the outer

k -loops which iterate over individual rows. For the halo-updates to the top and

bottom mesh edges this arrangement would involve the OpenMP parallelism

being applied to a loop with a very short trip-count and therefore only gener-

ating a small number of threads, which would be ine�cient. Consequently the

reference implementation is constructed using inner k -loops and outer j -loops

for the top and bottom halo-exchanges, which results in a sub-optimal memory

access pattern. To potentially improve on this arrangement an additional version

49

3. Intra-Node Performance Optimisations

(referred to as UHinter) was therefore created. In this modified version the

original loops for the top and bottom mesh exchanges were interchanged, and

an OpenMP collapse(2) directive was applied on the now outer k -loops. This

causes the two loops to be coalesced into one larger iteration space and for this

modified loop-structure to then be parallelised across application threads.

When OpenMP thread teams are utilised across multiple sockets this also re-

sults in the top and bottom mesh edges each being stored exclusively within the

local memory locations of di↵erent processors, assuming two sockets per node.

Performing the memory copy operations on each of these edges sequentially, as

the reference implementation does, thus results in half of the threads accessing

memory locations on the remote socket. A further potential optimisation was

therefore examined which enabled this kernel to operate on both mesh edges

simultaneously. The memory locations of each edge are therefore processed

by only a subset of the threads which have an a�nity to the processor that

is strictly local to the memory locations of the particular edge. This was

implemented using two levels of nested -parallelism and OpenMP v4.0 thread

placement constructs. The first level of parallelism specifies that two threads

should be created (num threads(2)); and that by using the proc bind(spread)

directive each should be located on di↵erent processor sockets. Two lower-level

OpenMP parallel regions were then subsequently employed, one per edge,

each of which was contained within a separate OpenMP sections construct.

A further num threads(X) proc bind(close) directive was utilised on these

lower-level parallel regions to ensure that the required number of threads is

created with an a�nity to only the particular local processor. Versions which

employed this candidate optimisation are denoted by the word UHnested within

their description in Section 3.3.

The reference kernel implementation also performs a global synchronisation

operation after each loop-block which operates on a particular edge of the mesh.

To potentially reduce the number of synchronisation operations required, the

kernel was restructured into two distinct phases. The first phase performed the

necessary memory operations on both the top and bottom mesh edges, whilst

the second operated exclusively on only the left and right edges. OpenMP

nowait directives were applied to each loop-block within the kernel to remove

the implicit synchronisation operation which occurs by default at the end of each

OpenMP do construct. One OpenMP barrier construct was then employed

between the two phases to provide the minimum synchronisation required by

the hydrodynamics algorithm and ensure correct execution orderings. Versions

which employed this optimisation are referred to using the word UHnowait

within the descriptions in Section 3.3.

50

3. Intra-Node Performance Optimisations

3.2.13 Automatic Application Hybridisation

It has been recognised that incorporating OpenMP directives into existing ap-

plications can be an extremely complex and time-consuming task. To alleviate

this problem Cray developed the Reveal tool to automatically hybridise applica-

tions. Reveal provides functionality to perform an automated scope analysis of

particular loop-blocks and to insert suggested OpenMP directives, for variable

scoping and loop partitioning, into the codebase. As part of this research the

tool was utilised to automatically hybridise the serial version of the CloverLeaf

codebase, in order to produce a new hybrid version, denoted with the description

reveal within Section 3.3. The tool successfully scoped all of the loop-blocks

with the exception of three variables, for which it requested user assistance and

correctly recognised all of the required reduction constructs. After additional

scoping information was specified the generated code was verified to be correct

and its performance is analysed within Section 3.3. The data-parallel nature of

the CloverLeaf kernels does make it significantly easier for Reveal to generate

the required scoping information also the tool is not yet able to automatically

generate code which incorporates multiple loop-blocks within the same OpenMP

parallel region.

3.3 Results Analysis

The aim of this research was to explore techniques for improving the time-to-

solution achievable using the OpenMP-based version of CloverLeaf, therefore

the results presented here are expressed in terms of execution wall-time. This

analysis was conducted in two parts, firstly the utility of certain candidate

optimisations within individual application kernels was assessed. This utilised

the kernel driver functionality contained within the CloverLeaf software suite;

Section 3.3.1 presents the results of this analysis. Secondly, the e↵ectiveness of

the successful optimisations on the full application codebase was then examined,

together with several additional candidate optimisations; Section 3.3.2 contains

the results of this analysis.

To examine the e↵ectiveness of these optimisations at improving the per-

formance of the codebase, when OpenMP parallelisation constructs are utilised

across NUMA-domains, the dual-socket nodes of the Archer platform (which

are based on Intel Xeon processors) were utilised. Additionally, in order to

assess their utility on a current state-of-the-art high core count processor de-

vice, a series of experiments were also conducted using the Intel Xeon Phi

co-processor within the Tuck system. This enabled the determination of whether

certain optimisation techniques will be required within future applications, as

51

3. Intra-Node Performance Optimisations

the construction of HPC platforms progresses towards processing devices which

integrate larger numbers of CPU cores, which is a current trend within the

HPC/Scientific computing field. Section A.1 contains more detailed information

on the architectures of both of these experimental platforms.

The 3,8402 cell problem, from the standard CloverLeaf benchmarking suite,

was examined in these experiments. Additionally to reduce the e↵ects of system

noise, unless otherwise noted, the results presented here are averages from 3

separate executions of each experiment. Version 14.0 of the Intel compiler

suite was utilised throughout this work and all of the experiments on the Xeon

Phi co-processor were conducted with the platform in “native” mode. On the

CPU-based nodes of Archer each experiment utilised 24 OpenMP threads and

the KMP AFFINITY environment variable was set to explicitly bind each thread to

a specific processor core. On the Xeon Phi platform, however, each experiment

was conducted using 120 OpenMP threads with two consecutive threads exe-

cuted on successive processor cores (KMP AFFINITY=granularity=fine, balan-

ced; KMP PLACE THREADS=60c,2t). Previous experiments have shown this to

be the most performant configuration for this architecture. The IEEE floating-

point mathematics options were also enabled in all experiments on Archer,

whilst on the Xeon Phi these options were disabled.

3.3.1 Individual Kernel Optimisation Analysis

The following sections and Figures 3.4 to 3.10 each examine the e↵ect on perfor-

mance of applying particular optimisation techniques to individual application

kernels.

Cell-Advection Kernel Optimisations

The e↵ect of applying a series of optimisations to the Cell-Advection kernel was

explored in a number of experiments. This involved examining the utility of

the NoWait construct (Section 3.2.7), the explicit loop schedules (Section 3.2.6)

and the point-to-point synchronisation mechanisms (Section 3.2.8), as well as

the variable privatisation techniques (Section 3.2.9). In these experiments the

kernel was executed for 1,000 and 500 iterations on the CPU and Xeon Phi

architectures respectively, Figure 3.4 presents the results of these experiments.

Although the results contain some similar trends on both architectures they

also exhibit some important di↵erences. Implementing the variable privatisation

optimisation to eliminate four 2D temporary arrays and the associated global

memory operations delivers significant performance advantages on both archi-

tectures. The results show that this improves performance by as much as 27.2%

on the CPU architecture and by 7.8% on the Xeon Phi platform.

52

3. Intra-Node Performance Optimisations

0 20 40 60 80 100 120

Reference

NoWait

ELS X

ELS Y barrier
barrier

ELS Y p2psync
barrier

ELS Y p2psync
p2psync

ELS Y recalc
barrier

ELS Y recalc
p2psync

PrivateVars

wall-time (secs)

Dual-socket Xeon Xeon Phi

Figure 3.4: Optimisations to the Cell-Advection kernel

Applying the NoWait optimisation to the x -direction loop-blocks within the

kernel and the explicit loop schedules optimisation to both the x - and y-direction

loops (ELS X and ELS Y barrier barrier), however, does not have a significant

e↵ect on the overall performance of the kernel on either architecture.

Employing the point-to-point synchronisation optimisations (Section 3.2.8),

a↵ects performance di↵erently on both processor architectures. The advection

phase of the kernel in the y-direction contains three loop-blocks and this tech-

nique was utilised to reduce the synchronisation operations between successive

pairs of these loop-blocks. The naming conventions used in Figure 3.4 indicates

which technique was used between each particular pair of loop-blocks. For

example, the ELS Y recalc p2psync experiment employs the recalculation tech-

nique between the first two loop-blocks and the point-to-point synchronisation

technique between the second pair of loop-blocks.

On the CPU architecture these candidate optimisation techniques do not

deliver any significant performance benefits as the results show that execution

time is virtually identical, allowing for system noise, to that of the reference

implementation. The results from the experiments on the Xeon Phi architecture,

however, show that employing either the p2psync or recalc techniques between

the first two loop-blocks and the p2psync technique between the second pair

53

3. Intra-Node Performance Optimisations

Reference Merge Loops
Direction 1

Merge Loops
Direction 2

Private
Variables

Private
Variables &
Merge Loops

0

50

100

150

w
a
ll
-t
im

e
(s
ec
s)

Dual-socket Xeon Xeon Phi

Figure 3.5: Optimisations to the Momentum-Advection kernel

of loop-blocks does delivery some performance advantages on this platform. In

these experiments the reference implementation required 122.8s on average to

complete the required iterations with a standard deviation (�) of 0.49s. The

optimised version which utilised the p2psync synchronisation technique between

both loop-blocks (ELS Y p2psync p2psync), however, improved performance by

3.7s (3.0%) on average, and a � value of 0.3s was recorded. Additionally,

the ELS Y recalc p2psync version increased performance by 3.2s (2.6%) on

average, with a � of 0.13s. The performance of the versions which employed a

global OpenMP barrier operation between at least one pair of loop-blocks was

practically identical to that of the reference implementation.

Although these performance improvements are relatively small the fact that

they only occur at the large thread counts utilised on the Xeon Phi co-processor

indicate that these techniques may become increasingly important as the archi-

tecture of future processor devices forces application developers to significantly

increase the levels of “threading” within their software designs. It should also be

noted that the kernels of this application have already been heavily optimised

and therefore achieving any performance improvements is both extremely chal-

lenging and worthwhile. Additionally, even small percentage improvements in

performance can result in considerable financial cost savings when applications

are executed at considerable scale.

Momentum-Advection Kernel Optimisations

As part of this research the e↵ect on performance of merging particular loop-

blocks within the Momentum-Advection kernel was examined in a series of

experiments. Additionally, the use of the techniques described in Section 3.2.9,

for reducing the use of global array data structures to store intermediary results

within the kernel was also examined. Figure 3.5 presents the results from these

experiments.

54

3. Intra-Node Performance Optimisations

Reference NoWait MergeLoops MergeLoops &
PrivateVars

0

50

100

w
a
ll
-t
im

e
(s
ec
s)

Dual-socket Xeon

Xeon Phi

Figure 3.6: Optimisations to the Accelerate kernel

The results show that on the CPU architecture merging several of the loop-

blocks within both the x - and y-directions of the kernel delivers a 2.7% and

a 1.7% improvement in performance respectively. Additionally applying the

Private Variables optimisation to eliminate one global 2D temporary array, and

the associated global memory accesses, delivers a further 2.4% performance

improvement. Combining these optimisations improves the overall performance

of the kernel by 7.74% relative to the reference implementation. On the Xeon

Phi architecture, however, these improvements are less successful. The imple-

mentation of the Private Variables technique and the optimisation to merge the

x -direction loops only deliver a ⇠1% improvement in performance. The merging

of the loops in the y-direction, however, actually has a slightly detrimental e↵ect

on performance of -0.2%. Collectively these optimisations only improved the

performance of the kernel on the Xeon Phi architecture by <1%.

Accelerate Kernel Optimisations

The e↵ect of applying the Loop-merger and Private Variables optimisations to

the reference implementation of the Acceleration kernel, as well as employing

OpenMP NoWait directives to remove synchronisation operations, are shown in

Figure 3.6. In these experiments the kernel was executed for 4,000 iterations

on the CPU architecture and for 2,000 iterations on the Xeon Phi processor.

The results indicate that on both the CPU and Xeon Phi processor architectures

employing the NoWait directives delivers negligible performance benefits for this

kernel. Manually merging the loop-blocks within the kernel, however, delivers

significant performance improvements, with these reaching 1.8⇥ and 1.34⇥ on

the CPU and Xeon Phi architectures respectively. Additionally, combining this

technique together with the optimisation to convert global temporary arrays

to Thread-private variables delivers further performance benefits of 1.2⇥ and

1.1⇥ respectively.

55

3. Intra-Node Performance Optimisations

Reference MergeLoops &
Vectorised

0

50

100

w
a
ll
-t
im

e
(s
ec
s)

Dual-socket Xeon Xeon Phi

Figure 3.7: Optimisations to
the Calc-DT kernel

Reference Private
Variables

0

50

100

w
a
ll
-t
im

e
(s
ec
s)

Dual-socket Xeon Xeon Phi

Figure 3.8: Optimisations to the
PdV kernel

Calc-DT Kernel Optimisations

Applying the Loop-merging and Vectorisation optimisations described in Sec-

tion 3.2.10 to the Calc-DT kernel improves performance on both processor archi-

tectures examined here. Figure 3.7 presents the results from these experiments

and shows that these optimisations reduced the runtime of the kernel by 12.9%

on the CPU architecture and by 11.7% on the Xeon Phi. In these experiments

the kernel was executed for 10,000 and 2,000 iterations on the CPU and Xeon

Phi processor architectures respectively.

PdV Kernel Optimisations

Similarly applying the optimisation described in Section 3.2.9 to convert the

global arrays, utilised within the PdV kernel to store temporary values, to

Thread-private temporary variables also delivers similar performance improve-

ments. Figure 3.8 presents the results of this analysis and shows that this

optimisation improves the performance of the PdV kernel by 13.0% on the CPU

architecture and by 7.1% on the Xeon Phi. In these experiments the kernel was

executed for 5,000 iterations on the CPU architecture, whilst on the Xeon Phi

it was executed for 3,000 iterations.

Update-Halo Kernel Optimisations

The performance of the optimisations described in Section 3.2.12 to the Update-

Halo kernel was also examined in a series of experiments, the results of which

are presented in Figure 3.9. In these experiments the kernel was executed

for 500,000 iterations on the CPU architecture and for 50,000 on the Xeon

Phi processor. The results show that employing the OpenMP v4.0 process

56

3. Intra-Node Performance Optimisations

Reference UHInter UHnowait UHnested

0

50

100

150
w
a
ll
-t
im

e
(s
ec
s)

Dual-socket Xeon

Xeon Phi

Figure 3.9: Optimisations to the Update-Halo kernel

placement constructs together with Nested -parallelism to restructure the com-

putation across the NUMA-domains within the node, actually has a detrimental

e↵ect on performance. This caused a 1.67⇥ slowdown, relative to the reference

implementation, on the CPU architecture.

Manually reordering certain loops within the kernel and employing the Coll-

apse OpenMP directive to improve the memory access patterns of the kernel

delivers a performance improvement of 1.13⇥ on the CPU architecture, however,

on the Xeon Phi co-processor it causes a performance slowdown of 1.1⇥. An

analysis of the vectorisation reports produced by the compiler indicates that

this is likely due to the compiler generating more optimal vector code for the

reference implementation, as on this architecture it is able to automatically

permute the loops within this original implementation.

Restructuring the kernel into two distinct phases to reduce the number of

global synchronisation operations from a worst case of 60 down to 2, however,

delivers significant performance improvements on both platforms. On the CPU

architecture the results show that this optimisation delivers a 1.96⇥ improve-

ment in kernel performance compared to the reference implementation, whilst

on the Xeon Phi it achieves a 2.35⇥ speedup.

Field-Summary Kernel Optimisations

Figure 3.10 presents the results of the experiments which examined the e↵ect

of applying the optimisations described in Section 3.2.10 to the Field-Summary

kernel. In these experiments the Field-Summary kernel was executed for 10,000

and 2,000 iterations on the CPU and Xeon Phi architectures respectively. The

results show that by enabling this kernel to be successfully vectorised delivered a

1.14⇥ improvement in the performance of this kernel on the CPU architecture.

On the Xeon Phi architecture, however, the performance improvement was

significantly greater, reaching 4.77⇥ relative to the performance of the reference

version. This demonstrates the importance of fully vectorising loop-blocks on

the Xeon Phi co-processor.

57

3. Intra-Node Performance Optimisations

Reference Loop Unrolled &
Vectorised

0

20

40

60

80

100

w
a
ll
-t
im

e
(s
ec
s)

Dual-socket Xeon

Xeon Phi

Figure 3.10: Optimisations to the Field-Summary kernel

3.3.2 Application Performance Analysis

Following the performance analysis conducted using the individual application

kernels a series of experiments was subsequently undertaken using the full

CloverLeaf codebase. These examined the e↵ectiveness of a series of optimi-

sations which targeted the entire codebase as well as the e↵ect of incorporating

the most successful individual kernel optimisations into the full application.

In these experiments the application was configured to simulate the 3,8402 cell

problem for 87 timesteps, which is a standard configuration from the CloverLeaf

benchmarking suite. Figures 3.11 and 3.12 present the results from these ex-

periments on both the dual-socket CPU and Xeon Phi processor architectures

respectively. Each of the following sections analyses the utility of a specific

optimisation technique.

First-touch Memory Placement

The results show that when the reference OpenMP implementation is executed

across multiple CPU sockets it experiences a significant degradation in perfor-

mance due to sub-optimal data placement across the di↵erent NUMA-domains.

Applying the first-touch memory placement optimisation (Section 3.2.1) im-

proves performance, relative to the reference implementation, by 14.8% on the

dual-CPU architecture. On the Xeon Phi co-processor, however, this optimisa-

tion does not deliver any performance benefits and the runtime of this version is

practically identical to that of the reference implementation. All subsequent ver-

sions examined in these experiments therefore include this first-touch memory

placement optimisation.

Array-of-arrays Data Structure

As memory is allocated at the granularity of individual memory pages it is

possible for the locations directly managed by a particular thread to be located

58

3. Intra-Node Performance Optimisations

0 5 10 15 20 25 30 35 40

Reference

FirstTouch

AoA

Cpadd

Cpadd Align

hlpr

hlpr reduceSync

hlpr reduceSync
dupConst

ELS

Reveal FT

Full Var
Scoping

NoWait

Kernel Opts

wall-time (secs)

Dual-socket Xeon

Figure 3.11: Application optimisations on the dual-socket CPU architecture

within the remote NUMA-domain of the node. This is due to these locations

being assigned to a memory page which is accessed first by a thread located on

the other CPU socket. An experiment was therefore conducted using a code

variant which incorporated the Array-of-arrays modification (Section 3.2.2) to

the codebase to potentially alleviate this problem. The results, however, show

that constructing the codebase to utilise this data structure actually leads to a

reduction in performance of 3.5% on the CPU architecture. Any performance

benefits resulting from the more optimal data placement were negated by the

reductions in performance from accessing the array data through this modified

structure e.g. due to the additional levels of indirection involved. On the

Xeon Phi architecture the performance of this implementation was substantially

worse, and caused a slowdown in performance of 3.3⇥ relative to the reference

implementation.

Cache Line Padding & Memory Access Alignment

The results also show that introducing cache line “padding” into the application,

in order to ensure that threads to do not share the same cache lines and experi-

ence “false sharing”, had no significant e↵ect on overall performance on the CPU

architecture. On the Xeon Phi co-processor, however, this modification actually

59

3. Intra-Node Performance Optimisations

0 10 20 30 40 50 60 70

Reference

FirstTouch

Cpadd

ELS

Reveal

Reveal FT

Full Var
Scoping

NoWait

Kernel Opts

Xeon Phi

0 20 40 60 80 100 120 140 160 180 200 220

AoA

hlpr
hlpr

reduceSync

wall-time (secs)

Figure 3.12: Application optimisations on the Xeon Phi co-processor

slightly reduced performance by 4.7%. Combining this optimisation with the

Intel proprietary directives to align data placement and memory accesses did,

however, deliver some small but measurable performance improvements of 1.7%

on the CPU architecture.

High-level OpenMP Parallel Regions

The results from the experiments with the versions of the codebase which

employed a High-level OpenMP Parallel Region (Section 3.2.4) show that on

average this optimisation technique was not able to deliver any performance

advantages for this codebase when it is used to simulate this particular problem

size. On the CPU architecture the performance of the version containing the

initial High-level Parallel Region optimisation was slower than the First-touch

implementation by 0.17 seconds. Whilst the average runtime of the version with

reduced synchronisation was fractionally faster, it was still marginally slower

than the original reference version.

Interestingly, applying the technique of duplicating the 1D data arrays—

which remain constant throughout the execution of the application—within each

NUMA-domain (Section 3.2.5), actually fractionally improved average perfor-

mance by 0.4 seconds (1.2%). This indicates that small improvements in code

60

3. Intra-Node Performance Optimisations

performance can be obtained for applications by minimising remote NUMA-

domain memory accesses.

Surprisingly, the performance of the High-level Parallel Region-based im-

plementations on the Xeon Phi co-processors was significantly worse than the

reference version, delivering as much as a 2.8⇥ degradation in overall perfor-

mance.

Explicit Loop Schedules

The e↵ect on performance of employing Explicit Loop Schedules (Section 3.2.6)

throughout the entire application, instead of relying on the OpenMP runtime

system to partition loop-blocks, was also examined in these experiments. The

results indicate that in these experiments this optimisation only delivered a

fractional overall improvement in performance of 0.22 seconds on the CPU

architecture, whilst on the Xeon Phi co-processor a marginal reduction in per-

formance of 1.07 seconds was recorded.

Automatic Application Hybridisation

To assess the e↵ectiveness of the Reveal tool at automatically incorporating the

OpenMP parallelisation constructs into the application a series of additional

experiments was conducted. Initially the implementation produced by Reveal

performed poorly on the CPU architecture delivering a ⇠1.98⇥ reduction in

performance relative to the First-touch version (this result is omitted from

Figure 3.11 for brevity). A subsequent performance analysis of the codebase,

however, identified that this was due to similar data placement problems to

those experienced with the original reference implementation. Consequently a

further version was developed which incorporated the First-touch data place-

ment optimisations discussed in Section 3.2.1. This significantly improved the

performance of this implementation on the CPU architecture to be within 0.14

seconds of the manually developed version.

On the Xeon Phi co-processor the initial version did not experience the same

NUMA-related memory access problems and the performance of both versions

was practically identical (within 0.24 seconds of each other). Similarly, in these

experiments the performance of the versions produced by Reveal was fraction-

ally slower than the reference implementation, although their performance was

within 2% of this implementation. These performance discrepancies are likely

attributable to the fact that Reveal generates code with one OpenMP parallel

region per loop-block, whereas the reference implementation minimises the num-

ber of these regions by incorporating multiple loop-blocks within each kernel into

these constructs.

61

3. Intra-Node Performance Optimisations

Full OpenMP Scoping Information

A further version of the codebase was developed in which full OpenMP scoping

information was specified for each OpenMP directive. The default(none)

directive was added to each OpenMP construct and scoping information (e.g.

the shared or private qualifiers) defined for each additional variable or data

structure accessed within a particular parallel region. On the CPU architec-

ture this implementation delivered almost identical performance to the reference

implementation, with only a 0.1 second improvement in performance being

recorded on average relative to the reference implementation. On the Xeon Phi

co-processor, however, this optimisation actually resulted in a slight reduction

in performance of 1.5 seconds relative to the reference implementation.

Synchronisation Elimination

The e↵ect of applying the optimisation technique described in Section 3.2.7 to

remove, where possible, the global OpenMP barrier operations throughout the

codebase was also examined in these experiments. The results show that on the

CPU architecture this candidate optimisation only fractionally improved per-

formance, reducing the runtime of the application by only 0.13 seconds relative

to the initial First-touch version. On the Xeon Phi architecture, however, a

fractional performance degradation of 0.87 seconds was recorded.

Individual Kernel Optimisations

The optimisations to the individual application kernels developed as part of

this research and analysed in Section 3.3.1 were subsequently incorporated into

the full application codebase to produce a further optimised version. With

the exception of the point-to-point synchronisation optimisations to the Cell-

Advection kernel, all of the optimisations examined in Section 3.3.1 were incor-

porated into this version (labelled Kernel Opts within Figures 3.11 and 3.12).

The experimental results show that on the CPU architecture the use of these

optimisations improved the overall performance of the full application codebase

by 15.5% relative to the initial First-touch implementation. These optimisations

also improved the performance of the application on the Xeon Phi co-processor

by 4.6% compared to the reference implementation. As these optimisations

deliver a consistent performance improvement on both processor architectures

these changes will be utilised within future versions of the codebase.

62

3. Intra-Node Performance Optimisations

3.4 Summary

This chapter has documented the findings from the research which was under-

taken to improve the intra-node performance of the OpenMP-based versions of

CloverLeaf. It presents a detailed description of the current OpenMP-based im-

plementation of the mini-application together with each potential modification

which has been examined. This includes optimisations focused on individual

kernels as well as those which apply to the entire codebase. The performance

of each of these alternative approaches is examined on a range of current state-

of-the-art processor technologies, specifically a dual-socket Intel Xeon based

platform and an Intel Xeon Phi co-processor.

The experimental results show that the performance of the various alterna-

tive approaches can vary significantly on the two architectures examined in this

work. On the CPU-based architecture, due to its multiple NUMA-domains,

optimising the placement of data within the application using “first-touch”

initialisation techniques delivered a 14.8% improvement in performance. This

is a significant performance improvement for an already highly optimised code-

base and enabled the performance achievable when OpenMP threading con-

structs are utilised across multiple NUMA-domains, to match the performance

recorded with the MPI-only model. Manually merging loop-blocks and im-

proving the levels of vectorisation delivered significant additional performance

improvements for several key application kernels. Reducing global memory

operations and overall memory consumption by converting temporary 2D data-

arrays to “thread-private” variables also proved to be a key approach for im-

proving application performance. When these optimisations were subsequently

applied to the full application codebase they resulted in an overall performance

improvement of 15.5% on the CPU architecture and 4.6% on the Xeon Phi

co-processor.

Employing point-to-point thread synchronisation and data re-calculation tech-

niques to reduce and avoid synchronisation operations within key application

kernels delivered some small performance benefits (⇠3%) at the high thread

counts examined on the Xeon Phi co-processor. On the CPU-based architecture,

however, the performance of the versions which incorporated these techniques

was almost identical to that of the reference implementation. This indicates that

the use of these techniques may potentially become increasingly required in order

to achieve optimal performance for applications which utilise large numbers of

threads on future processor architectures. Existing research has demonstrated

that the overheads associated with globally synchronising all application threads

increases with the number of threads involved in the particular synchronisation

operations [146].

63

3. Intra-Node Performance Optimisations

Additionally, this research demonstrated that utilising an array-of-arrays

data structure in order to optimise memory-layout across the di↵erent NUMA-

regions is not able to improve overall application performance on the Intel Xeon

E5-2620 CPU architecture. Furthermore in these experiments this modification

resulted in a substantial performance degradation of 3.3⇥ on the Xeon Phi

co-processor.

Surprisingly, converting the application to utilise an OpenMP SPMD con-

struction using the High-level Parallel Region optimisation, in order to reduce

thread synchronisation and fork/join overheads, also resulted in a significant

reduction (2.8⇥) in performance on the Xeon Phi architecture. On the CPU

architecture, whilst the performance of this version was able to match that of

the reference implementation, it required the use of additional techniques, such

as the duplication of constant data within both NUMA regions, in order to

deliver any performance benefits.

The results also indicate that the use of the Explicit Loop Schedules optimisa-

tion did not deliver any significant performance benefits on the CPU architecture

and resulted in a fractional slowdown in performance on the Xeon Phi. Similarly

introducing “padding” into the data-arrays to reduce false sharing resulted in

no significant performance benefits on the CPU-based platform and a small

slowdown in performance on the Xeon Phi co-processor. The incorporation

of memory alignment constructs also only appears to fractionally improve the

performance of this codebase on the CPU architecture.

This research also demonstrated that with minimal manual intervention the

Cray Reveal tool is capable of automatically generating parallel code based on

OpenMP directives, the performance of which is able to closely match that of

manually developed code. It should be noted that the data-parallel nature of

the CloverLeaf kernels does make it significantly easier for Reveal to generate

the required code and that the tool is not yet able to automatically incorporate

multiple loop-blocks within the same OpenMP parallel region. Nevertheless,

the use of this and similar tools, should help to improve the overall productivity

of the developers of parallel applications which incorporate OpenMP paralleli-

sation constructs.

Through this research it was possible to improve the overall performance of

the application, relative to the initial reference implementation, by 28.0% and

4.6% on the CPU and Xeon Phi processor architectures, respectively. It should

also be noted that this codebase has already been highly optimised by both

academic and industrial partners and therefore achieving any further optimisa-

tions is both challenging and worthwhile. Even small percentage optimisations

are important in contributing to achieving one of the goals of this research, i.e.

developing a fully optimal version of the codebase, and can result in considerable

64

3. Intra-Node Performance Optimisations

financial cost savings when applications are executed at extreme scale.

Although the techniques examined in this work were developed exclusively

within the CloverLeaf mini-app, the optimisations are also generally applicable

to a significantly wider range of scientific applications which exhibit similar per-

formance characteristics. In particular these include applications which utilise

regular collections of loop-blocks to process data which is stored predominantly

in a structured manner within n-dimensional arrays.

65

CHAPTER 4
Achieving E�cient Application Execution at Extreme Scale

This chapter documents the research which was undertaken, at high processor

counts, to develop and evaluate techniques for improving the performance and

scalability of the CloverLeaf mini-application, and therefore to also improve the

performance of the explicit hydrodynamics applications for which CloverLeaf

functions as a proxy application. The work focuses primarily on the MPI-based

version of the codebase and examines several candidate optimisations including

hybridising the code using OpenMP. The chapter initially discusses some related

and motivating work within this arena (Section 4.1). Section 4.2 documents

the current implementation of the mini-app in the MPI-only programming

model, together with a description of each candidate optimisation examined

for this particular variant of the codebase. The implementation of the hybrid

(MPI+OpenMP) version of the mini-app, is then presented in Section 4.3,

together with the candidate optimisations techniques which were examined

for this particular implementation of the codebase. The performance of these

potential optimisations on a range of architectures is subsequently analysed

in Section 4.4, together with an assessment of their e↵ect on overall energy

consumption. Finally, Section 4.5 concludes the chapter.

4.1 Related Work

Minimising communication operations within applications has been recognised

as a key approach for improving the scalability and performance of scientific

applications [123]. Yun et al. examined various approaches and optimisations

for improving the performance of large-scale jobs on Cray platforms [78]. The

aggregation of small messages, when possible, has previously been identified as

the ideal communication strategy for scientific applications [22]. In [20], how-

ever, Barrett et al. present work which examines alternatives to the message ag-

gregation strategies generally employed within BSP programming model based

applications. Their work, which examines an application similar to CloverLeaf,

is motivated by current development trends in HPC interconnect technologies for

existing, and future exascale, system designs. They show that their alternative

approach, which communicates data as soon as possible after it is modified, de-

livers a considerable improvement in application performance at scale on several

current system architectures, compared to the original BSP-based approach.

It is also recognised that increasing the levels of asynchronicity within ap-

66

4. Achieving E�cient Application Execution at Extreme Scale

plications, through the overlapping of computation and communication oper-

ations, can deliver performance advantages. Several techniques for achieving

the overlap of these operations are examined in [175], together with a quan-

titative analysis of their benefits for a range of applications. Jiang et al.

show that employing an RDMA based approach can improve the overlap of

communication and computation operations [105]. Similarly Bell discusses the

benefits of overlapping communication operations with computation and further

communication operations through message pipelining, on a range of network

architectures [22]. Overlapping communications with computation at a finer

granularity has also been shown to deliver performance benefits by interspersing

more of the communication events with computation, whilst also decreasing

message size and increasing the injection rate [23]. The e↵ectiveness of both the

one- and two-sided communication models at overlapping communication and

computation operations has also been analysed with the former, when expressed

using UPC, performing favourably compared to the latter when implemented

with MPI [23, 147]. Additionally, Potluri et al. examined using MPI one- and

two-sided operations to overlap communication and computation and were able

to achieve a speedup of 10-12% in application performance [165].

New communication constructs have also been developed within version 3.0

of the MPI standard to potentially improve the performance and scalability of

applications [144]. Hoefler et al. were able to achieve a significant performance

improvement of up to 40% over existing approaches using their own implementa-

tions of several MPI 3.0 neighborhood collective communication operations [85].

Similarly, Gerstenberger et al. document their work developing an MPI 3.0 com-

pliant implementation (FOMPI), which utilises scalable bu↵er-less protocols,

and achieves equivalent or superior performance to UPC and CAF [71].

A considerable body of work also exists which has examined the advan-

tages and disadvantages of the hybrid (MPI+OpenMP) programming model

compared to other multi-level paradigms or the MPI-only model [110, 73].

These studies have generally focused on di↵erent scientific domains; classes

of applications; and di↵erent hardware platforms, to those examined is this

research. Results have also varied significantly, with some authors achieving

significant speed-ups by employing hybrid constructs [203, 179, 106], whilst

others experience performance degradations [82, 38, 130] .

In particular, Környei presents details on the hybridisation of a combustion

chamber simulation which employs similar methods to CloverLeaf. The ap-

plication domain and the scales of the experiments are, however, significantly

di↵erent to those examined here. Drosinos et al. also present a comparison

of several hybrid parallelisation models (both coarse- and fine-grained) against

the MPI-only approach [59]. Again, their work focuses on a di↵erent class

67

4. Achieving E�cient Application Execution at Extreme Scale

of application, at significantly lower scales and on a di↵erent experimental

platform to this research. Nakajima compares the hybrid and MPI-only pro-

gramming models for preconditioned iterative solver applications within the

linear elasticity problem space [145]. In this research the application domain,

the scales of the experiments (<512 PEs) and the choice of platform (T2K HPC

architecture) are again significantly di↵erent to those examined here. Although

the application examined by Lavallée et al. has similarities to CloverLeaf and

they compare several hybrid approaches against an MPI-only based approach,

their work focuses on a significantly di↵erent hardware platform [120]. Addi-

tionally, Adhianto et al. discuss their work on performance modelling hybrid

MPI+OpenMP applications and demonstrate its potential for facilitating the

optimisation of scientific applications [2].

The energy consumption of supercomputer platforms is increasingly becom-

ing a major concern to large HPC sites [153, 11, 129]. Consequently there is

currently significant interest in the fine grained monitoring and analysis of the

power consumption of scientific applications. Both Cray and IBM have recently

incorporated such facilities into their latest supercomputer solutions [135, 201].

Hart and Wallace document their experiences utilising these technologies to

successfully analyse the power consumption of applications on the Cray XC30

and IBM Blue Gene/Q respectively [76, 202]. Additionally, Li et al. exam-

ine employing a hybrid programming approach to achieve more power-e�cient

implementations of particular benchmarks [123].

4.2 MPI-only Based Versions

This section documents the implementation of the reference MPI-only based

version of CloverLeaf and the optimisations applied to it as part of this research

(Section 4.2.1). Details on how the codebase was instrumented to enable its

power consumption to be analysed are also presented (Section 4.2.2).

The MPI-based implementations of CloverLeaf employ a block-structured

decomposition (see Section 1.6.1) in which each MPI task is responsible for

one rectangular region of the computational mesh. The halo-exchange routine

performs the required halo cell communications, during which multiple fields

(2D-arrays each representing a particular physical property e.g. density) can be

exchanged with varying depths of cells (1, 2. . . etc), depending on the require-

ments of the algorithm at that stage of its computation. Processes perform these

halo exchanges using the MPI ISend and MPI IRecv communication operations

with their logically immediate neighbours, first in the horizontal dimension

and then in the vertical dimension. Communications are therefore two-sided,

with MPI WaitAll operations being employed to provide local synchronisation

68

4. Achieving E�cient Application Execution at Extreme Scale

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

10
48
57
6

0

1,000

2,000

3,000

4,000

MPI ranks

H
ea

p
h
ig
h
-w

at
er

m
ar
k
/
p
ro
ce
ss

(M
B
)

Reference version

Modified version

Archer (Cray XC30)

Figure 4.1: CloverLeaf heap memory consumption per process

between the data exchange phases. Consequently no explicit global synchro-

nisation operations (MPI Barrier functions) are present in the hydrodynamics

timestep. In the reference version of CloverLeaf the halo-exchange routine em-

ploys an approach in which the halo-cell data from individual fields is exchanged

separately.

To implement global reductions between the MPI processes, the MPI Reduce

and MPI AllReduce operations are employed. These are required respectively

for the calculation of the timestep value (dt) during each iteration and the

production of periodic intermediary results. The MPI-based implementations

therefore utilise MPI communication constructs to express both intra- and inter-

node parallelism.

4.2.1 Optimisations Examined

The techniques examined as part of this research to improve the scalability

and performance of the MPI-only version of CloverLeaf at high node counts

are presented here. These techniques were initially employed in isolation to

implement alternative versions of the codebase; several were then subsequently

combined to produce further versions of the application. Section 4.4 analyses

the e↵ect of each of these potential optimisation techniques on the performance

of the mini-app.

69

4. Achieving E�cient Application Execution at Extreme Scale

Distributed Meta-data

A memory consumption analysis of the mini-app was conducted following initial

strong-scaling experiments with the codebase, using the 15,3602 cell problem

from the standard CloverLeaf benchmarking suite, on the Archer and Mira

platforms (see Section A.1). The CrayPat [46] performance analysis tool avail-

able on the Archer platform was employed to conduct this analysis. This was

utilised to examine the “high-water” mark of the total memory consumed from

the heap memory region by each MPI rank of the mini-application as process

counts were increased. Figure 4.1 presents the results from this analysis.

Given that this is a strong-scaling experimental configuration the memory

consumption per MPI process should decrease as the scale of the experiments

is increased. The results for the reference implementation in Figure 4.1, do

initially show this trend. Beyond approximately 4,096 MPI ranks, however, the

memory consumption per process starts to grow significantly.

A subsequent investigation to identify the source of this additional memory

consumption determined that this was due to the scaling characteristics of

the data structures within the codebase. These were originally designed to

enable the computational mesh to be over-decomposed, with multiple mesh

regions or chunks being assigned to each MPI rank. In the original reference

implementation, however, a one-to-one mapping between mesh regions and

ranks was specified. This was implemented using a strategy which required

each rank to maintain meta-data information on each mesh region within the

overall decomposition, regardless of whether a particular rank was required to

actually manage these regions or not. Each MPI process was therefore required

to create an array—called chunks within the source code—of O(the number of

mesh regions within the overall decomposition).

This array stores the meta-data relating to the individual mesh regions, with

each location able to store an additional derived type data structure (called

field type), if the process is required to actually manage that particular region

of the computational mesh. The additional field type derived type contains the

actual data fields (2D-arrays) which model the particular physical quantities

contained within the computational mesh. The size of the field type components

decrease as the scale of the experiments is increased; however, the size of

the “top-level” chunks array increases linearly with the number of MPI ranks

involved in the particular simulation. At relatively small scales, 4,096 ranks,

this does not have a significant a↵ect on the overall memory consumption of each

process. Beyond this point, however, the additional meta-data storage locations

start to consume significant amounts of memory. Under this configuration if

1,048,576 MPI ranks were employed, the memory “high-water” mark of the

70

4. Achieving E�cient Application Execution at Extreme Scale

heap region on each rank would reach ⇠3.5GB and the overall simulation would

require ⇠3.5PB of main memory. It should also be noted that the ⇠3.5GB

total is a per-process memory consumption figure and therefore overall node-

level memory consumption would be proportion to the number of MPI ranks

employed per-node, i.e. significantly higher.

To improve this implementation an additional version of the codebase, which

employed a distributed meta-data strategy, was implemented as part of this

research. This required each MPI rank to only maintain meta-data for the

number of computational mesh regions which it was actually required to directly

manage and simulate. Consequently, the size of the chunks array on each MPI

rank became O(the number of mesh regions which each process is required to

manage). The e↵ect of this optimisation on the total memory “high-water”

mark of the heap region within each MPI rank can be seen in Figure 4.1

(modified version). Section 4.4.1 also contains an assessment of the e↵ect of

this optimisation on the actual performance of the mini-app. All subsequent

results presented within Section 4.4 are, however, from versions of the mini-app

which incorporate this optimisation technique.

Communicating Multiple Fields Simultaneously

The approach employed in the reference implementation of the halo-exchange

routine results in two MPI WaitAll statements being executed for each field

whose boundary cells need to be exchanged. Consequently, multiple synchroni-

sations occur between communicating processes (two per field exchange) when

boundary cells from multiple fields need to be exchanged during one invo-

cation of the routine. These additional synchronisations are unnecessary as

the boundary exchanges for each field are independent operations within each

dimension (horizontal and vertical). It is therefore possible to restructure the

halo-exchange routine to perform the horizontal halo exchanges for all fields

simultaneously, followed by only one synchronisation and then repeat this in the

vertical dimension. This approach results in no more than two synchronisation

operations per invocation of the halo-exchange routine, whilst retaining the

one MPI operation/message per field approach. Versions which employed this

optimisation are denoted by the abbreviation MF (Multiple Fields) within their

descriptions in Section 4.4.

Pre-posting MPI Receives

Previous studies have shown performance benefits from pre-posting MPI receive

calls before the corresponding send calls [209]. In the reference halo-exchange

implementation routine all MPI send calls are executed before their correspond-

71

4. Achieving E�cient Application Execution at Extreme Scale

11 1 1

1 111

2

2
2 2

2

2 2

2 2

Figure 4.2: Cell calculation order for communication-computation overlap

ing receive calls. Additional versions of CloverLeaf were therefore created which

pre-post their MPI receive calls as early as practicable within the codebase. For

most versions it was possible to completely remove the MPI receive calls from the

halo-exchange routine and execute them before the computation kernel which

immediately precedes the particular call to the halo-exchange routine. This

ensures that a su�cient amount of computation occurs between each pre-posted

MPI receive operation and the execution of its corresponding send operation.

Diagonal Communications

The reference implementation of the halo-exchange routine also requires the

horizontal communication phase to be completed before the vertical communi-

cations in order to achieve an implicit communication between logically diagonal

neighbouring processes. The synchronisation requirement between the phases

can, however, be removed by employing an explicit communication between

logically diagonal processes. This approach requires additional communication

bu↵ers and MPI communication operations to be initiated, but enables all

communications in all directions to occur simultaneously, with only one syn-

chronisation required at the end of the halo-exchange routine. Versions which

employed this communication strategy are denoted by the letters DC within

their descriptions in Section 4.4.

Overlapping Communications and Computation

The reference implementation is based on the BSP model (Section 2.2.6) with

separate computation and communication phases. Additional versions which

attempt to overlap the communication and computation phases were also devel-

oped as part of this research. This was achieved by moving the communication

72

4. Achieving E�cient Application Execution at Extreme Scale

operations at particular phases of the algorithm inside the computational kernels

which immediately precede them. The loop iterations within these kernels

were also reordered in order to compute the outer halo cells, which need to be

communicated, before the inner region of cells (Figure 4.2). In these modified

implementations once the outer halo-cells have been computed non-blocking

communication primitives are then employed to initiate the data transfers. This

approach also relies on the implementation of the diagonal communication oper-

ations (Section 4.2.1). Each computational kernel then completes the remaining

calculations, with these computations being potentially fully overlapped with

the preceding communication operations. Versions which employ this technique

contain the word Overlap within their descriptions in Section 4.4. Some MPI

implementations also provide dedicated “progress” threads to potentially aid

this process, versions which utilised these additional facilities are denoted by

the acronym PT within Section 4.4.

MPI v3.0 Construct Evaluation

The MPI v3.0 standard defines a set of new collective operations which initiate

communications between immediate neighbouring processes within a virtual

process topology. Such process topologies, created via the MPI Cart Create or

MPI Graph Create routines, have existed for sometime within the standard. The

new neighbourhood collectives, however, enable the communications between

immediate neighbours (one hop within the virtual topology) to be completed

with only one MPI operation and purport to enable the MPI compiler and

runtime system to be able to implement additional optimisations.

The MPI Neighbor AllToAllV collective operator was selected to implement

this optimisation as it enables communications of di↵ering sizes to occur directly

between all the neighbouring processes within the topology. This operation

replaces all of the MPI point-to-point and synchronisation operations within

the halo-exchange routine. As the neighbourhood collectives require all com-

munications to occur simultaneously this necessitated the use of direct com-

munications between logically diagonal neighbouring processes (Section 4.2.1).

It was therefore also necessary to utilise the graph virtual process topology

to create communication links between each process and all of its immediate

neighbours, up to a maximum of eight edges per process, as the cartesian virtual

topology does not support this level of connectivity. MPI Info objects were

also employed to provide additional information on the required memory access

and communication patterns. Versions which employed these neighbourhood

collective operations are denoted by the word nColl within their descriptions in

Section 4.4.

73

4. Achieving E�cient Application Execution at Extreme Scale

The non-blocking reduction operation (MPI IReduce) was also utilised within

subsequent versions to implement the reduction operations required to produce

the intermediary results printouts. Use of this non-blocking collective adds

more asynchronicity into the application and enables it to potentially continue

to make forward progress whilst these reduction operations are being completed,

with this additional work being overlapped with the communication operations.

The computational operations which make use of the intermediate result data

values were therefore relocated, such that they occur after subsequent phases of

the application, whilst ensuring program correctness. A MPI WaitAll operation

was also employed immediately prior to their execution to ensure that the non-

blocking reductions complete successfully before the dependent computational

operations are executed. It was not possible to utilise this approach for the

calculation of the timestep value as this is required immediately after the existing

reduction operation. Versions which employed the non-blocking MPI IReduce

operation are denoted using the acronym NBR within their descriptions in

Section 4.4.

Message Aggregation

The reference implementation of the halo-exchange routine utilises shared com-

munication bu↵ers, one for each communication direction. These MPI bu↵ers

can be reused for multiple fields as the halo cells of only one field are exchanged

at once. Bu↵er sharing is not possible when fields are exchanged simultaneously

and each field therefore requires its own communication bu↵ers, one for each

direction. Message aggregation reduces the number of communication bu↵ers,

as well as the number of MPI send and receive calls required to one per direction,

by combining messages into fewer but larger bu↵ers. This technique was applied

to produce additional versions of CloverLeaf, which send multiple messages

simultaneously in each direction, by first aggregating all of the smaller messages

into larger communication bu↵ers. Versions which employed this technique are

denoted by the letters MA (Message Aggregation) within their descriptions in

Section 4.4.

Eager Transmission of Data

Additional versions were also subsequently developed to determine whether the

implementation of a communication strategy, which attempts to transmit data

to neighbouring processes as soon as it is updated, can deliver performance

advantages for the applications which CloverLeaf represents. A similar strategy

was employed by Barrett et al. in [20] and achieved significant performance

advantages by enabling applications to transition away from the BSP model

74

4. Achieving E�cient Application Execution at Extreme Scale

(a) Original strategy (b) Improved strategy

MPI ranks on node 0 Node boundaries Problem chunk boundaries

Figure 4.3: MPI rank reordering strategy

and to utilise advanced features within modern interconnect designs. Versions

which employed this advanced communication strategy are denoted using the

abbreviation EDT (Eager Data Transmission) within their descriptions in Sec-

tion 4.4.

The implementation of this technique requires communication and computa-

tion operations to be overlapped in versions which previously did not implement

this approach. Communication operations were therefore again relocated to the

computational kernel which immediately preceded their current location. The

kernels were however restructured such that the calculations on certain fields

were completed earlier than others, whilst still maintaining program semantics,

enabling their data items to be transmitted sooner. The required asynchronous

communication operations were therefore interspersed throughout these kernels

to facilitate the earlier data transmissions.

A slightly modified strategy was adopted in order to apply this candidate

optimisation to existing versions which already attempt to overlap computation

and communication. As part of this approach kernels were restructured such

that only the calculations of the halo-cells of the particular data fields which

actually need to be communicated, were completed before fields which did not

need to be transmitted. Additional asynchronous communication operations

were also inserted immediately after the point in the program code where each

set of halo-cells becomes ready for transmission. This generally enabled the

communication operations to occur earlier in the computational kernel and

provided more opportunities for overlapping these operations.

MPI Rank Reordering

The reference CloverLeaf implementation assigns chunks of the two dimensional

computational mesh to MPI ranks sequentially, by traversing the decomposition

first in the x -dimension starting in the lower left corner. Once one row of

75

4. Achieving E�cient Application Execution at Extreme Scale

chunks has been completely assigned the allocation process restarts from the

chunk on the left-hand side of the decomposition which is one row higher than

the previous row in the y-dimension, and again proceeds sequentially along the

x -dimension. The allocation process continues until all chunks of the mesh have

been completely assigned.

This potentially results in a chunk-to-node mapping which does not reflect

the two dimensional nature of the overall problem and therefore is unable to

take full advantage of the physical locality inherent in it. Figure 4.3a depicts a

typical default mapping of a 384 rank job on current system architectures with

24 processor cores per node, although this is system-dependent. In this arrange-

ment communications in the y-dimension are all inter-node and each process

only has a maximum of 2 neighbouring processes located within its local node.

A disproportionate number of chunks, which are not physically close within

the computational mesh, are therefore co-located within cluster nodes. This

potentially results in a situation where local memory communication resources,

which are usually substantially faster than inter-node communication resources,

are not e↵ectively utilised.

It is possible to use MPI rank reordering facilities to change the placement

of MPI ranks within a given node allocation. Figure 4.3b depicts an alternative

mapping strategy for the same 384 rank job. This better reflects the two

dimensional communication pattern inherent within the application, by at-

tempting to increase intra-node communications whilst also reducing inter-node

communications. Versions which employ this “blocked” rank reordering strategy

are referred to using the acronym RR within their descriptions in Section 4.4.

MPI Reduction Consolidation

To periodically produce intermediate results the reference implementation em-

ploys a series of five separate, but consecutive, global MPI reduction opera-

tions. These calculate the sum of five individual data fields (arrays) within

the application. To improve the e�ciency of this operation, these reduction

operations were consolidated into one operation which operates on a vector

of five values. Versions which employed this candidate optimisation technique

contain the abbreviation RedCon in their descriptions within Section 4.4.

4.2.2 Power Consumption Instrumentation

Power monitoring facilities are not available on all available system architec-

tures, however, both the Cray XC30 and IBM BG/Q platforms provide this

functionality [135, 201]. On the BG/Q, IBM provides a dedicated API which

applications can use to query the underlying power monitoring infrastructure.

76

4. Achieving E�cient Application Execution at Extreme Scale

Cray, however, make this information available via dedicated files within the

/sys/cray file-system. These are continuously refreshed to reflect the accumu-

lated energy consumption of the application on the particular node and can be

read directly by an application.

As part of this research the MPI-only versions of CloverLeaf were instru-

mented to enable the power/energy consumption of the application to be mea-

sured at specific points during its execution, on both the XC30 and BG/Q

architectures. The main hydrodynamics iteration loop, which is also timed to

produce the runtime of the application, was instrumented at its start and end

positions to enable the energy consumption of only the main computational

sections of interest to be measured. The results from this energy consumption

analysis can be found in Figure 4.16.

4.3 Hybrid (MPI+OpenMP) Based Versions

This section documents the reference implementation of the MPI+OpenMP

version of CloverLeaf as well as the potential optimisation techniques (Sec-

tion 4.3.1), which have been examined as part of this research. This version is an

evolution of the MPI-only codebase in which OpenMP is utilised to provide the

majority of intra-node parallelism, whilst MPI still provides the inter-node and

potentially some intra-node communications. The ratio of OpenMP threads

to MPI processes can be varied to suit di↵erent platform architectures and

problem classes. This approach reduces the memory consumed per node by

the halo-cells as these are only required for communication operations between

“top-level” MPI processes. Additional data structure can also be shared across

OpenMP threads rather than duplicated between MPI processes, further reduc-

ing memory consumption.

The reference version of this implementation employs OpenMP parallel

regions within each of the 14 computational kernels. To minimise the fork

and join overheads of the OpenMP programming model one parallel region is

employed around all of the loop-blocks within a particular kernel. To enable the

individual loop-blocks within the computational kernels to be parallelised over

the available threads, additional OpenMP do constructs are utilised, generally

around the outer-loops within the kernel. OpenMP private constructs are

specified where necessary to create temporary variables that are unique to each

thread, additionally reduction primitives are also utilised to implement intra-

node reduction operations.

77

4. Achieving E�cient Application Execution at Extreme Scale

(a) Original strategy (b) Modified strategy

Intra-node processor boundary Node boundaries Mesh cells

Figure 4.4: Vertical decomposition optimisation

4.3.1 Optimisations Examined

The techniques examined as part of this research to improve the single-node per-

formance of the OpenMP version are presented in Sections 3.2.1 to 3.2.13. These

techniques were initially used in isolation to implement alternative versions of

the codebase, however, several were also subsequently combined to produce a

more optimal version of the application. The motivations for conducting this

work included ascertaining whether a hybrid implementation could be devel-

oped to deliver performance advantages over the MPI-only version and also to

determine the optimal ratio of OpenMP threads to MPI processes for particular

problem classes. A further key objective was to examine whether it is possible to

improve the OpenMP implementation such that utilising these constructs across

entire system nodes is a viable solution. The following sections also describe

additional optimisation techniques which were examined as potential approaches

for further improving the performance of the codebase. Section 4.4.2 analyses

the e↵ect of each of these candidate optimisation techniques on the performance

of the mini-app.

Vertical Rectangular Decomposition

In order to reduce inter-process communication volumes the reference imple-

mentation attempts to decompose the overall problem such that mesh “chunks”

which are as square as possible, are assigned to the individual MPI processes,

whilst also distributing the computational load as equally as possible. Each

process subsequently utilises OpenMP parallelism to further decompose its as-

signed mesh region, with each thread being assigned a contiguous number of

rows (Figure 4.4a). For particular problem sizes and MPI process counts it is

78

4. Achieving E�cient Application Execution at Extreme Scale

not possible to assign perfectly square mesh “chunks”, necessitating the use

of rectangular regions. These rectangular regions are, by default, assigned

such that their longer side is orientated in the x -dimension of the mesh. The

OpenMP parallelisation constructs are, however, applied to the individual mesh

regions in the y-dimension, such that each thread accesses a contiguous block of

memory. Due to the larger surface area between adjacent rows of the mesh

within a particular node boundary, this arrangement requires greater levels

of inter-thread communication (Figure 4.4a) and potentially causes additional

communication tra�c across the inter-socket interconnect, when OpenMP par-

allelisation is utilised across multiple processor sockets, which incurs additional

overheads. To reduce the levels of inter-thread communication in these scenarios

an additional version was developed which decomposes the mesh such that the

rectangular “chunks” are orientated in the y-dimension (Figure 4.4b). Versions

which incorporated this candidate optimisation are referred to using the word

Vdecomp within their descriptions in Section 4.4.

MPI Construct Integration

The reference implementation employs the mpi thread single approach in

which MPI communication constructs are only utilised within serial sections

of the application, despite the actual (un)packing of communication bu↵ers

being parallelised using OpenMP parallel constructs. To evaluate the ef-

fectiveness of alternative approaches an additional version was created which

utilises an OpenMP parallel region directly around the MPI functions within

the codebase. A sections directive was utilised to enable each MPI function

to be executed in parallel on a separate thread and the MPI runtime was also

initialised using the mpi thread multiple option. The version which utilised

this approach is denoted as ThreadMultiple within Section 4.4.

Alternative Communication Bu↵er (Un)Packing Approaches

The communication bu↵er (un)packing routines are similar in structure to those

employed in the update-halo kernel (Section 3.2.12). The optimisations applied

to this kernel are therefore also broadly applicable to the functionality required

for the communication bu↵ers. A modified version was therefore developed in

which the (un)packing routines which operate on the communication bu↵ers for

the top and bottom mesh edges were restructured such that the OpenMP do

directives were relocated to the outer k -loop which has a significantly shorter

trip-count. A collapse(2) directive was also specified to ensure appropriate

levels of parallelism are generated, with a potentially improved memory access

pattern. Versions which employ this modified approach are referred to as

79

4. Achieving E�cient Application Execution at Extreme Scale

Bu↵erCollapse within Section 4.4.

A further version was also created to examine alternative approaches for

potentially improving the e�ciency of the communication bu↵er (un)packing, in

cases in which OpenMP parallelism is utilised across multiple processor sockets.

In this version the code was restructured to allow the top and bottom bu↵ers

to be (un)packed simultaneously using half of the available threads to operate

on each bu↵er. An identical approach to that described in Section 3.2.12, which

utilises nested -parallelism and OpenMP v4.0 thread placement directives, was

therefore again employed. To ensure that the top and bottom communication

bu↵ers were each exclusively located within the correct memory sub-systems, the

bu↵ers were initialised (“first-touched”) by threads with the correct processor

a�nity. The version which employed this approach is denoted by the description

IntelOMPNested within Section 4.4.

4.4 Results Analysis

To assess the performance, at scale, of the MPI-only and hybrid (MPI+OpenMP)

programming models and the various optimisation techniques examined as part

of this research, a series of experiments were conducted. Sections 4.4.1 and 4.4.2

document the results of these experiments for both codebases. In these, perfor-

mance was assessed using the 15,3602 cell problem, executed for 2,955 timesteps,

from the standard CloverLeaf benchmarking suite. This was strong-scaled to

high node counts on a range of state-of-the-art system architectures, specifically

the Archer, Mira and Vulcan platforms (Section A.1).

During a particular experiment on each platform, all versions of the mini-app

were executed within the same node allocation to eliminate any performance

e↵ects due to di↵erent topology allocations from the batch scheduling systems.

Additionally, to reduce the e↵ects of system noise, unless otherwise noted,

the results presented here are averages from three separate executions of each

individual experiment. For clarity, the performance results are also expressed

in terms of the “speedup” which each version achieved relative to the reference

implementation. In these charts values greater than 1 represent a performance

improvement, whilst values below 1 indicate a degradation in performance.

In the experiments on Archer, version 8.3.3 of the Cray CCE compiler and

version 7.0.3 of the Cray MPICH communications library were utilised. To

provide baseline performance results several experiments were also conducted

using older versions of these technologies, specifically version 8.2.1 of Cray CCE

and version 6.1.1 of Cray MPICH. Additionally, no huge memory pages were

utilised apart from the experiments which explicitly examined the performance

e↵ects of this particular technology; in these 4MB huge memory pages were

80

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096

0

100

200

300

Sockets

A
p
p
li
ca

ti
on

w
al
l-
ti
m
e
(s
ec
s)

Modified version

Reference version

Archer (Cray XC30)

512 1024 2048 4096 8192

0

500

1,000

1,500

Sockets

A
p
p
li
ca

ti
on

w
al
l-
ti
m
e
(s
ec
s)

Modified version

Reference version

Mira (IBM BG/Q)

Figure 4.5: Distributed meta-data optimisation performance improvement

utilised. In the experiments on both Mira and Vulcan version 14.1 of the IBM

XL Fortran compiler and version 12.1 of the IBM XL C compiler were employed,

together with IBM’s MPI communication library for the BG/Q, which is based

on MPICH2 version 1.4.

4.4.1 MPI-only Results Analysis

The following sections analyse the performance of the MPI-only versions of

the codebase and the candidate optimisations which have been applied to it.

Additionally the energy-e�ciency of two of the experimental platforms is also

examined.

Distributed Meta-data

Figure 4.5 presents the performance improvement obtained through the appli-

cation of the distributed meta-data optimisation (Section 4.2.1) to the original

implementation, on both the Archer and Mira platforms.

81

4. Achieving E�cient Application Execution at Extreme Scale

512 1024 2048 4096 8192
0

0.5

1

1.5

2

2.5

Sockets

Speedup
MPI 16ppn MPI 32ppn MPI 64ppn

Vulcan (IBM BG/Q)

Figure 4.6: MPI processes / node configuration options on Vulcan

On Archer the scaling of both versions is initially (<512 sockets) broadly

equivalent, however, beyond this point the distributed meta-data approach

delivers significant performance advantages. The performance of the original

reference implementation “turns-over” at approximately 1,024 sockets whilst

the modified implementation continues to scale up to 4,096 processor sockets.

During the 2,048 and 4,096 processor socket experiments this optimisation

resulted in a 4.1⇥ and 8.99⇥ improvement in performance respectively, relative

to the original implementation.

On the BG/Q architecture of Mira, however, the performance disparity

between the two versions is even more severe. Scaling the original application

from 512 to 1,024 sockets actually causes application execution time to increase

by ⇠1.8⇥ and to completely fail beyond 1,024 sockets due to the more limited

memory resources available per node on the BG/Q architecture. On this plat-

form utilising the distributed meta-data optimisation improved the performance

of the application by 7.2⇥ and 26.0⇥ in the 512 and 1,024 socket experiments

respectively and enabled the application to be scaled successfully from 512 up

to 8,192 processor sockets.

All the experiments documented in subsequent sections of this chapter utilise

versions of both the MPI-only and hybrid (MPI+OpenMP) codebases which

employ this distributed meta-data optimisation. Henceforth, this version is

therefore referred to as the new “reference” implementation.

Utilisation of Hardware Threads and Huge Memory Pages

To determine the optimal approach with which to execute the MPI-only version

of the codebase on the BG/Q architecture a series of experiments were conducted

82

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.6

0.7

0.8

0.9

1

1.1

Sockets

Speedup
MPI HP HT RedCon

Archer (Cray XC30)

Figure 4.7: Huge-pages, hyper-threads and consolidated reduction

on Vulcan to examine the use of varying numbers of hardware threads. Exper-

iments were therefore conducted using 1, 2 and 4 hardware threads per core,

which equates to 16, 32 and 64 MPI processes per node respectively. Figure 4.6

presents the results of these experiments. The results show that the use of

the additional hardware threads is indeed beneficial for this codebase at all the

experimental scales examined. Their use provides a greater performance benefit

in the smaller scale experiments, i.e. when each node/process has a larger allo-

cation of the overall computational mesh and the performance of the codebase is

limited more by computational resources. During the 64 socket experiment util-

ising 2 hardware threads per core improved application performance by ⇠1.6⇥
whilst utilising all 4 hardware threads improved performance by ⇠2.0⇥. In the

8,192 socket experiment these performance improvements reduced to ⇠1.1⇥ and

⇠1.2⇥ respectively. Based on these results all subsequent experiments with the

MPI-only codebase on the BG/Q architecture were configured to utilise all 4

hardware threads (64 MPI processes per node).

A series of experiments was subsequently undertaken on Archer to examine

the use of the additional hardware threads (Intel Hyper-threads) available on the

Cray XC30 architecture. Figure 4.7 presents the results of these experiments,

in which the abbreviation HT is used to denote versions which employed this

technology. These results demonstrate a significantly di↵erent trend to those

obtained from the Vulcan platform, specifically that the use of the additional

hardware threads does not a↵ect application performance in the smaller scale

experiments (1,024 sockets). In the larger scale experiments (>1,024 sockets),

however, the use of this technology caused a significant degradation in appli-

cation performance, resulting in a 1.15⇥ and 1.44⇥ slowdown in the 2,048 and

4,096 socket experiments respectively.

83

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.6

0.8

1

1.2

Sockets

Speedup

MPI DC DC MF DC MF EDT

MF MF MA MF MA EDT

Archer (Cray XC30)

Figure 4.8: Message aggregation and early transmition optimisations

Additionally, the use of huge memory pages was also examined in a series of

experiments on the Archer platform. The results (Figure 4.7) from these exper-

iments (denoted using the abbreviation HP) do not demonstrate a discernible

performance trend. In the majority of the experiments, however, employing this

technology resulted in significant performance degradations of up to ⇠1.2⇥ and

only relatively minor performance improvements (<3%) in the 1,024 and 2,048

socket experiments.

Message Aggregation

The results from the experiments which examined the e↵ect of the MPI message

aggregation optimisation are shown in Figures 4.8 and 4.9 for the Archer and

Vulcan platforms respectively. The charts document the speedup achieved by

each version relative to the reference MPI-only implementation which is shown

with a speedup of 1 for all experimental scales examined. The results show

that the use of this technique facilitated significant performance improvements

for the application as the scales of the experiments were increased on Archer,

reaching 1.14⇥ and 1.1⇥ at 4,096 and 1,024 sockets respectively. At the smaller

scales examined the performance of these versions matched or slightly exceeded

(<1%) that of the reference MPI-only implementation.

This trend is repeated on Vulcan with the results showing a consistent

increase in the speedup achieved through the use of this technique as the scale

of the experiments is increased. In the 512 processor socket experiments this

optimisation delivered on average a 1.07⇥ improvement in performance, which

increased to 1.3⇥ on average in the 8,192 socket experiments.

This demonstrates that reducing overall message transmission overheads, by

84

4. Achieving E�cient Application Execution at Extreme Scale

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sockets

Speedup

Reference DC MF DC+MF

MF+MA MF+MA+DC RedCon

Vulcan (IBM BG/Q)

Figure 4.9: Performance of MPI-only Optimisations on Vulcan

aggregated data into fewer larger messages, can deliver significant improvements

in performance for this class of applications.

Diagonal Communications & Communicating

Multiple Fields Simultaneously

Figures 4.8 and 4.9 also show the e↵ect on application performance of the

“Diagonal Communications” and “Communicating Multiple Fields Simultane-

ously” optimisations on the Archer and Vulcan platforms respectively. The

results show that at the higher socket counts examined on Archer the use of

diagonal communications has a detrimental e↵ect on application performance,

reaching a 5.6% and 6.6% performance degradation in the 4,096 and 2,048 socket

experiments respectively. In the smaller scale experiments (<1,024 sockets),

however, the performance of this version matches that of the reference MPI-only

implementation.

The results recorded on Vulcan show that this optimisation had a detrimental

e↵ect on overall application performance at all of the experimental scales exam-

ined, with the e↵ect increasing as the scales of the experiments were increased.

At 8,192 processor sockets the slowdown in application performance reached

8.7% relative to the reference MPI-only implementation. It is also evident that

combining this optimisation with the version which employs the “Message Ag-

gregation” strategy also significantly reduces performance at scale. This version

now only achieved a 1.14⇥ speedup over the reference MPI implementation at

8,192 processor sockets, compared to a 1.3⇥ speedup achieved by the version

which only utilised the “Message Aggregation” optimisation. This indicates that

for this class of application the overheads incurred by sending the additional

85

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.8

0.9

1

1.1

Sockets

Speedup
MPI MF DC MF MF MA

Archer (Cray XC30)

Figure 4.10: Pre-posting MPI receives on Archer

very small diagonal communication messages outweigh the savings made by

reducing synchronisation operations between the communication phases of the

application.

Additionally, the results also demonstrate that the “Communicating Multiple

Fields Simultaneously” optimisation also generally has a detrimental e↵ect on

application performance. On Vulcan the performance of this version is consis-

tently worse than the reference MPI implementation at all of the experimental

scales examined, with the performance degradation reaching 6.2% and 6.3% in

the 4,096 and 8,192 socket experiments respectively. The results from the Archer

platform do not, however, exhibit this trend with the performance of the version

which incorporates this optimisation matching that of the reference MPI-only

implementation at all of the experimental scales examined. This indicates that

on the BG/Q architecture it is more e�cient to spread the network message

injections out over multiple communication phases, and to employ additional

synchronisation operations between these phases, rather than attempting to

inject all of the messages into the network simultaneously. Furthermore, that

the Aries NIC present in the Cray XC30 has greater capabilities at injecting

messages into the communication interconnect than the NIC available within

the BG/Q architecture.

Pre-posting MPI Receives

A series of experiments was also conducted to examine the e↵ect on performance

of pre-posting MPI receive operations, Figure 4.10 presents the results of these

experiments. Due to time and supercomputer allocation limitations these ex-

periments were only undertaken on the Archer experimental platform and not

86

4. Achieving E�cient Application Execution at Extreme Scale

on either the Vulcan or Mira BG/Q platforms. This chart presents the results

in terms of the speedup obtained by applying the pre-posting optimisation to

a particular version of the MPI-only codebase relative to an identical version

without the pre-posting optimisation applied to it.

The results show that for the four code variants examined in this research

the pre-posting optimisation has a minimal e↵ect on application performance in

all of the experiments conducted up to the 2,048 socket experiment. In the 4,096

socket experiment, however, the results show some significant improvements in

performance for all 4 code versions. These improvements reached 7.3% for the

version which applied the pre-posting optimisation to the reference MPI-only

implementation.

Overlapping Communications & Computation

To assess the utility of the optimisation technique which attempts to overlap

communication and computational operations a series of experiments was con-

ducted on both the Archer and Vulcan experimental platforms. Figures 4.11

and 4.12 present the results from these experiments on the Archer and Vulcan

experimental platforms respectively. Results obtained on the Archer platform

by applying this optimisation to MPI-only versions of the codebase which do

not aggregate communication messages, are presented in Figure 4.11a, whilst

results obtained through the use of this optimisation with versions which do

aggregate MPI messages are presented in Figure 4.11b.

The results documented in Figure 4.11 show that on Archer the use of

this optimisation generally results in a small but consistent degradation in

application performance relative to equivalent versions which do not incorporate

this optimisation. In all of the experiments below 512 processor sockets the

performance of the code versions which attempt to overlap communication op-

erations with computation are worse than that of the equivalent non-overlapping

version. The experiments at these scales have a larger computational mesh size

per MPI process and will thus be more a↵ected by the sub-optimal memory

access patterns resulting from this optimisation. This is due to the fact that

proportionally less of the computational mesh will fit within the processor caches

compared with the larger scale experiments. At the larger experimental scales

(>1,024 sockets) the trends in the results are less clear, with some of the versions

which incorporate the overlapping technique matching and fractionally, but not

significantly, exceeding the performance of the reference implementation. Gener-

ally, however, the performance of the versions which incorporate the overlapping

optimisation are worse than that of the reference implementation. This is due to

the additional message transmission overheads which these versions incur and

87

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.8

0.9

1

Sockets

Speedup

MPI DC MF +Overlap +Overlap EDT

+Overlap PToHT +Overlap PToSepCore

Archer (Cray XC30)

(a) Non-aggregated Message Version

128 256 512 1024 2048 4096
0.7

0.8

0.9

1

1.1

Sockets

Speedup

MF MA DC +Overlap +Overlap MPItune

+Overlap PToHT +Overlap PToHT MPItune +Overlap PToSepCore

Archer (Cray XC30)

(b) Aggregated Message Version

Figure 4.11: Performance of computation/communication overlap on Archer

88

4. Achieving E�cient Application Execution at Extreme Scale

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sockets

Speedup

Reference DC+MF DC+MF+EDT DC+MF+Overlap

DC+MF+Overlap+EDT MF+MA+DC MF+MA+DC+Overlap

Vulcan (IBM BG/Q)

Figure 4.12: Early-sending & communication overlap optimisations on Vulcan

also the reduction in performance caused by the sub-optimal memory access

pattern which they require.

Additionally, these results also indicate that the use of the explicit “progress

threads” supported by the Cray MPI communication library does not deliver

any significant performance benefits or facilitate greater overlap between the

communication and computation operations. The performance delivered by the

code versions which utilised this technology (denoted by the abbreviation PT) is

broadly the same as the equivalent versions which did not. The results also show

that explicitly dedicating a separate CPU processor core to execute a progress

thread (PToSepCore), at the expense of using this processing resource for

the main application workload, delivers significantly worse overall performance

than utilising a CPU hyper-thread to execute the progress thread (PToHT).

Similarly the results show that increasing the number of internal communication

bu↵ers within the Cray MPI communication layer and the threshold below

which messages will be sent using the “eager” communication protocol (version

denoted by the abbreviation MPItune) also does not significantly a↵ect overall

application performance either positively or detrimentally.

The results obtained from the experiments on the Vulcan platform show

a similar trend in performance. At the smaller experimental scales (2,048

sockets) examined as part of this research the versions which incorporate the

overlapping optimisation perform fractionally, but consistently, worse than the

equivalent versions which do not incorporate the optimisation. In the exper-

iments beyond 2,048 sockets; however, this performance disparity disappears

and the performance of these versions matches, but does not exceed, that of the

equivalent versions which do not incorporate the optimisation.

89

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.8

0.9

1

1.1

Sockets

Speedup

MPI NBR nCollCart DC

DC nCollDistGraph DC nCollGraph

Archer (Cray XC30)

Figure 4.13: Performance of MPI v3.0 constructs on Archer

Eager Data Transmission

As part of this research a series of experiments was also conducted to examine

the e↵ect on performance of the “Eager Data Transmission” optimisation de-

scribed in Section 4.2.1. The results from experiments on the Archer platform

with versions which incorporate this optimisation technique are presented in

Figures 4.8 and 4.11, whilst Figure 4.12 documents results obtained by employ-

ing this optimisation on the Vulcan platform. It is clear that on both platforms

the use of this optimisation consistently delivers a performance degradation

relative to equivalent versions which do not incorporate it. Figure 4.8 shows that

on Archer the use of this candidate optimisation can result in a performance

degradation of up to 6% in overall application performance.

On Vulcan, however, the performance obtained by applying this optimisation

to a code variant which already incorporates the “diagonal communications”

and “communicating multiple fields simultaneously” optimisations, results in

virtually identical performance being delivered in all of the experiments 2,048

sockets. In the larger scale experiments (�4,096 sockets), however, the use of

this optimisation results in a significant degradation in performance, reaching

a 22.7% increase in application runtime in the 8,192 socket experiment. Ad-

ditionally the results show that applying this optimisation to a code variant

which employs the “overlapping communications” technique, also does not sig-

nificantly a↵ect overall performance, either beneficially or detrimentally, at any

of the experimental scales examined as part of this research.

90

4. Achieving E�cient Application Execution at Extreme Scale

MPI v3.0 Constructs

To examine whether the use of the MPI v3.0 communication constructs de-

scribed in Section 4.2.1 could deliver any performance benefits for this class

of application a series of experiments was conducted on the Archer platform.

Figure 4.13 presents the results from these experiments. The IBM MPI commu-

nication library available on the BG/Q does not yet support these constructs

which prevents similar experiments from being undertaken on this architecture.

The results show that the use of the non-blocking MPI reduction operation

does not have a significant e↵ect on application performance in the experiments

1,024 sockets, as the run-times are on average virtually identical to those

of the reference MPI-only implementation. The use of this construct in the

larger scale experiments can, however, deliver some modest improvements in

application performance, in these experiments run-times were reduced by 4.6%

and 1.6% respectively in the 2,048 and 4,096 socket cases.

The performance of the version which employed the cartesian neighbourhood

collective operations (labelled “nCollCart” in Figure 4.13) was virtually identi-

cal to the reference implementation at the smaller experimental scales examined.

As the scale of the experiments was increased, however, the performance of this

version was generally not able to match that of the reference implementation;

in the 4,096 socket experiment its performance was 10.5% slower. The perfor-

mance of the versions which utilised the graph-based neighbourhood collective

operations (“DC nCollDistGraph” and “DC nCollGraph”) was also generally

superior to that of the versions which employed the equivalent cartesian oper-

ations. The code variant which utilised the distributed graph communication

construct (“DC nCollDistGraph”) was the most performant, compared to the

equivalent version which incorporated the fully connected graph communication

constructs (“DC nCollGraph”), and was able to match the performance of the

reference implementation at all the experimental scales examined. At no point in

these experiments, however, did the use of any of the MPI v3.0 neighbourhood

collective operations deliver any significant improvements in overall applica-

tion performance relative to the reference implementation. This indicates that

although these constructs deliver programmer productivity benefits through

reductions in the number of MPI library calls required to complete a particular

operation, reducing the number of these calls does not deliver any performance

improvements for this class of applications. The Cray MPI runtime system,

present on the Archer platform, is also not yet able to utilise the additional

information provided by these new constructs (e.g. the communication topology

of the application) in order to improve overall application performance.

91

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.7

0.8

0.9

1

1.1

Sockets

Speedup
MPI MPI RR

Archer (Cray XC30)

Figure 4.14: MPI rank reordering on Archer

MPI Rank Reordering

To assess the e↵ect on performance of the rank reordering optimisation (Sec-

tion 4.2.1) a series of experiments were conducted using the Archer Cray XC30

platform. On Cray platforms the environment variable Mpich Rank Reorder -

Method determines the order in which MPI ranks are assigned to cores. Within

an allocation the number assigned to a particular core corresponds to the MPI

rank which will ultimately be executed on it. By default (Mpich Rank Reorder -

Method=1) cores are numbered consecutively within a node with this numbering

continuing on subsequent nodes. Custom mappings can be specified using a rank

reorder file (Mpich Rank Reorder Method=3) and these can be generated either

manually or automatically using Cray tools.

In these experiments the Grid order tool was employed to manually generate

a custom rank mapping file. As Archer has 24 cores per node, the blocks assigned

to each node were specified to have dimensions of 6⇥4 chunks (Figure 4.3b). The

reference MPI implementation was then executed using both the default and

customised rank placement settings. Figure 4.14 presents the results of these

experiments and shows that in these experiments this optimisation improved

overall application performance by 5.1% and 7.7% in the 2,048 and 4,096 socket

experiments respectively.

This demonstrates that modifying the layout of application processes within

a particular supercomputer node allocation to better reflect the communication

pattern of an application can deliver significant improvements in performance.

As the scales of the experiments are increased the rank reordering optimisation

also delivers a greater improvement in overall performance relative to the default

ordering. These performance improvements are realised through applications

92

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096 8192

0

100

200

300

Sockets

A
p
p
li
ca

ti
on

w
al
l-
ti
m
e
(s
ec
s)

Archer

Mira

Figure 4.15: Performance due to the distributed meta-data optimisation

being able to better utilise the shared memory resources, available within the

nodes of particular supercomputer platforms, for inter-process communication

rather than having to exclusively rely upon slower inter-node message transmis-

sions to move data across larger distances.

Reduction Consolidation

Figures 4.7 and 4.9 present the results from the experiments conducted on

Archer and Vulcan respectively to examine the performance of the “Consol-

idated Reduction” optimisation (Section 4.2.1). The results show an almost

identical trend on both system architectures, that is that the incorporation of

this optimisation into the application does not significantly a↵ect performance

either beneficially or detrimentally. The performance of the code variant which

includes this optimisation is identical to that of the reference implementation

even as the scales of the experiments are increased to 4,096 and 8,192 sockets

on Archer and Vulcan respectively.

Architecture Comparison

Figure 4.15 shows the performance results obtained from the experiments with

the MPI-only codebase on both the Archer (Cray XC30) and Mira (IBM BG/Q)

experimental platforms. They demonstrate that approximately 2-4⇥ more pro-

cessor sockets are required for the runtime performance of the application on

the BG/Q architecture to match that of the Cray XC30 architecture.

Using the application power consumption instrumentation facilities available

on both the Archer and Mira platforms (Section 4.2.2) a series of experiments

93

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0

2

4

6

8
·106

Sockets

E
n
er
g
y
(J
)

Cray MPI Cray MPI RM

BG/Q MPI 32ppn BG/Q MPI 64ppn

Figure 4.16: Energy to solution analysis on Archer(XC30) and Mira(BG/Q)

were undertaken to examine the energy consumed by the nodes of each platform

in achieving equivalent numerical solutions. The results of this analysis are

shown in Figure 4.16. On the Archer platform average figures from three

separate runs of each experiment are presented, however, due to time and

machine allocation limitations it was only possible to obtain one run for each of

the results shown for the Mira platform.

The results from Archer show that the energy-to-solution profile decreasing

consistently as the application is scaled from 128 to 2,048 processor sockets.

Beyond this point, however, this profile “turns-over” and the energy required

to achieve a solution on 4,096 processor sockets is actually significantly greater

(1.3⇥) than that required to achieve the same solution on 2,048 sockets. This

occurs despite the fact that the actual runtime performance of the application

continues to decrease between the 2,048 and 4,096 socket experiments. This

reduction in runtime is, however, lessened by the fact that the communication

operations within the application are becoming increasingly dominant and lim-

iting its scalability, and it is therefore not su�ciently large enough to o↵set the

approximate doubling of power consumption which occurs between the 2,048

and 4,096 socket experiments.

The results also show that the MPI rank reordering optimisation delivers

approximately a 1.1⇥ reduction in energy consumption in the 4,096 sockets

experiment by reducing the actual runtime of the application and thus its overall

energy consumption. The energy consumed by this version was, however, prac-

tically identical to the reference implementation in all the other experimental

scales examined.

Additionally, the results from the Mira platform demonstrate that—for the

data-points which it was possible to collect as part of this research—the BG/Q

architecture is able to deliver significant advantages over the Cray XC30 archi-

tecture in terms of the energy required to achieve equivalent solutions for this

94

4. Achieving E�cient Application Execution at Extreme Scale

application. These energy-to-solution advantages reached as high as 1.7⇥ in

these experiments.

4.4.2 Hybrid (MPI+OpenMP) Results Analysis

Building on the research documented in Chapter 3 a series of experiments was

conducted to assess whether the MPI+OpenMP hybrid programming model can

deliver any performance advantages for this class of applications, specifically at

large-scale. Additionally, these experiments also examined the utility of the

candidate optimisation techniques outlined in Section 4.3. The performance of

this codebase and each optimisation technique are examined in the following

sections.

MPI-only and MPI+OpenMP Comparison

To determine whether the hybrid (MPI+OMP) version of the codebase can

deliver any performance advantages compared to the reference MPI-only ver-

sion a series of experiments was conducted on both the Archer and Vulcan

platforms. On both architectures these experiments examined the performance

of the hybrid version when executed using a range of di↵erent ratios between the

number of MPI processes and OpenMP threads employed per node. Figures 4.17

and 4.18 present the results of these experiments; additionally on the Archer

platform separate experiments were also conducted using a range of di↵erent

Cray MPI and compiler versions.

Figure 4.17a shows the results from the experiments on Archer using the

older version of the Cray MPI library and compiler infrastructure; please refer

to Section 4.4 for more details on the specific versions employed. The results

show that in the smaller scale experiments (128 and 256 sockets) employing the

hybrid programming model can deliver significant performance advantages over

the MPI-only approach. In these experiments this performance advantage was as

much as 1.2⇥ in the 128 socket experiment but declined to 1.1⇥ in the 256 socket

experiment. This decline in performance relative to the MPI-only version of the

codebase continued as the scales of the experiments were increased resulting in

the MPI-only approach delivering superior performance in all of the experiments

�512 sockets. The results show that the performance of the hybrid versions

was inversely proportional to the number of OpenMP threads utilised in the

experiments, with the performance of the 12MPIx2OpenMP configuration being

consistently superior and the 1MPIx24OpenMP ratio the least performant. In

the 4,096 socket experiment the performance of these versions was 1.1⇥ and

1.6⇥ worse than the MPI-only version of the codebase.

This performance trend is, however, not matched in the results obtained

95

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.4

0.6

0.8

1

1.2

Sockets

Speedup
MPI 1x24 2x12 4x6 6x4 12x2

Archer (Cray XC30)

(a) Cray MPI v6.1.1

128 256 512 1024 2048 4096
0.4

0.6

0.8

1

1.1

Sockets

Speedup

Archer (Cray XC30)

(b) Cray MPI v7.0.3

Figure 4.17: Hybrid (MPI+OMP) performance on Archer

from the experiments on Archer with the more recent versions of the Cray MPI

library and compiler software (Figure 4.17b). These results indicate that im-

provements in the Cray MPI library now enable the performance of the MPI-only

codebase to match that of the hybrid variants in the small scale experiments

and to continue to exceed the performance of the hybrid versions in the 4,096

socket experiment by as much as 1.5⇥. For the hybrid versions the ratio of

12MPIx2OpenMP is again the most performant in the larger scale experiments

(2,048 and 4,096 sockets); however, the 6MPIx4OpenMP and 4MPIx6OpenMP

ratios now deliver slightly superior performance in the smaller scale experiments

(<2,048 sockets). The hybrid version which employs 24 OpenMP threads across

the 2 processor sockets within each node is again the least performant configura-

tion; however the performance of this version is able to match the other hybrid

96

4. Achieving E�cient Application Execution at Extreme Scale

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

Sockets

Speedup
MPI 1x32 2x16 4x8 8x4 16x2

Vulcan (IBM BG/Q)

(a) Vulcan 32ppn

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

Sockets

Speedup
MPI 1x64 2x32 4x16 8x8 16x4

Vulcan (IBM BG/Q)

(b) Vulcan 64ppn

Figure 4.18: Performance of the MPI+OMP implementation on Vulcan

configurations in the smaller scale experiments. Although certain experiments

do show some of the hybrid versions delivering superior performance compared

to the MPI-only implementation, these performance improvements are generally

<4%.

The results obtained from the equivalent experiments on the Vulcan platform

(Figure 4.18) show a similar performance trend to that observed on Archer

with the more recent version the Cray MPI library. In these experiments the

performance of the hybrid code variants is again able to match that of the MPI-

only version in the small scale experiments on 512 sockets. As the scale of the

experiments is increased; however, the relative performance of the hybrid version

decreases, and in the 8,192 socket experiment this implementation is 1.16-1.2⇥
slower than the reference MPI-only implementation. This performance trend is

97

4. Achieving E�cient Application Execution at Extreme Scale

observable in the experiments with both 32 (Figure 4.18a) and 64 (Figure 4.18b)

processes per node.

This demonstrates that with less e�cient MPI implementations hybridising

codebases with OpenMP can deliver significant performance advantages when

application performance is dominated by computational operations, as it is in

the smaller scale experiments examined here. This is due to the hybrid approach

facilitating the more e�cient use of the shared memory resources within the

nodes of the supercomputer. Furthermore, it is possible to improve the e�ciency

of an MPI implementation such that the application performance, which is

achievable with the MPI-only model, is able to match that of a hybrid approach.

The results also show that due to the additional threading overheads (e.g.

OpenMP fork/join and synchronisation overheads etc.) which are a consequence

of the hybrid approach, the MPI-only approach is significantly more performant

at high node counts for this class of application. In these particular experiments

the size of the computational mesh assigned to each node is significantly smaller

than in the low node count experiments and consequently the performance of

the application is increasingly dominated by communication operations. Addi-

tionally as the memory footprint required per node is considerably smaller,

the benefits due to the use of the threading constructs, which result from

the more e�cient utilisation of the shared memory resources, are substantially

reduced and do not o↵set the additional overheads caused by the use of a hybrid

approach. The results also demonstrate that the overheads due to the use of

the OpenMP constructs increase with the number of threads utilised per MPI

rank.

Message Aggregation

To examine whether the optimisation of aggregating MPI messages can also

provide a performance benefit for the MPI+OpenMP versions of the codebase

a series of further experiments was conducted on both the Archer and Vul-

can platforms using a variant of the hybrid codebase which incorporated this

optimisation. Figures 4.19 and 4.20 present the results of these experiments.

In these charts the speedup due to the “Message Aggregation” optimisation is

calculated relative to the performance of the reference implementation, when

executed using the same MPI to OpenMP ratio.

The results show that on Archer this optimisation also delivers significant

performance benefits for the hybrid version of the codebase, with the perfor-

mance improvements growing as the scale of the experiments is increased. In

the 128 socket experiment the performance of the reference implementation

matches that of the version which incorporates this optimisation. With the

98

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Sockets

Speedup
1x24 2x12 4x6 6x4 12x2

Archer (Cray XC30)

Figure 4.19: Message aggregation for the MPI+OMP version on Archer

exception of the 2,048 socket experiment, however, the results show a consistent

increase in the speedup achieved due to message aggregation as the scale of the

experiments is increased. In the 4,096 socket experiment the speedup due to this

optimisation is as high as 1.22⇥ the performance of the original implementation.

A similar trend can also be observed on the Vulcan platform for the 32

and 64 processes per node experiments (Figures 4.20a and 4.20b). The results

again show the performance of the reference hybrid implementation matching

that of the version which incorporates the message aggregation optimisation

in the smaller scale experiments (512 processor sockets). As the scale of the

experiments are increased the performance speedup due to this optimisation

again increases, reaching up to a ⇠1.27⇥ improvement in the 8,192 socket

experiment.

Individual Kernel OpenMP Optimisations

A series of experiments was undertaken to examine whether the individual

kernel optimisations, identified in Chapter 3, can deliver any performance ben-

efits when CloverLeaf is executed at significant scale on the Archer platform.

Figure 4.21 presents the results of these experiments. In these charts the results

labeled “KernelOpts” refer to the particular version which incorporates these

optimisations. The results show that for the experiments which utilised the

1MPIx24OMP and 4MPIx6OMP configurations, employing these optimisations

can deliver significant performance improvements in the smaller scale exper-

iments, relative to the reference MPI-only and hybrid implementations. In

the 128 socket experiment these optimisations achieved a ⇠1.10⇥ and ⇠1.12⇥
improvement in performance relative to the reference MPI-only implementa-

99

4. Achieving E�cient Application Execution at Extreme Scale

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sockets

Speedup
1x32 2x16 4x8 8x4 16x2

Vulcan (IBM BG/Q)

(a) Vulcan 32ppn

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sockets

Speedup
1x64 2x32 4x16 8x8 16x4

Vulcan (IBM BG/Q)

(b) Vulcan 64ppn

Figure 4.20: Message aggregation for the MPI+OMP version on Vulcan

tion for the 1MPIx24OMP and 4MPIx6OMP configurations respectively. As

the scale of the experiments is increased, however, the results show that this

optimisation becomes less e↵ective with relative application performance falling

back to approximately match that of the reference hybrid implementation.

This indicates that these optimisations are more e↵ective when the amount

of computational work, which each thread has to perform, is greater relative to

the levels of communication operations, which is the case in the smaller scale

experiments.

High-level Parallel Region

To determine whether the “High-level Parallel Region” optimisation discussed

in Section 3.2.4, could deliver any performance benefits as the execution scales

100

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096

0.4

0.6

0.8

1

1.2

Sockets

Speedup

MPI 1x24 Vdecomp HLPR

KernelOpts IntelOMP IntelOMP Nested

Archer (Cray XC30)

(a) 1 MPI process x 24 OMP threads / node

128 256 512 1024 2048 4096
0.6

0.8

1

1.2

Sockets

Speedup

MPI 4x6 BufferCollapse

HLPR KernelOpts ThreadMultiple

Archer (Cray XC30)

(b) 4 MPI processes x 6 OMP threads / node

Figure 4.21: Optimisations to the hybrid versions on Archer

101

4. Achieving E�cient Application Execution at Extreme Scale

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sockets

Speedup

16x4 ScopingInfo BufferCollapse

HLPR ThreadMultiple MPI 64ppn

Vulcan (IBM BG/Q)

(a) Vulcan 4MPIx16OMP configuration

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sockets

Speedup
1x64 ScopingInfo HLPR MPI 64ppn

Vulcan (IBM BG/Q)

(b) Vulcan 1MPIx64OMP configuration

Figure 4.22: Optimisations to the hybrid version on Vulcan

of the application are increased, a series of experiments was conducted on both

Archer and Vulcan. The version labelled ”HLPR” within Figures 4.21 and 4.22

shows the e↵ect of this optimisation on the performance of CloverLeaf.

The results from the Archer platform show that the performance of this

version is approximately equivalent to the reference hybrid version in the smaller

scale experiments on 128 and 256 processor sockets. As the scale of the exper-

iments is increased, however, the version incorporating this optimisation starts

to consistently outperform the reference hybrid implementation for both the

1MPIx24OMP and 4MPIx6OMP experimental configurations. In the 4,096

socket experiments this optimisation delivered respective performance improve-

ments of ⇠1.3⇥ and ⇠1.1⇥ relative to the reference hybrid implementation. In

102

4. Achieving E�cient Application Execution at Extreme Scale

several experiments with the 4MPIx6OMP configuration employing this opti-

misation also enabled the hybrid implementation to outperform the reference

MPI-only implementation, although only by ⇠2.9%.

A similar performance trend is also exhibited in the results obtained from

employing this optimisation on the Vulcan platform. These results (Figure 4.22)

show that the version which incorporates this optimisation consistently delivers

superior performance compared to the reference hybrid implementation, and

that the performance disparity grows significantly as the scale of the experiments

is increased. In the 512 socket experiment this optimisation improved the perfor-

mance of the hybrid codebase by ⇠2.7% and ⇠1.2% for the 16MPIx4OMP and

1MPIx64OMP configurations respectively. The improvement in performance,

however, increases to ⇠9% and ⇠11% for these configurations in the 2,048 to

8,192 socket experiments respectively. Similarly employing this optimisation

also enabled the hybrid implementation (16MPIx4OMP configuration) to out

perform the MPI-only implementation by 3.4% and 3.6%, in the 512 and 1,024

socket experiments, respectively.

The fact that this optimisation delivers significantly more performance ben-

efits in the larger scale experiments is likely due to the OpenMP synchronisation

overheads representing proportionally more of the overall computational work-

load at these scales. As this optimisation contributes to reducing the levels of

synchronisation within the hybrid codebase, it is therefore more e↵ective in the

experiments on the higher processor counts, as during these the size of the mesh

processed by each thread is considerably reduced relative to the smaller scale

experiments.

Vertical Rectangular Decomposition

To analyse the performance of the “Vertical Rectangular Decomposition” can-

didate optimisation (Section 4.3.1) a series of experiments were performed on

the Archer platform using the 1MPI x 24OpenMP threads configuration. The

version labelled “ChangeDecomp” in Figure 4.21a presents the results of these

experiments. The results show that the performance of this version is virtually

identical to that of the reference hybrid implementation in the 128 to 2,048

sockets experiments. The result from the 4,096 socket experiment, however,

demonstrates that this version achieved a ⇠9.9% performance improvement on

average over the reference hybrid implementation. This indicates that this opti-

misation may deliver some performance advantages when OpenMP parallelism

is utilised across multiple sockets and the amount of computational work per

node is su�ciently small, such that minimising the data transfers across the

inter-socket buses becomes important in achieving optimal performance.

103

4. Achieving E�cient Application Execution at Extreme Scale

MPI-OpenMP Integration Options Exploration

The experimental results obtained with the version of the hybrid implementa-

tion which employs the MPI-OpenMP integration optimisations described in

Section 4.3.1 are shown in Figure 4.21 and 4.22a for the Archer and Vulcan

platforms respectively. In both figures the version labelled “ThreadMultiple”

presents the results obtained with this version. The results from the experiments

on the Archer platform show that the performance of the version which incor-

porates this modification matches that of the reference hybrid implementation

in the smaller scale experiments (128 and 256 sockets). In the larger scale ex-

periments, however, as the performance of the application becomes increasingly

dominated by the communication operations, this version performs consistently

worse than the reference hybrid implementation. The results obtained from

Vulcan demonstrate that on this platform the use of this construct also results

in a performance degradation; however the reduction in performance is not as

great as was observed on the Cray XC30 architecture.

Overall as this optimisation relates to how the communication operations

are utilised within the application, this result indicates that the approach of

initiating multiple MPI communication operations in parallel and in close tem-

poral proximity, using OpenMP constructs, is not as performant as the original

method utilised within in the reference version. This is due to additional

mutual exclusion/locking overheads which are required within the MPI library

in order to coordinate access to the underlying communication resources for

each OpenMP thread. Additionally, as a significantly smaller reduction in per-

formance is observed on the IBM BG/Q due to the utilisation of this approach,

compared to the Cray XC30, this indicates that the implementation of the

multi-threaded constructs within the MPI library is also more e�cient on the

BG/Q.

Alternative Communication Bu↵er Packing Approaches

The performance of the modified hybrid version which utilises OpenMP Nested

Parallelism and the OpenMP v4.0 thread placement constructs (Section 4.3.1),

with the aim of improving the performance of the communication bu↵er packing

operations was examined in a series of experiments on the Archer platform. As

the Cray OpenMP runtime system does not yet support the OpenMP v4.0

thread placement constructs, the Intel compiler and OpenMP runtime systems

(version 14.0.4) were utilised for these experiments. Figure 4.21a presents

these results together with those from an experiment with the reference hybrid

implementation compiled using the Intel tool-chain in order to provide a baseline

against which to compare the performance of the modified approach. The results

104

4. Achieving E�cient Application Execution at Extreme Scale

128 256 512 1024 2048 4096
0.7

0.8

0.9

1

1.1

Sockets

Speedup

2x12 2x12 Reveal 4x6

4x6 Reveal 6x4 6x4 Reveal

Archer (Cray XC30)

Figure 4.23: Hybrid version produced by Reveal on Archer

show that in all of the application scales examined the performance of the

modified version is significantly worse than that of the reference hybrid im-

plementation. In the 4,096 socket experiment the use of this modified approach

results in a slowdown in overall application performance of ⇠1.8⇥ relative to

the reference hybrid implementation. This demonstrates that the use of nested

parallelism currently results in too much additional overhead for this modified

approach to be viable for this class of application.

Additionally, Figures 4.21b and 4.22a also present results, from Archer and

Vulcan respectively, of experiments with the version of the hybrid codebase

which incorporates the modified (using loop inter-change and the collapse

directive) communication bu↵er packing functionality described in Section 4.3.1.

This version is labelled as “CommsBu↵erCollapse” within these charts. The

results from both Archer and Vulcan show that the use of this modification

does not significantly a↵ect the overall performance of the codebase as in both

cases the performance of the modified version is equivalent to that of the

reference hybrid implementation in all of the experiments conducted as part

of this research.

Automatic Hybridisation

To assess the performance at scale of the hybrid codebase produced automat-

ically by the Cray Reveal tool (Section 3.2.13) a series of experiments was

conducted on both the Archer and Vulcan platforms. Figures 4.23 and 4.24

present the performance results obtained through the use of this codebase on

Archer and Vulcan respectively, and compare it against the reference hybrid

implementation. The results from the Archer platform show that in the smaller

105

4. Achieving E�cient Application Execution at Extreme Scale

512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

Sockets

Speedup
16x2 16x2 Reveal 16x4 16x4 Reveal

Vulcan (IBM BG/Q)

Figure 4.24: Hybrid version produced by Reveal on Vulcan

scale experiments on 128 sockets the performance of the version produced by

Reveal is within ⇠7.0% of the performance of the reference hybrid implemen-

tation. As the scale of the experiments is increased, however, this performance

disparity reduces and in the largest experiment conducted (4,096 sockets) the

version produced by Reveal actually significantly outperforms the reference

hybrid implementation by as much as 7.3%, in each of the three configurations

examined (2MPIx12OMP, 4MPIx6OMP and 6MPIx4OMP).

The results produced on Vulcan, however, demonstrate a significantly di↵er-

ent performance trend. On this platform the performance of the hybrid version

produced by Reveal is able to match that of the reference hybrid implementation

in the smaller scale (512 socket) experiment. As the scales of the experiments

are increased, the hybrid version produced by Reveal starts to deliver superior

performance compared to the reference hybrid implementation for both the

examined configurations (16MPIx2OMP and 16MPIx4OMP). In the largest

experiment conducted on the BG/Q architecture (8,192 processor sockets) the

hybrid version produced by Reveal is ⇠12.1% faster than the reference hybrid

implementation for the 16MPIx4OMP configuration.

These results indicate that the structure of the hybrid implementation pro-

duced by Reveal (i.e. one nested loop block per parallel region) may de-

liver some performance advantages over the structure implemented within the

reference hybrid version in situations in which the size of the computational

mesh processed by each thread is significantly reduced. This is the case in the

experiments on the BG/Q architecture due to the larger numbers of threads

involved in the overall computation and in the larger scale experiments on the

Cray XC30.

The Reveal tool also employs the default(done) OpenMP directive on

106

4. Achieving E�cient Application Execution at Extreme Scale

each parallelised loop block and also specifies additional scoping information

for each variable within this block, whilst the reference hybrid implementation

only specifies the minimal amount of variable scoping information. To eliminate

this as a factor causing the observed performance di↵erences on the BG/Q

architecture, the additional variable scoping information was manually added

to the reference hybrid implementation, including the default(none) directive.

Using this modified version an additional experiment was conducted on the

Vulcan platform, the results of which are shown in Figure 4.22b. These demon-

strate that the performance of this modified version (labelled “ScopingInfo”) is

identical to that of the original reference hybrid implementation at all of the

experimental scales examined. This indicates, therefore, that the inclusion of

the additional variable scoping information does not provide any performance

benefits for the hybrid version produced by Reveal.

4.5 Summary

This chapter documented the research which was undertaken to improve the

performance of the CloverLeaf mini-application at extreme scale (up to 131,072

processor cores) on several current state-of-the-art supercomputer architectures,

and thereby to also improve the performance and scalability of the main ap-

plications which it represents. Several pieces of related work are identified and

analysed first, and information is then provided on the actual implementations of

the MPI-only and hybrid (MPI+OpenMP) versions of the CloverLeaf codebase.

Additionally, each of the candidate optimisations, developed as part of this

research, are also extensively documented.

A detailed analysis of the performance results, which were recorded during

the experiments with these codebases, is presented in the results analysis section

of this chapter. This analysis showed that selecting application data structures

which are able to scale to large process counts without consuming significantly

more memory resources is crucial in enabling applications to execute e�ciently

at scale. This research identified that, for CloverLeaf specifically, adopting a dis-

tributed approach for mesh meta-data management enabled the performance of

the application to be significantly improved at scale and for significant memory

savings to be achieved compared to the original implementation.

Of the candidate optimisations examined for both the MPI-only and hybrid

codebases, the strategy of aggregating communication data into larger message

sizes and delaying their transmission until all the data items are ready, was

the most optimal approach for CloverLeaf. This approach achieved signif-

icant performance improvements over the reference implementation on both

supercomputer architectures examined. The strategy of communicating data

107

4. Achieving E�cient Application Execution at Extreme Scale

as soon as it is ready for transmission, which was found to be beneficial by

other researchers examining similar types of applications, actually resulted in

significant reductions in performance when it was applied to CloverLeaf.

Fully utilising the available hardware threads on the BG/Q architecture was

found to be beneficial for both the MPI-only and hybrid codebases, particularly

in the smaller experimental scales examined. During these experiments the

performance of the application is predominantly dominated by computational,

rather than communication, operations. In contrast the use of the Intel Hyper-

threads, on the Cray XC30 architecture, did not however a↵ect performance in

the smaller scale experiments and their use resulted in a substantial reduction

in overall performance when the application was executed at scale. Similarly

the use of huge-memory pages on the XC30 generally resulted in degradations

in overall performance.

Utilising small message communications directly between logical diagonally

neighbouring processes in order to reduce synchronisation operations within the

application proved to be an inferior approach on both system architectures,

compared to the approach employed in the reference implementation. In this

version an implicit diagonal communication is achieved by exchanging data first

in x -dimension of the mesh and then, following a synchronisation operation, in

the y-dimension. The experimental results also show that when the performance

of CloverLeaf is dominated by the time required for inter-process communication

operations (e.g. when the application is executed at scale on the Cray XC30

platform), the pre-posting of MPI receive operations can deliver significant

performance improvements.

The results presented here also show that the techniques which were de-

veloped as part of this research to overlap communication and computation

operations within CloverLeaf, actually have a detrimental e↵ect on the overall

performance of the application on both supercomputer architectures examined.

Additionally, the use of dedicated Progress Threads, which are available on the

Cray architecture to potentially improve the overlap of computation and com-

munication operations, do not significantly improve application performance,

at least in these experiments. Executing these Progress Threads on additional

hyper-threads also appears to be the most e�cient approach compared with

utilising a completely separate, dedicated compute core within each node.

On Archer employing the non-blocking reduction MPI v3.0 operations within

CloverLeaf appears to provide some modest performance improvements for the

application. The use of the neighbourhood collective operations, however, did

not deliver any performance benefits in any of the experiments conducted.

Similarly the candidate optimisation to consolidate the number of reduction

operations within the application also did not provide any additional perfor-

108

4. Achieving E�cient Application Execution at Extreme Scale

mance benefits.

Reordering MPI ranks to improve the utilisation of shared memory commu-

nication resources and reduce the number of inter-node communication opera-

tions was shown to improve the performance of CloverLeaf. During the large

scale experiments on the Cray XC30 platform, these performance improvements

increased linearly with the size of the experiments. This approach represents

a relatively straightforward mechanism with which to improve the performance

of applications at scale, as it does not involve any changes to the source code

of the application, and a suite of tools is available to rapidly generate the MPI

rank mapping files.

Using these results to directly compare the two supercomputer architectures

examined in this research shows that it is necessary to employ approximately

2-4⇥ more processor sockets on the BG/Q architecture in order to achieve com-

parable performance to the Cray XC30 architecture. The experimental results,

however, show that the BG/Q architecture can deliver superior performance,

in terms of the energy required to achieve an equivalent solution. Additionally,

the energy-to-solution profile of CloverLeaf on the Cray XC30 demonstrates an

optimal job size with which to execute the application in order to minimise

overall energy consumption.

The hybrid version of CloverLeaf initially delivered performance improve-

ments at the smaller experimental scales examined on the Cray XC30 plat-

form. The release of a later version of the Cray MPI communication layer,

however, subsequently improved the performance of the MPI-only codebase

to approximately match that of the hybrid versions. Additionally, on the

BG/Q architecture and in the larger scale experiments on the Cray XC30,

the MPI-only approach was always the most performant. The experimental

results also show that the optimisations documented in Chapter 3 can deliver

significant performance improvements for the hybrid versions of CloverLeaf

when the application is executed across multiple nodes and performance is

dominated by computation, rather than communication, operations.

The optimisation of combining OpenMP parallel regions higher up in

the call-chain of the application was shown to consistently deliver significant

performance improvements on both experimental platforms, particularly as the

scales of the experiments were increased and OpenMP synchronisation over-

heads become a larger proportion of the overall runtime of the application.

Additionally, changing the decomposition strategy within the hybrid version, to

orientate the rectangular array sections in the vertical dimension, and thereby

minimise inter-socket communication, was also shown to deliver some perfor-

mance benefits at scale when OpenMP threading constructs were being utilised

across multiple processor sockets on the Cray XC30.

109

4. Achieving E�cient Application Execution at Extreme Scale

Utilising the ThreadMultiple construct to enable MPI operations to be ini-

tiated in parallel by multiple OpenMP threads resulted in a significant reduction

in performance on both architectural platforms. Similarly, employing OpenMP

v4.0 thread placement constructs together with Nested Parallelism for the com-

munication bu↵er packing operations also resulted in a substantial performance

penalty in the experiments in which OpenMP threads were employed across

multiple processor sockets.

This research also demonstrated that the Reveal tool from Cray can provide

a viable solution for rapidly and automatically hybridising codebases. Further-

more, the performance of the automatically generated codebase is generally

within ⇠7% of the manually written version on the Cray architecture. On

the BG/Q platform and in specific configurations on the Cray XC30, however,

the automatically generated codebase is able to deliver superior performance

compared to the manually developed versions.

110

CHAPTER 5
Evaluating the Utility of PGAS-based Approaches

This chapter documents work undertaken to assess whether PGAS-based pro-

gramming models can deliver any performance advantages, particularly at large

scale, for explicit Lagrangian-Eulerian hydrodynamics codes. Section 5.1 as-

sesses existing work relating to this research area. The PGAS-based imple-

mentations of CloverLeaf which were developed as part of this work, are then

documented in Sections 5.2 and 5.3. The results of several experiments, under-

taken to assess the utility of these models against the de facto MPI approach,

are presented in Section 5.4. Finally, Section 5.5 concludes the chapter.

5.1 Related Work

In the one-sided RDMA-based communication models utilised by PGAS lan-

guages, the communication initiator generally provides all relevant information

regarding the operation. This alleviates the destination processor of any involve-

ment, which has been recognised as an important factor in reducing communi-

cation latency [23]. It has also been argued that these models can potentially

deliver additional benefits over standard message passing solutions, including,

eliminating message matching and synchronisation overheads, improving en-

ergy consumption through reductions in data-motion, relaxing message ordering

guarantees and reducing memory consumption by removing communications

bu↵ers [71, 23]. Minimising communication operations within applications has

been recognised as a key approach for improving the scalability and performance

of scientific applications [51].

Background information on the OpenSHMEM and CAF programming mod-

els can be found in Section 2.2.8. Additionally, although CAF has only relatively

recently been incorporated into the o�cial Fortran standard, earlier versions of

the technology have existed for some time. Researchers are also actively seeking

to further improve the existing standard with proposed changes to the program-

ming model and communication constructs [140]. Similarly, although several

distinct SHMEM implementations have existed since the model was originally

developed by Cray in 1993 for the T3D supercomputer architecture [81], the

technology has only been o�cially standardised very recently as part of the

OpenSHMEM initiative [157, 40].

Consequently, a number of studies have already examined these technologies.

These have generally focused, however, on di↵erent scientific domains to the

111

5. Evaluating the Utility of PGAS-based Approaches

one examined in this research, and on applications which implement alternative

algorithms or exhibit di↵erent performance characteristics. Additionally, rela-

tively little work has been carried out to assess these technologies since their

standardisation and on the hardware platforms examined in this work. Overall,

substantially less work exists which directly evaluates the MPI, OpenSHMEM

and CAF programming models when applied to the same application. The

results from previous studies have also varied significantly, with some authors

achieving significant speedups by employing PGAS-based constructs, whilst

others present performance degradations.

Several studies which do directly evaluate particular PGAS and MPI pro-

gramming models at considerable scale are from Preissl [166], Mozdzynski [143]

and Shan [178]. Preissl et al. present work which demonstrates a CAF-based im-

plementation of a Gyrokinetic Tokamak simulation code delivering significantly

improved performance compared to an equivalent MPI-based implementation

on up to 131,000 processor cores. Similarly, Mozdzynski et al. document their

work using CAF to improve the performance of the ECMWF IFS weather

forecasting code, relative to the original MPI implementation, on over 50,000

cores. Whilst Shan demonstrates CAF and UPC versions of the IMPACT-T

and MILC applications significantly outperforming equivalent MPI versions.

Additionally, a UPC version of the NAS FT benchmark has also been shown to

significantly outperform an equivalent MPI implementation [23, 147].

Stone et al. were, however, unable to improve the performance of the MPI

application on which their work focused by employing the CAF constructs; in-

stead they experienced a significant performance degradation [186]. Their work

examined on the CGPOP mini-application, which represents the Parallel Ocean

Program [107] from Los Alamos National Laboratory. Whilst the application

examined by Lavallée et al. has similarities to CloverLeaf, their work compares

several hybrid approaches against an MPI-only based approach [120]; addition-

ally they focus on a di↵erent hardware platform and do not examine either CAF-

or OpenSHMEM-based approaches. Henty also provides a comparison between

MPI and CAF using several micro-benchmarks [80].

Using “lower-level” one-sided communication APIs has been shown to deliver

performance improvements for parallel applications which send large numbers

of small messages [22]. OpenSHMEM delivered some performance advantages

relative to MPI for Bethune et al., however, they examined the Jacobi method

for solving a system of linear equations and utilised a previous generation of the

Cray architecture (XE6) in their experiments [26]. In [172] Reyes et al. discuss

their experiences porting the GROMACS molecular dynamics application to

OpenSHMEM. Their experiments show consistent performance degradations

(up to ⇠12% in particular experiments) relative to the original MPI implemen-

112

5. Evaluating the Utility of PGAS-based Approaches

tation, additionally they also utilised the Cray XE6 architecture.

Baker et al. examined a hybrid approach using OpenACC within a SHMEM-

based application; however, they concentrated primarily on hybridising the

application and their results were collected on the Cray XK7 architecture (Ti-

tan) [17]. A comparison of the use of one-sided MPI, UPC and SHMEM

communication constructs within a distributed hash table application on the

Cray XE6 architecture is provided by Maynard [138]. In [109] Jose et al. also

studied the implementation of a high performance unified communication library

that supports both the OpenSHMEM and MPI programming models on the

Infiniband architecture.

5.2 SHMEM Implementation

The OpenSHMEM-based versions of CloverLeaf created as part of this research

utilise one of two general communication strategies. These involve employing

the OpenSHMEM communication constructs to exchange data:

1. Between dedicated communication bu↵ers. This data is generally aggre-

gated from non-contiguous memory regions into one contiguous space,

before being written into the corresponding receive bu↵ers on the neigh-

bouring processes, using shmem put64 operations. Following synchroni-

sation operations this data then has to be unpacked by the destination

process.

2. Directly between the original source and final destination memory ad-

dresses. To communicate data stored contiguously within multi-dimensional

arrays shmem put64 operations are used, whilst strided shmem iput64

operations are utilised to transmit data which is stored non-contiguously.

On the platforms examined in this research it is necessary to employ two

separate calls to the shmem iput64 operation in order to transmit two

columns of halo data rather than one call to the shmem iput128 operation.

In Section 5.4 versions which employ the first strategy are denoted by the

word bu↵ers in their descriptions, whereas versions which employ the second

are referred to as arrays. Additional versions were also created as part of this

research which utilise the proprietary Cray non-blocking SHMEM “put” opera-

tions; within Section 5.4 these are referred to using the su�x nb (non-blocking).

The two-dimensional data arrays and communication bu↵ers are symmetrically

allocated when necessary using the shpalloc operator. All other scalar variables

and arrays which are required to be globally addressable are defined within

Fortran common blocks to ensure they are appropriately accessible.

113

5. Evaluating the Utility of PGAS-based Approaches

The only synchronisation primitive which OpenSHMEM provides natively

is a global operation (shmem barrier all) which synchronises all of the pro-

cesses involved. Versions developed as part of this research which employ this

synchronisation strategy are denoted by the word global within their descrip-

tions in Section 5.4. All other versions employ a point-to-point synchronisation

strategy in which processes only synchronise with their immediate neighbours.

Integer “flag” variables, which are set on a remote process after the original

communication operation completes, are employed to achieve this. To ensure the

correct ordering of remote memory operations either shmem fence or shmem -

quiet operations are utilised. Versions which employ shmem quiet contain the

word quiet within their descriptions in Section 5.4; all other versions employ

the shmem fence operation.

To prevent data access race conditions two methods of delaying process

execution, until the associated “flag” variable is set, are examined. Several

versions employ a call to shmem int4 wait until using the particular “flag”

variable, these are referred to using shmemwait within their description in Sec-

tion 5.4. Alternative versions utilise an approach in which the “flag” variables

are explicitly declared as volatile and processes perform “busy waits” until

their values are set remotely by the initiating process. Versions which employ

this latter strategy are denoted by the word volatilevars within their descriptions

in Section 5.4.

The native OpenSHMEM collective operations shmem real8 sum to all and

shmem real8 min to all were utilised to provide the required global reduction

facilities. The shmem sum to all function was used despite the application only

requiring a reduction to the master process. Two distinct sets of symmetrically

allocated pSync and pWork arrays are employed for use with all the OpenSH-

MEM collective functions. These are initialised to the required default values

using the Fortran data construct and the application alternates between each

set on successive calls to an OpenSHMEM collective operation.

5.3 CAF Implementation

The CAF-based implementations of CloverLeaf created as part of this research

all utilise one-sided asynchronous CAF “put” operations. The image responsible

for particular halo data, remotely writes this into the appropriate memory

regions of its neighbouring images; no equivalent receive operations are therefore

required. Unless otherwise stated the top-level Fortran type data structure

within CloverLeaf (a structure of arrays based construct), which contains all

data-fields and communication bu↵ers, is declared as a co-array object. Ad-

ditional versions were, however, created to examine the e↵ect of moving the

114

5. Evaluating the Utility of PGAS-based Approaches

data-fields and communication bu↵ers contained within this derived-type outside

of this data structure and declaring them as individual co-array objects. Within

Section 5.4 of this chapter, versions which employed this modified approach are

denoted by the acronym FTL within their descriptions.

All of the versions employed in this study utilise the same general com-

munication strategies as the OpenSHMEM implementations, which were out-

lined in Section 5.2. Again code variants which employ the communication

bu↵er based strategy contain the word bu↵ers within their descriptions in

Section 5.4, whereas versions which employ the direct memory access strategy

are denoted by the word arrays. In the versions which employ this latter strategy

multi-dimensional Fortran array sections are specified in the “put” operations.

These may require the CAF runtime systems to transmit data which is stored

non-contiguously in memory, potentially using strided memory operations.

Synchronisation constructs are employed to prevent race conditions between

the images. Each version can be configured to use either the global sync

all construct or the point-to-point sync images construct between immediate

neighbouring processes. The selection between these synchronisation primitives

is controlled by compile-time pre-processor directives. Versions employing both

the direct memory access data exchange strategy (referred to as arrays) and the

sync images synchronisation construct require the inclusion of an additional

synchronisation operation between logical diagonally neighbouring images. In

Section 5.4, versions which employ the global synchronisation construct con-

tain the word “global” within their descriptions; all other versions utilise the

alternative point-to-point synchronisation construct.

Versions which explicitly attempt to overlap communication and computa-

tion operations, using the PGAS constructs together with the approach outlined

in Section 4.2.1, were also developed as part of this research. Within Section 5.4

these implementations are denoted by the word overlap within their descrip-

tions. Additional versions which utilise the proprietary Cray pgas defer sync

directive were also developed; these can be identified by the word defer within

their descriptions in Section 5.4. This directive purports to ensure that the

synchronisation of PGAS operations is delayed until as late as possible, typically

the next fence instruction [45].

The CAF versions examined as part of this research each employ the pro-

prietary Cray collective operations to implement the required global reduction

operations. Alternative hybrid versions, which utilise MPI collective operations,

were also developed in order to ensure the portability of these codebases to

additional CAF runtime implementations. This thesis, however, only reports on

the performance of the purely CAF-based versions in order to provide a direct

comparison between the CAF and MPI programming models; additionally only

115

5. Evaluating the Utility of PGAS-based Approaches

the Cray architecture is examined during experiments involving the CAF-based

versions of CloverLeaf.

5.4 Results Analysis

To assess whether the OpenSHMEM and CAF programming models can im-

prove (reduce) the overall time-to-solution of explicit hydrodynamics appli-

cations, a series of experiments were undertaken. The performance of the

PGAS-based versions of CloverLeaf, were examined on two distinct hardware

platforms with significantly di↵erent architectures, a Cray XC30 (Archer) and

an SGI ICE-X (Spruce). These machine architectures were selected for these

experiments as they each contain state-of-the-art technology and also both pro-

vide native support for PGAS programming models within the vendor supplied

system software. The hardware and system software configuration of these

machines is detailed in Appendix A.1. Additionally version 8.2.2 of the Cray

CCE compiler and version 6.3.0 of the Cray Mpich2 and Shmem communication

libraries were utilised in these experiments. The 15,3602 cell problem, which is a

standard configuration from the CloverLeaf benchmarking suite, was simulated

in these experiments and was executed for 2,955 timesteps (see Section 1.6.1

for more details). This was strong-scaled to large processor counts on both

architectures, in order to stress the inter-process communication infrastructure

provided by each programming model.

These experiments were conducted in two phases, with the second set of

experiments conducted specifically to further explore particular observations

which were made during the results analysis of the first set of experiments. The

results produced from both sets of experiments are presented in Sections 5.4.1

and 5.4.2 and examine the e↵ect of employing each programming model on the

runtime of the application. For clarity the results presented here (Figures 5.1

to 5.6) are expressed in terms of the number of nodes on which an experiment

was conducted, and the rate of application iterations / second which the partic-

ular version achieved (i.e. 2,955 iterations / application wall-time). In order to

reduce the e↵ects of system noise and jitter, unless otherwise noted the presented

results are averages of three repeated executions of each experiment.

To eliminate any performance e↵ects due to di↵erent topological allocations

from the batch system, each version was executed within the same node allo-

cation, for each specific job size which was examined. The experiments which

utilised the Spruce platform were also conducted with the system in a fully

dedicated mode, which should significantly reduce the e↵ects of any system

noise on the recorded results. Unfortunately this was not possible on Archer,

and therefore no direct comparisons are provided in this thesis between the

116

5. Evaluating the Utility of PGAS-based Approaches

128 256 512 1024 2048
0

50

100

150

200

nodes

it
er
a
ti
o
n
s
/
se
c Shmem arrays shmemwait

Shmem arrays volatilevars

Shmem buffers shmemwait

CAF arrays

CAF arrays FTL

CAF buffers

Archer (Cray XC30)

64 128 256 512 1024 2048

0

100

200

300

nodes

it
er
a
ti
o
n
s
/
se
c

Shmem arrays shmemwait

Shmem arrays volatilevars

Shmem buffers shmemwait

Spruce (SGI ICE-X)

Figure 5.1: PGAS implementations: Array- and bu↵er-exchange versions

performance of the two system architectures. In these experiments each version

was also configured to utilise enhanced IEEE precision support for floating point

mathematics operations, available under the particular compilation environment

employed on each platform. On Archer all PGAS versions were also built

and executed with support for 2MB huge memory pages enabled and 512MB

of symmetric heap space available. Huge page support was not enabled for

the standard MPI versions, as previous work did not observe these features

delivering any performance benefits for these implementations [132].

5.4.1 First Strong-scaling Experiment Results Analysis

This section analyses the performance results obtained during the first phase of

the PGAS experiments.

Communications Bu↵er & Array-sections Approaches

The results from the experiments with the PGAS versions, which employ either

the communications bu↵er or array-sections data exchange approaches, are

shown in Figure 5.1. These charts show the positive e↵ect which employing

communications bu↵ers can have, particularly at high node counts, on both the

Spruce and Archer platforms. In the 2,048 node experiments on the Spruce plat-

117

5. Evaluating the Utility of PGAS-based Approaches

form the OpenSHMEM version, which employs communication bu↵ers, achieved

an average of 278.14 iterations/sec. An improvement of 1.2-1.3⇥ over the

equivalent array-section based approaches, which achieved 224.31 and 209.33

iterations/sec. The OpenSHMEM and CAF results from Archer also exhibit a

similar pattern, at 2,048 nodes (49,152 cores) the communications bu↵er based

OpenSHMEM version achieved 197.49 iterations/sec. Compared to the equiv-

alent array-section based approaches which achieved only 159.23 and 163.24

respectively, an improvement of up to 1.24⇥. The CAF-based versions exhibit

a significantly larger performance disparity, with the communication bu↵ers

approach achieving 3.4⇥ the performance of the array-section based approach,

the results show that these achieved 68.04 and 19.95 iterations/sec respectively

in these experiments.

This demonstrates that the performance of applications, implemented within

either the OpenSHMEM or CAF PGAS models, can be significantly improved

through the aggregation of communication data into larger transmission bu↵ers,

rather than moving data directly from its original memory locations using

considerably larger volumes of smaller messages and potentially strided memory

operations.

Co-array Object Selection Options

These results also show (Figure 5.1) the performance improvement delivered by

moving the data field definitions from within the original Fortran derived data

type, which was originally defined as a co-array, to be individual top-level data

structures, each separately defined as co-array objects. This optimisation (la-

beled FTL) improves the performance of the CAF array-section based approach

by 3.39⇥ (from 19.95 to 67.70 iterations/sec) at 2,048 nodes on Archer. It

also enabled the array-section based approach to deliver equivalent performance

to the communications-bu↵er based approach in the 1,024 and 2,048 node

experiments, and to slightly exceed it in the 64 to 512 nodes cases.

To ascertain the cause of this performance disparity a detailed inspection

of the intermediate code representations, produced by the Cray compiler, was

conducted. This indicated that this disparity is due to the compiler having to

make conservative assumptions regarding the calculation of the remote addresses

of the co-array objects on the remote images. For each remote “put” operation

within the FTL version of the code, the compiler produces a single loop block

containing one pgas memput nb and one pgas sync nb operation. In the

original array-exchange version, however, the compiler generates three addi-

tional pgas get nb and pgas sync nb operations prior to the loop containing

the “put” operation, with a further set of these operations within the actual loop

118

5. Evaluating the Utility of PGAS-based Approaches

64 128 256 512 1024 2048
0

50

100

150

200

nodes

it
er
a
ti
o
n
s
/
se
c

MPI

Shmem buffers shmemwait

CAF buffers

Archer (Cray XC30)

64 128 256 512 1024 2048

0

100

200

300

nodes

it
er
a
ti
o
n
s
/
se
c

MPI

Shmem buffers shmemwait

Spruce (SGI ICE-X)

Figure 5.2: Equivalent MPI, OpenSHMEM and CAF performance

and an additional nested loop block containing a pgas put nbi operation.

Unfortunately the precise functionality of each of these operations is not

clear, as Cray does not publish this information. This analysis, however, appears

to indicate that the compiler is forced to insert additional “get” operations due

to the extra complexity (i.e. the additional levels of indirection involved) of the

original data structures. These additional operations are required to retrieve

the memory addresses from the remote images, to which a particular image

should write the required data to, despite these addresses remaining constant

throughout the execution of the program. The creation of an additional compiler

directive may therefore prove to be useful here, as it would enable developers

to inform the compiler that the original data structure remains constant, and

therefore allow it to make less conservative decisions during code generation.

PGAS and MPI Performance Comparison

Figure 5.2 presents the results from the experiments conducted to assess the

performance of the PGAS implementations relative to equivalent MPI-based

versions. These charts document a significantly di↵erent performance trend

on the two system architectures examined here. The performance recorded

on Spruce from both the OpenSHMEM and MPI implementations is virtually

identical at all the node counts examined (64 to 2,048 nodes), reaching 278.14

and 276.49 iterations/sec respectively on 2,048 nodes. On Archer, however, the

119

5. Evaluating the Utility of PGAS-based Approaches

64 128 256 512 1024 2048
0

50

100

150

200

nodes

it
er
a
ti
o
n
s
/
se
c

Shmem buffers global

Shmem buffers shmemwait

CAF buffers global

CAF buffers

Archer (Cray XC30)

64 128 256 512 1024 2048

0

100

200

300

nodes

it
er
a
ti
o
n
s
/
se
c

Shmem buffers global

Shmem buffers shmemwait

Spruce (SGI ICE-X)

Figure 5.3: Local & global synchronisation approaches

performance of the two PGAS versions is not able to match that of the equivalent

MPI implementation, with the performance disparity widening as the scale of

the experiments is increased. The OpenSHMEM implementation delivers the

closest levels of performance to the MPI implementation and also significantly

outperforms the CAF-based implementation. The results show it achieving

197.49 iterations/sec on 2,048 nodes compared to 230.08 iterations/sec for the

MPI implementation, an improvement of 1.17⇥. The CAF implementation,

however, only delivers 68.04 iterations/sec on 2,048 nodes a slowdown of 2.9⇥
relative to the equivalent OpenSHMEM implementation.

Synchronisation Approaches

To assess the e↵ect of employing either the global or point-to-point synchronisa-

tion constructs on the performance of the PGAS versions, the results obtained

from experiments on both platforms involving versions which employed the com-

munications bu↵er data exchange approach together with either synchronisation

construct, were analysed. The OpenSHMEM versions examined here utilised

the shmemwait approach to implement the point-to-point synchronisation op-

erations. Figure 5.3 provides a performance comparison of the results obtained

from the experiments with each of these versions.

On both platforms it is clear that employing point-to-point synchronisation

can deliver significant performance benefits, particularly as the scale of the

120

5. Evaluating the Utility of PGAS-based Approaches

64 128 256 512 1024 2048
0

50

100

150

200

nodes

it
er
a
ti
o
n
s
/
se
c

buffers shmemwait dc mf

buffers shmemwait dc mf quiet

buffers volatilevars dc mf

buffers volatilevars dc mf quiet

Archer (Cray XC30)

64 128 256 512 1024 2048

0

100

200

300

nodes

it
er
a
ti
o
n
s
/
se
c

buffers shmemwait dc mf

buffers shmemwait dc mf quiet

buffers volatilevars dc mf

buffers volatilevars dc mf quiet

Spruce (SGI ICE-X)

Figure 5.4: SHMEM volatile variables & fence/quiet optimisations

experiments is increased. At 64 nodes there is relatively little di↵erence between

the performance of each version. On Spruce (1,280 cores) both OpenSHMEM

implementations achieve 9.13 and 8.90 iterations/sec respectively, whilst on

Archer (1,536 cores) the point-to-point synchronisation versions of the Open-

SHMEM and CAF implementations achieve 9.84 and 7.73 iterations/sec respec-

tively. Compared to the equivalent global synchronisation versions which each

achieve 9.34 and 7.31 iterations/sec respectively. At 2,048 nodes (40,960 cores)

on Spruce the performance disparity between the two OpenSHMEM versions

increases to 278.13 and 159.97 iterations/sec respectively, a di↵erence of ap-

proximately 1.74⇥. On Archer, however, the performance disparity between the

OpenSHMEM versions is even greater reaching 2.10⇥ in the 2,048 node (49,152

cores) experiments, 197.49 and 93.91 iterations/sec were recorded respectively.

Interestingly the CAF-based versions do not exhibit the same performance

di↵erences, with the point-to-point synchronisation version achieving only a

1.29⇥ improvement (68.04 and 52.84 iterations/sec respectively). This indicates

that the performance of the CAF-based versions—which is significantly less than

the OpenSHMEM-based versions—is limited by another factor and therefore the

choice of synchronisation construct has a reduced, but still significant, e↵ect on

overall application performance.

121

5. Evaluating the Utility of PGAS-based Approaches

64 128 256 512 1024 2048

20

40

60

80

nodes

it
er
a
ti
o
n
s
/
se
c

CAF buffers dc mf

CAF buffers dc mf defer

CAF buffers dc mf overlap

CAF buffers dc mf overlap defer

Archer (Cray XC30)

Figure 5.5: CAF pgas defer sync construct & communication overlap

Remote Memory Operation Ordering Constructs

The performance results obtained from several alternative versions of the Open-

SHMEM implementation, on both the Cray and SGI platforms, are presented in

Figure 5.4. These charts compare versions which employ either the shmemwait

or volatile variables synchronisation techniques and either the quiet or fence

remote memory operation ordering constructs. All versions examined in this

chart employ a communications bu↵er-based approach to data exchange, as

well as implementing diagonal communications (Section 4.2.1) between logical

neighbouring processes (denoted by the acronym dc within their descriptions).

They also exchange multiple data fields simultaneously (Section 4.2.1), which

is indicated by the acronym mf within their descriptions. It is evident from

the charts that in these experiments the choice of each of these implementation

approaches has no significant e↵ect on overall performance. The results from

both platforms show very little variation in the number of application iterations

achieved per second as the scales of the experiments are increased. Although

the Cray results do show some small variations in the higher node count experi-

ments, this is likely to be due to the e↵ects of system noise arising from the use

of a non-dedicated system.

Figure 5.5 documents the results obtained on the Archer platform from

experiments with the CAF versions which employ the proprietary Cray pgas

defer sync directives and the optimisations to enable communication oper-

ations to be overlapped with computation. The chart presents these results

together with an equivalent CAF-based version which does not utilise any of

these constructs. This shows that in these experiments the overall performance

of CloverLeaf is not significantly a↵ected (beneficially or detrimentally) by

either of these potential optimisations techniques, as the performance of all

four versions is virtually identical in each of the examined cases.

122

5. Evaluating the Utility of PGAS-based Approaches

128 256 512 1024 2048
0

50

100

150

200

250

nodes

it
er
a
ti
o
n
s
/
se
c

MPI

Shmem buffers shmemwait

Shmem buffers shmemwait nb

Shmem buffers shmemwait 4MHP

CAF buffers

CAF buffers FTL

Archer (Cray XC30)

Figure 5.6: SHMEM non-blocking, huge-pages & CAF FTL

5.4.2 Second Strong-scaling Experiment Results Analysis

Following the results analysis documented in Section 5.4.1, an additional set

of experiments was conducted on Archer. The aim of these additional experi-

ments was to examine the e↵ect of: the proprietary Cray non-blocking SHMEM

operations; employing 4MB huge-pages; and applying the FTL optimisation

(Section 5.3) to the CAF bu↵er-exchange based version. The same experimental

methodology, previously outlined in Section 5.4, was followed and the results

of the experiments are presented in Figure 5.6. As these experiments were

conducted at a di↵erent time (di↵erent system loads) and using di↵erent node

allocations from the batch system, compared to the first set of experiments, the

performance results between the two sets of experiments will di↵er, particularly

at scale. This thesis therefore only presents performance comparisons within

each set of experimental results rather than between them.

FTL Optimisation Technique

It is evident from Figure 5.6 that the CAF bu↵er-exchange based version does

indeed benefit significantly from the FTL optimisation. The modified version

delivers substantially superior performance at all the node configurations exam-

ined, achieving 2.2⇥ and 1.9⇥ more iterations/sec during the 1,024 and 2,048

node experiments, respectively. Although significantly improved, its perfor-

mance still does not quite match that of the equivalent OpenSHMEM-based

version particularly at large node counts. In the 2,048 node experiment the

OpenSHMEM bu↵er-exchange version achieved 184.23 iterations/sec compared

to 138.01 for the CAF-based FTL version, an improvement of 1.33⇥. As in the

initial set of experiments, the original OpenSHMEM version is not able to match

the performance of the equivalent MPI implementation. It achieved 135.21

and 184.23 iterations/sec in the 1,024 and 2,048 node experiments respectively,

compared to 153.92 and 209.65 for the MPI version.

123

5. Evaluating the Utility of PGAS-based Approaches

Non-blocking SHMEM Operations

The use of the proprietary Cray non-blocking operations, however, delivers some

further performance benefits for the OpenSHMEM-based versions, particularly

at high node counts. The performance of the version which utilises these

non-blocking operations is virtually identical to that of the original in the

experiments 256 nodes. At 512 nodes and above, however, it starts to deliver

significant performance advantages, achieving 206.66 iterations/sec in the 2,048

node experiment, compared to only 184.23 for the original version. In both the

1,024 and 2,048 node experiments it also delivered broadly equivalent perfor-

mance to the MPI implementation, achieving 155.31 and 206.66 iterations/sec

respectively, compared to 153.92 and 209.65 for the MPI version.

This demonstrates that the use of the proprietary non-blocking operations

can deliver some significant performance improvements for this class of ap-

plications, by reducing the overheads associated with inter-process message

communication and enabling sequences of messages to be more rapidly injected

into the network. The OpenSHMEM standard would therefore benefit from the

standardisation of these constructs within future versions of the specification.

Utilisation of Huge Memory Pages

The performance benefits observed from employing the larger 4MB huge mem-

ory pages are even more significant. In the 2,048 node experiment the version

which utilised these larger page sizes achieved 217.42 iterations/sec, a 1.2⇥ im-

provement over the original OpenSHMEM version and an improvement of 7.78

iterations/sec over the equivalent MPI implementation. Interestingly, however,

its performance was fractionally worse than the original OpenSHMEM version

in all of the experiments below 1,024 nodes.

5.5 Summary

The research presented within this chapter examined the PGAS based program-

ming models of OpenSHMEM and CAF as potential candidate technologies

for delivering performance advantages, on current and future system architec-

tures, for the explicit hydrodynamics applications which CloverLeaf represents.

Related work in the field was documented together with the implementation

of multiple CAF- and OpenSHMEM-based versions which were developed as

part of this work. The performance of each programming model is evaluated

and compared to an equivalent MPI-based implementation, at considerable

scale (up to 2,048 nodes/49,152 cores) on two significantly di↵erent, whilst still

state-of-the-art, system architectures from two leading vendors.

124

5. Evaluating the Utility of PGAS-based Approaches

The recorded results demonstrate that the OpenSHMEM PGAS program-

ming model can deliver portable performance across both the Cray and SGI

system architectures. On the SGI ICE-X architecture it is able to match the

performance of the MPI model, whilst delivering comparable—albeit surpris-

ingly slightly slower—performance compared to MPI on the Cray XC30 system

architecture. Use of the proprietary Cray non-blocking operations, however,

enabled the performance of the SHMEM-based versions to match and sometimes

exceed that of their MPI equivalents. Additionally, the library-based PGAS

model of OpenSHMEM can be significantly more performant than equivalent

language/compiler-based PGAS approaches such as CAF on the Cray XC30.

Applications based on either PGAS paradigm can also benefit, in terms of

improved application performance, from the aggregation of data into communi-

cation bu↵ers. This enables the required data to be collectively communicated

to the remote processes, rather than moving it via strided memory operations.

The performance of CAF-based applications was also shown to be sensitive to

the selection of appropriate co-array data structures within the application, as

this can have implications for how these data structures are accessed by remote

memory operations.

This research also demonstrated that performance improvements can be

achieved, for both OpenSHMEM- and CAF-based applications, by employing

point-to-point synchronisation mechanisms rather than global synchronisation

primitives. Furthermore, the selection of implementation mechanisms for the

point-to-point synchronisation operations (shmemwait or volatile variables), and

the choice of the remote memory operation ordering constructs (fence and

quiet), was shown to not significantly a↵ect the overall performance of this class

of application. Similarly, the use of the proprietary Cray CAF pgas defer sync

constructs and the optimisations to overlap communications and computation

also do not significantly a↵ect overall application performance.

125

CHAPTER 6
Portable Performance Through OpenCL

This chapter documents the work undertaken to assess the utility of OpenCL for

delivering portable performance for hydrodynamics applications. In particular

it examines the ability of OpenCL to express intra-node parallelism and im-

plement a hybrid programming model which enables multiple novel processing

architectures (e.g. GPGPUs) to be utilised for this class of application. Related

work within this research arena is first discussed within Section 6.1. Following

this the actual OpenCL implementation of CloverLeaf, produced as part of

this research, is documented in Section 6.2 together with several optimisations

which have been implemented within the codebase (Section 6.2.2). Results from

both small (single processor) and large scale experiments are then analysed in

Section 6.3. Finally, Section 6.4 summaries the findings of this research and

concludes the chapter.

6.1 Related Work

Insu�cient work has, to date, been undertaken to examine whether OpenCL

is a viable alternative programming model for delivering intra-node parallelism

on HPC system architectures, particularly for Lagrangian-Eulerian explicit hy-

drodynamics applications. This includes examining whether OpenCL runtime

systems are now able to automatically optimise a single source-code for di↵erent

platforms in order to achieve portable performance for these hydrocodes, or

whether device specific optimisations are still required.

A considerable body of work has, however, examined porting smoothed

particle hydrodynamics (SPH) applications to GPU-based systems [68, 47, 164,

174]. These applications generally employ mesh-less, particle based numerical

methods and are therefore significantly di↵erent to the hydrodynamics scheme

simulated within CloverLeaf. Existing studies have also predominantly focused

on utilising CUDA and have not sought to examine OpenCL as an alternative

technology for delivering portable performance.

Bergen et al. developed an OpenCL version of a finite-volume hydrodynamics

application which is similar to CloverLeaf [25]. They do not, however, present

any performance results or compare the development, performance or porta-

bility of the application to alternative approaches or across architectures. The

GAMER library also provides similar functionality, however, it is implemented

entirely in CUDA and therefore does not allow OpenCL to be evaluated as an

126

6. Portable Performance Through OpenCL

alternative approach [182]. Additionally, Brook et al. present their experiences

porting two computational fluid dynamics (CFD) applications to an accelera-

tor [32]. Whilst their Euler-based solver has similar properties to CloverLeaf,

they focus exclusively on the Intel Xeon Phi architecture and employ only the

OpenMP programming model.

Existing work has examined using OpenCL to deliver portable performance

within other scientific domains. Pennycook presents details of the development

of OpenCL implementations of the NAS LU benchmark [159] and a molecular

dynamics application [160], which achieve portable performance across a range

of current architectures. Similarly, Brown et al. describe work and performance

results, for both OpenCL and CUDA, within the molecular dynamics domain

which enables computational work to be dynamically distributed across both

CPU and GPU architectures [34]. Du [60] and Weber [205] also provide direct

analyses of OpenCL’s ability to deliver portable performance for applications

targeting accelerator devices; however, both focus on di↵erent scientific domains.

Additionally, Komatsu [116] and Fang [66] provide a detailed examination of the

performance of CUDA and OpenCL, as well as the performance portability of

both programming models. Van der Sanden also evaluates the performance

portability of several image processing applications expressed in OpenCL [198].

The majority of existing work also focuses on accelerator devices; conse-

quently there is considerable uncertainty regarding how to optimise OpenCL

codebases for CPU devices. Several techniques for improving performance on

CPU architectures are, however, presented in [112]. Lan et al. also document

several techniques for improving the performance of GPU-focused OpenCL

kernels on CPUs [118]. Additionally, Seo et al. examine how optimised versions

of the NAS parallel benchmarks should be expressed in OpenCL for both CPU

and GPU architectures [177].

OpenACC [155] has recently emerged as a new, directive-based, program-

ming model for porting applications to accelerator devices. Consequently in-

su�cient work has thus far been conducted to assess the utility of OpenCL-

based approaches relative to this model, however, Wienke et al. do provide

one direct comparison [207]. Although little work exists which has examined

using OpenCL to scale this class of application to the levels examined in this

research, Levesque et al. used OpenACC at extreme scale within the S3D

application [122].

Existing studies have examined utilising OpenCL together with MPI to

deliver portable performance [163, 189]; however, these studies have generally

focused on applications from di↵erent scientific domains. Additionally, Kim et

al. propose a novel framework which enables OpenCL applications to be exe-

cuted in a distributed manner [113].

127

6. Portable Performance Through OpenCL

Auto-tuning has also been recognised as a key technology for enabling scien-

tific applications to be rapidly ported to, and achieve optimal performance on,

new computational platforms. In [56] Dolbeau et al. examined using OpenCL

as a target software layer for an OpenACC compiler, as well as employing an

auto-tuning strategy to achieve optimal performance on a range of processor

technologies. Rahman et al. developed an auto-tuning framework with the

ability to optimise for both performance and energy e�ciency, it supports

a broad range of code optimisation techniques, and they demonstrate it on

several commonly used scientific kernels [169]. The tuning of thread counts

and loop tiling parameters was also shown to deliver significant performance

improvements by improving cache utilisation by Jordan et al. [108]. Simi-

larly, Kamil et al. examined applying an auto-tuning strategy to a range of

stencil-based codes to achieve portable performance across several di↵erent

processor architectures [111]. Additionally, Zhang et al. examined auto-tuning

stencil computations on GPU architectures, although their work focused on the

iterative Jacobi method and the CUDA programming model [210].

6.2 OpenCL Implementation

To create the OpenCL implementation of CloverLeaf, new OpenCL-specific

versions of each of the existing kernel functions were developed. The imple-

mentation of each of these was separated into two distinct parts:

(i). OpenCL device-side kernels which perform the required operations

(ii). Host-side C++ based routines used to setup and control the OpenCL

runtime environment

The existing Fortran driver routines were reconfigured to execute the C++

routines. These utilise the OpenCL C++ bindings to transfer any required data

to the target computational devices, set kernel arguments and add the device-

side kernels to the work-queues with the appropriate NDRange dimensions.

Since each kernel performs a well defined mathematical function, and the

Fortran versions avoid the use of complex language features, it was possible to

almost directly translate each kernel into an equivalent OpenCL specification.

Fortran intrinsic operations (such as SIGN or MAX) were all replaced with the

corresponding OpenCL built-in function to ensure optimal performance. To

finalise the OpenCL kernels, however, several additional changes were required

to produce the initial implementation (Figure 6.1b). The loops over the stag-

gered grid were re-factored such that the actual loop constructs were completely

removed from the individual kernels. Instead the application was configured

128

6. Portable Performance Through OpenCL

try {
i d e a l k n l . setArg (0 , x min) ;

. . .
i f (p r ed i c t == 0)
{ i d e a l k n l . setArg (4 , CloverCL : : d e n s i t y 1 bu f f e r) ; }
else { i d e a l k n l . setArg (4 , CloverCL : : d e n s i t y 0 bu f f e r) ; }

} catch (c l : : Error e r r) { CloverCL : : r epor tEr ro r (err , . . .) ; }

CloverCL : : enqueueKernel (i d e a l kn l , x min , x max , y min , y max) ;

(a) The OpenCL C++ host side code for the Ideal gas kernel.

k e r n e l void i d e a l g a s o c l k e r n e l (const int x min , const int x max ,
const int y min , const int y max ,

g l o b a l double ⇤d , g l o b a l double ⇤e ,
g l o b a l double ⇤p , g l o b a l double ⇤ s s)

{
double ss2 , v , pe , pv ;

p [ARRAY2D(j , k , . . .)]= (1.4 �1.0)⇤d [ARRAY2D(j , k , . . .)] ⇤ e [ARRAY2D(j , k , . . .)] ;

pe=(1.4�1.0)⇤d [ARRAY2D(j , k , . . .)] ;
pv=�d [ARRAY2D(j , k , . . .)] ⇤p [ARRAY2D(j , k , . . .)] ;

v = 1.0/d [ARRAY2D(j , k , . . .)] ;
s s2=v⇤v⇤(p [ARRAY2D(j , k , . . .)]⇤ pe�pv) ;

s s [ARRAY2D(j , k , . . .)]= sq r t (s s2) ;
}

(b) The OpenCL device code for the Ideal gas kernel.

Figure 6.1: Components of the OpenCL version of the Ideal gas kernel

to launch these kernels with the required index space. As a consequence of

employing the OpenCL launch mechanisms in this manner, only one work-item

is launched for each mesh point. Each work-item therefore only processes

one mesh cell which ensures that bu↵er objects are not accessed beyond their

bounds. In order to produce comparable results to the Fortran kernels, all

computation is also performed in double precision.

The C++ setup routines each rely on a static class, CloverCL, which provides

common functionality. To reduce redundant computation all initialisation logic

was removed from the actual kernel functions and placed within this static

class. This helped to ensure that particular operations (e.g. the kernel setArg

commands) were only re-executed when absolutely necessary thus improving

overall performance. The static class also contains other methods that provide

an additional layer of abstraction around common OpenCL routines.

The required OpenCL bu↵ers and kernels are created, stored and managed

from within this class, which allows bu↵ers to be shared between di↵erent ker-

nels. This bu↵er sharing was particularly important in maximising performance

across di↵erent architectures. It also enabled the implementation to achieve full

129

6. Portable Performance Through OpenCL

device residency on architectures constructed from accelerator based devices

(e.g. GPGPUs) which are generally attached via a PCIe bus to the main system

nodes. Achieving full device residency and thus minimising data movement

across the relatively slow PCIe bus was crucial in achieving high performance

on many current architectures.

The use of OpenCL wait operations was also minimised in the initial im-

plementation via the use of a single in-order work-queue and global event

objects, which were also stored within the static class (CloverCL). This enables

a dependency chain to be established between the kernel invocations within

each timestep of the algorithm. The overall approach thus proceeds such that

kernels are continually added to the work-queue in the order in which they are

required to be executed, with the in-order properties providing the necessary

synchronisation between the various invocations.

The majority of the control code within the original Fortran kernels was

also moved into the C++ setup routines (Figure 6.1a). This ensures that

branching is always performed on the host instead of on any associated devices,

enabling the device-side kernels to avoid stalls and thus maintain higher levels

of performance.

To enable the implementation to be utilised across the nodes of a distributed

memory cluster the initial OpenCL implementation was combined with MPI

communication constructs. The former was employed to deliver the intra-node

parallelism required by the application and the latter for all inter-node par-

allelism. In the initial integration between the OpenCL and MPI constructs

within CloverLeaf the OpenCL built-in function clEnqueueReadBufferRect,

was utilised to read back only the minimum amount of required data from

the device-side OpenCL bu↵ers, directly into the host-side MPI communication

bu↵ers. The original data ordering within the MPI communication bu↵ers

was also altered to better integrate with the clEnqueueReadBufferRect func-

tion. This eliminated the requirement to explicitly manage the communication

bu↵ers on the target device using separate OpenCL kernels and potentially

makes use of optimised OpenCL built-in functions. Similarly, the OpenCL

clEnqueueWriteBufferRect function was also employed for transferring data

back to the OpenCL device-side bu↵ers following an MPI communication oper-

ation.

6.2.1 Reduction Operators

Reduction operations are required by the algorithm in two locations, for the

calculation of the minimum timestep and the generation of intermediate results.

Since the timestep value is calculated frequently, it is crucial that a high perfor-

130

6. Portable Performance Through OpenCL

Input: Global Memory

...

Core/SMX 0

Local
Memory

Core/SMX 1

Local
Memory

Core/SMX 2

Local
Memory

...

Core/SMX n

Local
Memory

Intermediate results: Global Memory...

Core/SMX 0

Local
Memory

Output: Global Memory

S
ta

g
e
1

S
ta

g
e
2

Figure 6.2: OpenCL Reduction Implmentation for GPUs

mance reduction implementation is utilised. As a general optimised reduction

operator written in OpenCL is not, at present, readily available an optimised

reduction function was developed as part of this research.

Due to the architectural di↵erences between CPU and GPU devices, separate

OpenCL reduction functions were developed, and specifically optimised, for

each particular architecture. These were implemented as separate OpenCL

kernels and their operation di↵ers significantly from their Fortran and C based

equivalents, which either use nested loops to iterate over the entire source array,

or OpenMP reduction primitives. Whilst the performance of these kernels is

not portable across architectures it makes sense to specialise them, as reduction

operations are fundamental to scientific applications and the kernels can be

reused within other applications. Ultimately, reduction operations should be

provided by a library, and therefore specialising these kernels should not a↵ect

the portability of the actual application code.

GPU Reduction Kernel

The reduction kernel that targets GPU devices (Figure 6.2) is based on work

presented by Harris, although his method is generalised as part of this research

to handle arbitrary sized arrays [75]. A multi-level tree-based approach is

employed in which kernel launches are used as synchronisation points between

di↵erent levels of the tree. The tree continues until the input to a particular

131

6. Portable Performance Through OpenCL

Input: Global Memory
...

...

Core 0 Core 1 Core 2 Core 3 Core n

work-group
of 1
work-item

work-group
of 1
work-item

work-group
of 1
work-item

work-group
of 1
work-item

work-group
of 1
work-item

Intermediate results: Global Memory...

Core 0

work-group
of 1
work-item

Output: Global Memory

S
ta

g
e
1

S
ta

g
e
2

Figure 6.3: OpenCL Reduction Implmentation for CPUs

level is small enough to fit within one work-group on the current target device.

In the final level a single work-group is launched on one compute unit of the

associated device, which subsequently calculates the final result. At each stage

work-items initially read two values from global memory, apply the binary

reduction operator to them and store the result within local memory. To enable

memory operations to be coalesced and to ensure e�cient bandwidth utilisation,

these global memory operations are aligned to the preferred vector width of the

device.

A tree-based reduction is then initiated on the partial results stored within

the local memories. In this phase the number of active threads is halved in each

successive iteration, until all of the partial results have been reduced to a single

value. To ensure e�cient bandwidth utilisation, the local memory references are

also arranged to avoid memory bank conflicts. The derived single value is then

written by one thread back to global memory for the next level of the reduction

tree to operate on.

To reduce the number of levels within the tree (and thus the number of

kernel launches) the number of work-items launched within each particular

work-group is maximised. Thus, for each work-group, the number of input

values read from global memory into the local memories is also maximised,

relative to the single value written back to global memory. The implementation

ensures that the number of work-items launched for the reduction kernels is

always a power of 2, and an exact multiple of the preferred vector width of the

device. This generalises to handle arbitrary sized arrays by limiting, if required,

132

6. Portable Performance Through OpenCL

the number of data values read from global memory by the final initiated

work-group. Instead, work-items beyond this limit insert dummy values into

their corresponding local memory locations, ensuring that the tree-based part

of the reduction is always balanced.

CPU Reduction Kernel

The reduction kernel that targets CPU devices (Figure 6.3) operates in a similar

manner using a two-level hierarchical approach, in which kernel launches are

used to provide synchronisation between the levels. In the first level, the input

array is partitioned such that it is distributed as evenly as possible across all

of the available CPU cores. If required, the last work-group is again limited to

handle uneven distributions of arbitrary sized arrays. Only one work-item is

launched for each core of the associated CPU and all work-groups contain only

one work-item. Each work-item then sequentially reduces the data values within

the portion of the input array which is assigned to it, and stores the resultant

value back into global memory. The number of partial results output from this

phase is therefore equal to the number of cores available on the CPU device.

In the second stage of the reduction only one work-item is launched on one

core of the associated CPU. This work-item operates on the array of partial

results produced from the previous stage, reducing them sequentially, before

outputting the final result. No local memory constructs are employed at any

stage of this implementation, as these are generally mapped to the same mem-

ory address space as global memory objects on CPU architectures, and their

use would therefore potentially result in additional memory operations for no

performance benefit.

6.2.2 Optimisations

Additional optimisations were subsequently applied to the initial implementa-

tion in order to assess their e↵ectiveness at improving performance on a range

of candidate processing devices, as well as their overall performance portability.

The following sub-sections each document a particular candidate optimisation

technique which was evaluated as part of this research.

NDRange Padding

An additional version of the application was developed to examine the e↵ect on

performance of employing di↵erent NDRange configurations. The requirement

in the initial implementation for an exact NDRange to be specified for each

kernel was relaxed and additional if-tests were added at the start of each

kernel (Figure 6.4). These if-tests prevent grid points from being recalculated,

133

6. Portable Performance Through OpenCL

int k = g e t g l o b a l i d (1) ;
int j = g e t g l o b a l i d (0) ;

i f ((j>=2) && (j<=x max) && (k>=2) && (k<=y max)) {
double ss2 , v , pe , pv ;

p [ARRAY2D(j , k , . . .)]= (1.4 �1.0)⇤d [ARRAY2D(j , k , . . .)] ⇤ e [ARRAY2D(j , k , . . .)] ;

pe=(1.4�1.0)⇤d [ARRAY2D(j , k , . . .)] ;
pv=�d [ARRAY2D(j , k , . . .)] ⇤p [ARRAY2D(j , k , . . .)] ;

v = 1.0/d [ARRAY2D(j , k , . . .)] ;
s s2=v⇤v⇤(p [ARRAY2D(j , k , . . .)]⇤ pe�pv) ;

s s [ARRAY2D(j , k , . . .)]= sq r t (s s2) ;
}

Figure 6.4: The new device code for the Ideal gas kernel.

or bu↵ers from being accessed beyond their bounds, when kernels are launched

with additional work-items. This approach enabled the use of the NDRange o↵set

mechanism, required by the original bu↵er indexing scheme, to be removed.

An additional method, enqueueKernel, was also added to the static class to

provide a wrapper around the enqueueNDRangeKernel function used to actually

launch the kernels. Passing all calls which add a kernel to the work-queue

through this function enabled the number of work-items launched for each

kernel to be centrally controlled. As part of this optimisation this function

was configured to ensure that kernels were launched with an NDRange which

was always a multiple of the preferred work-group size of the current device1.

This was accomplished by rounding the NDRange up in the x -dimension, whilst

keeping the y-dimension constant.

Pre-processing Constant Values

To reduce data movement and redundant computation the OpenCL pre-processor

was subsequently employed to replace all constant values within the device-side

kernels prior to their compilation. This optimisation removed the need to ex-

plicitly pass these values into the kernels at run-time via the setArgmechanism.

Additionally, use of the pre-processor also enabled the bu↵er index arithmetic

calculations within the kernels to be further minimised.

Array Notation

The initial implementation of the codebase utilised pre-processor macros (of

the form [y ⇤ array width+ x]) to perform the array index calculations within

each kernel. This approach potentially prevents the OpenCL compiler from

1CL KERNEL PREFERRED WORK GROUP SIZE MULTIPLE

134

6. Portable Performance Through OpenCL

implementing certain optimisations and may result in additional integer arith-

metic. To eliminate these calculations and potentially improve the performance

of the codebase an additional version was developed. This utilised explicit

array notation ([][]) to index each array access within the kernels. Versions

which employed this techniques are referred to by the description ArrayNotation

within Section 6.3. A subsequent version, which removed the explicit cast

operations required by this implementation, was also developed (denoted by

ArrayNotation noCast in Section 6.3).

Out-of-order Execution Command Queue

The in-order command queue employed in the initial implementation appro-

priately captures the dependency chain and synchronisation requirements of

the vast majority of kernel invocations within the application. This approach,

however, places unnecessary synchronisation constraints on the invoked OpenCL

kernels at two locations within each CloverLeaf timestep. In particular during

the Field Summary function when multiple reduction operations are required

in parallel, and as part of the Update-Halo operation when multiple kernels are

launched in parallel to modify di↵erent data bu↵ers.

An additional out-of-order command queue was therefore employed to oper-

ate alongside the original in-order queue. Kernels which can execute in parallel

were enqueued into the out-of-order command queue in batches separated by

enqueueBarrier or enqueueWaitForEvents operations. These provide the

required synchronisation constructs between these batches of kernel invocations.

A global event object was also used to delay the execution of the first parallel

batch of kernels in this queue until the immediate preceding kernel has finished

executing within the in-order queue. On particular platforms, however, it was

more performant to employ event-wait operations between the kernel batches

rather than explicitly enqueuing barrier operations. On these platforms it is

likely that the enqueuing of barrier operations does not cause the preceding

batch of kernels to be executed on the actual target devices, however, the

confirmation of this hypothesis is left to future research.

Specifying Explicit Work-group Sizes

The reference implementation also relied on the underlying OpenCL runtime

system to select the most appropriate local work-group size for each kernel

invocation. That is, a null value was passed to the appropriate argument when

each kernel was enqueued, instead of an NDRange. An additional version was

therefore developed which explicitly specified a local work-group size in order

to examine the e↵ect of this optimisation on application performance.

135

6. Portable Performance Through OpenCL

Merging Kernels

To reduce the overheads associated with frequently launching kernels additional

versions were developed which merged particular kernels in order to increase the

amount of computation performed per launch. Separate versions applied this

potential optimisation at di↵erent locations within the overall algorithm. Specif-

ically one version examined merging the light-weight, predominantly memory

copy dominated, Update-Halo kernels, as well as several more computationally

intense kernels within the Advection routines. Additionally a subsequent version

also examined merging the first stage of the reduction operations into the imme-

diately preceding kernels in order to potentially take advantage of local memory

resources and minimise data motion to global memory. In Section 6.3 versions

which employed these optimisation techniques are denoted by the acronyms MK

(Merge Kernels) and MR (Merge Reductions), respectively.

Restrict & Const Keywords

Using knowledge of the algorithm and the implementation it was possible to

determine that the pointers used to access the bu↵er objects, within the kernel

implementations, each only reference a unique bu↵er. To communicate to the

compiler that pointer-aliasing is not therefore employed, and thus enable it to

potentially implement further optimisations, the restrict keyword was added

to the bu↵er definitions within each device-side kernel. It was necessary to

employ particular compiler options in order to enable this optimisation with

certain OpenCL implementations. Additionally the const keyword was also

applied to each of the bu↵er object declarations whose contents are not modified

during the execution of a particular kernel.

OpenCL clFlush & clFinish Operations

To potentially improve the speed with which kernels are dispatched by the host

and executed on target devices, use of the clFlush operation was examined

within an additional version (labelled Remove clFinish Calls and clFlush within

Section 6.3). This command was utilised directly after each kernel function or

barrier operation was enqueued into the particular work-queues. Additionally,

this version also minimised the use of clFinish synchronisation operations

within the codebase. These had previously been included within the reference

implementation in order to force particular kernel invocations to be dispatched.

136

6. Portable Performance Through OpenCL

Processing Multiple Grid-points per OpenCL Work-item

The performance of the reference implementation was particularly poor on

CPU-based architectures. To examine whether this was due to excessive thread

scheduling overheads caused by this version utilising one OpenCL work-item to

process each grid-point, an additional implementation was developed (denoted

by the description J-loops within Section 6.3). This version reduced the number

of work-groups, created during each kernel launch, to a value closer to the overall

number of CPU cores available on current system architectures. It also utilised

OpenCL in a manner similar in approach to how OpenMP applications are

generally constructed. An additional loop was employed within each kernel

to enable the computations previously carried out by multiple work-items to

be merged into a single work-item. The application was also further modified

to reduce the index space used to launch each kernel to a one-dimensional

NDRange, with one work-item now being initiated to process each row of the

overall two-dimensional grid. This ensures that each work-item only accesses

contiguous memory locations.

Overlapping Data Movement with Computation

An additional version was developed in order to examine whether performance

improvements could be gained through the overlapping of data movement op-

erations with subsequent computational kernel executions. Data movement

operations can be particularly time consuming on architectures in which com-

putational devices are connected to the main host system via relatively slow

PCIe-bus connections. These operations occur at two locations within the

CloverLeaf application, immediately following the calculation of the time-step

value and the generation of intermediary results. The time-step value is required

by the kernel which immediately follows its calculation; however, the transfer

of the intermediary result values from the compute devices can be overlapped

with subsequent kernel executions.

Data movement operations were therefore modified to be fully non-blocking

operations and to also record their completion status within OpenCL event ob-

jects. The synchronisation operation which previously followed these operations

was also removed and the application restructured, such that the functionality

which requires the intermediate result values was executed as late as possible

within the overall application sequence. A synchronisation operation, which

depends on the previous event objects, was also inserted immediately prior to

this functionality. To ensure that the required data transfers are successfully

completed before execution proceeds. This modified arrangement ensures that

the time spent waiting for the data transfers to complete is minimised, as

137

6. Portable Performance Through OpenCL

they are now considerably more likely to have been completed by the time

the synchronisation operation is executed.

Auto-tuning OpenCL Work-group Parameters

To examine how the performance of the OpenCL application is a↵ected on

various architectures by the selection of di↵erent parameters, including the work-

group (block) size of each kernel, an additional version was developed. The

existing version which employed the optimisation to explicitly fix the value of

the local work-group size of each kernel (Section 6.2.2) was further modified to

enable a di↵erent work-group size to be specified independently for each kernel

invocation. This modified version was also integrated into the Flamingo [185]

auto-tuning framework, which enabled larger ranges of application configuration

parameters to be evaluated more rapidly across a range of di↵erent architectures.

To examine whether the approach of specifying di↵erent values for each po-

tential configuration parameter could deliver additional performance this version

was subsequently utilised within the auto-tuning framework to determine the op-

timal local work-group size for each kernel on a range of di↵erent architectures.

This approach was also applied to the reduction kernels to evaluate the optimal

configuration sizes for each stage of the reduction tree. Versions which employed

this technique are denoted by the description auto-tuning within Section 6.3.

Explicitly (Un)Packing MPI Communication Bu↵ers

To evaluate the performance of the clEnqueue[Write|Read]BufferRect func-

tions within a particular OpenCL runtime system and therefore to determine

how performant the original MPI communication bu↵er (un)packing routines

were, a subsequent version of the codebase was created. Explicit routines were

developed within this version to pack and unpack the MPI communication

bu↵ers on the target computational devices. This functionality was implemented

within additional kernels, each of which was specifically dedicated to operate on

a particular face of the two-dimensional mesh. Additional device-side bu↵er ob-

jects were also created in order to contiguously store the data which was required

to be communicated. The contents of these bu↵ers was also transferred to/from

the host-side MPI communication bu↵ers using enqueue[Write|Read]Buffer

functions. In the final version of the codebase which was developed as part of

this research, the selection between both approaches is controlled by a compile

time pre-processor directive. The performance of this modified approach is

examined within Section 6.3.3.

138

6. Portable Performance Through OpenCL

6.3 Results Analysis

The OpenCL standard guarantees the functional portability of applications

across architectures, however, there is no guarantee regarding the portability

of performance. A series of experiments was therefore conducted to assess the

“performance portability”—whether the same codebase can be performant on

many devices—which it is possible to achieve by utilising OpenCL as a technol-

ogy to implement a hybrid programming model for hydrodynamics applications.

In order to fully evaluate the performance and portability of the codebase, a

wide range of hardware architectures from several major vendors was examined.

These included CPUs from both AMD and Intel; GPUs from both AMD and

Nvidia; an APU from AMD; and the Xeon Phi coprocessor architecture from

Intel. Initially single-node experiments were conducted to assess the success

of each of the candidate optimisations described in Section 6.2.2, the results

of this analysis are presented in Section 6.3.1. The performance of the most

e↵ective versions were then subsequently analysed across a range of single-node

systems in Section 6.3.2, and at considerable scale in Section 6.3.3. The Tuck,

Teller, Chilean Pine and Shannon platforms were employed in the single-node

experiments, whilst the multi-node experiments utilised the Titan supercom-

puter platform. The hardware and software setup used in the experiments on

these platforms, including the options used to compile the OpenCL kernels, is

detailed in Section A.1

To provide a baseline against which to compare the performance of the

OpenCL-based implementations, the experiments also examined the perfor-

mance of alternative versions of CloverLeaf, which were optimised for the partic-

ular platform architecture in their native programming models. For the CPU-

based devices this involved comparing the implementations against an optimised

OpenMP-based version and against an optimised CUDA-based implementation

for the Nvidia GPU devices. Section A.1 contains information on the specific

OpenMP and CUDA runtime systems employed on each architecture. No such

comparison was, however, performed for the AMD GPU devices, as OpenCL is

the native programming model on these platforms.

In order to assess the performance of OpenCL under di↵erent processing

conditions (e.g. during both high and low memory usage scenarios) several

di↵erent problem configurations, from the standard CloverLeaf benchmarking

suite, were utilised. Except where noted the 9602 and the 3,8402 cell problems,

which were executed for 2,955 and 87 time-steps respectively, were employed in

the single-node experiments to assess the utility of each candidate optimisation,

as well as the performance portability of OpenCL across a range of hardware

devices. In the multi-node experiments, however, the 15,3602 cell problem,

139

6. Portable Performance Through OpenCL

Version 38402(s) 9602(s)

Initial version 16.803 42.646

ArrayNotation 16.669 41.938
ArrayNotation (NoCasts) 16.674 41.929
Pre-processing constants (PC) 16.610 41.788
J-loops 25.254 142.334
Merging Kernels (MK) 16.755 42.446
Remove clFinish Calls and clFlush 16.809 42.652
Out-of-Order Queue (OoOQ) 16.815 42.837
Overlapping Reads 16.809 42.638
Const & Restrict Keywords (RES) 16.403 43.284
Padding Kernel NDRanges (PADD) 17.901 42.954

ArrayNotation + J-loops 25.127 141.593
PADD + RES 18.645 44.425
PADD + Fix local workgroup (FLWG) 16.291 38.897
PADD + FLWG + MK 16.257 38.634
PADD + FLWG + MK + Merge Reductions into Kernels (MR) 16.184 38.550
PADD + FLWG + MK + MR + PC 15.938 37.867
PADD + FLWG + MK + MR + PC + RES 15.263 36.380
PADD + FLWG + MK + MR + PC + RES + OoOQ 15.284 36.578

PADD + FLWG + MK + MR + PC + RES + Autotuning 14.951 35.880

Table 6.1: OpenCL optimisations on the Nvidia K20X

executed for 2,955 timesteps, was examined in a strong-scaling experimental

configuration. Additionally the 3,8402 cells per node problem, executed for

87 timesteps, was also examined in a weak-scaling experimental configuration.

During each experiment CloverLeaf was configured as described in Section 1.6.1.

All performance results presented show the total application wall-clock time

in seconds and are averages from three separate executions of each particular

experiment. Except where noted, all hardware platforms are paired with the

OpenCL SDK and runtime systems from their particular manufacturer.

6.3.1 Optimisations Analysis

As part of this research experiments were conducted to examine the utility of

each candidate OpenCL optimisation technique (documented in Section 6.2.2)

on the: Nvidia K20X, Intel Xeon Phi 7120P co-processor, Intel Xeon E5-2620

and AMD Opteron 6272 architectures. Tables 6.1 to 6.4 present the results

obtained from these experiments on each processor architecture respectively.

Each result is an average from three repeated executions of the particular

experiment. The utility of each candidate optimisation is analysed in further

detail in the subsequent sections.

Array Notation

The results show that employing array notation to index each array access

within the OpenCL kernels delivers a modest performance improvement of ⇠1%

on the K20X architecture for both problem classes examined. On the Xeon

140

6. Portable Performance Through OpenCL

Version 38402(s) 9602(s)

Initial version 60.656 171.186

ArrayNotation 60.966 168.021
ArrayNotation (NoCasts) 61.031 174.047
Pre-processing constants (PC) 60.702 166.684
J-loops 79.046 231.920
Merging Kernels (MK) 60.798 170.294
Remove clFinish Calls and clFlush 60.985 167.931
Const & Restrict Keywords (RES) 60.427 175.225
Padding Kernel NDRanges (PADD) 60.789 175.053

PADD + Fix local workgroup (FLWG) 76.639 214.714
PADD + FLWG + MK 79.749 220.829
PADD + FLWG + MK + Merge Reductions into Kernels (MR) 78.440 211.248
PADD + FLWG + MK + MR + PC 80.815 216.834
PADD + FLWG + MK + MR + PC + RES 81.244 214.115

PADD + FLWG + MK + MR + PC + RES + Autotuning 68.042 178.374
PADD + FLWG + PC + RES + Autotuning 67.350 182.413
PADD + FLWG + Autotuning 67.568 190.207

Table 6.2: OpenCL optimisations on the Intel Xeon E3-2620

Phi platform, however, this candidate optimisation resulted in performance

degradations of 16.2% and 10.5% for the 3,8402 and 9602 cell problems respec-

tively. Additionally, in the experiments on the Xeon E5-2620 CPU architecture

this optimisation resulted in a performance improvement of ⇠1.8% for the

9602 cell problem size whilst it did not significantly a↵ect performance in the

experiments with the 3,8402 cell problem size. In the experiments with the

3,8402 problem class on the AMD Opteron platform this optimisation also

resulted in a performance improvement of <1%.

Furthermore removing the cast operations required by the initial array nota-

tion implementation resulted in no significant change in application performance

on the K20X, Xeon Phi and Opteron architectures. On the Xeon CPU architec-

ture, however, removing these operations resulted in a performance degradation

of 3.6% for the 9602 cell problem.

Processing Multiple Grid-points per Work-item

Employing the candidate optimisation technique of reconfiguring the OpenCL

kernels such that each is launched with only a one-dimensional NDRange and

the associated work-items each process multiple grid-points, results in signif-

icant reductions in performance for both problem sizes on the K20X, Xeon

Phi and Xeon platforms. On the K20X this optimisation resulted in 3.3⇥ and

1.5⇥ reductions in performance for the 9602 and 3,8402 cell problem classes

respectively. Additionally, on the Xeon and Xeon Phi architectures it resulted

in performance slowdowns of 3.8⇥ and 1.3⇥ for the 3,8402 problem size and

slowdowns of 3.2⇥ and 1.4⇥ for the 9602 problem classes respectively. The AMD

Opteron architecture was, however, the only platform on which this optimisation

141

6. Portable Performance Through OpenCL

Version 38402(s) 9602(s)

Initial version 64.869 231.550

ArrayNotation 75.362 255.813
ArrayNotation (NoCasts) 74.824 255.368
Pre-processing constants (PC) 63.511 224.473
J-loops 248.979 734.973
Merging Kernels (MK) 67.800 233.071
Remove clFinish Calls and clFlush 64.515 231.211
Const & Restrict Keywords (RES) 63.168 228.392
Padding Kernel NDRanges (PADD) 64.006 232.070

PADD + Fix local workgroup (FLWG) 66.072 258.359
PADD + FLWG + MK 70.023 258.339
PADD + FLWG + MK + Merge Reductions into Kernels (MR) 75.114 267.104
PADD + FLWG + MK + MR + PC 69.819 256.265
PADD + FLWG + MK + MR + PC + RES 68.161 257.695

PADD + FLWG + MK + MR + PC + RES + Autotuning 62.466 235.730
PADD + FLWG + PC + RES + Autotuning 58.805 228.818
PADD + FLWG + Autotuning 62.439 238.724

Table 6.3: OpenCL optimisations on the Intel Xeon Phi 7120P

delivered a performance improvement. In the experiments on this architecture

the application of this optimisation technique resulted in a 1.15⇥ performance

improvement for the 3,8402 cell problem class.

Preprocessing Constants

Utilising the OpenCL preprocessor to pass constant values into the kernels dur-

ing compilation rather than at runtime also consistently delivered improvements

in performance on all of the architectures examined in this research. On the

K20X GPU architecture employing this optimisation resulted in performance

improvements of 2.0% and 1.15%, relative to the reference implementation,

for the 9602 and 3,8402 cell problem classes respectively. Similarly, on the

Xeon Phi it also delivered performance improvements of 3.1% and 2.1% for

the 9602 and 3,8402 cell problems respectively. In the experiments on the

Xeon architecture, however, utilising this optimisation resulted in no significant

change in performance during the experiments with the 3,8402 cell problem size.

Whilst it delivered a 2.6% performance improvement for the 9602 cell problem

class. During the experiment on the Opteron, however, this optimisation was

less e↵ective delivering a <1% improvement in application performance.

Out-of-order Command Queue

Employing an out-of-order command queue where possible within the OpenCL

implementation of CloverLeaf achieved variable levels of success across the

architectures examined in this research. The results show that on the K20X

GPU architecture the use of this approach delivered factional reductions in

application performance of <1% for both problem classes examined (9602 and

142

6. Portable Performance Through OpenCL

Version 38402(s) 9602(s)

Initial version 206.831 17.737

ArrayNotation 205.037 -
ArrayNotation (NoCasts) 205.138 -
Pre-processing constants (PC) 205.743 -
J-loops 179.778 17.500
Merging Kernels (MK) 204.883 -
Remove clFinish Calls and clFlush 206.670 -
Out-of-Order Queue (OoOQ) 188.024 16.472
Const & Restrict Keywords (RES) 207.384 -

PADD + Fix local workgroup (FLWG) 226.339 -
PADD + FLWG + MK 319.267 -
PADD + FLWG + MK + Merge Reductions into Kernels (MR) 222.875 -
PADD + FLWG + MK + MR + PC 219.593 -
PADD + FLWG + MK + MR + PC + RES 218.721 -
PADD + FLWG + MK + MR + PC + RES + OoOQ 199.487 -

Table 6.4: OpenCL optimisations on the AMD Opteron 6272

3,8402 cells). On the Opteron architecture, however, the use of this technique

resulted in performance improvements of 9.1% and 7.1% for the 3,8402 and 9602

cell problem classes respectively. In all of the experiments on both the Xeon

and Xeon Phi platforms the application binary produced by the incorporation of

this optimisation into the CloverLeaf codebase consistently delivered incorrect

simulation results, for both problem classes examined in this research. This

suggests that there maybe an underlying problem with the implementation of

this functionality within the Intel OpenCL runtime system, as the identical code-

base produced the correct results on the equivalent Nvidia and AMD OpenCL

runtime systems.

Removing clFinish & Utilising clFlush

The experimental results show that eliminating the clFinish operations within

the reference implementation of the OpenCL version of CloverLeaf and utilising

clFlush operations immediately after every kernel enqueue operation does

not significantly a↵ect application performance, for both the problem classes

examined on the K20X, Xeon Phi and Opteron architectures. On the Xeon

architecture, however, employing this technique resulted in a 1.9% improvement

in application performance for the 9602 cell problem class and a fractional

reduction in performance of<1% in the experiments with the 3,8402 cell problem

class.

Merging Kernels

The candidate optimisation of reducing the number of Update-halo and Advec-

tion kernels through mergers delivered fractional but consistent improvements

in application performance on the K20X architecture of 0.46% and 0.28% for the

143

6. Portable Performance Through OpenCL

9602 and 3,8402 cell problem classes respectively. On the Xeon Phi, however,

this approach resulted in performance slowdowns of 4.5% and 0.66% for the

3,8402 and 9602 cell problems respectively. During the experiments on the Xeon

CPU architecture employing this optimisation resulted in a 0.5% improvement

in performance for the 9602 cell problem class and delivered a 0.23% slowdown

for the 3,8402 cell problem. In the experiments on the Opteron architecture

with the 3,8402 cell problem, however, it improved application performance by

0.94%.

The e↵ect of merging the first stage of the reduction operations into the

preceding kernels also varied across the architectures. On the K20X platform

this optimisation delivered fractional performance improvements of 0.22% and

0.45% for the 9602 and 3,8402 cell problem classes respectively. Similarly on

the Xeon architecture employing this technique also delivered improvements in

application performance of 4.34% and 1.64% for the 9602 and 3,8402 cell problem

classes respectively. This trend was reversed on the Xeon Phi, however, as the

optimisation resulted in degradations in application performance of 7.3% and

3.4% for the 3,8402 and 9602 cell problem classes respectively.

Overlapping Data Movement with Computation

The technique developed to overlap computational operations with the move-

ment of data between the OpenCL host and compute devices also did not sig-

nificantly a↵ect application performance, either detrimentally or beneficially, in

the experiments conducted with both problem classes on the K20X architecture.

On the Xeon and Xeon Phi architectures, however, the implementation of this

technique resulted in the production of incorrect simulation answers for both

problem classes, indicating that a problem potentially exists within the Intel

OpenCL runtime system, as an identical codebase produced the correct results

on all other processing technologies examined in this research.

Padding NDRange and Fixing Local Work-group Sizes

The experimental results show that on the K20X architecture padding the

NDRange used to launch each kernel, such that it is a multiple of the pre-

ferred vector width of the target device, actually initially results in perfor-

mance degradations. Reductions of 6.5% and 0.7% were recorded, relative

to the reference implementation, for the 3,8402 and 9602 cell problem classes

respectively. Combining this technique with the optimisation to specify a fixed

local work-group size for each kernel launch, however, improves performance on

the K20X architecture by 8.8% and 3.0%, for the 9602 and 3,8402 cell problem

classes respectively.

144

6. Portable Performance Through OpenCL

On both the Xeon and Xeon Phi architectures, however, these candidate op-

timisation techniques generally result in significant degradations in application

performance. The experiments on the Xeon architecture indicate that padding

the kernel NDRange results in modest reductions in performance of 2.3% and

0.2% for the 9602 and 3,8402 cell problem classes respectively. Specifying a

fixed local work-group size for each kernel launch, however, resulted in sig-

nificant further performance reductions of 25.4% and 26.4% for the 9602 and

3,8402 cell problem classes respectively. A similar trend can be observed in the

results obtained from the experiments on the Xeon Phi architecture. On this

platform the technique of padding the kernel NDRange results in a fractional

0.2% performance reduction for the 9602 cell problem class and a performance

improvement of 2.6% in the experiments with the 3,8402 cell problem class.

Applying the candidate optimisation of specifying fixed local work-group sizes,

however, again reduces performance by 11.6% and 1.9% for the 9602 and 3,8402

cell problem classes respectively.

Similarly, on the Opteron architecture a 9.43% reduction in performance

was recorded for the modified version which combined the NDRange padding

and fixed local work-group size optimisations.

The selection of the local work-group block size employed in these exper-

iments may well be more suited to the K20X GPU architecture than to the

Opteron, Xeon and Xeon Phi architectures. The extent to which this is the

case, particularly for the Xeon Phi architecture, will be explored in subsequent

sections of this chapter.

Utilising the Restrict & Const Keywords

On the K20X architecture the experimental results indicate that employing

the restrict and const keywords on the appropriate OpenCL kernel param-

eters generally delivered a performance degradation when this technique was

employed in isolation. Applying these modifications to the reference implemen-

tation and to the version which employed the NDRange padding optimisation

resulted in performance degradations of 1.5% and 3.4% respectively for the 9602

cell problem class. For the 3,8402 cell problem class, applying these constructs to

the NDRange padding version resulted in a 4.2% performance reduction, however,

when applied to the reference implementation performance was improved by

2.4%.

The results obtained during the experiments on the Xeon Phi architecture

show that employing these constructions generally delivers performance im-

provements. For the 3,8402 cell problem case applying these modifications to the

reference version resulted in a 2.6% improvement in performance. Whilst when

145

6. Portable Performance Through OpenCL

incorporated into the version which also includes the NDRange padding, fixed

local work-group sizes, kernel mergers and pre-processing constants optimisa-

tions, this optimisation delivered a further 2.4% improvement in performance.

In the experiments with the 9602 cell problem class applying these constructs

to the reference implementation resulted in a 1.4% performance improvement;

however, applying the technique to the version which incorporated the afore-

mentioned list of optimisations, resulted in a fractional performance degradation

of 0.8%.

A similar trend was also observed in the experiments with the 3,8402 cell

problem class on the Xeon architecture. The application of these modifications

resulted in a 0.4% performance improvement for the reference implementation

but a performance degradation of 0.5% when they were applied to the version

which incorporated the previously mentioned list of additional optimisations.

The results from the experiments with the 9602 cell problem class on the Xeon

architecture, however, demonstrated the opposite trend. In these experiments

a 2.3% reduction in performance was observed as a result of applying these

constructs to the reference implementation. When these modifications were

subsequently applied to the version which incorporated the aforementioned list

of optimisations, however, a performance improvement of 2.3% was recorded.

Additionally, during the experiments with the 3,8402 cell problem class on

the Opteron architecture employing these constructs did not significantly alter

the overall performance of the application.

Combining Optimisations

The previous experiments generally examined the utility of each optimisation

technique in isolation. The particular optimisation techniques which the previ-

ous results analysis indicates delivers potential performance benefits were subse-

quently combined, in the next stage of this work, to produce further alternative

versions of the codebase. The results from the experiments with these additional

versions are also presented within the lower sections of Tables 6.1 to 6.4.

On the Nvidia K20X GPU architecture the results (Table 6.1) show that

combining the NDRange padding and fixed local work-group size optimisations

delivered a 8.8% and 3.0% improvement in performance relative to the reference

implementation for the 9602 and 3,8402 problem classes respectively. Supple-

menting this version with the kernel merger optimisations further improved

performance and increased the achieved speedup to 9.6% and 3.7%, relative

to the reference implementation, for the 9602 and 3,8402 cell problem classes

respectively. Additionally, incorporating the pre-processing of constant values

optimisation also delivered further performance benefits increasing the achieved

146

6. Portable Performance Through OpenCL

speedup, relative to the reference implementation, by up to 11.2% for the 9602

cell problem class and by up to 5.1% for the 3,8402 cell problem class. Finally,

utilising the restrict and const keywords optimisation, together with the

NDRange padding, fixed local work-group, kernel merger and pre-processing con-

stant values modifications resulted in further performance improvements. This

optimisation generally resulted in performance degradations, however, when

the technique was applied in isolation to the reference implementation. In the

experiments with the 9602 cell problem class the use of this technique increased

the achieved performance speedup, relative to the reference implementation, to

14.7% and to 9.2% for the 3,8402 cell problem class.

The results recorded during similar experiments on the Xeon Phi archi-

tecture (Table 6.3) indicate that combining these optimisation techniques was

ultimately less successful on this architecture. Relative to the reference imple-

mentation the version which incorporated the NDRange padding and fixed local

work-group size optimisations resulted in performance degradations of 11.5%

and 1.9% for the 9602 and 3,8402 cell problem sizes respectively. The application

of the kernel merger optimisations to this version resulted in additional perfor-

mance degradations, with the cumulative performance reduction increasing to

15.4% and 15.8%, relative to the reference implementation, for the 9602 and

3,8402 cell problem classes respectively. In addition to these optimisations,

however, applying the pre-processing constant values optimisation resulted in

a performance improvement for both the 9602 and 3,8402 cell problem classes.

This reduced the performance degradation relative to the reference implemen-

tation to 10.7% and 7.6% respectively. The inclusion of the restrict and

const keywords also resulted in further performance benefits for the 3,8402

cell problem class on this architecture, reducing the performance degradation

relative to the reference implementation to 5.1%. Although for the 9602 cell

problem class the use of this optimisation resulted in a fractional reduction in

performance, increasing the performance degradation relative to the reference

implementation from 10.7% to 11.6%.

On the Intel Xeon CPU the performance results (Table 6.2) obtained during

the experiments with the versions of the codebase which incorporate the com-

bined optimisations show similar trends to those observed on the Xeon Phi ar-

chitecture. Initially combining the NDRange padding and fixed local work-group

size optimisations led to a 25.4% and a 26.4% performance reduction, relative

to the reference implementation, for the 9602 and 3,8402 cell problem classes,

respectively. Adding the kernel merger technique to these optimisations further

reduced performance for the 3,8402 cell problem class relative to the reference

implementation, increasing the degradation to 29.3%. Although for the 9602

problem class the inclusion of this optimisation fractionally improved application

147

6. Portable Performance Through OpenCL

performance, reducing the degradation relative to the reference implementation

to 23.4%. Incorporating the pre-processing constant values optimisation into

these experiments, however, resulted in further reductions in performance for

both problem classes on this platform. Due to this optimisation the performance

degradation, relative to the reference implementation, was increased to 33.2%

and 26.7% for the 3,8402 and 9602 cell problem classes respectively. The addi-

tional inclusion of the restrict and const keywords did not significantly a↵ect

the performance of the codebase. Relative to the reference implementation, this

optimisation marginally increased the performance slowdown to 33.9% for the

3,8402 cell problem class but fractionally improved performance for the 9602

cell simulations, decreasing the overall performance degradation to 25.1%.

Results were also recorded from the execution of the same set of experiments

on the AMD Opteron processor architecture (Table 6.4) although only for the

3,8402 cell problem class. These indicate that the combination of the NDRange

padding and the fixed local work-group size optimisations again result in signifi-

cant performance reductions, in this instance a 9.43% degradation was recorded

relative to the reference implementation. Incorporating the kernel merger opti-

misation initially resulted in a further large reduction in performance, increasing

the performance disparity relative to the reference implementation to 54.4%.

Subsequently employing the optimisation to merge the first stage of the reduc-

tion operations into the preceding kernels, however, delivered significant perfor-

mance benefits and decreased the performance degradation from 54.4% down to

7.8%. The addition of the pre-processing constant values optimisation resulted

in further performance benefits and reduced the performance degradation to

6.2% relative to the reference implementation. Similarly including the restrict

and const keywords optimisation also delivered important performance bene-

fits and further decreased the performance disparity to 5.7%. The inclusion

of the out-of-order command queue optimisation, however, delivered further

significant performance improvements and enabled the modified codebase to

out-perform the reference implementation by 3.6%.

Auto-tuning Analysis

The results from the auto-tuning experiments conducted as part of this re-

search are presented in Table 6.5. This table shows the dimensions of the local

work-group block-sizes for each application kernel, which produced the most

optimal overall application performance on both the Nvidia K20X GPU and

Intel Xeon Phi 7120P platforms. The results demonstrate significant variations

in the optimal local work-group block-sizes for each individual application kernel

across both architectures as well as between the di↵erent kernels on a particular

148

6. Portable Performance Through OpenCL

Kernel Nvidia GPU Intel Xeon Phi

Ideal Gas 32⇥4 128⇥1
Viscosity 32⇥4 256⇥2
Accelerate 256⇥2 128⇥4
Flux Calc 128⇥1 128⇥8
Reset Field 512⇥2 8⇥4
Revert Field 128⇥1 1024⇥1
PDV 128⇥1 256⇥4
Advec Cell Xdir Kernel1 32⇥4 8⇥16
Advec Cell Xdir Kernel2 128⇥4 32⇥8
Advec Cell Xdir Kernel3 256⇥1 64⇥16
Advec Cell Xdir Kernel4 32⇥2 128⇥1
Advec Cell Ydir Kernel1 128⇥2 32⇥1
Advec Cell Ydir Kernel2 128⇥2 16⇥16
Advec Cell Ydir Kernel3 32⇥4 64⇥8
Advec Cell Ydir Kernel4 256⇥4 512⇥2
Advec Mom Volume 64⇥2 128⇥1
Advec Mom Xdir Node 256⇥2 128⇥1
Advec Mom Xdir MassPre 64⇥2 64⇥1
Advec Mom Xdir Flux 32⇥4 512⇥1
Advec Mom Xdir Velocity 128⇥1 256⇥4
Advec Mom Ydir Node 256⇥2 512⇥2
Advec Mom Ydir MassPre 64⇥2 256⇥1
Advec Mom Ydir Flux 32⇥4 128⇥2
Advec Mom Ydir Velocity 256⇥1 128⇥4
Calc DT 32⇥4 32⇥1
Field Summary 32⇥4 32⇥1
Reductions 512⇥1 128⇥1
Comms Bu↵er Packing 64⇥1 -
Update-halo 16⇥2 8⇥2

Table 6.5: Optimal work-group sizes for each OpenCL CloverLeaf kernel

architecture. In general the results indicate that block-sizes which are wider

(generally >128 work-items) in the x -dimension are required to produce optimal

performance on the Xeon Phi, however, this is not always the case on the K20X

architecture.

The optimal local work-group block-sizes, presented in Table 6.5, were subse-

quently applied to the main application codebase to produce several additional

versions. The fourth section of Tables 6.1 to 6.3 present the results obtained from

these experiments on the K20X, Xeon and Xeon Phi architectures respectively.

These results show that on the K20X GPU platform (Table 6.1) the use of

these optimal kernel specific local work-group block-sizes resulted in further per-

formance improvements of 2.9% and 1.4% for the 3,8402 and 9602 cell problem

classes respectively.

On the Xeon Phi architecture applying the optimal local work-group block-

sizes to the version which incorporates the NDRange padding, kernel merger,

pre-processing constant values and the restrict keyword optimisations resulted

in further performance improvements of 9.6% and 8.5% for the 3,8402 and 9602

cell problem sizes respectively. For the 3,8402 cell problem size this enabled

this version to out-perform the reference implementation by 3.7% and further

reduced the performance disparity to the reference implementation for the 9602

cell problem class to 1.8%.

149

6. Portable Performance Through OpenCL

Additionally utilising the optimal local work-group block-sizes derived for

the Xeon Phi in the experiments on the Xeon CPU platform, also delivered fur-

ther performance improvements on this architecture. Applying the auto-tuned

local work-group block-sizes to the version which incorporated the NDRange

padding, kernel merger, pre-processing constant values and restrict keyword

optimisations facilitated performance improvements of 16.4% and 17.8% for the

3,8402 and 9602 cell problem sizes respectively. This optimisation enabled the

performance disparity to the reference implementation to be further reduced to

4.2% for the 9602 cell problem class and to 12.2% for the 3,8402 cell problem

class.

Optimisations Analysis Summary

Overall this research enabled the performance of the OpenCL-based version of

CloverLeaf on the Nvidia K20X architecture, to be improved by 15.8% and

11.0%, relative to the reference implementation, for the 9602 and 3,8402 cell

problem sizes respectively. On this architecture the most performant version,

for both problem classes, utilised the following optimisations: NDRange padding,

fixed local work-group sizes, kernel merger, pre-processing constant values,

restrict & const keywords and the auto-tuning of local work-group block-

sizes. The use of array notation, out-of-order command queues, overlapping

computation with data movement and processing multiple grid-point per work-

item techniques did not deliver any performance benefits.

On the Xeon Phi platform the most performant version for the 3,8402 cell

problem class utilised the NDRange padding, fixed local work-group sizes, pre-

processing constant values, restrict & const keywords and the auto-tuned

block-size optimisations. This version delivered a performance improvement,

relative to the reference implementation, of 9.3% for the 3,8402 cell problem

class but only 1.2% for the 9602 cell problem class. On this architecture the use

of the NDRange padding and the fixed local work-group block-size optimisations

result in performance degradations when they are used in isolation. They are,

however, required in order to employ the auto-tuning optimisation which can

deliver significant performance benefits. The most performant version for the

9602 cell problem class was actually the reference implemented with only the

pre-processing constant values optimisation applied to it, this achieved a 3.0%

performance improvement compared to the reference implementation. On this

architecture the array notation, processing multiple grid-point per work-item,

kernel merger, out-of-order command queue and overlapping computation with

data-movement optimisations were ine↵ective and often resulted in significant

reductions in overall performance.

150

6. Portable Performance Through OpenCL

The experimental results obtained on the Xeon CPU architecture demon-

strate that for the 3,8402 cell problem class the original reference implementation

is overall the most performant version. Although the use of the auto-tuned

local work-group block-sizes derived on the Xeon Phi architecture also delivers

significant performance benefits on this architecture. This optimisation requires

the use of the NDRange padding and the fixed local work-group size optimisations,

the use of which results in significant performance degradations and the net-

result is an overall reduction in performance. An identical performance trend is

also demonstrated in the results obtained from the experiments with the 9602

cell problem class. In these experiments the array notation optimisation delivers

some performance benefits and results in an overall performance improvement

of 1.8% relative to the reference version. However for this problem class the

most performant version is again the reference implementation with only the

pre-processing constant values optimisation applied to it. On this architecture

implementing the optimisations to: process multiple grid-points per work-item,

merge kernels, utilise an out-of-order command queue and overlap data move-

ment with computation, were ine↵ective and resulted in significant performance

reductions.

On the Opteron CPU architecture the most performant version employed the

optimisation of processing multiple grid-point per work-item. In the experiments

with the 3,8402 cell problem class this optimisation achieved a performance

improvement of 13.1% relative to the reference implementation. Utilising an out-

of-order command queue also delivered significant performance benefits on this

architecture and improved performance by 9.1% when compared to the reference

implementation. The candidate optimisations of utilising array notation, pre-

processing constant values, merging kernels, utilising the restrict & const

keywords and minimising clFinish operations were largely ine↵ective and their

use resulted in negligible changes in overall application performance.

6.3.2 Single-node Performance Analysis

Following the analysis documented in Section 6.3.1 the most performant OpenCL-

based version of CloverLeaf on each particular architecture was subsequently

used to conduct an inter-architecture performance comparison on single node

instances of each processor type. This enabled the performance of the OpenCL

programming model to be objectively assessed across multiple di↵erent archi-

tectures and also relative to the native programming models for those particular

platforms. In these experiments optimised OpenMP and CUDA versions of the

application were utilised as the native programming models on the CPU and

Nvidia GPU architectures respectively.

151

6. Portable Performance Through OpenCL

Device OpenCL (s) Native (s) Speedup (%)

Tesla K20X 14.95 13.77 -7.89
Xeon E3-2620 ⇥ 2 60.66 52.67 -13.17
Xeon Phi 7120P(2tperC) 58.80 57.03 -3.10
Xeon Phi 7120P(3tperC) 58.80 58.79 -0.01
Xeon Phi 7120P(4tperC) 58.80 66.45 11.51
Opteron 6272 179.78 233.97 30.14

Table 6.6: Runtime of the OpenCL implementation for the 3, 8402 problem

These experiments examined the performance (total application wall-time)

of the codebase on the Nvidia Tesla K20X, Intel Xeon E3-2620, Intel Xeon Phi

7120P, AMD Opteron 6272, AMD A10-5800K and AMD HD-7660D architec-

tures. The Shannon, Tuck, Chilean Pine and Teller platforms were utilised

to archive this architectural coverage (see Section A.1 for more details). The

9602 and 3, 8402 cell problems from the standard CloverLeaf benchmarking

suite were again utilised and executed for 2,955 and 87 timesteps respectively.

Tables 6.6 and 6.7 present the results obtained from the experiments with the

3, 8402 and 9602 cell problem classes respectively. The approximate memory

usage of the 9602 cell problem is 500MB, which means that it is able to fit

within the available memory on all of the devices employed in this study. The

3, 8402 problem class, however, consumes approximately 5GB of main memory

capacity, preventing it from being examined on the AMD A10-5800K and AMD

HD-7660D architectures.

The native programming model experiments on the Xeon Phi 7120P platform

utilised OpenMP in the “o✏oading” mode configuration and examined the e↵ect

on performance of varying the total number of threads as well as the number of

threads employed per processing core. The results obtained from the Opteron

6272 architecture were derived from experiments which employed 8 OpenMP

threads, i.e. they utilised one thread per floating-point unit within the CPU.

Similarly, the experiments on the Xeon E3-2620 architecture utilised OpenMP

across both processor sockets and employed one thread per processor core (i.e.

the Intel Hyper-Threads within the CPU were not utilised).

The results show that for the 3, 8402 cell problem class, the performance

of the OpenCL implementation on the Nvidia K20X architecture is not able

to match that of the optimised CUDA version, delivering a 7.89% slowdown

in relative performance. In the experiments with the 9602 cell problem class,

however, the OpenCL version actually delivered a performance improvement of

1.64% over the native CUDA implementation. This performance discrepancy is

likely due to the fact that the local work-group size auto-tuning optimisations

were not implemented within the native CUDA version. Collectively, however,

both results demonstrate that the OpenCL programming model is able to pro-

152

6. Portable Performance Through OpenCL

Device OpenCL (s) Native (s) Speedup (%)

Tesla K20X 35.88 36.48 1.64
Xeon E3-2620 ⇥ 2 166.68 132.77 -20.34
Xeon Phi 7120P(2TperC) 224.47 664.63 66.22
Opteron 6272 16.47 13.76 -16.42
Trinity A10-5800K 947.08 627.06 -51.03
Trinity HD-7660D 678.26 - -

Table 6.7: Runtime of the OpenCL implementation for the 9602 problem

vide broadly equivalent performance to CUDA on processing architectures of

this type.

On the Intel Xeon E3-2620 dual CPU architecture the performance of the

OpenCL implementation is 13.17% and 20.34% slower than that of the optimised

OpenMP version for the 3, 8402 and 9602 cell problem classes respectively.

In the experiments on the AMD Opteron 6272 CPU architecture, however,

the OpenCL implementation was able to deliver superior performance to the

OpenMP programming model for the 3, 8402 cell problem class, achieving a

speedup of 30.14%. Although for the 9602 cell problem class the performance of

the OpenCL implementation is approximately 16.42% slower than that of the

native OpenMP implementation.

The experimental results from the Xeon Phi 7120P platform show significant

variations when di↵erent numbers of OpenMP threads are utilised per processing

core. In the experiments with the 3, 8402 cell problem class, utilising two

threads per processor core was the most performant configuration, delivering

performance improvements of 14.17% and 2.99% relative to the four and three

threads per core configurations respectively. On this platform the OpenCL im-

plementation was able to broadly match the performance of the OpenMP version

for this problem class. Its performance was only 3.10% slower than that of the

OpenMP version in the two threads per core experiment and the performance

of both versions was almost identical (within 0.01%) in the three threads per

core case. Relative to the OpenMP version (four threads per core), however, the

OpenCL implementation delivered a performance improvement of 11.51%. It

is not clear how many hardware threads the OpenCL implementation actually

utilises, however, these results demonstrate that significant performance benefits

could potentially be obtained by restricting their use. In the experiments with

the 9602 cell problem class, however, the OpenCL implementation delivered a

significant performance advantage of 66.22% (2.96⇥) relative to the OpenMP

version. This result together with the observation that performance is generally

worse on the Xeon Phi, relative to the K20X architecture, for the smaller 9602

cell problem class (6.3⇥) compared to the larger 3, 8402 cell problem size (3.9⇥),

indicates that the Xeon Phi is less e↵ective at processing problem configurations

153

6. Portable Performance Through OpenCL

1 2 4 8 16 32 64 128
0

10

20

30

40

nodes

w
a
ll
-t
im

e
(s
ec
s)

Explicit Bu↵er Packing Native Functions

Titan (Cray XK7)

Figure 6.5: Bu↵er packing strong scaling performance (9602 cell problem)

with smaller mesh sizes.

The OpenCL implementation was the only version able to execute on the

HD-7660D part of the AMD Trinity APU. Although the performance of the

9602 cell problem class on this architecture was 1.4⇥ better than on the CPU

component on the Trinity APU, it was still 18.9⇥ slower than the Nvidia K20X

architecture.

Overall the Nvidia K20X GPU platform proved to be the most performant

architecture for this class of application. In the experiments with the 3, 8402

cell problem class and the OpenCL implementation of CloverLeaf, the K20X

outperformed the Xeon Phi by 3.93⇥, the dual socket Xeon E3-2620 platform

by 4.1⇥, and the single socket Opteron 6272 by 12.0⇥.

6.3.3 Multi-node Performance Analysis

Further research was subsequently conducted to assess the performance of the

OpenCL programming model at extreme-scale. This examined the perfor-

mance of the MPI+OpenCL implementation of CloverLeaf relative to equivalent

MPI+CUDA and MPI+OpenACC implementations on Titan, and relative to

an equivalent MPI-only version on the Archer and HECToR platforms. The

experiments examined the performance characteristics of the various program-

ming models in a strong-scaling experimental configuration, using the 15, 3602

cell problem, and also the weak-scaling performance using the 3, 8402 cells/n-

154

6. Portable Performance Through OpenCL

64 128 256 512 1024 2048 4096 8192
0

50

100

150

200

250

300

nodes

w
a
ll
-t
im

e
(s
ec
s)

CUDA OpenCL OpenACC Archer(MPI)

Titan (Cray XK7) & Archer (Cray XC30)

Figure 6.6: Strong-scaling performance (15,3602 cell problem)

ode problem. These experiments were executed for 2,955 and 87 timesteps

respectively. Additionally two alternative communication bu↵er management

approaches were examined using the 9602 cell problem which was executed for

2,955 timesteps in a strong-scaling experimental configuration. Each experimen-

tal configuration represents a standard simulation available within the Clover-

Leaf benchmarking suite. All experimental results presented in this section are

also averages from three separate executions of each particular experiment.

Alternative Communications Bu↵er Management Approaches

Figure 6.5 presents the results obtained from the experiments which examined

the alternative communications bu↵er management approaches described in

Section 6.2.2. The results show that initially, in the one and two node ex-

periments, the performance of both versions is virtually identical. Beyond this

point, however, the performance of the version which utilises the native OpenCL

built-in functions is significantly superior to that of the version which employs

the explicit bu↵er management kernel routines. In the four node experiment

the version which utilises the native functions is approximately 1.14⇥ quicker.

This performance disparity widens as the scale of the experiments is increased

and the performance of the application becomes increasingly dominated by the

speed of communication operations (smaller problem size per GPU), reaching

⇠1.37⇥ in the 128 node case.

155

6. Portable Performance Through OpenCL

64 128 256 512 1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nodes

S
p
ee
d
u
p

CUDA OpenCL OpenACC

Titan (Cray XK7)

Figure 6.7: Speedup, relative to OpenACC, of CUDA and OpenCL

Strong-scaling Results Analysis

Figure 6.6 presents the absolute performance results (application wall-time)

obtained during the strong-scaling experiments. These experiments employed

the larger 15, 3602 cell problem size (executed for 2,955 timesteps) and exam-

ined the performance of the MPI+CUDA, MPI+OpenCL and MPI+OpenACC

(using the OpenACC Kernel constructs) versions of the codebase on the Titan

platform as well as the MPI-only version on the Archer platform. It is evident

from this chart that the performance of the MPI+OpenCL and MPI+CUDA

versions of the codebase is broadly equivalent throughout all of the experimental

scales examined. The MPI+OpenACC version is initially ⇠1.23⇥ slower than

the CUDA- and OpenCL-based versions but matches their performance as the

experiments are scaled to larger node counts.

The results obtained from these strong-scaling experiments on Titan are also

presented in Figure 6.7, in terms of the application speedup achieved relative

to the performance of the OpenACC-based version. Analysing the results in

this manner identifies an additional performance trend which was not evident

in Figure 6.6 due to the scales of the chart. In this format the results show that

initially the most performant configuration is MPI+CUDA closely followed by

the MPI+OpenCL version, in the 64 node experiment these respectively deliver

1.23⇥ and 1.16⇥ superior performance relative to the MPI+OpenACC based

approach. As the scale of the experiments is increased, however, the relative per-

formance of the MPI+CUDA and MPI+OpenCL codebases decreases such that

they are approximately equal to that of the MPI+OpenACC codebase in the

1,024 to 4,096 node experiments. Additionally, in the 8,192 node experiment the

OpenACC-based approach outperformed both the CUDA- and OpenCL-based

156

6. Portable Performance Through OpenCL

approaches by ⇠1.3⇥ on average. This performance disparity is likely to be due

to the explicit block-sizes employed within the OpenCL and CUDA versions

being significantly sub-optimal for the smaller mesh-sizes per node which occur

in the experiments at this scale. The block-sizes employed in these versions

were previously derived during experiments with larger mesh-sizes per node at

smaller node counts. The OpenACC-based version does not explicitly specify

block-sizes and therefore the runtime system is able to select a configuration

during application execution, which it estimates will be most appropriate for the

size of mesh currently being simulated per GPU in the particular experiment.

It is also evident from these results that the performance advantages demon-

strated by the MPI+CUDA configuration over the OpenCL-based approach, in

the initial smaller node count experiments, decrease significantly as the scales

of the experiments are increased. In the larger scale experiments, in which

application performance is less computationally bound, the performance of both

the CUDA- and OpenCL-based codebases is virtually identical.

The results presented in Figure 6.6 also facilitate a performance comparison

between the CPU-only and GPU-based architectures of the Archer and Titan

platforms. In the 64 node experiments the MPI-only version executing on the

Archer platform is ⇠1.93⇥ slower than the MPI+CUDA implementation exe-

cuting on the Titan platform. This demonstrates the performance advantages

which utilising the Nvidia K20X GPU architecture can have over the Intel

Xeon CPU processors. This performance disparity was also achieved despite

2⇥ more CPUs (2 per node) being employed, compared to the experiments

on the GPU-based architecture which only contains 1 GPU per node. As the

scales of the experiments are increased, however, and the performance of the

application in this configuration becomes increasingly communication bound,

this trend changes significantly. Between the 256 and 512 node experiments the

performance of the MPI-only codebase executing on the CPU-based architecture

starts to deliver significant performance advantages, relative to the GPU-based

approach. This performance advantage increases in the higher node count

experiments and reaches ⇠3.5⇥ in the 2,048 node experiment. This is due

primarily to the relatively slow performance of the PCIe bus which connects the

GPU devices to the host nodes. As the scales of the experiments are increased,

the amount of computation performed per node decreases, and the performance

of the application becomes increasingly communication bound. In this scenario

the time taken to move data across the PCIe buses therefore starts to dominate

the overall performance of the application. The CPU-based architecture does

not exhibit this problem and therefore is able to deliver superior scalability for

applications in this experimental configuration.

157

6. Portable Performance Through OpenCL

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

20

40

60

nodes

w
a
ll
-t
im

e
(s
ec
s)

MPI+CUDA MPI+OpenCL MPI+OpenACC

MPI-only (Archer) MPI-only (HECToR)

Titan (Cray XK7) & Archer (Cray XC30)

Figure 6.8: Weak-scaling performance (3,8402 cell/node problem)

Weak-scaling Results Analysis

To assess the performance of the MPI+OpenCL programming model in a weak-

scaling experimental configuration a series of experiments was conducted on the

Titan, Archer and HECToR supercomputers. These employed the 3, 8402 cell

problem from the standard CloverLeaf benchmarking suite, which was scaled

from 1 to 8,192 nodes in a manner such that each node processed a local mesh-

size of 3, 8402 cells. Figure 6.8 presents the results of these experiments.

The results obtained from the GPU-based architecture of Titan show that

the performance of the MPI+OpenCL programming model is generally within

6-8% of the native MPI+CUDA version of the codebase. Furthermore these

results demonstrate that the performance of the OpenACC version which utilises

a directive-based programming model is consistently ⇠1.4⇥ slower than the ver-

sions which utilise the more explicit GPU-programming approaches of OpenCL

and CUDA. The chart also demonstrates the significant performance advantages

which the GPU-based architecture of Titan can deliver, for hydrodynamics

applications such as CloverLeaf, compared to the CPU-only architectures of

Archer and HECToR.

These results demonstrate that relative to the MPI-only programming model

on the Archer and HECToR platforms, utilising the MPI+CUDA or the MPI+

OpenCL programming models on the GPU-based architecture of Titan, delivers

performance advantages of ⇠2⇥ and ⇠4⇥ respectively. Furthermore, the newer

Intel Xeon E5-2697 CPU devices and the Aries interconnect within the Archer

platform (Cray XC30 architecture) provides a ⇠2⇥ performance advantage

158

6. Portable Performance Through OpenCL

for the MPI-only version of CloverLeaf, compared to the older AMD Opteron

6276 CPU devices and the Gemini interconnect technology available within the

HECToR platform (Cray XE6 architecture).

Additionally as the scale of the experiments is increased the performance dis-

parities between the various versions are consistently maintained. This is due to

the fact that large mesh-sizes are simulated per computational node, during each

of the experiments conducted in this weak-scaling configuration. Consequently

the performance of the application remains computationally bound and thus

the GPU-based architecture and the explicit programming approaches of CUDA

and OpenCL are able to maintain their performance advantages throughout the

series of experiments.

6.4 Summary

This research has demonstrated that the use of OpenCL enables an application

to be expressed in a single codebase in such a manner that it is possible to

execute it on a wide range of current state-of-the-art processor architectures.

It is currently not possible to achieve this with the other programming models

examined in this research, the CUDA implementation is e↵ectively confined

to the Nvidia GPU devices and the OpenMP implementation to the Intel and

AMD CPU devices. Additionally, the use of OpenCL enabled the application

to be executed on the GPU component of the AMD Trinity-APU devices which

it would otherwise not have been possible to utilise. Use of the OpenCL

technology can therefore significantly improve the portability of application

codebases across diverse processor architectures from multiple vendors.

The results produced as part of this research also show that it is possible

for the performance of OpenCL applications to match and sometimes exceed

that of their equivalent native implementations. In the experiments conducted

on the Nvidia architecture the performance of the OpenCL codebase is always

within 6-8% of that of the equivalent CUDA implementation. In particular

experimental scenarios, however, the OpenCL implementation delivered supe-

rior performance by as much as 1.6%. On the Intel CPU-based architectures the

performance of the OpenCL implementation was significantly worse than that of

the native OpenMP implementation, with the performance discrepancy reaching

as high as a ⇠20% slowdown. The results obtained during the experiments on

the AMD CPU processor (Opteron 6272), however, show that in particular

experimental scenarios the OpenCL implementation can outperform the native

OpenMP implementation by as much as 30%, whilst in other configurations the

native implementation can be as much as 16.4% more performant. Similarly,

in the experiments with the larger 3,8402 cell problem size on the Xeon Phi

159

6. Portable Performance Through OpenCL

co-processor architecture the performance of the OpenCL codebase is generally

within 3% of that of the native implementation (in “o✏oad” mode) and can

be as much as 11.5% more performant in particular configurations (e.g. when 4

threads per core are utilised). Additionally in the experiments with the smaller

9602 cell problem, the OpenCL implementation produced as part of this research

was ⇠66% more performant than the native OpenMP version, when this was

utilised in the “o✏oading” configuration.

Achieving these performance levels, however, generally required device spe-

cific optimisations to be implemented and therefore performance cannot neces-

sarily be regarded as being portable across multiple architectures. The results

presented in Section 6.3.1 show that on the Nvidia K20X architecture the

most e↵ective optimisation techniques were the NDRange padding, fixed local

work-group sizes, merging kernels, pre-processing constant values, utilising the

restrict & const keywords and the auto-tuning of local work-group block-

sizes. The use of array notation, out-of-order command queues, overlapping

computation with data movement and processing multiple grid-point per work-

item techniques did not deliver any performance benefits. On the Xeon Phi

platform, however, the most successful optimisation techniques included the

NDRange padding, fixed local work-group sizes, pre-processing constant values,

applying the restrict & const keywords as well as the auto-tuning of the

local work-group block-sizes. The use of array notation, processing multiple

grid-point per work-item, merging kernels, out-of-order command queues and

overlapping computation with data-movement optimisations were ine↵ective

and often resulted in significant reductions in overall performance on this archi-

tecture. All of the candidate optimisation techniques examined in this research

negatively impacted the performance of the OpenCL codebase on the Intel

Xeon CPU architecture. On the AMD Opteron architecture, however, the

optimisation of processing multiple grid-points per work-item and the use of an

out-of-order command queue delivered significant performance benefits, whilst

the other candidate optimisation techniques were almost completely ine↵ective.

This work also demonstrated that the selection of appropriate local work-

group block-sizes is crucial in order for the performance of an OpenCL appli-

cation to be maximised. The use of auto-tuning techniques to determine the

optimal configuration was examined as part of this research and shown to be

an extremely e↵ective approach. The optimal block-sizes identified through the

use of these techniques showed significant variations both between the various

processor architectures and also across the individual OpenCL kernels within

the application. This complexity further supports the use of auto-tuning as an

e↵ective technique for the identification of such optimal configurations.

The multi-node experiments identified that in a weak-scaling experimental

160

6. Portable Performance Through OpenCL

configuration on the Nvidia GPU based architectures, the OpenCL program-

ming model consistently maintains a 6-8% performance deficit relative to an

equivalent native CUDA implementation, in all of the experiments between the

1 and 8,192 node cases. In this configuration the experiments showed that

utilising an explicit low-level programming model such as OpenCL can deliver

performance improvements of up to 1.4⇥ relative to the higher-level directives

based approach of OpenACC. Additionally for this class of application, targeting

the Nvidia K20X GPU-based architecture of Titan via a programming model

such as OpenCL can also deliver performance improvements of up to 2⇥ relative

to current state-of-the-art CPU-only based architectures such as Archer.

This research also showed that in a strong-scaling experimental configuration

the use of the OpenCL built-in functions to transfer data to/from the Nvidia

K20X GPU devices on the Titan platform can deliver significant performance

advantages compared to approaches which employ explicit bu↵er management

kernel functions. Additionally, although the OpenCL programming model can

deliver performance advantages over the directive based approach of OpenACC

when the mesh size per node is relatively large, the performance of the OpenCL

implementation can be inferior to that of OpenACC at large scale. This is likely

to be due to the fact that the OpenACC implementation employed in these

experiments is able to select more appropriate kernel block-sizes at execution

time. The experiments conducted here also demonstrated that in a strong-

scaling scenario the performance of the OpenCL based implementation can

match that of the native CUDA implementation as the scales of the experiments

are increased and the computational workload per node reduces.

Overall the improved portability which OpenCL o↵ers for, in some cases,

only relatively small performance penalties may be an extremely attractive

trade-o↵ for HPC sites as they attempt to cope with ever increasing workloads

and a myriad of complex programming models and architectures. At least

in these experiments, solely utilising OpenCL cannot, however, guarantee the

delivery of full portable performance for scientific applications.

161

CHAPTER 7
Evaluating FPGAs as Low Power Processing Solutions

This chapter commences, in Section 7.1, with a discussion of the factors which

motivate this research together with an overview of existing related work. The

research undertaken to develop implementations of certain CloverLeaf kernels

which can e↵ectively execute on an Altera FPGA device is then discussed in

Section 7.2. Detailed descriptions of the candidate optimisations which have

been examined as part of this research are also presented in Section 7.2.1.

Section 7.3 documents the actual experiments conducted to evaluate an FPGA

device as a potential processing solution for hydrodynamics applications, as

well as the suitability of OpenCL as a programming model to enable scientific

applications to be targeted at these devices. In Sections 7.3.2 and 7.3.3 time- and

energy-to-solution analyses are also presented which examine the performance of

the technology against several alternative state-of-the-art processing solutions.

Finally, Section 7.4 summarises the findings of this research and concludes the

chapter.

7.1 Related Work

FPGA technology has existed for several decades, although the applicability of

the technology for scientific workloads has been limited due to the complexities

associated with the low-level HDLs required to utilise them [124]. Recent

advances are, however, enabling applications to be targeted at these devices

through high-level programming models. Historically the attainable floating

point arithmetic performance of FPGA devices has also been limited, although

this is considerably improved on existing state-of-the-art devices. Altera re-

cently announced that their latest Generation 10 solutions will be able to

natively support IEEE 754 compliant single-precision floating point arithmetic

using dedicated hardware circuitry within each FPGA DSP block [8]. FPGAs

also possess significant internal memory bandwidth resources and their memory

access sub-system can be defined for specific applications [124]. The fact that

the majority of the hydrodynamics applications of interest to this research are

memory bound, means that FPGAs are potentially a well-suited processing

solution for these applications. Additionally their capabilities have increased

such that it is now possible to create complex SOC designs within one FPGA

device [158]. Intel also recently announced that it plans to incorporate an FPGA

into future versions of its Xeon products [99].

162

7. Evaluating FPGAs as Low Power Processing Solutions

Several researchers have also documented significant successes through the

application of these technologies. Lindtjorn et al. present work using an FPGA-

based approach to accelerate a reservoir simulation application within the oil

and gas sector, which employs a finite volume method [125]. They created data-

flow representations of their key algorithms of interest and targeted a Xilinx-

based system using the Maxeler compiler tool-suite [137]. Additionally, they

also present novel techniques, made possible by the use of an FPGA-based

architecture, to make better use of the available memory bandwidth resources.

Ultimately they achieve significant speedups in performance (20-70⇥) and power

e�ciency (7.5-28⇥) over equivalent CPU- and GPU-based solutions.

Bose et al. present work which examines using a coarse-grained reconfig-

urable processor, based on an ADRES design [30] from Samsung, to implement

a 3D physics engine used within the computer gaming industry [29]. They

highlight the e�ciencies of using a reconfigurable processor over a standard

ARM-based microprocessor design and present results showing a significant per-

formance advantage, although they do indicate that they use a fixed point arith-

metic implementation. Brossard et al. also describe their research to develop

a high level language and compilation system which is able to target scientific

applications at FPGA-based platforms, however, their work concentrates on a

genomics based application [33].

A methodology for utilising OpenCL as a programming model for FPGA

devices is presented by Economakos [61]. This is based on the use of the

CatapultC ESL technology and documents several low-level design issues, as

well as a significant performance improvement over a GPU-based processing

solution. Lin et al. also present research which examines the construction of an

OpenCL compiler and runtime system, based on LLVM, for FPGA devices [124].

They achieve equivalent performance compared to a GPU device but with a

significant improvement (5⇥) in power consumption, although the application

they examine is significantly di↵erent to hydrodynamics applications, which are

the focus of this research. Similarly, Owaida et al. developed a compilation

framework which, like the Altera tool-chain, is able to translate potentially

unmodified OpenCL to Verilog, in order to target FPGA devices [158]. Their

work identifies a series of optimisations and assesses the success of their tech-

niques on a range of benchmarks, some of which are predominantly floating

point arithmetic based. They do not, however, compare the performance of the

FPGA devices to alternative processing solutions.

These developments, together with the need to find more power e�cient

processing solutions for hydrodynamics applications, motivate the research doc-

umented here. In particular this work aims to determine whether FPGAs

can deliver su�cient levels of floating-point computational performance, whilst

163

7. Evaluating FPGAs as Low Power Processing Solutions

adequately driving the memory subsystem, and consuming substantially less

energy compared to more established processing solutions. It also seeks to

determine whether OpenCL represents an appropriate level of abstraction for

expressing algorithms, and how e�ciently the model enables them to be tar-

geted at FPGA devices. Additionally, it also examines how kernels should be

expressed in order for the Altera tool-suite to optimally target them at this

architecture. Information on the Altera OpenCL tool-suite can be found in the

Altera Programming [7] and Optimisation Guides [6].

7.2 FPGA Targeted OpenCL Implementations

The CloverLeaf kernels, documented in Chapter 6, were primarily developed to

target GPU-based devices and consequently maximise the number of OpenCL

work-items launched within each NDRange index space. Each kernel employs a

strategy which utilises one OpenCL work-item to process each mesh grid-point.

These implementations are referred to as the reference versions within this

research. To determine the optimal approach for implementing computational

kernels to target Altera FPGA devices a series of candidate optimisations, which

are documented in Section 7.2.1, were applied to the codebase and their utility

subsequently analysed.

7.2.1 Optimisations Examined

The following sub-sections each document in detail a specific optimisation tech-

nique which has been examined as part of this research.

Resource Driven Compiler Optimisations

The ability of the Altera OpenCL compiler to perform automatic resource driven

optimisations of the individual kernels was examined as part of this research.

Through this process the compiler attempts to improve performance (e.g. the

number of work-items executed / second) by iteratively varying a number of

compilation parameters or design-points. These include the selection of optimal

vectorisation widths, the number of instantiated compute-units and the level

of resource sharing within a kernel. This optimisation is enabled by specifying

the -O3 option to the compiler, which by default automatically tunes kernel

implementations to use a maximum of 85% of the logic area available on the

target FPGA. Employing this technique facilitates an assessment of the ability

of the Altera compiler to automatically optimise existing kernel functions and

provides a useful baseline against which to assess the utility of additional, more

164

7. Evaluating FPGAs as Low Power Processing Solutions

complex, optimisation techniques. Versions which employed this approach are

denoted using the abbreviation O3 within their descriptions in Section 7.3.

Work-group Size Optimisations

To determine whether kernel performance on FPGA devices is a↵ected, by dif-

ferent OpenCL work-group settings, in a similar manner to the results presented

in Section 6.3. This research examined a number of work-group size related op-

timisations by applying the reqd work group size and max work group size

kernel attributes to individual computational kernels. These attributes purport

to enable the compiler to perform more aggressive optimisations and enable it to

generate hardware configurations which exactly match the required number of

work-items per work-group. This potentially leads to resource savings and more

e�cient computational pipeline implementations [6]. In Section 7.3 versions

which employed both the reqd work group size and max work group size at-

tributes are denoted by the description wgA⇥B, in which characters A and B

represent the dimensions of the specified work-group.

Kernel Vectorisation

Vectorising individual kernel routines potentially enables higher throughput to

be achieved through the creation of pipelines which process multiple mesh points

simultaneously in a SIMD fashion. The Altera OpenCL compiler supports both

automatic and manual kernel vectorisation techniques.

Automatic vectorisation is performed exclusively by the compiler and can

translate scalar operations within each kernel to SIMD operations. The vectori-

sation factor for these operations is specified via the attribute ((num simd -

work items(X))) directive. This technique also requires a specific work-group

size to be specified for the kernel and for this value to be an exact multiple of

the value of X. It does not, therefore, require any changes to the code within

the actual bodies of the kernel functions and enables multiple work-items to be

executed simultaneously in a SIMD manner, with each instantiated vector-lane

processing one work-item.

Manually vectorising kernels, however, requires the explicit use of OpenCL

vector datatypes and the modification of the NDRange index space used to launch

a particular kernel. Under this approach each OpenCL work-item processes

additional mesh grid-points, depending on the width of the vector datatype

employed (e.g. float4, double8 etc), with these again being executed simulta-

neously in a SIMD manner. Incorporating this optimisation technique within

the kernels examined in this work also required the width of the data-arrays

processed by each kernel to be increased, such that their width was padded to

165

7. Evaluating FPGAs as Low Power Processing Solutions

�

jj-1

Global Memory Op Global Memory Op

.x .y .z .w .x .y .z .w

.x .y .z .wdata movement

computation

Figure 7.1: Vector shift operation implemented within the FPGA

be an exact multiple of the vector-width of the particular datatype being utilised.

It was also necessary to include work-item dependent branches to ensure that

halo-cells at the edge of each data-array were processed correctly. Generally, this

required additional if-tests to be employed to ensure that particular work-items

only update the required vector elements (e.g. variable.x). Within Section 7.3

versions which utilised this optimisation technique are denoted by expressions

of the form datatypeX. Here X refers to the particular vector-width employed

and datatype refers to the particular datatype used in the execution e.g. double.

Kernel vectorisation also facilitates the coalescing of global memory (DDR)

operations in order to further improve application performance. Memory ac-

cesses will be coalesced, under an automatic vectorisation approach, if the Altera

compiler is able to identify a sequential memory access pattern within the kernel.

The explicit use of vector datatypes, however, guarantees that memory accesses

will be statically coalesced by the compiler.

Due to its regular memory access pattern and no stencil operations, manual

vectorisation was implemented for the Ideal-gas kernel by increasing the size of

each global memory operation proportionally with the width of the vectorisa-

tion. Implementing this candidate optimisation technique within the Accelerate

kernel was, however, significantly more challenging due to the 4-point stencil

operation required within the kernel.

Two general approaches for implementing this candidate optimisation tech-

nique within the Accelerate kernel were examined as part of this work. For

an arbitrary OpenCL work-item co-ordinate [k][j], both approaches perform

additional global memory accesses, from each of the required source data arrays,

at the following relative co-ordinates: [k][j-1], [k-1][j-1] and [k-1][j].

The first approach, which is labeled indivLanes within Section 7.3, is based

166

7. Evaluating FPGAs as Low Power Processing Solutions

on the use of OpenCL vector datatype subscripts. These were employed within

the kernel, to enable vector elements of particular variables to be individually

accessed. Each calculation within the original kernel implementation was then

modified such that it is expressed as an Elemental Function. These functions

were then duplicated within the kernel source code, once for each element of

the new vector datatypes. The executions of these Elemental Functions can

potentially occur in parallel as each updates a unique individual vector subscript

e.g. .x, .y etc.

Rather than accessing individual vector elements and duplicating calculation

logic within the source code of a particular kernel, an alternative approach was

also implemented. This applied the original kernel logic once, in a vectorised

manner, to the OpenCL vector datatypes within the new Accelerate kernel

implementations. The new approach required shift operations to be employed,

in order to align the required data-items in additional vector variables/registers,

and for the calculations to operate collectively on the entire vector datatypes.

Figure 7.1 demonstrates how this arrangement was implemented within the

CloverLeaf Accelerate kernel. Implementations which employed this approach

are denoted by the description vectorOps within Section 7.3.

Multiple Compute Units

Utilising multiple compute units on the FPGA device, in order to potentially

improve the overall throughput of kernels, was also examined as part of this

research. Individual compute units each contain a unique complete computa-

tional pipeline and are thus able to execute di↵erent OpenCL work-groups from

the current kernel, these are dispatched in parallel by the hardware scheduler.

The number of compute units generated for a particular kernel must be man-

ually configured using a directive of the form attribute ((num compute -

units(X))), where X specifies the particular number of compute units. Each

instantiated compute unit will occupy additional area on the FPGA device and

increase global memory bandwidth contention. This potentially requires in-

creased logic/bandwidth utilisation to be traded against overall kernel through-

put. Versions which employed this candidate optimisation technique contain

the word XcUnits within their descriptions in Section 7.3, here X refers to the

number of compute units actually instantiated.

Minimising Global Memory Operations

It is recognised that reducing the number of global memory operations can

significantly increase available bandwidth resources and improve kernel perfor-

mance [6]. This optimisation was implemented for the kernels examined as part

167

7. Evaluating FPGAs as Low Power Processing Solutions

of this research by identifying occurrences within each kernel which duplicate

references to global memory. These accesses were subsequently re-factored such

that the required data was pre-loaded from global memory into on-chip memory

resources within the FPGA, as early as possible during the kernel execution

pipeline. In this research kernels were restructured to pre-load data into private

OpenCL memory objects and to perform their computations directly on these

objects, with data only being written out to global memory when absolutely

necessary. OpenCL private memory objects are generally mapped to FPGA

registers, which are a plentiful hardware resource, by the compiler thus max-

imising performance. This optimisation enabled data to be reused for multiple

calculations within the kernel pipeline, without global memory having to be

re-accessed, before final results were eventually written back to global memory.

Implementations which incorporated this optimisation are referred to using the

description minMemOpts within Section 7.3.

To examine the e↵ect on performance due to the location of global mem-

ory operations within the Accelerate kernel, additional implementations were

developed. In these modified versions global memory operations were relo-

cated to occur as early as possible within the kernel, in order to ensure that

the latency of any data movement operations was minimised and to maximise

the opportunities for overlapping these operations with computation. Versions

which incorporated this candidate optimisation technique are denoted by the

description EarlyMemOps within Section 7.3.

Larger Calculations through Reductions in Temporary Variables

The reference implementation of the Accelerate kernel also utilises several tem-

porary variables to hold intermediary result values during its execution. To

potentially improve the performance of the kernel an additional version was

developed which eliminated these temporary variables. This modified version

also consolidates the calculations within the kernel into two large expressions,

each of which updates a particular final output value produced by the kernel.

Implementations which incorporated this candidate optimisation technique are

denoted by the description RemoveTemps within Section 7.3.

Modifying All Elements of Vector Datatypes

Due to the required halo-regions, the CloverLeaf data arrays often do not match

the exact vectorisation width employed within a kernel. Kernels which utilise

vector datatypes therefore, often required the inclusion of additional branching

operations in order to ensure that only the required target array elements are

updated correctly. This frequently occurs when only particular elements of a

168

7. Evaluating FPGAs as Low Power Processing Solutions

vector datatype need to written back to global memory, which also prevents the

coalescing of memory operations.

To eliminate these branching operations and ensure that only full vector

datatypes are written to/read from global memory this research examined a

further potential candidate optimisation technique. This involved modifying

the kernels to accumulate results in temporary vector variables/registers, which

could then be written back to global memory using a single coalesced memory

operation. Often this required individual vector element updates to be em-

ployed and an additional global memory operation to allow particular memory

locations to be updated with their original contents. The use of the temporary

“accumulation” registers enabled branching operations to be minimised and for

calculations to generally operate on entire vector datatypes within FPGA device

memory. These individual vector-element operations are therefore confined

to only update the actual “accumulation” registers, and not global memory

locations. Implementations which employ this candidate optimisation technique

are denoted by the description AllVector within Section 7.3.

Partitioning Global Memory

The global memory resources, available on the FPGA-based system examined

in this research, are by default accessed in a burst-interleaved manner. In

this configuration global memory references are interleaved across the available

memory banks, which leads to memory capacity usage being e�ciently balanced

across the available banks. Configuring these memory banks into separate,

contiguous, non-interleaved memory regions can, however, potentially improve

access load balance and therefore performance.

This candidate optimisation technique was implemented by allocating each

OpenCL bu↵er object, accessed by a particular kernel, to a specific memory

bank using the proprietary Altera memory object creation flags (e.g. cl mem -

bank 1 altera). As the majority of these bu↵er objects are e↵ectively of equal

size, load balance was ensured by allocating equal numbers to each memory

bank. Bu↵ers were also distributed such that the read and write operations

performed by each kernel to global memory, were distributed as evenly as possi-

ble across the available banks. Implementations which employed this technique

are denoted using the description memPart within Section 7.3.

Floating-point Mathematics Optimisation Options

To potentially improve the e�ciency with which floating-point mathematics

operations are implemented on the FPGA devices, this research examined the

e↵ect of several floating-point based optimisations available with the Altera

169

7. Evaluating FPGAs as Low Power Processing Solutions

compiler. These included allowing the compiler to create more balanced -trees

of floating-point operations. This achieves e�ciencies by shortening the overall

length of the computational pipeline, whilst potentially also reducing calculation

accuracy, as this optimisation is not compliant with IEEE standard 754-2008.

Implementations which employed this candidate optimisation include the de-

scription fprelax within Section 7.3.

Additionally, postponing rounding operations until the end of the floating-

point calculations through the generation of fused operations, was also exam-

ined. This optimisation again potentially violates IEEE standard 754-2008 and

enables hardware resources to be re-purposed away from rounding operations. It

does, however, enable additional precision bits to be carried forward through the

floating-point calculation, potentially leading to more accurate results. Versions

which employed this candidate optimisation techniques are denoted using the

acronym fpc within Section 7.3.

Minimising Floating-point Operations

As the floating-point capabilities of existing FPGA devices are still limited

relative to established processing technologies, a series of optimisations to limit

the number of floating-point calculations within individual kernels were also

examined. This involved re-expressing the algorithm such that the number of

floating-point calculations was minimised, in some instances temporary private

variables were employed to remove the need to re-calculate particular intermedi-

ary values. Thus providing the compiler with the greatest possible opportunity

to generate a computational pipeline which minimised the number of floating-

point operations. In Section 7.3 implementations which incorporated this opti-

misation are referred to using the word redFlops within their descriptions.

Additionally, implementing the vectorisation optimisation techniques de-

scribed previously, potentially results in redundant computation occurring within

the Accelerate kernel, during the execution of the final iteration of its inner

loop. This occurs whenever the width of the problem domain being simulated

is not evenly divisible by the length of the vectorisation employed within the

kernel. To potentially alleviate this problem additional if-then statements

were inserted into the kernel to remove the redundant computations. This

significantly reduces the number of floating point calculations performed during

the execution of the final iteration of the inner loop within the kernel, at the

expense of inserting additional branching operations during each iteration. It

was, however, only possible to implement this candidate optimisation technique

for kernels based on the indivLanes style of vectorisation. Within Section 7.3

versions which incorporated this technique are denoted by the description min-

170

7. Evaluating FPGAs as Low Power Processing Solutions

FinalComp.

To remove the requirement for the additional branching operations, a further

version was developed which completely peeled the final iteration from the main

kernel loop structure and explicitly inserted the additional logic operations im-

mediately after it. This enabled the branching constructs to be removed from the

main kernel loop and for the redundant computational logic to be removed from

the peeled iteration. Versions which incorporated this candidate optimisation

technique are denoted by the description peelFinalIt within Section 7.3.

Removing Kernel Bounds Checks

The reference implementation of the OpenCL kernels employed an approach

which performed an array bounds check (using an if-then construct) at the

start of each kernel. This verified whether each work-item was required to

process a particular mesh grid-point and ensured that individual data-arrays

were not accessed beyond their bounds. This enables kernels to be launched

with NDRange index spaces which are specific multiples of the preferred vector

width of the current device, and potentially greater than the dimensions of the

individual data-arrays. This approach facilitates performance improvements

on certain processing architectures, however, reducing work-item dependent

branching is recognised as a method for improving performance on FPGA

devices [6].

To examine the most performant method for constructing and launching

kernels on Altera FPGA devices, additional implementations were therefore

developed. These reduced or completely eliminated the work-item checks at the

beginning of each kernel. This also required the host application to be modified

to ensure that particular kernels were only launched with the exact NDRange

dimensions required for their correct execution. In Section 7.3 versions which

employed this candidate optimisation technique are denoted by the description

redBoundChecks.

OpenCL Local Memory Based Cache

The stencil operations within the CloverLeaf Accelerate kernel necessitate that

an arbitrary work-item requires access during its execution to data values which

are o↵set, relative to the currently index coordinates ([k][j]), by 1 array

element in both the x and y dimensions. Specifically, each work-item is required

to read data from an adjacent memory location ([k][j-1]) and two contiguous

memory locations which are o↵set by a large, but constant stride, relative to

the current (x,y) coordinates of the work-item ([k-1][j-1] and [k-1][j]). In

the reference implementation this potentially causes additional global memory

171

7. Evaluating FPGAs as Low Power Processing Solutions

operations to be generated for each work-item index initiated.

To reduce these additional global memory operations and thus potentially

improve kernel execution performance, OpenCL Local memory objects were

employed. These were utilised to function as caches for data items read from

global main memory by previously executed work-items and therefore facilitate

the re-use of data values within subsequently executed work-items. OpenCL

local memory objects are generally mapped to on-chip memory blocks within

the FPGA fabric by the Altera compiler. Versions which utilised this candidate

optimisation technique also required the implementation of explicit OpenCL

local work-group sizes. Within Section 7.3 versions which incorporated this

candidate optimisation technique are identified by the description LocalMem-

Cache.

Array Notation

Additionally, employing array syntax (of the form [k][j]) to access the ele-

ments of the two dimensional array data structures within the kernels, instead of

pointer arithmetic ([k⇤x width+j]), was also examined. Implementations which

employed this candidate optimisation technique are denoted by the description

arrayNotation within Section 7.3.

Single Work-item Execution

Implementations of the CloverLeaf Accelerate kernel, based on the “single work-

item” OpenCL paradigm, were also developed. This candidate optimisation

technique purportedly facilitates greater optimisation opportunities for the Op-

enCL compiler. The approach allows the entire execution flow of a particu-

lar kernel to be better analysed, which enables more e�cient computational

pipelines to be generated. Without this technique the compiler would generally

only be able to analyse the execution of a singular “elemental” function, which

is the case when NDRange-based kernels are utilised.

To implement kernels based on the “single work-item” paradigm, modified

versions were developed which incorporated a nested double loop structure. This

enabled each function invocation to execute the entire iteration space required by

a particular kernel, which would previously have been specified using an OpenCL

NDRange. The inner and outer loop iterated counts were therefore configured to

be equal to the previously specified NDRange x - and y-dimensions, respectively.

Additionally calls to the OpenCL runtime, within the kernel, to determine work-

item index values were removed and the host application was also modified to

enqueue each kernel invocation as an OpenCL task rather than as an NDRange

kernel. Implementations which employed this candidate optimisation technique

172

7. Evaluating FPGAs as Low Power Processing Solutions

are referred to by the description SingleWI within Section 7.3.

The Altera OpenCL compiler also produces a detailed optimisation report for

kernels expressed in the “single work-item” paradigm. Through the examination

of this report it was possible to identify that, although pipelined execution had

been inferred for the Accelerate kernel, the execution of several code regions was

being serialised due to the inclusion of an if-then-else construct. This clause

was required to ensure that only data values within the particular problem

boundaries were updated within global memory, in situations in which the

problem size was not evenly divisible by the vectorisation width employed within

the kernel. To eliminate this serialisation the kernel was re-structured such that

full OpenCL vector datatypes were always written out to global memory. The

if-then-else construct was also eliminated and replaced by two if-then only

clauses. These enable the data values, which are to be written out to global

memory, to be replaced when required by the original contents of the particular

memory locations, which have previously been read from global memory. This

ensures that only the required memory locations are updated with new data

and enables the compiler to infer pipelined execution for the kernel without

any serialised computational stages. Implementations which employed this

candidate optimisation technique are denoted by the description PipelineOpts

within Section 7.3.

Due to the requirements of the OpenCL standard, the execution ordering of

the individual work-items within an NDRange-based kernel cannot be guaranteed

or determined at compilation time. This necessitates that NDRange-based ker-

nels must be implemented such that the execution of an individual work-item

does not depend on the prior execution of other work-items. Consequently,

individual work-items must therefore contain all of the global memory references

which they require in order to complete their execution. This potentially results

in the generation of additional global memory operations, that would otherwise

not be required if a collective execution ordering could be guaranteed for the

work-items within an NDRange, and data values could be reused between their

executions.

Implementing stencil-based computations such as the CloverLeaf Acceler-

ate kernel using the “single work-item” paradigm enables an ordering to be

expressed between the execution of di↵erent loop iterations within the double

nested loop structure. The execution of these loop iterations replace the actual

individual NDRange work-items. This facilitates the implementation of several

additional optimisations, including the reuse of data values across loop iterations

and a reduction in the overall number of global memory operations performed

per loop iteration.

The inner loop within the “single work-item” Accelerate kernel processes

173

7. Evaluating FPGAs as Low Power Processing Solutions

X -dimensional cache

Y -dimensional cache1

2

3

1. Global Memory Op

2. Perform Computation on

1. Copy data value

2. Copy data value

1. Shift the X dimension cache by +1

2. Repeat sequence starting at step 1

*
k+1

*shift Y dimension cache up +1 when X dimension
cache reaches the end of the iteration space

Figure 7.2: Data caching across loop iterations on the FPGA

the two dimensional data arrays sequentially in the x -dimension. An arbitrary

iteration of this inner loop depends on several data values which were first

accessed by the loop iteration immediately prior to it. The kernel was therefore

modified to cache these values within temporary bu↵ers, which facilitates their

reuse within subsequent iterations, rather than reloading them again from global

memory as would be the case with an NDRange-based implementation. These

bu↵ers were implemented using private OpenCL data objects to ensure that

they were instantiated using the on-chip memory resources within the FPGA.

The kernel was also modified to rotate the contents of these bu↵ers at the end of

each iteration, such that the most recent values read from global memory replace

the previously cached values, ready for the next loop iteration to commence.

Versions which implemented this optimisation technique across the x -dimension

are denoted by the description xDimBu↵erCache, within Section 7.3.

A similar technique was also implemented for the y-dimensional memory

accesses within the Accelerate kernel. This required data values to be cached and

reused across di↵erent iterations of the outer k -loop and therefore necessitated

the creation of several larger caches. These were implemented to be equal in

size to the width of the problem domain being simulated and enabled data

values to be cached across an entire execution of the inner j -loop. The caches

were initially primed by reading in entire rows from the data arrays stored

174

7. Evaluating FPGAs as Low Power Processing Solutions

within global memory prior to the execution of the main double loop-nest

within the kernel. During kernel execution, as data values are removed from

the smaller x -dimensional caches employed within the inner j-loop of the kernel,

they are written to their corresponding location (in the x -dimension) within the

equivalent, larger y-dimensional caches. This arrangement facilitated the reuse

of these data values within the next iteration of the outer k -loop. Versions which

implemented this optimisation technique across the y-dimension are denoted by

the description yDimBu↵erCache within Section 7.3.

The combination of both the x - and y-dimensional data caching optimisation

techniques is shown diagrammatically in Figure 7.2.

The implementation of this data reuse technique across the y-dimension of

the kernel resulted in the Altera OpenCL compiler creating additional seriali-

sation dependencies within the computational pipeline it generates. Overall,

however, the implementation of these optimisations enabled the number of

global memory load operations performed by the Accelerate kernel during each

loop iteration to be reduced by 2.75⇥, from 22 to 8.

7.3 Results Analysis

To assess the computational performance and energy e�ciency which an FPGA-

based processing solution can deliver for hydrodynamics scientific applications

a series of experiments were conducted as part of this research. Due to the

time required to synthesise the hardware implementations of the kernels for the

FPGA device an approach which utilised the kernel-driver routines, from the

standard CloverLeaf software distribution package, was adopted. This enabled

the performance of individual kernels to be examined in isolation and in a more

time e�cient manner. The Ideal-gas and Accelerate kernels were selected for

these experiments as collectively they embody the key computational char-

acteristics exhibited by the overall algorithm and also a much wider class of

scientific applications. Specifically these kernels include no stencil and fixed

stencil operations, respectively.

The Tuck platform (see Section A.1) was utilised in order to assess the

performance of these kernels on an Altera Stratix V (D5) FPGA device and on a

range of other state-of-the-art hardware accelerator/co-processor architectures.

This system also contains the PowerInsight [119] monitoring technology which

enabled the power consumption of each processing solution to be measured over

time and for the corresponding energy-to-solution figures to be derived.

The experimental setup of the system software is further documented within

Figure A.5. The experiments with the Ideal-gas kernel on the Stratix FPGA

architecture utilised version 13.1 of the Altera OpenCL SDK, whilst version

175

7. Evaluating FPGAs as Low Power Processing Solutions

14.1 was employed during all of the experiments with the Accelerate kernel.

The GNU compiler (v4.4.6) was utilised for all experiments involving the Altera

FPGA and Nvidia GPU devices, in order to compile the code which executed

on the “host” CPU devices. Version 6.0 of the CUDA toolkit was also employed

for all of the experiments involving the Nvidia GPU device. In the experiments

on the Intel Xeon and Xeon Phi architectures, however, the Intel tool-suite was

utilised. In particular version 15.0 of the Intel compiler was employed for all

of the host-based software which executed on the Xeon CPUs, whilst version

2013 of the Intel OpenCL SDK was utilised for the OpenCL kernel code which

targeted the Xeon Phi.

The experiments documented here examined the 3,8402 cell problem from

the standard CloverLeaf benchmarking suite. During these the Ideal-gas and

Accelerate kernels, were executed for 1,000 and 2,000 iterations, respectively.

Section 7.3.1 analyses the performance of each kernel on the Altera Stratix

V FPGA device and includes an analysis of the utility of the candidate op-

timisation techniques examined as part of this work. Additionally, time- and

energy-to-solution analyses are presented in Sections 7.3.2 and 7.3.3 respec-

tively, these examine the most optimal kernel implementations across a range

of state-of-the-art processing architectures.

The results documented here were recorded from single executions of each

particular experiment on the Altera FPGA platform. This approach was se-

lected due to time constraints and an observation from an initially conducted

set of experiments, which indicated that system noise levels on the FPGA

architecture are negligible. Within this chapter the results presented from the

experiments on the Nvidia GPU and Intel Xeon Phi architectures, however, are

averages from three separate executions of each particular experiment.

7.3.1 Optimisations Analysis

The following sub-sections each examine the impact on performance due to

the utilisation of specific candidate optimisation techniques, documented in

Section 7.2.1, within the CloverLeaf Ideal-gas and Accelerate kernels.

Ideal-gas Kernel

The results from the experiments which examined the performance of the Ideal-

gas kernel are presented in Figure 7.3. They show that the Altera Stratix V

FPGA was able to execute 1,000 iterations of the reference implementation of the

kernel in 64.62s. Enabling the resource driven optimisations available with the

Altera OpenCL compiler (O3), however, actually generated an implementation

which performed fractionally worse than the original version. The experimental

176

7. Evaluating FPGAs as Low Power Processing Solutions

0 10 20 30 40 50 60 70 80

d8 minMemOpts redFlops
d8 minMemOpts

d8 redBoundChecks

d8 fpc
d8 fprelax

d8 memPart

d8 wg481x3842
d8 wg241x1921

d8 2cUnits wg121x241
d8 2cUnits wg61x481

d8 2cUnits wg4x8
d8 2cUnits

double8
double4
double2

reference arrayNotation
reference O3

reference

22.84
23.39
24.7
25.96

23.39
23.74
23.31
25.1
26.93
27.49

44.37
28.71

23.44
27.77

33.21
75.41

68.95
64.62

wall-time (secs)

38402

Figure 7.3: Optimisations to the Ideal-gas kernel on the Altera FPGA

results show a decrease in performance of 4.3s (6.69%) due to the use of this

facility. Similarly, utilising array notation for the two dimensional array accesses

within the kernel (arrayNotation) also resulted in a significant performance

degradation of 10.79s (16.7%).

Applying the explicit vectorisation optimisation techniques (described in

Section 7.2) to the reference implementation, however, delivered significant per-

formance improvements. This research identified that it was possible to increase

the vectorisation width, employed within the kernel, up to 8 double precision

data elements. Each successive increase improving the overall performance

of the kernel, although the results show that the performance improvements

diminished as the higher vectorisation widths were implemented. In these

experiments increasing the vectorisation width to 2 double precision elements

reduced the overall execution time by 31.41s, a 1.95⇥ increase in performance.

The performance improvements due to the implementation of 4 and 8 element

vectorisation widths, however, decreased to 1.20⇥ and 1.18⇥, respectively. As

the 8 element wide vectorised version (double8) was the most performant, this

implementation was utilised in all subsequent experiments with this kernel. This

is denoted by the description d8 within Figure 7.3.

Implementing multiple computational units within the FPGA, each with an 8

element wide vectorised pipeline, to potentially improve the work-item through-

put of the kernel ultimately proved to be unsuccessful. The experimental results

177

7. Evaluating FPGAs as Low Power Processing Solutions

show that the implementation of this technique, using 2 computational units,

increased overall execution time by 5.27s, a 1.22⇥ decrease in performance.

To examine whether explicitly specifying local work-group sizes could im-

prove the performance of the version of the kernel which employed multiple

computational units, a series of additional experiments was conducted using

a variety of configurations. The results, denoted by expressions of the form

wgA⇥B in Figure 7.3, indicate that for this kernel it was not possible to

improve the performance of the multi-computational unit version through the

specification of explicit local work-group sizes. Each work-group size examined

resulted in a performance degradation, and in some experiments these increases

in execution time were substantial. Implementing a work-group size of 4⇥8

elements, for example, resulted in a significant performance degradation of 1.89⇥
(20.9s), whilst the performance slowdowns due to the specification of the 61⇥481

and 121⇥241 work-groups were 1.17⇥ and 1.15⇥, respectively.

A similar trend was also observed in the experiments which applied the local

work-group candidate optimisation directly to the single computational unit

implementations. In these experiments specifying a 241⇥1921 element local

work-group increased the recorded execution time by ⇠7.1%. The performance

of the version which employed the 481⇥3842 element work-group was, however,

virtually identical to that of the previously unmodified version, fractionally

improving performance by <0.5%. These results indicate, therefore, that overall

the Ideal-gas kernel does not benefit, in terms of performance on the Altera

FPGA device, from the specification of a local work-group size. Additionally,

employing work-groups which have large x -dimensions is generally the most

optimal configuration. The results show that in these experiments the utilisation

of small work-group sizes caused significant degradations in overall performance.

Partitioning global memory resources into separate, contiguous, non-interlea-

ved memory regions was also unsuccessful in improving the performance of the

Ideal-gas kernel. The implementation of this candidate optimisation technique

(memPart) resulted in a fractional performance degradation of ⇠1.3%.

Additionally, attempting to improve the e�ciency of the floating-point math-

ematics operations generated by the Altera compiler, using the fprelaxed=true

and the fpc=true compiler options, also did not improve the execution time of

the kernel. The performance of the version which employed the fprelaxed

option was practically identical (<0.2%) to that of the unmodified version,

whilst the use of the fpc option degraded execution time by ⇠10.8% (labelled

fprelax and fpc respectively in Figure 7.3). Surprisingly, removing the array

bounds checks within the kernel (redBoundChecks) also increased the overall

execution time of the experiment by ⇠5.4%.

The implementation of the candidate optimisation to minimise the number

178

7. Evaluating FPGAs as Low Power Processing Solutions

of global memory operations within the Ideal-gas kernel, also had a negligible

e↵ect on overall performance, improving execution time by <0.2%. Reducing

the number of floating point instructions within the kernel (redFlops), how-

ever, delivered a fractional improvement in performance, reducing the overall

execution time in these experiments by ⇠2.6%.

Overall, this research enabled the performance of the Ideal-gas kernel on

the Altera Stratix V FPGA device, to be improved by ⇠2.83⇥, relative to the

original reference implementation. In these experiments the implementation

of the explicit vectorisation techniques contributed most significantly to this

improvement in performance.

Accelerate Kernel

The performance results obtained during the experiments with the Accelerate

kernel are presented in Figure 7.4, whilst Table 7.1 documents additional profil-

ing data which was collected on selected variants during this analysis. Figure 7.4

shows the execution time (in seconds) of the reference implementation of the

kernel as the first entry in the chart. Subsequent entries document the e↵ect on

performance due to the incorporation of the candidate optimisation techniques

(Section 7.2.1) examined as part of this research. Entries which commence

with a + sign denote an optimisation technique which successfully improved

the performance of the kernel and was taken forward within subsequent experi-

ments. Thus an arbitrary version within the chart implicitly contains all of the

optimisation techniques listed above it which commence with a + sign.

The results show that for the Accelerate kernel, unlike with the Ideal-gas

kernel, the removal of the bounds checks within the kernel and the specification

of exact NDRange dimensions actually fractionally improves performance by

⇠1%. Applying the optimisation techniques to reduce the number of global

memory operations (MinMemOpts) also improved the overall performance of

the experiment by 10.6s (⇠4.2%). Refactoring the Accelerate kernel, however, to

reduce the number of temporary variables employed within the kernel, through

the use of larger calculation sequences (RemoveTemps), actually fractionally

reduced the performance of the kernel by 3.2s (⇠1.4%) overall. This implies

that structuring the computational kernels in this manner actually impedes the

Altera OpenCL compiler in the generation of e�cient computational pipelines

for FPGA devices.

Explicitly vectorising the Accelerate kernel using the OpenCL vector dataty-

pes also yielded significantly di↵erent results compared to those observed when

these optimisation techniques were applied to the Ideal-gas kernel. Here specify-

ing a vectorisation width of two double elements and using the individual vector

179

7. Evaluating FPGAs as Low Power Processing Solutions

0 100 200 300 400 500

PeelFinalIt

+MinFinalComp

+yDimBu↵erCache

+xDimBu↵erCache

ArraySyntax

+PipeOpts AllVector

+SingleWI

LocalMemCache

WgMax8x16

Double4 IndivLanes

Double4 VectorOps

Double2 VectorOps

D2 IL EarlyMemOps

+Double2 IndivLanes

RemoveTemps

+MinMemOpts

+RedBoundChecks

Reference

194.6

162.09

166.99

233.95

462.25

393.45

405.89

418.84

230.24

272.24

237.9

245.49

230.09

230.7

244.71

241.48

252.03

253.82

wall-time (secs)

38402

Figure 7.4: Optimisations to the Accelerate kernel on the Altera FPGA

lanes style of vectorisation (described in Section 7.2) within the kernel, reduced

overall execution time by 10.8s (an improvement in performance of ⇠4.5%).

Switching the style of vectorisation, however, such that shift and full vector

operations were utilised within the kernel (labeled vectorOps in Figure 7.4)

actually fractionally degraded performance by 4.0s (⇠1.7%).

This trend was reversed when the vectorisation width was increased to four

double elements. In the experiments which examined the e↵ect of increasing

the vectorisation width, the version which utilised full vector operations (Vec-

torOps) delivered a fractional performance increase of 3.6s (⇠1.5%), whilst the

application of the individual vector lanes technique (IndivLanes) resulted in a

significant degradation in performance of 30.8s (⇠12.7%). It was not possible to

explicitly vectorise the Accelerate kernel using widths of >4 elements (double8

or double16 datatypes), as the Altera compiler generated implementations

which required more hardware resources than were available on the Stratix V

D5 FPGA.

Varying the location of the global memory operations within the kernel

also resulted in no significant change in overall kernel execution time. The

performance of the version which incorporated these optimisations (earlyMem-

180

7. Evaluating FPGAs as Low Power Processing Solutions

Ops) was virtually identical to that of the unmodified implementation. Simi-

larly, as with the Ideal-gas kernel, explicitly specifying a local work-group size

(wg8⇥16) also resulted in no significant reduction in overall execution time,

with performance remaining practically identical to the previously unmodified

version.

Utilising OpenCL local memory constructs to create an “on die” cache

within the FPGA fabric, in order to increase the reuse of data values and reduce

the number of global memory operations, actually resulted in a substantial

reduction in performance. In these experiments the performance of the ver-

sion which incorporated this modification (LocalMemCache) was 188.6s slower

than the equivalent unmodified implementation, a reduction in performance of

⇠1.82⇥.

Solely refactoring the Accelerate kernel into the “single work-item” paradigm,

whilst leaving its overall structure (e.g. the number of global memory operations)

largely unmodified, similarly resulted in a significant decrease in overall perfor-

mance. The version which incorporated this modification increased the overall

runtime of the experiment by 175.2s, a slowdown in performance of ⇠1.76⇥.

Restructuring the kernel in this manner, however, facilitated the imple-

mentation of several subsequent candidate optimisation techniques. In par-

ticular, implementing the optimisations labelled PipelineOpts and allVector

within Section 7.2, reduced the levels of serialisation in the computational

pipeline generated by the compiler, and improved the performance of the “single

work-item” version by 12.4s (3.0%).

Reducing the number of global memory operations, by facilitating the reuse

of data values between inner loop iterations, also significantly improved the

performance of the “single work-item” based version of the kernel. The ap-

plication of the xDimBu↵erCache optimisation reduced overall execution time

by ⇠1.68⇥ (159.5s), such that overall execution time was now approximately

equal to that of the equivalent NDRange-based implementation. Additional

performance improvements were also observed, due to the application of the

yDimBu↵erCache optimisation technique, which further reduced the number

of global memory operations. This enabled data values to be reused between

iterations of the outer loop in the y-dimension of the mesh, and delivered

an additional 1.4⇥ (66.9s) improvement in performance, reducing the overall

runtime of the experiment to 166.99s.

Finally reducing the number of floating point operations within the final loop

iteration, through the application of the peelFinalIT optimisation technique,

also delivered a further reduction of 4.9s (2.9%) in execution time.

As with the Ideal-gas kernel, converting a “single work-item” based variant of

the Accelerate kernel to use array syntax for the two dimensional array accesses

181

7. Evaluating FPGAs as Low Power Processing Solutions

Version Overall Mem Mem Comp Clock Av Av
Kernel Op Av Op Av Op (MHz) Write Read

BW BW Stalls Number Burst Burst
(MB/s) (MB/s) (%) of Stalls

Reference 16,150 1,000.33 17.68 0 236.9 5 6

+D2 indivLanes 17,161 1,146.38 32.60 0 247.8 5 5

D2 VectorOpts 16,126 1,079.42 33.41 0 252.6 5 4

LocalMem 10,137 612.75 30.90 0 210.5 2 1

+SingleWI 13,388 548.00 53.15 0 195.0 3 2

ArrayNot 12,032 447.7 92.30 0 167.9 2 1

+X&YdimCache
minFinalComp 13,870 1,370.38 40.46 0 184.7 6 5

Table 7.1: Accelerate kernel profiling statistcs on the Altera FPGA

also significantly reduced performance. The results from these experiments show

that the application of this technique increased overall execution time by 68.80s,

a slowdown of ⇠1.17⇥. Furthermore, completely separating the final iteration

from the main inner loop, to reduce the number of branching operations within

the kernel, also substantially reduced overall performance by ⇠1.2⇥ (32.5s).

Overall, through the application of these modifications this research im-

proved the overall performance of the Accelerate kernel, relative to the NDRange-

based reference implementation, by ⇠1.56⇥. The optimisations which delivered

the most significant contributions to these performance improvements were the

explicit vectorisation, “single work-item” and caching data values between loop

iterations modifications.

Accelerate Kernel Profiling Statistics Analysis Profiling statistics col-

lected on the performance of several versions of the Accelerate kernel are shown

in Table 7.1. These indicate that the performance of the Accelerate kernel

is limited primarily by the memory subsystem available on the Altera Stratix

V D5 FPGA utilised as part of this research, and not by the floating point

computational performance available on the device. The number of pipeline

stalls caused by compute-only operations within the kernel was 0 for each variant

examined. Indicating that in each case only memory operations caused the

pipeline to stall, and thus limited performance.

The results presented in Table 7.1 also show the e↵ect of the optimisations

examined for the Accelerate kernel. The average percentage of pipeline stalls,

which an individual memory operation is responsible for, increases substantially

by 1.84⇥ as explicit vectorisation is implemented and by a further 1.24⇥ due

to the dimBu↵erCache and minFinalComp optimisations. This indicates that

the performance of the optimised kernel variants is increasingly limited by fewer

global memory operations.

182

7. Evaluating FPGAs as Low Power Processing Solutions

Additionally, the average bandwidth consumed by an individual memory

operation also increases significantly as the optimisations are implemented.

Rising by 14.6% due to the incorporation of explicit vectorisation and by a

further 19.5% when the dimBu↵erCache and minFinalComp optimisations are

implemented. This suggests that the optimisations developed as part of this re-

search facilitate the more e�cient use of global memory resources and that kernel

performance is improved through each individual memory operation being able

to access a greater proportion of the available bandwidth resources. The overall

global memory bandwidth consumed by the kernel also increased by 6.3% due to

the explicit vectorisation (D2 indivLanes) optimisation. Interestingly, however,

this decreased by 19.2% for the version which incorporated the dimBu↵erCache

and minFinalComp optimisations, potentially indicating that global memory

access latency may also be starting to limit kernel performance.

The profiling statistics also show that the operating clock frequency of the

version which incorporated the dimBu↵erCache and minFinalComp optimisa-

tions is significantly lower than that of the reference and explicitly vectorised

versions. This further indicates that the performance of the Accelerate kernel is

memory bound, as the overall execution time of the former is ⇠1.57⇥ quicker.

Table 7.1 also shows that the introduction of the “single work-item” opti-

misation initially resulted in a substantial reduction of 21.99%, in the overall

bandwidth utilised by the kernel and caused the average bandwidth consumed

per memory operation to fall by 52.20%. The average read and write burst

statistics were also reduced substantially from 5 down to 3 and 2 operations, re-

spectively. Additionally, the utilisation of this candidate optimisation technique

reduced the overall operating clock speed of the implementation by 22.80%.

These reductions mirror the decrease in overall performance which was observed

due to the incorporation of this candidate optimisation (Figure 7.4), further

demonstrating why the introduction of this modification in isolation is not able

to improve kernel performance.

Profiling statistics for the two alternative explicit vectorisation approaches,

indicate that the Individual Lanes method of vectorisation facilitates the utili-

sation of >1.01 GB/s more overall bandwidth than the alternative VectorOpts

implementation. The average number of read/write burst operations and the

average bandwidth consumed per memory operation (>66 MB/s) metrics were

also higher for this explicit vectorisation approach.

The overall clock speed achieved by the Individual Lanes method of vectori-

sation was, however, 5.6 MHz lower compared to the VectorOpts version. This

indicates that as the Individual Lanes approach of explicit vectorisation deliv-

ered significantly superior overall performance, the memory focused metrics of

overall kernel bandwidth, individual memory operation bandwidth and average

183

7. Evaluating FPGAs as Low Power Processing Solutions

read/write bursts, are better indicators of the overall performance of the Acceler-

ate kernel, compared to the more computationally focused statistics of e.g. clock

speed. The fact that the operating clock speed of the implementation increased

due to the incorporation of the VectorOpts explicit vectorisation approach, but

overall performance decreased, further supports the assertion that the perfor-

mance of the Accelerate kernel is limited by the performance/utilisation of the

memory subsystem available on the FPGA architecture.

The reductions in overall performance observed in Figure 7.4 due to the

adoption of array notation for the two dimensional data array accesses and the

utilisation of OpenCL local memory constructs, are also reflected in the results

presented in Table 7.1. The profiling statistics show that for the Accelerate

kernel the use of array notation caused a reduction of ⇠1.96 GB/s in the overall

bandwidth achieved, a fall of 43.85 MB/s in the average memory bandwidth

consumed by an individual memory operation, and a decrease of 28 MHz in the

operating clock speed of the implementation.

The introduction of OpenCL local memory constructs to implement data

caches in order to potentially reduce the number of global memory operations

also resulted in similar reductions. Overall kernel bandwidth decreased by ⇠6.86

GB/s (40%) due to the implementation of this modification, whilst the average

bandwidth consumed per memory operation also decreased by 533.63 MB/s

(46.55%). The average read and write burst operation statistics were also

reduced significantly from 5 down to 2 and 1, respectively. Additionally, the

operating clock speed decreased by 37.3 MHz due to the introduction of the

local memory constructs.

7.3.2 Time to Solution Analysis

To assess the performance of the Altera Stratix V D5 device against a range of

alternative state-of-the-art processing solutions a series of further experiments

were conducted. These examined the performance of the Ideal-gas and Ac-

celerate kernels on both the Nvidia K20 GPU and the Intel Xeon Phi 7120P

architectures. Additionally, the performance of the Intel Xeon E5-2620 CPU

architecture was also examined in a series of experiments with the Accelerate

kernel. Each experiment utilised the kernel implementation which delivered the

most optimal performance for the particular architecture. On the Intel Xeon

CPU architecture a functional equivalent OpenMP-based version of the Accel-

erate kernel was utilised, whilst OpenCL-based implementations were employed

in the experiments on all the other architectures. Figures 7.5 and 7.6 present

the results of these experiments for the Ideal-gas and Accelerate kernels.

The results from both sets of experiments demonstrate an extremely similar

184

7. Evaluating FPGAs as Low Power Processing Solutions

Nvidia
K20
GPU

Intel
Xeon
Phi

Altera
Stratix

D5 FPGA

0

10

20

30

3.2

12.37

23.47

w
al
l-
ti
m
e
(s
ec
s)

38402

Figure 7.5: Ideal-gas kernel
time-to-solution analysis

Nvidia
K20
GPU

Intel
Xeon
Phi

Altera
Stratix

D5 FPGA

Intel
Xeon
CPU

0

50

100

150

200

23.19

90.72

162.09

102.21

w
a
ll
-t
im

e
(s
ec
s)

38402

Figure 7.6: Accelerate kernel time-to-
solution analysis

trend. In each case the performance of the Altera FPGA device is not able

to match that of the Nvidia GPU and Intel Xeon Phi architectures. In the

experiments which examined the Ideal-gas kernel the results show that the

GPU and Xeon Phi delivered performance improvements, relative to the Altera

Stratix D5 FPGA, of ⇠7.3⇥ and ⇠1.9⇥, respectively. Additionally, for the

Accelerate kernel the GPU and Xeon Phi architectures outperformed the Stratix

D5 FPGA by ⇠6.9⇥ and ⇠1.8⇥, respectively.

The theoretical global memory bandwidth available on the Nvidia K20 and

Intel Xeon Phi 7120P architectures has been identified to be 208 and 352 GB/s,

respectively [204]. The performance profiling tools available with the Altera

OpenCL SDK also enable the maximum global memory bandwidth, which it is

possible to achieve on the Stratix D5 based platform, to be determined. The

profiling analysis conducted in Section 7.3.1, indicates that the maximum global

memory bandwidth which it is possible to achieve on this platform, is 25.6 GB/s.

This does not compare favourably with the global memory bandwidth resources

available on both the K20 GPU and Xeon Phi devices. The Altera FPGA

based platform examined in this research may therefore potentially have ⇠8.1⇥
and ⇠13.8⇥ less global memory bandwidth resources available to it than the

Nvidia GPU and Intel Xeon Phi devices, respectively. This places the Altera

Stratix V at a considerable computational disadvantage for executing this class

of hydrodynamics applications, as previous profiling analyses have indicated

that the performance of the Ideal-gas and Accelerate kernels are limited by the

global memory subsystem access resources available on current platforms.

185

7. Evaluating FPGAs as Low Power Processing Solutions

0

20000

40000

60000

80000

100000

120000

140000

0 0.5 1 1.5 2 2.5 3 3.5

P
o
w

e
r

(
m

W
)

Time (s)

GPU

(a) Nvidia K20 GPU

0

50000

100000

150000

200000

250000

300000

0 2 4 6 8 10 12 14

P
o
w

e
r

(
m

W
)

Time (s)

Phi

(b) Intel Xeon Phi 7120P

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

P
o
w

e
r

(
m

W
)

Time (s)

FPGA

(c) Altera Stratix V FPGA

Figure 7.7: Power consumption: Ideal-gas kernel

7.3.3 Energy to Solution Analysis

A series of further experiments were conducted to assess whether the Altera

Stratix V D5 FPGA architecture could deliver any advantages in terms of

the energy required to produce a solution. These involved re-executing the

experiments described previously in Section 7.3.2. During these additional

experiments, however, instead of only measuring the execution time of the

application, the PowerInsight functionality (available within the Tuck platform)

was utilised to measure the power (W) consumed by each particular processing

solution throughout the execution of the application. This enabled the total

energy consumed by a particular device, during the course of executing the

application, to be derived by calculating the area under the power consumption

trace recorded for the particular technology.

The results obtained for the Ideal-gas kernel during these experiments are

presented in Figures 7.7 and 7.8. Figure 7.7 presents the power consumption

traces which were collected during each experiment on the respective processing

architectures, whilst Figure 7.8 documents the energy consumed by a particular

processing solution in completing the overall computation. These charts show a

considerably di↵erent trend to those observed previously in Section 7.3.2, during

the time-to-solution analysis for the Ideal-gas kernel (Figure 7.5).

The power consumption traces presented in Figure 7.7 show that the Altera

186

7. Evaluating FPGAs as Low Power Processing Solutions

Nvidia
K20 GPU

Intel
Xeon Phi

Altera
Stratix V
D5 FPGA

0

1,000

2,000

3,000

4,000

342

3,154

536

E
n
er
g
y
(J
o
u
le
s)

38402

Figure 7.8: Ideal-gas kernel energy-to-solution analysis

Stratix V FPGA draws considerably less power during the execution of the

experiment than both the Nvidia GPU and Intel Xeon Phi technologies. In

the experiments with the Ideal-gas kernel the average power consumed by the

Altera Stratix V was ⇠22.9 W, approximately 4.5⇥ less than the Nvidia GPU

and approximately 11.1⇥ less than the Intel Xeon Phi, which consumed on

average ⇠104.1 W and ⇠254.9 W, respectively.

Figure 7.8 indicates, however, that overall the Nvidia K20 GPU delivers the

most energy e�cient performance, followed by the Altera Stratix V FPGA, and

that the Intel Xeon Phi is the least e�cient. In these experiments the Nvidia

GPU required 342 J to complete the overall computation. This represents a

⇠9.2⇥ improvement over the Intel Xeon Phi, which required 3,154 J to perform

the same computation. Compared to the Altera Stratix V, however, which

required 536 J to fully execute the application, this only represents a ⇠1.6⇥
improvement. Additionally, this analysis indicates that in these experiments,

the computations performed with the Ideal-gas kernel by the Altera Stratix V

FPGA were ⇠5.9⇥ more energy e�cient than those delivered by the Intel Xeon

Phi, despite the Xeon Phi being able to execute the overall computation ⇠1.9⇥
quicker than the FPGA.

Overall, these results indicate that although the Altera Stratix V draws

significantly less power than the Nvidia GPU, the GPU is able to deliver the

greatest energy e�ciency through its ability to execute the experiment signifi-

cantly quicker than the FPGA, thus consuming less energy overall during the

course of the computation.

187

7. Evaluating FPGAs as Low Power Processing Solutions

7.4 Summary

The research documented within this chapter examined the utility of an Altera

FPGA as a potential alternative processing solution for executing hydrody-

namics applications on future generations of supercomputer. Related work

within the field was presented which both motivates and positions the research

undertaken here.

The results from this research demonstrate that OpenCL is a viable high-

level language for enabling hydrodynamics applications to be successfully exe-

cuted on Altera FPGA devices. The accepted approaches for targeting computa-

tional kernels expressed in OpenCL at GPU-based architectures do not, however,

deliver optimal performance on Altera FPGAs. It is therefore necessary for

kernels to be reimplemented, using alternative approaches available within the

OpenCL standard, in order to maximise their performance on these devices.

In particular, employing techniques to implement explicit vectorisation and

expressing kernels as “single work-item” tasks which contain all of the loop

constructs required for their execution, were necessary in order to optimise

performance on the Altera FPGA device examined in this research.

Minimising global memory and floating point operations were also demon-

strated to be key to improving overall kernel performance on Altera FPGA

devices. This research identified, however, that the Accelerate kernel is mainly

limited by the performance of the memory subsystem currently available on

the FPGA architecture examined as part of this work. The performance of this

subsystem was shown to be particularly problematic, relative to the performance

achievable on the equivalent subsystems available within several alternative

state-of-the-art processing solutions. This severely limits the e↵ectiveness of

the Altera FPGA as a candidate processing solution for executing this class of

application, compared to alternative approaches such as Nvidia GPU and Intel

Xeon Phi devices.

Additionally, although the FPGA-based processing solution was not able to

match the performance of the equivalent Nvidia GPU or Intel Xeon Phi based

solutions for executing the computational kernels examined in this research.

These experiments did demonstrate that whilst executing the Ideal-gas kernel

the Altera FPGA examined here draws significantly less power, than both the

Nvidia GPU and Intel Xeon Phi technologies. It was also able to deliver superior

energy e�ciency compared to the Intel Xeon Phi architecture. The Nvidia GPU

device, however, proved to be the most energy e�cient processing solution,

due to the fact that in these experiments it was able execute the simulations

considerably faster than the Altera FPGA, despite drawing more power.

Hypothetically, if in the future FPGA devices could be combined with ex-

188

7. Evaluating FPGAs as Low Power Processing Solutions

isting technologies which increase the memory bandwidth resources available

to them, whilst also reducing memory access latency, then the technology may

represent a more viable, more energy e�cient processing solution for executing

this class of hydrodynamics applications.

189

CHAPTER 8
Conclusion

The overall aim of this research was to enable greater levels of performance

to be achieved for hydrodynamics scientific applications on potential future

supercomputer architectures. This helps to facilitate advances in science within

this domain through the simulation of larger, more detailed problems, as well

as also improving the overall time-to-solution of key simulations.

As we approach the era of exascale computing, improving the scalability

of applications will become increasingly important in enabling codebases to

e↵ectively harness the substantially increased levels of parallelism available

in future architectures and thus achieve the required levels of performance.

Applications based on the MPI-only paradigm are already starting to reach

their scalability limits due to memory constraints and the shear number of

ranks involved in the overall computation. Additionally, the level of on-node

parallelism is likely to increase substantially in the approach to the construction

of exascale capable systems. Accelerator devices have also been forecast to play

an increasing role in scientific computing, which would significantly increase the

levels of heterogeneity present within the nodes of supercomputer platforms.

Furthermore, the amount of energy which will likely be required to power future

supercomputing platforms also potentially threatens to limit their construction,

which therefore necessitates the investigation of more energy e�cient computing

technologies.

To achieve these aims this research has examined the utility of several ap-

proaches and techniques for improving the scalability of existing hydrodynamics

codebases and transitioning applications to future generations of supercomput-

ing platforms. In particular PGAS technologies such as OpenSHMEM and

CAF, based on lighter-weight one-sided communication operations, together

with hybrid approaches based on OpenMP and OpenCL have been investigated.

Additionally, the suitability of several prospective technologies have also been

assessed as potential candidate solutions for improving computational perfor-

mance and energy e�ciency levels on future architectures.

This chapter concludes the research which was undertaken to achieve these

aims and is documented in this thesis. Section 8.1 presents the key contributions

which this work has made to the HPC and scientific computing fields. The main

beneficiaries of the research are identified in Section 8.2 and several limitations

of the work are outlined in Section 8.3. Finally, potential directions for future

work to extend this research are outlined in Section 8.4.

190

8. Conclusion

8.1 Contributions

This research has delivered the following overall contributions within the do-

mains of scientific and high performance computing:

8.1.1 Mini-app Development and Utilisation

The development of the CloverLeaf mini-app (Section 1.6) was significantly

extended as part of this work to include PGAS-based implementations of the

codebase as well as several alternative versions which utilise a hybrid program-

ming paradigm. This enabled CloverLeaf to be used as a research vehicle in order

to conduct the necessary work to examine potential application optimisations,

alternative programming models and prospective supercomputer architecture

choices. This research also demonstrated how the required planning and de-

cision making relating to the future development of scientific applications can

be improved through the use of mini-apps. Additionally, it also contributed

significantly towards CloverLeaf being accepted as part of the Mantevo mini-

applications suite from Sandia National Labs [84], which was recognised as one

of the top 100 most technologically significant innovations in 2013 by R&D

Magazine [171, 184]. It was also the UK’s only contribution to the initiative and

is currently being actively utilised by a large number of HPC centres, vendors

and researchers across the world.

8.1.2 Evaluation of PGAS Programming Models

This work evaluated the utility of several PGAS programming models, in partic-

ular OpenSHMEM and CAF, as candidate technologies for improving the per-

formance and scalability of hydrodynamics applications on current and future

supercomputer architectures. The performance of these models was examined

relative to an equivalent MPI-based implementation at considerable scale (up to

2,048 nodes/49,152 cores) on two significantly di↵erent, whilst still state-of-the-

art, system architectures. The results demonstrate that for this class of scientific

application, the OpenSHMEM PGAS programming model can deliver portable

performance across both system architectures (SGI ICE-X and Cray XC30) and

that it is able to match the performance of the MPI model, although this can

require the utilisation of proprietary non-blocking operations. Overall, however,

no significant performance improvements were observed from employing any

of the PGAS constructs in preference to those utilised in the reference MPI

implementation. The experimental results also show that the library-based

PGAS model of OpenSHMEM can be significantly more performant than the

equivalent language/compiler-based PGAS approaches employed in CAF.

191

8. Conclusion

Employing the PGAS communication constructs also did not deliver any

significant improvements in the ability of the underlying system to overlap

communication and computation operations. Additionally, although somewhat

contrary to the PGAS philosophy/approach, this research demonstrated that

applications based on either the OpenSHMEM or CAF paradigms can benefit

from the aggregation of data into larger communication bu↵ers, rather than

moving data items directly using significantly smaller, potentially strided, mem-

ory operations. Furthermore, the performance of CAF-based applications can

be extremely sensitive to the selection of appropriate co-array data structures

within the application, as this can have implications for how these data struc-

tures are accessed by remote memory operations.

8.1.3 Examination of Hybrid Programming Models

The utilisation of hybrid programming model constructs, based on either OpenMP

or OpenCL, were also examined and a quantitative assessment provided regard-

ing whether the use of these models can deliver any performance and scalability

benefits for this class of hydrodynamics application.

The development of the OpenMP version of CloverLeaf was progressed to-

wards a fully optimal implementation of the codebase, thus enabling this model

to be evaluated as a candidate technology for implementing a hybrid-programm-

ing approach within future scientific applications. In particular, this research

developed and implemented several optimisations to the codebase, which im-

proved overall performance by 28.0% and 4.6% on the Intel Xeon and Xeon

Phi architectures, respectively. The experimental results also show that the

performance of the individual optimisation techniques, developed as part of this

research, can vary significantly across the two architectures.

To further reduce and avoid the cost of synchronisation operations within the

codebase several point-to-point thread synchronisation and data re-calculation

techniques were developed and implemented. Experimental results indicate

that the use of these techniques may become increasingly necessary in order

to achieve optimal application performance on future processor architectures,

which are likely to include significantly more hardware threads than present

day designs. Additionally, converting the application to use an OpenMP SPMD

approach in order to reduce OpenMP thread synchronisation and fork/join

overheads resulted in significant performance improvements in experiments with

small problem sizes per node.

Recognising that converting MPI-only codebases to incorporate OpenMP

threading constructs can be challenging and time consuming this research also

evaluated the utility of the Reveal tool from Cray as a mechanism for improving

192

8. Conclusion

this process. It was demonstrated that for CloverLeaf, Reveal is able to automat-

ically generate parallel code based on OpenMP directives, with minimal manual

intervention. The experimental results show that whilst this code is functionally

correct, its performance is also able to closely match that of manually developed

and optimised code.

Furthermore, this research demonstrated that utilising OpenCL enables hy-

drodynamics applications to be executed across a wide range of current state-

of-the-art processor architectures using a single codebase, which is currently

not possible with other programming models. Additionally, it was also shown

that OpenCL can be e↵ectively combined with MPI to successfully implement

a hybrid programming model for applications such as CloverLeaf. Overall this

improved portability may be an extremely attractive proposition for some HPC

sites as they attempt to cope with ever increasing workloads and a myriad of

complex programming models and architectures.

The results show that it is also possible for the performance of OpenCL

applications to match and sometimes exceed that of their equivalent native im-

plementations, and to deliver performance improvements of up to 1.4⇥ relative

to the higher-level directive based approaches such as OpenACC. Achieving

these performance levels, however, generally required the implementation of

device specific optimisations and therefore this performance cannot necessarily

be regarded as being portable across multiple architectures. Additionally, the

performance of the OpenCL implementation was also shown to be considerably

worse than that of equivalent native implementations in several experimental

scenarios.

This work also identified particular optimisation techniques which result

in performance improvements and degradations on each of the specific archi-

tectures examined in this research. In particular, the selection of appropriate

OpenCL local work-group block-sizes was shown to be crucial in order for the

performance of an OpenCL application to be maximised. An auto-tuning tech-

nique was demonstrated to be an extremely e↵ective approach for determining

this optimal configuration. The optimal block-sizes identified through this tech-

nique showed significant variations between the di↵erent processor architectures

examined and also across the di↵erent OpenCL kernels within the CloverLeaf

application. This complexity further supports the use of auto-tuning as an

e↵ective technique for the identification of optimal configuration parameters on

future system architectures.

193

8. Conclusion

8.1.4 Development of Application Optimisations

This research also developed and implemented techniques to improve the per-

formance of the CloverLeaf mini-application at significant scale on several state-

of-the-art supercomputer platforms (IBM BG/Q, Cray XC30 and SGI ICE-X).

This analysis showed that the selection of data structures which are able to scale

to large process counts without consuming significantly more memory resources

is crucial in enabling applications to execute e�ciently at extreme-scale. Specif-

ically for CloverLeaf, adopting a distributed meta-data based approach enabled

the performance of the application to be improved significantly at scale and to

achieve considerable memory savings compared to the original implementation.

The reordering of MPI ranks, to improve the utilisation of shared memory

communication resources and reduce the number of inter-node communication

operations was also shown to significantly improve the performance of this class

of application. Additionally, a number of candidate optimisation techniques

for potentially improving the performance of the MPI-based communication

phases of the application at significant scale were developed and examined.

These included developing approaches which enabled communication operations

to be overlapped with computation, examining the utility of several recently

standardised MPI v3.0 constructs, as well as several message aggregation and

early data transmission communication strategies.

Overall, this research identified that two-sided message passing via the MPI

library is still the most likely technology for providing the inter-node com-

munication constructs required by this class of hydrodynamics applications on

future generations of supercomputers. In addition to MPI, OpenMP is the most

likely candidate technology for delivering intra-node parallelism; however, whilst

performance improvements through the use of this technology are possible, they

are not universally observed across the architectures involved in this study. In

particular this research showed that the MPI+OpenMP version of CloverLeaf

initially delivered performance improvements in the smaller scale experiments

examined on the Cray XC30. The release of a later version of the Cray MPI

communication library, however, improved the performance of the MPI-only

codebase to approximately match that of the hybrid versions. On the BG/Q

architecture, however, and in the larger scale experiments on the Cray XC30

when the performance of the application is dominated by communication oper-

ations, the MPI-only approach was always the most performant. Additionally,

the experimental results demonstrate that the developed optimisations deliver

significant performance improvements for the hybrid versions of the codebase

when the application is executed across multiple nodes, and performance is

dominated by computation rather than communication operations.

194

8. Conclusion

8.1.5 Supercomputer Architecture Analysis

The derived experimental results also enabled the utility of several leading

state-of-the-art supercomputing architectures and prospective intra- and inter-

node processing solutions to be assessed for the execution of hydrodynamics

applications. GPU-based accelerator devices were shown to be able to deliver

considerable performance improvements of up to 2⇥, relative to state-of-the-art

CPU-only based equivalent solutions, for the hydrodynamics applications on

which this research focused. The results also demonstrate, however, that in

terms of the energy required to achieve an equivalent solution, the BG/Q

architecture can deliver significantly superior performance, relative to the Intel

CPU-based alternatives. This would indicate that future supercomputing plat-

forms would benefit from the incorporation of some of the design features and

approaches implemented within this architecture. Additionally, the energy-to-

solution profile recorded on the Cray XC30 demonstrates an optimal job size

with which to execute CloverLeaf in order to minimise overall energy consump-

tion.

This research also examined the utility of current FPGA-based accelerator

devices as novel, lower power processing solutions for hydrodynamics applica-

tions. To improve the applicability of the technology for the execution of these

applications several necessary hardware modifications were identified. Addition-

ally, software-based optimisation techniques were also developed for improving

the performance of key computational kernels on these devices. The results

show that, it is possible to utilise OpenCL to enable hydrodynamics applications

to be successfully targeted at Altera FPGA devices. Although it is necessary

to structure kernels considerably di↵erently compared to how they should be

implemented for alternative accelerator solutions such as Nvidia GPUs. This

further calls into question the performance portability which it is possible to

achieve, through the utilisation of OpenCL, for scientific applications.

The performance of the Altera FPGAs examined in this research was also

shown, for this class of application, to be significantly limited by the memory

bandwidth resources currently available on existing devices. Relative to the

Nvidia GPU and Intel Xeon Phi devices, the FPGA accelerator was up to

⇠7⇥ less performant. Additionally, an energy-to-solution analysis identified

that the GPU architecture also delivered the most energy e�cient performance.

Despite the Altera FPGA device consuming considerably less power than both

the Nvidia GPU and Intel Xeon Phi devices, overall it consumed more energy

than the GPU due to its longer application execution times. The FPGA did,

however, deliver considerable energy consumption reductions relative to the

Xeon Phi co-processor solution.

195

8. Conclusion

8.2 Beneficiaries

The research findings derived as part of this work should directly benefit a

wide range of scientific and high performance computing users, researchers and

professionals. In particular, architects, code-custodians and team managers,

who are responsible for establishing the higher-level development strategies of

current hydrodynamics codebases will be able to use the results from this work

to better inform their application development plans and priorities. Addition-

ally, scientific application developers will also benefit significantly, through the

utilisation of the optimisation techniques identified in this work, to better inform

their implementation and maintenance choices. Overall this should contribute

towards achieving considerable improvements in productivity by enabling ap-

plication teams to focus on the most beneficial development directions for their

applications of interest.

Researchers and HPC centres considering utilising an approach based on

the use of “mini-applications” to improve their strategic development decisions,

should also benefit. They would be able to cite this work as a successful

case study which demonstrates the use of a “mini-application” as a research

vehicle for the rapid exploration of prospective development and architectural

options. It would otherwise not have been possible to evaluate as many di↵erent

approaches by using a full production codebase.

HPC system procurement managers will also be able to utilise the results

and conclusions to better inform their machine purchasing decisions, particularly

during the procurements of platforms which may potentially incorporate some

of the advanced accelerator architectures examined in this work. Additionally,

technology manufacturers will benefit from these research findings as they seek

to improve their product o↵erings, based on some of the deficiencies identified

in this work, in order to secure more business from HPC centres.

8.3 Limitations

A significant amount of work has been undertaken as part of this project and

whilst the initial research questions (Section 1.3) have been fully addressed,

some limitations relating to the applicability of these research findings do exist

and are documented in the following sections:

8.3.1 Application Characteristics

The CloverLeaf “mini-application” utilised throughout this work is representa-

tive of the production hydrodynamics applications which are the ultimate target

196

8. Conclusion

of this research. This therefore enables valid conclusions to be derived regarding

the likely performance impact of the research findings on these codebases. Ad-

ditionally, these applications also exhibit particular performance characteristics

which are commonly found throughout a large number of applications employed

across a number of di↵erent scientific domains, such as weather forecasting,

reservoir simulation within the oil and gas industry, image processing and as-

tronomy. Specifically, in these applications the majority of the computational

functions are based on stencil operations and the inter-process communication

patterns predominantly involve the exchange of boundary halo-cells, using rel-

atively large message sizes, between logically neighbouring processes.

Due to the regularity of the operations involved, these structured commu-

nication patterns naturally lend themselves towards a two-sided model of com-

munication. The research findings, particularly those relating to the use of the

one-sided PGAS communication constructs, may therefore be less applicable to

applications which exhibit more irregular communication patterns, and transmit

smaller message sizes.

Furthermore, due to the nature of the hydrodynamic system which it sim-

ulates, CloverLeaf also utilises stencil-based computational operations on a

staggered, but ultimately structured, mesh/grid. Consequently, this potentially

limits the applicability of these research findings, particular those which relate

to the performance of the di↵erent accelerator devices, to applications which

employ similar computational operations and numerical methods. As appli-

cations which exhibit significantly di↵erent computational performance char-

acteristics, such as those which utilise Arbitrary Lagrangian Eulerian methods,

fully unstructured meshes or adaptive mesh refinement, may behave significantly

di↵erently on these processor architectures.

8.3.2 The Utility of FPGA Architectures

Despite extensive research being conducted into the potential utilisation of an

FPGA device as a alternative, lower power processing solution, the derived

findings from this section of the project do have certain limitations. In partic-

ular, as only one FPGA device from a single manufacturer was examined, the

performance capabilities of this device may not be fully representative of all the

FPGA-based processing solutions currently available within the marketplace.

Consequently the conclusions relating to the performance of the key application

kernels on this technology may, therefore, not be applicable to other alternative

FPGA-based processing solutions. These additional architectures may, for ex-

ample, possess greater memory bandwidth capabilities or a di↵erent balance of

DSP and logic resources.

197

8. Conclusion

Utilising OpenCL as a high-level language from which to synthesise an FPGA

targeted implementation of a kernel, is also still a very new technological ap-

proach. Consequently it is likely that as the technology matures the performance

of the FPGA implementations which it is able to produce will also improve.

Additionally, as only one high-level synthesis tool was examined, it may be pos-

sible for alternative models to deliver higher levels of application performance.

It was also only possible, due to time constraints, for the performance of two

CloverLeaf kernels to be examined on the FPGA technology, although their

performance characteristics are representative of a large class of stencil-based

scientific applications.

Despite these limitations, however, the conclusions derived as a result of this

research do still make a very useful contribution towards establishing a more

complete understanding of the applicability of FPGA technologies as potential

lower power processing solutions for scientific applications.

8.4 Future Work

This thesis presents the research undertaken to address a number of key prob-

lems facing the hydrodynamics scientific simulation community. It also includes

the evaluation of a well defined set of technologies, techniques and approaches

which are of significant interest to the sponsor of this work. Despite this,

however, there are a number of potential research directions which it was not

possible to explore due to time and resource constraints. Examining these

would help to address the limitations documented in Section 8.3 and may

deliver significant further benefits to the hydrodynamics, and wider scientific,

simulation communities.

8.4.1 Extending the PGAS Language Evaluation

The work undertaken to evaluate the utility of the PGAS programming lan-

guages examined thus far in this research has shown that it is possible for

certain PGAS models (OpenSHMEM) to match the performance of MPI-based

message passing approaches. The use of these models for the hydrodynamics

simulation problems represented by the CloverLeaf “mini-application” does not,

however, deliver significantly improved application performance beyond the

levels currently achievable with the standard MPI-based approaches.

To determine whether this is universally the case for all PGAS programming

models this work should be extended to examine the one-sided communications

constructs recently standardised within version 3 of the MPI specification. Sev-

eral new language additions to the CAF PGAS model have also recently been

198

8. Conclusion

approved and should be evaluated to determine whether the use of these features

can deliver any performance benefits for this class of application. Similarly,

for completeness, repeating the experiments with the PGAS implementations

of CloverLeaf, using the Intel CAF and QLogic OpenSHMEM runtime sys-

tems, would be a potentially interesting research direction to determine whether

an alternative implementation could deliver improved performance. Future

architectures may also o↵er improved support for one-sided communication

operations and therefore better support the PGAS programming models.

Evaluating the utility of the PGAS languages as potential future intra-

node programming models for hybridising applications would help to determine

whether the global address space and one-sided communication facilities of these

models could deliver any performance benefits for applications when employed

in this manner. The PGAS implementations of CloverLeaf should therefore be

hybridised with threading constructs such as OpenMP, to facilitate the analysis

of their potential as intra-node programming models. This would also determine

if the performance improvements, which have been observed with the hybrid

MPI-based versions, can be replicated with the PGAS implementations.

Utilising an auto-tuning framework to examine di↵erent symmetric heap

and huge memory page settings, would enable further evidence to be collected

on how to optimally execute the PGAS-based implementations of CloverLeaf.

Additionally, analysing the overall memory consumption of the PGAS versions,

when compared to the reference MPI implementation, may also be useful in

determining whether these programming models deliver any advantages in terms

of reductions in overall memory consumption.

Applying the PGAS programming models to scientific applications which

exhibit di↵erent communications characteristics, to the one which has been

studied in this research, would also be an extremely useful extension to this

work. In particular applying these constructs to hydrodynamics applications

which make use of Adaptive Mesh Refinement methods and exhibit irregular

patterns of communication, would help to determine if these models can deliver

any performance improvements for these additional classes of applications. Fur-

thermore, utilising some of the more recently proposed PGAS concepts such as

Active Messages [63] may also deliver performance benefits.

8.4.2 Intra-node Programming Models

OpenMP is currently the most likely candidate technology to be utilised for

implementing a hybrid programming model for hydrodynamics applications.

Alternative models, based on intra-node programming languages such as Kokkos

Array [62], TBB [103], Cilk [102], Raja [86], the C++ threading model [28] and

199

8. Conclusion

OpenCL version 2.0, however, should also be examined. Concepts, such as

Endpoints [55], have also been proposed to improve the intra-node program-

ming functionality available within languages such as MPI and OpenSHMEM.

Similarly, developing a version of CloverLeaf which utilises OpenMP in a similar

manner to how MPI is employed within the codebase may deliver further per-

formance improvements. Implementing these alternative versions would enable

the relative merits of each approach to be objectively assessed, the achievable

performance measured, and ultimately a more complete understanding to be

reached regarding the optimal choice of an intra-node programming model for

hydrodynamics applications. Additionally, extending the OpenMP threading

model to incorporate some of the concepts found within PGAS languages,

such as local barriers and point-to-point synchronisation operations, could also

contribute to improving the suitability of this language as a future intra-node

programming model for scientific applications.

To further assess the suitability of OpenCL as a technology for implementing

the hybrid programming model, additional optimisations should be implemented

within this version of CloverLeaf. These include investigating the e↵ect of util-

ising explicit vector types and operations, particularly on CPU-based architec-

tures. Additionally, further work should examine how best to execute OpenCL

codes across multi-CPU nodes which contain numerous NUMA regions and also

investigate whether device fissioning can deliver any performance advantages

on these platforms. Implementing more advanced hybrid models in which the

CPU does not merely act as a host, but shares some of the computational work

with the attached accelerator devices, should also be evaluated using OpenCL

and the recently proposed accelerator extensions to OpenMP. This may prove

particularly e↵ective on integrated CPU-GPU devices, on which it may also

be beneficial to evaluate the utility of the “zero-copy” OpenCL constructs.

Employing the ArrayFire software library from Accelereyes [1], together with

approaches which utilise the improved atomic operations within the Kepler

architecture from Nvidia, may also enhance the performance of the developed

OpenCL reduction operations.

8.4.3 Energy E�cient Processing Technologies

To provide a more complete understanding of the suitability of FPGA-based

technology for executing hydrodynamics applications, FPGA targeted imple-

mentations of the remaining CloverLeaf kernels should be developed. To further

examine the floating-point computational capabilities of these devices single and

fixed precision versions of the kernels should be developed and their perfor-

mance compared to the existing double precision versions. The version of the

200

8. Conclusion

Accelerate kernel which incorporates the “single work-item” and inter-iteration

data caching optimisations may also benefit from additional increases in the

vectorisation width. To examine the optimality of the FPGA implementa-

tions which the Altera OpenCL compiler currently produces, their performance

should be compared against additional versions produced using alternative high-

level synthesis tools such as SystemC [92], ImpulseC [93] and the Maxeler

compiler [137]. Similarly, VHDL [91] or Verilog [90] versions should also be

developed to determine whether utilising a high-level synthesis approach based

on OpenCL results in significant degradations in performance relative to these

native FPGA programming models.

The performance of additional hardware platforms should also be evaluated

in order to provide a more complete understanding of the suitability of all

the FPGA-based processing solutions currently available. This includes ex-

amining devices which provide greater memory bandwidth resources such as

those incorporating the Hybrid Memory Cube technology from Micron [141, 5].

Additionally, the forthcoming Arria and Stratix 10 FPGA products from Altera

include native support for floating-point operations, and should also be evalu-

ated to determine whether these technologies can deliver significant performance

improvements [8]. Finally, alternative low-power processing solutions such as

DSP-based processors from e.g. Texas Instruments [192], or ARM [15] based

processor designs should also be examined.

Porting the Stream [139] and DGEMM [57] micro-benchmarks to the FPGA

architecture would also enable the maximum sustainable performance of the

memory and compute subsystems, which are available on these architectures, to

be determined rather than relying on theoretical peak measurements. Further-

more, extending this research to incorporate applications from di↵erent scientific

domains would provide useful information on the applicability of FPGA-based

technologies to the wider scientific community.

201

Bibliography

[1] Accelereyes. ArrayFire. http://www.accelereyes.com, January 2013.

[2] L. Adhianto and B. Chapman. Performance modeling of communication

and computation in hybrid MPI and OpenMP applications. In Parallel

and Distributed Systems, 2006. ICPADS 2006. 12th International Confer-

ence on, volume 2, 2006.

[3] Y. Ajima, T. Inoue, S. Hiramoto, Y. Takagi, and T. Shimizu. The Tofu

Interconnect. Micro, IEEE, 32(1):21–31, Jan 2012.

[4] C. Albing. Evaluating Node Ordering for Improved Compactness. In The

Cray User Group 2013, May 6-9, 2013, Napa Valley, California, USA

(2013), 2013.

[5] Altera. Addressing Next-Generation Memory Requirements Using Altera

FPGAs and HMC Technology, August 2014. http://www.altera.com/

literature/wp/wp-01214-fpgas-hmc-technology.pdf.

[6] Altera. Altera SDK for OpenCL Optimisation Guide. http://www.

altera.co.uk/literature/hb/opencl-sdk/aocl_optimization_

guide.pdf, September 2014.

[7] Altera. Altera SDK for OpenCL Programming Guide. http://

www.altera.co.uk/literature/hb/opencl-sdk/aocl_programming_

guide.pdf, September 2014.

[8] Altera. The Industry’s First Floating-Point FPGA. http://www.altera.

co.uk/literature/po/bg-floating-point-fpga.pdf, August 2014.

[9] R. Alverson, D. Roweth, and L. Kaplan. The Gemini System Interconnect.

In High Performance Interconnects (HOTI), 2010 IEEE 18th Annual

Symposium on, pages 83–87, Aug 2010.

[10] K. Alvin, B. Barrett, et al. On the path to exascale. International Journal

of Distributed Systems and Technologies, 1:1–22, April 2010.

[11] S. Amarasinghe, M. Hall, R. Lethin, K. Pingali, D. Quinlan, V. Sarkar,

J. Shalf, R. Lucas, and K. Yelick. Exascale Programming Challenges.

Technical report, Department of Energy, O�ce of Science, 2011. http:

//science.energy.gov/~/media/ascr/pdf/program-documents/

docs/ProgrammingChallengesWorkshopReport.pdf.

202

BIBLIOGRAPHY

[12] AMD. Accelerated Parallel Processing (APP) SDK. http:

//developer.amd.com/tools/heterogeneous-computing/

amd-accelerated-parallel-processing-app-sdk/, November 2012.

[13] AMD. AMD FirePro Workstation Graphics, August 2014. http://www.

amd.com/en-us/products/graphics/workstation.

[14] AMD. AMD Fusion Family of APUs: Enabling a Superior, Immersive,

PC Experience, August 2014. http://www.amd.com/Documents.

[15] ARM. Processors, March 2016. http://www.arm.com/products/

processors/index.php.

[16] M. Bader, A. Breuer, W. Holzl, and S. Rettenberger. Vectorization

of an augmented Riemann solver for the shallow water equations. In

High Performance Computing Simulation (HPCS), 2014 International

Conference on, pages 193–201, July 2014.

[17] Baker, Matthew and Pophale, Swaroop and Vasnier, Jean-Charles and

Jin, Haoqiang and Hernandez, Oscar. Hybrid Programming Using

OpenSHMEM and OpenACC. In Proceedings of the First Workshop on

OpenSHMEM and Related Technologies. Experiences, Implementations,

and Tools - Volume 8356, OpenSHMEM 2014, pages 74–89, New York,

NY, USA, 2014. Springer-Verlag New York, Inc.

[18] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,

R. Thakur, and J. L. Trä↵. MPI on a Million Processors. In Proceedings of

the 16th European PVM/MPI Users’ Group Meeting on Recent Advances

in Parallel Virtual Machine and Message Passing Interface, pages 20–30,

Berlin, Heidelberg, 2009. Springer-Verlag.

[19] R. Barrett. Co-Array Fortran Experiences with Finite Di↵erencing

Methods. In Cray User Group, 2006. https://cug.org/

5-publications/proceedings_attendee_lists/2006CD/S06_

Proceedings/pages/Authors/Barrett-14B/Barrett-14B_Paper.pdf.

[20] R. Barrett, C. Vaughan, S. Hammond, and D. Roweth. Reducing the

Bulk in the Bulk Synchronous Parallel Model. Parallel Processing Letters,

23(04):1340010, December 2013.

[21] J. Bashor. NERSC, Cray, Intel to collaborate on next-generation

supercomputer, April 2014. https://www.nersc.gov/

news-publications/nersc-news/nersc-center-news/2014/

nersc-cray-intel-announce-next-generation-supercomputer/.

203

BIBLIOGRAPHY

[22] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands,

C. Iancu, M. Welcome, and K. Yelick. An evaluation of current high-

performance networks. In Parallel and Distributed Processing Symposium,

2003. Proceedings. International, pages 10 pp.–, April 2003.

[23] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing bandwidth

limited problems using one-sided communication and overlap. In Parallel

and Distributed Processing Symposium, 2006. IPDPS 2006. 20th Interna-

tional, April 2006.

[24] D. J. Benson. Computational Methods in Lagrangian and Eulerian

Hydrocodes. Comput. Methods Appl. Mech. Eng., 99(2-3):235–394, Sept.

1992.

[25] B. Bergen, M. Daniels, and P. Weber. A Hybrid Programming Model

for Compressible Gas Dynamics Using OpenCL. In Parallel Processing

Workshops (ICPPW), 2010 39th International Conference on, pages 397–

404, Sept 2010.

[26] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham. Performance

Analysis of Asynchronous Jacobi’s Method Implemented in MPI, SHMEM

and OpenMP. Int. J. High Perform. Comput. Appl., 28(1):97–111,

February 2014.

[27] A. Bland, J. Wells, O. Messer, O. Hernandez, and J. Rogers. Titan: Early

experience with the Cray XK6 at Oak Ridge National Laboratory. In Cray

User Group, 2012. https://cug.org/proceedings/attendee_program_

cug2012/includes/files/pap138-file2.pdf.

[28] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency

Memory Model. In Proceedings of the 29th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’08, pages

68–78, New York, NY, USA, 2008. ACM.

[29] M. Bose and V. Rajagopala. Physics Engine on Reconfigurable Processor–

Low Power Optimized Solution empowering Next-Generation Graphics

on Embedded Platforms. In Computer Games (CGAMES), 2012 17th

International Conference on, pages 138–142, July 2012.

[30] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Architec-

tural Exploration of the ADRES Coarse-grained Reconfigurable Array.

In Proceedings of the 3rd International Conference on Reconfigurable

Computing: Architectures, Tools and Applications, ARC’07, pages 1–13,

Berlin, Heidelberg, 2007. Springer-Verlag.

204

BIBLIOGRAPHY

[31] R. Brightwell, K. Pedretti, K. Underwood, and T. Hudson. SeaStar

Interconnect: Balanced Bandwidth for Scalable Performance. Micro,

IEEE, 26(3):41–57, May 2006.

[32] R. Brook, B. Hadri, V. Betro, R. Hulguin, and R. Braby. Early Application

Experiences with the Intel MIC Architecture in a Cray CX1. In Cray User

Group, 2012.

[33] E. Brossard, D. Richmond, J. Green, C. Ebeling, L. Ruzzo, C. Olson,

and S. Hauck. A Model for Programming Data-Intensive Applications on

FPGAs: A Genomics Case Study. In Application Accelerators in High

Performance Computing (SAAHPC), 2012 Symposium on, pages 84–93,

July 2012.

[34] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington. Imple-

menting Molecular Dynamics on Hybrid High Performance Computers–

Short Range Forces. Computer Physics Communications, 182(4):898–911,

2011.

[35] R. Budiardja, L. Crosby, and H. You. E↵ect of Rank Placement on Cray

XC30 Communication Cost. In The Cray User Group 2013, May 6-9,

2013, Napa Valley, California, USA (2013), 2013.

[36] J. M. Bull and C. Ball. Point-to-point synchronisation on shared memory

architectures. In In 5th European Workshop on OpenMP (EWOMP03),

Sept 2003. http://www1.rz.rwth-aachen.de/computing/events/

2003/ewomp03/omptalks/Monday/Session2/T10p.pdf.

[37] C. Calvin, F. Ye, and S. Petiton. The Exploration of Pervasive and Fine-

Grained Parallel Model Applied on Intel Xeon Phi Coprocessor. In P2P,

Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth

International Conference on, pages 166–173, Oct 2013.

[38] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on the IBM

SP for the NAS Benchmarks. In Supercomputing, ACM/IEEE 2000

Conference, pages 12–12, Nov 2000.

[39] CAPS. HMPP: A hybrid multicore parallel programming

platform. http://www.dolbeau.name/dolbeau/publications/

caps-hmpp-gpgpu-Boston-Workshop-Oct-2007.pdf, July 2014.

[40] B. Chapman, T. Curtis, P. Swaroop, S. Poole, J. Kuehn, C. Koelbel,

and L. Smith. Introducing OpenSHMEM. In Proceedings of the Fourth

Conference on Partitioned Global Address Space Programming Model,

2010.

205

BIBLIOGRAPHY

[41] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar,

V. Salapura, D. Satterfield, B. Steinmacher-Burow, and J. Parker. The

IBM Blue Gene/Q Interconnection Fabric. Micro, IEEE, 32(1):32–43, Jan

2012.

[42] D. Christodoulou. The Euler equations of compressible fluid flow. Bulletin

of the American Mathematical Society, 44(4):581–602, 2007.

[43] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey. OpenMP Program-

ming on Intel Xeon Phi Coprocessors: An Early Performance Comparison.

In The Many-core Applications Research Community Symposium,, pages

38–44, November 2012. http://www.lfbs.rwth-aachen.de/marc2012/

07_Cramer.pdf.

[44] Cray. OpenACC accelerator directives. http://www.training.

prace-ri.eu/uploads/tx_pracetmo/OpenACC.pdf, November 2012.

[45] Cray. Cray Fortran Reference Manual. Technical Report S-3901-83, Cray,

August 2014. http://docs.cray.com/books/S-3901-83/S-3901-83.

pdf.

[46] Cray. Using Cray Performance Measurement and Analysis Tools.

Technical Report S237662, Cray, 2014. http://docs.cray.com/books/

S-2376-62/S-2376-62.pdf.

[47] J. R. d. S. Junior, E. W. Clua, A. Montenegro, and P. A. Pagliosa. Fluid

Simulation with Two-Way Interaction Rigid Body Using a Heterogeneous

GPU and CPU Environment. In Games and Digital Entertainment

(SBGAMES), 2010 Brazilian Symposium on, pages 156–164, Nov 2010.

[48] Dallas South News. The 5 Biggest Data Centers in the

World, 2013. http://www.dallassouthnews.org/2013/03/22/

the-5-biggest-data-centers-in-the-world/.

[49] J. del Cuvillo, W. Zhu, and G. R. Gao. Landing OpenMP on Cyclops-

64: An E�cient Mapping of OpenMP to a Many-Core System-on-a-Chip.

http://www.capsl.udel.edu/pub/doc/papers/cf06.pdf, 2006.

[50] C. Demerjian. What will Intel Xeon Phi do the

GPGPU market? http://semiaccurate.com/2012/11/13/

what-will-intel-xeon-phi-do-to-the-gpgpu-market/, November

2012.

[51] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding

communication in sparse matrix computations. In Parallel and Distributed

206

BIBLIOGRAPHY

Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages

1–12, April 2008.

[52] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,

and A. R. Leblanc. Design Of Ion-implanted MOSFET’s with Very Small

Physical Dimensions. Proceedings of the IEEE, 87(4):668–678, April 1999.

[53] A. Di Biagio, E. Speziale, and G. Agosta. Exploiting Thread-data

A�nity in OpenMP with Data Access Patterns. In Proceedings of the

17th International Conference on Parallel Processing - Volume Part I,

Euro-Par’11, pages 230–241, Berlin, Heidelberg, 2011. Springer-Verlag.

[54] V. V. Dimakopoulos, P. E. Hadjidoukas, and G. C. Philos. A Mi-

crobenchmark Study of OpenMP Overheads Under Nested Parallelism.

In Proceedings of the 4th International Conference on OpenMP in a New

Era of Parallelism, IWOMP’08, pages 1–12, Berlin, Heidelberg, 2008.

Springer-Verlag.

[55] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir,

and R. Thakur. Enabling communication concurrency through flexible

MPI endpoints. International Journal of High Performance Computing

Applications, 28(4):390–405, 2014.

[56] R. Dolbeau, F. Bodin, and G. de Verdiere. One OpenCL to rule them all?

In IEEE the 6th International Workshop on Multi-/Many-core Computing

Systems (MuCoCoS), pages 1–6, Sept 2013.

[57] J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Du↵. A Set of Level 3

Basic Linear Algebra Subprograms. ACM Trans. Math. Softw., 16(1):1–

17, Mar. 1990.

[58] R. Dreslinski, D. Fick, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy,

Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen, D. Sylvester, D. Blaauw,

and T. Mudge. Centip3De: A 64-Core, 3D Stacked Near-Threshold

System. Micro, IEEE, 33(2):8–16, March 2013.

[59] N. Drosinos and N. Koziris. Performance comparison of pure MPI

vs hybrid MPI-OpenMP parallelization models on SMP clusters. In

Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th

International, April 2004.

[60] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra.

From CUDA to OpenCL: Towards a Performance-portable Solution for

Multi-platform GPU Programming. Parallel Comput., 38(8):391–407, Aug

2012.

207

BIBLIOGRAPHY

[61] G. Economakos. ESL as a Gateway from OpenCL to FPGAs: Basic

Ideas and Methodology Evaluation. In Informatics (PCI), 2012 16th

Panhellenic Conference on, pages 80–85, Oct 2012.

[62] H. C. Edwards and D. Sunderland. Kokkos Array Performance-portable

Manycore Programming Model. In Proceedings of the 2012 International

Workshop on Programming Models and Applications for Multicores and

Manycores, PMAM ’12, pages 1–10, New York, NY, USA, 2012. ACM.

[63] T. V. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active

Messages: a Mechanism for Integrated Communication and Computation,

1992.

[64] EPSRC. International Review of Research Using HPC in the UK.

Technical Report ISBN 1-904425-54-2, EPSRC, December 2005. http:

//www.epsrc.ac.uk/newsevents/pubs/.

[65] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,

T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard. Cray Cascade: A

scalable HPC system based on a Dragonfly network. In High Performance

Computing, Networking, Storage and Analysis (SC), 2012 International

Conference for, pages 1–9, Nov 2012.

[66] J. Fang, A. L. Varbanescu, and H. Sips. A Comprehensive Performance

Comparison of CUDA and OpenCL. In Parallel Processing (ICPP), 2011

International Conference on, pages 216–225, Sept 2011.

[67] Fujitsu. Next-Generation PRIMEHPC, August 2014. http:

//www.fujitsu.com/global/Images/next-generaton-primehpc_

tcm100-1050349.pdf.

[68] X. Gao, Z. Wang, H. Wan, and X. Long. Accelerate Smoothed

Particle Hydrodynamics using GPU. In Information Computing and

Telecommunications (YC-ICT), 2010 IEEE Youth Conference on, pages

399–402, Nov 2010.

[69] W. Gaudin, A. Mallinson, O. Perks, J. Herdman, D. Beckingsale,

J. Levesque, and S. Jarvis. Optimising Hydrodynamics applications for

the Cray XC30 with the application tool suite. In The Cray User Group

2014, May 4-8, 2014, Lugano, Switzerland, 2014.

[70] P. Geo↵ray. Myrinet express (MX): Is your interconnect smart? In

High Performance Computing and Grid in Asia Pacific Region, 2004.

Proceedings. Seventh International Conference on, July 2004.

208

BIBLIOGRAPHY

[71] R. Gerstenberger, M. Besta, and T. Hoefler. Enabling Highly-scalable

Remote Memory Access Programming with MPI-3 One Sided. In Pro-

ceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, SC ’13, pages 53:1–53:12, New York,

NY, USA, 2013. ACM.

[72] M. Hachman. Nvidia reveals PC-like performance for ‘Denver’

Tegra K1, August 2014. http://www.pcworld.com/article/2463900/

nvidia-reveals-pc-like-performance-for-denver-tegra-k1.html.

[73] G. Hager, G. Jost, and R. Rabenseifner. Communication Characteristics

and Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-

core SMP Nodes. In The Cray User Group 2007, May 7-10, 2007, Seattle,

Washington, USA (2007), 2007.

[74] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Suga-

vanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara,

G.-T. Chiu, P. Boyle, N. Chist, and C. Kim. The IBM Blue Gene/Q

Compute Chip. Micro, IEEE, 32(2):48–60, March 2012.

[75] M. Harris. Optimizing Parallel Reduction in CUDA. http:

//docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/

reduction.pdf, accessed Jan 2013.

[76] A. Hart, H. Richardson, J. Doleschal, T. Ilsche, M. Bielert, and M. Kappel.

User-level Power Monitoring and Application Performance on Cray XC30

Supercomputers. In The Cray User Group 2014, May 4-8, 2014, Lugano,

Switzerland, 2014.

[77] A. Hauer. The Continuing NNSA Commitment to State of the Art

Modelling and Computation, March 2011. https://asc.llnl.gov/

content/assets/docs/exascale-meisner.pdf.

[78] Y. He and K. Antypas. Running Large Scale Jobs on a Cray XE6 System.

In Cray User Group, 2012.

[79] S. Hemmert et al. Exascale Hardware Architecture Working

Group report. Technical Report LLNL-TR-474891, Lawrence

Livermore National Laboratory (LLNL), Livermore, CA, March 2011.

http://science.energy.gov/~/media/ascr/ascac/pdf/reports/

exascale_subcommittee_report.pd://asc.llnl.gov/exascale/

exascale-hwaWG.pdf.

209

BIBLIOGRAPHY

[80] D. Henty. Performance of Fortran Coarrays on the Cray XE6. In Cray

User Group, 2012. https://cug.org/proceedings/attendee_program_

cug2012/includes/files/pap181.pdf.

[81] D. Henty. The OpenSHMEM PGAS Communications Library.

http://www.archer.ac.uk/community/techforum/notes/2014/05/

OpenSHMEM-Techforum-May2014.pdf, July 2014.

[82] D. S. Henty. Performance of Hybrid Message-Passing and Shared-

Memory Parallelism for Discrete Element Modeling. In Supercomputing,

ACM/IEEE 2000 Conference, pages 10–10, Nov 2000.

[83] O. Hernandez, C. Liao, and B. Chapman. A Tool to Display Array

Access Patterns in OpenMP Programs. In Applied Parallel Computing.

State of the Art in Scientific Computing, volume 3732 of Lecture Notes in

Computer Science, pages 490–498. Springer Berlin Heidelberg, 2006.

[84] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H. Edwards,

A. Williams, M. Rajan, E. Keiter, H. Thornquist, and R. Num-

rich. Improving Performance via Mini-applications. Technical Report

SAND2009-5574, Sandia National Laboratories, September 2009. http:

//prod.sandia.gov/techlib/access-control.cgi/2009/095574.pdf.

[85] T. Hoefler and T. Schneider. Optimization Principles for Collective

Neighborhood Communications. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis, SC ’12, pages 98:1–98:10, Los Alamitos, CA, USA, 2012. IEEE

Computer Society Press.

[86] R. D. Hornung and J. A. Keasler. The RAJA Portability Layer: Overview

and Status. Technical Report LLNL-TR-661403, Lawrence Livermore

National Laboratory, August 2015.

[87] J. K. Hunter. An Introduction to the Incompressible Euler Equations.

Notes, Univ. of California, Davis, 1, 2006.

[88] IBM. OpenCL Lounge. https://www.ibm.com/developerworks/

community/alphaworks/tech/opencl, November 2012.

[89] IBM. OpenPOWER, August 2014. http://openpowerfoundation.org/.

[90] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE

Std 1364-2005 (Revision of IEEE Std 1364-2001), pages 1–560, 2006.

[91] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Std

1076-2008 (Revision of IEEE Std 1076-2002), pages c1–626, Jan 2009.

210

BIBLIOGRAPHY

[92] IEEE. IEEE Standard for Standard SystemC Language Reference Manual.

IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pages 1–638, Jan

2012.

[93] Impulse Accelerated Technologies. Impulse Accelerated Technologies.

http://www.impulseaccelerated.com, August 2015.

[94] Infiniband Trade Association. Infiniband Architecture Specification.

http://www.infinibandta.org, 2014.

[95] Intel. Intel Augments Networking Portfolio with Best-in-Class

High-Performance Computing Fabric Technology. http://www.

intel.com/content/www/us/en/high-performance-computing/

infiniband-products.html.

[96] Intel. Intel Acquires Industry-Leading, High-Performance

Computing Interconnect Technology and Expertise. http://

newsroom.intel.com/community/intel_newsroom/blog/2012/04/24/

intel-acquires-industry-leading-high-performance-computing-\

\interconnect-technology-and-expertise, April 2012.

[97] Intel. Intel European Exascale Labs Report, Sept 2012.

http://www.exascale-computing.eu/wp-content/uploads/2013/

09/Intel-European-Exascale-Labs-Annual-Report-2012.pdf.

[98] Intel. Intel SDK for OpenCL Applications 2012. http://software.

intel.com/en-us/vcsource/tools/opencl-sdk, November 2012.

[99] Intel. Disrupting the Data Center to Create the Digital Services Econ-

omy. https://communities.intel.com/community/itpeernetwork/

datastack/, August 2014.

[100] Intel. Intel Architecture Instruction Set Extensions Programming Refer-

ence. Technical Report 319433-020, Intel, July 2014. https://software.

intel.com/sites/default/files/managed/c6/a9/319433-020.pdf.

[101] Intel. Intel Xeon Phi Product Family, August 2014. http://www.intel.

co.uk/content/www/uk/en/processors/xeon/xeon-phi-detail.html.

[102] Intel. Cilk Reference Manual. https://software.intel.com/en-us/

node/522579, August 2015.

[103] Intel. Threading Building Blocks Reference Manual. https://software.

intel.com/en-us/node/506130, August 2015.

211

BIBLIOGRAPHY

[104] J. A. Herdman and W. P. Gaudin and S. McIntosh-Smith and M.

Boulton and D. A. Beckingsale and A. C. Mallinson and S. A. Jarvis.

Accelerating Hydrocodes with OpenACC, OpenCL and CUDA. In High

Performance Computing, Networking, Storage and Analysis (SCC), 2012

SC Companion:, pages 465–471, Nov 2012.

[105] W. Jiang, J. Liu, H.-W. Jin, D. Panda, W. Gropp, and R. Thakur.

High performance MPI-2 one-sided communication over InfiniBand. In

Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE International

Symposium on, pages 531–538, April 2004.

[106] M. D. Jones and R. Yao. Parallel programming for OSEM reconstruction

with MPI, OpenMP, and hybrid MPI-OpenMP. In Nuclear Science

Symposium Conference Record, 2004 IEEE, volume 5, pages 3036–3042,

Oct 2004.

[107] P. Jones. Parallel Ocean Program (POP) User Guide. Technical Report

LACC 99-18, Los Alamos National Laboratory, March 2003. http://www.

cesm.ucar.edu/models/ccsm4.0/pop/doc/users/.

[108] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandtner,

T. Fahringer, and H. Moritsch. A Multi-objective Auto-tuning Framework

for Parallel Codes. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12, pages

10:1–10:12, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[109] J. Jose, K. Kandalla, M. Luo, and D. K. Panda. Supporting Hybrid MPI

and OpenSHMEM over InfiniBand: Design and Performance Evaluation.

In Parallel Processing (ICPP), 2012 41st International Conference on,

pages 219–228, Sept 2012.

[110] G. Jost, J. Labarta, and J. Gimenez. Shared Memory Parallel Pro-

gramming with OpenMP: 5th International Workshop on Open MP

Applications and Tools, WOMPAT 2004, Houston, TX, USA, May 17-18,

2004, Revised Selected Papers, chapter What Multilevel Parallel Programs

Do When You Are Not Watching: A Performance Analysis Case Study

Comparing MPI/OpenMP, MLP, and Nested OpenMP, pages 29–40.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[111] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An Auto-Tuning

Framework for Parallel Multicore Stencil Computations. In Parallel

Distributed Processing (IPDPS), 2010 IEEE International Symposium on,

pages 1–12, April 2010.

212

BIBLIOGRAPHY

[112] R. Karrenberg and S. Hack. Improving Performance of OpenCL on CPUs.

In Proceedings of the 21st International Conference on Compiler Con-

struction, CC’12, pages 1–20, Berlin, Heidelberg, 2012. Springer-Verlag.

[113] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: An OpenCL

Framework for Heterogeneous CPU/GPU Clusters. In Proceedings of the

26th ACM International Conference on Supercomputing, ICS ’12, pages

341–352, New York, NY, USA, 2012. ACM.

[114] P. Kogge. Architectural Challenges at the Exasacle Frontier, Sept 2008.

Invited talk, STF’08 - Simulating the Future; Using One Million Cores

and Beyond.

[115] P. Kogge, K. Bergman, S. Borkar, D. Campbell, et al. Exascale computing

study: Technology challenges in achieving exascale systems. Technical

Report TR-2008-13, DARPA IPTO, September 2008.

[116] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and

H. Kobayashi. Evaluating performance and portability of OpenCL

programs. In The fifth international workshop on automatic performance

tuning, volume 66, 2010.

[117] Kurzweil Accelerating Intelligence. Designing the exascale cop-

muters of the future, July 2014. http://www.kurzweilai.net/

designing-the-exascale-computers-of-the-future.

[118] Q. Lan, C. Xun, M. Wen, H. Su, L. Liu, and C. Zhang. Improving

Performance of GPU Specific OpenCL Program on CPUs. In Parallel and

Distributed Computing, Applications and Technologies (PDCAT), 2012

13th International Conference on, pages 356–360, Dec 2012.

[119] J. Laros, P. Pokorny, and D. DeBonis. PowerInsight - A commodity power

measurement capability. In Green Computing Conference (IGCC), 2013

International, pages 1–6, June 2013.

[120] P. Lavallée, C. Guillaume, P. Wautelet, D. Lecas, and J. Dupays. Porting

and optimizing HYDRO to new platforms and programming paradigms -

lessons learnt. www.prace-ri.eu, February 2013.

[121] C. Lee. Board Design Guidelines for PCI Express Architecture, 2004.

http://kavi.pcisig.com/developers/main/training_materials/

get_document?doc_id=c48e4d9b1409c7f697669d476995348cf1cd1830.

213

BIBLIOGRAPHY

[122] J. M. Levesque, R. Sankaran, and R. Grout. Hybridizing S3D into an

Exascale Application Using OpenACC: An Approach for Moving to Multi-

petaflops and Beyond. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis, SC ’12,

pages 15:1–15:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society

Press.

[123] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopoulos.

Hybrid MPI/OpenMP power-aware computing. In Parallel Distributed

Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–12,

April 2010.

[124] M. Lin, I. Lebedev, and J. Wawrzynek. OpenRCL: Low-Power High-

Performance Computing with Reconfigurable Devices. In Field Pro-

grammable Logic and Applications (FPL), 2010 International Conference

on, pages 458–463, Aug 2010.

[125] O. Lindtjorn, R. Clapp, O. Pell, O. Mencer, M. Flynn, and H. Fu. Beyond

Traditional Microprocessors for Geoscience High-Performance Computing

Applications. IEEE Micro, 31(2):41–49, March-April 2011.

[126] Z. Liu, B. Chapman, Y. Wen, L. Huang, T.-H. Weng, and O. Hernandez.

Analyses for the Translation of OpenMP Codes into SPMD Style with

Array Privatization. In Proceedings of the OpenMP Applications and

Tools 2003 International Conference on OpenMP Shared Memory Parallel

Programming, WOMPAT’03, pages 26–41, Berlin, Heidelberg, 2003.

Springer-Verlag.

[127] LLNL. Hydrodynamics Challenge Problem. Technical Report LLNL-TR-

490254, LLNL, July 2011. https://codesign.llnl.gov/pdfs/spec-7.

pdf.

[128] R. Lucas, J. Ang, K. Bergman, S. Borkar, et al. Top Ten Exascale Research

Challenges. Technical report, Department of Energy, O�ce of Science,

ASCAC Subcommittee, 2014. http://science.energy.gov/~/media/

ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf.

[129] T. Ludwig and M. Dolz. Total Cost of Ownership in High Performance

Computing, May 2014. http://wr.informatik.uni-hamburg.de/

_media/teaching/sommersemester_2014/tco-14-anna-lena_pdf.pdf.

[130] G. Mahinthakumar and F. Saied. A Hybrid MPI-OpenMP Implemen-

tation of an Implicit Finite-Element Code on Parallel Architectures.

214

BIBLIOGRAPHY

International Journal of High Performance Computing Applications,

16(4):371–393, 2002.

[131] A. Mallinson, D. Beckingsale, W. Gaudin, J. Herdman, and S. Jarvis.

Towards Portable Performance for Explicit Hydrodynamics Codes. In

The International Workshop on OpenCL (IWOCL) 2013, 2013.

[132] A. Mallinson, D. Beckingsale, W. Gaudin, J. Herdman, J. Levesque, and

S. Jarvis. CloverLeaf: Preparing Hydrodynamics Codes for Exascale. In

The Cray User Group 2013, May 6-9, 2013, Napa Valley, California, USA

(2013), 2013.

[133] A. C. Mallinson, S. A. Jarvis, W. P. Gaudin, and J. A. Herdman. Ex-

periences at Scale with PGAS Versions of a Hydrodynamics Application.

In Proceedings of the 8th International Conference on Partitioned Global

Address Space Programming Models, PGAS ’14, pages 9:1–9:11, New York,

NY, USA, 2014. ACM.

[134] C. Martin. Post-Dennard Scaling and the final Years of Moore’s Law.

Technical Report, Hochschule Augsburg University of Applied Sciences,

Sept 2014.

[135] S. Martin and M. Kappel. Cray XC30 Power Monitoring and Management.

In The Cray User Group 2014, May 4-8, 2014, Lugano, Switzerland, 2014.

[136] T. Maruyama, T. Yoshida, R. Kan, I. Yamazaki, S. Yamamura, N. Taka-

hashi, M. Hondou, and H. Okano. Sparc64 VIIIfx: A New-Generation

Octocore Processor for Petascale Computing. Micro, IEEE, 30(2):30–40,

March 2010.

[137] Maxeler. Maxeler Technologies. https://www.maxeler.com/

technology/, September 2014.

[138] C. Maynard. Comparing One-sided Communication With MPI, UPC and

SHMEM. In The Cray User Group 2012, May 6-9, 2013, Napa Valley,

California, USA (2012), 2012.

[139] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current

High Performance Computers. IEEE Computer Society Technical Com-

mittee on Computer Architecture (TCCA) Newsletter, pages 19–25, Dec.

1995.

[140] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III, and G. Jin. A New

Vision for Coarray Fortran. In Proceedings of the Third Conference on

215

BIBLIOGRAPHY

Partitioned Global Address Space Programing Models, PGAS ’09, pages

5:1–5:9, New York, NY, USA, 2009. ACM.

[141] Micron. Hybrid Memory Cube, Aug 2014. http://www.micron.com/

products/hybrid-memory-cube.

[142] Monte-Blanc Project. Mont-Blanc. http://www.montblanc-project.

eu/, Aug 2014.

[143] G. Mozdzynski, M. Hamrud, N. Wedi, J. Doleschal, and H. Richardson.

A PGAS Implementation by Co-design of the ECMWF Integrated

Forecasting System (IFS). In High Performance Computing, Networking,

Storage and Analysis (SCC), 2012 SC Companion:, pages 652–661, Nov

2012.

[144] MPI Forum. Message Passing Interface Forum. http://www.mpi-forum.

org, February 2013.

[145] K. Nakajima. Flat MPI vs. Hybrid: Evaluation of Parallel Pro-

gramming Models for Preconditioned Iterative Solvers on “T2K Open

Supercomputer”. In Parallel Processing Workshops, 2009. ICPPW ’09.

International Conference on, pages 73–80, Sept 2009.

[146] R. Nanjegowda, O. Hernandez, B. Chapman, and H. Jin. Scalability

Evaluation of Barrier Algorithms for OpenMP. In Evolving OpenMP in

an Age of Extreme Parallelism, volume 5568 of Lecture Notes in Computer

Science, pages 42–52. Springer Berlin Heidelberg, 2009.

[147] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick. Scaling

communication-intensive applications on BlueGene/P using one-sided

communication and overlap. In Parallel Distributed Processing, 2009.

IPDPS 2009. IEEE International Symposium on, pages 1–12, May 2009.

[148] R. W. Numrich and J. Reid. Co-array Fortran for Parallel Programming.

SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[149] NVIDIA. CUDA API Reference Manual version 4.2. http://developer.

download.nvidia.com, April 2012.

[150] NVIDIA. OpenCL NVIDIA Developer Zone. https://developer.

nvidia.com/opencl, November 2012.

[151] NVIDIA. Parallel Thread Execution ISA v4.0. http://docs.nvidia.

com/cuda/parallel-thread-execution, July 2014.

216

BIBLIOGRAPHY

[152] NVIDIA. Tesla GPU Accelerators for Servers, August 2014. http://www.

nvidia.co.uk/object/tesla-server-gpus-uk.html.

[153] O�ce of Science, Department of Energy, USA. The Opportunities and

Challenges of Exascale Computing. Technical report, Department of

Energy: O�ce of Science, Sept 2010. http://science.energy.gov/

~/media/ascr/ascac/pdf/reports/exascale_subcommittee_report.

pdf.

[154] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and J. F. Prins.

OpenMP Task Scheduling Strategies for Multicore NUMA Systems. Int.

J. High Perform. Comput. Appl., 26(2):110–124, May 2012.

[155] OpenACC-standard.org. The OpenACC Application Programming Inter-

face. http://www.openacc.org/sites/default/files/OpenACC%202%

200.pdf, June 2013.

[156] OpenMP Architecture Review Board. OpenMP Application Program

Interface version 3.1. http://www.openmp.org/mp-documents/OpenMP3.

1.pdf, July 2011.

[157] OpenSHMEM. OpenSHMEM.org. http://openshmem.org/, July 2014.

[158] M. Owaida, N. Bellas, C. Antonopoulos, K. Daloukas, and C. Antoniadis.

Massively parallel programming models used as hardware description

languages: The OpenCL case. In Computer-Aided Design (ICCAD), 2011

IEEE/ACM International Conference on, pages 326–333, Nov 2011.

[159] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller,

and S. A. Jarvis. An Investigation of the Performance Portability of

OpenCL. J. Parallel Distrib. Comput., 73(11):1439–1450, Nov 2013.

[160] S. J. Pennycook and S. A. Jarvis. Developing Performance-Portable

Molecular Dynamics Kernels in OpenCL. In Proceedings of the 2012

SC Companion: High Performance Computing, Networking Storage and

Analysis, SCC ’12, pages 386–395, Washington, DC, USA, 2012. IEEE

Computer Society.

[161] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The

Quadrics network (QsNet): high-performance clustering technology. In

Hot Interconnects 9, 2001., pages 125–130, 2001.

[162] PGI. PGI Fortran & C accelerator compilers and programming model.

http://www.pgroup.com/lit/pgiwhitepaperaccpre.pdf, March 2014.

217

BIBLIOGRAPHY

[163] J. Phillips, J. Stone, and K. Schulten. Adapting a message-driven parallel

application to GPU-accelerated clusters. In High Performance Computing,

Networking, Storage and Analysis, 2008. SC 2008. International Confer-

ence for, pages 1–9, Nov 2008.

[164] J. M. Pier, I. Figueroa, and J. Huegel. CUDA-enabled Particle-Based

3D Fluid Haptic Simulation. In Electronics, Robotics and Automotive

Mechanics Conference (CERMA), 2011 IEEE, pages 391–396, Nov 2011.

[165] S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. W.

Schulz, W. L. Barth, A. Majumdar, and D. K. Panda. Quantifying

Performance Benefits of Overlap Using MPI-2 in a Seismic Modeling

Application. In Proceedings of the 24th ACM International Conference

on Supercomputing, ICS ’10, pages 17–25, New York, NY, USA, 2010.

ACM.

[166] R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier, and A. Koniges.

Multithreaded Global Address Space Communication Techniques for

Gyrokinetic Fusion Applications on Ultra-Scale Platforms. In Proceedings

of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11, pages 78:1–78:11, New York,

NY, USA, 2011. ACM.

[167] President’s Information Technology Advisory Committee. Computational

Science: Ensuring America’s Competitiveness. Technical report, The

Networking and Information Technology Research and Development Pro-

gram, April 2005. http://www.nitrd.gov/pitac/reports/20050609_

computational/computational.pdf.

[168] T. Pulliam. The Euler Equations. http://people.nas.nasa.gov/

~pulliam/Classes/New_notes/euler_notes.pdf, November 1994.

[169] S. F. Rahman, J. Guo, and Q. Yi. Automated Empirical Tuning of

Scientific Codes for Performance and Power Consumption. In Proceedings

of the 6th International Conference on High Performance and Embedded

Architectures and Compilers, HiPEAC ’11, pages 107–116, New York, NY,

USA, 2011. ACM.

[170] A. Ramachandran, J. Vienne, R. Van Der Wijngaart, L. Koesterke, and

I. Sharapov. Performance Evaluation of NAS Parallel Benchmarks on

Intel Xeon Phi. In Parallel Processing (ICPP), 2013 42nd International

Conference on, pages 736–743, Oct 2013.

218

BIBLIOGRAPHY

[171] R&D Magazine. Miniapps Pick Up the Pace. http://www.rdmag.com/

award-winners/2013/08/miniapps-pick-pace, August 2013.

[172] R. Reyes, A. Turner, and B. Hess. Introducing SHMEM into the

GROMACS molecular dynamics application: experience and results. In

Proceedings of PGAS 2013, 2013.

[173] B. Rider. A Very Brief History of Hydrodynamic Codes. Technical

report, Sandia, June 2007. https://cfwebprod.sandia.gov/cfdocs/

CompResearch/docs/Rider_CSRI_June27_2007.pdf.

[174] E. Rustico, G. Bilotta, G. Gallo, A. Herault, and C. D. Negro. Smoothed

Particle Hydrodynamics Simulations on Multi-GPU Systems. In Parallel,

Distributed and Network-Based Processing (PDP), 2012 20th Euromicro

International Conference on, pages 384–391, Feb 2012.

[175] J. Sancho, K. Barker, D. Kerbyson, and K. Davis. Quantifying the

Potential Benefit of Overlapping Communication and Computation in

Large-Scale Scientific Applications. In SC 2006 Conference, Proceedings

of the ACM/IEEE, pages 17–17, Nov 2006.

[176] G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R. Thakur, W. Gropp,

and D. Panda. Natively Supporting True One-Sided Communication in

MPI on Multi-core Systems with InfiniBand. In Cluster Computing and

the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International Symposium

on, pages 380–387, May 2009.

[177] S. Seo, G. Jo, and J. Lee. Performance characterization of the NAS Parallel

Benchmarks in OpenCL. In Workload Characterization (IISWC), 2011

IEEE International Symposium on, pages 137–148, Nov 2011.

[178] H. Shan, B. Austin, N. J. Wright, E. Strohmaier, J. Shalf, and K. Yelick.

Accelerating Applications at Scale Using One-Sided Communication. In

Conference on Partitioned Global Address Space Programming Models

(PGAS’12), 2012.

[179] R. Sharma and P. Kanungo. Performance evaluation of MPI and hybrid

MPI+OpenMP programming paradigms on multi-core processors cluster.

In Recent Trends in Information Systems (ReTIS), 2011 International

Conference on, pages 137–140, Dec 2011.

[180] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: A

Unified Deadlock-free Construct for Collective and Point-to-point Syn-

chronization. In Proceedings of the 22Nd Annual International Conference

219

BIBLIOGRAPHY

on Supercomputing, ICS ’08, pages 277–288, New York, NY, USA, 2008.

ACM.

[181] J. Shirako, K. Sharma, and V. Sarkar. Unifying Barrier and Point-to-

point Synchronization in OpenMP with Phasers. In Proceedings of the 7th

International Conference on OpenMP in the Petascale Era, IWOMP’11,

pages 122–137, Berlin, Heidelberg, 2011. Springer-Verlag.

[182] H. Shukla, H.-Y. Schive, T.-P. Woo, and T. Chiueh. Multi-science

Applications with Single Codebase - GAMER - for Massively Parallel

Architectures. In Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’11, pages

37:1–37:11, New York, NY, USA, 2011. ACM.

[183] H. Simon. Why we need Exascale and why we won’t get there

by 2020, August 2013. http://cacs.usc.edu/education/cs653/

Simon-Exascale-LBL13.pdf.

[184] N. Singer. Sandia wins three R&D 100 awards. https://share.sandia.

gov/news/resources/news_releases/, July 2013.

[185] B. Spencer. A General Auto-Tuning Framework for Software Perfor-

mance Optimisation. http://mistymountain.co.uk/flamingo/report/

autotuning-2011-05-30.pdf, 2011.

[186] A. Stone, J. Dennis, and M. Strout. Evaluating Coarray Fortran with

the CGPOP Miniapp. Technical report, Colorado State University, 2011.

http://dx.doi.org/10.1007/978-3-642-03770-2_9.

[187] E. Stotzer et al. OpenMP Technical Report 1 on Directives for Attached

Accelerators. Technical Report TR1 167, The OpenMP Architecture Re-

view Board, November 2012. http://www.openmp.org/mp-documents/

TR1_167.pdf.

[188] C. Su, D. Li, D. Nikolopoulos, M. Grove, K. W. Cameron, and B. R.

de Supinski. Critical Path-based Thread Placement for NUMA Systems.

In Proceedings of the Second International Workshop on Performance

Modeling, Benchmarking and Simulation of High Performance Computing

Systems, PMBS ’11, pages 19–20, New York, NY, USA, 2011. ACM.

[189] T. P. Stefanski and N. Chavannes and N. Kuster. Hybrid OpenCL-MPI

parallelization of the FDTD method. In Electromagnetics in Advanced

Applications (ICEAA), 2011 International Conference on, pages 1201–

1204, Sept 2011.

220

BIBLIOGRAPHY

[190] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa. Performance Evaluation

of OpenMP Applications with Nested Parallelism. In Selected Papers from

the 5th International Workshop on Languages, Compilers, and Run-Time

Systems for Scalable Computers, LCR ’00, pages 100–112, London, UK,

UK, 2000. Springer-Verlag.

[191] M. Taylor. A Landscape of the New Dark Silicon Design Regime. Micro,

IEEE, 33(5):8–19, Sept 2013.

[192] Texas Instruments. Texas Instruments. http://www.ti.com/lsds/ti/

processors/dsp/overview.page?DCMP=DSP&HQS=dsp, August 2015.

[193] X. Tian, H. Saito, S. Preis, E. Garcia, S. Kozhukhov, M. Masten,

A. Cherkasov, and N. Panchenko. Practical SIMD Vectorization Tech-

niques for Intel Xeon Phi Coprocessors. In Parallel and Distributed

Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE

27th International, pages 1149–1158, May 2013.

[194] Top500.org. Top500 list. http://www.top500.org, June 2014.

[195] T. Trader. NVIDIA Boasts ‘Compelling HPC Solution’,

August 2014. http://www.hpcwire.com/2014/08/20/

nvidia-calls-cuda-6-5-compelling-hpc-solution/.

[196] D. Unat, J. Shalf, T. Hoefler, T. Schulthess, A. Dubey, et al. Programming

Abstractions for Data Locality. Technical Report Padal14, Swiss National

Supercomputing Center (CSCS), April 2014.

[197] L. G. Valiant. A Bridging Model for Parallel Computation. Commun.

ACM, 33(8):103–111, Aug. 1990.

[198] J. van der Sanden. Evaluating the Performance and Portability of

OpenCL. Master’s thesis, Electronic Systems Group, Faculty of Elec-

trical Engineering, Eindhoven University of Technology, 2011. http:

//alexandria.tue.nl/extra1/afstversl/wsk-i/sanden2011.pdf.

[199] B. van Leer. Towards the Ultimate Conservative Di↵erence Scheme. J.

Comput. Phys., 135(2):229–248, August 1997.

[200] A. Vishnu, M. ten Bruggencate, and R. Olson. Evaluating the Potential of

Cray Gemini Interconnect for PGAS Communication Runtime Systems.

In High Performance Interconnects (HOTI), 2011 IEEE 19th Annual

Symposium on, pages 70–77, Aug 2011.

221

BIBLIOGRAPHY

[201] S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, and M. E. Papka.

Measuring Power Consumption on IBM Blue Gene/Q. In IPDPS

Workshops’13, pages 853–859, 2013.

[202] S. Wallace, V. Vishwanath, S. Coghlan, J. Tramm, Z. Lan, and M. Papka.

Application power profiling on IBM Blue Gene/Q. In Cluster Computing

(CLUSTER), 2013 IEEE International Conference on, pages 1–8, Sept

2013.

[203] X. Wang and V. Jandhyala. Enhanced hybrid MPI-OpenMP parallel

electromagnetic simulations based on low-rank compressions. In Electro-

magnetic Compatibility, 2008. EMC 2008. IEEE International Symposium

on, pages 1–5, Aug 2008.

[204] Y. Wang, Q. Qin, S. Wee, and J. Lin. Performance Portability Evaluation

for OpenACC on Intel Knights Corner and Nvidia Kepler. Technical

report, Shanghai Jiao Tong University, 2013. http://ccoe.sjtu.edu.

cn/blog/wp-content/uploads/2013/09/.

[205] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson. Com-

paring Hardware Accelerators in Scientific Applications: A Case Study.

IEEE Transactions on Parallel and Distributed Systems, 22(1):58–68, Jan

2011.

[206] A. White. Exascale Challenges: Applications, Technologies, and Co-

Design. Technical Report LA-UR 11-02200, Los Alamos National

Laboratories, 2011. https://asc.llnl.gov/content/assets/docs/

exascale-white.pdf.

[207] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC: First

Experiences with Real-world Applications. In Proceedings of the 18th

International Conference on Parallel Processing, Euro-Par’12, pages 859–

870, Berlin, Heidelberg, 2012. Springer-Verlag.

[208] Wikipedia. Ideal gas law. https://en.wikipedia.org/wiki/Ideal_

gas_law, April 2016.

[209] P. Worley. Importance of Pre-Posting Receives. In 2nd Annual Cray

Technical Workshop, 2008. http://www.csm.ornl.gov/~worley/talks/

Worley_CrayTech08.pdf.

[210] Y. Zhang and F. Mueller. Autogeneration and Autotuning of 3D Stencil

Codes on Homogeneous and Heterogeneous GPU Clusters. Parallel and

Distributed Systems, IEEE Transactions on, 24(3):417–427, March 2013.

222

Appendices

223

APPENDIX A
Experimental Platforms/Architectures

This chapter documents the specifications and configuration of the computa-

tional platforms utilised in this research. Section A.1 describes the large-scale,

“production” supercomputer architectures employed, whilst section A.2 presents

the configuration details of the smaller-scale “test-bed” platforms. It is likely

that these machines may have been upgraded or otherwise changed since the

submission of this thesis, however, the results presented within this research are

based on the machines as specified in sections A.1 and A.2. Finally section A.3

concludes the chapter.

A.1 Production Supercomputer Platforms

Tables A.1 and A.2 document the specifications of the supercomputer platforms

utilised in this research, whilst sections A.1.2 to A.1.5 present additional infor-

mation on each of them. These production platforms are used for conducting

scientific research at the particular hosting institutions as well as for supporting

the research of other remotely-located collaborators.

A.1.1 HECToR

The HECToR platform, which was previously located at the Edinburgh Parallel

Computing Centre (EPCC), functioned as the UK’s national high-end comput-

ing resource between 2007 and 2014. Phases 1 and 2a of the platform were

based on the XT4 technology from Cray, whilst in phases 2b and 3 the system

was upgraded to the Cray XE6 technology.

224

Experimental Platforms/Architectures

Archer Spruce HECToR

Manufacturer Cray SGI Cray
Model XC30 ICE-X XE6
Location EPCC AWE EPCC
Cabinets 16 16 30
Peak Perf 1.56PF 0.97PF 800+ TF
Processor Intel Xeon E5-2697v2 Intel Xeon E5-2680v2 AMD Opteron 6276
Proc Clock Freq 2.7GHz 2.8GHz 2.3 GHz
Cores / CPU 12 10 16
Compute Nodes 3008 2226 2,816
CPUs/Node 2 2 2
Total CPUs 6016 4452 5,632
Memory/Node 64GB 64GB 32 GB
Memory Freq 1833MHz 1866 MT/s -
Interconnect Cray Aries Mellanox IB-FDR Cray Gemini
Topology Dragonfly 7D-hypercube 3D-torus
Compilers Cray CCE v8.2.6 Intel v14.0 Cray CCE v8.1.2
MPI Cray Mpich v6.3.1 SGI MPI v2.9 Cray MPT v5.6.1
OpenSHMEM Cray Shmem v6.3.1 SGI Shmem v2.9 N/A

Table A.1: UK-based experimental platform system specifications

A.1.2 Archer

The Archer platform, which is currently located at EPCC, is the latest de-

ployment of the UK’s National High Performance Computing Facility and is

available primarily to support the academic research community, although it is

also available for some industrial use. The system is based on the Cray XC30

architecture and is estimated to provide nearly 4⇥ the scientific throughput of

its predecessor, HECToR.

A.1.3 Spruce

The Spruce supercomputer complex was commissioned in 2014 to conduct scien-

tific research in support of the UK’s national nuclear deterrent. It is located at

AWE plc and is comprised of two separate, albeit connected, systems known as

Spruce-A and Spruce-B. Table A.1 shows the relevant system specifications for

the larger Spruce-A portion of the machine. Both sub-systems are constructed

from SGI ICE-X infrastructure and each contain a 7D-hypercube interconnect

based on FDR Infiniband technology from Mellanox. The compute nodes within

the system each contain two processors which are individually water cooled.

225

Experimental Platforms/Architectures

Titan Mira Vulcan

Manufacturer Cray IBM IBM
Model XK7 BG/Q BG/Q
Location ORNL ANL LLNL
Cabinets 200 48 24
Peak Perf 20+ PF 10 PF 5 PF
Processor AMD Opteron 6274 IBM PowerPC IBM PowerPC
Proc Clock Freq 2.2 GHz 1.6 GHz (A2 core) 1.6 GHz (A2 core)
Cores / CPU 16 16 16
Compute Nodes 18,688 49,152 24,576
CPUs/Node 1 1 1
Accelerator/Node 1 0 0
Accelerator Type Nvidia GPU N/A N/A
Accelerator Model K20x N/A N/A
Accelerator Freq N/A N/A
Total CPUs 18,688 49,152 24,576
Total Accelerators 18,688 0 0
CPU Memory/Node 32 GB 16GB 16GB
CPU Memory Freq 1.333 GHz 1.333GHz
Acc. Mem/Node 6GB N/A N/A
Interconnect Gemini BG/Q BG/Q
Topology 3D-torus 5D-torus 5D-torus
Compilers Cray CCE IBM XL IBM XL
MPI Cray Mpich2 IBM MPI IBM MPI
OpenSHMEM Cray Shmem N/A N/A

Table A.2: Specifications of platforms located at ORNL, ANL & LLNL

A.1.4 Mira

Mira is an IBM Blue Gene/Q machine located at the Leadership Computing

Facility at Argonne National Laboratory in the USA. Its peak-performance is

over 10-petaflops making it one of the most computationally powerful machines

in the world. Additionally, it is also constructed from 48 racks, which makes it

physically one of the largest machines in the world. It is intended for conduct-

ing open science research which is only possible through access to large-scale

computational resources.

A.1.5 Titan

Titan is located at ORNL in the USA and was one of the first major, large-

scale supercomputer deployments to utilise a hybrid (CPU+GPU) architecture.

The use of both processor solutions enables higher levels of computational

performance to be attained as well as for space and power constraints to be

overcome. The system is ⇠10⇥ more powerful than its predecessor Jaguar,

whilst occupying the same space and drawing approximately the same power.

Thus the machine exhibits architectural trends and performance characteristics,

226

Experimental Platforms/Architectures

which are likely to be present in future generations of supercomputers, as the

HPC industry moves towards the construction of exascale capable platforms. It

previously held the number 1 position on the Top500 list and has a theoretical

peak of more than 20 petaflops. It is, again, primarily intended for open science

research across a broad range of scientific disciplines.

A.1.6 Vulcan

Vulcan is a 24 rack, BG/Q system from IBM and is located at Lawrence

Livermore National Laboratory in the USA. It is available to support industrial

collaborations and was procured to provide an unclassified supercomputing

resource to compliment its larger “sister” system Sequoia, which is employed

for conducting classified work.

A.2 Test-bed Platforms

In addition to the supercomputer architectures described in section A.1, this

research also utilised several smaller-scale, more experimental and novel archi-

tectures. These were often constructed primarily for Computer Science focused

research and allow specific application and hardware experiments to be con-

ducted. Sections A.2.1 to A.2.3 document the specifications of these machines.

A.2.1 Teller, Compton & Shannon

As part of the co-design development approach adopted by SNL to prepare

application- and system-level software for the disruptive architecture changes

which are likely to occur in the build-up to the creation of exascale systems, sev-

eral advanced architecture test-bed platforms have been constructed. These are

generally novel prototypes which facilitate experimentation with non-production

applications on a range of future candidate architectures. The test-beds are

primarily used for exploring alternative node-level architectures, although the

227

Experimental Platforms/Architectures

Teller Compton Shanon

Manufacturer Penguin Penguin Cray
Location Sandia Sandia Sandia
Proc Manufacturer AMD Intel Intel
Processor Trinity A10-5800K Xeon E5-2670 Xeon E5-2670
Proc Clock Freq 3.8 GHz 2.6 GHz 2.6 GHz
Proc TDP (W) 100 115 115
Cores / CPU 4 8 8
Compute Nodes 104 42 32
CPUs/Node 1 2 2
CPU Memory/Node 16 GB 64 GB 128 GB
CPU Memory Freq 1.8 GHz 1.6 GHz 1.6 GHz
Total CPUs 104 84 64
Accelerator/Node 1 1 2
Accelerator Type AMD GPU Intel Xeon Phi Nvidia GPU
Accelerator Model HD-7660D 3100 K20x
Accelerator Freq 800 MHz 1.1GHz 732 MHz
Total Accelerators 104 42 64
Acc. Mem/Node 16 GB 6 GB 12 GB
Interconnect Qlogic QDR IB Mellanox QDR IB Mellanox QDR IB
Topology Tree Tree Tree

Host Compilers GNU v4.8.1 Intel v15.0 GNU v4.8.1, CCE v8.3.0
OpenMP Libraries GNU Intel GNU, Cray
OpenCL SDK AMD APP v2.8.1 Intel v14.1.0 Nvidia v5.0.0
MPI OpenMPI v1.8.2 Intel v4.1.3 OpenMPI v1.8.4, Cray v2.0.0
OpenSHMEM N/A N/A N/A

Table A.3: Specifications of the experimental platforms located at SNL

machines themselves are of su�cient size to also allow their inter-node commu-

nication characteristics to be examined.

Specifically the Teller, Compton and Shannon test-beds were utilised within

this research, Table A.3 documents the specifications of these machines. Teller

provides access to the novel APU processing devices, developed by AMD, which

combine both CPU and GPU architectures within one silicon die. This enables

hybrid programming model experiments to be conducted on an architecture

without a PCIe bus located between the CPU and GPU components. Compton

incorporates advanced pre-production Intel Xeon Phi co-processors which are

likely to be an important future architectural processing solution. Additionally,

the nodes within Shannon contain two advanced Nvidia Kepler GPU devices,

enabling programming models to be developed and experimented with, which

allow applications to target multiple GPU devices.

228

Experimental Platforms/Architectures

Chilean Pine

Manufacturer Cray
Model XK6
Location AWE
Cabinets 1
Peak Perf -
Processor AMD Opteron 6272
Proc Clock Freq 2.1
Processor Peak Perf 147 GFlop/s (Double Precision)
Cores / CPU 16
Processor TDP 115 W
Compute Nodes 40
CPUs/Node 1
Accelerator/Node 1
Accelerator Type Nvidia GPU
Accelerator Model X2090 (“Fermi”)
Accelerator Freq 1.15 GHz
Total CPUs 40
Total Accelerators 40
CPU Memory/Node 32GB
CPU Memory Freq 1.6 GHz
Mem. Bandwidth 36.5 GB/s
Acc. Mem/Node 6GB
Interconnect Cray “Gemini”
Topology 3D-torus

Host Compilers Cray 4.1.40, GNU 4.7.2
GNU Host Flags -O3 -march=native -funroll-loops
Cray Host Flags -em -ra -h

OpenMP Libraries Cray, Intel

OpenCL/Cuda SDK Nvidia Cuda Toolkit 5.0, AMD OpenCL SDK 2.7
OpenCL Flags -cl-mad-enable -cl-fast-relaxed-math
Cuda Flags -gencode arch=compute 30, code=sm 35

MPI Cray MPI (Mpich2) v5.6.2.2
OpenSHMEM N/A

Table A.4: Chilean Pine platform system specifications

A.2.2 Chilean Pine

Chilean Pine is a small-scale test-bed platform intended for application exper-

imentation with hybrid (CPU+GPU) architectures and high-bandwidth, low-

latency interconnect technologies. The system is located at AWE plc in the

UK and its specifications can be found in Table A.4. Within this research it is

employed primarily for experiments which target the AMD Opteron processors.

Additionally, the platform also has an OpenCL runtime system installed on

both its CPU and GPU components, enabling experiments which target the

entire processing resources of the nodes to be conducted using this programming

model.

229

Experimental Platforms/Architectures

Tuck

Manufacturer Penguin
Location Warwick
Cabinets 1
Peak Perf -
Processor Intel Xeon E5-2620
Proc Clock Freq 2.00 GHz
Cores / CPU 6
Compute Nodes 1
CPUs/Node 2
CPU Memory/Node 64 GB
CPU Memory Freq 2.0 GHz
Accelerator/Node 3

Accelerator #1 #2 #3
Type Nvidia GPU Intel Xeon Phi Altera FPGA
Model K20c 7120P Stratix V GS D5
Clock Freq (GHz) 0.7 1.238 0.6
Memory (GB) 5.1 16 4
Cores 13 61 N/A

Host Compilers Intel v15.0, GNU v4.4.6
OpenMP Libraries Intel v15.0, GNU v4.4.6
MPI Intel v5.0.0
Intel Host Flags -O3 -ipo -no-prec-div -restrict -fno-alias -prec-div

-fp-model strict -fp-model source -prec-sqrt

OpenCL SDK Intel 2012 & 2013, Altera v13.1, v14.1
Nvidia SDK Cuda Toolkit 5.0, 6.0
GPU OpenCL Flags -cl-mad-enable -cl-fast-relaxed-math
Cuda Flags -gencode arch=compute 30, code=sm 35

Table A.5: System specifications of the Tuck experimental platform

A.2.3 Tuck

The Tuck platform is a small, 1-node experimental test-bed located at the

University of Warwick (see table A.5). It is intended for experimental Computer

Science research and is therefore not utilised for production work. The platform

enables novel hardware and software configurations, which are not available on

the existing larger-scale platforms, to be rapidly trialled and experimented with

including for example FPGA-based processing solutions. Tuck also contains

the PowerInsight [119] power monitoring technology, which provides a mecha-

nism for conducting high-frequency power consumption analyses at the level of

individual system components.

A.3 Summary

This chapter has described in detail the hardware and software configuration

of each of the experimental platforms utilised throughout this research. Ad-

ditionally it also provides high-level information on the purpose, location and

ownership of each of these resources.

230

