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Abstract.

This thesis contains a series of studies about 2-adic integral Galois representations
unramified outside a finite set of primes. There are two main focuses of research: the
study of 2-adic integral Galois representations and the study on how to compare two
2-adic integral Galois representations.

Firstly, when studying a representation, we develop methods to determine whether
the residual image is reducible or irreducible: in the irreducible case the residual image
is completely determined. On the other hand, when the residual image is reducible
we are able to make a choice of a stable lattice to completely determine the residual
image. Lastly, from the choice of lattice, we are able to extend our methods to
determine whether the representation is trivial modulo 2k+1 assuming that is trivial
modulo 2k.

Secondly, when comparing two 2-adic integral Galois representations, we are able
to determine whether the representations are isogenous that is, after conjugation if
necessary, their residual representations are the same. In some cases, this process
follows the approach given in [11] by Ron Livné.

Finally, the idea behind these studies was the notion of what we call a “Black Box
representation”, i.e., a system that will provide the characteristic polynomial of the
representation for any prime not in the set of primes.
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Notation

• K is a number field.

• L is a finite extension of K.

• S is a finite set of primes of K including the primes above 2.

• GK = Gal(K/K) is the absolute Galois group.

• ρ : GK → GL2(Q`) is an `-adic continuous Galois representation unramified
outside S.

• ρ : GK → GL2(F`) is a mod-` Galois representation unramified outside S.
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Chapter 1

Introduction.

In Number theory, one of the most relevant topics is Galois representations; in par-
ticular Galois representations attached to elliptic curves and modular forms. These
representations are a lively subject of research and have been widely studied by famous
mathematicians like Jean-Pierre Serre, Gerd Faltings, Barry Mazur, John Tate and
others. In fact, the famous proof of Fermat’s last theorem given by Andrew Wiles in-
volves Galois representations attached to modular forms and semistable elliptic curves
over Q. This capability of attaching representations to different mathematical objects
gives rise to two of the most sought objectives in Number theory; the first one is to be
able to extract all major information of an object by its attached representation, and
the second one is to determine whether two, a priori different, objects are the “same”
by proving that their respective attached representations are the same.

Roughly speaking, for given number field K, a Galois representation unramified
outside a set of primes S is a continuous homomorphism from the absolute Galois
group of K to the general linear group of a vector space V over a field F , satisfying
that ρ factors though Gal(KS/K) whereKS is the maximal extension ofK unramified
outside S. Depending on what F is, we can divide the Galois representations in three
types, for ` prime we say ρ is

1. an Artin Galois representation if F = C,

2. an `-adic Galois representation if F = Q`,

3. a mod-` Galois representation if F = F`.

Moreover we say that ρ is an `-adic integral Galois representation unramified outside
S when, by finding a suitable Galois stable lattice in Qn

` , we obtain a Z`-basis for V
and so an integral matrix representation ρ : GK → GLn(Z`). Once a suitable lattice
has been found, we can then obtain the residual representation ρ : GK → GLn(F`).
From now on, we will work with representations with ` = n = 2.

We introduce the notion of a “Black Box representation” related to ρ, which is a
system that provides the (quadratic) characteristic polynomial of the representation

1



Chapter 1 CHAPTER 1. INTRODUCTION.

for any prime p in K not in S, and we compute a quadratically independent set of
primes T2 with respect to S.

Now consider a representation ρ for which we would like to obtain as much in-
formation as possible. To do so, we start by computing a quadratically independent
set of primes T2, a set of monic cubic polynomials defining all possible S3 and C3

extensions of K unramified outside S, and the “Black Box representation”. Then
with only these we are able to determine whether the image of ρ is irreducible(image
S3 or C3) or reducible(image C2 or C1). When the image is irreducible, its splitting
field is that of a single monic cubic polynomial and by calculating its discriminant
we can distinguish between the S3 and the C3 cases. When the image is reducible,
we develop methods, based on determining the width of the stable Bruhat-Tits tree
related to ρ, to determine if there is a choice of lattice to distinguish between the C2

and the C1 cases. Moreover, by improving these methods we are able to determine
whether ρ is trivial modulo 2k+1 assuming that it is trivial modulo 2k.

On the other hand, when working with two, a priori, different representations
ρ1 and ρ2 we would like to determine if these are the same. To do this, we start
by checking that det(ρ1(Frobp)) = det(ρ2(Frobp)) (mod 2) for all p in K. Then we
compute a quadratically independent set of primes T2 and prove that their residual
images ρ1 and ρ2 are the same. This process then continues with an inductive argu-
ment, we assume that ρ1 = ρ2 (mod 2k) and we want to prove that they are equal
modulo 2k+1. By doing this assumption an “obstruction” arises when lifting from
2k to 2k+1. We are able to eliminate this obstruction by obtaining a finite set of
primes on K and checking, depending on the residual image, only the trace condition
tr(ρ1(Frobp)) = tr(ρ2(Frobp)) or the trace condition and the determinant condition
det(ρ1(Frobp)) = det(ρ2(Frobp)). We found this set of primes combining developed
theory in the thesis and the Faltings-Serre-Livné method given in [11].

Finally, a side product of the developed of methods and algorithms in this thesis
are some computational programs, which are not included in here, written in Sage [7]
which determine whether the residual image of ρ is irreducible or reducible. When
the image is reducible the programs determine whether there is a choice lattice for ρ
such that the residual image is C1 or C2. Furthermore, when the residual image is S3

the programs are able to determine a set of primes to determine the trace condition
for two different Galois representations.
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Chapter 2

Background.

This chapter encapsulates the basic, and not so basic, mathematical theory needed
to understand the contents of this thesis.

1. Section 2.1. In this section we summarize well-known facts about Number theory
and Galois theory.

2. Section 2.2. In this section we introduce the definition of a lattice and some of
its important properties. Then we continue with the definition of the Bruhat-
Tits tree; we will see that the usage of lattices will help us to define integral
representations in Section 2.3. From these constructions, in Chapter 4, we will
be able to use these trees to classify the representations they are attached to.

3. Section 2.3. In this section we give the definition of, what is going to be for
us, a Galois representation. We will also explore how to construct an integral
Galois representation using what was seen in Section 2.2.

4. Section 2.4. Lastly we present results that are stated and proven the article [11]
by Ron Livné; instead of just referring to the article, we present without proofs,
the results needed in chapters 4 and 5.

2.1 Galois and Number theory.

This section is based on [2].
Let K be a number field. Let L/K be a finite extension and consider the ideal

pOL where p is a non-zero prime ideal of OK . Then we have that

pOL = Pe1
1 · · ·P

eg
g

where Pj are distinct prime ideals of OL, g = g(p) is a positive integer and ej are
positive integers. We call ej the ramification index for Pj/p, denoted ej = e(Pj/p).

3



Chapter 2 Galois and Number theory.

If L/K is a Galois extension, then the Galois group permutes the Pj transitively, so
that e1 = · · · = eg = e.

It is well-known that OL is Dedekind domain, so every non-zero prime ideal is
maximal. Thus the quotients OL/Pj and OK/p are fields, called residue fields. They
are finite fields of characteristic p, with p a rational prime, where p ∩ Z = pZ. We
may view OK/p as a subfield of OL/Pj . The residue field degree is

f(Pj/p) = [OL/Pj : OK/p] .

If L/K is Galois then f(P1/p) = · · · = f(Pg/p) = f . In general we have that

g∑
j=1

e(Pj/p)f(Pj/p) = [L : K]. (2.1)

When L/K is a Galois extension, then (2.1) becomes efg = [L : K]. Moreover, when
L/K is an extension of number fields, we say that the prime p is

1. unramified in L/K if e(Pj/p) = 1 for all j,

2. remains inert in L/K if pOL is a prime in OL, and

3. splits completely in L/K if g = [L : K].

Let p be a prime in OK and let P be a prime in OL with P | pOK . Define the
(relative) norm of P as

NL/K(P) = pf(P/p).

Furthermore, we can extend the notion of NL/K to any fractional ideals of K by
multiplicativity, i.e.,

NL/K(Pa1
1 · · ·P

at
t ) = NL/K(P1)a1 · · ·NL/K(Pt)at .

Thus the norm of a fractional ideal in L is a fractional ideal in K. Note that if L/K
is Galois, then for U ideal we have that

NL/K(U)OL =
∏

σ∈Gal(L/K)
σ(U).

If α ∈ K then NL/K(αOL) = NL/K(α)OK , where the norm on the right is the usual
element norm. Also if F ⊆ L ⊆ K then NK/F = NL/F ◦NK/L.

Given a Galois extension of number fields L/K with Galois group G, a non-
zero prime ideal p of OK and a prime ideal P of OL with P | pOL, we define the

4



Chapter 2 Galois and Number theory.

decomposition group of P as

Z(P/p) = {σ ∈ Gal(L/K) : σ(P) = P}.

Observe that Z(P/p) acts on the finite field FP = OL/P fixing the subfield Fp =
OK/p, so there is a natural homomorphism of groups

Z(P/p)→ Gal(FP/Fp). (2.2)

From Algebraic Number theory we have the following theorem.

Theorem 2.1.1 (Theorem 1.2,[2]). Let L/K be a Galois extension of number fields
with Galois group G. Let p a non-zero prime ideal of OK .

(a) G acts transitively on the set of primes ideals P of OL that divide pOK , hence

[G : Z(P/p)] = #{primes P of OL : P | pOL}.

Also, if P and P′ are prime ideals of OL dividing pOL then, Z(P/p) and Z(P′/p)
are G-conjugate.

(b) N(p) = #Fp, N(P) = #FP and Gal(FP/Fp) is cyclic, generated by the Frobenius
automorphism ϕp : x 7→ xN(p).

(c) The homomorphism (2.2) is surjective. Its kernel is called the inertia group,
denoted I(P/p). Note that [Z(P/p) : I(P/p)] = f and I(P/p) has order e.

We can observe that when an unramified prime p is chosen, we obtain that its
inertia group is trivial. Thus we see that the homomorphism (2.2) becomes an iso-
morphism and we get

Z(P/p) ∼= Gal(FP/Fp). (2.3)

The Galois group for the residue fields is generated by the Frobenius automorphism
ϕp, hence there is a unique element σ ∈ Z(P/p) that corresponds to ϕp under the
natural isomorphism (2.3). We have that Z(P/p) = 〈σ〉. This element is called
Frobenius element at P/p and is denoted by Frob(P/p). Moreover we have that for
any σ ∈ GK

Frob(σ(P)/p) = σ Frob(P/p)σ−1

so the Frobenius elements of the primes lying above p form a conjugacy class in
Gal(L/K). We will abuse notation and write Frobp instead of Frob(P/p).

Proposition 2.1.2 (Proposition 1.4,[2]). Let L/K be a Galois extension of number
fields, p a non-zero prime of OK that is unramified in L/K and P a prime of OL

5
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` and the Bruhat-Tits Tree.

with P | pOL. Then the Frobenius at P/p is the unique element σ ∈ Gal(L/K) that
satisfies σ(α) ≡ αN(p) (mod P) for every α ∈ OL.

Moreover, by Čebotarev’s density theorem we have the following.

Lemma 2.1.3 (Corollary 2, page I-8, [14]). Let L/K be a Galois extension which
is unramified outside a finite set of primes S. Then the Frobenius elements of the
unramified primes are dense in Gal(L/K).

Consider the absolute Galois group of K. In Section 2.3, when we define what
a Galois representation unramified outside S is, we will see that the image of this
representation is given by a Galois extension L/K with Gal(L/K) < GK . Thus any
Frobp taken from GK will be lying in Gal(L/K). In this way, by Lemma 2.1.3, each
σ ∈ Gal(L/K) has the form σ = Frobp for (infinitely many) primes p of K unramified
in L/K.

Lastly, let K be a number field and let S be a set of primes containing the primes
above 2 of K. We define the group K(S, 2), which is a subgroup of K∗/(K∗)2, as

K(S, 2) := {a ∈ K∗/(K∗)2 : ordp(a) ≡ 0 (mod 2) for all p ∈ K with p 6∈ S}. (2.4)

This group is finite. Moreover, there is a finite number of extensions K(
√
a)/K given

by a ∈ K(S, 2) which are unramified outside S (see pages 213-214 in [17]).

Remark 2.1.4. Observe that after this section we will say that a prime is ‘in K’,
but it will be understood that the prime is a prime ideal of OK .

2.2 Lattices in Q2
` and the Bruhat-Tits Tree.

This section is based on the notes [1].
The theory of lattices and trees is vast, rich and they are defined in general over

d-dimensional vector spaces. We start this section with the general definition of lattice
and at some point we are going to focus explicitly in the 2-dimensional vector space
Q2
` over Q`.
Let A be a discrete valuation domain and K its field of fractions. Also, let V be

a vector space over K of dimension d. Since A ⊂ K, V has a structure of A-module.

Proposition 2.2.1. Let Λ be an A-submodule of V . The following statements are
equivalent:

(a) Λ is a finite A-module and KΛ = V .

(b) Λ is a finite A-module. The natural map

Λ⊗A K → V (2.5)

v ⊗ x 7→ xv

6
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` and the Bruhat-Tits Tree.

is an isomorphism.

(c) Λ is a free A-module of rank d.

Any Λ satisfying Proposition 2.2.1 it is called a lattice of V .

Lemma 2.2.2. Let Λ be a lattice. If Λ′ ⊂ Λ and Λ′′ is a A-module such that Λ′ ⊂
Λ′′ ⊂ Λ then Λ′′ is also a lattice. If Λ and Λ′ are lattices then Λ + Λ′ is a lattice.
More generally, if {Λi} is a non-empty family of sublattices of a lattice Λ then

∑
i Λi

is a lattice.

Definition 2.2.3. Two lattices Λ and Λ′ are homothetic if there exists λ ∈ K∗ such
that Λ = λΛ′.

From now on, let K = Q`, A = Z` and V = Q2
` as a Z`-modulo. Then we re-define

Λ in V as follows.

Definition 2.2.4. A subset Λ ⊆ Q2
` is a lattice if there exist two independent vectors

v1,v2 ∈ Q2
` such that

Λ = Z` v1 +Z` v2 = {xv1 +y v2 |x, y ∈ Z`}.

Some well-known examples of lattices in Q2
` are

Λ0 = Z`(1, 0) + Z`(0, 1) = Z2
`

and
Λa,b = Z`(`a, 0) + Z`(0, `b) with a, b ∈ Z.

Let’s fix a lattice Λ = Z` v1 +Z` v2. We would like to characterize all the lattices Λ′

such that `Λ ⊆ Λ′ ⊆ Λ. To do this define

φ : Λ→ F2
`

xv1 +y v2 7→ (x, y),

where x ≡ x (mod `) is the reduction map Z` → F` ∼= Z`/`Z` ∼= Z/`Z. We can
see that ker(φ) = `Λ and then we have Λ/`Λ ∼= F2

` . Hence for any Λ′ such that
`Λ ⊆ Λ′ ⊆ Λ, the quotient Λ′/`Λ is a subspace of F2

` .
Observe that the quotient Λ′/`Λ can be fully characterized. First we can see that

its extreme cases are the following,

Λ′/`Λ =

0 iff Λ′ = `Λ

F2
` iff Λ′ = Λ.

The rest of the cases are when Λ′/`Λ is isomorphic to a one dimensional subspace of
F2
` .
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Definition 2.2.5. A sublattice Λ′ of a lattice Λ is cocyclic if the quotient Λ/Λ′ is
cyclic.

Lemma 2.2.6. Let Λ be a lattice. Then there are exactly `+ 1 sublattices of Λ such
that [Λ : Λ′] is equal to `.

2.2.1 Bruhat-Tits Tree.

Let X be the set of lattices of Q2
` up to homothethies. For a lattice Λ, we denote

[Λ] ∈ X as its equivalence class up to homotheties.

Definition 2.2.7. Two points x and x′ in X are neighbours if there are distinct
lattices Λ, Λ′ with x = [Λ] and x′ = [Λ′] such that `Λ ⊂ Λ′ ⊂ Λ.

There is a natural bijection between the set of neighbours in X and the set of
proper non-trivial subspaces of Λ/`Λ.

Lemma 2.2.8. Let x = [Λ] be a point in X. There exists a natural bijection between
the set of neighbours of x and the set of proper non-trivial F`-subspaces of the F`
vector space Λ/`Λ.

This bijection is defined as follows: if x′ is a neighbour of x then the lattice Λ′

satisfying that `Λ ⊂ Λ′ ⊂ Λ is unique for Λ being fixed. Moreover, the relation “x and
x′ are neighbours” is symmetric. Thus the set with these notions of neighbourhood
is an undirected graph, and all notions of graph theory apply [16].

Definition 2.2.9. The Bruhat-Tits tree is the graph satisfying that

(a) its vertex set is X,

(b) there is an edge between two vertices x and x′ of X if and only if x and x′ are
neighbours.

By abuse of notation we will use X to denote this graph.

Proposition 2.2.10. The graph X is simply connected, i.e., for any x, x′ ∈ X such
that x 6= x′, there is exactly one path from x to x′.

Definition 2.2.11. A graph that is simply connected is called a tree.

Observe that our graph X is simply connected which implies that is connected
and thus is a tree [16]. Since we are working with 2-adic representations, the tree
attached to the image of a representation is called the Bruhat-Tits tree.

A path from x to x′ in X is a sequence x = x0, x1, ..., xn = x′ of points in X such
that for all i = 0, .., n− 1, xi is a neighbour of xi+1 and xi 6= xj for all 0 ≤ i 6= j ≤ n.
The integer n ≥ 0 is the length of the path, and the distance, denoted d(x, x′), between
x and x′ is the minimal length of a path from x to x′ (if any).

8



Chapter 2 Representation theory.

If d(x, x′) = n, then we can choose points x = [Λ] and x′ = [Λ′] such that
`nΛ ⊂ Λ′ ⊂ Λ. Once Λ is fixed, Λ′ is unique, and Λ/Λ′ and Λ/`nΛ are isomorphic to
Z/`nZ, i.e., both quotients are cyclic of order `n.

2.3 Representation theory.

This section is based on [15].
Let V be a vector space over the field K and let GL(V ) be the group of automor-

phisms of V . An element a of GL(V ) is, by definition, a linear mapping of V into
V which has an inverse a−1 and is linear. When V has a finite basis {ei}ni=1 of n
elements, each linear map a : V → V is defined by a square matrix (aij) of order n.
The coefficients aij ∈ K, they are obtained by expressing the images a(ej) in terms
of the basis (ei):

a(ej) =
∑
i

aijei.

Saying that a is an isomorphism is equivalent to say that the determinant of a,
det(a) = det(aij), is not zero. The group GL(V ) is thus identifiable with the group
of invertible square matrices of order n.

Now, suppose thatG is a finite group with identity element 1 and with composition
(s, t) 7→ st.

Definition 2.3.1. A linear representation of G in V is a homomorphism ρ from the
group G into the group GL(V ).

In other words, we associate to each element s ∈ G an element ρ(s) of GL(V ) in
such a way that we have the equality

ρ(st) = ρ(s) · ρ(t) for s, t ∈ G.

Observe that the previous formula implies that:

ρ(1) = 1, ρ(s−1) = ρ(s)−1.

When ρ is given, we say that V is a representation space of G (or even simply, by
abuse of language, a representation of G).

Moreover, suppose that V is n-dimensional: we say also that n is the degree of
the representation under consideration. Let {ei}ni=1 be a basis of V and let Rs be the
matrix of ρ(s) with respect to this basis. We have

det(Rs) 6= 0, Rst = Rs ·Rt if s, t ∈ G.

9



Chapter 2 Representation theory.

If we denote by rik(s) the coefficients of the matrix Rs, the second formula becomes

rik(st) =
∑
j

rij(s) · rjk(t).

Conversely, given invertible matrices Rs = (rij(s)) satisfying the previous identities,
there is a corresponding linear representation ρ of G in V ; this is what it means to
give a representation “in matrix form”.

Definition 2.3.2. Let ρ1 and ρ2 be two representations of the same group G in vector
spaces V1 and V2. These representations are said to be similar or isomorphic if there
exists a linear isomorphism τ : V1 → V2 which “transforms” ρ1 into ρ2, that is, which
satisfies the identity

τ ◦ ρ1(s) = ρ2(s) ◦ τ, for all s ∈ G.

When ρ1 and ρ2 are given in matrix form Rs and R′s respectively, this means that
there exists an invertible matrix T such that

T ·Rs = R′s ·T, for all s ∈ G.

which is also written R′s = T · Rs · T−1. We can identify two such representations
by having each x ∈ V1 correspond to the element τ(x) ∈ V2. In particular, ρ1 and ρ2

have the same degree.

Definition 2.3.3. Let ρ : G → GL(V ) be a linear representation and let W be a
vector subspace of V . We say W is stable or invariant under the action of G when
x ∈W implies ρ(s)x ∈W for all s ∈ G.

2.3.1 Galois representations.

This section is based on [9].
We say a representation is a Galois representation when the group G is actually

a Galois group. Let K be a number field, let L/K be a finite Galois extension and
consider the following diagram.

K

L

K

Gal(L/K)

Gal(K/L)
GK

Definition 2.3.4. A continuous `-adic Galois representation over K is a continuous
homomorphism ρ : GK → GLn(Q`).

10



Chapter 2 Representation theory.

This representation is sometimes referred as a rational `-adic representation. Let
ρ be an `-adic representation and let L be the extension of K corresponding to H =
ker(ρ), i.e., Gal(K/L) = ker(ρ). Then we have that

ρ(GK) ∼=
Gal(K/K)
Gal(K/L)

∼= Gal(L/K).

We can see in the following diagram that

GK GL2(Q`)

Gal(L/K)

//ρ

OO

/ O

__

In this way, as was mentioned at the end of Section 2.1, the image of ρ is given by a
Galois extension L/K with Galois group Gal(L/K).

Example 1. Let ζ`n be a primitive `n-root of unity in K with (ζ`n)` = ζ`n−1. For
g ∈ GK define a sequence of integers 0 ≤ ai < ` by

g(ζ`) = ζa1
`

g(ζ`2) = ζa1+a2`
`2

...

g(ζ`n) = ζa1+a2`+···+an`n−1

` .

Then we define the `-adic cyclotomic character χcyc by

χcyc(g) = a1 + a2`+ · · ·+ an`
n−1 + · · · ∈ Z∗` .

Note that the value χcyc (mod `n) simply says what g does to the `n-roots of 1. It is
easy to check that the `-adic cyclotomic character is multiplicative and hence gives a
1-dimensional representation

χcyc : GK → Z∗` ⊂ GL1(Q`).

Taking Fn = K(ζ`n) we have that Gal(K/Fn)→ id (mod `n) so χcyc is continuous.

Example 2. Let E/K be an elliptic curve and, for each n ≥ 1, let Pn and Qn

be a basis for E[`n] with `Pn = Pn−1 and `Qn = Qn−1. For g ∈ GK define 0 ≤

11



Chapter 2 Representation theory.

ai, bi, ci, di < ` by

g(P1) = a1P1 + c1Q1

g(Q1) = b1P1 + d1Q1

...

g(Pn) = (a1 + · · ·+ an`
n−1)Pn + (c1 + · · ·+ cn`

n−1)Qn
g(Qn) = (b1 + · · ·+ bn`

n−1)Pn + (d1 + · · ·+ dn`
n−1)Qn.

Then we have that

ρ(g) =
(
a1 + · · ·+ an`

n−1 + · · · b1 + · · ·+ bn`
n−1 + · · ·

c1 + · · ·+ cn`
n−1 + · · · d1 + · · ·+ dn`

n−1 + · · ·

)
∈ GL2(Z`) ⊂ GL2(Q`)

is the representation on the `-adic Tate module of E.

Now, let p be a prime in K and P be a prime in L such that P | pOL. Abusing
notation we write the inertia group of P/p as Ip(see Theorem 2.1.1).

Definition 2.3.5. A representation ρ is unramified at p if ρ(Ip) = {1}.

We can characterize the unramified Galois representations by the following propo-
sition.

Proposition 2.3.6 (p.I-7,[14]). Let K be a number field, ρ be an `-adic representation
and L/K be a finite Galois extension with Galois group G. If L is the extension of K
corresponding to H = ker(ρ), then ρ is unramified at p if and only if p is unramified
in L/K.

2.3.2 Integral Galois representations.

Let ρ be an `-adic representation of GK and let Λ be a lattice of Q2
` .

Definition 2.3.7. A lattice Λ is GK-stable (with respect to ρ) if ρ(GK)(Λ) ⊆ Λ.
This property only depends on the homothety class [Λ] of Λ.

Proposition 2.3.8 ([14]). Every `-adic representation ρ has at least one stable lattice.

Given a rational Galois representation ρ, a stable lattice Λ and using a Z`-basis for
Λ as a basis for V we obtain an integral matrix representation ρΛ : GK → GL2(Z`).
This such representation ρΛ is called an integral `-adic Galois representation. We will
be interested in the collection of these, for fixed ρ and varying stable lattice Λ.

Definition 2.3.9. Let ρ be rational Galois representation. The isogeny class of ρ is
the set of pairs (Λ, ρΛ) where Λ is a stable lattice and ρΛ the induced map from GK

to Aut(Λ), modulo the equivalence relation which identifies homothetic lattices.

12



Chapter 2 Representation theory.

Essentially the isogeny class of a Galois representation, for a fixed lattice Λ, is the
“family” of representations given by all the homotetic lattices to Λ.

We would like to introduce the notion on how to compare two different integral
Galois representations; this is due to the fact that for two different integral Galois
representations coming from two different stable lattices, we may not have that they
are equivalent as integral representations and in particular their images may not be
the same or even conjugate. Nevertheless it is possible to compare them by their
images in GL2(Z`). The following definition expresses this idea.

Definition 2.3.10. Two integral representations ρj : GK → GL2(Z`) are isogenous
if there exists U ∈ GL2(Q`) such that ρ2(σ) = U ρ1(σ) U−1 for all σ ∈ GK .

Now that we have introduced the definition of an integral representation, we are
able to talk about its residual representation.

Definition 2.3.11. Let ρ : GK → GL2(Z`) be an integral representation. The residual
representation associated to ρ is the map ρ : GK → GL2(F`) obtained by composing ρ
with the reduction modulo `, as is described in the following diagram

GK GL2(Z`)

GL2(F`)
��

ρ

//ρ

��

mod `

If ρ is any representation and Λ a stable lattice for ρ, then the associated residual
representation ρΛ is the induced representation on Λ/`Λ ∼= F2

` . Moreover, by the
Brauer-Nesbitt theorem [6], the semisimplification of the residual representation does
not depend on the choice of lattice.

On the other hand, for isogenous Galois representations their residual representa-
tion do not need to be isomorphic. Indeed, for a given rational Galois representation
ρ with more than one stable lattice, say {Λi}, we will have more than one residual
representation, ρΛi , and these are not necessarily isomorphic.

Example 3. Let E1 and E2 be elliptic curves defined over K with a K-rational
2-isogeny from E1 → E2. As we saw in Example 2, for each curve we obtain an
integral representation into GL2(Z2) by letting GK act on the 2-adic Tate module of
each curve. Their residual representations have images which are either of order 1
(if Ej(K)[2] has order 4) or 2 (if Ej(K)[2] has order 2). Both can occur in the same
isogeny class. In fact there must be a curve in the class with non-trivial residual image
by the result known as Ribet’s wrench [12].

13



Chapter 2 Representation theory.

We can see this behaviour in Example 4. If we take the elliptic curves

E15.a1 : y2 + xy + y = x3 + x2 − 2160x− 39540

E15.a2 : y2 + xy + y = x3 + x2 − 135x− 660

representing the isogenies given in vertices 1© and 2© will get that ρE15.a1(GQ) ∼= C2

and ρE15.a2(GQ) ∼= C1.

We will mainly be interested in irreducible representations, such as those attached
to elliptic curves. For these, the number of stable lattices is finite (up to homothety).
The following result must be well-known, but since we could not find a reference,
Professor Cremona provided the proof.

Proposition 2.3.12. The number of stable lattices (up to homothety) is finite if and
only if ρ is irreducible.

Proof. If ρ is reducible, let Λ be a stable lattice and 〈w〉 a stable line for some w ∈ V .
We may scale w by a power of ` so that w ∈ Λ but `−1w /∈ Λ, and then there exists
v ∈ Λ such that Λ = 〈v, w〉. Set Λn = 〈`nv, w〉 for n ≥ 0. Then every Λn is stable
and no two are homothetic. Notice that the stable line 〈w〉 is the limit of the Λn as
n→∞.

Conversely suppose that there are infinitely many pairwise non-homothetic stable
lattices. These determine infinitely many stable vertices in the Bruhat-Tits tree. Note
that if [Λ1], [Λ2] are both stable and distance d apart, then all of the d − 1 lattices
between them are also stable. To see this, we may represent the classes [Λj ] by lattices
Λj such that Λ1 ⊃ Λ2 and Λ1/Λ2 is cyclic of order `d. Now GK acts on Λ1/Λ2 and
leaves every subgroup invariant, since (being cyclic) it has only one subgroup of each
order `k for 0 ≤ k ≤ d. These subgroups have the form Λ/Λ2 where Λ1 ⊇ Λ ⊇ Λ2,
and the class of Λ is a vertex between [Λ1] and [Λ2], which is therefore stable.

Now any infinite subtree of the Bruhat-Tits tree is unbounded and contains an
infinite half line, so there is an infinite sequence of stable lattices Λn for n ≥ 0 such
that Λn ⊃ Λn+1 with index ` and Λ0/Λn is cyclic of order `n for all n. The intersection
Λ∞ =

⋂
n≥0 Λn is a stable Z`-module of rank at most 1 (since it has infinite index in

Λ0), and to complete the proof we show that it has rank exactly 1 (a line).
Let Λ0 = 〈v, w〉. Each Λn is determined by an element (cn : dn) ∈ P1(Z/`nZ) such

that
Λn = {xv + yw | x, y ∈ Z`, cnx+ dny ≡ 0 (mod `)}.

Without loss of generality, (c1 : d1) = (1 : 0) and Λ1 = 〈`v, w〉. Since Λn+1 ⊂ Λn we
have (cn+1 : dn+1) ≡ (cn : dn) (mod `n) and in particular cn ∈ Z∗` , so again without
loss of generality we may take cn = 1 and then dn+1 ≡ dn (mod `n) for all n. This
implies that d = limn dn exists in Z` (in fact in `Z`). Hence Λ∞ = {xv + yw | x =
−dy} = 〈w − dv〉, which is a stable line as required.

14



Chapter 2 Representation theory.

Proposition 2.3.13. Let ρ be an integral representation. The number of stable lat-
tices (up to homothety) is 1 if and only if the residual representation ρ is irreducible.

Proof. This lemma is Exercise 1.4 in [14]. This proof is due to Professor Cremona.
Let Λ be any stable lattice and let ρ = ρΛ be the induced representation on Λ/`Λ.

Suppose that there is another stable lattice Λ′, not homothetic to Λ. Without loss
of generality, we may take Λ′ to have homothety class adjacent to that of Λ in the
Bruhat-Tits tree, and hence (replacing Λ′ by a homothetic lattice if necessary) be
contained in Λ with index `. Now GK leaves stable the line Λ′/`Λ in Λ/`Λ, so ρ is
reducible.

Conversely, if ρ is reducible, then it leaves stable a line in Λ/`Λ which must have
the form Λ′/`Λ where Λ′ has index ` in Λ and is GK-stable, so the class of Λ′ is stable
and distinct from that of Λ.

Definition 2.3.14. The stable Bruhat-Tits tree with respect to a representation ρ

is the subgraph of the Bruhat-Tits tree whose nodes are stable lattices with all edges
between them.

Remark 2.3.15. If x and x′ are stable all vertices in the unique path between between
them are also stable, hence the stable Bruhat-Tits tree is indeed a tree. In what follows
we will refer to the stable Bruhat-Tits tree as the isogeny graph of ρ.

The preceding propositions say that the isogeny graph of a representation ρ is
finite if and only if ρ is irreducible, and is a singleton if and only if the residual
representation ρ (with respect to any stable lattice) is irreducible.

Example 4.

1. There are eight 2-isogeny classes for the elliptic curves with conductor 15.

Each point (vertex) is a family of isomorphic elliptic curves over Q and each edge
(path) is a 2-isogeny between elliptic curves. We can observe that the maximum
length between points is 4.
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Chapter 2 Livné

2. In Example 3 we have that all the representations attached to the elliptic curves
representing each vertex are reducible.

3. For the isogeny class 44a we have

E44.a1 : y2 = x3 + x2 − 77x− 289

E44.a2 : y2 = x3 + x2 + 3x− 1

the representations attached to those elliptic curves are irreducible and its Bruhat-
Tits tree looks like

4. For isogeny class 254a we have that

E245.a1 : y2 + y = x3 − 7x+ 12

the representations attached to these elliptic curves are irreducible and its Bruhat-
Tits tree looks like

2.4 Livné

In this section are stated a definition, a proposition and a theorem from the article [11]
by Ron Livné. These results are “heavy machinery” when talking about proving that
two Galois representations are isomorphic. Since the proofs are beyond this thesis
objectives, the reader can refer to the article to read the proofs.

Definition 2.4.1. A subset T of a (finite dimensional) vector space V is non-quadratic
(respectively non-cubic) if every homogeneous polynomial of degree d = 2 (respectively
d = 3) on V which vanishes on T vanishes on V .

Proposition 2.4.2 (4.2, [11]). Let V be a vector space over F2. Then a function
f : V → F2 is represented by a homogeneous polynomial of degree d if and only if∑
I⊂{0,1,2,...,d} f(

∑
i∈I vi) = 0 for any subset {vi}di=0 ⊂ V and f(0) = 0.

The process of identifying non-quadratics and non-cubics sets, due to the propo-
sition presented above, is straightforward.

Before finishing this section, it is important to remark that the following theorem
is one of the “heaviest tools” that modern mathematicians have to prove that two
Galois representations are isogenous. A modern reference in which this tool has been
used is given in the article [8], where the motivation for Chapter 5 came from.
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Chapter 2 Livné

Theorem 2.4.3 (4.3 Theorem, [11]). Let K be a global field, S a finite set of primes
of K and E a finite extension of Q2. Denote the maximal ideal in the ring of integers
of E by p and the compositum of all quadratic extensions of K unramified outside S
by KS. Suppose ρ1 and ρ2 : GK → GL2(E) are two continuous representations, from
GK to GL2(E), unramified outside S satisfying

1. tr ρ1 ≡ tr ρ2 ≡ 0 (mod p) and det ρ1 ≡ det ρ2 (mod p).

2. There exists a set T of primes of K, disjoint from S, for which

i. The image of the set {Frobt}t∈T in (the Z/2Z-vector space) Gal(KS/K) is
non-cubic.

ii. tr ρ1(Frobt) = tr ρ2(Frobt) and det ρ1(Frobt) = det ρ2(Frobt) for all t ∈ T .

Then ρ1 and ρ2 have isomorphic semisimplifications.

17
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Preliminaries.

Let K be a number field and let S be a finite set of primes of K. Let ρ : GK →
GL2(Z2) be an integral continuous Galois representation unramified outside S and
ρ : GK → GL2(F2) its residual representation. This chapter concerns the following:

1. Section 3.1. In this section we introduce the definition of a Black Box repre-
sentation; a system that provides the trace and the determinant of a 2-adic
(integral) Galois representation.

2. Section 3.2. In this section we will see the full classification of the Galois exten-
sion, L/K, cut out by ρ.

3. Section 3.3. Lastly, we state and prove a theorem which determines, for a
finite set of primes, whether two 1-dimensional Galois representations, i.e., two
multiplicative characters unramified outside S, are the same.

3.1 Obtaining information from a 2-adic Galois represen-
tation.

LetK be a number field and S be a finite set of primes ofK. Let ρ : GK → GL2(Z2) be
an integral Galois representation unramified outside S. The two pieces of information
about the representation ρ that will be assumed to be known are

(a) the determinant of ρ, i.e., det(ρ(σ)), and

(b) the trace of ρ, i.e., tr(ρ(σ)),

for σ ∈ GK , which will be specified (up to conjugacy) as a Frobenius, Frobp, attached
to an unramified prime p /∈ S, i.e., σ = Frobp ∈ GK (see sections 2.1 and 2.1).
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Observe that the previous information can be summarized as follows, for any
σ ∈ GK , the characteristic polynomial of ρ(σ) given by

Fσ(t) = det(ρ(σ)− t× I)

= t2 − tr(ρ(σ))t+ det(ρ(σ)), (3.1)

is a monic quadratic polynomial in Z2[t] whose coefficients are the trace and determi-
nant of ρ(σ).

Moreover, when the Frobenius is specified, σ = Frobp, for any prime p /∈ S, we
can also write (3.1) as

Fp(t) = FFrobp(t).

Note that the determinant and trace of ρ are independent of the choice of ρ within
its isogeny class. This is relevant when the residual representation ρ is reducible since
otherwise, by Proposition 2.3.13, the isogeny class only contains one element.

Definition 3.1.1. A Black Box Galois representation is a system given for K and S
which provides the quadratic polynomial Fp(t) in Z2[t] for any given prime p not in
S.

Since Fσ(t) ∈ Z2[t], for each natural number k, if Fp(1) ≡ 0 (mod 2k) for any
unramified prime p /∈ S, then we can define the test function

tk(p) := 1
2k (1− tr(ρ(Frobp)) + det(ρ(Frobp))) (mod 2). (3.2)

Other useful quantities which will be used in the next chapters are

v(p) = ord2(Fp(1)) (3.3)

a non-negative integer and

v1(p) = ord2(det(ρ(Frobp))− 1) (3.4)

a positive integer. Note that tk(p) is defined when v(p) ≥ k and its values tell us
whether or not v(p) ≥ k + 1.

3.2 Classification of Galois extensions L/K with group
C1, C2, C3 or S3.

Let K be a number field and S be a finite set of primes of K. Let ρ : GK → GL2(Z2)
be an integral Galois representation unramified outside S and let ρ : GK → GL2(F2)
be its residual Galois representation, which is also unramified outside S. In this
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section we will see the classification of all possible images of the representation and
their related Galois extensions.

To start with this classification, let’s takeG = ρ(GK). Since GL2(F2) is isomorphic
to S3, G will be either isomorphic to C1, C2, C3 or S3. Let L be the splitting field
of ρ with cubic polynomial f(x) ∈ K[x], that is, L is the fixed field of ker(ρ). Then
Gal(L/K) ∼= G and [L : K] ≤ 6. Recall from Section 2.3.2 that the residual image is
only well-defined once we have specified a stable lattice Λ.

We have two cases to analyse, depending on whether ρ is irreducible or reducible.

(i) When ρ is irreducible, i.e., the image is either C3 or S3: the lattice Λ is unique up
to homothety and the isomorphism class of the image is well-defined. Therefore
we will know exactly in which case we are. We define the discriminantI of L as
∆ = disc(f). Observe that the image is C3 if and only if ∆ ∈ (K∗)2.

(ii) When ρ is reducible, i.e., the image is either C1 or C2: the residual image and
splitting field depend (in general) on the stable lattice Λ. In this case, at the
beginning we will treat these two cases as one but in Section 4.2 we will explain
how to distinguish between the cases C1 and C2. When the image is C2 the fixed
field is K(

√
∆) with ∆ ∈ (K∗)/(K∗)2 and when the image is C1 take ∆ = 1.

The set of Galois extensions L/K with Gal(L/K) ∼= G, unramified outside S, is
finite. Moreover there is an algorithm to find them. In Section 4.1 we will see how to
determine the splitting field.

3.2.1 Distinguishing the irreducible cases from the reducible cases.

As above let S be a finite set of primes of the number field K. The set of Galois
extensions L of K unramified outside S and with Gal(L/K) isomorphic to either C3

or S3 is finite (see [3]). An algorithm for finding this finite set may be found in [10].
We denote by F a set of monic cubic polynomials in OK [x] satisfying the following:

each extension L/K, unramified outside S and Galois with Gal(L/K) ∼= C3 or S3

is the splitting field of f for a unique f ∈ F .
(3.5)

We would like to find a way to characterize these fields by examining their splitting
behaviour of primes p of K not in S. To do this, we start with the following definition.

Definition 3.2.1. For a given monic cubic polynomial f ∈ OK [x] and for a prime
p 6∈ S of K define

λ(f, p) =

1 if f is irreducible mod p

0 else.
IHere and throughout we only ever define discriminants modulo squares, i.e., as elements of

K∗/(K∗)2.
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Lemma 3.2.2. Let f be an irreducible monic cubic polynomial in OK [x] with splitting
field L. Then for p 6 |∆f

λ(f, p) =

1 if Frobp has order 3 in Gal(L/K)

0 if Frobp has order 1 or 2 in Gal(L/K).

Proof. Straightforward.

Definition 3.2.3. Let K and S be as before. Let F be a set of cubic polynomials
satisfying (3.5). An ordered set of primes T0 = {p1, ..., pt} of K is a distinguishing
set for (F, S) if

(1) T0 ∩ S = ∅,

(2) ordp(disc(f)) = 0 for all p ∈ T0 and f ∈ F ,

(3) the vectors (λ(f, pi), ..., λ(f, pt)) ∈ Ft2 for f ∈ F are distinct and non-zero.

As notation we will write v(f, T0) := (λ(f, pi), ..., λ(f, pt)) when T0 = {p1, ..., pt}.

Remark 3.2.4. For fixed S and a set F of cubics satisfying (3.5) we will set a
distinguishing set of primes for (F, S) once and for all and denote it by T0.

Lemma 3.2.5. A distinguishing set of primes for (F, S) does exist.

Proof. Let F = {fi}ni=1. Set f0 = x3 so that λ(f0, p) = 0 for all p. It is enough to show
that for all 0 ≤ j < i ≤ n there exists a prime p not in S such that λ(fi, p) 6= λ(fj , p).
For i ≥ 1 let Li be the splitting field of fi. We divide into three cases:

Case 1. When j = 0 so that λ(fj , T0) = 0 for all p, we analyse the frequency
for a single λ(fi, p) = 1; by the Čebotarev density theorem when Gal(Li/K) ∼= S3 it
is 1

3 and when Gal(Li/K) ∼= C3 it is 2
3.

Case 2. When i, j ≥ 1 and disc(Li) 6≡ disc(Lj) (mod (K∗)2) then Li and Lj are
disjoint. There are three possibilities for the Galois group of their composition and,
in every case, the frequency(density) of the primes we need is:

2
(1

3 ×
2
3

)
= 4

9 when Gal(LiLj) is S3 × S3,

1
3 ×

1
3 + 2

3 ×
2
3 = 5

9 when Gal(LiLj) is S3 × C3,

1
3 ×

1
3 + 2

3 ×
2
3 = 5

9 when Gal(LiLj) is C3 × S3.

Case 3. When i, j ≥ 1 and disc(Li) ≡ disc(Lj) (mod (K∗)2) then again we have two
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possibilities, both Galois groups are either isomorphic to C3 or S3. When both are
isomorphic to C3 we have

2
(1

3 ×
2
3

)
= 4

9 .

On the other hand, when both fields have Galois groups isomorphic to S3. In this
case we have the following diagram

LiLj

Li Lj

K(
√

∆)

K

??
3

__
3

OO

9
??

3

__

3

OO

2

where LiLj ∼= C2 o C3 × C3 and the density(frequency) of the primes is

2
(1

2

(2
3 ×

1
3

))
= 2

9 .

The number t of elements in T0 depends on the number n of C3 and S3 extensions
of K unramified outside S, so it is not difficult to see that t ≤ n and n ≤ 2t, thus
dlog2(n)e ≤ t ≤ n.

We will use a distinguishing set T0 in Section 4.1 below to determining the residual
image of a Galois representation.
Algorithm 1: This function finds the finite set of monic cubic polynomials
{fi}ni=1 inOK [x] defining all possible C3 or S3 extensions {Li}ni=1 ofK unramified
outside S.
Input : A number field K.

A finite set S of primes of K.
Output: A finite set list of irreducible monic cubics f1, ..., fn ∈ OK such that

every Galois extension of K with Galois group C3 or S3 unramified
outside S is the splitting field of one of the fi.

1 By Class Field Theory or Kummer Theory return: {fi}ni=1.

For a full description of the Kummer Theory method see [10].
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Chapter 3 Classification of Galois extensions L/K with group C1, C2, C3 or S3.

Algorithm 2: This function finds a finite set T0 of primes of K satisfying
Definition 3.2.3.
Input : A number field K.

A finite set S of primes of K.
Output: A finite set T0 of primes of K satisfying Definition 3.2.3.

1 Use Algorithm 1 to compute the polynomials {fi}ni=1;
2 Let t0 be a reducible polynomial;
3 Define an empty set T0 = {};
4 while #{vi(fi, T0) | 0 ≤ i ≤ n} < n+ 1 do
5 find i 6= j such that vi(fi, T0) = vj(fj , T0);
6 find a prime p /∈ S ∪ T0 such that λ(fi, p) 6= λ(fj , p);
7 set T0 := T0 ∪ {p};
8 Return: T0.

3.2.2 Linearly independent sets of primes

For K and S as before, consider all quadratic extensions L/K having Galois group
G ∼= C2. Then we have that there is a finite number of these extensions and they look
like L = K(

√
∆) for ∆ ∈ K(S, 2) ≤ K∗/(K∗)2, where K(S, 2) is given by (2.4).

In fact K(S, 2) is finite of cardinality 2r with r ≥ 1. We can see that the mul-
tiplicative group K(S, 2) is a finite-dimensional vector space over F2 of dimension
r = dimF2(K(S, 2)).

Let {∆i}ri=1 be a basis for K(S, 2). We have an isomorphism

Fr2
∼−→ K(S, 2) (3.6)

x 7→
r∏
i=1

∆xi
i ,

where x = (xi)ri=1. Each prime p /∈ S determines a linear map

αp : K(S, 2)→ F2 (3.7)

defined as

αp(∆) = [∆ | p]

=

0 (mod 2) if p splits in K(
√

∆) or ∆ = 1

1 (mod 2) if p is inert in K(
√

∆).

Moreover, for I ⊆ {1, ..., r}, pI denotes a prime such that

[∆i | pI ] = 1⇔ i ∈ I. (3.8)

23



Chapter 3 1-dimensional Galois representations.

In this way, if I = {i} we write pi = p{i} and if I = {i, j} we write pij = p{i,j}.

Lemma 3.2.6. For each I ⊆ {1, ..., r} a prime pI 6∈ S exists.

Proof. By the Čebotarev’s density theorem the set of primes satisfying (3.8) has
density 1/2r.

Now we define a set of primes which may be used (see next section) to distinguish
two characters unramified outside S.

Definition 3.2.7. A set T1 of primes p of K where p 6∈ S, is linearly independent
with respect to S if the linear functions {αp | p ∈ T1} form a basis for the dual space
of K(S, 2).

Remark 3.2.8. By Lemma 3.2.6 such a set exists, for example {p1, ..., pr}. We
fix once and for all a linearly independent set of primes and denote it by T1 where
#T1 = r.

By (3.8) we get that

αpI (∆) =
∑
i∈I

αpi(∆). (3.9)

Algorithm 3: This function determines a finite set T1 of primes of K satisfying
Definition 3.2.7.
Input : A number field K.

A finite set S of primes of K.
Output: A linearly independent set T1 of primes of K.

1 Compute a basis {∆i}ri=1 for K(S, 2);
2 T1 := {};
3 A := a 0× r matrix over F2;
4 while rank(A) < r do
5 Take p /∈ S ∪ T1;
6 Set v = ([∆1|p], ..., [∆r|p]);
7 if v is not in the row-space of A then
8 A := A+ v; # i.e., adjoin v as a new row of A
9 T1 := T1 ∪ {p}.

10 Return: T1.

3.3 1-dimensional Galois representations.

Let ρ1 and ρ2 be two 2-adic Galois representations unramified outside S. The objective
of this section is to prove that for a given finite set T1 of linearly independent primes,
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Chapter 3 1-dimensional Galois representations.

if det(ρ1(Frobp)) = det(ρ2(Frobp)) for all p ∈ T1 then det(ρ1(σ)) = det(ρ2(σ)) for all
σ ∈ GK .

Let just recall that det(ρi) : GK → GL1(Z2) ∼= Z∗2 is a 1-dimensional Galois rep-
resentation which is indeed a character. In this way we can formulate the following
proposition.

Lemma 3.3.1. Let χ : GK → F2 be an additive quadratic character unramified outside
S. If χ(Frobp) = 0 for all p in T1 then χ = 0.

Proof. Suppose that χ 6= 0, then the fixed field of ker(χ) is a quadratic extension
K(
√

∆) for some non-trivial ∆ in K(S, 2). Since χ(Frobp) = 0 for all p in T1 we have
that [∆|p] = 0. By Definition 3.2.7 we get that ∆ = 1.

We end the chapter by stating the main theorem of the section that will allow us
to prove that two 1-dimensional Galois representations are the same.

Theorem 3.3.2. Let χi : GK → Z∗2 for i = 1, 2 be two continuous characters both
unramified outside a finite set of primes S and let T1 be a linearly independent set of
primes. If χ1(Frobp) = χ2(Frobp) for all p ∈ T1, then χ1(σ) = χ2(σ) for all σ ∈ GK .

Proof. Let χ1χ
−1
2 : GK → Z∗2 be a character denoted by χ. Suppose that χ 6= 1. Let

k ≥ 1 be the greatest integer such that χ(σ) ≡ 1 (mod 2k). Note that χ(σ) ≡ 1
(mod 2) for all σ ∈ GK so k does exist. Consider

χ(σ) ≡ 1 + 2kα(σ) (mod 2k+1)

where σ 7→ α(σ) is a non-trivial (additive) quadratic character GK → F2. However,
α(Frobp) ≡ 0 (mod 2) for all p ∈ T1, so by Lemma 3.3.1 we have that α = 0, which
contradicts the minimality of k.
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Black Box Galois
representations.

LetK be a number field and let S be a finite set of primes ofK. Let ρ : GK → GL2(Z2)
be a 2-adic integral Galois representation unramified outside S and let ρ : GK →
GL2(F2) be its residual representation. Let L be the Galois extension of K cut out by
ρ. Assume we are able to compute det(ρ(Frobp)) and tr(ρ(Frobp)) for primes p in K.
By only using the determinant and the trace of ρ at Frobp for a finite set of primes p,
depending only on S, we will be able to determine much information about p in the
following sections.

1. Section 4.1. In this section we develop techniques and algorithms which deter-
mine whether the residual Galois representation ρ is reducible or irreducible.
When ρ is irreducible, its image is completely determined and it will be pos-
sible to determine the splitting field L of ρ, which is given by a monic cubic
polynomial in OK . When ρ is reducible, we proceed to the next section.

2. Section 4.2. In this section we develop techniques and algorithms, assuming
that ρ is reducible, which determine whether there is a choice of a stable lattice,
for ρ, such that the image of ρ is C1. This is done by computing the width of
the stable Bruhat-Tits tree related to ρ. It will be seen that when the width of
the tree is one, for all stable lattices, the image of ρ is C2, i.e., there is no choice
of stable lattice for which the image is C1, and the splitting field L is one of two
quadratic extensions. On the other hand, when the width of the tree is at least
2, there exists a stable lattice such that the image of ρ is C1 and we proceed to
the next section.

3. Section 4.3. In this section we extend and generalize the techniques and algo-
rithms proven in Section 4.2. Using these generalizations it will be possible for
us to determine completely the representation ρ modulo 2k+1 under the assump-
tion that it is trivial modulo 2k. Moreover, in some cases, it will be possible to
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Chapter 4 Determining the residual image.

determine the width, the edges and nodes of the stable Bruhat-Tits tree related
to ρ. Particularly, when k = 1, it will be seen in examples 6 and 7 how these
techniques are applied to determine the triviality of the representation ρ modulo
22, determine whether the width of the stable Bruhat-Tits tree is exactly 2, 3
or at least 4 and obtain its respective edges and nodes.

4. Section 4.4. In this section we state and prove a theorem that will provide an
easy criterion to determine whether, for a given Galois representation which
is trivial modulo 2k and satisfies certain conditions, there exists an isogenous
representation, to the given one, that is trivial modulo 2k+1. As a corollary we
obtain a criterion based on a finite of primes (depending only on S) for ρ to
have trivial semisimplification.

4.1 Determining the residual image.

Let K be a number field and S be a set of primes of K. Let ρ : GK → GL2(Z2) be a
Galois representation unramified outside S and let ρ : GK → GL2(F2) be its residual
representation. We would like to determine the image of the residual representation.

To do this, using Algorithm 1, we find a set of monic cubic polynomials {fi}ni=1
in OK [x] defining all possible C3 or S3 extensions {Li}ni=1 of K unramified outside S.
We also set f0 as a reducible monic cubic polynomial in OK [x], say f0 = x3.

We start the algorithm to determine the residual image with the following lemma.

Lemma 4.1.1. Let {fi}ni=1 be a set of monic cubic polynomials in OK [x] defining
all possible C3 or S3 extensions {Li}ni=1 of K unramified outside S and f0 be any
reducible monic cubic polynomial in OK [x]. Then

1. If [L : K] = 6 or 3 then, for one i, we will have that L = Li and then

λ(fi, p) ≡ tr(ρ(Frobp)) (mod 2)

for all p 6∈ S. Moreover, for infinitely many primes p we will have that

tr(ρ(Frobp)) ≡ 1 (mod 2).

2. [L : K] ≤ 2 if and only if

λ(f0, p) ≡ tr(ρ(Frobp)) ≡ 0 (mod 2)

for all p /∈ S.

Proof. Suppose that [L : K] = 6 or 3. Then the image of ρ is C3 or S3 and L = Li is
the splitting field of fi, which is an irreducible polynomial and its discriminant may
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be a square or not, for some i, 1 ≤ i ≤ n. Hence, by Lemma 3.2.2, for all p 6∈ S we
have that

λ(fi, p) = 1⇔ Frobp has order 3 in Gal(Li/K)

⇔ ρ(Frobp) has order 3 in GL2(F2)

⇔ tr(ρ(Frobp)) ≡ 1 (mod 2).

On the other hand, if [L : K] ≤ 2 then the image of ρ is C1 or C2 and we will have
for all p /∈ S that λ(f0, p) = 0 and tr(ρ(Frobp)) ≡ 0 (mod 2) since Frobp has order 1
or 2.

We can observe from the previous lemma that only one prime is needed to show
that we are in the irreducible case and by checking the discriminant of the found
polynomial, we can be certain that the residual image is exactly C3 or S3. On the
other hand, to be completely certain of lying on the reducible cases there are needed,
apparently, an infinite number of primes to prove it. Nevertheless, by the following
lemma, we will see a criterion that will allow us to determine the residual image by
using a finite set of primes.

Lemma 4.1.2. Let K and S be as above then, for any set T0 of primes satisfying
Definition 3.2.3 the values of tr(ρ(Frobp)) modulo 2 for p ∈ T0 determine the residual
Galois representation up to semisimplification.

Proof. Let {fi}ni=1 be the polynomials generating the C3 and S3 extensions ofK found
using Algorithm 1, and let T0 = {pi}ti=1 be a set of primes satisfying Definition 3.2.3,
such that the vectors

vi = (λ(fi, p1), ..., λ(fi, pt))

in Ft2 are distinct and non-zero by Lemma 3.2.5. Set v0 as a zero vector in Ft2. For
this set of primes, take the vector

v = (tr(ρ(Frobp1)), ..., tr(ρ(Frobpt)))

in Ft2. Therefore, by Lemma 4.1.1, we have that

v = vi, 1 ≤ i ≤ n, ⇔ L = Li ⇔ [L : K] = 6 or 3

and
v = v0 = 0⇔ [L : K] ≤ 2

where v must be equal exactly to one of the vi.
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Chapter 4 Reducible Residual Representation.

As we saw in Definition 3.2.3, in general we will have that dlog2(n)e ≤ t ≤ n.
Algorithm 4: This function determines the residual image of an integral 2-adic
Galois representation.
Input : A number field K.

A finite set S of primes of K.
A Black Box Galois representation ρ unramified outside S.

Output: If the image is irreducible return: True, fi generating the C3 or S3

splitting field.
If the image is reducible return: False.

1 Use Algorithm 1 to compute {fi}ni=1;
2 Use Algorithm 2 to compute T0;
3 Set v = (tr(ρ(Frobp1)), ..., tr(ρ(Frobpt))) for pi ∈ T0;
4 for i=1...n do
5 if v = vi(fi, T0) then
6 Return: True, fi.
7 Return: False.

4.2 Reducible Residual Representation.

This section is based on unpublished notes by Professor John Cremona which include
proofs but no examples. Some details, and all the examples, are original.

Let ρ : GK → GL2(Z2) be an irreducible Galois representation unramified out-
side a set of primes S with reducible residual representation ρ, i.e., ρ(GK) is either
C1 or C2. Then, by Section 2.3.2, ρ determines a finite class of isogenous integral
representations. We next distinguish two different possibilities:

1. “Small isogeny class” or “width=1”: exactly two stable lattices, with adjacent
vertices in the Bruhat-Tits tree. Both residual representations have splitting
fields which are quadratic over K, say K(

√
∆j) for j = 1, 2 with ∆j ∈ K(S, 2).

2. “Large isogeny class of width at least 2”: more than two stable lattices. Now
the stable subtree of the Bruhat-Tits tree has at least 4 vertices and at least
one has degree exactly 3. In other words, the isogeny class contains at least 4
elements, and at least one has trivial residual representation. (See figure A1 at
page 44.)

Our aim is to be able to distinguish between the “small isogeny class” and the
“large isogeny class” by only using the Black Box.
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Chapter 4 Reducible Residual Representation.

4.2.1 Small Isogeny Class.

Let Λ1 be a stable lattice under the action of ρ. Since ρ is reducible, there is an index
2 sublattice, Λ2, which is also stable under ρ. Choosing the bases Λ1 = 〈v, w〉 and
Λ2 = 〈2v, w〉, we have that

ρ(σ) =
(
a b

c d

)
≡
(

1 ∗
0 1

)
(mod 2)

for all σ ∈ GK .
There are two ways in which the graph of adjacent stable lattices Λ1—Λ2 could

be extended.

(1) If c ≡ 0 (mod 4) for all σ ∈ GK then

ρ(σ) ≡
(
±1 ∗
0 ±1

)
(mod 4)

and Λ3 = 〈4v, w〉 is also stable, extending the stable graph to Λ1—Λ2—Λ3.
Observe that the lattice Λ4 = 〈2v + w, 2w〉 is also stable and adjacent to Λ2.

(2) If b ≡ 0 (mod 2) for all σ ∈ GK then

ρ(σ) ≡
(

1 0
0 1

)
(mod 2)

so ρ is trivial. Then Λ′3 = 〈v, 2w〉 is also stable and extends the graph to Λ′3—
Λ1—Λ2. Observe that the lattice Λ′4 = 〈2v, v + w〉 is also stable and adjacent
to Λ1.

These two situations are not essentially different; by conjugating with the matrix(
2 0
0 1

)
we interchange the roles of Λ1 and Λ2, and the two cases (1) and (2).

Thus, we obtain two additive quadratic characters of GK

χc : σ 7→ c

2 (mod 2) and χb : σ 7→ b (mod 2) (4.1)

unramified outside S, which correspond to two extensions K(
√

∆b), K(
√

∆c) with
∆b,∆c ∈ K(S, 2), possibly equal or trivial.

The stable lattice graph can be extended if and only if at least one of these
characters, and its related extension, is trivial: χc is trivial if and only if the two
lattices Λ3 and Λ4, which are the two index 2 sublattices of Λ2 not homothetic to Λ1,
are stable. Moreover, χb is trivial if and only if the two lattices Λ′3 and Λ′4, which are
the two index 2 sublattices of Λ1 other than Λ2, are stable. This proves the following
proposition.
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Proposition 4.2.1. The condition for the isogeny class to be small is therefore that
the characters χb and χc are both non-trivial.

Now consider all pairs {∆1,∆2} with ∆j ∈ K(S, 2) both non-trivial, but possibly
equal. We are looking for a condition which tests whether this pair is compatible with
what we know about the representation ρ, with a view to excluding either all possible
pairs, in which case the isogeny class is large, or excluding all but one pair, in which
case the class is small and we know the pair attached to it.

The condition must involve only using the data we have access to, namely the
trace and determinant of ρ(Frobp) for a finite set of primes p /∈ S. Then for σ ∈ GK
we have the test

t1(σ) := 1
2(Fσ(1)) ≡ 1

2(1− tr(ρ(σ)) + det(ρ(σ))) (mod 2). (4.2)

Take σ = Frobp and set t1(p) = t1(Frobp) for p /∈ S. Then the value of t1(p) may be
computed for each p, using the Black Box. Observe that in this case det(ρ(σ)) ≡ 1
(mod 2) for all σ ∈ GK .

Proposition 4.2.2. With notation as above,

t1(σ) = χb(σ)χc(σ)

Proof. We compute

t1(σ) = 1
2(1−(a+d)+(ad−bc)) = 1

2((1−a)(1−d)−bc) ≡ 1
2bc ≡ χb(σ)χc(σ) (mod 2),

using a ≡ d ≡ 1 (mod 2).

Observe that the previous proposition also proves that the t1 is well-defined.

Corollary 4.2.3. For j = 1, 2, let ∆j be a pair of non-trivial elements of K(S, 2)
(possibly equal). Let p be a prime which is inert in both extensions K(

√
∆j). If

t(p) = 0 then {∆1,∆2} 6= {∆b,∆c}.

Proof. If {∆1,∆2} = {∆b,∆c} and σ = Frobp, then χb(σ) = χc(σ) = 1. Hence
t1(σ) = 1 by Proposition 4.2.2.
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4.2.2 Determining the Small Isogeny Class.

Let V = K(S, 2) be given by Definition 2.4. Let {∆i}ri=1 be a basis for K(S, 2) and
take ∆b,∆c ∈ K(S, 2) such that ∆b =

∏r
i=1 ∆xi

i , ∆c =
∏r
i=1 ∆yi

i with x = (xi) and
y = (yi) vectors in Fr2 given by the isomorphism (3.6). Determining the vectors x and
y is equivalent to determining ∆b and ∆c, which then tell us whether the width of
the graph is 1 or at least 2.

Let T1 be a linearly independent set of primes chosen Remark 3.2.8 so that T1 =
{p1, ..., pr} where the αpi are a dual basis for K(S, 2) with respect to the ∆j , then for
each i, by (3.9) we have:

αpi(∆b) = [∆b | pi]
= χb(pi)
= xi

αpi(∆c) = [∆c | pi]
= χc(pi)
= yi

(4.3)

Hence, by Proposition 4.2.2, we have that

t1(pi) = χb(pi)χc(pi) (4.4)

= xiyi

= vi,

where

v = (v1, ..., vr) (4.5)

= (x1y1, ..., xryr) ∈ Fr2.

This shows that there is an intrinsic relation between the primes in T1 and the dis-
criminants ∆b and ∆c. In fact we can define

ψ : V × V × V ∗ → F2 (4.6)

(∆,∆′, α) 7→ α(∆)α(∆′)

When we fix α, the map ψ becomes a symmetric bilinear function on V × V

ψα : V × V → F2 (4.7)

(∆,∆′) 7→ α(∆)α(∆′)

i.e., an element of the space we denoted Sym2(V )∗ which has dimension r(r + 1)/2
and basis the functions xiyi and xiyj + xjyi for i 6= j.

Definition 4.2.4. A set T2 of primes of K not in S is quadratically independent
with respect to S if {ψαp | p ∈ T2} is a basis for Sym2(V )∗.

32



Chapter 4 Reducible Residual Representation.

Remark 4.2.5. If we fix instead (∆,∆′) in (4.6) we obtain a quadratic function

ψ(∆,∆′) : V ∗ → F2

α 7→ α(∆)α(∆′).

Then, one can show that the αp in a quadratically independent set of primes form a
non-quadratic subset of V ∗ in the sense of Livné given by Definition 2.4.1.

Observe that the following proposition gives the sufficient conditions to determine
if our isogeny graph has width 1 or at least 2.

Proposition 4.2.6.

1. xiyi = xiyj + xjyi = 0 for all i, j if and only if either x = 0 or y = 0,

2. if x 6= 0 and y 6= 0 then x and y are uniquely determined by the values xiyi
and xiyj + xjyi for all i, j.

Proof. Let v = (vi) be a vector in V defined by (4.5) and let W be the skew-symmetric
matrix over F2 defined by wij = xiyj + xjyi. Then the i-th row of W is given by

wi = (wij)j = yi x +xi y ∈ {0,x,y,x + y}

and we have that

wi =



0 if (xi, yi) = (0, 0),

x if (xi, yi) = (0, 1),

y if (xi, yi) = (1, 0),

x + y if (xi, yi) = (1, 1).

(4.8)

The proof follows from the following observations:

(a) if x = 0 or y = 0 then v = 0 and W = 0,

(b) if x = y 6= 0 then v = x = y 6= 0 and W = 0,

(c) if x 6= 0 and y 6= 0 then W 6= 0. Moreover,

i) if v 6= 0 then the rows of W for which vi = 1 are x + y and the remaining
rows are either x or y or both,

ii) if v = 0 then the non-zero rows of W are all x and y.

The way we apply the previous proposition is the following: for each unordered pair
{i, j} with i 6= j, recall that let pij /∈ S denotes a prime inert in both K(

√
∆i) and
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K(
√

∆j) but split in all K(
√

∆k) for 1 ≤ k ≤ r with k /∈ {i, j}. Then, for any ∆ and
by (3.9) we have that

αpij (∆) = αpi(∆) + αpj (∆)

from where we get that

αpij (∆b) = χb(pij)
= xi + xj

αpij (∆c) = χc(pij)
= yi + yj .

Hence the values

t1(pij) = χb(pij)χc(pij)

= (xi + xj)(yi + yj)

are used to compute

wij = xiyj + yixj (4.9)

= t1(pij)− t1(pi)− t1(pj), i 6= j ≥ 1.

From these we may determine, using Proposition 4.2.6, whether either

(a) x = 0 or y = 0, then either ∆b or ∆c is trivial and the isogeny class is “large”, or

(b) x and y are both non-zero, then the unordered pair {x,y} is uniquely determined,
so the pair {∆b,∆c} is then determined and the isogeny class is “small”.

In practice this process might not be efficient since we may need to test many
primes p before finding the set of primes of the form {pij} and the resulting primes
are likely to be large. Moreover, in applications it may be computationally expensive
to compute the trace of ρ(Frobp) for primes p of large norm. For example, this is the
case for a Galois representation attached to a Bianchi modular form.

Nevertheless, it is possible to improve the way of finding the “test” primes to
thereby have an efficient set of primes for which, by computing (4.2) for each prime
in the set, will be possible to recover {x,y} or prove that at least one vector is the
zero vector.

In order to do this, let p 6∈ S be a prime, let ∆ ∈ K(S, 2) and consider the subset
I ⊆ {1, . . . , r} given by

I(p) = {i : [∆i | p] = 1}. (4.10)

In the notation of Chapter 3, pI denotes any prime such that I(pI) = I. Then, as we
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saw in (3.9), we have that
αpI (∆) =

∑
i∈I

αpi(∆),

moreover, we get that

χb(pI) =
∑
i∈I xi

=: xI

χc(pI) =
∑
i∈I yi

=: yI

say, and
t1(pI) = xIyI

where xIyI is the sum of terms xiyi and xiyj + xjyi for i ∈ I and {i, j} ⊆ I.
Now we loop through the primes p not in S to construct a matrix A whose columns

are indexed by the subsets of {1, 2, ..., r} of size 1 and 2, i.e., the sets {i} for 1 ≤ i ≤ r
and {i, j} for 1 ≤ i < j ≤ r, initially with 0 rows and, a column vector b, initially of

size 0. For each prime p we compute I(p) and set v(p) in F
r(r+1)

2
2 by

v(p) =


1 in position i if i ∈ I(p)

1 in position {i, j} if {i, j} ⊆ I(p)

0 else.

(4.11)

We add v(p) as a new row of A and t1(p) as a new entry in b, provided that this
increases the rank of A and we stop when the rank of A is r(r + 1)/2. We also
construct the matrix P of size r(r+ 1)/2 whose rows and columns are indexed as the
columns of A as follows: for the first r rows a 1 is added to the column whose index
is {i} and for the last r(r − 1)/2 rows a 1 is added to the columns whose index is a
subset of {i, j}.

Finally, the entries of P−1 A b give the values of t1(pi), t1(pij) and, using (4.4),
(4.9) and Proposition 4.2.6 we recover the vectors x, y and ∆b, ∆c.

Conclusion.

Let T2 be a quadratically independent set of primes and for each prime p in T2 apply
the test function t1 given by (4.2). Then we have either that

• t1(p) = 0 for all p ∈ T2, then t1(p) = 0 for all p and by Proposition 4.2.6 we
have that x = 0 or y = 0, which implies that the isogeny class is “large”, or

• t1(p) = 1 for at least one p ∈ T2, then the isogeny class is “small”. Moreover
using Proposition 4.2.6 we can recover x, y and hence we obtain ∆b and ∆c.

Observe that a set T2 of quadratically independent primes p for which we need to
evaluate t1(p) depends only on the original finite set S of primes, so the set T2 may
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Chapter 4 Reducible Residual Representation.

be determined once and for all if several Black Boxes are to be considered with the
same set S of primes.

Algorithms.

Algorithm 5: This function determines a quadratically independent set T2 of
primes of K.
Input : A number field K.

A finite set S of primes of K.
Output: A finite quadratically independent set T2 of primes of K.

1 Compute a basis {∆i}ri=1 for K(S, 2);
2 T2 := {};
3 A := a 0× r(r+1)

2 matrix over F2;
4 while A has < r(r + 1)/2 rows do
5 Take p /∈ S ∪ T2;
6 Compute I(p) given by (4.10);
7 Compute v(p) given by (4.11);
8 Set A′ := A + v(p) # i.e., adjoin v(p) as a new row of A;
9 if If rank(A′) >rank(A) then

10 A := A′;
11 T2 := T2 ∪ {p}.

To simplify the exposition of the algorithm which follows, using such sets T2, we
will always assume that the set T2 has a special form, where #I(p) = 1 or 2 for all
p ∈ T2:

T2 = {pi|1 ≤ i ≤ r} ∪ {pij |1 ≤ i < j ≤ r}, (4.12)

where I(pi) = {i} and I(pij) = {i, j}. For completeness we provide a special version
of Algorithm 5 whose output is such an indexed set.
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Chapter 4 Reducible Residual Representation.

Algorithm 6: This function determines a quadratically independent set T2 of
primes as in (4.12).
Input : A number field K.

A set S of primes of K.
Output: An indexed quadratically independent set T2 of primes as in (4.12).

1 Set a list A := {}; % singletons
2 Set a list B := {}; % doubletons
3 while #(A ∪B) < r(r + 1)/2 do
4 Take p /∈ S ∪ T2;
5 Compute I = I(p) using (4.10);
6 if #I = 1 with I = {i} then
7 if i /∈ A then
8 Set pi := p;
9 A := A ∪ {i};

10 T2 := T2 ∪ {pi}.
11 if #I = 2 with I = {i, j} and i < j then
12 if (i, j) /∈ B then
13 Set pij := p;
14 B := B ∪ {(i, j)};
15 T2 := T2 ∪ {pij}.
16 Return: T2.

Finally we present the algorithm to determine whether, for a given 2-adic Galois
representation ρ unramified outside S, the stable Bruhat-Tits tree of ρ has width 1
or at least 2.
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Chapter 4 Reducible Residual Representation.

Algorithm 7: This function determines whether the stable Bruhat-Tits tree of
ρ has width exactly 1 or at least 2.
Input : A number field K.

A finite set S of primes of K.
A Black Box Galois representation unramified outside S whose
residual image is reducible.

Output: If width =1 return: True, {
∏r
i=1 ∆xi

i ,
∏r
i=1 ∆yi

i }.
If width ≥ 2 return: False.

1 Use Algorithm 6 to compute a quadratically independent set T2;
2 Compute b = (t1(p1), ..., t1(p r(r+1)

2
)) for pi ∈ T2;

3 if b 6= 0 then
4 Compute v = (t1(p1), ..., t1(pr)) ∈ Fr2;
5 Compute W = (t1(pij)− t1(pi)− t1(pj)) ∈Mr(F2);
6 if W = 0 then
7 Take x = y = v.
8 else
9 if v = 0 then

10 Take x and y to be two distinct non-zero rows of W.
11 else
12 Let z be a row i of W such that wi 6= 0;
13 Let x be any non-zero row of W distinct from z;
14 Let y = x + z.
15 Return: True, {

∏r
i=1 ∆xi

i ,
∏r
i=1 ∆yi

i }.
16 else
17 Return: False.

Example 5. Let K = Q(a) with a =
√
−2 and let S = {a, a− 1, a− 3} be the set of

bad primes. Observe that for these K and S we have

K(S, 2) = 〈a,−1 + a,−3 + a,−1〉
∼= (Z/2Z)4.

Consider

K1 = K(
√

∆1) K2 = K(
√

∆2) K3 = K(
√

∆3) K4 = K(
√

∆4)

where
∆1 = a ∆2 = −1 + a ∆3 = −3 + a ∆4 = −1,

38



Chapter 4 Reducible Residual Representation.

and take the set of primes

T2 = {37, 7, 23,−5 + 3a, 5, 13,−3− 5a, 31,−11− 3a, 1 + 3a}.

We can see that T2 is a quadratically independent set of primes satisfying the special
conditions of Algorithm 6, i.e., we have that

{1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
37 1 0 0 0 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0 0 0

23 0 0 1 0 0 0 0 0 0 0
−5 + 3a 0 0 0 1 0 0 0 0 0 0

5 1 1 0 0 1 0 0 0 0 0
13 1 0 1 0 0 1 0 0 0 0

−3− 5a 1 0 0 1 0 0 1 0 0 0
31 0 1 1 0 0 0 0 1 0 0

−11− 3a 0 1 0 1 0 0 0 0 1 0
1 + 3a 0 0 1 1 0 0 0 0 0 1

Therefore we have found a correct set of primes to determine whether the isogeny
class is “small” or “large”. The Black Box that is considered here comes from the
Galois representation of a Bianchi modular formI of level 2 + 17

√
−2 whose Hecke

eigenvalues give the traces. In this way, applying the test (4.2) on T2 we get that

b =



t1(37)
t1(7)
t1(23)

t1(−5 + 3a)
t1(5)
t1(13)

t1(−5− 5a)
t1(31)

t1(−11− 3a)
t1(1 + 3a)



=



0
0
0
0
1
1
0
0
0
0


According to Algorithm 7, since b 6= 0, we are in the “small isogeny class”. This
implies that the width of the related stable Bruhat-Tits tree is 1. Moreover, the vector
v is 0, which implies that the vector x and y are given by the non-zero rows of the
matrix W.

IThe Bianchi modular form’s label is “[528,32,4].a” and was taken from http://homepages.
warwick.ac.uk/staff/J.E.Cremona/ftp/iqfdata/data/nflist.2.1-10000 on March 2016.
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Chapter 4 Reducible Residual Representation.

To determine the vectors x and y we construct the matrix W given by

W =


0 x1y2 + x2y1 x1y3 + x3y1 x1y4 + x4y1

x1y2 + x2y1 0 x2y3 + x3y2 x2y4 + x4y2

x1y3 + x3y1 x2y3 + x3y2 0 x3y4 + x4y3

x1y4 + x4y1 x2y4 + x4y2 x3y4 + x4y3 0



=


0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0


from where we can see, without loss of generality, that x = (0, 1, 1, 0) and y =
(1, 0, 0, 0). Thus, the discriminants related to these vectors are

∆b = ∆0
1∆1

2∆1
3∆0

4

= (−1 + a)(−3 + a)

= 1− 4a

and

∆c = ∆1
1∆0

2∆0
3∆0

4

= a.

Furthermore, the quadratic fields are

K(
√

1− 4a) and K(
√
a).

We can match the data presented in the previous example to the 2-isogeny classII of
the elliptic curves of conductor N = 528a over Q(

√
−2) given by the Weierstrass

equation y2 + axy + ay = x3 + (−1 + 8a)x+ (2 + 12a).

Up to this point we have seen how to determine whether the width of the stable
Bruhat-Tits tree is 1 (“small isogeny class”, i.e., none of the residual images is C1) or
at least 2 (“large isogeny class”, i.e., at least one residual image is C1). So for the rest
of the chapter we will study in more detail the “large isogeny class” case, i.e., without
loss of generality we may always assume that representation is trivial modulo 2.

By the end of this chapter we will have developed techniques and algorithms to
determine whether the representation is trivial modulo 2k+1 under the assumption
that the representation is trivial modulo 2k. Moreover we will be able to determine,
for small k, the width, the edges and the nodes of the stable Bruhat-Tits tree related

IITaken from http://www.lmfdb.org/EllipticCurve/2.0.8.1/%5B528%2C32%2C4%5D/a/ on
March 2016.
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Chapter 4 Large Isogeny Class of width at least 2.

to the representation modulo 2k+1. Particularly, we will see in examples 6 and 7, how
this technique is applied to determine the triviality of the representation modulo 22

and also distinguish whether the width of the stable Bruhat-Tits tree is exactly 2, 3
or at least 4 and its respective edges.

4.3 Large Isogeny Class of width at least 2.

Let ρ : GK → GL2(Z2) be a continuous Galois representation unramified outside a set
of primes S and let Λ be the lattice for which it is defined. We start this section with
the following lemma.

Lemma 4.3.1. Suppose that ρ(σ) ≡ I (mod 2k) for all σ ∈ GK and some positive
integer k. Then

1. det(ρ(σ)) ≡ 1 (mod 2k),

2. v(σ) ≥ 2k.

Proof.

1. Straightforward.

2. Let ρ(σ) ≡ I (mod 2k), so we have

ρ(σ) = I +2kµ(σ), (4.13)

where

µ(σ) =
(
a(σ) b(σ)
c(σ) d(σ)

)
∈M2(Z2).

Thus we have

1− tr(ρ(σ)) + det(ρ(σ)) = det(ρ(σ)− I)

= 22kad− 22kbc, (4.14)

which means that Fσ(1) is divisible by 22k and that v(σ) ≥ 2k for all σ ∈ Gk.

Suppose that ρ(σ) ≡ I (mod 2k) for all σ ∈ GK and some positive integer k. Then

det(ρ(σ)) = 1 + 2k(a+ d) + 22kad− 22kbc

≡ 1 + 2k(a+ d) (mod 2k+1)

≡

1 (mod 2k+1) if a+ d is even

1 + 2k (mod 2k+1) if a+ d is odd.
(4.15)
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Chapter 4 Large Isogeny Class of width at least 2.

Note that the map σ 7→ µ(σ) (mod 2) is a group homomorphism from GK toM2(F2).
Composing the homomorphism with the four characters from

M2(F2)→ F2(
a b

c d

)
7→ a, b, c, d

we obtain four additive characters unramified outside S

GK → F2

σ 7→ a(σ), b(σ), c(σ), d(σ) (mod 2)

which we denote by χa, χb, χc and χd. To each character there is associated a dis-
criminant, named ∆a,∆b,∆c,∆d ∈ K(S, 2). Setting χabcd = χa + χb + χc + χd,
χdet = χa + χd and using (4.15) we see that

χdet(σ) = 1⇔ a+ d ≡ 1 (mod 2)

⇔ det(ρ(σ)) ≡ 1 + 2k (mod 2k+1)

and

χdet(σ) = 0⇔ a+ d ≡ 0 (mod 2)

⇔ det(ρ(σ)) ≡ 1 (mod 2k+1),

so therefore χdet is the quadratic character associated to (4.15). Observe we obtain
naturally that

∆det = ∆a∆d (4.16)

is the discriminant of χdet.
From now on we will always assume that the representation ρ is always trivial

modulo 2k and hence satisfies Lemma 4.3.1.

Remark 4.3.2. Since we are working with integral Galois representations, we also
can work with their isogenies. In fact, in sections 4.3.3 and 4.3.4, we may choose to
do one of the following adjustments to the given matrix representation:

(1) replace ρ(σ) by U ρ(σ) U−1 with U ∈ GL2(Z2). This means that we are taking a
new Z2-basis for the same stable lattice, replacing ρ(σ) by a new representation
isomorphic(over Z2) to it.

(2) replace ρ(σ) by U ρ(σ) U−1 with U ∈ GL2(Q2) and det(U) = 2, such that this
conjugation give us new values that are still integral. This means that we are
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Chapter 4 Large Isogeny Class of width at least 2.

replacing our stable lattice Λ by one adjacent to it in the stable Bruhat-Tits tree,
namely U(Λ), and replacing ρ by an isogenous(over Q2) representation to it.

4.3.1 Bruhat-Tits tree of width at least 2: Large Isogeny class.

Let ρ : GK → GL2(Z2) be a Galois representation unramified outside a set of primes
S such that ρ(σ) ≡ I (mod 2k) for all σ ∈ GK . When k = 1, this means that we are
in the “large isogeny class” case, i.e., the width of the stable Bruhat-Tits tree is at
least 2.

We would like to determine the shape and the corresponding quadratic characters
associated to the nodes of the stable Bruhat-Tits tree related to the representation ρ
which has the matrix representation given by (4.13). To do this, we have to focus on
the cocyclic sublattices(see Definition 2.2.5) Λ′ of Λ = Z2

2 of index 2k+1 that are fixed
by ρ, this is because these cocyclic sublattices correspond to paths of length k + 1 in
the tree starting at the vertex Λ. These cocyclic sublattices are given by

Λ′ = 〈v〉+ 2k+1Λ, v =
(
x

y

)
∈ Z2

2

where x, y are not both even. So Λ′ is fixed by ρ if and only if for all σ ∈ GK

ρ(σ)Λ′ ≡ Λ′ (mod 2k+1)⇔ ρ(σ) v ≡ λv (mod 2k+1)

⇔ (I +2kµ(σ)) v ≡ λv (mod 2k+1)

for some λ ∈ {1, 1 + 2k}

from where we have the two following cases:

(a) if λ = 1 then

(I +2kµ(σ)) v ≡ v (mod 2k+1)⇒ 2kµ(σ) v ≡ 0 (mod 2k+1)

⇒ µ(σ) v ≡ 0 (mod 2), (4.17)

(b) if λ = 1 + 2k then

(I +2kµ(σ)) v ≡ (1 + 2k) v (mod 2k+1)⇒ 2k(I +µ(σ)) v ≡ 0 (mod 2k+1)

⇒ (I +µ(σ)) v ≡ 0 (mod 2). (4.18)

Hence we can determine the condition for each possible lattice Λ′ to be stable under
ρ, which only depends on v modulo 2:

1. v ≡
(

1
0

)
(mod 2) and for one of these two cases (4.17) or (4.18) to hold is
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equivalent to say that

c(σ) ≡ 0 (mod 2), ∀σ ∈ GK ,

2. v ≡
(

0
1

)
(mod 2) and for one of these two cases (4.17) or (4.18) to hold is

equivalent to say that

b(σ) ≡ 0 (mod 2), ∀σ ∈ GK ,

3. v ≡
(

1
1

)
(mod 2) and

(i) for (4.17) we have that

ρ(σ)
(

1
1

)
≡
(

0
0

)
(mod 2)⇔

(
a+ b

c+ d

)
≡
(

0
0

)
(mod 2)

(ii) for (4.18) we have that

ρ(σ)
(

1
1

)
≡
(

1
1

)
(mod 2)⇔

(
a+ b

c+ d

)
≡
(

1
1

)
(mod 2).

Hence, in order to either (4.17) or (4.18) to hold we must have

a+ b+ c+ d ≡ 0 (mod 2) ∀σ ∈ GK .

For example, when k = 1, the generic stable Bruhat-Tits tree of width at least 2 looks
like

∆b

1

∆c ∆abcd

Figure A1: Tree of width at least 2.
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where the quadratic characters and their quadratic extensions related to the four
nodes of the tree are

1. χb : σ 7→ b (mod 2) is the quadratic character associated to K(
√

∆b)/K,

2. χc : σ 7→ c (mod 2) is the quadratic character associated to K(
√

∆c)/K,

3. χdet : σ 7→ a+ d (mod 2) is the character associated to K(
√

∆det)/K,

4. χabcd : σ 7→ a + b + c + d (mod 2) is the quadratic character associated to
K(
√

∆abcd)/K.

Observe that the condition of the width being at least 3 is equivalent to have one of
these sublattices itself having a stable sublattice of index 2. This occurs if and only
if one (or more) of the characters χb, χc, χabcd is trivial.

Finally we ask ourselves, how can we determine the values of ∆a, ∆b, ∆c, ∆d and
∆abcd? This question will be answered in the following sections.

Remark 4.3.3. We can see how the conjugation by U, for the matrices U given in
Remark 4.3.2, swaps the characters χa, χb, χc, χd:

(1) when U =
(
−1 −1
1 0

)
then, by conjugation, we have that

(
a b

c d

)
→
(
b+ d (b+ d)− (a+ c)
−b a− b

)

→
(

c+ d −c
(a+ c)− (b+ d) a+ c

)

→
(
a b

c d

)
,

where we can see how the triplet (b, c, a+ b+ c+ d) gets 3-cycled as

(b, c, a+ b+ c+ d)→ (a+ b+ c+ d, b, c)

→ (c, a+ b+ c+ d, b)

→ (b, c, a+ b+ c+ d).

(2) when U =
(

0 1
1 0

)
, then by conjugation we have that

(
a b

c d

)
↔
(
d c

b a

)
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where we can see how the triplet (b, c, a+ b+ c+ d) get 2-cycled as

(b, c, a+ b+ c+ d)↔ (c, b, a+ b+ c+ d)

In sections 4.3.3 and 4.3.4 we will see how this remark is important.

4.3.2 The test.

Let {∆i}ri=1 be a fixed basis of K(S, 2) and take

∆b =
r∏
i=1

∆xi
i , ∆c =

r∏
i=1

∆yi
i , ∆abcd =

r∏
i=1

∆zi
i ,

∆a =
r∏
i=1

∆ui
i , ∆d =

r∏
i=1

∆vi
i ,

where

x = {xi}ri=1,y = {yi}ri=1, z = {zi}ri=1,u = {ui}ri=1,v = {vi}ri=1 ∈ Fr2.

Since we are assuming that ρ is trivial modulo 2k, to determine the ρ modulo 2k+1,
it is enough to determine the four discriminants ∆a, ∆b, ∆c and ∆d. As a special
case, when k = 1, we will be able to determine whether the stable Bruhat-Tits tree
has width exactly 2, 3, or at least 4, given that it has width at least 2.

Now consider a quadratically independent set T2 of primes. Then for the primes
p ∈ T2, due to (4.15), we get two test functions.

1. If det(ρ(Frobp)) ≡ 1 (mod 2k+1) then

a+ d ≡ 0 (mod 2)

and in this situation we have that

t2k(p) := 1
22k (1− tr(ρ(Frobp)) + det(ρ(Frobp))) ≡ a+ bc (mod 2). (4.19)

2. If det(ρ(Frobp)) ≡ 1 + 2k (mod 2k+1) then

a+ d ≡ 1 (mod 2)

and in this situation we have that

t2k(p) := 1
22k (1− tr(ρ(Frobp)) + det(ρ(Frobp))) ≡ bc (mod 2). (4.20)
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Observe that we will be always able to distinguish between (4.19) and (4.20) because

tr(ρ(Frobp)) = 2 + 2k(a+ d) (4.21)

for any prime p = Frobp in GK .

4.3.3 ∆det trivial.

Suppose that ∆det is trivial. Since ∆det = ∆a∆d this implies that ∆a = ∆d. Thus
the vectors u and v are the same. Moreover,

∆abcd = ∆b∆c, (4.22)

with z = x + y. In this way,

x + y + z = 0 . (4.23)

To determine the values of the discriminants take the primes pi, pj , pij ∈ T2 then, by
the test (4.19), we have that

t2k(pi) = ui + xiyi, i ≥ 1, (4.24)

t2k(pj) = uj + xjyj , j ≥ 1,

t2k(pij) = ui + uj + (xi + xj)(yi + yj), i, j ≥ 1.

Hence

wij = xiyj + xjyi (4.25)

= t2k(pi) + t2k(pj) + t2k(pij), i, j ≥ 1.

We construct the matrix W with the entries wij given by (4.25). As before, the i-th
row (and column) are given by wi = (wij)j = yi x +xi y ∈ {0,x,y, z = x + y}, thus

wi =



0 if (xi, yi) = (0, 0),

x if (xi, yi) = (0, 1),

y if (xi, yi) = (1, 0),

z = x + y if (xi, yi) = (1, 1),

(4.26)

and two cases arise.

Case 1. The matrix W contains at least two (distinct) non-zero rows. We retrieve
the values of x and y from the matrix W and by (4.23) we also obtain the value of
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z. Moreover, we obtain the values of u = v by using

t2k(pi) = ui + xiyi, 1 ≤ i ≤ r (4.27)

and the now known values of x and y. Therefore we have computed the all the vectors
u,v,x,y, z and obtained ∆a,∆b,∆c,∆d and ∆abcd.

Case 2. The matrix W is the zero matrix. In this case we have either that x = y
(which implies that z = 0) or that x = 0 or y = 0 and x + y + z = 0. In both cases,
by remarks 4.3.2 and 4.3.3, we have complete symmetry between x, y and z, so we
can safely assume that y = 0 and thus x = z.

Observe that we do not know the values of x and z yet, but since xiyi = 0 for
1 ≤ i ≤ r, we can retrieve the values of u = v using (4.27).

Now, to obtain the discriminant ∆b we need to go a step further and think on the
test t2k+1(p) for p ∈ T2.

Recalling (4.13) we observe that, because y = 0, the entry c is always even, i.e.,
c = 2c1. This means that we can re-write (4.13) to obtain

ρ(σ) =
(

1 + 2ka 2kb
2k+1c1 1 + 2kd

)
(4.28)

then, for p ∈ T2 we have that

Fp(1) = 22k(ad− 2bc1). (4.29)

By this stage we have obtained the vector u = v. Moreover, we know that ∆a = ∆d

and because of this, every time we take a prime p we will know exactly in which of
the two following cases we are:

1. Take p ∈ T2 such that a ≡ d ≡ 0 (mod 2). Then a = 2a1 and d = 2d1 so (4.29)
becomes

Fp(1) = 22k(ad− 2bc1)

= 22k(4a1d1 − 2bc1)

= 22k+1(2a1d1 − bc1)

so

t2k+1(p) := Fp(1)
22k+1 ≡ bc1 (mod 2). (4.30)

2. Take p ∈ T2 such that a ≡ d ≡ 1 (mod 2). By analysing (4.21) we obtain two
cases.
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(i) a+ d ≡ 0 (mod 4). Then ad ≡ −1 (mod 4), so ad = −1 + 4s1 and (4.29)
becomes

Fp(1) = 22k(ad− 2bc1)

= 22k(−1 + 4s1 − 2bc1)

= −22k + 22k+1(2s− bc1)

so

t2k+1(p) := Fp(1) + 22k

22k+1 ≡ bc1 (mod 2). (4.31)

(ii) a+d ≡ 2 (mod 4). Then ad ≡ 1 (mod 4), ad = 1+4s2 and (4.29) becomes

Fp(1) = 22k(ad− 2bc1)

= 22k(1 + 4s2 − 2bc1)

= 22k + 22k+1(2s2 − bc1)

so

t2k+1(p) := Fp(1)− 22k

22k+1 ≡ bc1 (mod 2). (4.32)

It is not hard to see that σ 7→ c1(σ) (mod 2) is again an additive quadratic character
unramified outside S, hence has an associated discriminant ∆c1 .

Let ∆c1 be defined as

∆c1 =
r∏
i=1

∆mi
i

with m = {mi}ri=1 ∈ Fr2. Then just as we did it in Section 4.2.1 using the set of
primes T2 and the tests (4.30), (4.31) and (4.32) we are going to determine whether
∆b or ∆c1 is trivial.

We construct the matrix W, as before, with entries

wij = ximj + xjmi

= t2k+1(pi) + t2k+1(pj) + t2k+1(pij), i, j ≥ 1

and, as before, the rows are given by wi = (wij)j = mi x +xi m ∈ {0,x,m,x + m}
and we have that
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wi =



0 if (xi,mi) = (0, 0),

x if (xi,mi) = (0, 1),

m if (xi,mi) = (1, 0),

x + m if (xi,mi) = (1, 1).

(4.33)

Furthermore, let w be the vector in Fr2 defined as w = (t2k+1(p1), ..., t2k+1(pr))
where t2k+1(pi) = ximi are found using the tests given by (4.30), (4.31) and (4.32).
In this way, we have two cases to consider:

(a) if t2k+1(p) = 0 for all p ∈ T2 then, by Proposition 4.2.6, we have that x = 0 or
m = 0,

(b) if t2k+1(p) = 1 for at least one p ∈ T2 then we analyse whether W = 0. If W = 0
then, by Proposition 4.2.6 we have that x = m = w. If W 6= 0 then, using
Proposition 4.2.6, we can recover x, m and hence obtain ∆b and ∆c1 .

Therefore we have computed all the vectors u,v,x,y, z and obtained ∆a,∆b,∆c,∆d

and ∆abcd.
Finally we present the algorithms of the methods to determine ρ modulo 2k+1

assuming that ∆det is trivial.
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Algorithm 8: This function determines the vectors x and m given by the rows
of the matrix W constructed using the test function t2k+1(p).
Input : A quadratically independent set T2 of primes.

A Black Box Galois representation ρ unramified outside S such that
ρ(σ) ≡ I (mod 2k) and det(ρ(σ)) ≡ 1 (mod 2k+1).

Output: The vectors x and m.
1 Let p ∈ T2;
2 Take m ∈ Fr2 and define the discriminant ∆c1 ;
3 Construct the matrix W = (t2k+1(pij)− t2k+1(pi)− t2k+1(pj)) ∈Mr(F2) using

(4.30), (4.31), (4.32) and satisfying (4.33);
4 Construct w = (t2k+1(p1), ..., t2k+1(pr)) for pi ∈ T2 using (4.30), (4.31), (4.32);
5 if W = 0 then
6 Take x = m = w.
7 else
8 if w = 0 then
9 Take x and y to be two distinct non-zero rows of W.

10 else
11 The i-th row of W such that wi 6= 0 is z;
12 Take x to be any non-zero row of W distinct from the i-th row;
13 Thus m = z + x.
14 Return: {x,m}.

Algorithm 9: This function determines the representation ρ(σ) modulo 2k+1

assuming that ρ(σ) is trivial modulo 2k and det(ρ(σ)) is 1 modulo 2k+1 for all
σ ∈ GK .
Input : A number field K.

A finite set S of primes of K.
A Black Box Galois representation unramified outside S which is
trivial modulo 2k and its determinant is 1 modulo 2k+1.

Output: {∆a,∆b,∆c,∆d,∆abcd}.
1 Use Algorithm 6 to compute a set T2;
2 Construct W = (t2k(pij)− t2k(pi)− t2k(pj)) ∈Mr(F2) using (4.19) and
satisfying (4.26) ;

3 if W has at least two distinct non-zero rows then
4 Retrieve the vectors x, y from the matrix W and take z = x + y;
5 Retrieve the vectors u = v using (4.27).
6 else
7 Assume y = 0 and retrieve the vectors u = v using (4.27);
8 Call Algorithm 8.
9 return: {∆a,∆b,∆c,∆d,∆abcd}.
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Chapter 4 Large Isogeny Class of width at least 2.

Example 6. Let K = Q(i) be our base field and assumeIII that over this field
det(ρ(σ)) ≡ 1 (mod 22) for all σ ∈ GK . Let S = {1 + i, 1 + 2i, 11 + 6i} be the
set of bad primes. Then we have that

K(S, 2) = 〈1 + i, 1 + 2i, 11 + 6i, i〉
∼= (Z/2Z)4.

Consider

K1 = K(
√

∆1) K2 = K(
√

∆2) K3 = K(
√

∆3) K4 = K(
√

∆4)

where
∆1 = 1 + i ∆2 = 1 + 2i ∆3 = 11 + 6i ∆4 = i.

Take the set of primes,

T2 = {11, 4 + 5i, 79, 5 + 2i, 3, 59, 6 + i, 7, 2 + i, 2 + 3i},

and, as was done in Example 5, we construct the matrix A

{1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
11 1 0 0 0 0 0 0 0 0 0

4 + 5i 0 1 0 0 0 0 0 0 0 0
79 0 0 1 0 0 0 0 0 0 0

5 + 2i 0 0 0 1 0 0 0 0 0 0
3 1 1 0 0 1 0 0 0 0 0

59 1 0 1 0 0 1 0 0 0 0
6 + i 1 0 0 1 0 0 1 0 0 0

7 0 1 1 0 0 0 0 1 0 0
2 + i 0 1 0 1 0 0 0 0 1 0

2 + 3i 0 0 1 1 0 0 0 0 0 1

.

which satisfies the special conditions of Algorithm 6. So we have found a quadratically
independent set T2 of primes. The Black Box considered here comes from the Galois
representation of a Bianchi modular formIV of level 56 + 2i whose Hecke eigenvalues
give the traces. In this way, applying the test (4.2) on the set T2 we can see that

IIIWe actually can verify if this assumption holds: since det(ρ(σ)) ≡ 1 (mod 2) for all σ ∈ GK
and det(ρ(Frobp)) ≡ 1 (mod 22) for all p ∈ T1 = {11, 4 + 5i, 79, 5 + 2i} by Proposition 4.4.1 then
det(ρ(σ)) ≡ 1 (mod 22) for all σ ∈ GK .

IVThe Bianchi modular form’s label is “[3140,56,2].c” and was taken from http://homepages.
warwick.ac.uk/staff/J.E.Cremona/ftp/iqfdata/data/nflist.1.1-10000 on March 2016.
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b =



t1(11)
t1(4 + 5i)
t1(79)

t1(5 + 2i)
t1(3)
t1(59)
t1(6 + i)
t1(7)

t1(2 + i)
t1(2 + 3i)



=



0
0
0
0
0
0
0
0
0
0


the width of the isogeny class is at least 2 and thus we are in a “large isogeny class”.
To determine whether the width of the isogeny class is actually 2, we need to apply
the tests (4.19) and (4.20) with k = 1 on the previously found set of primes T2. As a
result we get that

b =



t2(11)
t2(4 + 5i)
t2(79)

t2(5 + 2i)
t2(3)
t2(59)
t2(6 + i)
t2(7)

t2(2 + i)
t2(2 + 3i)



=



0
0
0
0
0
0
0
1
1
1


indeed, we are in a “large isogeny class” of width exactly 2. Now, according to Algo-
rithm 9, we find the vectors x and y by constructing the matrix W, given by

W =


0 x1y2 + x2y1 x1y3 + x3y1 x1y4 + x4y1

x1y2 + x2y1 0 x2y3 + x3y2 x2y4 + x4y2

x1y3 + x3y1 x2y3 + x3y2 0 x3y4 + x4y3

x1y4 + x4y1 x2y4 + x4y2 x3y4 + x4y3 0



=


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

 .

Without loss of generality, take x = (0, 0, 1, 1), y = (0, 1, 0, 1) and z = x + y =
(0, 1, 1, 0). Moreover we get that u = v = (0, 0, 0, 1). Therefore
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∆b = ∆0
1∆0

2∆1
3∆1

4

= (11 + 6i)(i)

= −6 + 11i,

∆c = ∆0
1∆1

2∆0
3∆1

4

= (1 + 2i)(i)

= −2 + i,

∆abcd = ∆0
1∆1

2∆1
3∆0

4

= (11 + 6i)(1 + 2i)

= −1 + 28i.

∆a = ∆d

= ∆0
1∆0

2∆0
3∆1

4

= i.

In this way, the quadratic fields are

K(
√
−6 + 11i), K(

√
−2 + i) and K(

√
−1 + 28i).

We can match the data presented in the previous example to the 2-isogeny classV

of the elliptic curves of conductor N = 3140c over Q(i) given by the Weierstrass
equation y2 + (1 + i)xy = x3 − x2 + (18− 48i)x+ (−158 + 30i).

4.3.4 ∆det non-trivial.

Suppose that ∆det is non-trivial. Choose a basis {∆i}ri=1 of K(S, 2) such that ∆1 =
∆det. Since ∆det = ∆a∆d, we get that

∆abcd = ∆1∆b∆c,

= ∆1+x1+y1
1

r∏
i=2

∆xi+yi
i (4.34)

where z = x + y + e1 and e1 = (1, 0, ..., 0) ∈ Fr2. In this way,

x + y + z = e1 . (4.35)

To determine the values of the discriminants, take primes pi, pj , pij ∈ T2 with i 6= j ≥
2, then by test (4.19) we have that

t2k(pi) = ui + xiyi, i ≥ 2, (4.36)

t2k(pj) = uj + xjyj , j ≥ 2,

t2k(pij) = ui + uj + (xi + xj)(yi + yj), 2 ≤ i 6= j ≤ r.

VTaken from http://www.lmfdb.org/EllipticCurve/2.0.4.1/%5B3140%2C56%2C2%5D/c/ on
March 2016.
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We want to find the vectors u, v, x, y and z with x + y + z = e1 and u + v = e1.
We define shortened versions of these vectors by dropping the first coordinate of
them and naming them as u′, v′, x′, y′ and z′ where we can see that u′ = v′ and
x′+ y′+ z′ = 0.

Observe that the test functions given in (4.36) are exactly the same as those given
in (4.24), except that the indices now start from 2, not from 1. So using exactly the
methods of Section 4.3.3 and the values t2k(pi) and t2k(pij) for i 6= j ≥ 2 we can
determine all of these shortened vectors.

It remains to use the test functions t2k(p1) and t2k(p1i), for 2 ≤ i ≤ r, to determine
the first coordinates u1, v1 = 1 + u1, x1, y1 and z1 with x1 + y1 + z1 = 1. Before that
we note the following symmetries:

(1) u′ and v′, and hence u and v, are interchangeable (by a suitable conjugation)
so at the end we can arbitrarily set u1 = 1 and v1 = 0;

(2) the symmetries between x′, y′ and z′ depend on:

(a) if x′, y′ and z′ are all non-zero, and hence also distinct, then we can permute
them how we like;

(b) if x′ = y′ = z′ = 0 then again we can permute x, y and z how we like;
(c) otherwise we have one of them is 0 and the others equal and non-zero, and

we have chosen it so that y′ = 0 and x′ = z′, so we can still swap x and z
if we like.

Now, since u1v1 = 0 we have that t2k(p1) = x1y1. Thus, if x1y1 = 1 then we will
have that x1 = y1 = z1 = 1, so we put a 1 in front of x′, y′, z′ to get x, y, z and
we are done. Otherwise we have that x1y1 = 0 and we need to determine whether
(x1, y1, z1) = (1, 0, 0), (0, 1, 0) or (0, 0, 1). We can compute t2k(p1i) = (u1 + ui)(v1 +
vi) + (x1 + xi)(y1 + yi) = (x1 + xi)(y1 + yi) for i ≥ 2 and hence, since we know
the rest already, we get the values y1xi + x1yi for i ≥ 2. The vector of these, say
q = (t2k(pi) + t2k(p1i) + ui)ri=2 in Fr−1

2 , is thus y1 x′+x1 y′.
In (2)a, x′ and y′ are linearly independent so we get x1 and y1 uniquely. In (2)b,

we have complete symmetry and set x = y = 0 and z = e1. In (2)c, since y′ = 0 we
have q = y1 x′ and x′ is not zero, so if q 6= 0 then y1 = 1 and x1 = z1 = 0. On the
other hand, if q = 0 then y1 = 0 and we can set x1 = 0, z1 = 1 (or vice versa, it does
not matter since x′ = z′).

Therefore we have computed the all the vectors u,v,x,y, z and obtained ∆a, ∆b,
∆c, ∆d and ∆abcd.

Remark 4.3.4. Observe that the values of ∆a,∆b,∆c,∆d and ∆abcd depend on which
node of the Bruhat-Tits tree we stand on. For example, in Example 4 if we stand on
the node 2©, we get that ∆b = ∆c = 5 and ∆abcd = −5. On the other hand, if we
stand on the node 6© we get ∆b = ∆c = 15 and ∆abcd = −15.
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Conclusion

Let ρ : GK → GL2(Z) be a Galois representation unramified outside S such that
ρ(σ) ≡ I (mod 2k) for all σ ∈ GK . Then by sections 4.3.3 and 4.3.4 we can determine
ρ modulo 2k+1 only by finding and testing, with our test t2k(p), a quadratically
independent set T2 of primes. Particularly when k = 1 and the width of the stable
Bruhat-Tits tree is at least 2, we are able to determine whether the width is 2, 3 or
at least 4 using the same set T2 of primes that was found to distinguish the “small
isogeny class” case and the “large isogeny class” case!

Finally we present the algorithm related to this section.
Algorithm 10: This function determines the representation ρ(σ) modulo 2k+1

assuming that ρ(σ) is trivial 2k and det(ρ(σ)) 6≡ 1 (mod 2k+1) for some σ ∈ GK .
Input : A number field K.

A finite set S of primes of K.
A Black Box Galois representation unramified outside S which is
trivial modulo 2k and its determinant lies in {1, 1 + 2k} modulo 2k+1.

Output: {∆a,∆b,∆c,∆d,∆abcd}.
1 Compute a basis of K(S, 2) such that ∆1 = ∆det;
2 Use Algorithm 6 to compute a set T2;
3 Construct W′ = (t2k(pij)− t2k(pi)− t2k(pj)) ∈Mr−1(F2) using (4.36) and
satisfying (4.26) for i 6= j ≥ 2;

4 Use algorithms 8 and 9 to determine the shortened vectors x′, y′, z′, u′, v′;
5 Set u1 = 1 and v1 = 0;
6 if x1y1 = 1 then
7 x1 = y1 = z1 = 0.
8 else
9 Compute q = (t2k(pi) + t2k(p1i) + ui)ri=2 for pi, p1i ∈ T2 and 2 ≤ i ≤ r;

10 if q 6= 0 then
11 if x′ 6= y′ 6= 0 then
12 x1 = 0, y1 = 1 and z1 = 0.
13 else
14 y′ = 0, x′ = z′ 6= 0, so x1 = z1 = 0 and y1 = 1.
15 else
16 x1 = y1 = 0 and z1 = 1.
17 return: {∆a,∆b,∆c,∆d,∆abcd}.

Example 7. Let K = Q and let S = {2, 3, 7} be our set of bad primes. Observe that
for these K and S we have

K(S, 2) = 〈−1, 2, 3, 7〉 ∼= (Z/2Z)4.
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Consider

K1 = Q(
√
−1) K2 = Q(

√
2) K3 = Q(

√
3) K4 = Q(

√
7)

and take the set
T2 = {47, 37, 113, 73, 59, 31, 23, 29, 13, 17}.

As was done in examples 5 and 6, we construct the matrix A

{1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
47 1 0 0 0 0 0 0 0 0 0
37 0 1 0 0 0 0 0 0 0 0

113 0 0 1 0 0 0 0 0 0 0
73 0 0 0 1 0 0 0 0 0 0
59 1 1 0 0 1 0 0 0 0 0
31 1 0 1 0 0 1 0 0 0 0
23 1 0 0 1 0 0 1 0 0 0
29 0 1 1 0 0 0 0 1 0 0
13 0 1 0 1 0 0 0 0 1 0
17 0 0 1 1 0 0 0 0 0 1

which satisfies the special conditions of Algorithm 6. Thus we have found a quadrat-
ically independent set T2 of primes. The Black Box considered here is the modular
formVI f = 168.2.1a so there is an associated Galois representation ρ unramified
outside {2, 3, 7} such that for p /∈ {2, 3, 7} we have

det(ρ(Frobp)) = p

tr(ρ(Frobp)) = ap,

the p-th Hecke eigenvalue of f . In this way, applying the test (4.2) on set T2 we get
that

VITaken from http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/168/2/1/a/) on March
2016
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b =



t1(47)
t1(37)
t1(113)
t1(73)
t1(59)
t1(31)
t1(23)
t1(29)
t1(13)
t1(17)



=



0
0
0
0
0
0
0
0
0
0


the isogeny class is “large” of width at least 2. Now, since the determinant is ±1
modulo 22, applying the tests (4.19) and (4.20) for k = 1 on the set T2 will give us
that

b =



t2(47)
t2(37)
t2(113)
t2(73)
t2(59)
t2(31)
t2(23)
t2(29)
t2(13)
t2(17)



=



0
0
0
0
0
0
1
0
0
1


the width of the “large isogeny class” is exactly 2. According to Algorithm 10, we need
to construct the matrix W′ with entries

w23 = w32 = t2(37) + t2(113) + t2(29) = 0,

w24 = w42 = t2(37) + t2(73) + t2(13) = 0,

w34 = w43 = t2(113) + t2(73) + t2(17) = 1.

Thus the matrix W′ looks like

W′ =


0 0 0
0 0 1
0 1 0

 .
Since the second row is different from the third row, w.l.o.g., set x′ = (0, 0, 1) and
y′ = (0, 1, 0). Moreover, because x1y1 = 0, we have that u′ = v′ = 0 and, from
these, q = (0, 0, 1). Thus x1 = 0, y1 = 1 and z1 = 0. In this way x = (0, 0, 0, 1),
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y = (1, 0, 1, 0), z = (0, 0, 1, 1) and the discriminants related to these vectors are
∆b = 7,∆c = −3 and ∆abcd = 21.

Finally, the quadratic fields are

K(
√

7), K(
√
−3) and K(

√
21).

Note that the data presented in the previous example matches the 2-isogeny classVII

of the elliptic curves of conductor N = 168 over Q given by the Weierstrass equation
y2 = x3 − x2 − 4032x+ 99900.

4.4 Isogenous Galois representations modulo 2k+1.

We finish the chapter by stating and proving a theorem that will provide us an easy
criterion to determine whether, for a given Galois representation which is trivial mod-
ulo 2k and satisfies certain conditions, there exists an isogenous representation, to the
given one, that is trivial modulo 2k+1.

Proposition 4.4.1. Let χ : GK → Z∗2 be a continuous character unramified outside
a set of primes S. If

1. χ(σ) ≡ 1 (mod 2k−1) for all σ ∈ GK ,

2. χ(Frobp) ≡ 1 (mod 2k) for all p ∈ T1,

then χ(σ) ≡ 1 (mod 2k) for all σ ∈ GK .

Proof. Let χ : GK → Z∗2 be a continuous character unramified outside a set of primes
S. Suppose that for all p ∈ T1 with σ = Frobp we have that χ(σ) ≡ 1 (mod 2k)
but there exists at least one σ ∈ GK such that χ(σ) 6≡ 1 (mod 2k). This means that
χ(σ) ≡ 1 + 2k−1α(σ) (mod 2k) where α(σ) ∈ Z2.

We observe that α(σ) ≡ 0 (mod 2) for all p ∈ T1. This implies that the quadratic
extension K(

√
∆) related to α modulo 2 (which is an additive quadratic character)

is trivial by Lemma 3.3.1, i.e., ∆ = 1. Hence α(σ) ≡ 0 (mod 2) for all σ ∈ GK .
Therefore χ(σ) ≡ 1 (mod 2k) for all σ ∈ GK .

Lemma 4.4.2. Let G be a subgroup of GL2(Z2) such that for some k ≥ 1, every g in
G has the form

g = I +2k
(

2a b

2c 2d

)

with a, b, c, d in Z2 and bc even, i.e., for each g, either b is even or c is even. Then
in fact either b is even for all g in G, or c is even for all g in G. In the first case

g ≡ I (mod 2k+1) for all g in G.
VIITaken from http://www.lmfdb.org/EllipticCurve/Q/168/a/ on March 2016.
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In the second case(
2 0
0 1

)
g

(
2 0
0 1

)−1

≡ I (mod 2k+1) for all g in G.

Proof. Let G be a subgroup of GL2(Z2) such that its elements satisfy the conditions
given above; gb is such that b is even and gc is such that c is even. Observe that the
elements, gb and gc, i.e., the two types of elements in GK for which either b or c is
even, make two subgroups of G. But G cannot be the union of two proper subgroups!
Therefore G is a subgroup such that either, for all its elements, b or c is even.

Theorem 4.4.3. Let ρ : GK → GL2(Z2) be a Galois representation unramified outside
S such that

ρ(σ) ≡ I (mod 2k) for all σ ∈ GK

and suppose that for a linearly independent set T1 and a quadratically independent set
T2 we have that

1. det(ρ(Frobp)) ≡ 1 (mod 2k+1) for all p ∈ T1,

2. v(p) ≥ 2k + 2 for all p ∈ T2.

Then there exists an isogenous representation ρ′ such that ρ′(σ) ≡ I (mod 2k+1) for
all σ ∈ GK .

The proof of the theorem follows an inductive step.

Proof. Let ρ : GK → GL2(Z2) be a Galois representation unramified outside a set of
primes S such that ρ(σ) ≡ I (mod 2k) for all σ ∈ GK . Suppose that det(ρ(Frobp)) ≡ 1
(mod 2k+1) for all p ∈ T1. Then Proposition 4.4.1 implies that det(ρ(Frobp)) ≡ 1
(mod 2k+1) for all Frobp = σ ∈ GK .

To prove that ρ is congruent to the identity modulo 2k+1, we have to prove that
the entries a, b, c, d of (4.13) are divisible by 2. To do this, assume that v(p) > 2k for
all p ∈ T2. Thus a ≡ d (mod 2) and a + bc ≡ 0 (mod 2) for all p ∈ T2. By Section
4.3.3, at least one of the characters χb, χc or χabcd is 0. W.l.o.g., suppose that χc = 0,
i.e., c ≡ 0 (mod 2). This implies that a ≡ d ≡ 0 (mod 2).

Notice that until this point we do not know if χb is trivial or not. Therefore (4.13)
looks like

ρ(σ) =
(

1 + 2k+1a1 2kb
2k+1c1 1 + 2k+1d1

)
.
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Applying the determinant to the matrix presented above, we get that

det(ρ(σ)) = (1 + 2k+1a1)(1 + 2k+1d1)− 22k+1bc1

and

1− tr(ρ(σ)) + det(ρ(σ)) = 22k+2a1d1 − 22k+1bc1

≡ 22k+1bc1 (mod 22k+2).

Hence, we are now allow to use the test (4.20), e.g.,

t2k+1(σ) := 1
22k+1 (1− tr(ρ(σ)) + det(ρ(σ))) ≡ bc1 (mod 2).

Now, since by hypothesis for all p ∈ T2 we get that v(p) > 2k + 1 then bc1 ≡ 0
(mod 2) for all p ∈ T2. Then, by Lemma 4.4.2, we always get that b ≡ 0 (mod 2)
or c1 ≡ 0 (mod 2) for all p ∈ T2. Thus, again by Lemma 4.4.2, we get whether the
same representation ρ or an isogenous representation ρ′ both being congruent to the
identity modulo 2k+1:

ρ(σ) =
(

1 + 2k+1a1 2k+1b1

2k+1c1 1 + 2k+1d1

)

or

ρ(σ) =
(

1 + 2k+1a1 2kb
2k+2c2 1 + 2k+1d1

)
oo //isogenous

(
1 + 2k+1a1 2k+1b

2k+1c2 1 + 2k+1d1

)
= ρ′(σ)

and therefore we are done.
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Now we present the algorithm based on the previous theorem.
Algorithm 11: This function determines whether exists a representation ρ′(σ)
congruent to the identity modulo 2k+1 given a representation ρ(σ), which is
isogenous to ρ′, congruent to the identity modulo 2k for all σ ∈ GK .
Input : A number field K.

A finite set S of primes of K.
A Black Box Galois representation unramified outside S which is
trivial modulo 2k.

Output: Return: True if there exists such representation.
Else return: False.

1 Use Algorithm 3 to compute T1;
2 Use Algorithm 6 to compute T2;
3 if v1(p) > k for all p ∈ T1 then
4 if v(p) > 2k + 1 for all p ∈ T2 then
5 return: True.
6 else
7 return: False.
8 else
9 return: False.

In summary, given that ρ is trivial modulo 2k, if v1(p) > k for all p in T1 and
v(p) > 2k + 1 for all p ∈ T2 then there exists ρ′ which is trivial modulo 2k+1.

We end the chapter with the following corollary.

Corollary 4.4.4. Let ρ : GK → GL2(Z2) be a continuous Galois representation un-
ramified outside S such that ρ is trivial. If

(a) det(ρ(Frobp)) = 1 for all p ∈ T1, and

(b) tr(ρ(Frobp)) = 2 for all p ∈ T2

then ρ is reducible with trivial semisimplification.
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Comparing two Black Box
Galois representations.

Let K be a number field and let S be a finite set of primes of K. Let ρj : GK →
GL2(Z2) be two integral continuous Galois representations unramified outside S and
consider their Black Boxes as in Chapter 4. We will be referring to the Black Boxes
as ρ1 and ρ2 for each representation. Throughout the chapter the following results
will be described.

1. Section 5.1. In this section we develop the theory to determine, in subsequent
sections, whether two Black Boxes are isogenous. The strategy follows an induc-
tive argument; by proving that the Black Boxes have the same residual image
and are isogenous modulo 2k, an obstruction arises when lifting the isogeny
modulo 2k to one modulo 2k+1. Then we prove that the obstruction is repre-
sented by a cocycle µ whose class is a well-defined element of a very special
cohomology group. We proceed to the next section.

2. Section 5.2. In this section we give a thorough and full description of the
cohomology group named H̃1(GK , V0). This description relies on the residual
image of the Black Boxes. Moreover, this will allow us to see the class [µ] as the
sum of classes in simpler cohomology groups. We proceed to the next section.

3. Section 5.3. In this section we give and prove sufficient conditions to determine
whether the class [µ] is zero when ρ is surjective. The process starts by dividing
the class [µ] as the sum of two classes [µ1] and [µ2] as was seen in the previous
section. Then we find finite sets of primes satisfying certain conditions to estab-
lish that each class is zero by comparing traces at these primes. In this way, by
checking a finite number of primes, the obstruction to the lifting vanishes and
the isogeny is proved. Currently our methods, as developed here, only succeed
in eliminating the obstruction when the residual representations are surjective,
though some of the results could apply in the other cases.
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The motivation of the chapter came from what was proven in [8] by professors Luis
Dieulefait, Lucio Guerberoff and Ariel Pacetti. The main goal of this chapter was to
create an alternative improved method for the Faltings-Serre-Livné method given in
Livné’s article [11]; one of the aimed improvements was to find a set of smaller set of
primes, compared to the one found by Faltings-Serre-Livné, for which to test if the
representations are the same. In the end, Livné’s results ended up being used and
unfortunately the main goal was only partially achieved.

5.1 Proving congruence modulo 2k+1.

Let ρ1 and ρ2 be two Black Box Galois representations unramified outside S. We
would like to prove that these two representations are isogenous. We start this process
by checking first, using Theorem 3.3.2, whether det(ρ1) = det(ρ2), which is a necessary
condition for them to be isogenous. Thus, from now on we assume that det(ρ1) =
det(ρ2). Furthermore, using the methods of Chapter 4 we determine the residual
image representations ρ1 and ρ2. If these (or their semisimplification) differ, then
certainly ρ1 and ρ2 are not isogenous. Hence we may assume that ρ(σ) ≡ ρ1(σ) ≡
ρ2(σ) (mod 2).

Now, by an inductive argument, suppose that ρ1 and ρ2 are isogenous modulo 2k

but not necessarily modulo 2k+1. We can assume, after replacing ρ1 by a conjugate
if necessary, that ρ1(σ) ≡ ρ2(σ) (mod 2k) for some k ≥ 1. This defines a possible
non-constant map

ϕ : GK → F2

σ 7→ tr(ρ1(σ))− tr(ρ2(σ))
2k (mod 2). (5.1)

Also, for every given σ ∈ GK there is a matrix µ(σ) ∈ M2(Z2) such that

ρ1(σ) = (I +2kµ(σ))ρ2(σ). (5.2)

Since det(ρ1) = det(ρ2) we have that 1 = det(I +2kµ(σ)), which implies that tr(µ(σ)) ≡
0 (mod 2). In this way, we get an induced map

µ : GK → V0

σ 7→ µ(σ) (mod 2) (5.3)

where V = M2(F2), V0 = {A ∈M2(F2) : tr(A) = 0} and satisfying

µ(σ1σ2) ≡ µ(σ1) + ρ(σ1)µ(σ2)ρ(σ1)−1 (mod 2). (5.4)
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Substituting (5.2) in (5.1) we get

ϕ(σ) = tr(µ(σ)ρ(σ)). (5.5)

Since we are only interested in µ, the reduction of µ modulo 2, to simplify notation
we will write µ for µ from now on.

The map µ depends on the choice of conjugation, as we will see later. It will
turn out that µ determines a well-defined cohomology class which represents the
obstruction of extending the isogeny modulo 2k to module 2k+1.

Observe that, by (5.4), µ is actually a cocycle with values in the GK-module V0

where the GK-action on V0 is given by

σ : A 7→ ρ(σ) A ρ(σ)−1, A ∈ V0 (5.6)

denoted by σ A, where ρ(σ) ∈ ρ(GK). However the class of µ in H1(GK , V0) is not
well-defined as we now discuss.

Take V0 = V1 ⊕ V2 as GK-modules with dimVj = j for j = 1, 2 where

V1 = 〈I〉

= {0, I}

=
{

A ∈ V0 : tr(A T) = 0 for all T ∈ GL2(F2) with T2 = I
}

and

V2 =
〈(

1 1
0 1

)
,

(
1 0
1 1

)〉

=
{

0,
(

1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)}
= {0} ∪ {A : A2 = I}

= {A ∈ V0 : tr(A R) = 0 for all R ∈ GL2(F2) such that R3 = I}.

Observe that V1 and V2 are GK-invariant. Indeed, by direct calculations, when (5.6)
acts on matrices A ∈ Vj we get σA ∈ Vj for j = 1, 2.

We have constructed a cocycle µ ∈ Z1(GK , V0) ⊆ Z1(GK , V ). Moreover, we have
that

H1(GK , V0) = H1(GK , V1)⊕H1(GK , V2). (5.7)

A natural related question is, do we have a well-defined cohomology class in either
H1(GK , V0) or in H1(GK , V )?

Lemma 5.1.1. The class of µ in H1(GK , V ) is well-defined, but its class in H1(GK , V0)
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may not be.

Proof. Let ρ1 and ρ2 be two representations satisfying (5.2). Replace ρ2 by a conjugate
U ρ2 U−1 where U ≡ I (mod 2k) is of the form U = I +2k B with B ∈ V , then

ρ1(σ) = (I +2kµ(σ))ρ2(σ)

= (I +2kµ′(σ)) U ρ2(σ) U−1

with µ′(σ) ∈ V0 as before. We compute

(I +2kµ(σ))ρ2(σ) ≡ (I +2kµ′(σ)) U ρ2(σ) U−1 (mod 2k+1)

≡ (I +2kµ′(σ))(I +2k B)ρ2(σ)(I−2k B) (mod 2k+1)

ρ2(σ) + 2kµ(σ)ρ2(σ) ≡ ρ2(σ) + 2k(µ′(σ)ρ2(σ) + B ρ2(σ)− ρ2(σ) B) (mod 2k+1)

µ(σ)ρ(σ) ≡ (µ′(σ) + B)ρ(σ) + ρ(σ) B (mod 2)

µ(σ) ≡ µ′(σ) + B +ρ(σ) B ρ(σ)−1 (mod 2)

µ(σ)− µ′(σ) ≡ σ B−B (mod 2)

We can see that the cocycle µ(σ) and the coboundary µ(σ) − µ′(σ) = σ B−B take
values in V0, but B itself is in V and not necessarily in V0.

Therefore µ is indeed well-defined in H1(GK , V ) and is not necessarily well-defined
in H1(GK , V0) .

In the following section we will see that, for H1(GK , V0), there is a zero or one-
dimensional subspace W of H1(GK , V ) such that µ defines a well-defined element in

the quotient H
1(GK , V0)
W

⊆ H1(GK , V ).
Moreover, the proof of Lemma 5.1.1 shows that if the class of µ is trivial, there

exists a conjugate ρ′2 = U ρ2 U−1 such that ρ1 ≡ ρ′2 (mod 2k+1) (see Proposition 5.3.1
below).

5.1.1 The four possible images.

Since the action of GK on V preserves trace, we have the following short exact se-
quence of GK-modules

0 // V0
� � // V //trace F2 // 0.

By standard cohomology theory we have

0 H0(GK , V0) H0(GK , V ) H0(GK ,F2)

H1(GK , V0) H1(GK , V ) H1(GK ,F2) · · ·

δ

(5.8)
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We can observe that the behaviour of the connecting homomorphism δ depends on the
four possible images of the residual representation, i.e., on ρ(GK) being isomorphic
to one group of the following list

ρ(GK) ∼=


C1

C2

C3

S3

(5.9)

Without loss of generality, when the image of ρ is isomorphic to C2 or C3, choose

T =
(

1 1
0 1

)
or R =

(
1 1
1 0

)
respectively, so in this way we will have C2 ∼= 〈T〉 or

C3 ∼= 〈R〉.
Now, observe that H0(GK , V ) and H0(GK , V0), according to (5.9), will look like

H0(GK , V ) =


V if ρ(GK) ∼= C1

〈I,T〉 if ρ(GK) ∼= C2

〈I,R〉 if ρ(GK) ∼= C3

V1 if ρ(GK) ∼= S3

(5.10)

and

H0(GK , V0) =


V0 if ρ(GK) ∼= C1

〈I,T〉 if ρ(GK) ∼= C2

V1 if ρ(GK) ∼= C3

V1 if ρ(GK) ∼= S3

(5.11)

For example, when the image of ρ is C3 ∼= 〈R〉, the only elements A in V satisfying
the condition σ A = A are those in {0, I,R,R2}. Thus H0(GK , V ) = 〈I,R〉. Observe
that R2 = R + I.

So, for each case in (5.10) and (5.11), the long exact sequence (5.8) becomes

C1 : 0 V0 V F2 H1(GK , V0) H1(GK , V )

C2 : 0 〈I,T〉 〈I,T〉 F2 H1(GK , V0) H1(GK , V )

C3 : 0 V1 〈I,R〉 F2 H1(GK , V0) H1(GK , V )

S3 : 0 V1 V1 F2 H1(GK , V0) H1(GK , V )

0 φ

0 δ φ

0 φ

0 δ φ

(5.12)

In this way the map

φ : H1(GK , V0)→ H1(GK , V ) (5.13)
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is injective if and only if ρ(GK) is C1 or C3.
To compute the value of the connecting homomorphism δ on 1 ∈ F2, in the C2

and S3 cases, take R ∈ V \V0 and define

w(σ) = σ R−R (5.14)

a cocycle representing δ(1) ∈ H1(GK , V0). By construction w is in B1(GK , V ), giving
us that [w] = 0 in H1(GK , V ).

Now, again by construction, the image of F2 in H1(GK , V0) is always generated
by the class [w] where, as was saw in (5.12), it is the trivial class in the cases C1 and
C3. Therefore, for all four possible images, we have an injective map

H̃1(GK , V0) := H1(GK , V0)
〈[w]〉

� � // H1(GK , V ) (5.15)

and our cocycle µ given by (5.3) determines a well-defined class [µ] in H̃1(GK , V0).

5.2 The cohomology class [µ] in H̃1(GK , V0).

So far we have shown that the obstruction when lifting an isogeny modulo 2k between
ρ1 and ρ2 to an isogeny modulo 2k+1 is represented by a cocycle µ whose class is a
well-defined element of H̃1(GK , V0). Now we proceed to give a full description and
properties of this cohomology class. We start by proving the following lemma.

Lemma 5.2.1. The class [w] is contained in H1(GK , V1).

Proof. Let [w] be the class represented by (5.14). We can observe that w(σ) is always
in V1. Let ρ(σ) be in ρ(GK) then

(a) if ρ(σ) ∈ {I,R,R2}, then σ R = R and hence σ R−R = 0,

(b) if ρ(σ) 6∈ {I,R,R2}, then σ R = R + I and hence σ R−R = I.

By the previous lemma this defines

H̃1(GK , V1) := H1(GK , V1)
〈[w]〉 . (5.16)

Then, combining (5.15) and (5.16), we get that

H̃1(GK , V0) ∼= H̃1(GK , V1)⊕H1(GK , V2),

which translates into the following lemma.
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Lemma 5.2.2.

H1(GK , V0)
〈[w]〉

∼=
H1(GK , V1)
〈[w]〉 ⊕H1(GK , V2)

In this way, by the previous lemma, we have that

[µ] = [µ1] + [µ2].

Also, it is not difficult to see that, the action of GK on V1 is trivial: by direct
calculations, for A in V1, we have that σ A = A.

Observe that by standard Galois cohomology theory (see [[4], pp.103 − 106]) we
have

H1(GK , V1) ∼= Hom(GK ,F2) ∼=
K∗

(K∗)2 . (5.17)

The following lemma shows that under this isomorphism, the class [w] corresponds to
a ∆ ∈ K∗.

Lemma 5.2.3.

1. Under (5.17), the class [w] ∈ H1(GK , V1) maps to the class of ∆ ∈ K∗

(K∗)2 .
Hence

H1(GK , V1)
〈[w]〉

∼=
Hom(GK ,F2)

〈∆〉
∼=

K∗

〈(K∗)2,∆〉 .

2. In particular, when the image of ρ(GK) is either C3 or C1, we have

H̃1(GK , V1) = H1(GK , V1).

Proof.

1. We need to show for σ ∈ GK that σ(
√

∆) =
√

∆ ⇔ w(σ) = 0. But w(σ) =
σ R−R, so w(σ) = 0 ⇔ σ ∈ C3, while σ(

√
∆) =

√
∆ ⇔ σ ∈ C3 by Galois

theory.

2. In these cases we have that ∆ ∈ (K∗)2 and so [w] is trivial.
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5.3 Proving [µ] = 0.

Our objective from here until the end of the chapter is to find sufficient conditions
which imply that [µ] = 0. The reason of this objective is given in the following result.

Proposition 5.3.1. If the class [µ] in H̃1(GK , V0) is zero, then ρ1 and ρ2 are conju-
gate modulo 2k+1.

Proof. Suppose [µ] = 0, then there exists B in V such that µ(σ) = σ B−B. Let
U ≡ I +2k B (mod 2k+1) and U−1 ≡ I−2k B (mod 2k+1) be matrices in GL2(Z2),
and recall from (5.2) that ρ2(σ) = (I +2kµ(σ))ρ1(σ). So,

ρ2(σ) ≡ (I +2k(σ B−B))ρ1(σ) (mod 2k+1)

≡ (I +2k(ρ(σ) B ρ(σ)−1 −B)ρ1(σ) (mod 2k+1)

≡ ρ1(σ) + 2k(ρ(σ) B−B ρ(σ)) (mod 2k+1)

then

U ρ1(σ) U−1 ≡ (I +2k B)ρ1(σ)(I−2k B) (mod 2k+1)

≡ ρ1(σ) + 2k(B ρ(σ)− ρ(σ) B) (mod 2k+1)

≡ ρ2(σ) (mod 2k+1)

therefore
ρ2(σ) ≡ U ρ1(σ) U−1 (mod 2k+1)

which proves the proposition.

We aim to prove [µ] = 0 by proving separately that [µ1] = 0 and [µ2] = 0.
We will proceed by diving the cases as in the possible four images that the residual
representation ρ can have, S3, C3, C2 and C1.

5.4 Case S3: proving [µ] = 0.

We start this section by assuming that the residual representation ρ has image S3.
This mean that there is a cubic monic irreducible polynomial f(x) ∈ K[x] which
defines the S3 extension L/K where its discriminant is not a square.
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5.4.1 [µ1] = 0.

Now suppose that [µ1] 6= 0. Then, by Lemma 5.2.3, there exists α ∈ K∗/
〈
(K∗)2,∆

〉
such that [µ1] corresponds to the extension K(

√
α)/K as follows: define

µ∗1 : GK 7→ {±1}

µ∗1(σ) =

 1 if σ(
√
α) =

√
α

−1 if σ(
√
α) = −

√
α.

In this correspondence, for σ = Frobp, we have that

µ1(σ) = 0⇔ p splits in K(
√
α)⇔ µ∗1(σ) = 1 (5.18)

µ1(σ) = I⇔ p is inert in K(
√
α)⇔ µ∗1(σ) = −1.

Since the class [µ] is unramified outside the finite set of primes S we have that α ∈
K(S, 2)/ 〈∆〉. Hence there are only finitely many possibilities for α and hence for [µ1].

Lemma 5.4.1. If α 6= 1 then K(
√
α) 6⊆ L.

Proof. The only quadratic subfield of L is K(
√

∆).

Now we relate the value of µ1(σ) to the map ϕ defined earlier by (5.1) which will
lead us to a congruence of traces modulo 2k+1.

Proposition 5.4.2. Let σ ∈ GK ,

(a) if ρ(σ) has order 3, then

µ1(σ) = 0⇔ ϕ(σ) = 0,

(b) if ρ(σ) has order 2, then

µ2(σ) = 0⇔ ϕ(σ) = 0.

Observe that if ρ(σ) has order 1 then, by (5.5), ϕ(σ) = 0.

Proof.
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Chapter 5 Case S3: proving [µ] = 0.

(a) Replacing σ by σ−1 if necessary, we can assume that ρ(σ) = R =
(

1 1
0 1

)
.

µ1(σ) = 0⇔ µ(σ) = µ2(σ)

⇔ µ(σ) ∈ V2

⇔ tr(µ(σ) R) = 0

⇔ tr(µ(σ)ρ(σ)) = 0

⇔ tr(ρ1(σ)) ≡ tr(ρ2(σ)) (mod 2k+1)

⇔ ϕ(σ) = 0.

(b) This proof follows the same logic that the proof of part (a).

Now for σ in GK such that ρ(σ) has order 3, which exists in the S3 and C3 cases,
we have that

µ1(σ) = 0⇔ tr(ρ1(σ)) ≡ tr(ρ2(σ)) (mod 2k+1) (5.19)

µ1(σ) = I⇔ tr(ρ1(σ)) 6≡ tr(ρ2(σ)) (mod 2k+1).

In order to reach a contradiction, for each of the finitely many possible non-trivial
values of α, we will show the existence of a prime p of K not in S such that ρ(Frobp)
has order 3 and µ1(Frobp) = I. For such a prime p if we are able to show that
ϕ(Frobp) = 0, for example, by checking that tr(ρ1(Frobp)) = tr(ρ2(Frobp)), then this
proves that the class [µ1] is not represented by α.

Theorem 5.4.3. Suppose that the residual image ρ(GK) is isomorphic to either C3

or S3 with residual splitting field L defined by the irreducible cubic polynomial f(x) ∈
K[x]. For each of the finitely many non-trivial elements α of K(S, 2)/ 〈∆〉, let pα be
a prime of K with pα 6∈ S satisfying

(a) f(x) is irreducible modulo pα,

(b) x2 − α is irreducible modulo pα.

If tr(ρ1(Frobpα)) = tr(ρ2(Frobpα)) for all α, then [µ1] = 0.

Proof. By contradiction, suppose that the class [µ1] is not trivial. Let α be the
representative of the class, pα be the prime satisfying (a) and (b), and take σαp =
Frobpα . Then we have that ρ(pα) has order 3 and µ1(pα) = I. By Proposition 5.4.2
these imply that φ(pα) 6= 0, which contradicts the equality of the traces of ρj(σ)
stated before.
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Chapter 5 Case S3: proving [µ] = 0.

Remark 5.4.4. Infinitely many such primes pα exist since, by Lemma 5.4.1, the
extensions of L and K(

√
α) are disjoint.

5.4.2 [µ2] = 0.

Now that we have shown how to establish that [µ1] = 0 we would like to find conditions
to prove that the class [µ2] is equal to zero. To do this, we start by observing that
[µ1] = 0 implies that

[µ] = [µ1] + [µ2] (5.20)

= [µ2] ∈ H1(GK , V2).

By standard cohomology theory(see [13] or [8]), consider the semidirect product

V2 o ρ(GK) ∼= (C2 × C2) o S3 (5.21)
∼= S4

with operation law
(A,B)(C,D) = (A+BCB−1, BD)

which give us a homomorphism

φ : GK → V2 o ρ(GK)

σ 7→ (µ2(σ), ρ(σ)).

Defining

τ : V2 o ρ(GK)→ F2

(A,B) 7→ tr(AB) (mod 2),

we get a diagram
GK F2

V2 o ρ(GK)
��

φ

//ϕ

OO

τ

that commutes. Then by (5.20) we have that

ϕ(σ) = (τ ◦ φ)(σ)

= tr(µ(σ)ρ(σ))

= tr(µ2(σ)ρ(σ)).
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Chapter 5 Case S3: proving [µ] = 0.

In [5] it is shown how the non-trivial classes in H1(GK , V2) correspond to S4

extensions of K with cubic resolvent L. So, suppose that [µ2] 6= 0. Then, there is
an extension of K, named M , with Galois group S4, given by a quartic polynomial g
whose cubic resolvent is f , satisfying

M

L

F

L1 L2 L3

K

__
4

GG

6
GG

2

OO

2

WW

2
WW

4 OO

3

??
3

77

3

(5.22)

where Li is given by adjoining one root of f(x) to K, L is the splitting field of f(x)
and F is given by adjoining one root of g(x) toK. Also there exist conjugates αi ∈ L∗i ,
with i ∈ {1, 2, 3}, such that

M = L(
√
α1,
√
α2,
√
α3),

where NLi/K(αi) = α1α2α3 ∈ (K∗)2. Without loss of generality, set i = 1 and
consider

H := ker
(

L∗1
(L∗1)2

//N K∗

(K∗)2

)
(5.23)

where N = NL1/K is the norm map. Then we have the following proposition.

Proposition 5.4.5. There is a bijection between

(1) H1(GK , V2),

(2) S4 extensions M/K containing L allowing M = L as a degenerative case when
α = 1, and

(3) H.

Proof. This proposition is implicit in [5] and we fill the details in here.
(1)⇒ (2). Let [ξ] ∈ H1(GK , V2) and consider the restriction of ξ to GL = Gal(K/L),
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Chapter 5 Case S3: proving [µ] = 0.

i.e.,

φ : H1(GK , V2)→ H1(GL, V2)

[ξ] 7→ ξ|GL .

Recall that the action of GK on V2 is via its quotient Gal(L/K) which acts on V2 by
permuting its non-trivial elements. When we restrict to GL this action, by definition,
is trivial on V2 where we get that

H1(GL, V2) = hom(GL, V2)

= hom(GL, C2 × C2)

and when [ξ] 6= 0 we have that

ξ|GL : GL → V2

is in fact surjective ([5]). Denoting the fixed field of ker(ξ|GL) by M , we get that if
[ξ] 6= 0 then M is a V2 extension of L, which is Galois over K and [M : L] = 4. The
extension M of L can be written as

M = L(
√
α1,
√
α2,
√
α3)

where α1 ∈ L1 is a cubic extension over K, with α2 and α3 being conjugates of α1

and
NL1/K(α1) = α1α2α3 ∈ (K∗)2.

Moreover

Gal(M/K) ∼= V2 oGal(L/K) (5.24)
∼= S4

is the splitting field of a quartic polynomial g.
(2) ⇒ (1). On the other way around, let L1 be a cubic extension of K obtained by
adjoining a root of f to K. Taking α1 ∈ L1 such that α1 ∈ H define

M = L(
√
α1,
√
α2,
√
α3),

which is biquadratic over L, Galois over K and corresponds to the splitting field
of a quartic g. For each σ ∈ GK we have that ασi = σ(αi) = ασ(i) means the
permutations of αi, where σ ∈ S3. Fix one

√
· of each αi arbitrary with the condition

that √α1
√
α2
√
α3 = C where NL1/K(α1) = C2 and C ∈ K∗. Now, we can define
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characters
εi : GK → {±1}

such that

(
√
αi)σ = εi(σ)√ασ(i) (5.25)

with ε1(σ)ε2(σ)ε3(σ) = 1. Then the triplet

(ε1(σ), ε2(σ), ε3(σ)) ∈ {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}

defines a map

ξ : GK → {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}

σ 7→ (ε1(σ), ε2(σ), ε3(σ))

from where we can see that

{(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)} ∼= V2. (5.26)

Moreover, S3 acts on (5.26) by permuting their coordinates, and a short calcula-
tion show that the isomorphism is an isomorphism of S3-modules. Now, observe the
following:

(1) ξ is a cocycle: first observe that our superscripts denotes a left action on √αi, so
we will have that (√αi)σ1σ2 means (√αiσ2)σ1 . In this we have that

εi(σ2)εσ2(i)(σ1) =
(√αi)σ2

√
αi

·
(√ασ2(i))σ1

√
ασ2(i)

=
(√ασ2(i))σ1

√
αi

=
(√αiσ2)σ1

√
αi

= εi(σ1σ2).

Therefore

ξ(σ1σ2) = (ε1(σ1σ2), ε2(σ1σ2), ε3(σ1σ2))

= (ε1(σ2)εσ2(1)(σ1), ε2(σ2)εσ2(2)(σ1), ε3(σ2)εσ2(3)(σ1))

= ξ(σ2)ξ(σ1)σ2 .

(2) Changing the choices of √αi changes the cocycle ξ by a coboundary: let ti
√
αi

with ti = ±1 and t1t2t3 = 1 be another choice and take t = (t1, t2, t3). Then we
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have that

(ti
√
αi)σ

ti
√
αi

=
tσi (√αi)σ

ti
√
αi

= ti
tσi
εi(σ), since t

σ
i

ti
= ti
tσi
.

In this way, changing √αi to ti
√
αi will change ξ into a new one, ξ′, such that

ξ′(σ) = ξ(σ)t(tσ)−1.

(3) Changing αi to αiβ2
i (βi ∈ L∗1) does not change ξ at all: this is due to the fact

that we are working modulo squares.

Finally as an exercise in Galois theory we can prove that (2)⇔ (3).

In our case, we have representations that are unramified outside S, so we can add
this condition to have a bijection between

(1) classes [ξ] ∈ H1(GK , V2) which are unramified outside S,

(2) the S4 extensions M/K unramified outside S containing L allowing M = L as a
degenerative case when α = 1, and

(3) the α ∈ H(S) such that L1(
√
α)/L is unramified outside S, where

H(S) := ker(L1(S, 2) //N
K(S, 2)).

In the following proposition we show how to construct a quartic polynomial whose
splitting field is S4, given by an element α ∈ H(S).

Proposition 5.4.6. Let α be an element in H(S). Then α has characteristic poly-
nomial x3 − Ax2 + Bx − C2 ∈ K[x] and the quartic (up to translation and scaling)
related to a class in H1(GK , V2) is given by

g(x) = x4 − 2Ax2 + 8Cx+A2 − 4B.

Proof. This proposition is implicit in [5].
Let α ∈ H(S). Then its minimal polynomial is given by

(x− α)(x− α′)(x− α′′) = x3 − (α+ α′ + α′′)x2 + (αα′ + αα′′ + α′α′′)x− αα′α′′

= x3 −Ax2 +Bx− C2

where A = α + α′ + α′′, B = αα′ + αα′′ + α′α′′, C = αα′α′′ ∈ K∗. (Since that is the
minimal polynomial for α we have that A,B,C2 belong to K and C belongs to K∗

since N(α) is a square.)
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A suitable quartic g looks like

g(x) = x4 + cx2 + dx+ e.

Choosing a = 1 and b = 0 from the equation (3.3) in [5]. Using the equations in
page 73 of [5] we get that:

A = 3b2 − 8ac

= −8c

then

c = −A8 .

Also

C = b3 + 8a2d− 4abc

= 8d

then

d = C

8 .

Moreover

B = 3b2 − 16ab2c+ 16a2c2 + 16a2bd− 64a3e

= 16c2 − 64e

then

e = 16c2 −B
64

= c2

4 −
B

64

= A2 − 4B
256 .

Therefore, after scaling by 4x, the quartic g becomes

g(x) = x4 − 2Ax2 + 8Cx+A2 − 4B.
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Thus, by Proposition 5.4.5 and Proposition 3.2 (1) in [5] we have

[ξ] = 0⇔ g(x) has a root in K

[ξ] 6= 0⇔ g(x) is irreducible.

Let’s go back to analyse (5.24). In S4 there are 24 elements and we can relate
these elements into the elements of V2oρ(GK). Since [µ2] 6= 0 we have that µ2(σ) 6= 0
for σ in GK . Then

µ2(σ) ∈
{(

1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)}
(5.27)

and by direct calculations

tr(µ2(σ)ρ(σ)) = 1⇔ (µ2(σ), ρ(σ)) lies in (5.28){((
1 1
0 1

)
,

(
0 1
1 0

))
,

((
1 1
0 1

)
,

(
1 0
1 1

))
,

((
1 0
1 1

)
,

(
0 1
1 0

))
,

((
1 0
1 1

)
,

(
1 1
0 1

))
,

((
0 1
1 0

)
,

(
1 1
0 1

))
,

((
0 1
1 0

)
,

(
1 0
1 1

))}
.

These calculations show that these six elements have order 4 and correspond to
the six 4-cycles of S4. We only have ϕ(σ) 6= 0 for the 4-cycles.

In order to get a contradiction, using Proposition 5.4.6, we need to find a finite
set of quartics g whose splitting fields gives all S4 extensions of K containing L. For
each quartic g, find a prime pg such that g is irreducible modulo pg. Then check that
the traces agree on the Frobenius of all these pg.

Theorem 5.4.7. Suppose that the image of the residual representation ρ is isomorphic
to S3. For each of the finitely many quartics g found by Proposition 5.4.6, let pg 6∈ S be
a prime of K such that g is irreducible modulo pg. If tr(ρ1(Frobpg)) = tr(ρ2(Frobpg)),
then [µ2] is not represented by g.

Proof. By contradiction, suppose that the class [µ2] is not trivial. Let ξ be the
representative of the class, g be the quartic found using Proposition 5.4.6, pg be the
prime such that g is irreducible modulo pg and take σξ = Frobp. Thus σξ corresponds
to a 4-cycle as in (5.28). This implies that φ(σξ) 6= 0, which contradicts the equality
of the traces of ρj(σ) stated before.

5.5 Case C3: proving [µ] = 0.

Assume that the residual representation ρ has image C3. This mean that there is a
cubic monic irreducible polynomial f(x) ∈ K[x] which defines the C3 extension L/K
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of ρ, where its discriminant is a square (Section 3.2.1).
To obtain the a of primes p not in S for which we need to test tr(ρ1(Frobp)) =

tr(ρ2(Frobp)) to determine whether [µ1] = 0, we just need to apply Theorem 5.4.3;
the reason is simple, as we saw before in Section 5.4.1, the theorem is valid for both
S3 and C3 cases.

On the other hand, to find a set to determine whether [µ2] = 0, first we have to
take a p 6∈ S such that µ2(Frobp) 6= 0. Then the tuple (µ2(Frobp), ρ(Frobp)) would
correspond to a 4-cycle in V2 o ρ(GK). Thus we determine that the class of µ2 is
trivial by checking the trace condition as in theorems 5.4.3 and 5.4.7.

Unfortunately this cannot happen in this case: since ρ(GK) ∼= C3 we have that
(5.21) becomes

V2 o ρ(GK) ∼= (C2 × C2) o C3 (5.29)
∼= A4

which does not contains any 4-cycles. Instead we “translate” our problem by using
the following theorem:

Theorem 5.5.1. Let ρ1, ρ2 : G → GLd(Zp) be two representations of a group G.
Assume that G has a normal subgroup H such that

(a) H has finite index n in G, where n is coprime to 2(p− 1),

(b) ρ1|H ∼ ρ2|H , and both are absolutely irreducible.

Then ρ1 ∼ ρ2.

Proof. This proof is due to Professor Cremona.
From (b) we can replace ρ2 by a conjugate and hence assume that ρ1|H = ρ2|H .

Now we will show that ρ1 = ρ2.
Let g ∈ G. Since gHg−1 = H, for all h ∈ H we have

ρ1(ghg−1) = ρ2(ghg−1) =⇒ ρ1(g)ρ1(h)ρ1(g)−1 = ρ2(g)ρ2(h)ρ2(g)−1.

Since ρ1(h) = ρ2(h), this implies that ρ1(g)−1ρ2(g) commutes with ρ1(h) for all h ∈ H.
Since ρ1|H is absolutely irreducible, this implies that ρ1(g)−1ρ2(g) is a scalar, say
ρ2(g) = aρ1(g) with a ∈ Z∗p. (Note: not just in Q∗p since taking determinants shows
that ad ∈ Z∗p, so a ∈ Z∗p.) Finally, since gn ∈ H, it follows that an = 1, and condition
(a) implies that a = 1 since the roots of unity in Z∗p all have order dividing p− 1 (or
dividing 2 when p = 2). Hence ρ1(g) = ρ2(g) for all g ∈ G as claimed.

Applying this with p = d = 2, n = 3 give the following corollary:
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Corollary 5.5.2. Let ρ1, ρ2 : GK → GL2(Z2) be two Galois representations such
that ρ1 = ρ2 and that the common splitting field L of ρ1, ρ2 is cyclic of order 3. If
ρ1|GL ∼ ρ2|GL then ρ1 ∼ ρ2.

First observe that

K

L

K

C3

GL

where GL = Gal(K/L). Then by Theorem 5.5.1 we can reduce from K/K to K/L.
Instead of considering the whole GK we can just consider the following diagram

ρi : GK GL2(Z2)

GL

//

?�

OO ::

and then we will have that
ρi : GL → GL2(Z2)

where ρ(Gal(K/L)) ∼= C1. Now we may apply Livné’s method: construct a non-cubic
set of primes T not containing any prime in SL = {p primes of L above a primes in S}.
We know that det(ρ1(σ)) = det(ρ2(σ)) (mod 2) for all σ ∈ GK and since ρ(σ) ≡ I
(mod 2) we have that tr(ρ(σ)) ≡ 0 (mod 2) for all σ ∈ GK . Take KS as the com-
positum of all quadratic extension of K. If we have that {Frobp |Gal(KS/K)}p∈T is
non-cubic and that for all p ∈ T we have that tr(ρ1(Frobp)) = tr(ρ2(Frobp)) and
det(ρ1(Frobp)) = det(ρ2(Frobp)) then, by Theorem 2.4.3, ρ1|GL and ρ2|GL isogenous
up to semisimplification. Therefore, by Corollary 5.5.2, ρ1 and ρ2 are isogenous.

5.6 Cases C2 and C1: proving [µ] = 0.

In this last case, we assume that the residual image of ρ is C1 or C2. To determine
whether ρ1 and ρ2 are isogenous, we apply Livné’s method: construct a non-cubic set
of primes T not containing any prime in S. We know that det(ρ1(σ)) = det(ρ2(σ))
(mod 2) for all σ ∈ GK and since ρ(σ) ≡ I (mod 2) we have that tr(ρ(σ)) ≡ 0
(mod 2) for all σ ∈ GK . Take KS as the compositum of all quadratic extension of
K. If we have that {Frobp |Gal(KS/K)}p∈T is non-cubic and that for all p ∈ T we have
that tr(ρ1(Frobp)) = tr(ρ2(Frobp)) and det(ρ1(Frobp)) = det(ρ2(Frobp)) therefore, by
Theorem 2.4.3, we have that ρ1 and ρ2 isogenous up to semisimplification.
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Conclusion.

Using the methods of Chapter 4 we can check that ρ1 = ρ2 (mod 2) up to isogeny.
Moreover we can precisely determine their residual image. Unfortunately, if their
residual image is not S3 only a few ideas could have been applied to “eliminate” the
obstruction that arises when lifting from modulo 2k to modulo 2k+1. So we ended up
relying on Livné’s non-cubic sets of primes and Theorem 2.4.3 to prove that ρ1 and
ρ2 are isogenous up to semisimplification.
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