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Abstract—Ageing diagnosis in Lithium-ion batteries is essential
to ensure their reliability and optimum performance over time.
The Battery Management System (BMS) usually monitors bat-
tery ageing with the aid of two metrics: capacity and power
fade. However, these metrics do not identify the main root
causes of battery ageing. Using the Electrochemical Impedance
Spectroscopy technique, this work proposes a novel method to
identify and quantify ageing mechanisms over time. The method
is applied to four parallelised Lithium-ion cells cycled with a
constant driving profile for 500 cycles. As a result, Loss of Active
Material (LAM) and Loss of Lithium Ions (LLI) were found to
be the most pertinent ageing mechanisms over time for the four
cells. Identification and quantification of ageing mechanisms will
support novel battery lifetime control strategies within the BMS,
so that potential failures during normal operation are prevented.

I. INTRODUCTION

State of Health (SoH) diagnosis represents a key measure to
guarantee safety and lifetime optimised operation of Lithium-
ion batteries (LIBs) in automotive applications [1]. The
Battery Management System (BMS) usually quantifies SoH
based on the decrease in capacity and increase in resistance,
metrics that are directly related at a vehicle level to the range
limit and power limit, respectively [1]. Such a definition of the
SoH does not explain the root causes of battery degradation
within a BMS, and thus identification and quantification of
the ageing mechanisms are also needed [2]. Understanding
the root causes of battery degradation will help the BMS
to prevent potential failures such as internal short-circuit,
overcharge or even thermal runaway. Ageing mechanisms are
commonly classified into conductivity drops (Cond. loss),
Loss of Lithium Ion (LLI) and Loss of Active Material (LAM)
[3]. Incremental Capacity (IC) and Differential Voltage (DV)
techniques have been extensively investigated to identify
[2], [4] and quantify [3], [5] ageing mechanisms with the
potential implementation within the BMS. Apart from this,
previous research [6], [7] have demonstrated the potential of
Electrochemical Impedance Spectroscopy (EIS) to identify
ageing mechanisms offline in LIBs. In addition, some authors
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suggested the possibility of implementing this technique
online [8], [9]. This study proposes an alternative technique
to identify and quantify ageing mechanisms using EIS within
the context of the BMS. This technique relates each of
the resistors fitted from an Adapted Randles - Equivalent
Circuit Model (AR-ECM) to conductivity losses, LLI or
LAM. Using the EIS measurements, the AR-ECM is fitted
based on the Non-Linear Least Squares (NLLS) algorithm.
The capability to quantify the change of each ageing
mechanism over time has the potential to achieve better real-
time diagnosis performance of battery ageing within the BMS.

The structure of this work is divided as follows: Section II
relates the background of EIS with the battery kinetic pro-
cesses, describing the methodology and metrics employed to
identify and quantify the most pertinent ageing mechanisms,
Section III summarises the experimental investigation con-
ducted for this work, Section IV shows the results obtained and
finally, Section V draws the main outcomes of this study whilst
Section VI outlines areas that could be further investigated.

II. METHODOLOGY
A. EIS technique

EIS represents a widely used experimental technique to gain
a deeper insight into electrochemical processes of LIBs [10].
EIS results are usually represented by the inverse of Nyquist
plots, which relates the imaginary (y-axis) and the real (x-axis)
part of the impedance. The BMS often defines the internal
impedance of the battery as the turning point at low frequency
of the EIS plot [11], [12]. Fitting the Nyquist plots to a LIB
ECM allows the battery kinetic processes to be modeled as
illustrated in Figure 1A) and B).

The AR-ECM, which represents one of the most widely
applied ECM in the literature [7], [14] - [16], is employed in
this study. Figure 1B) illustrates that the AR-ECM is composed
of a voltage source connected in series with a resistor, an
inductor and resistor and Constant Phase Elements (CPEs)
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parallel branches. CPEs are often simplified by capacitors. In
this case CPE’s are employed to consider the porosity and
tortuosity characteristics of the electrodes. The electrochemical
significance of these elements as a function of the frequency,
and how each relate to the different area of the EIS spectra is
described below.

o Open Circuit Voltage (OCV): the OCV simulates the
thermodynamic potential. The OCV is given in the form
of a look-up table as a function of the SoC.

o Loss of conductivity: the ohmic resistance (R,p,,) ac-
counts the voltage drops due to current collectors, binder,
and electrode and electrolyte resistances [17]. The ohmic
resistance R,p,, can be measured in the Nyquist plot as
the point where the impedance spectrum crosses the real
axis (zero imaginary component, refer to Figure 1A). In
addition, an inductive behaviour in the current collectors
is representative at high frequencies. The inductance L
models this phenomenon, which in the Nyquist plot cor-
responds to the positive imaginary part of the impedance
(see Figure 1A).

o Passivation (SEI formation): a passivation layer called

Solid Electrolyte Interface (SEI) that forms between the
electrode and the electrolyte causes an irreversible de-
crease in capacity and increase in resistance [18]. During
the first few cycles lithium is consumed in irreversible
reactions at the anode. This lithiated carbon reacts with
the electrolyte forming the SEI layer. The composition,
thickness and morphology of the SEI changes over
time causing subsequent degradation phenomena such as
particle cracking. This phenomenon is characteristic at
mid-frequencies and it is therefore related to the real
impedance (horizontal distance) of first depressed semi-
circle of the Nyquist plot. In the AR-ECM, a resistance
called Rspy is connected in parallel with a CPE element
called CPEggy to model the SEI phenomenon [15], [19].

o Charge-transfer and double layer capacitance: the
charge-transfer phenomenon represents the amount of
electrochemical reactions to make possible intercalation
and de-intercalation processes [20] (an electron is de-
posited onto an electrode site). The application of an
electrical load to a cell will inherently accumulate charge
carriers of different sign at the electrode/electrolyte in-
terface. This charge accumulation across a short distance
creates a capacitor-like effect (CPEy) called double-
layer. The double-layer capacitance is proportional to the
degree of porosity and tortuosity of the electrode. In the
ECM, a resistance R, and a CPEy element connected
in parallel models the charge-transfer and double layer
phenomena, respectively. As for the first R-CPE branch
(SEI) the Nyquist plot identifies the charge-transfer and
double layer within its second depressed semicircle. R,
is measured as the real part of the impedance (horizontal
distance) of this mid-frequency depressed semicircle.

« Diffusion: diffusion is a phenomenon which includes
the movement of charged and uncharged particles (mass
transport) in order to balance concentration differences
produced by the change in the electrochemical potential
[20]. Diffusion takes place at low frequencies through the
electrolyte, the electrode surface layers, and the active
particles [17] and it is represented in the AR-ECM by
the Warburg impedance. The Warburg resistance Ry
represents the real part of the Zyy.

B. Identification of ageing mechanisms

This work proposes to track the change of the AR-ECM re-
sistances (ohmic, SEI, charge-transfer and Warburg) as param-
eters to identify and quantify ageing mechanisms (Cond. loss,
LLI and LAM) as illustrated in Figure 1. Each of the AR-ECM
resistances can be related to an electrochemical phenomenon
thus allowing to the most pertinent ageing mechanisms. In
addition, the resistance itself represents an indicator of power
fade which can be linked to the SoH. Table I relates each
AR-ECM resistance to the most pertinent ageing mechanisms
(Cond. loss, LLI and LAM) and their corresponding ageing
root causes. In reality a single ageing mechanism underpins
more than a single AR-ECM resistance. To simplify this



correlation, only the most significant ageing mechanism is
related to each AR-ECM resistance.

TABLE I: Relationship between resistances of the AR-ECM
with the most pertinent ageing mechanisms

R Ageing
[©] mechanism

Ageing mechanism
root cause
Copper dissolution dendrite formation.
Copper cracking and contact loss.

Cond.
loss

Ronm
Aluminium corrosion and contact loss.
Binder decomposition and contact loss.

SEI formation and build-up.

SEI decomposition and precipitation.
Solid permeable interphase formation.
Particle cracking, pore clogging
and particle disconnection.
Solvent co-intercalation
and graphite exfolation.
Transition metal dissolution

Rsgr
and LLI

Ry LAM
and dendrite formation.

Structural disordering.

Ohmic resistance (R, ) accounts for the voltage drops due
to current collector, binder, electrode and electrolyte electronic
particles, which all are representative of Cond. loss ageing
mechanism [28].

The formation of the SEI layer between the negative electrode
and the electrolyte impedes the transition of the lithium
ions from one electrode to the other. This will lead to LLI
ageing mechanism since the amount of intercalated and de-
intercalated lithium ions during charging and discharging
is reduced [29]. Morphological changes in the structure of
the electrodes (e.g. particle cracking) characteristic of LAM
ageing mechanism can also lead to SEI growth [29]. This
shows that LLI and LAM are interlinked.

Charge-transfer phenomenon represents the amount of elec-
trochemical reactions to make possible intercalation and de-
intercalation processes Section II-A. Thus, an increase of
charge-transfer resistance R.; implies that a lower amount of
Li-ions are intercalated or de-intercalated [30]- [32]. This sit-
uation indicates that the increase of charge-transfer resistance
can be treated as a measure of LLI ageing mechanism.
Large mass concentration differences between particles lead
to structural transformations of the porous electrodes [18],
[33], [34] allowing to correlate the increase of the Warburg
resistance (real part of Zyy) to the LAM ageing mechanism.

C. Quantification of ageing mechanisms

Previous studies [3], [5] employ the capacity loss in percent-
age as a metric to quantify ageing mechanisms using IC/DV
technique. In order to compare the results of this study with
previous literature, the resistance loss in percentage is chosen
as the parameter to identify and quantify ageing mechanisms.
Equation 1, Equation 2 and Equation 3 compute the contri-
bution of each ageing mechanism at each characterisation test
cht =n and SoC = k.

SoC=k
Roh,rn cht=n

SoC=k
Rloss cht=n

(%)
(%)

SoC=k

Cond. 10ss50r ohien (%) = -100 (1)

Rg%cl cht= n(%) + RS Q:k

ct cht=n
SoC=k
Rloss cht=n (%)

(%)

LLI(E)C’;g:th:n(%) = - 100

2

BWGin (%)
Ri)%?j}’ft:n(%)
k =20%, 50% and 90%

LAME)(:Lthz(,Zt:n(%) = -100 (3)

For n = 1...11,

Where Equation 4 computes the total loss of resistance in
percentage over cycle number Ryss(%).

RSOC’:k

RS e (%) = Zigteehi=n . 100 @)
total cht=1
For n = 1...11, k =20%, 50% and 90%

And Equation 5 computes the Ri;.:q; as the sum of each

resistance Rfﬁnfk RS"C k. RS0C=k and Rﬁ,oc:’“.
SoC=k _ pSoC=k SoC= SoC=k SoC=k
Rtnf,a,l cht=n — Rnhm cht=n + RSEI cht=n + th cht=n + RW cht=n

®)

For n = 1..11, k =20%, 50% and 90%

Then, Equation 6, Equation 7, Equation 8 and Equation 9
compute the importance of each resistance with respect to the
total resistance R;yiqi-

SoC=k
ohm cht=n
SoC=k
total cht=n

RSOC:k
RSOC:k % SEI cht=n
SEI cht:n( 0) HSoC=k
Rtotal_chtzn

RSOC

ohm cht n(%) - -100 (6)

- 100 @)

SoC=k

ct cht=n
SoC=k
total cht=n

RSoC:k (W) _ Ra/ocgitk:n
W cht=n\"70) = RSOC:k
total cht=n

k =20%, 50% and 90%

RIPCEE (%) = -100 ®)

-100 9

For n = 1...11,

III. EXPERIMENTAL INVESTIGATION

To emulate the same conditions as in a commercially viable
battery pack, four Nickel Cobalt Aluminium (NCA) Li-ion
cells connected in parallel were cycled for 500 cycles until
their End of Life (EoL). EoL corresponded to the state after
which the battery reduces its capacity by 20% with respect to
its Begin of Life (BoL) value. This definition is in agreement
with several authors [21] - [25] and procedures [26], [27].
Undertaking the experimental investigation described in [11],
each cell was aged initially by 0, 50, 100 and 150 cycles
respectively before being connected in parallel to emulate an
SoH imbalanced scenario. For simplicity this work is only
focused on analysing the ageing mechanisms of the least aged



cell. The ageing mechanisms were similar for the rest of the
cells. The ageing profile involved repeated cycles at constant
25°C of the following: a 1C discharge until the lower voltage
limit was reached followed by Constant Current-Constant
Voltage (CC-CV) charging. The CC phase involved charging
the cell at C/2 to the end of charge voltage (4.2V). Then,
the CV consisted on charging the cell until the current falls
to C/20 (150mA). EIS tests in galvanostatic mode were
performed on the newest cell individually between 4mHz and
100kHz at SoC=20%, SoC=50% and SoC=90%. SoC was
adjusted based on the OCV value (OCV-SoC relationship).
The EIS measurements were taken every 50 cycles using a
Solartron modulab system (model 2100A), characterising the
cell 11 times (n value) in total.

The EIS measurements were fitted employing the Zview
software package, using the NLLS algorithm. The maximum
error involved in each fitting measurement was of 10%. This
fitting procedure could be implementable within the BMS in
real-time scenarios [8], [9]. The required steps to perform
such fitting process in the BMS are beyond of the scope of
this study.

IV. RESULTS
A. Fitting results

Figure 2 illustrates the fitting results for Ronm, Rser, Ret
and Ry . It can be seen that R,;,, and Rgg; remains almost
constant over the number of cycles, whereas R. and Ry
follow a linear increasing trend.

The change of R,p., is independent of the SoC because
Ronm involves movement of electronic particles (voltage
drops due to current collector, binder and electrode and
electrolyte resistances) rather than ion particles.

Rgpr does not change significantly with respect to SoC,
indicating that most of the SEI dynamics are represented by
the R.;. This result indicates that the SEI R-CPE parallel
branch could be removed, simplifying the ECM.

For SoC 20% the value of R. and Ry, is larger than at
SoC 50% and SoC 90%. This result is explained based on
the fact that the rate of the intercalation and de-intercalation
of lithium-ions (Li-ions) between the electrodes depends
on the amount of Li-ion concentrated at the surface of the
electrodes, which is a function of the SoC (refer to Nernst
equation) [20]. The concentration of Li-ions is higher at SoC
20% than at 50% and 90% because the active surface area
of the cathode (between 0.5-5m?/g) in general is lower than
the anode (between 3-15m?/g) [35]. For this case (charging
event, the order of the EIS measurements taken was SoC
20%, 50% and 90%) the ions move from the cathode (low
SoC) to the anode (high SoC). Then, the larger concentration
of Li-ions implies the Rpyrs is larger at SoC 20% than at
50% and 90%.

This result is in agreement with other studies [36] - [40]
which evaluated the change of cell internal resistance with
respect to the SoC.

A
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Fig. 2: Fitting results of Ropm, Rspr, Re and Ry at A)
SoC 20%, B) SoC 50% and C) SoC 90% over number of
cycles

B. Identification and quantification of ageing mechanisms

Using Equation 1, Equation 2 and Equation 3, the contribu-
tion of each ageing mechanism is computed with respect to the
total loss of resistance. Figure 3 outlines that the magnitude of
Ry,ss for each ageing mechanism follows a linear trend based
on the growth of the fitting resistances. It can be seen that
LLI and LAM represent the most pertinent ageing mechanisms
over cycle number independently on the SoC due to the high
magnitude value of R.; and Ryy (refer to Figure 2). The Cond.
loss grows slightly with cycle number as a result of the low
magnitude value of R,p,, (refer to Figure 2). The increase in
loss of resistance (Rj,ss(%)) over cycle number is larger for
20% SoC than for 50% and 90% due to a larger concentration
of Li-ions as explained in Section IV-A. In overall, this result
agree with the outcome obtained in previous work [3], [5],
where the IC and DV analysis were employed to quantify
LLI and LAM based on the capacity fade. For a similar cell
chemistry and testing conditions they conclude that LAM and
LLI represent the most pertinent ageing mechanisms. As a
difference with respect to the results here presented, LAM
is reported to increase exponentially over time and LLI to
decrease linearly. These trends were not identified within this



work, where LAM and LLI increases linearly. The reasons to
explain this difference can be very diverse. For instance, the
type of technique (IC/DV instead of EIS) or the parameter
used (capacity instead of resistance) are different.
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Fig. 3: Contribution to battery degradation of each ageing
mechanism at A) SoC 20%, B) SoC 50% and C) SoC 90%
over number of cycles

V. CONCLUSIONS

For a particular experimental investigation, this study pro-
poses a method to identify and quantify ageing mechanisms
using EIS. It was demonstrated that LAM and LLI contribute
more to battery degradation than conductivity losses. This
contribution is more enhanced at SoC 20% than at 50%
and 90%. This method could be implementable in the future
within the BMS for real-time applications. The outcome of this
technique would help to understand the root causes of battery
degradation over time without restrictions on cell chemistry,
battery sizes and geometries, cell designs and operating con-
ditions. Quantifying the root causes of battery degradation
will give the capability to the BMS to prevent battery failures
during normal operation.

VI. FURTHER WORK

Further work includes implementing this technique on-
board within the BMS, so that the BMS would understand the
causality of degradation over time (Cond. loss, LAM or LLI).
In addition, the electrochemical insights obtained could be val-
idated using post-mortem analysis such as Scanning Electron
Microscopy (SEM), Energy Dispersive Spectrometry (EDS) or
X-Ray Diffractometry (XRD) [41]. These in-situ techniques
can identify more accurately the ageing mechanisms in LIBs.
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NOMENCLATURE
Symbols

cht characterisation test
ct charge-transfer
cont contribution
dl double layer
k SoC (20%, 50% or 90%)
n number of characterisation test
mag Magnitude
Ncycle Number of cycles
Ohm Ohmic
w Warburg
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