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Abstract. Appearance representation and feature extraction of anatomy
or anatomical features is a key step for segmentation and classification
tasks. We focus on an advanced appearance model in which an object is
decomposed into pyramidal complementary channels, and each channel
is represented by a part-based model. We apply it to landmark detection
and pathology classification on the problem of lumbar spinal stenosis.
The performance is evaluated on 200 routine clinical data with varied
pathologies. Experimental results show an improvement on both tasks
in comparison with other appearance models. We achieve a robust land-
mark detection performance with average point to boundary distances
lower than 2 pixels, and image-level anatomical classification with accu-
racies around 85%.

1 Introduction

Diagnosis and classification based on radiological images is one of the key tasks
in medical image computing. A standard approach is to represent the anatomy
with coherent appearance models or feature descriptors, and vectorise the rep-
resentations as inputs for training a classifier (Fig. A)) The training data
usually consists of instances with landmarks annotated at consistent anatom-
ical features. The appearance correspondence across the instances is built by
aligning a deformable appearances (e.g., AAM [1]) or extracting local features
at the landmarks ( |2H4]). During testing, the landmarks are detected in new,
unseen instances, and the features are extracted and sent to a classifier for the
pathology classification. For a robust landmark detection, a prior model of the
object class is learned by formulating the statistics of the vectorised represen-
tations, and the searching is conducted under the regularisation of the prior
model. The deformable model is either holistic [1], which consists of the shape
and aligned appearance, or part-based [2(5], which represents an object by lo-
cally rigid parts with a shape capturing the spatial relationships among parts.
Part-based models have shown superior performance benefiting from the local
feature detection [2,[3,/5] and shape optimisation methods [2,/4]. However less



attention has been paid to optimising the appearance representation and pre-
serving the anatomical details.

We propose a new appearance model referred to as a Wavelet Appearance
Pyramid (WAP) to improve the performance of landmark detection and pathol-
ogy classification, see an overview in Fig. (B) The object is decomposed into
multi-scale textures and each scale is further decomposed into simpler parts.
To achieve an explicit scale decomposition, the filter banks are designed and
arranged directly in Fourier domain. The logarithmic wavelets (loglets) [6] are
adopted as the basis functions of the filter banks for their superior properties,
such as uniform coverage of the spectrum (losslessness) and infinite number of
vanishing moments (smoothness). The scales are complementary in the Fourier
domain which enables the reconstruction of the appearance from a WAP. The
variations in the population can be modelled and visualised, with the deforma-
tion approximated by local rigid translations of the multi-scale parts, and the
appearance changes by linear modes of the assembly of the parts.

We apply the WAP to the problem of lumbar spinal stenosis (LSS) and
present an approach for fitting the landmarks and grading the central and fore-
menal stenosis [7,/8]. The Supervised Descent Method (SDM) [2] is integrated
with the WAP for landmark detection. The performance is validated on MRI
data from 200 patients with varied LSS symptoms. Experimental results show an
improvement in both the landmark detection and pathology grading over other
models such as ASMs, AAMs (1], and CLMs [9] [}

2 Method

To provide a more comprehensive description of an object, we decompose the ap-
pearance into pyramidal channels at complementary scale ranges with wavelets,
and represent each channel with a part-based model. We refer to this form of
appearance models as Wavelet Appearance Pyramids (WAP). We detail the
method as follows.

Explicit Scale Selection in the Fourier Domain. We start by decompos-
ing an image I into multi-scale channels directly in the Fourier domain. When
considered in polar coordinates, the Fourier spectrum Z actually spans a scale
space with larger scales at lower frequency and smaller scales spreading out-
wards. Therefore a multi-scale decomposition of image textures can be achieved
explicitly by dividing the spectrum into subbands, see Fig. b). In practice,
filtering the spectrum with sharp windows will introduce discontinuities there-
fore causing aliasing. To design a bank of window functions which are smooth in
shape while uniformly cover the spectrum, we use loglets as the basis functions
because they possess a number of useful properties [6].

Denoting the frequency vector by u and its length by p, a bandpass window
with a loglets basis can be designed in the Fourier domain as,

W(u; s) :erf<a log <ﬁs+% ppo)) —erf(a log (ﬁs—% p’;)) (1)

4 Supplementary videos of the paper can be found at an anonymous web page
https://sites.google.com/site/appearancepyramidsi
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Fig.1: (A) A standard approach of landmark detection and pathology grading.
(B) The proposed appearance model (A) and feature descriptor (h(.A)).

where o controls the radial bandwidth, s is an integer defining the scale of the
filter, and 8 > 1 sets the relative ratio of adjacent scales — set to two for one
octave intervals. pg is the peak radial frequency of the window with scale s = 0.

To extract the sharp textures of an image, the first scale channel should cover
the highest frequency components. Noting the uniform property of the loglets,
we accumulate a group of loglets successively having one-octave higher central
frequencies as the first scale window, i.e.,, W) = 3" W(u;s),s = {0,—1,...},
which achieves an even coverage towards the highest frequency, see the 1D profile
in Fig. a) shown as a red curve, and the 2D window in Fig. c). The second
and larger scale features can be selected by windows covering lower frequencies,
W) (u) = W(u; s — 1). Profiles of two adjacent larger scale windows are shown
in Fig. [2[a) as blue curves, and a 2D window shown in Fig. 2d). For a lossless
decomposition, the largest scale window should uniformly cover the lowest fre-
quencies, so it is designed as a accumulation of the remaining loglets functions,
WE =3 W(u;s),s = {L—1,L,...}, see the green curve in Fig. a). L is the
total number of scales in the filter banks.

As the image filtering can be implemented in the Fourier domain by multi-

plication, the filters can be efficiently applied by windowing them on the image
spectrum Z, and the image channels obtained by the inverse Fourier transform
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Fig. 2: (a) Radial profiles of the filters. (b) Scale selection in the Fourier domain.
(¢) The high pass filter in the Fourier domain. (d) The first bandpass filter.

of the windowed spectrum, 1) = F=1(Z - W) s = {1,2, ..., L}. The image is
thus decomposed into complementary channels {7(*)}.

Wavelet Image Pyramid. It is evident that larger scale textures can be
described sufficiently at a lower resolution. Note in Fig. a) that the magnitude
of the two larger scale windows beyond 7/2 and 7 /4 is almost zero. Therefore
we can discard these areas of the spectrum, which results in an efficient down-
sampling without information loss or aliasing effect ﬂ As a result, the resolution
is reduced by 2% at scale s and a subband pyramid is obtained, see Fig. c)(d).

Wavelet Appearance Pyramid (WAP). Given a landmark x, we ex-
tract an image patch A, at each scale s of the pyramid. All patches {A }L |
have the same size in pixels, which describe the local features at octave larger
scales, domain sizes and lower resolutions, see Fig. [[[d)(e). A WAP, denoted
by @ = [ A, s], consists of an assembly of feature patches A = {{A,,;}r 1Y,
extracted at all the landmarks {z;}), and a shape s = [z1,x2,...zy]| desig-
nating the locations of the patches. At larger scales fewer patches are manually
chosen at key landmarks to reduce the overlapping. @ is then flattened into a
1D vector serving as the profile of the anatomy. A further feature extraction
function such as histogram of oriented gradients (HOG) can be readily applied
on the patches to reduce the dimensionality and enhance its robustness, i.e.,
h(A) = {{h(As:)}L 13N, see Fig. f). To reconstruct the original appearance
from the profile, we first pad the patches at each scale with the geometry config-
ured by s to recover the individual channels. As the scales are complementary, all
channels are then accumulated to recover the object appearance, see Fig. g).

Landmark Detection. We integrate our WAP representation with the SDM
algorithm [2] for robust landmark detection. In order to deduce the true land-
mark location s* given an initial estimation §, we extract the descriptor h(.A(8))
at § and learn the mapping h(A(8)) — As*, in which As* = s* — §. The direct
mapping function satisfying all the cases in the dataset is non-linear in nature
and can be over-fitted. So we adopt the SDM algorithm and approximate the
non-linear mapping with a sequence of linear mapping {R(i), b(i)} and landmark
updating steps,

Mapping: As() = R(i)h(/l(é(i))) +b@,
Uvdating: 30+ — 3@ () (2)
pdating: 8 =5" + As\W,

% Spectrum cropping as image downsampling is explained at https://goo.gl/dht58Q
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The descriptor h(.A) is extracted and updated at each iteration. More details on
the SDM can be found at [2].

Anatomical Classification. For the classification tasks, the correspondence
of anatomical features should be built such that the differences among the de-
scriptors account for the true variations rather than the miss-alignment. In a
WAP the appearance correspondence is built by extracting local features at
corresponding landmarks. A classifier predicts the label ¢ given an anatomi-
cal observation @, i.e, { = argmaxp(¢|®). The most significant variations in
the training data {@} can be learned by principal components analysis and the
dimensionality reduced by preserving the first ¢ significant components, which
span a feature space P € RM** with M being the dimensionality of &. A WAP
therefore can be represented in the feature space by a compact set of parameters
bg, i.e., bg = PT(® — @), in which @ is the mean of {®}. Using bg as inputs
the classifier now predicts £ = argmax p(¢|bs). We train the classifier with the
AdaBoost method, with decision trees as the week learners.

3 Results and Discussion

D Disc
B Central Canal

| (d) Foraminal stenosis

Fig. 3: (a) Mid-sagittal scan of a lumbar spine. Grey lines show the locations of
the axial scans. Red lines show the aligned disc-level planes. (b) Anatomy of a
normal L3/4 disc-level axial image. (¢) A case with severe central stenosis. (d)
Foraminal stenosis. The neural foramen are suppressed by the thickening of the
facet (green) and the disc (red).

Clinical Background. Lumbar spinal stenosis (LSS) is a common disorder
of the spine. Radiological findings are an integral adjunct to symptoms and
clinical signs in the diagnosis and treatment of the disorder. The important
function of radiological studies is to evaluate the morphological abnormalities
and make the anatomical classification. Disc-level axial images in MRI scans
can provide rich information for the diagnosis. In paired sagittal-axial scans,
the disc-level planes (red line in Fig. a)) are localised in sagittal scans, and
the geometry is mapped to the registered axial scans (dashed lines in Fig.|3[(a))
to extract the disc-level images. On the disc-level image shown in Fig. |3|(b),
conditions of the posterior margins of the disc (red line), posterior spinal canal



(cyan line) and the facet between the superior and inferior articular processes
(green line) are typically inspected for diagnosis and grading. Degeneration of
these structures can constrict the spinal canal and the neural foramen causing
central and foraminal stenosis. Pathological examples are given in Fig. [3(c)(d).
In clinical practice, parameters such as antero-posterior diameter, cross-sectional
area of spinal canal are typically measured [7]. However due to the complexity
of the vertebral structure, there is a lack of consensus in these parameters and
no diagnostic criteria are generally applicable [§]. A more detailed appearance
model of the anatomy, followed by a higher-level classification therefore could
contribute to reliable and consistent diagnoses.

Data and Settings. The dataset consists of T2-weighted MRI scans of 200
patients with varied LSS symptoms. Each patient has routine paired sagittal-
axial scans. The L3/4, L4/5, L5/S1 disc-level axial planes are localised in the
sagittal scans and the images sampled from the axial scans. We obtain 3 sub-
set of 200 disc-level images from the three intervertebral planes, 600 images in
total. Each image is inspected and graded, and the anatomy annotated with 37
landmarks outlining the disc, central canal and facet.

Results of Landmark Detection. To cover richer pathological variations,
we perform the landmark detection on the mixed dataset containing all 600 im-
ages. We randomly choose 300 images for training and detect the landmarks on
the remaining 300. Two metrics are used for the evaluation: the Point to Bound-
ary Distance (PtoBD) and the Dice Similarity Coefficients (DSC) of the canal
and disc contours. DSC is defined as the amount of the intersection between a
fitted shape and the ground truth, DSC = 2-tp/(2-tp+ fp+ fn), with tp, fp, fn
denoting the true positive, false positive and false negative values respectively.
We compare the proposed WAP with three popular models: AAMs [10] as a
standard appearance model, ASMs as a widely used shape model, and CLMs [9]
as a part-based approach. To validate the improvement of the loglets pyramid
decomposition, we also report the performance of an alternative model by replac-
ing our pyramids with the original images but using the same HOG features and
SDM algorithm. We refer to this control model as WAP~. The mean results of
landmark detection are shown in Table[T] We can see that the WAP outperforms
the other methods by a favourable margin. The lower variances also indicate its
superior performance in terms of consistency. Several qualitative results by WAP
are shown in Fig. [dTop).

Table 1: Performance of landmark detection

Metrics AAM ASM CLM WAP~ WAP
PtoBD (in pixels) 3.10+£1.29 2.51+1.32 2.34+1.15 1.954+0.92 1.87+0.73
DSC (%) 90.6 4.9 92.1+5.2 92.4+5.2 93.9+3.3 94.7£2.6

Results of Anatomical Classification. For central stenosis, in each of
the three subsets, the morphology of the central canal is inspected and labelled
with three grades: normal, moderate and severe. The average appearances of
these classes delineated by WAPs are shown in Fig. [5{a). We randomly pick 100



Fig. 4: Top: Qualitative results of landmark detection. Bottom: Appearance fitted
by WAP. The appearances shown are represented by bg in the feature space
which are used as inputs for classification.

(a)'ﬂ” (b)'ﬂ

Grade 1 (normal) Grade 2 (;noderate) Grade 3 (severe) Normal Abnormal

Fig.5: Average appearance of classes represented by WAP. (a) Three grades of
central stenosis. (b) Normal and abnormal in terms of foreminal stenosis.

samples to train the classifier, and test on the remaining 100, and repeat for
100 times for an unbiased result. The WAP extracted from the detected land-
marks are projected onto the feature space and represented by a compact set
of parameters bg (Fig. 4] Bottom), which are used as inputs of the classifier.
The performance of normal/abnormal classification is measured with accuracy,
which is calculated by (tp + tn)/(tp + tn + fp + fn). The grading errors are
measured with Mean Absolute Errors (MAE) and Root Mean Squared Errors
(RMSE). We compare the performance of our method against approaches us-
ing other models as inputs to the same classifier. The agreements of the results
with manual inspection are reported in Table. [2| Similarly we perform another
normal/abnormal classification on the morphology of the neural foremen. The
average appearances are given in Fig. b). The classification accuracy of meth-
ods compared is reported in Table. [3l We can see that in both tasks, our WAP
appearance models enable a significant improvement.

4 Conclusions

We have presented a novel appearance model and demonstrated its applications
to the problem of LSS for variability modelling, landmark detection and pathol-
ogy classification. The improvement in the diagnosis and grading lies in its ability
to capture detailed appearances, better appearance correspondence by scale de-



Table 2: Agreement of classification and grading of central stenosis

Accuracy (%) of classification MAE of grading RMSE of grading
Method =y ) L4/5 L5/S1  L3/4 14/5 L5/S1 L3/4 L4/5 L5/SI
ASM 79.1+£4.8  77.44+4.3 81.7£4.5 0.25 0.31 0.20 0.55 0.67 0.48

AAM 70.1+£7.1  69.7£7.3 71.3+8.8 0.41 044 0.32 0.72 0.79 0.58
CLM 81.0+4.9 824445 82.7+4.4 0.23 025 0.23 0.53 0.56  0.52
WAP~ 80.7+4.9 82.14+4.6 84.7+4.2 0.23 025 0.18 0.53 0.58 0.47
WAP 84.744.6 84.5+4.3 85.9+4.2 0.19 0.21 0.16 048 0.54 0.44

Table 3: Accuracy (%) of classification of foreminal stenosis

Anatomy ASM AAM CLM WAP™ WAP

L3/4 83.3£3.8 73.3£5.5 83.1+4.7 84.3+£4.1 85.0+3.9
L4/5 82.4+4.6 76.2+5.8 83.3+4.3 86.9 £3.9 87.84+3.5
L5/S1 81.8 £4.7 74.5£5.7 82.9+45 85.2+4.3 85.71+4.3

composition, and more precise landmark detection. The model can be readily
applied to other anatomical areas for clinical tasks requiring segmentation and
classification. The source code will be released for research purposes. For the task
of LSS, our future work is aimed towards patient-level diagnosis by utilising the
image-level anatomical classification together with etiological information.
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