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REACHING CONSENSUS ON A CONNECTED GRAPH

JOHN HASLEGRAVE,∗ University of Sheffield

MATE PULJIZ,∗∗ University of Birmingham

Abstract

We study a simple random process in which vertices of a connected graph reach

consensus through pairwise interactions. We compute outcome probabilities,

which do not depend on the graph structure, and consider the expected time

until a consensus is reached. In some cases we are able to show that this is

minimised by Kn. We prove an upper bound for the case p = 0 and give a

family of graphs which asymptotically achieve this bound. In order to obtain

the mean of the waiting time we also study a gambler’s ruin process with delays.

We give the mean absorption time and prove that it monotonically increases

with p ∈ [0, 1/2] for symmetric delays.
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1. Introduction

We consider the evolution of a system on a connected graph G with n vertices.

Each vertex has a strategy taken from {1, . . . ,m} (we will frequently write [m] for this

set). The starting strategies of the vertices are chosen independently and uniformly at

random. At each time step an edge is chosen uniformly at random, and both vertices

are updated to have the same strategy, which is the higher of the two with probability

p and the lower with probability 1 − p. This simple model covers a broad range of

real-life scenarios where a consensus is reached via pairwise interactions among the

individual agents, whether we are interested in modelling an infectious disease spread
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or the process by which a certain gene became prevalent in the human genome.

The model was inspired by the well-studied tournament games in the theory of

genetic algorithms (see Rowe, Vose and Wright [20, 19] and Vose [24]) and indeed, it

is a generalisation of these as it is easily seen that they reduce to the complete graph

instance of our problem. The idea is that the underlying connected graph allows for

modelling a spatial aspect of the problem at hand. It therefore comes as a surprise

when in Section 2 we prove that the probability that a certain strategy prevails does

not depend on the network structure of the nodes. This is achieved by reducing the

problem to the study of the two-strategy case by looking at contiguous partitions of

the strategy set. Validity of these coarse grainings was previously checked only for the

complete graph case in [19].

The model resembles the voter model, introduced as a lattice model by Clifford and

Sudbury [2] and adapted to more general graphs by Donnelly and Welsh [4]. This

is a continuous-time process in which each vertex adopts the strategy of a randomly-

chosen neighbour at rate 1. There are two principal differences in our model. First,

each update is given by a randomly chosen edge, not a randomly-chosen vertex; the two

are equivalent only in the special case of regular graphs. Secondly, the voter model does

not distinguish between strategies, whereas our model accounts for the possibility that

some strategies are more effective than others. Donnelly and Welsh consider how the

underlying graph may be chosen to minimise or maximise the expected time to reach a

consensus, and Hassin and Peleg [10] consider the same problem for a related discrete-

time process with synchronous updates, where every vertex simultaneously adopts the

strategy of a randomly-chosen neighbour at each time step. This latter process has the

same completion time as a system of n coalescing random walks starting at the vertices

of G, and Cooper, Elsässer, Ono and Radzik [3] recently gave improved bounds for this

coalescence time. Both the continuous-time and the synchronous discrete-time voter

models have an expected n vertices updating in every unit of time, so the bounds on

these models must be multiplied by n for a meaningful comparison with our model,

where only one vertex updates at each time step.

The expected time to reach a consensus will, of course, depend on the graph structure

and we are able to give explicit formula for this mean only for the case of the complete

graph and two strategies. This is done in Section 4 by relating the problem to a
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version of the gambler’s ruin process with delays. By elementary means we show

that this expression is monotonic in parameter p ∈ [0, 1/2] in the case of symmetric

delays, which translates to a monotonicity result for the expected decision time of

our process on the complete graph. Computer simulations using the PRISM model-

checking software [14] seem to indicate that this holds true more generally for any fixed

connected graph but the proof remains elusive.

It seems natural to conjecture that for a fixed parameter p the process over the

complete graph, on average, reaches consensus most quickly. This is again supported

by the computer simulations but we are only able to prove it in the class of regular

graphs where each node is adjacent to the same number of neighbours and with the

restriction to two strategies, see Section 2. This proves a conjecture of Donnelly and

Welsh [4]. It is less clear which graph we might expect to be slowest to reach consensus,

and in fact PRISM simulations suggest the answer depends on p. For the case p = 0 we

give in Section 3 good bounds for the expected time for some specific types of graph,

and an upper bound on the time taken for any graph, together with a family of graphs

which asymptotically attain this bound within a small error term. These results make

use of some generalisations of the coupon collector’s problem.

2. Absorption probabilities and the optimality of the complete graph

Since G is connected, eventually the process will, with probability 1, reach a state

where only one strategy remains. Write S for the strategy that is left; we give the

precise distribution of S in terms of n, m and p. Note that this distribution does not

depend on the structure of G, only its order.

Theorem 1. For any graph G with n vertices, if the initial state is chosen uniformly

at random from [m]n then P(S = l) = 1/m if p = 1/2, and

P(S = l) =
(l − 2lp+mp)n − (l − 1− 2lp+ 2p+mp)n

(m−mp)n − (mp)n

otherwise.

Proof. Trivially if p = 1/2 all strategies are equivalent, and each is equally likely

to remain to the end, so we may assume p 6= 1/2. We first compute P(S 6 l) by

coarse-graining the strategies into those at most l and those exceeding l; call these sets
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of strategies A and B respectively. This is a coarse graining in the sense that when we

consider the vertices as playing strategies in {A,B} nothing changes unless the edge

chosen has one vertex with strategy A and one with strategy B (call this a “significant

edge”), in which case they will both adopt B with probability p and both adopt A

with probability 1−p. Thus the coarse-grained process we obtain on strategies {A,B}

is exactly the same as the original process for m = 2, save that the distribution of

starting states is different. We will have S 6 l if and only if the coarse-grained process

reaches consensus with all vertices playing A.

Write a0 for the number of vertices initially playing A, and let ar be the number

playing A after the rth time a significant edge is chosen. The evolution of ar is a

random walk with absorbing states at 0 and n, where ar = ar−1 + 1 with probability p

and ar = ar−1 − 1 with probability 1− p, independent of which edges are chosen, and

indeed independent of G. So the probability that ar reaches n before 0, i.e. P(S 6 l),

does not depend on G, only on n, m and l. Therefore P(S = l) = P(S 6 l)−P(S 6 l−1)

is also independent of G.

Note that, since p 6= 1/2, the sequence
(
1−p
p

)ar
is a bounded martingale. Writing

T for the value of r at which the random walk stops, T is a stopping time with finite

expectation and so, by the Optional Stopping Theorem (see e.g. [25], p. 100)

E
((

1− p
p

)aT ∣∣∣ a0 = a

)
=

(
1− p
p

)a
.

It follows that

P
(
aT = n

∣∣ a0 = a
)

=

(
1−p
p

)a − 1(
1−p
p

)n − 1

=
(1− p)apn−a − pn

(1− p)n − pn
.

Since a0 is distributed as Bin(n, l/m), we have

P(S 6 l) =

n∑
a=0

(
n

a

)(
l

m

)a(
m− l
m

)n−a(
(1− p)apn−a − pn

(1− p)n − pn

)
=

(l − 2lp+mp)n − (mp)n

(m−mp)n − (mp)n
,

and so

P(S = l) =
(l − 2lp+mp)n − (l − 1− 2lp+ 2p+mp)n

(m−mp)n − (mp)n
,

as required.



Reaching consensus 5

The probability of a particular strategy remaining at the end does not depend on

the structure of G, but the time taken until this point is reached will do. It is natural

to conjecture that the graph which has the quickest expected time is Kn. We prove

this for the special case where G is known to be regular (that is, having all degrees

equal) and m = 2.

Theorem 2. For m = 2 and any values of n and p, Kn has the shortest expected time

to completion of any n-vertex regular graph.

Proof. Let ai be the number of vertices with strategy 1 after i significant edges have

been chosen, and let ti be the time between choosing the (i− 1)th and ith significant

edges. We will show that, for any fixed sequence (ai), EG(ti | a0, . . . , ai) > EKn(ti |

a0, . . . , ai); the result follows by averaging.

Let G be k-regular and a0, . . . , ar be a fixed possible sequence (i.e. ar = 0 or

ar = n, 0 < ai < n for i < r and ai − ai−1 = ±1 for each i > 0). Note that

the probability of a given sequence depends only on the number of increments and

decrements, and not on G. Let Ei be the number of significant edges at time
∑
j6i tj

(when there are ai vertices with strategy 1). Then E(ti+1 | Ei) = kn/(2Ei), so

E(ti+1) = E(E(ti+1 | Ei)) = E(kn/(2Ei)) > kn/(2E(Ei)) by Jensen’s inequality.

Since EKn(ti+1) = n(n − 1)/(2ai(n − ai)), it is sufficient to prove that EG(Ei) 6

kai(n − ai)/(n − 1) for any k-regular graph G. We prove this by induction on i; it is

true for i = 0 since each edge has probability a0(n− a0)/
(
n
2

)
of being significant, and

there are kn/2 edges.

Suppose that the result holds for i and assume that ai+1 = ai−1 (the case ai+1 = ai+

1 is similar). Then write v1, . . . , vai for the vertices playing strategy 1 and e1, . . . , eai

for the numbers of significant edges meeting them. The probability that the next

significant edge to be sampled meets vj is ej/Ei, and if it does then ej edges become

non-significant and k − ej edges become significant, so Ei+1 = Ei + k − 2ej . Since

Ei =
∑ai
j=1 ej ,

E(Ei+1 | e1, . . . , eai) =
∑

ej + k − 2

∑
e2j∑
ej

6 (1− 2/ai)Ei + k .
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If ai = 1 then ai+1 = Ei+1 = 0. Otherwise 1− 2/ai > 0 and so

E(Ei+1) = E
(
E(Ei+1 | e1, . . . , eai)

)
6 (1− 2/ai)E(Ei) + k

6 (1− 2/ai)kai(n− ai)/(n− 1) + k

=
k

n− 1
((n− ai)(ai − 2) + n− 1)

= k(ai − 1)(n− (ai − 1))/(n− 1) ,

as required.

Theorem 2 does not immediately give the same result for larger values of m. While

we know, from the coarse-graining argument, that for e.g. m = 3 the expected time

for either {1} or {2, 3} to be eliminated and the expected time for either {1, 2} or {3}

to be eliminated are both minimised by Kn, it does not follow that the expectation of

the maximum of these two times is also minimised by Kn.

Since for p = 1/2 and G regular, the model is equivalent to the voter model,

Theorem 2 shows as a special case that the complete graph minimises the time taken

for the voter model among regular graphs, as conjectured by Donnelly and Welsh [4].

3. Upper bounds on the time to completion

In this section we consider which graphs give the longest expected time to comple-

tion. We only consider the special case p = 0; the authors used the PRISM model-

checking software [14] to analyse the expected times for general p on a variety of graphs,

and the results suggest that the answer is different for larger p. While it is natural

to expect that if the complete graph is fastest, a sparse graph such as the path might

be slowest, this is not the case. In fact, since the average time until a specific edge

is sampled is equal to the number of edges in the graph, the slowest cases are graphs

which are both sparse in parts (so that specific edges may be needed) and dense in

parts (so that it takes a long time to sample the necessary edges). We prove a general

bound on the expected time for the process with p = 0 on any graph, but also consider

some particular graphs. As well as the path, we consider three natural families of

graphs with the property of being sparse in parts and dense in others. The sundew
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consists of a clique (that is, a complete subgraph) with some pendant edges attached

as evenly as possible; the lollipop consists of a clique with a pendant path, and the

jellyfish is something of a hybrid between the two, consisting of a clique with several

shorter pendant paths attached as evenly as possible. PRISM simulations suggest

that for small n a sundew is the slowest graph for p close to 0, with a lollipop being

slowest for p close to 1/2. Our theoretical results on the special case p = 0 indicate

that suitably-chosen jellyfish are slower if n is sufficiently large, but that the sundew

on n vertices with a clique of size n − r remains slower than the lollipop with the

same parameters. In fact the sundew is a special case of the spider graph, defined by

Donnelly and Welsh [4] to be a clique with pendant edges attached in any manner;

likewise the lollipop may be regarded as a generalisation of their tennis-racquet graph,

which is a clique with a single pendant edge.

In our analysis, we consider some variants of the coupon collector problem. The

classical setting, in which we collect coupons which are independently equally likely to

be any of n types, and ask for the expected time until we have at least one of each

type, is a folklore result (see e.g. [8]); the answer is nHn, where Hn is the nth harmonic

number, so is n log n+O(n). The variant known as the double dixie cup problem asks

for the time until m copies of each coupon have been collected, for fixed m, and is rather

harder. Newman and Shepp [17] gave the expectation n(log n+(m−1) log log n+O(1)),

and Erdős and Rényi [7] studied the distribution in more detail. More recently, other

aspects of the problem have been studied by Myers and Wilf [16]. Here we consider

a setting in which different types have different targets, which are themselves random

variables; choosing geometric random variables gives a particularly simple relationship

with the original coupon collector problem. We will also need an inequality satisfied

by processes which are similar to the classical coupon collector except for allowing the

possibility of receiving multiple coupons in a single time step, which we prove below.

Throughout, we will use the term “geometric random variable” to mean a variable

equivalent to the number of independent identical trials up to and including the first

success, i.e. the geometric distribution has support {1, 2, . . .}.

First we consider the relaxation of the classical problem in which multiple coupons

may be received simultaneously. We write h(n) for the function with h(n) = Hn if

n ∈ N0 which is linear in between these points; note that h(n) is concave.
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Lemma 1. Suppose we have a process in which the probability of receiving a coupon of

type i is 1/N at each time step for every i ∈ [n], where N ≥ n. Write T for the time at

which we first have at least one coupon of every type. Then E(T ) ≤ NHn, with equality

if and only if the probability of receiving more than one new coupon simultaneously at

any point is 0.

Proof. We prove this by induction on n; it is trivial for n = 0. Write At for the

number of new types received at time t, and Bt for the number of coupons received

before time t. Then E(At) = (n − Bt)/N , so
∑
t(At + (Bt − n)/N) is a martingale.

Run the process until the first time one or more coupons are received; write T1 for the

time at which this occurs. T1 is a stopping time and E(T1) ≤ N <∞. The martingale

has bounded variation, so the Optional Stopping Theorem (see e.g. [25], p. 100) applies

and so

0 = E
( T1∑
t=1

(
At +

Bt − n
N

))
.

Since Bt = 0 for t ≤ T1 and At = 0 for t < T1, the above gives E(T1) = NE(AT1)/n.

Now we have

E(T ) ≤ E(T1) +NE(h(n−AT1))

= N(E(AT1
)/n+ E(h(n−AT1

)))

≤ N(E(AT1
)/n+ h(n− E(AT1

))) ,

by the induction hypothesis and Jensen’s inequality. Since h(n− 1) + 1/n = h(n), and

h′(x) > 1/n for x < n− 1, we also have a/n+ h(n− a) ≤ h(n) if a ≥ 1, with equality

if and only if a = 1. Setting a = E(AT1), and noting that AT1 ≥ 1 by definition,

we get E(T ) ≤ Nh(n) with equality if and only if both AT1 ≡ 1 and the process

after time T1 also satisfies the condition that the probability of receiving multiple

new coupons simultaneously is 0 (note that the first condition implies equality in the

Jensen’s inequality step).

We next consider a process in which we potentially require multiple coupons of each

type, with each type having a target number given by a geometric random variable.

In general these variables will not be independent, and so we first define the types of

dependencies we permit.
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Definition 1. Let (Xi)i≥1 be a sequence of independent Bernoulli random variables

with parameter q. For each j ∈ [n], let (i
(j)
k )k≥1 be a sequence of positive integers such

that i
(j)
k 6= i

(j)
l whenever k 6= l. For each j ∈ [n], let Yj = min{k : X

i
(j)
k

= 1}. A

system of connected geometrics is a set of random variables (Yj)j∈[n] produced by such

a construction.

We now prove an upper bound on the expected time taken by a collecting process

with targets given by such a system of variables.

Lemma 2. Consider a process where we receive a coupon of type i at each time step

with probability 1/N for each i ∈ [n], where N ≥ n. For each i ∈ [n] we require Yi

coupons of type i, where the Yi are a system of connected geometrics with parameter q.

Then the expected time to completion is at most q−1NHn, with equality if both the Yi

are independent and the probability of receiving two or more coupons at the same time

is 0.

Proof. If the Yi are independent, i.e. the sets {i(j)k | k ≥ 1} and {i(j
′)

k | k ≥ 1} are

disjoint whenever j 6= j′, then the process takes the same time as a process where each

type is received with probability q/N and only one coupon of each type is required. To

see this, consider the same process except that, instead of revealing the Xi initially to

determine the Yj , every time we receive a coupon of type j we reveal the next variable

in the sequence X
i
(j)
k

, and if it is 0 we discard that coupon. In this process we keep a

coupon of any given type at each time step with probability q/N , and finish when we

have kept a coupon of every type. The expected time for this is at most q−1NHn by

Lemma 1, with equality if no two coupons can be received simultaneously.

Next we show that adding dependencies between the Yi only decreases the expected

time. Suppose that we have two processes: process A where Xi occurs in two or more

sequences, and process B where one occurrence of Xi (say for coupon type j) is replaced

by a new variable X with the same distribution, but which is otherwise identical to

process A. Fix the values of all variables except Xi and X. We may assume that the

two processes require different numbers of type-j coupons, k and l with l > k (and

consequently that X 6= Xi), since otherwise they finish at the same time. Write t0 for

the time at which, if Xi = 0, both processes will have collected enough coupons of all

types other than possibly type j; write t1 for the time at which this happens if Xi = 1,
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and write t for the time at which both processes will have received l coupons of type j.

If Xi = 0 and X = 1 then process A takes min{0, t− t0} steps longer than process B,

whereas if Xi = 1 and X = 0 then B takes min{0, t − t1} steps longer than A. These

two events have the same probability, and clearly t1 ≤ t0 since increasing Xi cannot

increase Yj′ for any j′ 6= j (and changing X does not affect Yj′ at all). So the expected

time for B is at least that for A.

Now, start from a system of independent geometrics and add dependencies one

by one. The expected time decreases at each stage. If there are only finitely many

dependencies to add, then the final expected time will be at most q−1NHn. If there are

infinitely many, the expected times after finitely many dependencies have been added

converge to that of the final process, since two processes which have the same values

i
(j)
k for k < K will have expected times which are close together, for K sufficiently

large.

Next we consider the case where one type is less likely to occur than any other.

Lemma 3. Suppose we run two processes where at each time step we receive a single

coupon with probability n/N , equally likely to be any of n types. If we receive a coupon

of type other than type 1, we keep it with probability q. In one process we also keep

coupons of type 1 with probability q, but in the other we keep them with probability q′,

where q and q′ are fixed with 0 < q′ < q < 1. Then the expected times for the two

processes differ by o(N).

Proof. Couple the two processes, so that the same type of coupon is received at each

step and either both coupons are kept or a coupon of type 1 is kept in the first process

only. The second process takes longer than the first only if the last type kept in the

second process is type 1. This happens with probability
∏n−1
k=1

kq
kq+q′ . Since

lim
n→∞

n−1∏
k=1

kq

kq + q′
≤ lim
n→∞

exp

(
−
n−1∑
k=1

q′

kq + q′

)
= 0 ,

with high probability the two processes take the same time. When they do not, the

difference is the time taken to keep a coupon of type 1, which has expected value

Nq′−1. Consequently the difference in expected times is o(N), as required, and so the

time for the second process is N(q−1Hn + o(1)).
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We can regard the second process as equivalent to one where instead of having

the same chance of receiving each coupon, but a reduced chance of keeping one type,

we have a reduced chance of receiving that type in the first place. Consequently,

by Lemma 2, if each type has a target given by a system of connected geometrics,

with type 1 being received with probability 1/aN and other types being received with

probability 1/N each, then the expected time is at most N(q−1Hn + o(1)). Exactly

the same argument applies when there are two types (or any constant number) which

have the lower probability of being received.

We now return to our original process running on a connected graph G. We consider

the case p = 0, m = 2, which we may think of as having vertices either active or inactive.

Active vertices never change their status, while an inactive vertex becomes active when

an edge to a neighbouring active vertex is sampled by the process. For U ⊆ V (G),

write TU for the time until all vertices in U are active, setting TU = 0 if all vertices in

G are inactive at the starting point. In the following analysis, we sometimes consider

the slightly different setting in which the starting state is chosen uniformly at random

among states with at least one active vertex. The two expectations differ by a factor

of 1 − 2−n (since only one state of a possible 2n is excluded), which is much smaller

than the error terms in our estimates. We are now ready to prove an upper bound on

the time taken for this process to reach consensus.

Theorem 3. For any connected graph G with n vertices, E
(
TV (G)

)
< n2 log n+ n.

Proof. For each vertex v in turn, define a sequence u
(v)
i such that u

(v)
1 = v, for every

i > 1 u
(v)
i is adjacent to some vertex u

(v)
j with j < i, and

{
u
(v)
i | i ∈ [n]

}
= V (G).

Write dv for the minimum distance from v to a different active vertex, artificially setting

dv = n if there are no other active vertices in V (G). d(v, u
(v)
i ) ≤ i−1, so dv is bounded

by min{i > 1 : u
(v)
i active} − 1. These bounds (for each different v) form a system

of connected geometrics (Yv)v∈V (G). Suppose we run the process on G, recording at

every time step whether the edge sampled reduces the distance from v to the nearest

active vertex. Then there is at least a probability of 1/e(G) of this happening at each

time step while v is inactive; once v becomes active we can make false records with

probability 1/e(G) and it will make no difference. Once the number of records for v

reaches Yv, v must be active. This process dominates a collecting process where each
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of n types of coupon is received with probability exactly 1/e(G) and the targets form

a system of connected geometrics with parameter 1/2, which by Lemma 2 takes time

at most 2e(G)Hn < n(n− 1)(log n+ 1) < n2 log n+ n, as required.

This bound is close to best possible, as we will show by considering jellyfish graphs.

Before analysing the process on sundews, lollipops and jellyfish in more detail we first

prove some lemmas on the time until a subset of vertices of a particular type reaches

its final state.

Lemma 4. Write L for the set of vertices of degree 1 in G, and suppose |L| = r. Then

as r →∞,

e(G)(h(r)− log 2 + o(1)) ≤ E(TL)

and

E
(
TV (G)

)
≤ e(G)(h(r)− log 2 + o(1)) + E

(
TV (G)\L

)
.

Proof. Write L0 for the set of vertices in L which start off inactive. For the upper

bound, once all vertices outside L are active (after time TV (G)\L) it is sufficient to

sample each edge leading to L0 once. The additional time taken for this to happen is

e(G)h(|L0|) for a particular L0, so E
(
TV (G)−TV (G)\L

)
≤ e(G)E(h(|L0|)). By Jensen’s

inequality this is at most e(G)h(E(|L0|)) = e(G)h(r/2). Since h(r) = log r + γ + o(1),

where γ is Euler’s constant, h(r/2) = h(r)− log 2 + o(1), and so

E
(
TV (G)

)
≤ e(G)(h(r)− log 2 + o(1)) + E

(
TV (G)\L

)
.

For the lower bound, note that each of the |L0| edges meeting L0 must be sampled

for all vertices in L to become active. Each edge has probability 1/e(G) to be sampled

at each time step, and only one can be sampled at any time step, so this takes time

e(G)h(|L0|), by Lemma 1. Consequently E(TL) ≥ e(G)E(h(|L0|)). Fix ε > 0; with

probability at least 1− e−2ε
2r, by Hoeffding’s inequality, |L0| ≤ (1/2− ε)r. So

E(h(|L0|)) > (1− e−2ε
2r)h((1/2− ε)r)

= h(r) + log(1/2− ε) + o(1) .

Given δ > 0 choose ε such that log(1/2 − ε) < − log 2 − δ; then for large r we have

E(h(|L0|)) > h(r)− log 2− δ, so E(TL) ≥ e(G)(h(r)− log 2 + o(1)), as required.
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Lemma 5. Let S be an r-clique in G. Then E(TS) = e(G)o(1) as r →∞.

Proof. First we bound the expected time until some vertex of S is active (assuming

some vertex in G was initially active). With probability 1 − 2−r this time is 0; if not

the distance, d, from S to the nearest active vertex is bounded by a geometric variable

with rate 1/2. There are d edges which, if sampled in turn, will lead to a vertex in

S being active, and the expected time to sample these edges in turn is 2e(G). So the

overall expected time until a vertex in S is active is at most 21−re(G) = o(1)e(G).

Secondly we bound the time from any position with at least one active vertex in S

until all vertices in S are active. It is sufficient to deal with the case where exactly one

vertex is active, since additional active vertices can only reduce the expected time. If k

vertices in S are active, there are at least k(r−k) edges which, if sampled, will increase

the number of active vertices to k + 1. Thus the expected time until all vertices in

S are active is at most e(G)
∑r−1
k=1

1
k(r−k) . Since 1

k(r−k) =
(
1
r

)(
1
k + 1

r−k
)
, this bound

equals e(G)(2Hr−1/r) = e(G)o(1). Combining these two estimates, E(TS) = e(G)o(1),

as required.

Lemma 6. Suppose G contains r vertices of degree 1 or 2 arranged in a path, P . Then

E(TP ) = e(G)(h(r)− log 4 + o(1)) as r →∞.

Proof. Consider the intervals of inactive vertices along the path, starting from one

end. Each one in turn has its initial length dominated by independent geometric

variables with parameter 1/2 (dominated by rather than equal to since the total length

is capped). With high probability there are fewer than r/4 + r2/3 such intervals (and

there are at most r/2). Each one, except possibly the first and last, has active vertices

at both ends.

Run a collection process with targets given by r/4 + r2/3 independent geometrics,

with each type having probability 2/e(G) of being received at every time step except

for two which have probability 1/e(G). Couple it to the process on G by ensuring that

each interval corresponds to one of the targets (or is dominated by it) and that while

an inactive interval still exists a coupon of the corresponding type is received exactly

when an edge at one end of the interval is sampled. By Lemma 2 and Lemma 3, this

takes time at most 2e(G)(h(r/4) + o(1))/2 = e(G)(h(r)− log 4 + o(1)).

For the lower bound, note that with high probability the process is dominated by a
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collecting process with r/4−r2/3 independent geometric targets for which each type has

probability 2/e(G) of being received. This has expected time 2e(G)h(r/4− r2/3)/2 =

e(G)(h(r)− log 4 + o(1)).

As a consequence of Lemma 6, the expected time taken by the process on Pn is

n log n − O(n). We are now ready to compare the sundew and lollipop. In fact our

result applies to any spider graph, not just the sundew, but simulations suggest that

the expected time is longer on the sundew than on other spider graphs.

Theorem 4. Let Sdn,r be the sundew with a clique of size n− r and r pendant edges;

let Lpn,r be the lollipop with a clique of size n−r and a pendant path of length r. Then,

provided both r and n−r tend to infinity, Sdn,r has expected time e(Sdn,r)(h(r)−log 2+

o(1)) whereas Lpn,r has expected time e(Lpn,r)(h(r)− log 4+o(1)). In particular, since

e(Sdn,r) = e(Lpn,r), the sundew has the higher expected time if n − r and r are both

large.

Proof. By Lemma 4, the expected time for the sundew is at least e(Sdn,r)(h(r) −

log 2 + o(1)) and at most e(Sdn,r)(h(r) − log 2 + o(1)) + E(TS), where S is the set of

vertices in the clique. But E(TS) = o(e(Sdn,r)) by Lemma 5, giving the required result.

Similarly, for the lollipop we have a lower bound of e(Lpn,r)(h(r)− log 4 + o(1)) for

the path to become all active, by Lemma 6, and an upper bound of e(Lpn,r)(h(r) −

log 4 + o(1)) + E(TS). Again E(TS) = o(e(Lpn,r)) by Lemma 5, giving the required

result.

By choosing r so that h(r)/h(n) → 1 but r/n → 0, e.g. r = n/ log n, we construct

two sequences of graphs with expected time (1/2− o(1))n2 log n, about half the bound

in Theorem 3. However, the jellyfish construction can do better, equalling the bound

up to a factor of 1− o(1).

Theorem 5. Let Jn be the jellyfish graph consisting of a clique of size n− 2n/ log2 n,

with n/(log2 n)2 pendant paths of length 2 log2 n each. Then the expected time of the

process on Jn is (1− o(1))n2 log n.

Proof. The upper bound follows from Theorem 3. For the lower bound, we show that

the expected time until the end of every path is active is at least this long. The expected

number of paths which start off all inactive is (n/(log2 n)2)2−2 log2 n = 1/n(log2 n)2 =
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o(1). So with high probability no such path exists. Consider only the paths which have

an inactive vertex of degree 1 at the end, and suppose there are k of these. Each of

these k ends has a distance to the nearest active vertex given by a geometric random

variable, and these variables are independent since the paths are disjoint. Consider a

process where for i ∈ [k] we receive a coupon of type i if the distance from the ith end

to the nearest active vertex is reduced. By Lemma 2, the expected time for this process

is e(G)h(k), since the variables are independent and at most one path contains any

sampled edge. The overall expected time is therefore at least (1 − o(1))e(G)E(h(k)).

Applying the Chernoff bound, with high probability k ≥ n/(4(log2 n)2), and so the

expected time is at least (1 − o(1))e(G)h(n/(4(log2 n)2)). The required lower bound

follows since h(n/(4(log2 n)2)) > log n− 4 log log2 n = (1− o(1)) log n.

4. Gambler’s ruin with delays

In this section we consider a special case of our problem of reaching a consensus on

the complete graph with n vertices where m = 2. Because of the symmetries of the

complete graph, from the probabilistic point of view, it is easily seen that the evolution

of this system is isomorphic to a random walk over the set of states {0, 1, . . . , n} with 0

and n being absorbing states. More precisely, given that k vertices are active and the

remaining n−k are inactive, the probability of sampling a significant edge (see Section

2) is γk = 2k(n−k)
n(n−1) and conditionally on choosing a significant edge the probability of

activating yet another vertex is 1−p, and with probability p a previously active vertex

is deactivated. We remark in passing that the probability to sample a significant edge

is symmetric under swapping the strategies, γn−k = γk. Below, we recall some of the

theory on random walks relevant to our problem.

Gambler’s ruin (GR) is a classical problem in probability theory. Given fixed

parameters p ∈ [0, 1/2] and n ∈ Z+, a Markov chain (Xt)t∈N0
over the state space

{0, 1, . . . , n} is defined as follows. The states 0 and n are set to be absorbing and the

remaining transition probabilities for states 0 < k < n are given by

pk,k−1 = P(Xt+1 = k − 1 | Xt = k) = p,

pk,k+1 = P(Xt+1 = k + 1 | Xt = k) = 1− p.
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This Markov chain models the situation where a gambler enters a casino with £X0 in

his pocket and plays a sequence of games in which his odds of winning are p : 1−p and

each time he bets £1 on his win. This continues until he either hits his goal £n, or until

he bankrupts, whichever occurs first. The time of this happening is represented by the

random variable T = min{t ∈ N0 : Xt ∈ {0, n}} and is usually called the absorption

time, which is easily seen to be almost surely finite.

There are a few interesting quantities to investigate in this setting: the probability

of gambler’s ruin and how it depends on the initial capital P(XT = 0 | X0 = k), the

expected time E(T | X0 = k,XT = 0) for this to happen, etc. It turns out that for

the classical GR many of these quantities can be explicitly computed. This is usually

done by employing martingale theory (see e.g. Williams [25]), or, more elementary, by

solving certain recurrence relations (as in [8]).

In the present article we seek to analyse a more general problem of gambler’s

ruin with delays (DGR). Given p and n as before, and a sequence of parameters

(γ1, . . . , γn−1) ∈ (0, 1]n−1 we define a new Markov chain (Xt)t∈N0
over {0, 1, . . . , n}

with 0 and n still being absorbing states and the following transition probabilities for

0 < k < n:

pk,k−1 = P(Xt+1 = k − 1 | Xt = k) = pγk,

pk,k+1 = P(Xt+1 = k + 1 | Xt = k) = (1− p)γk,

pk,k = P(Xt+1 = k | Xt = k) = 1− γk.

This modifies the previous model by allowing a draw outcome of a game with probabil-

ity 1−γk in which case our gambler’s fortune is unchanged, and conditioned on winning

or losing £1 the probabilities are the same as before. It seems artificial to allow the

probability of the draw outcome to depend on the current fortune of the gambler but,

for our purposes this is exactly what was needed, as the number of significant edges

(and hence the probability to sample one) at any time depends only on the number of

currently active vertices.

Note that setting γ0 = 0, γn = 0 the formulae above extend to 0 ≤ k ≤ n. In the

special case γ1 = · · · = γn−1 = 1 we recover the classical GR.

There is a vast amount of literature dealing with gambler’s ruin and its extensions.

This ranges from classical textbooks on probability such as Feller’s [8] to recent papers
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generalising the original problem in various directions. Engel [6], Stirzaker [21, 22],

Bruss, Louchard and Turner [1], and Swan and Bruss [23] all look at the problem of

N > 2 gamblers playing each other at random and compute probabilities of each player

being ruined and various other associated quantities depending on the initial wealth

distribution. Some authors refer to this as N -tower problem as the process can be

visualised by N towers of stacked coins where at each step a coin is taken from the top

of a tower chosen at random and placed on another tower amongst the others chosen

again at random. The game stops when one of the towers becomes empty.

Other variations include two players (a casino and a gambler) with multiple cur-

rencies [13] by Kmet and Petkovšek. Lengyel in [15] allows ties, and more generally

Katriel in [12, 11] studies absorption time for a game in which the pay-off is a random

variable with range [−ν,+∞)∩Z for a positive integer ν. Common to all these is that

they assume identically distributed increments, whereas we allow that these depend on

the given state.

The most relevant to our present work are the following two papers. In Gut’s paper

[9], a particular instance of DGR when all the delays are the same is investigated.

We recover all of his results (with slightly different notation) by setting γ1 = · · · =

γn−1 = 1 − r. El-Shehawey [5] allows all the probabilities to win, lose or draw to

depend on the player’s current fortune. This is indeed a more general setting then ours

but unfortunately only absorption (i.e. ruin) probabilities are provided there and the

expected waiting time until absorption is not considered.

We will now derive the formula for the expected time of absorption of DGR. As

before, T is the time of absorption. To simplify notation, for each 0 ≤ k ≤ n we denote

E(T | X0 = k) by Ek. Note that the ratio
pk,k−1

pk,k+1
= p

1−p ∈ [0, 1] is fixed and we denote

it by λ. In order to calculate the expected time of absorption, we need to solve the

following recurrence relation

γkEk = 1 + γk(pEk−1 + (1− p)Ek+1), (1)

for 0 < k < n, with the boundary conditions E0 = 0, and En = 0. Note that the

associated homogeneous equation

Ek = pEk−1 + (1− p)Ek+1
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whose solutions yield the probabilities for the chain to be absorbed in 0 or n, depending

on which boundary conditions are imposed, is the same as in the case of classical GR.

In other words, since the equation above does not depend on the lagging parameters

γk, the probability that the gambler bankrupts before earning £n is the same for both

DGR and GR.

It is not hard to see that for any a, b ∈ R the expression a + bλk solves the

homogeneous equation above and finding the solution is therefore just a matter of

fitting the constants a and b. In order to find all the solutions to (1) it therefore

suffices to find just one particular solution to it. One way to solve this is by assuming

a series expansion
∑
i aiλ

i of the solution. After a somewhat tedious computation

which we deliberately skip, one finally arrives at the solution

Ek =
1 + λ

1− λ

(
Sn

1− λk

1− λn
−
k−1∑
i=1

1

γi
(1− λk−i)

)
, for 0 ≤ k ≤ n, (2)

where

Sn =

n−1∑
i=1

1

γi
(1− λn−i).

The reader is invited to check that this indeed satisfies both the recurrence relation

(1) and the boundary conditions. Setting γ1 = · · · = γn−1 = 1− r gives

Sn =
1

1− r

(
n− 1− λn

1− λ

)
,

Ek =
1

1− r
· 1 + λ

1− λ

(
n

1− λk

1− λn
− k
)
,

which coincides with the result in the aforementioned paper. To the best of our

knowledge this is the first time that the explicit formula for the expected time of

absorption for the gambler’s ruin with delays appears in the literature.

Note that plugging in the values γi = 2i(n−i)
n(n−1) into (2) will give the explicit formula

for the expected time of reaching a consensus on the complete graph assuming we start

with k supporters of the first (more persuasive if p < 1/2) and n − k of the second

(weaker) option.

Remark 1. Note that all the formulae have a removable singularity at 1 and hence

are well defined by continuity at λ = 1 which corresponds to p = 1/2.



Reaching consensus 19

4.1. Monotonicity of the mean absorption time

We now wish to show that as p increases from 0 to 1/2 (or λ from 0 to 1) the mean

absorption time monotonically increases as well. We could try to prove that each Ek

is monotonic in p but this clearly is not true even in the case with no delays. One

can easily compute that, for example, E1 when n = 3 attains a global maximum at

λ = (−1 +
√

3)/2. For this reason we will be considering symmetric sums Ek +En−k.

Unfortunately, neither are these in general monotonic. It turns out, however, that

for a fixed 0 < k < n the symmetric term Ek + En−k is indeed increasing with λ, as

long as we assume that the parameters γi are symmetric, i.e. if γi = γn−i for 0 < i < n.

Note that for the application we have in mind this suffices, as the starting distribution

of strategies over the graph is usually chosen in a way that makes it symmetric under

swapping the strategies, and also the probability to sample a significant edge (which is

interpreted as a delay parameter γi) only depends on the number of vertices currently

playing one or the other strategy, and, as we noted before, is independent under

swapping the two strategies.

We will first give the proof of this fact for the classical GR which immediately extends

to the case where all the parameters γi are the same. We will need the following lemma.

Lemma 7. Let α > 1. The function

f(λ) =
1− λ
1 + λ

· 1 + λα

1− λα

is a decreasing (non-negative) function of λ on [0, 1].

Proof. The function is continuously differentiable on (0, 1) with f ′(0) = −2, hence

it suffices to show that f ′ does not have zeros in (0, 1).

The zeros of f ′, if existed, would have to satisfy the following equation

αλα−1(1− λ2) + λ2α − 1 = 0,

or the equivalent one

g(λ) = α

(
1

λ
− λ
)

+

(
λα − 1

λα

)
= 0.

Setting λ = e−t we get

g(λ) = h(t) = 2α(sinh(t)− sinh(αt))
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and it suffices to show that h(t) does not have zeros in t ∈ (0,+∞). But this is clear

since sinh is increasing on (0,+∞) and hence t < αt implies sinh(t)− sinh(αt) < 0.

Theorem 6. In the classical GR setting, the symmetrised expectation

Ek + En−k = n · 1 + λ

1− λ
· (1− λk)(1− λn−k)

1− λn

is a (non-negative) increasing function of λ on [0, 1] for each 0 ≤ k ≤ n.

Proof. Note,

1− λn =
1

2
(1− λk)(1 + λn−k) +

1

2
(1 + λk)(1− λn−k).

Hence,
1

Ek + En−k
=

1

2n

(
1− λ
1 + λ

· 1 + λn−k

1− λn−k
+

1− λ
1 + λ

· 1 + λk

1− λk

)
and applying Lemma 7 twice yields the result.

We would now like to prove the same result for the general symmetric DGR. The

expression for the symmetric term is

Ek + En−k =
1 + λ

1− λ

[
n−1∑
i=1

1

γi
(1− λn−i)2− λk − λn−k

1− λn

−
k−1∑
i=1

1

γi
(1− λk−i)−

n−k−1∑
i=1

1

γi
(1− λn−k−i)

]
. (3)

For a fixed 0 < i < n letting γi = γn−i tend to 0 while keeping the rest of the parameters

bounded away from zero, the terms containing 1
γi

= 1
γn−i

will become dominant which

means that the expression above increases with λ if and only if each of those terms

increases with λ ∈ [0, 1]. It now remains to collect the like terms involving 1
γi

= 1
γn−i

,

and to show that these are increasing with λ.

Let us fix k and i. We may assume that 0 < k, i ≤ n/2 as it is assumed that γi’s

are invariant under changing i with n − i, and as the expression under consideration

Ek + En−k is also symmetric. The term multiplying 1
γi

= 1
γn−i

in (3) is

1 + λ

1− λ

[
(2− λn−i − λi)2− λk − λn−k

1− λn
− (1− λk−i)− (1− λn−k−i)

]
(4)

if i < k, and hence n− i > n− k; and

1 + λ

1− λ

[
(2− λn−i − λi)2− λk − λn−k

1− λn
− (1− λn−k−i)− (1− λi−k)

]
(5)
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if i > k, and hence n − i < n − k. If k = i both expressions are valid. Notice that

swapping i with k transforms one into another and therefore it suffices to prove that

the expression in (4) is an increasing function of λ ∈ [0, 1] for fixed 0 < i ≤ k ≤ n/2.

Remark 2. Note that in case n is even and i = n/2, we have i = n− i and also k ≤ i,

so in order not to double-count, the expression we should be considering is not (5) but

rather
1 + λ

1− λ

[
(1− λn/2)

2− λk − λn−k

1− λn
− (1− λn/2−k)

]
which is exactly a half of (5). It therefore still suffices to show monotonicity of (5), or

equivalently (4).

Let us denote by G(λ) the expression inside the square brackets in (4):

G(λ) = (2− λn−i − λi)2− λk − λn−k

1− λn
− (1− λk−i)− (1− λn−k−i).

Then in order to show that 1+λ
1−λ ·G(λ) is increasing on [0, 1] it is sufficient to show that

H(λ) =
1 + λi

1− λi
·G(λ)

is increasing and non-negative on the same domain, as by virtue of Lemma 7 we know

that 1+λ
1−λ ·

1−λi

1+λi is non-negative and increasing, and so will be the product of the two.

We calculate,

G(λ) =
(2− λn−i − λi)(2− λk − λn−k)− (2− λk−i − λn−k−i)(1− λn)

1− λn

=
2− 2λk − 2λn−k − 2λn−i − 2λi + λk+i + λn−(k−i) + λk−i + λn−(k+i) + 2λn

1− λn

=
(1− λi)

[
2− 2λn−i + λk−i + λn−(k+i) − λk − λn−k

]
1− λn

=
(1− λi)

[
2(1− λn−i) + (1− λi)(λk−i + λn−(k+i))

]
1− λn

and hence

H(λ) =
1 + λi

1− λi
·G(λ) =

(1 + λi)
[
2(1− λn−i) + (1− λi)(λk−i + λn−(k+i))

]
1− λn

.

After introducing a substitution λ = e−2t,

F (t) =
1

2
H(e−2t) =

2 cosh(it)[sinh((n− i)t) + sinh(it) cosh((n− 2k)t)]

sinh(nt)

=
2 cosh(it) sinh((n− i)t) + sinh(2it) cosh((n− 2k)t)

sinh(nt)
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it suffices to show that F is non-negative and decreasing on [0,+∞). Using addition

formulae we can rearrange the numerator of the previous expression to read

[2 cosh(it) sinh(nt) cosh(it)− sinh(nt)] + sinh(nt)− 2 cosh(it) sinh(it) cosh(nt)

+ sinh(2it) cosh((n− 2k)t)

= sinh(nt) cosh(2it) + sinh(nt)− sinh(2it) cosh(nt) + sinh(2it) cosh((n− 2k)t)

= sinh((n− 2i)t) + sinh(2it) cosh((n− 2k)t) + sinh(nt).

Therefore

F (t) = 1 +
sinh((n− 2i)t) + sinh(2it) cosh((n− 2k)t)

sinh(nt)
.

To make things cleaner, we introduce yet another substitution

Q(t) = F (t/n)− 1 =
sinh((1− α)t) + sinh(αt) cosh((1− β)t)

sinh(t)

=
2 sinh((1− α)t) + sinh((α+ β − 1)t) + sinh((1− β + α)t)

2 sinh(t)

where α = 2i
n , β = 2k

n , and since 0 < i ≤ k ≤ n/2 we have 0 < α ≤ β ≤ 1. It is

clear now from the formula that F (t) ≥ 1 on [0,∞) and in particular F is non-negative

on the positive reals. It therefore remains to show that Q is decreasing on [0,∞), or

equivalently that 4 sinh2(t)Q′(t) ≤ 0 for t ∈ [0,∞). We calculate

W (t) = 4 sinh2(t)Q′(t)

= 2 sinh(t)
[
2(1− α) cosh((1− α)t) + (α+ β − 1) cosh((α+ β − 1)t)

+ (1− β + α) cosh((1− β + α)t)
]
− 2 cosh(t)

[
2 sinh((1− α)t)

+ sinh((α+ β − 1)t) + sinh((1− β + α)t)
]

= 2(1− α)
[

sinh((2− α)t) + sinh(αt)
]

+ (α+ β − 1)
[

sinh((α+ β)t)

+ sinh((2− α− β)t)
]

+ (1− β + α)
[

sinh((2− β + α)t) + sinh((β − α)t)
]

− 2
[

sinh((2− α)t)− sinh((α)t)
]
−
[

sinh((α+ β)t)− sinh((2− α− β)t)
]

−
[

sinh((2− β + α)t)− sinh((β − α)t)
]

= −2α sinh((2− α)t) + 2(2− α) sinh(αt)− (2− α− β) sinh((α+ β)t)

+ (α+ β) sinh((2− α− β)t)− (β − α) sinh((2− β + α)t)

+ (2− β + α) sinh((β − α)t)
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This last expression for W (t) clearly evaluates to zero at t = 0 and therefore it is

enough to show that this is decreasing on t ∈ [0,∞), in other words it suffices to show

W ′(t) ≤ 0 for t ≥ 0. We calculate again,

W ′(t) = 2(2− α)α
[

cosh(αt)− cosh((2− α)t)
]

+ (α+ β)(2− α− β)
[

cosh((2− α− β)t)− cosh((α+ β)t)
]

+ (2− β + α)(β − α)
[

cosh((β − α)t)− cosh((2− β + α)t)
]

= 4(2− α)α sinh(t) sinh((α− 1)t)

+ 2(α+ β)(2− α− β) sinh(t) sinh((1− α− β)t)

+ 2(2− β + α)(β − α) sinh(t) sinh((β − α− 1)t)

= − sinh(t)
[
4(2− α)α sinh((1− α)t) + 2(2− β + α)(β − α) sinh((1− β + α)t)

− 2(α+ β)(2− α− β) sinh((1− α− β)t)
]

In the case α+β > 1 the claim easily follows as the minus sign in front of the third term

can be used to change the argument of that sinh function to (α + β − 1)t. Recalling

that 0 < α ≤ β ≤ 1 it is easy to check that all the other constant factors appearing in

the expression are non-negative.

In the case α + β ≤ 1, the claim follows from the facts that 1 − α ≥ 1 − α − β,

1− β + α ≥ 1− α− β,

4(2− α)α+ 2(2− β + α)(β − α) ≥ 2(α+ β)(2− α− β),

and the following lemma.

Lemma 8. Let a1, a2, a3, b1, b2, b3 be non-negative real numbers such that b1 ≥ b3,

b2 ≥ b3, and a1 + a2 ≥ a3. Then for all t ≥ 0

a1 sinh(b1t) + a2 sinh(b2t)− a3 sinh(b3t) ≥ 0.

Proof. We rewrite the left hand side as

a1[sinh(b1t)− sinh(b3t)] + a2[sinh(b2t)− sinh(b3t)] + (a1 + a2 − a3) sinh(b3t).

Since sinh is an increasing function, each of the terms above is non-negative.

This completes the proof of the following theorem.
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Theorem 7. For each 0 ≤ k ≤ n the symmetric sum of the mean absorption times

E(T | X0 = k) + E(T | X0 = n − k) of gambler’s ruin with symmetric delays is

monotonically increasing with p ∈ [0, 1/2].

In particular, we have proved the following result.

Theorem 8. For m = 2 and G = Kn, if the initial state is chosen symmetrically with

respect to swapping strategies (e.g. uniformly at random), then the expected time until

reaching consensus increases monotonically with p ∈ [0, 1/2].
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