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RNA editing generates cellular subsets with diverse
sequence within populations
Dewi Harjanto1,*, Theodore Papamarkou2,*, Chris J. Oates3, Violeta Rayon-Estrada1, F. Nina Papavasiliou1

& Anastasia Papavasiliou4

RNA editing is a mutational mechanism that specifically alters the nucleotide content in

transcribed RNA. However, editing rates vary widely, and could result from equivalent editing

amongst individual cells, or represent an average of variable editing within a population. Here

we present a hierarchical Bayesian model that quantifies the variance of editing rates at

specific sites using RNA-seq data from both single cells, and a cognate bulk sample to

distinguish between these two possibilities. The model predicts high variance for specific

edited sites in murine macrophages and dendritic cells, findings that we validated experi-

mentally by using targeted amplification of specific editable transcripts from single cells. The

model also predicts changes in variance in editing rates for specific sites in dendritic cells

during the course of LPS stimulation. Our data demonstrate substantial variance in editing

signatures amongst single cells, supporting the notion that RNA editing generates diversity

within cellular populations.
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T
he central dogma of biology assumes faithful transmission
of information from DNA to RNA to protein. However,
changes in DNA methylation or the chromatin state

strongly affect not only the flow of information but also its
heritability. In addition to these epigenetic alterations, there has
been growing interest in investigating the epitranscriptome, or
modifications that occur at the RNA level, which can affect both
the regulation of gene expression, and what is actually being
expressed by directly altering the decoding of proteins.

One type of modification of interest is RNA editing, which
involves the dynamic alteration of specific nucleotides in
transcribed RNA. The advent of RNA-seq technology has
facilitated the identification of RNA-editing events in the
transcriptome, and numerous studies cataloguing such events in
diverse systems have been published1–3. RNA editing is mediated
by two types of deaminase enzymes: (1) ADARs, which convert
adenosine to inosine (A to I); and (2) APOBEC1 (as well as
APOBEC3A in humans, as recently described in ref. 4), which
converts cytosine to uracil (C to U). RNA editing has been
implicated in processes as diverse as neuronal and immune cell
development and function5,6, and oncogenesis and tumour
progression7–10. However, the functional relevance of specific
editing events, especially when taken in aggregate, is just now
beginning to be explored.

Specific RNA-editing events found from RNA-seq are typically
presented in the literature with their detected editing rates, that is,
the number of edited reads divided by the total number of reads
mapped to a specific site. RNA editing rates vary widely, from o1
to 490% per transcript per site; in our own analyses using
stringent filtering, putative C-to-U sites are edited at an average of
B15� 20% (Supplementary Data 1). To date, most studies have
focused on highly edited transcripts (for example, GLUR2 in the
brain11 and AZIN1 in cancer12), on the assumption that those
will be most meaningful for function; however, even highly edited
transcripts exist in a milieu where the vast majority of edited
transcripts are altered at substantially lower levels, raising
questions about the biological significance of editing in
aggregate. Consequently, two hypotheses have been proposed.
The first, proposed by Gommans and Maas, is that the abundance
of low-frequency RNA-editing events observed from bulk RNA-
seq data is an accurate representation of what happens in each
cell. Such low-frequency events may be ‘noise’, which may still
fulfil a biological function as an alternative mechanism to
genomic-level mutations for probing potentially advantageous
adaptations13. The second, alternative hypothesis presented by
Pullirsch and Jantsch, is that RNA editing may actually be
occurring at very high rates in specific subsets of cells, serving to
diversify cell populations14.

To test these hypotheses, we sought to compare editing
frequencies derived from population-based RNA-seq data with
RNA-seq data from single cells. There are a number of factors
that affect our ability to detect editing, including site mappability,
editing frequency and coverage. RNA-editing detection, especially
of sites that are not highly edited, is complicated by variations in
capture efficiency. This is not a concern in conventional bulk
RNA-seq, which is performed using a large amount of cells or
tissue, since the loss of even a large portion of the starting
material may be tolerated if the remaining fraction can still
provide a representative sample of the population’s gene
expression profile. But these sampling issues substantially impact
the ability to detect editing when libraries are made from single
cells. As noted by ref. 15, the cumulative losses during library
preparation, primarily due to inefficiencies in the reverse
transcriptase and PCR amplification steps, can severely impair
detection of lowly expressed genes in single-cell RNA-seq, where
one is working from extremely limited material. Transcript

detection efficiency has been estimated at 20% from single cell
RNA-seq16. Thus, if an editing event is not recovered in a single-
cell data set, it can be attributed to one of two possibilities: either
the site was not edited in the cell’s transcriptome; or alternatively,
edited transcripts mapping to that region may have been present
but were not captured during the sequencing library preparation
process.

Here we have compared APOBEC1-mediated C-to-U RNA-
editing rates derived from single cells with ‘bulk’ editing rates
recovered from populations of cells. To account for the
stochasticity inherent in single-cell RNA-seq, we have taken a
statistical approach: we have used a hierarchical Bayesian method
to model the levels of variability of rates per site across single cells
and in bulk samples, and to quantify the posterior variance of
editing rates in single cells. Our approach reveals that while some
transcripts are edited with low variance across cells (as predicted
by Gommans and Maas), others exhibit high editing rate variance
across cells (as hypothesized by Pullirsch and Jantsch). The
existence of the latter set of transcripts supports the hypothesis
that ‘bulk’ RNA editing represents a population average of cells
that show a wide spectrum of editing rates. Our work suggests
that the sequence diversity contributed by RNA editing might
provide subsets of cells with distinct informational content.
Further, our work implies that RNA editing might underlie or
anticipate the functional heterogeneity apparent in populations of
cells of monocytic lineage (for example, the macrophages or
dendritic cells we have focused on here), the mechanism for
which is currently not understood.

Results
RNA editing in populations and in single cells. By comparing
wild-type and APOBEC1� /� bulk RNA-seq data sets, using an
in-house pipeline (Supplementary Fig. 1 and Supplementary
Table 1), we detected 410 high-confidence C-to-U RNA-editing
events across 275 transcripts in bone marrow-derived macro-
phages (Supplementary Data 1). Within this terminally differ-
entiated, homogeneous population of resting macrophages
(Fig. 1a), nearly all (97%) of the C-to-U events were found to
occur in 30-untranslated regions of transcripts, similar to what
was observed in small intestinal enterocytes3. Bioinformatically,
from bulk data, we observed that C-to-U editing occurred either
at a single site in a transcript (termed ‘site-specific’ editing) or at a
set of distinct sites that were separated by a range of distances
within a transcript (termed ‘hyperedited’) (Fig. 1b).

To explore if the bulk editing rates, representing population
averages, were recapitulated on a per cell basis (Fig. 1c), we
performed single-cell RNA-seq on wild-type macrophages. The
cells were sequenced to an average depth of 1,000,000 100-
nucleotide reads. A scatterplot of the fragments per kilobase of
transcript per million mapped reads values from the ensemble of
reads from the 24 cells compared with the bulk experiment
indicated high correlation, with a Spearman correlation coeffi-
cient of 0.884 and a Pearson correlation coefficient of 0.898
(Fig. 1d). Robustly expressed transcripts such as B2m showed
little variability in expression levels in the single-cell libraries
(Fig. 1e). However, that was not the case for all edited transcripts.
The high confidence C-to-U sites identified from the bulk RNA-
seq were covered to varying degrees across the 24 cells (Fig. 1e),
with lowly and moderately expressed genes showing the most
variability, consistent with previous single-cell studies17.
However, editing variability did not necessarily correlate with
APOBEC1 levels as represented by transcript per million mapped
read values (Fig. 1f, bottom).

The sites that are covered generally exhibit C-to-U editing in at
least one of the profiled cells (402 out of 410 sites were covered in
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at least one of the cells; 222 of those sites were also edited in at
least one of the 24 cells), and there appears to be a wide range of
editing rates for some specific sites (Fig. 1f). For instance,
chrX:9436449 on the uniformly well-covered transcript Cybb is
edited in 61.5% of the reads mapping to that site in cell 6
(compared to just 23% in the bulk experiment), while the same
site isn’t edited at all in 11 other cells where the site is covered.
Similarly, chr3:36449030 on the Anxa5 transcript exhibits a range
of 0-36% editing in the 24 cells (26% in the bulk). While these
examples are suggestive of editing heterogeneity, given the
stochasticity inherent in single cell data, a more sophisticated
statistical framework is required to assess if a specific site is
indeed being edited at variable rates.

Hierarchical Bayesian model for editing rates. The biological
problem to be modelled can be described in the following sta-
tistical context (discussed in complete detail in the Supplementary
Methods). First, we select an editable site of interest on a given
RNA transcript, and its associated probability of editing. The
transcript can be modelled as a coin, with a probability of falling
on ‘Heads’ when tossed equal to the associated editing probability
(not necessarily 50%). We can think of each single cell j as
consisting of a stack of coins (with each coin corresponding to the
same site on a different copy of the transcript), each having the
same probability of falling on ‘Heads’, denoted by pj. Finally, we
can think of the population of cells as a bag full of stacks of coins,
where the probability of ‘Heads’ for each stack is drawn from an
unknown distribution on [0, 1]. The variance of this distribution

quantifies the diversity among editing rates of different cells
(or stacks of coins). The single-cell experiments correspond to
randomly picking J stacks from the bag and tossing some of their
coins, whereas the bulk experiment corresponds to randomly
picking a large number of individual coins from the bag, after
emptying all the stacks in and mixing them together.

More formally, for a fixed genomic coordinate and given single
cell j, we denote by xj the number of edited reads, nj the
corresponding total number of mapped reads and pj the
probability of editing (or editing rate). Similarly, we denote by
x, n and p the number of edited reads, total number of reads and
editing rate, respectively, for the bulk RNA-seq experiment. v will
be the variance of editing rate among cells.

The first component of our hierarchical model is a binomial
distribution:

xj jpj; nj � Bin nj; pj
� �

; j ¼ 1; . . . ; J ð1Þ
Using our analogy, this models the probability of observing xj

‘Heads’ when tossing nj coins, where pj is the probability of
getting ‘Heads.’ In this case, the binomial distribution is a natural
choice. The second component of the hierarchy is used to couple
together the different editing rates {pj}J

j¼ 1, through

pj j p; v � Beta� p; vð Þ ð2Þ
Here Beta* represents the beta distribution in the non-standard
mean/variance parametrization, as detailed in the Supplementary
Methods.

Assuming that the J single cells are randomly sampled from
the bulk RNA-seq experiment and that the number of cells
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Figure 1 | RNA editing in macrophages. (a) The macrophages analysed in this study are derived from murine bone marrow, and matured in vitro with

M-CSF. They are terminallyQ7 differentiated (as indicated by homogeneous CD11bþ and F4/80þ staining) and have exited the cell cycle, and thus

constitute a uniform population. (b) Example of a site-specific C-to-U editing event, on the 30-untranslated region of B2m (chr2:122152902), with Sanger

sequencing of cDNA from RNA and genomic DNA from macrophages from wild-type and APOBEC1� /� mice. (c) Cartoon of the two hypotheses to be

tested: edited reads (red) may be either distributed proportionately across a population with respect to unedited reads (blue) corresponding to the

same segment of a transcript, or concentrated in subsets of cells. In both distributed and concentrated cases, the effective bulk editing rate is 25%.

(d) Log2(FPKMþ 1) values plotted for a bulk RNA-seq experiment and for the ensemble of reads from 24 single-cell RNA-seq experiments for

macrophages from wild-type mice. Red line indicates x¼ y, and dotted green line indicates the fitted regression curve. Heat maps plotting the coverage in

log2(reads) (e) and the corresponding editing rates (f) for high confidence C-to-U edited sites in the 24 single-cell and bulk macrophage RNA-seq data

sets. Expression levels of APOBEC1 in transcript per million mapped reads are also provided under the heat map of editing rates (and also in Supplementary

Data 2). Sites are sorted in order of descending bulk editing rate. One edited site in B2m is at the top of the list; an edited site within Cybb is third from the

top of the list. FPKM, fragments per kilobase of transcript per million mapped reads.
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n comprising the population of a ‘bulk’ RNA-seq data set is large
(at least 105 cells), the mean editing rate is well approximated by
its standard mean estimator

p � x
n

ð3Þ

That is, since the number of cells n that comprise the population
of a ‘bulk’ RNA-seq data set is typically large, the mean editing
rate is accurately approximated by its standard mean estimator.

Note that vA[0, p(1� p)] is highly interpretable, with
v¼ 0 corresponding to identical editing rates across cells
(no variability) and p(1� p) corresponding to the largest possible
editing rate variability allowed by the model.

Bayesian inference. The previous section specified a hierarchical
statistical model such that, for each edited site, the model is
parametrized by the editing rates {pj}J

j¼ 1 and their variance
v. Because we assume that the edited sites can be treated inde-
pendently, we can restrict attention to just a single genomic
location, for which we can estimate the posterior distribution by
applying Bayes’ rule and the appropriate Markov chain Monte
Carlo algorithms (Supplementary Methods).

An important part in building a successful Bayesian model is
the choice of the prior. Formally, the prior distribution encodes
our a priori uncertainty with respect to the model parameters. To
derive a prior distribution on the variance among editing rates,
denoted by P(v), we take a Bayesian approach to construct
‘penalized complexity’ (PC) priors, as proposed recently in18. PC
priors aim to provide useful statistical regularization in the
absence of detailed subjective prior knowledge through a
principled approach to prior construction. They are predicated
on Occam’s principle that the simplest ‘base’ model B (0) should
be preferred to more complex alternatives B(v). PC priors are
therefore well suited to investigate the scientific null hypothesis
(v¼ 0).

More specifically, the PC prior is defined by placing an
exponential distribution P(d)¼ le� ld on the distance
d vð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KLðBðvÞ j j Bð0ÞÞ

p
, where KL(B(v)||B(0)) is the

Kullback–Leibler divergence between the distributions B(v)
and B(0). This explicitly penalizes model complexity, quantified
in terms of distance to the base model. Since the Kullback–Leibler
distance is parametrization invariant, it follows that so is the PC
prior P(v). The prior specification is completed by assuming that
the probability of the variance being greater than some value
vL is smaller than a chosen threshold—in this case, 0.01. In
mathematical notation, P[v4vL]o0.01 (Supplementary Methods
and Supplementary Fig. 2). Results in this paper were based on a
conservative prior that assumes little variability (vL¼ 0.142).

The posterior density of v provides a quantification of
RNA-editing variance. Statistically, this can be formalized
through the calculation of highest posterior density (HPD)
credible intervals (a Bayesian analogue of confidence intervals),
where a 95% HPD interval C for v means that the probability
of v falling in C given the observed data D is at least 95%. Thus,
HPD intervals enable direct probability statements about the
chance of v falling in C.

Sensitivity analysis and validation of Bayesian model. To test
the model, we performed simulations using artificial data sets
comprising of J¼ 20 cells exhibiting high levels of editing var-
iance for a theoretical site, generated by randomly sampling the
number of edited reads to attain effective editing rates only in the
region of 0� 5% and 95� 100%.

To assess the effect of the number of reads mapping to an
edited site on inference, simulations were run for varying levels of
coverage while fixing all other parameters (Fig. 2). The first

column of Fig. 2 compares the posterior and prior editing rate
variances. Even with as few as 10 mapped reads per cell,
the model is still capable of detecting the high variance in
the data since the posterior mass is shifted away from the vicinity
of zero. Similarly, the modes of the posterior editing rates per cell
(second column of Fig. 2) exhibit large variation irrespectively of
coverage. The third column of Fig. 2, illustrating the posterior and
prior marginal editing rates, shows the distribution of editing
rates among cells. While for coverage Z20 we observe clustering
of the editing rates in the regions of 0� 5% and 95� 100% as
expected, this is not so clear for coverage r10, indicating that
this coverage might not be sufficient to accurately capture
variability.

Figure 3 demonstrates in an analogous manner the role of the
number of cells in inference. For artificial data with high editing
rate variability and with presumed coverage of 20 reads per site
per cell in each data set, our ability to learn from data via the
model is not perturbed by the number of cells, with even as few as
J¼ 5 cells appearing to be sufficient to detect high editing rate
variance.

To further validate our model, we ran simulations on two
distinct data sets: one with very high variance (Fig. 4a), sampling
editing rates in the region of 0� 5% and 95� 100%, and one with
very low variance (Fig. 4b), with editing rates sampled from the
region of (45, 55%). In the former case, the posterior distribution
of the variance parameter v (hereafter referred to as simply the
posterior variance) is shifted away from zero, as expected for high
variance in editing rates, whereas in the latter scenario, it shifts in
opposite direction accumulating towards zero. When the variance
is high, the posterior editing rates per cell are dispersed. In
contrast, they concentrate around the bulk mean of 0.5 when the
variance is low. The marginal editing rate histogram exhibits fat
tails when the sampled editing rates come from extreme quintiles,
while it is peaked around the bulk mean of 0.5 when there is
nearly no editing rate variance.

We also ran simulations on the model using editing rates more
in the range of what is observed physiologically (Supplementary
Fig. 3), using J¼ 20 cells and coverage at 20 reads per site.
Minimal variance (mass still centred at 0) is observed when
sampling single-cell editing rates over the range of 0–20% (with
bulk mean at 10%; Fig. 5a) or from the wider range of 20–50%
(with bulk mean at 35%; Fig. 5b). The posterior variance shifts
from 0 when the artificial data set samples from the region of
5–15% and 40–50%, with the shift being more marked when the
bulk mean is in between these two regions (bulk mean at 35%;
Fig. 5c) instead of within one of those ranges (bulk mean at 10%;
Fig. 5d). This indicates that the bulk mean does have a significant
effect on how much variance is observed, which is consistent with
expectations: small variability means that editing rates among
cells are very similar and consequently also very similar to their
average.

In an attempt to test the model on an experimental condition
where there should be no editing rate variance, we looked for a
heterozygous genomic SNP in the RNA-seq data pooled from
the 24 single macrophages sequenced (since the cells were all
taken from the same mouse). We screened the pooled RNA-seq
data for genomic common, coding biallelic variants in dbSNP
138, and found that the mouse sequenced was potentially
heterozygous at 47 sites (that is, expressed both the annotated
reference and alternate bases, with the alternate base occurring
15� 85% of the time). However, coverage across the 24 cells for
these 47 sites was poor and the cells exhibited expression from
only one of the two alleles for many of the sites, consistent with
previous reports19,20. Therefore, variance was actually not low
in this situation as expected, so this did not prove to be a useful
control.
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Model suggests editing rates differ in single macrophages. The
use of artificial data allowed us to derive certain constraints:
minimally, the model requires some level of local read coverage
(Z10 reads for 20 cells, ideally Z20 reads) and a minimum
number of cells queried (Z5 cells with a minimum of 20 reads
per cell). However, by these standards, most editable sites, iden-
tified from bulk RNA-seq data, are insufficiently covered within
single-cell data sets to be tested with the model. For example,
whereas 275 genes are identified as edited within the bulk
macrophage data sets, only 29 of them are consistently detected as
expressed in scRNA-seq data (expressed at any level in all 24
single cells), and only 18 sites in 11 genes show sufficient coverage
over the editable site by our more stringent guidelines of having at
least 20 reads covering a site in at least 20 cells (80 sites exhibit at
least 5 cells with at least 20 reads covering a site; and only 9 sites
in 4 genes, 6 being in the single transcript B2m, show at least 20
reads in all 24 single cells).

We have chosen to apply the model to three editable sites
within three distinct transcripts: B2m (well covered and near

100% edited in bulk RNA-seq data, though the editing rate is
13–40% at six specific positions within the transcript); Anxa5
(well covered, 26% edited in bulk RNA-seq data); and Cybb
(well covered, bulk editing rate of 23%). For these sites, we
computed the prior and posterior distribution of the variance
(plotted in Fig. 5). Further, for these sites we computed the 95%
HPD credible intervals, from the posterior distribution of the
variance. The computation shows that v¼ 0 is not contained in
the 95% HPD interval of the posterior distribution of v for any of
the three tested sites. This can be seen as analogous to rejecting
the hypothesis ‘there is no variability’ with P value that is r0.05,
and is exactly determined by the area under each curve (that is,
95% of the area under the posterior distribution of v is contained
within the 95% HPD interval). The non-zero variance indicates
that there is heterogeneity in editing rates amongst the 24 cells
profiled (Fig. 5).

Note that the Bayesian approach is not limited to testing the
hypothesis of v¼ 0. The posterior distribution of the editing rates,
shown in the third column of Fig. 5 is highly interpretable: it can
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Figure 2 | EQ11 ffect of changes in coverage on model. Histograms of variance of editing rates (left), editing rates (middle) and marginal editing rates (right),

for varying coverage using artificial data with high variance.
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be thought of as a histogram of editing rates of different cells
from the bulk experiment. In the case of B2m, the posterior
accumulates mostly between [0.25, 0.75], with less mass in the
end points, indicating that an arbitrary single cell is likely to be
edited with an editing rate B50%. For Anxa5, we see that most of
the mass is concentrated in the [0, 0.5] interval, indicating that
editing rates vary but are not likely to be very high (more than
50%). Finally, in the case of Cybb, we see that most of the mass is
around 0, with a spread of the remaining mass in the rest of the
interval, indicating that the majority of cells are unedited, but that
the cells that do edit may do so over a wide range of rates.

Experimental validation of model-predicted heterogeneity. To
validate our model’s predictions of substantial cell-to-cell RNA-
level sequence variability, we used a modified reverse transcrip-
tion (RT)–PCR amplification protocol, to amplify regions of
specific transcripts (containing editable sites) using barcoded RT
primers from single cells (method diagrammed in Supplementary
Fig. 4). These amplicons were cloned into bacteria, followed by
standard Sanger colony sequencing. Because RT primers were

barcoded, PCR duplicates could be discriminated, and each
cDNA sequence illustrated in Fig. 6 represents sequence infor-
mation originating from a single contiguous transcript segment
within a single cell. A number of sequences with distinct barcodes
would represent a fraction of transcripts (and their modifications)
within one cell, allowing us to probe specific transcripts with
substantial depth.

For this validation work, we chose to focus on three regions
surrounding editable sites within three macrophage transcripts:
B2m; Anxa5; and Cybb. All three transcripts were well covered in
RNA-seq data from the single cells (Fig. 6a) but fall into two
distinct classes with regard to our model, with the posterior
marginal editing rate histograms exhibiting either negative
exponential (for example, Cybb) or unimodal (for example,
B2m and Anxa5) distributions (Fig. 5, right). For each of the three
gene regions studied, we collected and analysed 20 distinct
transcripts per cell, from at least 8 single cells, derived from mice
distinct from those that gave rise to the bulk RNA-seq and single-
cell RNA-seq data. We recovered two types of amplicons:
completely unedited amplicons (denoted in grey in Fig. 6b–d);
and edited amplicons (denoted in red, Fig. 6b–d), which in some
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Figure 3 | Effect of changes in cell number on model. Histograms of variance of editing rates (left), editing rates (middle) and marginal editing rates

(right) for varying number J of single-cell experiments using artificial data with high variance.
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Figure 5 | Applying the Bayesian model to macrophages. Simulations run on single-cell data (n¼ 24 data sets) for (a) B2m—chr2:122152902, (b)

Anxa5—chr3:36449030 and (c) Cybb—chrX:9436449. Left: histograms of variance of editing rates, across all 24 cells for each site with 95% HDP values,

computed from the posterior distribution of the variance, shown as a green dotted line within the plot; middle: histograms of editing rates, denoting the

distributions of editing rates for each cell (each cell is labelled with a different colour); right: marginal editing rate histograms, denoting the distribution of

editing rates among cells. The posteriors of v and p have been computed using a quadratic interpolation of the respective Kernel density estimators derived

from the Gibbs simulations. In particular, the posterior of p has been approximated via Beta kernels, as such a choice naturally adheres to the model

assumptions on the distribution of p and further facilitates the estimation of densities with bounded support (see for example refs 37,38).
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cases showed editing at multiple, unexpected sites, even when
they showed no editing at the site predicted bioinformatically
from bulk RNA-seq data (Supplementary Fig. 5a).

Furthermore, the single transcript sequence data we generated
with this method align well with model predictions. When we
analysed amplicons representing regions in the Cybb transcript,
our data demonstrate that cells in which Cybb is nearly fully
edited (for example, cell #1, 2 and 6) co-exist in the population
with cells that are hardly edited (for example, cell #4). Amplicons
for Cybb from additional single cells are shown in Supplementary
Fig. 5b, and indicate a similar distribution. These data are in

agreement with the posterior distribution produced by the model
(Fig. 5c, column 3). For B2m, although the transcripts are edited
in almost every cell, there still is substantial diversity in the
location of editing per transcript, and editing at the site queried
by the model is B50% (Fig. 6b). Similarly, our targeted single-cell
amplification and sequencing data indicated that the editable site
queried in the Anxa5 transcript was roughly uniformly edited, as
predicted by the model. These data also demonstrate that Anxa5
transcripts are substantially hyperedited, which was not apparent
from the bulk RNA-seq data. Our data therefore imply that
transcripts that were previously described as edited at a single site
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Figure 6 | Validation of model predictions using targeted amplification of editable sites from single cells. (a) Wiggle plotsQ8 showing coverage in 30-

untranslated regions for B2m, Anxa5 and Cybb in the 24 bone marrow-derived macrophages profiled. (b–d) Sequence alignments from targeted RT–PCR

amplification and Sanger sequencing of bacterial colonies for (b) B2m, (c) Anxa5 and (d) Cybb transcripts from gDNA and cDNA from a bulk sample

(amplified using standard PCR), and cDNA of single cells (amplified using a modified OneStep RT–PCR protocol, per Supplementary Fig. 4). Alignments,

showing the sequence space surrounding a particular editable site, are clustered by sample. Alignments are colour-coded to indicate whether the sequence

aligned contained (red) or lacked (grey) editing in the length of the amplicon. Though a C-to-U change may not be shown in the narrow window illustrated,

a red sequence would indicate that the amplicon sequence contained at least one C-to-U edit elsewhere (red). Lack of editing in the gDNA indicates that

the C-to-U transitions observed are bona fide APOBEC1-mediated RNA-editing events.
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from bulk RNA-seq data (due in part to the stringent filtering
used in bioinformatics algorithms to identify editing) may
actually be edited throughout their length, and could actually
be classed as ‘hyper-edited.’

Editing profiles for dendritic cells shift on stimulation. To
investigate if the model could detect the biological regulation of
editing rates, we applied our model to a single-cell RNA-seq data
set profiling bone marrow-derived dendritic cells under various
stimulation conditions16. Shalek et al. showed that while these
dendritic cells are transcriptionally and genomically
homogeneous while at rest, they quickly separate into two
groups in response to LPSQ2 stimulation: a group of ‘early
responders’ and a group that eventually catches up later in the
response. To investigate if RNA editing may be anticipating the
emergent diversity of this population, we applied our model to 20
single-cell RNA-seq data sets and the bulk RNA-seq data set for
each of the following conditions: 0 (or unstimulated); 1; 2; 4; and
6 h after LPS exposure16. Compared with macrophages, dendritic
cells express lower levels of APOBEC1 at the bulk level and are
highly variable in terms of APOBEC1 expression at the single-cell
level (Supplementary Data 2). We focused on the same sites that
were evaluated in macrophages in B2m (Fig. 7), Anxa5 (Fig. 8)
and Cybb (Fig. 9), finding that they were generally well covered
and edited to some degree in the single dendritic cells as well
(Supplementary Data 3). As with the macrophages, we found that
there is substantial (or at least, non-zero) variance in editing rates
for the selected sites in the 20 dendritic cells assessed at each time
point, with the variance interestingly being consistently higher for
all three sites in the unstimulated cells compared with cells that
had been exposed to LPS for 2 h. Given that the 95% HPD
intervals for the posterior distributions of variance for
unstimulated compared with 2 h do not overlap for Anxa5 and
Cybb suggests that editing at these two sites shows significantly
less variability in the stimulated population compared with the
unstimulated cells (forest plots in Figs 8 and 9; HPD intervals
provided in Supplementary Data 4). The biological relevance of
this regulation (and how it occurs) is unclear at the moment, but
this result makes some intuitive sense given that unstimulated
dendritic cells should be more plastic than cells that have been
exposed to a specific pathogen and have already begun going
down a specific response pathway. It is also feasible that editing
that occurs in a small subset of cells (for instance, Cybb in Fig. 9)
at time 0, might ‘pre-determine’ the fate of those cells (for
example, towards becoming early responders) with the rest of the
population catching up soon thereafter.

Discussion
The idea of variability in RNA-editing rates as a mechanism for
increasing functional heterogeneity across cell populations is an
intriguing new possibility that has thus far been largely
overlooked. Here, using APOBEC1-mediated RNA editing as a
model, we demonstrate that there is a significant range in editing
across different single cells, supporting the hypothesis presented
in ref. 14. However, transcripts that are edited at a uniform level
even within single cells also exist (for example, Anxa5, as
predicted by ref. 13).

To arrive at this conclusion, we used RNA-seq to quantify
editing in single cells. The normalization of single-cell RNA-seq
libraries is the biggest challenge to accurate quantification, given
the high variability in capture efficiency from cell to cell21. One
method to address this problem is to use unique molecular
identifiers (UMIs) to tag reads originating from either the 50- or
30-end of a given mRNA transcript with a unique sequence22.
However, since UMIs cannot currently distinguish if reads

originating from the interior of a transcript came from different
molecules, and C-to-U edited sites are generally covered by
internal reads due to RNA editing occurring most frequently at
sites distal to the 30-end, UMIs are not especially useful for
evaluating relative rates of editing. Another normalization
approach frequently used is to spike-in External RNA Control
Consortium (ERCC) standards to control for variation in capture
efficiency from library to library21. Though useful in comparing
the amounts of mRNA captured per cell, ERCC spikes have
limited applicability to the problem of editing rates, which relates
directly to the amounts of capture of specific transcripts and the
sequence variability in between them that is due to editing.

Because of the shortfalls of these experimental approaches, we
have used statistical modelling to deconvolute technical and
biological effects in assessing the variability of RNA-editing rates
across single cells. An assumption of the modelling is that
RNA-seq samples from the transcriptome in a completely
unbiased manner, when in actuality, RNA-seq libraries exhibit a
30-transcript and GC-content bias23. However, it is unlikely that
an edited read is more or less likely to be sampled than an
unedited read mapping to the same region unless it is
substantially hyperedited (or ‘ultra’ edited24), which is often the
case with ADAR editing, but not with APOBEC1-mediated
editing.

The model is also robust to errors due to RT–PCR, or
sequencing. We note that reverse transcriptase has characteristic
features (which include error rate—roughly 1/1,500 to 1/30,000
bases25 and also preferred misincorporation profiles26,27).
Second, our single-cell Sanger sequencing validation data demon-
strate additional non-deaminase-mediated base transitions
(for example, Supplementary Fig. 5a), which are likely the
result of sequencing error at the level of PCR amplification
(estimated to occur at a rate of 1–6 errors per 1,000 bases28), and
exhibit recurrent C-to-T mismatches from the reference in
distinct transcripts, with non-identical barcodes (Supplementary
Fig. 5). The likelihood that RT error (and not enzymatic
deamination) would give rise to such nucleotide transitions at
similar locations within different transcripts is negligible.

In performing the biological validation for this work, we found
substantial, largely unexpected editing neighbouring the predicted
sites that were simulated. The occurrence of many events over
hundreds of base pairs in a single molecule cannot be detected
by conventional RNA-seq, which relies on short reads to
reconstruct transcripts. The advent of single-molecule sequencing
(for example, Pacific Biosciences) should improve our ability to
detect editing along specific, contiguous transcripts. Future work
will be geared towards modelling editing profiles for all editable
transcripts per cell, allowing for a comparison of individual cells
by editing signatures, in analogy to population classification based
on expression profiles.

Overall, the model presented here can only be used to build
reasonable confidence intervals for sites that are highly covered in
single-cell RNA-seq data, which limits the number of sites we can
evaluate. Poorly covered transcripts are truly representative of few
mRNA molecules, exacerbating issues of sampling, especially in
the context of editing (Supplementary Fig. 6 and Supplementary
Table 2). Thus, our analysis must be strictly limited to well-
covered transcripts. Within those constraints, the model predicts
that some sites show high variance and we provide experimental
validation for one of these (Cybb) here. The finding of one such
site (out of only three evaluated) allows us to predict that a subset
of transcripts that are edited follow the Pullirch and Jantsch
models, and thus that RNA editing does generate sequence
heterogeneity within populations. We expect that the technical
limitations that result in poor libraries will be substantially
ameliorated in the future, rendering this model increasingly

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12145 ARTICLE

NATURE COMMUNICATIONS | 7:12145 | DOI: 10.1038/ncomms12145 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


B2m – chr2:122152902

U
ns

tim
ul

at
ed

1 
h 

af
te

r 
LP

S
 s

tim
ul

at
io

n

p
0.00 0.25 0.50 0.75 1.00

0

12

24

36

48

60

p
0.00 0.25 0.50 0.75 1.00

0
1
2
3
4
5
6

v
0.00 0.05 0.10 0.15 0.20 0.25

0

15

35

55

75 Posterior
Prior

2 
h 

af
te

r 
LP

S
 s

tim
ul

at
io

n

v
0.00 0.05 0.10 0.15 0.20 0.25

0

15

35

55

75 Posterior
Prior

p
0.00 0.25 0.50 0.75 1.00

0

12

24

36

48

60

p
0.00 0.25 0.50 0.75 1.00

0
1
2
3
4
5
6

4 
h 

af
te

r 
LP

S
 s

tim
ul

at
io

n
6 

h 
af

te
r 

LP
S

 s
tim

ul
at

io
n

p
0.00 0.25 0.50 0.75 1.00

0
1
2
3
4
5
6

p
0.00 0.25 0.50 0.75 1.00

0

12

24

36

48

60

v
0.00 0.05 0.10 0.15 0.20 0.25

0

15

35

55

75 Posterior
Prior

Posterior
Prior

Posterior
Prior

Posterior
Prior

Posterior
Prior

Posterior
Prior

p
0.00 0.25 0.50 0.75 1.00

0
1
2
3
4
5
6

p
0.00 0.25 0.50 0.75 1.00

0

12

24

36

48

60

v
0.00 0.05 0.10 0.15 0.20 0.25

0

15

35

55

75 Posterior
Prior

p
0.00 0.25 0.50 0.75 1.00

0
1
2
3
4
5
6

p
0.00 0.25 0.50 0.75 1.00

0

12

24

36

48

60

v
0.00 0.05 0.10 0.15 0.20 0.25

0

15

35

55

75 Posterior
Prior

0 0.025 0.05
v

Unstimulated

1 h after LPS stimulation

2 h after LPS stimulation

4 h after LPS stimulation

6 h after LPS stimulation

0.075

Figure 7 | Applying the Bayesian modelQ9 to dendritic cells under stimulation conditions (0–6 h after stimulation with LPS). Simulations were run on

single-cell data (n¼ 20 data sets each) and bulk data (from 10,000 cells) for B2m—chr2:122152902. Left: histograms of variance of editing rates, across all

20 cells for each site with 95% HDP values, computed from the posterior distribution of the variance, shown in green over each plot; middle: histograms of

editQ10 ing rates, denoting the distributions of editing rates for each cell (each cell is labelled with a different colour); right: marginal editing rate histograms,

denoting the distribution of editing rates among cells. The posteriors of v and p have been computed as described in Fig. 5. Each row represents data sets of

20 cells each under the indicated times from LPS stimulation (all data from ref. 16). A forest plot summarizing the 95% HPD intervals calculated from the

posterior distribution of variance is shown in the bottom centre, with the line segment for each condition spanning the lower to upper bound of the HPD

interval, and the box indicating the mean variance.
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Figure 8 | Applying the Bayesian model to dendritic cells under stimulation conditions (0–6h after stimulation with LPS). Simulations were run on

single-cell data (n¼ 20 data sets each) and bulk data (from 10,000 cells) for Anxa5—chr3:36449030. Left: histograms of variance of editing rates, across

all 20 cells for each site with 95% HDP values, computed from the posterior distribution of the variance, shown in green over each plot; middle: histograms

of editing rates, denoting the distributions of editing rates for each cell (each cell is labelled with a different colour); right: marginal editing rate histograms,

denoting the distribution of editing rates among cells. The posteriors of v and p have been computed as described in Fig. 5. Each row represents data sets of

20 cells each under the indicated times from LPS stimulation (all data from ref. 16). A forest plot summarizing the 95% HPD intervals calculated from the

posterior distribution of variance is shown in the bottom centre, with the line segment for each condition spanning the lower to upper bound of the HPD

interval, and the box indicating the mean variance.
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Figure 9 | Applying the Bayesian model to dendritic cells under stimulation conditions (0–6 h after stimulation with LPS). Simulations were run on

single-cell data (n¼ 20 data sets each) and bulk data (from 10,000 cells) for Cybb—chrX:9436449. Left: histograms of variance of editing rates, across all

20 cells for each site with 95% HDP values, computed from the posterior distribution of the variance, shown in green over each plot; middle: histograms of

editing rates, denoting the distributions of editing rates for each cell (each cell is labelled with a different colour); right: marginal editing rate histograms,

denoting the distribution of editing rates among cells. The posteriors of v and p have been computed as described in Fig. 5. Each row represents data sets of

20 cells each under the indicated times from LPS stimulation (all data from ref. 16). A forest plot summarizing the 95% HPD intervals calculated from the

posterior distribution of variance is shown in the bottom centre, with the line segment for each condition spanning the lower to upper bound of the HPD

interval, and the box indicating the mean variance.
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useful. On the basis of our current data, we establish that to
accurately capture the full range of editing variability, individual
sites have to be covered by at least 20 reads per cell (as a
conservative estimate), although as few as 10 reads per cell
appears to be sufficient for detecting significant variance in
editing rates. We therefore argue that the 50,000� 100,000 reads
deemed the minimum needed for single-cell differential gene
expression29 are insufficient for the purposes of evaluating the
status of epitranscriptomic changes, as they require higher
per-base coverage (in contrast to per-gene coverage).

Despite these caveats, we were able to validate experimentally
using targetedQ3 single-cell RT–PCR the statistical model’s predic-
tion of substantial sequence heterogeneity from cell to cell for
specific edited sites in macrophages and dendritic cells. This
resultQ4 is especially notable because data from either cell type
suggest that there are no significant gene expression differences
between individual cells while at rest. Furthermore, we find few if
any gene expression differences that are dependent on editing
at the population level (Fig. 1c). However, macrophages and
dendritic cells are known to acquire substantially different
functional attributes within minutes of stimulation16. We
hypothesize that the editing-dependent variability in mRNA
sequence, which results in robust differences in translation
(Rayon-Estrada et al., submitted), anticipates the phenotypic
heterogeneity observed on stimulation.

The statistical framework introduced here has numerous
potential applications. The model can be used to determine if
the editing profiles of specific sites are regulated (as demonstrated
in this study for LPS stimulation), for instance, under different
environmental conditions, or between developmental or cell cycle
states. This model can also be easily adapted to examine other
RNA modifications at single-nucleotide resolution, including
ADAR-mediated RNA editing, pseudouridylation and m6A
methylation. It may be especially useful in the study of single
cells taken from tumours (for example ref. 30), which, like
immune cells, are known to be highly heterogeneous in terms of
function. Indeed, multiple recent papers have shown that RNA
editing is elevated in many different types of cancer, and thus may
play a role in diversifying the transcriptome to a tumorigenic
effect8–10. Overall, editing-induced sequence variability at the
transcriptome level could prove to be as informative as DNA
somatic mutations for cellular differentiation and manifestations
of disease.

Methods
Data sets. We prepared RNA-seq libraries from bone marrow-derived macro-
phages (both bulk and single cell). Single-cell and bulk libraries prepared from
dendritic cells that were unstimulated. Dendritic cells exposed to LPS for 1, 2, 4 or
6 h from ref. 16 were also used (data downloaded from NCBI GEO accession
number GSE48968—see Supplementary Data 5 for SRA coordinates).

Cell culture. Bone marrow was flushed from femurs of 6- to 8-week-old wild-type
(Jackson Labs, Bar Harbor, ME) or APOBEC1� /� (courtesy of NO Davidson,
Washington University in St. Louis) C57BL/6J mice. To obtain bone marrow-
derived macrophages, cells were cultured in DMEM, supplemented with FBS,
non-essential amino acids, beta-mercaptoethanol and 20 ng ml� 1 M-CSFQ5
(Peprotech, Rocky Hill, NJ) on bacterial plates. One day after initial isolation,
the cells were replated at 2 million cells per 10 ml media (per 100-mm dish). Half of
the media was replaced every 3–4 days. Seven to nine days after initial isolation, the
cells were checked for maturation by FACS (Cd11bþ , F4/80) and collected.

RNA-seq library preparation. To generate single-cell libraries, wild-type
bone marrow-derived macrophages were flowed into a C1 IFC for mRNA seq
(10–17 mm) chip using the Fluigidm system. Lysis, RT and PCR were performed
using the SMARTer Kit designed for the C1 (Clontech, Mountain View, CA). The
efficiency of chip loading (capture) was confirmed by microscopy and any of the
wells that contained either none or more than one cell were noted and discarded
from further library preparation and analysis. In all, 24 single cDNA libraries were
selected for library preparation on the basis of concentration and size range, as

determined via Agilent Bioanalyzer. Sequencing libraries were made from the
cDNA using the Nextera XT DNA Sample Preparation Kit (Illumina). To generate
conventional bulk RNA-seq libraries, total RNA was extracted using Trizol
(Invitrogen, Grand Island, NY) from 500,000–1 million cells wild Q6-type and
APOBEC1� /� macrophages. A unit of 1 mg of the total RNA collected per con-
dition was then treated with DNase, and then processed using the NEBNext Ultra
Directional RNA Library Prep Kit for Illumina (NEB, Ipswich, MA).

Sequencing and alignment. Libraries were sequenced on the Illumina HiSeq
2000, generating 100-nucleotide, single-end reads. Reads were trimmed for quality
and adapters using Trim Galore!, and then aligned to mm10 (using the reference
sequences and annotations provided by iGenomes (Illumina)) using Tophat2
(ref. 31), allowing only unique alignments and up to 2 mismatches per 25-
nucleotide segment. Gene expression was determined using Cufflinks32. The
correlation of gene expression between the ensemble of single cells and the
bulk was calculated using the Spearman and Pearson correlation coefficients.
Potential PCR duplicates were removed from single cell alignments using Picard
(http://broadinstitute.github.io/picard).

RNA-editing detection pipeline. APOBEC1-dependent C-to-U RNA editing
was detected from the bulk RNA-seq data sets using a modified version of
our previously published bioinformatics pipeline3 (Supplementary Fig. 1 and
Supplementary Table 1). Briefly, a vector consisting of the number of A’s, T’s, G’s
and C’s that occurred at each coordinate was constructed from the SAMtools
pileup33 for both the wild-type and APOBEC1� /� bulk RNA-seq alignments that
were deduplicated using Picard (http://broadinstitute.github.io/picard). For each
coordinate that exhibited a C-to-T change only in the wild-type sample (that is, not
in the knockout alignment, such that only APOBEC1-dependent C-to-T changes
are kept) and met a number of stringent quality control thresholds (minimum of
five reads covering site, with at least two reads supporting the editing event,
excluding sites that showed multiple types of transitions; and discarding reads that
contain indels, support an edit in the first or last two base pairs of a read), the angle
between the corresponding vectors for the wild-type and knockout were compared.
Putative hits were retained if the magnitude of the wild-type vector was at least 15
and the angle between the wild-type and knockout vectors was at least 0.11 radians
(approximately equivalent to a minimum coverage of 20 reads and an editing rate
of 10%). Potential sites were also filtered against genomic DNA-derived SNPs in
dbSNP138, and removed if they occurred within four base pairs of a splice junction
(using the exon junctions compiled by the Zhang lab, using OLego34) or in simple
or tandem repeats (softmasked regions by RepeatMasker). Reads supporting
edits were run through BLAT35 to ensure that they were not ambiguously
mapped. The pipeline was programmed using Bash and Python with the Pysam
(https://github.com/pysam-developers/pysam) pileup engine. RNA-editing events
were then validated by designing primers proximal to the sites of interest,
amplifying those regions from cDNA and genomic DNA from both wild-type and
APOBEC1� /� cells, and performing colony sequencing.

Targeted single-cell RT–PCR. To analyse editing of specific sites in single cells,
single wild-type macrophages were sorted into 96-well PCR plates with 5-ml of lysis
buffer, containing 0.45% NP-40, 0.36 U ml� 1 RNAse Inhibitor and 0.18 U ml� 1

Superase-In (Ambion). RT–PCR amplification was done with gene specific primers
and the OneStep RT–PCR kit (Qiagen), using a modified protocol. Single-tran-
script molecules were tagged with barcoded gene-specific primers that have an
additional universal sequence, used in RT. These primers were then digested with
1 U of Exonuclease I (30 oC for 30 min; NEB)36. Afterwards, a mix of universal
forward and gene-specific reverse primers were added to the PCR mix and 35–40
cycles of PCR were performed. The PCR products were introduced into bacteria
using a TOPO TA cloning kit (Invitrogen) and single bacterial colonies were
sequenced using Sanger sequencing. The resulting sequences were then aligned to
the reference transcriptome (Macvector) and PCR duplicates were eliminated using
the barcodes.

Transcript specific primer sequences were as follows: B2m primers: RT:
50-GGCCAGTGAATTGTAATACGACTCACTATAGGNNNNNNAAAGCAG
AAGTAGCCACAGGGTTG-30 . PCR-reverse: 50-TTAAGCATGCCAGTATGGC
CGA-30 ; Anxa5 primers: RT: 50-GGCCAGTGAATTGTAATACGACTCACTA
TAGGNNNNNNGTCGCCAATGTTTTGGAT ACTACCATC-30. PCR-reverse:
50-GCGACACATCTGGAGACTATAA GAAGGC-30 ; Cybb primers: RT: 50-GGC
CAGTGAATTGTAATACGACTCACTATAGGNNN NNNGAGGGTTTGTG
CCTAGTCTTATTGCA-30 . PCR-reverse: 50-GCATGCGCTCATCTTGTTTT
GACTTC-30 . Universal PCR-forward: 50-GGCCAGTGAATTGTAATACGACTC
ACTATAGG-30 .

Statistical methods. For full methods, please see Supplementary Methods.
Artificial data were generated by randomly sampling the number of edited reads to
attain effective editing rates in the desired ranges (for example, for cell j, 20
of 20 reads may be randomly selected as edited, for 100% editing within that cell).
An implementation of our model is publicly available as a package written
using the Julia programming language: https://github.com/scidom/
CellwiseEditingDifferentiation.jl
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Data availability. Bulk and single-cell macrophage RNA-sequencing data are
publicly available in the NCBI GEO repository under the accession number
GSE74720. The experimental data used to generate the graphs presented in the
paper are provided in Supplementary Data 1 (macrophages) and Supplementary
Data 3 (dendritic cells).
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