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Curve shortening flow coupled to lateral diffusion

Paola Pozzi * and Bjorn Stinner '

July 18, 2016

Abstract

We present and analyze a semi-discrete finite element scheme for a system consisting of
a geometric evolution equation for a curve and a parabolic equation on the evolving curve.
More precisely, curve shortening flow with a forcing term that depends on a field defined on
the curve is coupled with a diffusion equation for that field. The scheme is based on ideas
of [12] for the curve shortening flow and [13] for the parabolic equation on the moving curve.
Additional estimates are required in order to show convergence, most notably with respect to
the length element: While in [I2] an estimate of its error was sufficient we here also need to
estimate the time derivative of the error which arises from the diffusion equation. Numerical
simulation results support the theoretical findings.

Keywords: curve shortening flow with a forcing term, surface PDE, finite element approximation,
convergence

MSC(2010): 65M15, 65M60, 35K65, 35K40

1 Introduction

We aim for approximating the following problem: Given a closed initial curve I'g and a function
¢o : To — R find a moving closed curve {T'(t)}1epo,r) C R? and a family of fields ¢(t) : T'(t) — R,
t € [0, 77, such that

v=kr+ f(c), (1.1)
Of ¢ — CRU = Cqs, (1.2)
T'0) =Ty, ¢(0)=co. (1.3)

Here, s is an arc-length parameter of the actual curve I'(¢), v is the (scalar) velocity in the direction
of a unit normal field v, & is the (scalar) curvature, f : R — R is a coupling function, and 05 is
the material derivative (97 c = 0ic + v, c if ¢ is smoothly extended away from I').

The system consisting of 7 can fairly be regarded as the simplest system coupling a
geometric evolution equation to an equation for a conserved field on the evolving manifold. We
do not have any specific application in mind for , . But more sophisticated geometric
evolution equations and parabolic PDEs on the moving manifold feature, for instance, in cell
biology as an effective approach to cell motility [23] [I8]. Problems in soft matter physics such as
the relaxation dynamics of two-phase biomembranes can also be modeled by such type of systems
[16, 17]. From a mathematical point of view, the evolution of pattern forming PDE systems on
deforming surfaces is of general interest, for instance, see [25].

Working in a parametric setting we assume that the curves can be parametrized by a family
of functions u(t) : S* — R?, i.e., ['(t) = u(S',t). For the initial curve we write Iy = ug(S!). By
(-)* we denote the counter-clockwise rotation by 90 degree in R?. We write 7 = u, /|u,| for a unit
tangent field and assume that the orientation is such that v = uy/|u,|. For convenience, the field
c on the evolving curve will be denoted by ¢ again after transformation to the parameter space.
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A strong formulation of the geometric equation (with no tangential velocity) in the parametric

setting then is
1 /uy ur 1
0= ( ) — FO T = = 7 = () (1.4)

while for the PDE on the evolving curve we obtain

x 1 X
Ozct—i—c'u e _ (C ) (1.5)

In order to approximate the solution let Y} denote a finite element space (details will be
provided later on in Section [3) and let X}, = Yhz. Then consider the problem of finding functions
up(,t) € Xp, and ¢p(+,t) € Yy, ¢ € [0,T], such that up(-,0) = upo := Ip(uo), cn(-,0) = cpo :=
I (co), and such that for all ¢, € Xp and ¢, € Y}, at almost all times t € [0, T

Uha
/ Ih(uht~cph)|uhm|d:c+/ h ~<phzdsc :/ Ih(f(ch)gah) 'U}J{z d’l,‘, (16)
st st [tne| st
d Charghw
- /22 dx = 0. 1.
([ el dz) + [ G g < 0 (17)

Here, I}, stands for the interpolation operator for both scalar and vector valued functions.

With regards to the equation for ¢, the approximation by is inspired by [I3].
The resulting scheme is intrinsic in the sense that it does not require any knowledge about the
parametrization but only the positions of the vertices that are given in terms of uy, (see Algorithm
below). However, for the numerical analysis we cannot resort to the methods in [I3] because the
moving curve I'(¢) is not explicitly given but by the solution u of the geometric equation . Its
approximation by is based on [I0] where a scheme for two-dimensional surfaces is presented.
The one-dimensional semi-discrete case but with anisotropic surface energy has been analyzed in
[12] (evolution in a plane) and in [26] (higher co-dimension), see also [II] for the isotropic case.
In addition, there is the forcing term f(c)ui /|u,| which is of lower order but, because of the c
dependence, requires a coupling of the error estimates for u to those for c.

Regarding the estimate for ¢, the main difficulty arises from the term c|u,|;/|ug| in (L5). The
error of the length element |u,|— |up,| already had to be estimated in the L*°([0,T], L?(S')) norm
when proving convergence of the approximation to curve shortening flow in [I2]. However, here we
need an estimate for the time derivative of the length element |uz|; — |upz|:. The key observation
is that |u,|; can be estimated in terms of the squared velocity and the length element, see in
Lemma below. Mimicking these calculations for the error |uz|; — |upns|+ is the content of the
novel Lemma [£.1] which subsequently proves sufficient to obtain suitable estimates for ¢ — ¢j,. Our
results are summarized by:

Theorem 1.1. Under Assumption [2.9 there exists hg > 0 such that for all 0 < h < hq there
exists a unique solution (up,cp) of (L.6), , and the error between the smooth solution and the
discrete solutions can be estimated as follows:

T
/ / (|ut — up|® 4 |ce — chw\Z)da:dt < Ch?, (1.8)
0 Jst

2
sup / (lT — 1>+ |e—cnl® + (|uw| — |uh$|) )dm < Ch?, (1.9)
tel0,T] J St

with a constant C' > 0. The constant depends on the final time T, on the bounds || f||r~®) and
I.f'[| oo ) of the coupling function, on the bounds ||ullw1.(o,7],m2(s1)), llcllwr. (o, 11,11 (1)), and
llcll Lo (jo,77,52(s1)) of the solution (which includes the bounds |lug||g2(s1y and |[col| sty of the
initial values), on the bound C** from below of the length element, see n Assumption
and on the constant C ruling the grid reqularity (cf. )

Our proof follows the lines of [I2] on anisotropic curve shortening flow though we should
mention that for the isotropic curve shortening flow other ideas and techniques have also been used,
for instance, see [§]. From a practical point of view, mesh degeneration is an important problem
for long-time simulations. We will not address this issue here but for ideas to move vertices in
tangential direction as appropriate we refer to [22], [3], [2], and [I5]. In [I] an additional forcing



term is accounted for, see also [6] for analytical results on such a problem. Also with regards to
PDEs on evolving surfaces there are other methods. For instance, in [24] a surface reconstruction
is used which is based on a fixed bulk mesh and in [19] a grid based particle method. Of course,
there are also other approaches to surfaces PDEs and geometric PDEs which are not based on any
parametrization but on level sets, phase field, or other ideas. We here only refer to the overviews
[9] and [14].

We start with specifying the assumptions on the solution to the continuous problem and
showing some properties in Section After, we carefully describe the finite element approach
and, proceeding analogously to the continuous case, show some properties of the semi-discrete
solution. Section 4] then contains the technical estimates required for convergence which is stated
in the section after. In the final section we report on numerical simulation results which support
the findings.

Acknowledgements: The authors would like to thank the Isaac Newton Institute for Math-
ematical Sciences, Cambridge, for support and hospitality during the programme Coupling Geo-
metric PDEs with Physics for Cell Morphology, Motility and Pattern Formation where work on
this paper was undertaken.

2 The continuous problem

Here and in the following sections, constants which, in general, will vary from line to line in the
various computations will be denoted by capital C. Moreover we occasionally use the abbreviation

r=fle)= (2.1)

The finite element approximation consisting of ([1.6]) and (|1.7)) emerges from the following weak
formulation of the system (1.4)) and (1.5):

Problem 2.1 (Weak problem). Find functions u : S* x [0,T] — R? and ¢ : S* x [0,T] — R such
that u(-,0) = ug, c(-,0) = co, and such that for all test functions ¢ : S* — R? and ¢ : S* — R and
almost all times t € [0, T

/ ut - @lug| da + / M Opdr = fo)p- ui dz, (2.2)
S1 st Ul S1

d 2

— = d dr = 0. 2.3
dt(/slcdu | x)*/s ] (23)

Note that if ¢ : St x [0,7] — R is a time dependent test function then (2.3) becomes

%</51 c(t)C(t)|uz(t)\dx) +/ ol dx:/Sl Gl | d. (2.4)

st |ug|

Clearly, we can not expect the flow to be eternal, since the flow might exhibit singularities in
finite time (like the curve shortening flow). We thus make the following assumptions regarding
existence, uniqueness, and regularity of the weak solution:

Assumption 2.2. Both f and its derivative ' are bounded,
[fllze@)y < Cs Nf L@ < C with some C > 0.

There is a unique solution (u,c) of (2.2), (2.3) on the time interval [0,T] with initial values
u(+,0) = ug(-) € H2(SY), c(-,0) = co(-) € H*(S) which satisfies

u € Wh([0,T], H*(S1)),
¢ € Whe([0,T], HY(SY)) N L=([0, T], H2(SY)).

Moreover, there is a constant C** > 0 such that

lug| > C** on S* x [0,T). (2.5)



Remark 2.3. There is a huge literature on the curve shortening flow (and more generally on the
mean curvature flow), see for instance [I] and [21]. There are also results for curve shortening
flow with a forcing term. For instance, in [3] it is shown that if f is smooth and the initial curve
ug 15 embedded then the maximal existence time of a smooth solution is bounded from below by a
quantity that depends on the initial data and || f| e mw). There do not seem to exist any results
on short time well-posedness, regularity, and long-time behavior for our specific type of problem.
However we count upon the standard methods for proving short-time well-posedness for parabolic
systems to work thanks to the relatively nice elliptic second order structure of the spatial part of
the differential operator. We leave these analytical questions for future studies and here focus on
approzimating the solution as it is postulated in the above Assumption[2.4

From now on (u, ¢) will always denote the solution as specified above. Note that direct conse-

quence of Assumption is that
lelleqo,m,m1(s1)) < C (2.6)

with a constant C' > 0. Obviously then also ||c|[z2(jo,7),#1(s1)) < C and (by embedding theory)
lelleo,r], oo (s1y) < C hold.

Although the bounds derived in the next lemma are implied by the regularity assumptions
imposed on the continuous solution, the derived equations and methods of proof will be important
to derive discrete analogues later on.

Lemma 2.4. 1. For the length element we have that

lugle = =l ug| +wg - 7 fugl. (2.7)
2. Furthermore,
lug| < C* (2.8)
with a constant C* > 0.
3. Fort € [0,T] we have that
t t
/0 lug|?dt < C and /0 lug —r[?dt < C on S*. (2.9)
Proof. We have that
[ugle =7 (Ue)e = (T - U)e — T - g = — (U — 1) - g |Ug|

by (1.4), (2.1), and the fact that w; is a normal vector. The second claim follows from the
boundedness of f and a Gronwall argument applied to

1 1 1
[uale < —ludl*lual + [uel [l fus] < =5 lue*lus] + Sl ua] < S1F()I Jual. (2.10)

Finally observe that from (2.7) we know that |us|? < —% + ug| r] < —“‘ilel‘ + 2 + Lwl?,
whence

Sl + el < S1rf?u

—|ug]?|u u =17 Jug .

9 t T x|t = 9 x
Integration, (2.5)), and (2.8) gives the third claim. O

3 Spatial discretization

Let S! = U;\f:l S; be a decomposition of S! into segments given by the nodes x;. We think of
S; as the interval [z;_1,2;] C [0,27] for j = 1,...,N. Here and in the following, indices related
to the grid have to be considered modulo N. For instance, we identify xy = zn. Let h; = |9;]
and h = max;—; . n h; be the maximal diameter of a grid element. We assume that for some
constant C' > 0 we have

h; > Ch, |hjy1 —hj| < Ch?. (3.1)



Clearly the first inequality yields Ch;i1 < h; < hjc—f L. For a discretization of (2.2)) we introduce
the discrete finite dimensional spaces

Y, :={veC' (S R) : v|s, € P1(S;),j=1---,N}, X,=Y;

of continuous periodic piecewise affine functions on the grid. The scalar nodal basis functions of
Y}, are denoted by ¢;, j =1,..., N, and defined by ¢;(z;) = &;;.

For a continuous function v € C°(S1,R) let I;,v € Y}, be the linear interpolant uniquely defined
by Inv(z;) = v(z;) for all ¢ = 1,..., N. For convenience we also denote the interpolation onto
X, by I,. We shall use the standard interpolation estimates (both for scalar and vector valued
functions):

lv = Ih'UHL2(S1) < CthUHH’C(Sl) for k=1,2, (3.2)
||(’U — Ih'U)rHL2(Sl) < ChHUHH?(Sl) ,
[(Inv)allL2(s1) < Cllvallpz(st) - (3.4)
Recall also the inverse estimates for any wy, € Y and j =1,..., N:

¢ (Em) c

lwhallz2(s;) < FHwhHLz(Sj) lwha |2 (s1) < EHwhHL?(Sl)a (3.5)
j

C E1) C

|wallLoe(s;) < ﬁ”whﬂm(sj) o lwnl|Loo(s1) < ﬁHthILz(sw. (3.6)

Problem 3.1 (Semi-discrete scheme). Find functions up(-,t) € Xy and cp(-,t) € Y, t € [0,T],
of the form

up(,t) = Zuj(t)%(l‘)a cn(w,t) = ch(t)%‘(fv)

with u;(t) € R? and ¢;(t) € R, such that up(-,0) = upo := In(ug), cn(-,0) = cpo := In(co), and
such that for all ¢, € X, and (, € Yy at almost all times t € [0,T] (1.6) and (1.7) are satisfied.

Note that we may want to use a time dependent test function in the equation for ¢, of the
form

N
Cnla,t) =) ¢(t)ps().
j=1

In analogy to (2.4) equation (1.7) then becomes

d c X €T
7(/ cn()Ch () [une (1)] dw) +/ hohe g / chCatlung| d. (3.7)
dt St St |Uhx‘ St
Recalling that indices referring to the grid always are understood modulo N, let
Uj — Uj1
qj = |uj — uj—1l, 7=, vj =1
495

If we insert ¢;, j = 1,..., N, separately for each component of ¢, in (1.6|) then we get the following
2 x N ordinary differential equations:

q; + qj+1

) 1
5+ 7 = T = 5 () (g — ) (3:8)

and the initial values are given by u;(0) = uo(z;), j =1,...,N. With

(w1 —uj—1)* (@75 + giTih) 1
j = _ J = ’ _ _ . = — —(qjVj + ¢j+1Vj+1) (3.9)
q; + gj+1 q; + qj+1 q; + qj+1
and
rji= f(Cj)Dj (310)



we can rewrite the system (3.8]) with the initial condition as

Do 2 (. — )
U+ e () =T for j=1,...,N. (3.11)
u;i(0) = wuo(x;),
Define the piecewise constant function
ha:S' =R, hg(x)=h;forx € S;.

A short calculation shows that another equivalent formulation to (1.6|) is

Up

1
/ Unt|Une|on dx + 6/ Ut |Unz | WaPhe dT + /
51 51

g1 |uh:12

:/ Ih(f(Ch))sOh'uﬁdewLé/ (In(f(cn))a®he - upphide.  (3.12)
St S1

‘ T Qha d

Next we aim at giving the discrete equivalents of the results in Lemma[2:4]

Lemma 3.2. Let ¢ € (0,T] and assume that (up,cp) is a solution of (1.6, (1.7) fort € [0,] such
that q;(t) >0 for all j=1,...,N and all t € [0,1].

1. For j=1,..., N we have that

741 =1%o =7l (3.13)
(¢ +qj+1) (g5 +g5-1)

(g5 + qj+1) . (g5 +qj-1),.
=75 (ry =) = =l - ril? — =l = 2. (3.14)

G =7 (rj —rj1) =

2. Furthermore with a constant C > 0

max_g;(t) < € max_g;(0),

1<j<N 1<j<N (315)

lune (5 )l Lo (s1) < Cllunoe ()L (s1)-

3. Moreover, there is a C > 0 such that

i T 2
/ (¢ + qj41)|i; — r;|2dt < Ch, [ ="y o, (3.16)
0 o (4 +qjx1)
Proof. From the definition of g; we obtain by differentiating in time
G =75 (U —j-1).
From the system (3.11)) together with 7; - (7j41 — 7;) = —3|7j41 — 75|® we infer that

2
q; + qj+1

i =l

+ 7.
qj + qj+1 s

iUy = T (T =) Ty =

Arguing similarly for the term 7; - 4;_1 one obtains equation (3.13). Using (3.11) we can write
Tip1 — 7 = B8 (4, — ;) and ([B.14) follows which proves the first assertion.
For the second assertion we set f; := f(c;) for simplicity. Note that by (3.9)

-1

441
7 (rj —rjo1) = fj—"—(1j - vjp1) = fjo1—r— (7 - vj1).

4G+ g T q]+qj 1

Since —HEL_ < 1 we get that
q;+qi+1

j+1 j+1 R he S
7fj7—j . Vj+1’ = ‘ \/mf]TJ m

q; + 4q5+1 q; + q;+
1 q+1 24 € i1 — v € |mj41 — 75
< J f % —qimlf 2, 2o+l gt
26(];+Q+1|]| 2 ¢+qgi+1 T 2 sl 2 ¢ +qin



and, similarly,
2
€lr—1— 7l

gi—1 f ‘ 1 2
oty v | € o-gialfial? +
’ R il 2 ¢j+qi

q; +qj—1

Therefore

el -7l | el -7l
2 q;+qj41 2 ¢ +qj—1

Equation (3.13)) and equation (3.17) with e = 1 yield that

e G e s
(g +aj+1) (g5 +qj-1)

1
7 (rj —rj—1)| < i(qj+1|fj|2 + -1l fi-1?) + (3.17)

G <|mj - (rj —7rj-1)|

1
< ||f||2Loo(R)§(qj—1 +dj11).

Integrating with respect to ¢t we infer that

t
. < . < . (t\dt' .
q;(t) < max ai(t) < nax ¢:(0) +C /0 e qi(t')dt
Applying a Gronwall argument we obtain the first estimate of (3.15)). The second one is a direct
consequence of the first one thanks to (3.1]).

From (3.14) and (3.17) we infer that

. _l’_ . . . + . .
(qj 4qj+1) |uj _ rj|2 + (QJ 4QJ 1) |uj71 _ ijl 2
<|rj-(rj—rj—)l — 4
P I

+ C|| f112 = 1t Gis1) — G5
@+ am0) @) 1A 7o ) (Gi—1 + @j+1) — 45

_ g +4541) (¢ +45-1)

. 2
1wl em—

iy 1 = 7j-1] + Cell f I ooy (@5 -1 + 511) — 45
where we have used (3.11]) in the last equality. Choosing e appropriately, integrating with respect to
time, and using that ¢;(t) = hj|ung||; < Ch thanks to (3.15), we obtain the estimates (3.16). [

|\sj

4 Error estimates

In this section we prove some estimates that will enable us to show convergence of the semi-
discrete solutions (up, ¢i) of , to the solution (u, ¢) of the continuous problem as specified
in Assumption For this purpose let us assume that for A > 0 there is a unique solution (up, cp,)
for ¢ € [0,¢] with some ¢ € (0,7 (this question will be addressed at the beginning of the proof of
Theorem in Section .

We commence with some calculations for the error of the length element |u,| — |up,| and show
some preliminary estimates in Lemma These are used to obtain an estimate of ¢ — ¢j in
suitable norms, see Lemma An estimate of u — wy, in suitable norms (see Lemma follows
the lines of [I2] and involves an integral term of the error of the length element which we estimate
last in Lemma [£.4]

For the convenience of the reader we recall the abbreviations

q:|Uz|» T:?a v=1"=— ’}“:f(C)V:f(C)77

for the solution to the continuous problem while for the semi-discrete case we recall

Ui — Uiq

— — ], S ——] J L

dh = ‘uhz|u q; = h]qh‘S‘ = |uj uj*1|7 T; = ] y Vi =T5,
J q]

_ gV H gtV

; r; = f(e;)7;.
j G+ Gt j 3)Vi



By (2.7) and (3.14)) we can write for each grid element S; = [x;_1, ;] the following equation:

1 1 .
(hjq —qj)e = —{*hjq lug —r[* = =(g; + qj41)|; — Tj|2}

2 4
1 2 1 . 2
—{Ghialu =P = 30+ q-0li-1 = i)
- (hij(ut —r) Ty (- Tj—l))
=-B"-B - B.
Using (3.9)) we can write
A L qj+1
B=Zhjq(ut—r)-vf(e)+ fle;)—L——1; - vjs1
2](t ) () (J)qj+qj+1] J+
1 i .
+ =hiq(us —7) - vf(c) — flcjo1)—2——7; -v;_1 = By + Bs.
5hia (ue =) vf(e) f(”l)qﬁrqulj j-1= Bi+ DBy
Observe that
2 2(1j41 — 1)t 2(Tj41 — 75) .
T Vi = T e =y e = () — )
4 +3qj+1 q; + qj+1 q; + qj+1
by (3.11)), so we can write
. 1 1
By = ith(f(C) = fe) (we—r)-v+ gf(cj)(hjq = qj41) (ue —71) v
1 1 .
+ 5 f(e) a5 (ue =) - (v = vy) + 5 fe)azav; - [(ue = 7) = (i = 7))l
Similarly one can show that ﬁq -vj_1 = —vj - (rj—1 —4j_1) whence
. 1 1
By = Shsa(£() — Fles1) (we = 1) v+ 2 e 1) (hya — 51 ) (e — 1) v

1 1 .
+ 5 fle-1)g-1(ue =) - (v = vy) + 5 fej-1)as-1v5 - [(we = 7) = (dj-1 = 15-1)].
Let us also set
1 1
BY = fus = r[* (ghy = gj) + Jlu = 7] (ahy = gj41)

1 .
+ Z(Qj + qj1) (Jue — r|? —Ji; — Tj‘Q)

1 1
= Z'ut —r* (gh; — q;) + Z'ut —r|* (gh; — qj4+1)

+ i(%‘ + qjv1) (i — 1) - [(ue — 1) — (@5 —7;)]

1 .
+Z(qj+qj+1)[(ut—7“)—(uj—rj)]'(Ut—r>=B1++Bz++Bg++B4+-

Lemma 4.1. Assume that t € (0,T] is such that

*%

< |upz| <2C*  on 0,1

Then there exists a constant C such that for any time t € (0,%] we have:

1. On each S; we can write

ol = funalel < O (lue = @ + Jus = i) + CL

where
Lj:=lc—cjl+lc—cja|+ |7 =7l + 7 = 71| + |7 = 7531
qj qj qj— . :
+lg = 21+ la = 7=+ g = 2|+ g — ] + |ug — iy | + b
h; hji1 hj—1

(4.1)

(4.2)

(4.3)

(4.4)



2. Moreover N
E / lug — 1% + |wg — j—1|*dz < Ch® + C/ lug — upe|*de (4.5)
. ' Sl

and

N
Z/ |Lj|2d;v§C/ |c—ch|2dx+0/ |7 — Th|?dx
s 51 51
—l—C/ (|unz —|um\)2d$—|—0/ luy — upe|?dx + Ch?. (4.6)
51 51

Proof. As we have assumed that 2C* > ¢;, > C**/2, the discrete length elements are comparable,
in other words
C g1 <q; < Cgjya - (4.7)
Note that |f(c) — f(c;)| < || f'[l®)lc — ¢;] and

4j+1 qj+1 1 G+1,, G+ Ry — hyta 4j+1
0= 25 = g g (= ) < o= R e Rl < B o )
Jt+ it hy hjya J+1 J J+1
(Which follows by (3.1)). Thus, using (2.8), ([£.7), and the bound |up,| < 2C* we obtain from
(4.2), E ) for some C' > 0 that
1Bl
h;

4j+1 -1
< Cllue = rllzssny (b le =l +le = et 17 =71+ o = 320 +1g = 322)
-

O (I =yl + I = gl + |+ g = 5]
Note that thanks to Assumption [2.2{and (2.1)) |[u; — 7| Lo ([o,7],L00(s1)) < C. Observe that on S;
=il <[(f(e) = Fle))vl+ 1 f () (v — 7))

dj+1 ‘

<N Npeemyle = ¢l + 1 £l e (R)7|V_VJ|+”JCHL > (R) o+ V= Vji1]
qj T 441
SClC*le+C(|T*Tj|+|7*7j+1|), (4.9)
and similarly for |r — r;_1|. Hence we get
15| el le—e, ol .
i <C(le—cjl+le—cjal+m =7+ [r =71 + |7 = 7j41])
j

+c(| q]“|+| Z{11|>+C(|ut—uj|+|ut—uj1)+0h.
i

Note that By defined in can be written as

B;=@iﬂﬂwfwm»wrmn—w—mﬂ+ﬂiﬁﬂwrwnww—@n—v—mk
4 4

Using the L>°-bounds for u;, r and r; (recall (2.1)), (3.10)), and |7;| < 1), (£.7)), the bound |up,| <
2C*, embedding theory, and arguments similar to those employed in (4.8]), and (4.9)), we infer that
|B*|

< Ch+ Clug — ij?
h;

q j .
+C< J+1|+\ J.|+|ut—’LLj|+C—Cj|+T—Tj|+T—Tj+1|>.
h;

Arguing similarly for B~ and putting all estimates together we finally obtain from (4.1]) that

Bt B~
|.q,7|<c<||+|+ )

hJ h] hj
< C(Jun =i + u = -1 2)

+C(le=eil +le = cjmal +|r = 7l + |1 = myma| 7 = 74l

QJ+1 QJ 1

o= 21 g = P = {2 b g o = il )
J



which shows the first claim.

. . . (r—x;5-1)
As uhtlsj = Uj—1 + (Uj — Uj_l)ihj 1

, we have that up¢(z;) = %;. On the other hand

Inui(xj) = u(z;). Therefore for x € S; we can write
ur () =ty = ue (@) — ue(2;) + Inue (25) — une(;)

- / e (€) d€ + Tyun(;) — une(a5) < Vhluel s s;) + Tnue (25) — une()

J

For wp (x) := Ihus(x) — upe(x) we can use the inverse estimate (3.6]). Therefore

. C
le) = iy < Ohluals,y + 5 [ (= w)) de
J o5
2 C 2 O 2
< Chlluelzrs,) + 5~ ; (Inue —ue)™(§) d€ + 7~ g (ue — une)™(€) d€
7 i J i

C
< Chllulfs, + 5 [ (= une)?(©) de
Jj JS;
by (3.1) and (3.2). Arguing similarly for the term |u; — @;_1|, integrating, and summing up over
the grid intervals we obtain (4.5)).
Regarding the last estimate, observe that for any y € S;11 and = € S; we can write

gj 4 4
la(z) — Tj“ | < lq(z) — q(y)| +la(y) — TJH | < CVhlull2(s,us,.0) + la(y) — hJ“ .
J+1 J+1 j+1

Thanks to the continuity of ¢ we can choose y € S;41 such that

hivi(a(y) = an, )* < /S

j+1

(a(€) —qn,, )¢ :/ (q—aqn)?dz.
A Sj+1
Using this fact and (3.1]) yields that

q;
/ = hjli|2dx < Ch2||u|\12q2(sjusj+1) + C’/ (g — Qh)zdx.
S; +1 S

J j+1

With similar arguments for ¢ — ¢;/h; and ¢ — ¢;—1/hj_1 we obtain that

qj 2 qj+1 |2 45—1 2
lg = =" +1q— " +la— “dx
/sj h; hj+1 hj—1

< Ch*|lull}as,08,4 108, 1) + C s s g — gn|?de.  (4.10)
jUSj+1US; 1

The terms |c — ¢;| and |¢ — ¢j_1] can be estimated similarly as |u; — ;| and |u; — @;_1| whence

[ el le = eimal s = o o e = i o

J

S ChQHUtH%{1(Sj) + C/S (Ut - Uht)2<§) df + ChQHCH%{l(Sj) + C/S ‘C — Ch|2d$(}. (411)
J J

We can use the boundedness of |u,| from below (2.5) to get for any =, y € S; U S;41 (suppose
y < z or change the order of integration otherwise)

o) =) < [ "€l de < OV /S g (€] ) /2

U +1
Choosing y € Sj11 such that hji1|7(y) — 7j41]* < ij+1(T — 74)%dz we can write
7(x) = T3 ? < |r(@) = TP + |7(y) = 71|

C
< Ch”u”ifz(SjUSj_;_l) + ﬁ/s (T — Th)de .

Jj+1

10



Repeating the same sort of argument for |7 — Tj,l\ and integrating over S; we get

/ I = T 4 |7 — 752+ |7 — 7y P

J

< Ch*|[ullfas,0s,4108,1) + C (1 — m)*dz .

SjUS;j11US;5 1
Putting all estimates together and summing up over the grid intervals (4.6)) follows.

Lemma 4.2. Assume that t € (0,T] is such that

Hok

< Jupg| <2C* on [0,1], and

lenlle o, sty < 2C(SY) el o), sty

(4.12)

(4.13)

where C(SY) is a constant for the embedding H*(S') — L>®(SY). Then the following estimate

holds with some constant C > 0:

t
/‘c(ﬂ_ch(f)|2d$+// |Ca — el ddt
St o Js1
= C/ (Jua(®)] = lune (D)) da + C1
S1

t t
+C’/ \c—ch|2dxdt—|—0/ / |us — upe|*dwdt
0 Jst 0 Jst
t t 5
+C’/ \777h|2dxdt+C/ / (Jua| = |una|)” dzdt.
0 Js1 0 Js

Proof. The difference between the continuous (2.4)) and the discrete version (3.7)) reads

Cy Cha
[ (eluel = enfunaguae+ [ (- 226 0 =0
St St

[ua]  Jtnal
for all test functions (j(x,t) of the form ¢, = 3, (j(t)¢;(x). Choosing
Ch=In(c)—ch=c—cp+1In(c)—c

a short calculation yields that

d 1 2 |(C_Ch)m|2
2] Z(e- Lld Re= el
dt(/slz(c )" [tun| x) +/Sl e

_ /S (c(ltna] — ua) (e — cn) di — /S L e cnlunsle do

+ c;lt</51 (cluz| = cnlune])(c — Ih(c))dx)

(clug| = enluns|)(c = In(c)), dx

(¢ = cn)alc = In(c)a
1 |uhx\

(C_Ch)w |u$| B ‘uh1| d$+/ Cg;([h(c) —C) Iuml - |uh;E| dr
Sl

C
s Vunal v/ Junalusl * una| |

K;.

1

dxr

+
T o

+
T

|
'M"

j=1

11

(4.14)

(4.15)



Using Lemma [{.1] we can write

K| = ’/ ct([unel —qu\)(c—Ch)dx+/ c(|una| = |uz|)i(c = cn) dx
st St

<| [ el ush e -
S
N N
+02/ |c||c—ch|(|ut—aj|2+|ut—uj,1\2)dx+cz/ lelle — el L; da
j=175i j=1"5i

1 1
< gl [ Qunsl = sl Pdo+ 5 [ (e=en?do
St St

+ CHCHLOO(Sl)HC — ChHLoo(Sl) <h2 + /1 |Ut — uht|2dx)
S

N
+ C’/ lc|?|e — cp|2da + CZ/ |L;|*dx.
51 =S
Together with ([2.6)), the assumptions (4.13), and (4.6)) we obtain that
K| < C’/l(|uhx| ~ Jual)? dx+0/1(c— en)una| dz
S S
+ C’/ |y — wpe|*dx + C’/ |7 — 14| dz + Ch2.
St St

Similarly for K, using again Lemma (2.6), embedding theory and the assumptions (4.13)) to
estimate ¢ — cu[ oo (g1) We can write

1 1
Kal <5 [ e enPllunal ~ lusbide+ 5 [ e~ nllusllda
St St

N
< Clle= nlZeisr, S /S (e — i + g — 12}
j=1"5;

J

N
1 1
+ Clle — enllpoo (st (f/ |c—ch|2dx+f/ |L»|2dx)
( )]; 2 s, 2 s J

+C/ lc — cn|*dx
Sl
< Ch? + C/ |us — uht|2dx—|—0/ lc — cp|2da
St St
+0/ (|uhw|—\um|)2dx+/ I — m[2de.
St St
For K3 we note that by (2.6]), (4.13)), and (3.2
| [ elual = enluna e~ Tn()daf
S’l
—| [ (= enlunsl(c = Tu@) e+ [ el = s e~ Tn())daf
St St

Sé/ (cfch)2|uhz|dx+C’/ (|| = [unz)? denghQHcH?ql(Sl) (4.16)
st st

with € > 0 that will be picked later on. We will refer to this estimate later on when integrating

(4.15) with respect to time. For the term K, we infer from (3.2]) and (4.13) that

il = | [ el = fonalee = Tnten)) da+ [

(¢ = en) (e = Tn(er))luns | d|
St

<c / (lus| — Junel)? dz + C / (¢ — 1) unal da + Cller] 3 g1, h%-
S1 St

12



By the interpolation estimates (3.2)), (3.3]), (4.13)), and embedding theory we have the following
estimates for the terms involving spatial gradients (for € > 0 arbitrarily small):

e [ ML g [ =BT
T s || ‘ S1 ||

dx

2

c—ch)e

SE/ 7|( h) | dLC-i-CEHC”%_Iz(Sq)hQ,
St |Une|

_ 2
|K6\Se/ e = en)al” d:c+ce/ (ta] — luna])? dz,
St |“hx| S1

|K7‘ S CHC||2H2(Sl)h2 + CL](‘U1| - |Uhx|)2 dx.

Summarizing all these estimates we obtain from (4.15) that we arrive at

‘ 2

d 1 5 |z — cha
20 Zje- ol d ) 8o — Chal
dt</;12|c Ch| |Uh | . +/Sl |uhz| v

_ 2
ge/ les —enal”
St |uha:‘
d
5 ([ =il 1@ do+ [ cllual = s~ In(e) do)
St g1
+C’/ ‘C—Ch|2|uhx|dx+0/ |ut_uht|2dl'
St g1
+C’/ \777h|2dx+C’e/ (|uz|f|uhz|)2dx+C’€h2.
S S1

Integrating with respect to time from 0 to ¢, using (4.16)), (4.13)), and embedding theory we get
for € small enough that

t
/1 \c(f)—ch(f)|2da:+/ / ey — ca|2 ddt
S 0 S

< 0/1 (o — cnol2 dr + / \(coltos] — conlunos])(co — In(co))| d
S S

+ 02 [ 1 - P e [ (na0] - let0)” i

t t
—|—C’/ / |c—ch|2\uhx|da:dt—|—0/ / |us — upe|*dxdt
0o Js 0o Js1

t £
+C/ / |T—Th\2dxdt+c/ / (|| = |un|)? ddt + C:h2.
0 JSt 0 Js?t
Note that
/sl lco — Ch0|2 dx = /S1 lco — Ih(00)|2dx < CHCOH%H(Sl)h2

and, similarly with some arguments as used to estimate K3
/51 |(coluoz| — conltonz|)(co — Tn(co))| da < Clleol T (s1yh® + ClluolFrz g1y h?.

Choosing ¢ small enough and using the above estimates for the initial data yields the claimed
estimate (4.14]). O

Lemma 4.3. Assume that t € (0,T] is such that

k%

< |upe| < 2C* on (0,1,
S fune| < 267 on [0,7] (4.17)

||Ch||iz([o,ﬂ,H1(sl)) < 4”0”%2([0,T],H1(Sl))'

13



Then the following estimate holds for some C > 0:

t
// |ut—uht|2dxdt+/ |7() — T (D)|? dz
0 Jst 51
t t 9 t
SC’// |T—Th|2dxdt+0// (Jua| = |unal) dacdt—i—C// lc — cp|* dzdt + Ch?.
0 Jst 0 Jst 0 Jst

(4.18)

Proof. The proof of this lemma follows the lines of the analogous Lemma 5.1 in [12]. However,
some additional terms concerning the dependence on ¢ have to be estimated. More precisely, while
the terms Iy, ..., I5 as defined below in have been treated in [12] already, the terms J,. .. Js
depend on ¢ or ¢;, and are new. They can be dealt with using similar arguments, though.

Let us first write down the difference between the continuous geometric equation and its

discrete version ((3.12)):

Ugs Upz
/ (ue|ug| — uneluna|)on + ( —— )sohx dx
St | | |[Unz]
— [ s@vlulonds ~ [ T(fen)mnlunslen do
S S
1

1
-l /S ()i una W3ona di + /S e Wi da

for all pp € Xp. As a test function we choose
on = Ipup — upy = (up — une) + (Inug — ug) € Xp, .

Observing that

U up, 0 [1 Up,
(2= ) e = uner) = (17 = 7Pl ) + e (7= 70 = () ] )
X X X
some straightforward calculations show that
d 1
/ |ut7uht|2|uhx\dx+d— —|7 — ) Jung| dz
Sl t Sl 2

1
_ / el = el e — une) e+ ¢ / nat|tne B2 (Tntty — ung) da
S’l

1(ut — upt) (up — Tpug)|upg | dx

( Uy Uhgx )('U/t_[hut);rdx_/ Uyt - (T_Th+(7h_(T.Th>7_>|uh93|)dx
1 Sl

m B || ||

+

_|_

flv(lupg| = |uz])(Tpus — upt) doe — é/SI (Ihf(ch))muh|uhx|h§(lhut — uht)mdx

1

+ fle)(v —vp)(us — ups)|upe | do — /S1 fle) (v —vp)(us — Inue)|upe| dx

1

va(f(e) = In(f(cn)))(ue — une)|une| dz

1

_|_

|

+ [ () = D) B = )| d
S’l
=h+L+L+L+Is+Ji+J+Js+ i+ J5+ Js. (4.19)
An evaluation of the integrals I, I> and I3 is given in [I2, Lemma 5.1], therefore we can assert
1] < 6/ une — | uns| do + Ce/ (|une| — |ug|)? dz + Ch*,
St st
12 S Ch27

|I3] < e/ s — uht|2|uhm| dz + C.h*,
Sl

14



with € > 0 to be chosen later. Note that, for I3, one uses Young’s inequality ab < a? + b?/4 and

(3-4) to obtain

1 1
12 = _7/ |(Ihut)x - uhmt|2|uhx|h§ dx + 6/ (Ihut)x|uhm\h3((fhut)x — uhmt) dx
5’1
< g1 [ 1)l d < 1.
Next we use interpolation (3.3) and - to obtain that
4] = |/ (7 —7n) - (us — Tpug), da| < / |7 — 7| |une| dz + Ch?.
St S

Noting that

|Uhac‘

=7+ (1 — (70 - T)T) |
by (4.17) we can infer that
2
‘I5| S C/ ‘Th — T|2|uhx| dzx + C/ (|uw\ — |’U/hw‘> dx.
51 51
The integral J; can be estimated exactly as I; because of its similar structure. Using (4.17))
|J1] < e/ |ups — wg|? | ung| do + C’e/ (|wne| = |uz|)? dz + Ch*
st 51

with € > 0 to be chosen later. For Jo we note the following using (4.17)), (3.4), (3.5)), (3.2), and
the boundedness of f':

1/2 1/2
1 < Cr ([ 10 en)aPhunsl o) ([ 1 = une)of ] o)
st S1
1/2 1/2
<cn( [ 1. ae) ([ - unPlun do)
St St
1/2 1/2
<cn( [ e an) ([ 1 Pl do)
Sl Sl
1/2 1/2
wen( [ 1@ az) ([ ue— el luna de)
St S1
S CehZ/ |Chx|2d$+OHIhut 7utH%2(Sl) +6/ \utfuht|2|uhx|dx
St S1

Se/ |ut7uht\2|uhz|dz+ce</ |chz|2d:c)h2+0h2.
St St

Using Young’s inequality, noting that |v —vy| = |7 — 73|, and using interpolation estimates we also
infer that

|J5] < e/ [y — || upe|de + C’e/ |7 — 7| [une |de,
St g1

|J4] SC’/ ‘T*Th|2|uhm|dl‘+0h4.
Sl

The second last term J5 can be estimated using (4.17), (3.4) and the L*°-bounds for f and f’ as
follows:

sl <e / ftg — el Junald + C. / 1£(6) = Tn(F (en)[Pluns|dz
St St
Se/ |ut—uht|2|uhx\d3§
+C/ |f(e) — flen |2dx—|—C/ |f(cn) — In(f(cn))Pdx

<e/ |utfuht| |uhz\d9:+CE/ lc — epl dz+CEh2 1+/ |chz|2dx).
St St St

15



Similarly,
\Jﬁ\gc/ |c—ch|2dx+(]h2(1+/ o2 ).
St S

Collecting all the estimates and by embedding theory we obtain from (4.19) that (for h < 1)

/ |y — une]?|u \dac—l—i/ 1\7’—7’ 1|une | d

o t ht hx dt 1 2 h hx
< C’e/ g — Uht|2|uhx| dx + Ce(l +/ ‘Chz|2 dm)}ﬂ
St g1
2
+c/ |T—Th|2|uhx|dx+c€/ (e — [une) |uhw|dx+C€/ e — cnl? de.
g1 S1 g1

Choosing € small enough, integrating with respect to time from 0 to ¢ and using (4.17) we obtain
that

t
//|ut—uht|2dmdt+/ |7() — T (D)|? dz
0 Jst st

< C/ |70 — 70h|2\u0hm|dx—|—0h2
Sl

t t t
—|—C’/ / |T—Th|2dardt+0/ / (|uz\—|uh$\)2da:dt—|—0/ / lc — cp|* dxdt.
0 Jst 0 Jst 0 Jst

(4.20)
Note that by
e — wpel® = ol lunelIT — h]? + (Juz] — [una|)? (4.21)
and by interpolation theory (3.3)) we have that
2 |uos — uons|* 2 2
/ |70 — Ton| \uOhx|da:§/ : : deC/ |(ug — Inup).|* de < Ch=.
St St w0z st
Thus, (4.20]) yields the claimed estimate. O
Lemma 4.4. Assuming that
< |upg| <2C* on [0,1], (4.22)

there exists a constant C > 0 such that for all t € [0,
[ (el = a0 P < 2
S1

t t t
+0/ |cfch|2dacdt’+0/ / (T*Th)zdxdt/%»C/ / lug — upg)? dadt’.  (4.23)
0 Jst 0 Jst 0 JSt

Proof. Note that thanks to the assumption that 2C* > g5 > C**/2 the discrete length elements
are comparable, that is C1g;j11 < ¢q; < Cgji1.
Integrating (4.1]) with respect to ¢ we obtain

(hjq—qj)(t)=(hjq—qj)(0)—/ B+dt’—/ B‘dt’—/o Bar . (4.24)

0 0

Clearly

1hiq — 4;(0) = |hjluoa| = hjlunosl|s, | < chl(uo — Intuo)x| < chy/hjlluollm2(s)) -

16



Using (4.2), (4.3)), and (2.8) we get (in S;)

/Ot |B|dt’
<cn, ( / e — r|2dt’)1/2 ( / 7@ — )P+ 17(e) ~ f(Cj—l)Ith’>l/2

1/2 t 1/2
2dt’> (/ lug — 7'|2(|th - ‘11'—1|2 + lgh; — ‘Ij+1|2) dt')
0

vo(f P + 1)
=y e — rPlggr + qm)dt')l/z (/ P + F(es)

+ C(/Ot (Ij+1|f(cj)‘2dt/) - (/ot
+ C(/Ot qj_1|f(cj_1)|2dt’) - (/0

Using (2:9), the fact that g, < 2C*hy for all k, |f(c) — f(er)| < |f'|l=@)lc — cx| and the
boundedness of f, f’, u; and r we obtain that

t . t 1/2
/ |B|dt’§0h(/ \c—cj|2+|c—cj,1|2dt’)
0 0
t 1/2 t 1/2
+C(/ (|th—qj_1|2+|th—qj+1\2)dt’) +Ch(/ |T—rj|2dt’)
0 0

+ Ch(/ot |(ug — 1) — (4 — rj)‘2dt/> 1/2 N C’h(/ot e —7) — (g1 — 151) dt')l

1/2
a1 + gyl = it
) 1/2
(a5 + a1 |(we = 1) = (i — ;) Pat)

t . 9 1/2
(g5 + a5l = 7) = (5o =y )P at)

/2
Integrating (4.4]) with respect to t yields
‘ / ‘ 2 34/ 1/2 ! 2 2 2 / 1/2
/ |Bt|dt’ < C(/ |ug — 7] dt) (/ lue = 7* (lahj — q;|* + lgh; — q;j+1] )dt)
0 0 0

t 1/2 t
+o( [ @ +apoliy ) ([
0 0

t 1/2 t
+C</ ((Ij+Qj+1)|Ut—T|2dt/) (/
0 0

Thanks to (2.9)), (3.16)), the bounds for u;, r, and the fact that g < 2C*hy, for all k& we obtain

. 9 /1/2
(4 + a0l = 7) = (i = ry)[2ar’)
. 9 , 1/2
(¢ + aj+D)[(ue — 1) = (45 — ;)] dt) :
! + 1| 4 ‘ 2 2 / 1/2 ! . 2 g4/ 1/2
[ 1Bt <o [ oy - labs =gl ae) e on( [ - - @ -rpPar)
0 0 0

Repeating the same arguments for B~ and putting all estimates together we infer from (4.24)) and
recalling (4.9) that

t 1/2
|hja(t) — q;(t)] < Cha/hjlluoll2(s;) + Ch </0 lc— ¢ + e — Cj—lzdt/>
t 1/2 t 1/2
+Ch</ |(ut7uj)\2dt’) +Ch(/ |(utfuj_1)|2dt'>
0 0
k 2 2 2 ! 1/2
+C</ (Ighj = a;* + lahj — a1 ]* + lah; — g1 )dt)
0

t 1/2
+ Ch (/ |T—Tj|2+|T—Tj1|2+|T—Tj+12dtl> .
0

Squaring the above expression, integrating with respect to space over \S;, using and (4.11)), (4.12)),
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and (4.10)) leads to

t
| hiatt) = a0 de < 00 (ol + [ lelBings, + B a + el )
J

t t
+ C’h2/ / le — ch|2dxdt' + C’hz/ / (¢ — Qh>2d33dt/
0 Sj 0 Mj
. t
+ Ch? / / (1 — ) dadt’ + Ch? / / lus — upe|? dadt’,  (4.25)
0 M; 0 M;

where M; := S; U Sj41 US;_1. Summing up over all grid elements and using that

/ (hjq—qj)zdehf/ (¢ — an)? dw20h2/ (¢ —an)dz
5’ .

i Sj S;

a Gronwall argument yields the claimed estimated (4.23]). O

5 Proof of the Convergence Theorem [1.1

Thanks to the estimates in the previous section |4| we are ready to prove the main result. We
follow the lines of [12, Theorem 5.3] but need to also derive the estimates for ¢ — ¢, and repeat
some arguments for the convenience of the reader.

Proof. First of all note that from standard ODE theory we have local existence and uniqueness of
a discrete solution (up,cp) of (L.6), (1.7). Assume that T* € (0,T) is the maximal time for which
we have that

C- < |ung| < 2C* on [0,T7],
lenllZz o .1 (s1)) < AllellZz o, m1esty), and (5.1)

lenlle oz, (st < 2C(SH)lellegom, m(sty)

where C/(S?) is a constant for the embedding H'(S") < L>(S"). Inserting equation (4.23) into
(4.18) (note that (4.17) and (4.22) are satisfied thanks to (5.1)) gives for ¢ € [0, 7] that

t
// |Ut—uht|2dxdt+/ |7() — T (D)|? dz
0 Jst S1
t t
SC/ ITfThFddec/ / e — ca? dudt
0 Jst 0 Js1
Foopt t
+C/ (/ |T—Th\2dmdt’+/ / |ut—uht|2dxdt') dt
0 0 Jst 0o Jst
t t
JrC’/ (/ |cch|2dxdt’> dt + C h?
o \Jo Js1
t 7
SC/ |T—7‘h|2dxdt—‘r0/ / ‘C—C}L|2d.13dt
0 JSt 0o Jst

t pt
JrC/ / / |y 7uht‘2d1‘dtldt+0h2,
0o Jo Js1

where, for the last inequality, we have used the monotonicity of the integrands. For instance,

t pt t pt t
/ / lc — cp|Pdadt’ dt < / / / lc — cp|Pdadt'dt < C/ lc — cp|Pdadt’.
o Jo Js1 0 Jo Jst 0 Js

A Gronwall argument yields that
t t
/ / [y —uht\gdacdt—i—/ |7(t) — T (1)|? dz < Ch? +C’/ lc — cp|2dadt. (5.2)
0 Js1 51 0 Js1
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Inserting this estimate into (4.23)) gives for ¢ € [0,7*] (again using the monotonicity of the inte-
grands)

t
/ (Juz (t)| = |une (t)])?dx < Ch? + C’/ / lc — cp|?dxdt’. (5.3)
st 0 Js
Next, we plug (5.2) and (5.3 into (4.14) (note that (4.13) is satisfied thanks to (5.1])) to obtain
for ¢ € [0, T*] that

t t
/ |c(t) — cn(D)]? daz—l—C/ / |cx—chw|2dxdt§0/ / lc — cp|*dadt + Ch?2.
st 0 Jst 0 Jst

Applying Gronwall again yields

t
/ le(t) — en(D))? dx + C’/ / lce — che|® dwdt < Ch?.
51 0 Jsr

Inserting this into (5.2)) and (5.3]) we obtain that
[ 7@ = + 160~ en@P)de+ [ (a0 una @)

t
+/ / (Jur — une|® + |cx — cpa|?)dzdt < CR*. (5.4)
0 Jst

The constants appearing so far do not depend on T™. Since uy,, is constant on each grid interval,
the above estimate together with classical embedding theory (see for example [4, Theorem 2.2])
implies

una (€, )| = [ua (@, )] = [[lue (5 )] = luna (- )| Lo (s1)
sk C
>0 = ﬁlllux(',t)I = luna (-, Ol 251y — eVhllul, )| 2
> Cc** — C\/ﬁ — C\/ﬁ(HUOHH%Sl) =+ ||Ut||L2([0,T]7H2(Sl)))

3
for all h < hg with hg € (0, 1) sufficiently small independently of 7. Similarly, after eventually

decreasing hy (recall also (2.8)), [upe| < 3C* for all h < hg independently of T*.
Next observe that using (5.4), (3.6)), and embedding theory we can write for ¢ € [0, T%]

llen(®ll Lo sty < [Mne(®)l[Loe(s1y + [[(en = Ine)(t) [ Lo (s1)

C
< ”C”C([O,T],LW(Sl)) + ﬁ”(ch - IhC)(t)HLQ(Sl)

C
<llelleqo,ry,=(s1y) + ﬁ(”(ch =) ()[l2(s1) + [[(c = Inc) ()l L2(s1))
(SHllelleqo,misty) + \%(h + hllclleqo,,m1 (s1)))

C(SYllelleqo,r), i sty

for all h < hg independently of T* (after decreasing hg if required). Using (5.4) we can easily
derive that

lenllZe o1, m1(s1y) < BllelTeo.r, a1 sy

for all h < hg independently of T* (after decreasing hg again if required). Continuity of the
solution (up,cp) with respect to time yields a contradiction to the maximality of T*. It follows
that T* = T and the theorem is proved. O

Corollary 5.1. Under the assumptions of Theorem [I.1] we have that

sup [lu(t) — un(t)l|31 (1) < Ch. (5.5)
tel0,T)
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Proof. From Theorem (4.21), and the fact that |u,| and |up,| are bounded we obtain imme-
diately the bound for the semi-norm |u — up|g1(s1y. To prove the L?-bound note that u(z,t) —

up(z,t) = u(x,0) —up(x,0) + fo ug(x,t') — upe (2, t')dt’ and use Theorem |1.1{again with the inter-
polation result (3.2) for the initial values.

6 Numerical simulations

6.1 Sources and reaction terms

We now aim for assessing the results in Theorem Exact solutions to the PDE system (|1 ,
are difficult to obtain whence we prescribe functlons (u, ¢) and account for source tcrms to
ensure that they are solutions, i.e., we consider

1 Ugs ut
Ug — 7(7) — flo) 5 =su (6.1)
T 1 T
ct —l—clu e _ ( ¢ ) =S, (6.2)

with functions s, : S* x [0,7] — R? and s, : S* x [0,7] — R.
The required extension of the weak formulation (2.2)), (2.3) is straightforward. With respect
to the spatial discretization of the source terms we apply the interpolation I}, as follows: Instead

of the equations ([1.6)), (1.7]) we have

/ Ih(uht goh)|uhm| + | | - Phe dx :/ Ih(f(ch)cph) . uf{x Jth(su . (f)h)‘uhﬂdlf, (6.3)
St hx St

d C}L.'L'Chl /
— c Upo | dx +/ dr = I (s0)Chlung| do. 6.4
G el dz)+ [ S0 o = [ 1)l (6.4

6.2 Time discretization

We apply a semi-implicit scheme which reads as follows:

Problem 6.1 (Fully Discrete Scheme). Given a time step § > 0, let M =T/ and find functions
ugzl)() € Xy, and cgzl)(-) €Yy, me{0,..., M}, of the form

N
ugy?( Zu(m)% e (@) =Y ™M)
j=1

with u;m) c R? and c§- €R, such that u(O)( ) = upo, C:(S(})L)(') = cpo, and such that for all ¢, € X,
Ch €Yy and all m € 10, .. —1}

(m+1) u(m) (m+1)

(M g Yl + S
st 0 6hx|

:[51 L (F(eSi)en) - (ugp) s + (s - o) Jugiy) | d, (6.5)

(m+1)

1 m41)| (m+1 »  Cha
5(/1 (Cz(sn Nufp 9| = efy |U5hx\)Ch dm) /1 M(mH) dx

s S ‘ Usha |

- /S In (s D) G ulT) | d. (6.6)

For a more sophisticated time discretization of PDEs on evolving surfaces we refer, for instance,
o [20]. We solve the above fully discrete problem using the following algorithm:

Algorithm 6.1. Given data: N (number of nodes), § (time step), (ug,co) (initial data), M
(number of time steps), tol (abort if any segment length becomes smaller).

20



1. Set m = 0.
Initialize ul(zo) = upo = Ipug and Cglo) = cpo = Inco by computing the values ugo) = ug(z;)
and Cgo) =co(x;),i=1,...,N.
Also, compute q( |u(0) 52)1|, i=1,...,N.

Abort if min; q§ ) < tol.

2. Compute the vertex positions at time t("+1) = (m + 1)§ from

(m) (m)y, (m+1) 1 (m+1) (m+1) 1 (m+1)
g +a " " pe u;" +( Ao + <m>)“m Ao i

= 1(g"™) 4 g Bdl™ 4 sy (@) D) 4 L) (W) = ulm) =1, N,

and compute q(erl = |u; (m+1) _ §m1+1)‘} i=1,...,N.

3. Compute the surface field values at time t(™ D) = (m + 1) from

m+1 m+1 m+1
(35 (q]+ ) + q( )) + ( (7711+1) + (Wl1+1) ))C; :

1 (m+l) 1 olm+l) | (m+1) 1 (m+1)
66 9j+1 D ) Gt &4 — D )€1
J

=35 (qg(iq + qj(‘m))( ) 1 bse (xj)(mﬂ))
a5y (e Bselaj) V) g™ (7 + Bselary—) ™), =1 N,

4. If min; q§m+1) > tol and m+1 < M then increase m by one and go to step 2.

Observe that the parametrization does not feature any more in the algorithm. The identities
in steps two and three are straightforward to compute. For instance, step two is easily obtained
from the continuous version (3.8)).

6.3 A radially symmetric solution

Consider a radially symmetric setting and denote by R(t) and B(t) the radius of the evolving
circle and the constant (in space) value of ¢ along the circle, respectively. We pick v to be the
outer unit normal of the enclosed ball. Then v = R'(¢) and k = —1/R(t). The system ([1.1]), (1.2)

becomes
R(0) = =g + £B0). B0+ 2000 0 (6.7

We consider the forcing function
f(B)=2B—1.

Note that this function is not bounded and thus does not satisfy the assumptions of Theorem
However, the values of B in the subsequent simulations are bounded. We may therefore think of
cutting off f at suitable high and low values which are outside of the computed values and locally
smooth it sufficiently. This does not alter the computational results but the Theorem then applies.
The constant functions (R(t), B(t)) = (1,1) are a stationary and stable solution to (6.7). The
solution for initial values R(0) = 1.25 and B(t) = 0.8 converges back to this stable point and has
been approximated with a standard MATLAB routine for the comparison in Figure
Now let h = 1/N with N € N and define the initial position of the curve approximation by
ug_o) = R(0)(cos(27mj/h),sin(27j/h))
in which we set cﬁo) = B(0). Furthermore, we set § = h?. We then perform numerical simulations
with the scheme described in Algorithm [6.1] In order to be able to compare with the solution to
the ODE system we use the length of the computed polygon divided by 27 and the average
of the values of ¢;, in the nodes,

N

m m m ]' m

R™ — § (m) B§h>:ﬁ§jc§ ). med{o,...,M}.
Jj=1
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13 : 1.1
~& ~exact solution |: : : i i —
— = N=9 : 1.05 : : v’_,«""_ : :
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H 1 B syt
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B o _/ /"
g A
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Figure 1: Numerical solutions for the radially symmetric solution. The solution (R(t), B(t)) to the
ODE ([6.7) is displayed as well as the solutions (Rsp, Bsp) obtained via Algorithm for several
values of N.

Figure [1] gives a nice impression of the convergence as the computational effort is increased.
Note that the errors essentially are due to the spatial discretization. We checked that changing
the time step only has a marginal impact on the graphs.

6.4 An oscillating solution

Consider now the functions

and
c(x,t) = tcos(8mx) + (1 — t) sin(67x)

for € [0,1] and ¢ € [0,7] with T = 1. Let f(c) = 2¢ (with regards to the lack of bound the
remark in the previous section applies again). Then (u, ¢) is a solution to (6.1)), (6.2)) if the source
terms are given by (writing s, = (Su1, Su2))

Sy1 = mecos(27t) cos(2mx)
B 2v/2 cos(2mz) (—2 + sin(27t) ) (t cos(87x) + (1 — t) sin(67x))
V9 — cos(4nt) — 4sin(2n(t — 2x)) — 4sin(27(t + 27))
8 cos(27mx)(—2 + sin(27t))?(2 + sin(27t))
(=9 + cos(4nt) + 4sin(27(t — 22)) + 4sin(27(t + 2x)))?’
Syo = —m cos(27t) sin(27x)
2v/2sin(27z) (2 + sin(27t)) (t cos(87x) + (1 — t) sin(67x))
V9 — cos(4nt) — 4sin(2n(t — 2x)) — 4sin(27(t + 2z))
n 8sin(27z)(—2 + sin(27t))(2 + sin(27t))?
(9 — cos(4nt) — 4sin(2m(t — 2z)) — 4sin(2w (¢ + 22)))2’
s = cos(8mx) — sin(6mx)
8(16¢ cos(8mx) + 9(1 — t) sin(67zx))
9 — cos(4nt) — 4sin(2n(t — 22)) — 4sin(27 (¢t + 22))
_ 128cos(2mz) sin(2t) sin(27rz) (3(—1 + ¢) cos(67z) + 4t sin(87z))
(9 — cos(4nt) — 4sin(27(t — 2x)) — 4sin(27(t + 2x)))?
4 cos(2mt)(—2 cos(dmzx) + sin(27t)) (¢ cos(8mx) — (—1 + t) sin(67x))
9 — cos(4nt) — 4sin(27n(t — 2x)) — 4sin(27(t + 22))

_|_
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’ N H & x 10 \ €ocy \ &y x 102 \ €0cy \ Es \ eocs \ E4 x 102 \ €ocy \ Es \ €0Cs ‘

21 || 1.2912950 | - 2.08142 | - 1.15896 | - 8.047392 | - 25.488 | -

61 || 0.0228319 | 3.78 | 0.17548 | 2.32 | 0.04038 | 3.15 | 0.133915 | 3.84 | 2.3531 | 2.23
121 || 0.0015801 | 3.90 | 0.04280 | 2.06 | 0.00637 | 2.70 | 0.009039 | 3.94 | 0.5707 | 2.07
241 || 0.0001023 | 3.97 | 0.01066 | 2.02 | 0.00135 | 2.26 | 0.000581 | 3.98 | 0.1420 | 2.02
401 || 0.0000134 | 3.99 | 0.00384 | 2.01 | 0.00047 | 2.08 | 0.000076 | 3.99 | 0.0511 | 2.01
701 || 0.0000014 | 4.00 | 0.00126 | 2.00 | 0.00015 | 2.03 | 0.000008 | 4.00 | 0.0167 | 2.00
1101 || 0.0000002 | 4.00 | 0.00051 | 2.00 | 0.00006 | 2.01 | 0.000001 | 4.00 | 0.0068 | 2.00

Table 1: Errors and EOCs for the test problem described in Section[6.4] Note that the errors have
been rounded but the EOCs have been computed using the complete numbers. N is the number
of nodes, h = 1/N is the spatial step size, and § = h? is the step size in time. The error terms are

defined in (6.8).
[m [[ &1 x10 [ eocy | & x 107 [ eocy | &3 | eocs [ €4 x 10 [ eocy | E/10 [ eocs |

0 || 1.23630 | - 1.60499 | - 1.32017 | - 1.03219 | - 1.08707 | -

1 (| 0.45345 | 1.45 | 0.42590 1.91 | 0.46027 | 1.52 | 0.33786 | 1.61 | 0.38561 | 1.50
2 1 0.14034 | 1.69 | 0.11195 1.93 | 0.14138 | 1.70 | 0.09858 | 1.78 | 0.11754 | 1.71
31| 0.03979 | 1.82 | 0.02900 1.95 | 0.04043 | 1.81 | 0.02689 | 1.88 | 0.03303 | 1.83
4 1| 0.01069 | 1.90 | 0.00746 1.96 | 0.01099 | 1.88 | 0.00705 | 1.93 | 0.00895 | 1.88
5 1 0.00278 | 1.94 | 0.00196 1.93 | 0.00290 | 1.92 | 0.00181 | 1.96 | 0.00247 | 1.86
6 || 0.00071 | 1.97 | 0.00057 1.78 | 0.00076 | 1.94 | 0.00046 | 1.98 | 0.00078 | 1.66
7 11 0.00018 | 1.97 | 0.00022 1.36 | 0.00021 | 1.88 | 0.00012 | 1.98 | 0.00035 | 1.16

Table 2: Errors and EOCs for the test problem described in Section[6.4f Note that the errors have
been rounded but the EOCs have been computed using the complete numbers. The time step size
is given by 6 = 0.02 x 27™, the spatial step size is fixed at h = 1/N where N = 2001 is the number
of nodes. The error terms are defined in .

For the numerical simulations with Algorithm we monitored the following errors:

&1 = sup le — ch|2dx, Ey :=sup |7 — Th|2d.’I}, & = sup/ (Jug) — \uhw|)2dx,
t(m) JS§1 t(m) J g1 t(m) J g1

LD m) o (6.8)

£, m 25/ ulm+ ) _ Yo Sh ’ dr, & = Z‘S/ jelmF D) m D)2,

-~ S1 ) - S1
where we used sufficiently accurate quadrature rules on each interval S; for the spatial integration.

We first picked several values for N as displayed in Table [1| and time steps of the size § = h?
where h = 1/N. We checked that by this choice of the time step the spatial discretization error
is dominating. The EOCs of &, &, and & are close to two which is what Theorem asserts.
The error in ¢, is relatively high but this is not surprising in view of the spatial oscillations of the
surface quantity ¢ which are at a higher frequency than those of the position field u. In turn, the
EOCs of & and &, are close to four and thus better than Theorem predicts, a behavior which
may be expected for &;.

We also assessed the discretization error with respect to the time stepping. For the results in
Table [2] we fixed a very fine spatial mesh with N = 2001 nodes and varied the time step. Note
that our semi-implicit time discretization is of consistency order one. In accordance with this the
EOCs of all errors are close to two for all fields. The drops of the EOCs of some errors for small
time steps (from about m = 5 in Table [2)) are due to the spatial discretization error becoming
more significant.
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