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AN EULERIAN-LAGRANGIAN FORM FOR THE EULER EQUATIONS IN
SOBOLEV SPACES

BENJAMIN C. POOLEY AND JAMES C. ROBINSON

ABSTRACT. In 2000 Constantin showed that the incompressible Euler equations can be
written in an “Eulerian-Lagrangian” form which involves the back-to-labels map (the in-
verse of the trajectory map for each fixed time). In the same paper a local existence result
is proved in certain Hölder spaces C1,µ.

We review the Eulerian-Lagrangian formulation of the equations and prove that given
initial data in Hs for n ≥ 2 and s > n

2
+ 1, a unique local-in-time solution exists on

the n-torus that is continuous into Hs and C1 into Hs−1. These solutions automatically
have C1 trajectories.

The proof here is direct and does not appeal to results already known about the classical
formulation. Moreover, these solutions are regular enough that the classical and Eulerian-
Lagrangian formulations are equivalent, therefore what we present amounts to an alterna-
tive approach to some of the standard theory.

1. INTRODUCTION

We study a reformulation (following Constantin [2]) of the incompressible Euler equa-
tions on a domain Tn := Rn/2πZn in the absence of external forcing. The Euler equations
model the flow of an incompressible inviscid fluid and are (classically) formulated in terms
of a divergence-free vector field u (i.e. ∇ · u = 0) as follows:

(1)
∂u

∂t
+ (u · ∇)u+∇p = 0

where p is a scalar potential representing internal pressure (as opposed to physical pressure
at a boundary). The divergence-free condition reflects the incompressibility constraint.

In two and particularly in three dimensions, these equations continue to be of great in-
terest; some recent surveys include [5, 8, 18]. As an illustration of the challenge posed
by these equations we note that unlike the Navier–Stokes equations where global weak
solutions have been known to exist since 1934 due to Leray [12], existence of global weak
solutions of the Euler equations (on periodic domains) was not proved until 2011 by Wiede-
mann [17], following the work of DeLellis and Székelyhidi [7]. On the spatial domain R3,
more regular local solutions (u ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1) with s > 5/2) have
been known to exist since the 1970s due to Kato et al, see for example [10, 11].

In the study of the Navier–Stokes equations, results such as those found in [15] motivate
us to approach the classical equations of fluid mechanics from a more Lagrangian view-
point. In that paper, Robinson and Sadowski show that if u is a suitable weak solution of
the Navier–Stokes equations in 3D in the sense of Caffarelli, Kohn and Nirenberg [1], then
almost every particle trajectory is unique and C1 in time. The arguments there are based
on the fact that almost all trajectories avoid the set of points (x, t) where singularities could
develop using the fact that the set of such points has box-counting dimension at most 5/3.

Constantin has studied a form for the Euler equations that involves both the classical
velocity field and the so called back-to-labels map A which is defined to be the inverse of
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2 BENJAMIN C. POOLEY AND JAMES C. ROBINSON

the trajectory map X at each time t. More precisely, for an evolving vector field u defined
on Tn × [0, T ], the trajectory map solves

(2)


dX

dt
(y, t) = u(X(y, t), t)

X(y, 0) = y

for each y ∈ Tn. If u is divergence-free and sufficiently regular then X is well defined
and X(·, t) is bijective for each t. In this case we can define the back-to-labels map A by
setting

(3) A(·, t) := X−1(·, t),

where we consider X as a map X(·, t) : Tn → Tn for each t ∈ [0, T ]. For the Eulerian-
Lagrangian form, as we shall continue to call it, Constantin [2] proved local existence and
uniqueness results in certain Hölder spaces on R3 for solutions that are periodic, or satisfy
suitable decay conditions.

As Yudovich [18] has noted, a similar combination of Eulerian and Lagrangian ap-
proaches was used to investigate the Euler equations in Hölder spaces, by Günther and
Lichtenstein independently, as early as the 1920s ([13], [9]).

First we will review the Eulerian-Lagrangian formulation and discuss how it is formally
equivalent to the usual Euler equations. We then turn to the main topic of this paper which
is the proof of an existence and uniqueness result for the Eulerian-Lagrangian formulation
in C0([0, T ];Hs(Tn)) with s > n

2 + 1 in dimension n ≥ 2. The proof is self contained,
in the sense that it neither appeals to results about the classical Euler equations, nor to the
problem in Hölder spaces.

2. THE EULERIAN-LAGRANGIAN FORM OF THE EQUATIONS

The Eulerian-Lagrangian form of the Euler equations comprises the following system:

(4) ∂tA+ (u · ∇)A = 0,

(5) u = P((∇A)∗v),

(6) ∂tv + (u · ∇)v = 0.

Given an initial divergence-free velocity u0 for the classical equations, we choose initial
conditions for the above system as follows:

(7) A(x, 0) = x,

(8) u(x, 0) = v(x, 0) = u0(x).

We use the notation P for the Leray projector onto the space of divergence-free functions.
For a matrix M , M∗ denotes the transposed matrix. The vector field v is called the virtual
velocity and represents the initial velocity transported by the flow.

It will often be convenient to treat A as a perturbation of the identity map on Tn. In this
case we use the notation η(x, t) := A(x, t)− x and replace (4) and (7) with the equations

(9) ∂tη + (u · ∇)η + u = 0, η(x, 0) = 0

respectively. We do this because the identity map (hence A) does not have sufficient
Sobolev regularity when considered as a function on the torus with values in Rn (i.e. with-
out accounting for the topology of the target torus ).

The following proposition encapsulates the derivation of (5) (sometimes called the We-
ber formula) which can be found in [2].
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Proposition 1. Let n ≥ 2, consider u ∈ C1((0, T ) × Tn), with u(0) ∈ C1(Tn). If u is
divergence-free and satisfies (1) for some p, with spatially periodic boundary conditions
then A ∈ C1((0, T )× Tn;Tn) and u satisfies (5) with v(x, t) = u0(A(x, t)).

Proof. From the regularity assumptions on u and periodicity of the domain we deduce
that the trajectories X(y, ·) ∈ C2(0, T ) and ∇X(y, ·) ∈ C1(0, T ) for all y ∈ Tn, we
also have X, ∂X∂t ∈ C

1((0, T ) × Tn). It follows from the divergence-free condition that
det∇X ≡ 1, so X is volume preserving and locally injective, hence bijective, given
that Tn has finite volume. By the inverse function theorem we see that A exists and is
an element of C1((0, T ) × Tn). We now have enough regularity to make the following
calculations rigorous.

From (1) and (2) we obtain

∂2X

∂t2
(y, t) = −∇p(X(y, t), t),

which is of course just a Lagrangian interpretation of the Euler equations. Setting p̃(y, t) =
p(X(y, t), t) this becomes

∂2X

∂t2
= −((∇X)∗)−1∇p̃(y, t).

Multiplying through by (∇X)∗ and changing the order of differentiation yields

(10)
∂

∂t

[
∂Xj

∂t

∂Xj

∂yi

]
=

∂

∂yi

[
−p̃+

1

2

∣∣∣∣∂X∂t
∣∣∣∣2
]

for i = 1, . . . , n, where there is an implicit sum over j = 1, . . . , n and Xj , yi denote the
components in Rn of X , y respectively. Integrating (10) in time, multiplying the corre-
sponding vector equation by (∇A)∗ and evaluating at A(x, t) gives

(11) u(x, t) =
∂X

∂t
(A(x, t), t) = (∇A)∗u0(A(x, t))−∇n

where

n(x, t) =

∫ t

0

p̃(A(x, t), s)− 1

2

∣∣∣∣∂X∂t (A(x, t), s)

∣∣∣∣2 ds.

As gradients lie in the kernel of the Leray projector, applying P to (11) shows that u satisfies
(5) as required. Note that v(x, t) = u0(A(x, t)) satisfies (6), hence solutions to the Euler
equations indeed solve the Eulerian-Lagrangian form. �

The converse is a little more technical.

Proposition 2. Let s > n
2 + 1 and u, v, η ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1) satisfy

(5), (6), (8) and (9). Then for some p ∈ C0([0, T ];Hs) u solves (1).

Proof. Since Hs−1(Tn) ↪→ L∞(Tn) is an algebra, we have that if f, g ∈ Hs−1 (scalar
valued) then

∂xi(fg) = (∂xif)g + f(∂xig)

as an equlity of L2 functions, for i = 1, 2, . . . , n. Therefore, denoting the material deriva-
tive by Dt := ∂t + (u · ∇), for f, g ∈ C0([0, T ];Hs−1) ∩ C1([0, T ];Hs−2) we have

(12) Dt(fg) = (Dtf)g + f(Dtg).

Moreover, if f ∈ Hs,

(u · ∇)∇f = ∇((u · ∇)f)− (∇u)∗∇f.
Hence the classical commutation relation

(13) Dt∇f = ∇Dtf − (∇u)∗∇f
holds as an equality in L2, when f ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1).



4 BENJAMIN C. POOLEY AND JAMES C. ROBINSON

Since u satisfies (5), we may write

(14) u(x, t) = v + (∇η)∗v −∇n
for some real-valued n. Then by (12) and (13) the following calculations are justified:

(15)

Dtu = Dtv + (Dt∇η)∗v + (∇η)∗Dtv −Dt∇n
= (∇Dtη)∗v − (∇u)∗(∇η)∗v −∇Dtn+ (∇u)∗∇n
= −(∇u)∗[v + (∇η)∗v −∇n]−∇Dtn

= −(∇u)∗u−∇Dtn

= −∇p

where p = 1
2 |u|

2 + Dtn. �

3. AN EXISTENCE AND UNIQUENESS THEOREM

For r ≥ 0, we will use the notation Hr variously for scalar or vector valued functions
in Hr(Tn) (componentwise), where this does not cause ambiguity. We will often consider
functions in spaces of the form C0([0, T ]; (Hs(Tn))n). To simplify notation we define
Σs(T ) (usually denoted Σs) for T ≥ 0 and s ≥ 0 by

Σs(T ) := C0([0, T ]; (Hs(Tn))n).

We consider the natural norm on Σs:

‖u‖Σs = sup
t∈[0,T ]

‖u(t)‖Hs .

The aim of the rest of this paper is to prove the following theorem.

Theorem 1. If n ≥ 2, s > n
2 + 1 and u0 ∈ Hs is divergence free then there exists T > 0,

such that the system (4–6) with initial conditions (7) and (8) has a unique solution A, u, v
such that η, u, v ∈ Σs(T ) ∩ C1([0, T ];Hs−1) where η(x, t) = A(x, t) − x. Moreover
A ∈ C1([0, T ]× Tn) as a map into the torus.

We will prove this by constructing a contracting iteration scheme using the equations
(5),(6) and (9). More precisely, given u ∈ Σs(T ) we find v, η ∈ Σs ∩ C1([0, T ] × Tn),
solutions of

∂tη + (u · ∇)η = −u, η(0, x) = 0

and
∂tv + (u · ∇)v = 0, v(0, x) = u0(x).

We then construct the next iterate of u, using

u′ = P[(∇A)∗v]

and show that u 7→ u′ is a contraction on a certain subset of Σs.
In the case of Hölder spaces, Constantin constructed an iteration scheme that was in-

stead a contraction with respect to A. This involves controlling differences between can-
didate virtual velocities (v1 and v2, say) in terms of the difference between the respective
back-to-labels maps (A1 and A2). This can be achieved, using the fact that vi = u0(Ai)
is a solution to (6). In the Hölder setting this is a natural way to proceed, however, relying
on this a posteriori knowledge about the solution introduces an extra technicality when
we work in Sobolev spaces. For this reason we will proceed as described above, relying
only on a priori estimates. Following the proof, we shall see how the argument differs
if the contraction is with respect to A, in particular we get an alternative proof under the
additional assumption that s ∈ Z.

We begin the proof of Theorem 1 by stating two inequalities concerning the advection
term (u · ∇)v, using the notation B(u, v) := (u · ∇)v. Both of these results can be proved
following the steps in [6, 16] (the only difference being that B here does not include a
Leray projection).
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Lemma 1. For s > n
2 there exists C1 > 0 such that if u ∈ Hs and v ∈ Hs+1 then

B(u, v) ∈ Hs and

(16) ‖B(u, v)‖Hs ≤ C1‖u‖Hs‖v‖Hs+1 .

This is really just the fact that Hs is a Banach algebra. For the second lemma the
assumption that u is divergence-free allows us to “save a derivative” by means of the iden-
tities

(B(u, (−∆)r/2v), (−∆)r/2v)L2 = 0

for r ∈ [0, s].

Lemma 2. If s > n
2 + 1 there exists C2 > 0 such that for u ∈ Hs, v ∈ Hs+1 with u

divergence-free we have

(17) |(B(u, v), v)Hs | ≤ C2‖u‖Hs‖v‖2Hs .

We use the following shorthand for closed balls in Σs:

BM = B‖·‖Σs
(0,M),

i.e. BM is the closed unit ball centred at the origin of radius M > 0 with respect to the
norm ‖ · ‖Σs

. Where ambiguity could arise we write BM (T ) for the closed ball in Σs(T ).

Lemma 3. If s > n
2 + 1 and η, v ∈ Σs(T ) then P[(∇η)∗v] ∈ Σs and there exists a

constant C3 > 0 (independent of η, v, t and T ) such that for fixed t,

(18) ‖P[(∇η)∗v]‖Hr ≤ C3‖η‖Hs‖v‖Hr ,

where r = s or r = s − 1. Furthermore, there exists C ′3 > 0 such that for any M >
0 and T > 0, the following bounds hold uniformly with respect to t ∈ [0, T ] for any
η1, η2, v1, v2 ∈ BM (T ):

(19) ‖P[(∇η1)∗v1 − (∇η2)∗v2]‖X ≤ C ′3M(‖η1 − η2‖X + ‖v1 − v2‖X).

where X is L2(Tn) or Hs−1.

Proof. For continuity into Hs−1 we use the fact that Hs−1 is a Banach algebra. More
precisely, we see that

(20)
‖P[(∇η1)∗v1 − (∇η2)∗v2]‖Hs−1 ≤ C‖η1 − η2‖Hs‖v1 + v2‖Hs−1

+ C‖∇η1 +∇η2‖Hs−1‖v1 − v2‖Hs−1 ,

where C > 0 is independent of the ηi and vi. The key step in the proof of (18) when r = s
is that if η, v ∈ C2 then for some q ∈ Hs,

∂xi
P[(∇η)∗v] = ∂xi

(∂xj
ηkvk)− ∂xi

∂xj
q

= ∂xj
(∂xi

ηkvk)− ∂xi
ηk∂xj

vk + ∂xj
ηk∂xi

vk − ∂xi
∂xj

q

where sums are taken implicitly over k. The left-hand side is already divergence-free so
projecting again removes the gradient terms and yields

(21) ∂xi
P[(∇η)∗v] = P[(∇η)∗∂xi

v − (∇v)∗∂xi
η].

By continuity, this still holds if we only have η, v ∈ Hs. A calculation similar to (20)
applied to (21) yields continuity with respect to the Hs norm as claimed.

The inequalities (18) for r = s − 1 and r = s are obtained by taking the Hs−1 norms
of P[(∇η)∗v] and (21) respectively.

To prove (19), we again use the fact that P removes gradients. Indeed for f , g ∈ Hs,
we have

(22) P((∇f)∗g) = P(∇(f · g)− (∇g)∗f) = −P((∇g)∗f).

Setting f = η1 − η2, g = v1 + v2, we see that the calculations in (20) can be modified to
give the required result. Note that for the L2 bound we use the fact that (20) holds if we
replace Hs with L∞ and Hs−1 with L2. �
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The next lemma gives uniform bounds on the Hs norms of solutions to the transport
equations (4) and (6). We will consider the following system:

(23)
{
∂tf + (u · ∇)f = g
f(0) = f0

where f, g : [0, T ]× Tn → Rn and u is divergence free.

Lemma 4. Let s > n
2 + 1 and fix f0 ∈ Hs, g ∈ Σs. If u ∈ Σs is non-zero and divergence

free then there exists a unique solution f to (23). Furthermore, the solution f ∈ Σs ∩
C1([0, T ];Hs−1) ∩ C1([0, T ]× Tn) and there exists C4 > 0 (from Lemma 2) such that if
r, t ∈ [0, T ] we have:

(24) ‖f(t)‖Hs ≤
(
‖f(r)‖Hs +

‖g‖Σs

C4‖u‖Σs

)
exp(C4|t− r|‖u‖Σs

)− ‖g‖Σs

C4‖u‖Σs

.

Proof. By the method of characteristics we obtain a solution f ∈ C1([0, T ] × Tn). The
formal argument that follows motivates our consideration of the regularity of f . Taking the
Hs product of (23) with f yields

1

2

d

dt
‖f‖2Hs = −(B(u, f), f)Hs + (f, g)Hs .

By Lemma 2, there exists C > 0 such that for all t ∈ [0, T ],

(25)
1

2

d

dt
‖f(t)‖2Hs ≤ C‖u(t)‖Hs‖f(t)‖2Hs + ‖g(t)‖Hs‖f(t)‖Hs .

Now (24) follows from Gronwall’s inequality. In the case r > t, this argument is applied to
the time-reversed equation, that is, using the fact that for fixed r, −f(r − t) is transported
by −u(r − t) with forcing g(r − t).

To properly justify this we can proceed by a Galerkin method. For each N ∈ N we find
a solution to the system

(26)
{
∂tfN + PNB(uN , fN ) = gN
fN (r) = PNf(r),

on [r, T ], where PN denotes truncation up to Fourier modes of order N (in space), uN :=
PNu and gN := PNg. The estimate (24) applies to fN so by a standard argument using
the Aubin-Lions lemma we obtain a weak solution h ∈ L∞(r, T ;Hs) such that ∂th ∈
L∞(r, T ;Hs−1), hence h ∈ C0([0, T ];Hs−1). Using the divergence free property we
obtain uniqueness of solutions h ∈ L2(r, T ;H1) with time derivative ∂th ∈ L2(r, T ;L2).
Indeed, if h and h̃ are two such solutions it follows from (23) that

d

ds
‖h− h̃‖2L2 = 0.

Therefore f = h, i.e. this weak solution agrees with our C1 classical solution on [r, T ].
We now prove (24) in the case r ≤ t. Since fN → f in L2(r, T ;Hs−1), we may choose

a dense countable subset {tk}∞k=1 ⊂ [r, T ] such that fN (tk)→ f(tk) in Hs−1 as N →∞
for each k. The formal argument above is valid on the truncated system, thus

(27) ‖fN (tk)‖Hs ≤
(
‖PNf(r)‖Hs +

‖g‖Σs

C‖uN‖Σs

)
exp(C|tk − r|‖u‖Σs

)− ‖gN‖Σs

C‖u‖Σs

.

Hence, passing to a subsequence of fN for each k with a diagonalisation argument, we
may assume that for all k, fN (tk) converges weakly in Hs as N → ∞. Moreover, by the
choice of the points tk and uniqueness of weak limits, we must have fN (tk) ⇀ f(tk) in
Hs. Taking the lim inf of (27) with respect to N →∞ yields

(28) ‖f(tk)‖Hs ≤
(
‖f(r)‖Hs +

‖g‖Σs

C‖u‖Σs

)
exp(C|tk − r|‖u‖Σs

)− ‖g‖Σs

C‖u‖Σs

.
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To prove (24) and the weak continuity of f into Hs we will use the fact that a weakly
convergent sequence in Hs−1 that is also bounded in Hs must converge weakly in Hs to
the same limit by the Banach–Alaoglu theorem. Indeed if xk ⇀ x in Hs−1 is bounded in
Hs then any subsequence admits a further subsequence converging weakly in Hs to x by
the uniqueness of weak limits.

From this, (24) follows by the density of {tk} and the continuity of f intoHs−1. Indeed,
in the case t ≥ r, for any subsequence (tk`)

∞
`=1 ⊂ (tk)∞k=1 such that tk` → t we have

f(tk`) ⇀ f(t) in Hs. Applying (28) at tk` and taking the lim inf as `→∞ yeilds (24) at
time t. For t < r the required bounds are obtained in the same way from the time-reversed
version of (26).

We have shown that ‖f(t)‖Hs in bounded uniformly, not merely almost everywhere.
Therefore for any fixed τ ∈ [0, T ] and any sequence {τk} ⊂ [0, T ] such that τk → τ we
deduce, by the continuity into Hs−1, that f(τk) ⇀ f(τ) in Hs. This says that f is weakly
continuous into Hs.

To see that f ∈ Σs it is therefore enough to show that ‖f(t)‖Hs is continuous. This is
the case since for all r, t ∈ [0, T ], (24) gives bounds of the form

(‖f(r)‖Hs + α)e−β|t−r| − α ≤ ‖f(t)‖Hs ≤ (‖f(r)‖Hs + α)eβ|t−r| − α

for time independent constants α, β > 0, where the first inequality comes from (24) with
r and t interchanged.

The fact that f ∈ C1([0, T ];Hs−1) follows from the fact that ∂tf ∈ Σs−1 which can
be seen from the regularity of the other terms in (23). �

Lemma 5. For s > n/2 + 1 fix u1, u2 ∈ Σs and f0 ∈ Hs. Let g1 = g2 = 0 or gi = −ui
for i = 1, 2. If f1, f2 are the solutions of (23) corresponding to u1, u2, g1, g2 respectively,
then in the case that g1 = g2 = 0, there exists C5 > 0 depending only on s such that

(29) ‖f1(t)− f2(t)‖L2 ≤ C5‖f1 + f2‖Σs‖u1 − u2‖Σ0t

for all t ∈ [0, T ]. In the case that gi = −ui for i = 1, 2 we instead have

(30) ‖f1(t)− f2(t)‖L2 ≤ (C5‖f1 + f2‖Σs + 1)‖u1 − u2‖Σ0t

Proof. Using the anti-symmetry of (B(u1 − u2, ·), ·)L2 we have, for t ∈ [0, T ],

d

dt
‖f1 − f2‖2L2 ≤ |(B(u1 − u2, f1 + f2), f1 − f2)L2 |+ 2|(g1 − g2, f1 − f2)|

≤ C‖f1 + f2‖Hs‖u1 − u2‖L2‖f1 − f2‖L2 + 2‖g1 − g2‖Σ0
‖f1 − f2‖L2

≤ C‖f1 + f2‖Σs
‖u1 − u2‖Σ0

‖f1 − f2‖L2 + 2‖g1 − g2‖Σ0
‖f1 − f2‖L2

Where C depends on the embeddingHs−1 ↪→ L∞. Formally dividing by ‖f1−f2‖L2 and
integrating the resulting inequality gives (29) or (30) depending on the choice of g1 and g2.
Justifying this last step is straightforward. �

We are now in a position to prove the main result.

Proof of Theorem 1. Fix s > n/2 + 1 and let C3, C4 be the constants in (18), (24) (from
Lemmas 3 and 4) respectively. Fix M > ‖u0‖Hs and T > 0 so that

exp(C4TM)‖u0‖Hs

(
C3

C4
[exp(C4TM)− 1] + 1

)
≤M.

Let u ∈ BM (T ) be a divergence free function and let η be the solution of (23) for the flow
u with initial data η0 = 0 and forcing g = u. Let v be the solution for initial data v0 = u0

with g = 0. Define Su := P[(∇η)∗v + v], then by Lemmas 3 and 4,

(31) ‖Su(t)‖Hs ≤ exp(C4tM)‖u0‖Hs

(
C3

C4
[exp(C4tM)− 1] + 1

)
≤M
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for all t ∈ [0, T ]. Hence S : BM (T ) → BM (T ). Note that Su(·, 0) = u0 even if
u(·, 0) 6= u0.

We next show that S is a contraction on BM (T ) in the L2 norm if T is sufficiently
small. For u1, u2 ∈ BM (T ) we construct vi and ηi from ui as above for i = 1, 2 with
v1(·, 0) = v2(·, 0) = u0. Now

(32)

‖Su1 − Su2‖L2 ≤ Ca‖η1 − η2‖L2 + Cb‖v1 − v2‖L2

≤ (Cc‖v1 + v2‖Σs + Cd‖η1 + η2‖Σs + Ce)T‖u1 − u2‖Σ0

≤ C(u0,M, T )‖u1 − u2‖Σ0
,

where Ca, . . . , Ce denote various constants arising from the application of Lemmas 3, 4
and 5. Keeping careful track of the constants shows that C(u0,M, T ) is given by the
formula

(33)
C(u0,M, T ) := 2T

[(
C5(C ′3M + 1)‖u0‖Hs +

C ′3C5M

C4

)
exp(C4TM)

+C ′3M

(
1

2
− C5

C4

)]
Where C ′3, C4, C5 are the constants from Lemmas 3, 4 and 5 respectively. Taking the
supremum of (32) with respect to t and choosing T > 0 small enough, we see that S is a
contraction in the required sense.

We conclude that S has a unique accumulation point u, in the closure of BM with
respect to ‖ · ‖Σ0 . Since BM (T ) is convex and closed in Σs it is weakly closed, hence u ∈
BM (T ) is a fixed point of S. A fixed point of S, along with associated back-to-labels map
and virtual velocity, clearly give a solution to the Eulerian-Lagrangian formulation of the
Euler equations with the required regularity. The contraction argument gives uniqueness
in BM (T ) and it remains to prove that we have uniqueness in Σs(T ).

Since S is a contraction on BM (T̃ ) for any T̃ ∈ (0, T ], we have by continuity of
‖u(t)‖Hs , that if u′, A′ and v′ also satisfy (4–6) with u′ ∈ Σs(T ), then u(t) = u′(t) when
0 ≤ t ≤ min(T, inf{r : ‖u′(r)‖Hs = M}).

Now we know that for all k ∈ N there exists Tk ≤ T such that S is a contraction on
BM+1/k(Tk) and we may assume Tk → T as k → ∞. By the previous observation, this
means that u is the unique solution in Σs(T − ε) for all ε > 0, hence by continuity u is the
unique solution in Σs as required.

The proof that u ∈ C1([0, T ];Hs−1) uses the same trick as Lemma 3 to save a spatial
derivative (we have only shown that ∇ηt ∈ Hs−2, which might otherwise limit the regu-
larity of u). By definition u = P[(∇η)∗v + v]. We use (22) from the proof of Lemma 3.
Precisely we have

1

h
‖u(t+ h)− u(t)− hP[(∇η(t))∗∂tv(t) + ∂tv(t) + (∇v(t))∗∂tη(t)]‖Hs−1

≤ 1

2h
‖P[(∇η(t+ h) +∇η(t))∗(v(t+ h)− v(t)− h∂tv)]‖Hs−1

+
1

2h
‖P[(∇v(t+ h) +∇v(t))∗(η(t+ h)− η(t)− h∂tη)]‖Hs−1

+
1

2
‖P[(∇η(t+ h)−∇η(t))∗∂tv(t)]‖Hs−1

+
1

2
‖P[(∇v(t+ h)−∇v(t))∗∂tη(t)]‖Hs−1

+
1

h
‖v(t+ h)− v(t)− h∂tv(t)‖Hs−1 .
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Since Hs−1 is an algebra and η, v ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1), the right-hand
side vanishes as h→ 0. Therefore u ∈ C1([0, T ];Hs−1) and

∂tu = P[(∇η(t))∗∂tv(t) + ∂tv(t)(∇v(t))∗∂tη(t)].

�

4. AN ALTERNATIVE ITERATION

Here we exhibit an alternative proof of existence and uniqueness for (4–6), which is
based on contractions with respect to A rather than u. The extra technicality in this ap-
proach is contained in the following lemma, which is proved in an appendix. We will
denote the identity map on Tn by ι and use the correspondence between maps Tn → Rn
and Tn → Tn without comment.

Lemma 6. Let s ∈ Z with s > n
2 + 1 and fix f, g ∈ Hs. If g + ι is a volume preserving

map then f ◦ (g + ι) ∈ Hs and

(34) ‖f ◦ (g + ι)‖Hs ≤ C6‖f‖Hs(‖g‖Hs + (2π)n)s

for some C6 > 0 depending only on s and the constants from some Sobolev embeddings.

This allows us to write a second proof of existence and uniqueness of solutions in Σs
for s > n/2 + 1 in the case s ∈ Z.

Fix u0 ∈ Hs and M > 0 and suppose η ∈ BM (T ) for some T > 0 such that η(t) + ι
is volume-preserving for all t ∈ [0, T ]. Define u and v via v = u0 ◦ (η + ι) and u =
P[(∇η)∗v + v]. Construct η′, the iterate of η by solving

∂tη
′ + (u · ∇)η′ = −u, η′(x, 0) = 0.

By Lemmas 3, 4 and 6 we have

‖η′‖Σs
≤ 1

C4
[exp(C4C6(C3M + 1)(M + (2π)n)s‖u0‖HsT )− 1] .

Hence for T small enough, we may assume η′ ∈ BM (T ) and since∇·u = 0 we also have
that η′ + ι is volume preserving.

Now suppose that η1, η2 ∈ BM (T ) and let η′1, η′2 be the respective iterates then

‖η′1 − η′2‖Σ0
≤ 2(C5M + 1)(C ′3M + (C ′3M + 1)CLip)T‖η1 − η2‖Σ0

,

by Lemmas 3 and 5. Here CLip is the Lipschitz constant of u0. It follows that, for small
enough T , this iteration procedure is a contraction on BM (T ) in the L2 norm. Existence
and uniqueness of solutions now follows using the same steps as in the previous method.

5. CONCLUSIONS

We have seen that Constantin’s proof of local well-posedness for the Eulerian-Lagrangian
formulation of the Euler equations in C1,µ can be adapted to prove analogous results in the
corresponding Sobolev spaces, Hs for s > n/2 + 1, directly. This involved different
estimates, which may seem more familiar to some readers. We have given two different
iteration schemes to deduce well-posedness using these estimates; iterating with respect to
u is natural in this setting and leads to a fairly clean proof, whereas iterating with respect to
the Lagrangian coordinate A involves estimates on the compositions of Sobolev functions,
which are proved in Appendix A. It would be interesting to investigate these composition
estimates further and extend them to non-integer Sobolev spaces, for example.

Robinson and Sadowski [15] have shown that in the case of the Navier–Stokes equa-
tions, almost every Lagrangian trajectory is well-defined and C1, even for suitable weak
solutions. This suggests it may be reasonable to study Eulerian-Lagrangian formulations
for diffusive systems. For example, calculations analogous to the derivation above suggest
that the Navier–Stokes equations can be formulated as

∂tA+ (u · ∇)A = 0, u = P((∇A)∗v),
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with
∂tv + (u · ∇)v − ((∇A)∗)−1∆(∇A)∗v = 0,

however obtaining results using such formulations has proved difficult, so far.
Constantin [3, 4] has put forward an Eulerian-Lagrangian form in the viscous case,

where diffusive terms appear in the equations for the back-to-labels map and the virtual
velocity. Ideally we would be able to make a meaningful study of formulations where the
back-to-labels map retains its physical meaning.

Alternatively, if one formally considers the equation satisfied by (∇A)∗v, one arrives
at a formulation in magnetization variables. We recently showed that this leads to an
interesting model system for Navier–Stokes, which is globally well-posed in H1/2 in 3D
[14].

APPENDIX A. COMPOSITIONS IN Hs

In this appendix we prove Lemma 6, which gives bounds on the compositions Hs func-
tions with certain volume-preserving locally Hs functions where s ∈ Z with s > n

2 .
To begin with we consider gi ∈ Hs and multi indices βi with |βi| ∈ [1, s] for i =

1, . . . , `. We call p ∈ [1,∞] admissible for (βi)1≤i≤` if there exists a constant C > 0
independent of (gi)1≤i≤` such that

(35)

∥∥∥∥∥∏̀
i=1

Dβigi

∥∥∥∥∥
Lp

≤ C
∏̀
i=1

‖gi‖Hs .

Of course p is admissible if there exist q1, . . . , q` ∈ [1,∞) such that Hs−|βi| ↪→ Lqi for
each i and ∑̀

i=1

1

qi
=

1

p
,

or p = ∞ and qi = ∞ for all i. We may assume, without loss of generality that there are
constants k1 and k2 with 0 ≤ k1 ≤ k2 ≤ ` such that s− |βi| ∈ [0, n/2) for 1 ≤ i ≤ k1

s− |βi| = n/2 for k1 + 1 ≤ i ≤ k2

s− |βi| > n/2 for k2 + 1 ≤ i ≤ `
So we have ∥∥∥∥∥

k1∏
i=1

Dβigi

∥∥∥∥∥
Lp

≤ C
k1∏
i=1

‖gi‖Hs

for
1

p
∈

[
k1∑
i=1

n− 2(s− |βi|)
2n

,
k1

2

]
.

Moreover ∥∥∥∥∥
k2∏

i=k1+1

Dβigi

∥∥∥∥∥
Lp

≤ C
k2∏

i=k1+1

‖gi‖Hs

for p ∈ [2,∞). Lastly, ∥∥∥∥∥ ∏̀
i=k2+1

Dβigi

∥∥∥∥∥
L∞

≤ C
∏̀

i=k2+1

‖gi‖Hs .

Combining these observations we see that p is admissible if

(36)
1

p
∈

(
k1∑
i=1

n− 2(s− |βi|)
2n

,
`

2

]
.
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or if k1 = k2 then p is still admissible if

(37)
1

p
=

k1∑
i=1

n− 2(s− |βi|)
2n

,

furthermore p =∞ is admissible if k1 = k2 = 0.
Note that if p ∈ [1,∞] is admissable and fi : Tn → Rn are linear maps then we have

(rather crudely)

(38)

∥∥∥∥∥∏̀
i=1

Dβi(gi + fi)

∥∥∥∥∥
Lp

≤ C
∏̀
i=1

‖gi‖Hs + ‖fi‖op(2π)n/qi .

In the proof of the lemma below, we will need the fact that if s > n
2 and

∑`
i=1 |βi| ≤

s then p = 2 is admissible for (βi)1≤i≤`. Furthermore, we will need to show that if
s > n/2 + 1 then there exists an admissible p > n

s−` and that p = ∞ is admissible if
s = ` > n/2 + 1.

For the first claim, note that if k1 = 0 or k1 = 1 then p = 2 is clearly admissible.
Otherwise, if 1 < k1 ≤ ` and s > n/2, we have the following calculation:

(39)
k1∑
i=1

n− 2(s− |βi|) ≤ k1n− 2k1s+ 2s = (k1 − 1)(n− 2s) + n < n

so p = 2 is admissible. For the second claim, observe that if s > n/2 + 1 then

(40)
k1∑
i=1

n− 2(s− |βi|) < 2

k1∑
i=1

|βi| − 2k1 ≤ 2(s− k1)− 2
∑̀

i=k1+1

|βi| ≤ 2(s− `),

where the middle inequality uses the assumption that
∑`
i=1 |βi| ≤ s. Hence there exists an

admissible value p > n
s−` , if s− ` > 0. If s = ` then necessarily, |βi| = 1 for i = 1, . . . , `

hence p =∞ is admissible by (37).

Lemma 6. Let s ∈ Z with s > n
2 + 1 and fix f, g ∈ Hs. Denote the identity map on Tn

by ι. If g + ι is a volume preserving map then f ◦ (g + ι) ∈ Hs(Tn) and

(41) ‖f ◦ (g + ι)‖Hs ≤ C‖f‖Hs(‖g‖Hs + (2π)n)s

for some C > 0 depending only on s and the constants from some Sobolev embeddings.

Proof. For each k ∈ N, consider functions fk, gk ∈ C∞(Tn;Rn) such that fk → f in Hs

and gk → g in Hs. Without loss of generality we assume that ||det∇(gk(x) + x)| − 1| <
1
k+1 holds uniformly in x.

Now by the chain and Leibniz rules, we see that for a multi-index γ with |γ| ≤ s,
Dγ(fk ◦ (gk + ι)) is a (weighted) sum with summands of the form

(42) ((Dαfk) ◦ (gk + ι))
∏̀
i=1

Dβi(grik + xri),

where ` = |α| ≤ |γ| and
∑`
i=1 |βi| = |γ|. Here gik denotes the ith vector component of

gk. We seek to bound terms of the form (42) in L2 using the preceding observations.
Since Dαfk ∈ Hs−` and gk + ι is “almost volume preserving” it can be seen that

(Dαfk) ◦ (gk + ι) ∈ Lq if
1

q
∈
(

1

2
− s− `

n
,

1

2

]
with s− ` ∈ (0, n/2] or

1

q
=

1

2
− s− `

n

when s− ` ∈ (0, n/2). Of course, if s− ` > n/2 then Dαfk ∈ L∞.
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To bound (42) in L2 therefore, we need to check that there is an admissible p such that,

1

p
∈
[
0,
s− `
n

)
.

and that p =∞ is admissible if s = `. This follows from the claims we proved before the
statement of the lemma.

Now we see that

‖fk ◦ (gk + ι)‖Hs ≤ C
√

1 + 1/k ‖fk‖Hs(‖gk‖Hs + (2π)n)s

where C depends only on Sobolev embeddings and some combinatorics. Since fk and gk
converge we may assume that fk ◦ (gk + ι) converges weakly in Hs. Thus the lemma is
proved if we can show that fk ◦ (gk + ι)→ f ◦ (g + ι) in L2 for example. This is indeed
the case:

‖f ◦ (g + ι)− fk ◦ (gk + ι)‖L2

≤ ‖f ◦ (g + ι)− f ◦ (gk + ι)‖L2 + ‖f ◦ (gk + ι)− fk ◦ (gk + ι)‖L2

≤ CLip‖g − gk‖L2 +
√

1 + 1/k ‖f − fk‖L2 ,

where we make use of the fact that f ∈ Hs is Lipschitz since s > n/2 + 1 and denote by
CLip the Lipschitz constant of f . �
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