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Abstract

In this thesis we develop and analyse gradient-flow type algorithms for minimising the

Phase Field Crystal (PFC) functional. The PFC model was introduced by Elder et al

[EKHG02] as a simple method for crystal simulation over long time-scales. The PFC model

has been used to simulate many physical phenomena including liquid-solid transitions, grain

boundaries, dislocations and stacking faults and is an area of active physics and numerical

analysis research.

We consider three continuous gradient flows for the PFC functional, the L2-, H−1-

and H2-gradient flows. The H−1-gradient flow, known as the PFC equation, is the typical

flow used for the PFC model. The L2-gradient flow is known as the Swift-Hohenberg

equation. The H2-gradient flow appears to be a novel feature of this thesis and will motivate

our development of a line search algorithm.

We analyse two methods of time discretisation for our gradient flows. Firstly, we

develop a steepest descent algorithm based on the H2-gradient flow. We further develop

a convex-concave splitting of the PFC functional, recently proposed by Elsey and Wirth

[EW13], to discretise the L2- and H−1-gradient flows.

We are able to prove energy stability of both our steepest descent algorithm and the

convex-concave splitting scheme of [EW13]. We then use the  Lojasiewicz gradient inequality

(first developed in [ Loj62]) to prove that all three schemes converge to equilibrium.

For numerical simulations we undertake spatial discretisation of our schemes using

Fourier spectral methods. We consider a number of implementation issues for our fully

discrete algorithms including a striking issue that occurs when the number of spatial grid

points is low. We then perform several numerical tests which indicate that our new steepest

descent algorithm performs well compared with the schemes of [EW13] and even compared

with a Newton type scheme (the trust region method).
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Chapter 1

Introduction

The Phase Field Crystal (PFC) model was introduced in [EKHG02] as a basic model for

crystal simulation. The idea of the PFC model is that we describe the free energy of a

particle system by the PFC functional, that is

F [u] =
1

2
‖∆u+ u‖2L2(Ω) −

δ

2
‖u‖2L2(Ω) +

1

4
‖u‖4L4(Ω) (1.1)

where δ > 0. We then obtain the equilibrium configuration of the system by minimising the

PFC functional under the condition that the mean of the variable u is conserved, that is

−
∫
udx = ū. This constraint is equivalent to mass conservation. [EKHG02] also introduces a

basic gradient flow equation to obtain this minimum. This equation, the PFC equation, is

written as

ut = ∆[(∆ + I)2u− δu+ u3].

The form of the PFC functional can be justified as a combination of a double-well potential,

which is minimised by one of two phases, and a functional that is minimised by a periodic

density (see [EG04]).

The advantage of the PFC model is that it favours cases where the minimiser is a

periodic function and it can be shown that by an appropriate choice of the constants ū and

δ we can transition between a state of constant u (a fluid) and a state where u forms a

lattice structure (see [EKHG02, Figure 1a)] or Figure 1.1). In the lattice state the areas of

high density (u) can be taken to represent atoms and therefore the PFC model can be used

to simulate the behaviour of crystalline structures. In particular, liquid-solid interfaces can

be simulated by varying the values of ū and δ. Compared to typical phase field models, the

PFC model has the advantage that we are able to simulate the interactions of individual

atoms. However, compared to true microscopic models the PFC model is coarse-grained

in time and therefore acts on a diffusive time scale. In particular, Molecular Dynamics

simulations (MD) must incorporate fast phonon interactions which means that an infeasible

computational effort is required to reach the time scales needed for the relaxation of large

scale domains ([Mel01] identifies a similar issue in the simulation of biological phenomena).

1



1.1. INVITATION TO THE FIELD CHAPTER 1. INTRODUCTION

By contrast the PFC model has the advantage that it averages out these fast interactions

and thus is more suited to addressing large time scales. We discuss this interpretation of

the PFC model as a mesoscopic model in Subsection 1.1.1.

In this thesis we analyse and develop various gradient-flow type algorithms to min-

imise the PFC functional whilst conserving the average of u. In contrast to some of the

literature, e.g. [WWL09] and [EW13], we do not necessarily seek to approximate the trajec-

tory of the PFC equation, but instead concentrate on obtaining an algorithm that converges

to an equilibrium point.

δ

u
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Figure 1.1: Phase diagram for the PFC model (see [EKHG02, Figure 1a)]). This figure is
generated by using the trust region algorithm, Algorithm E.1.1, on the unit cell (see (8.1))
for different values of δ and ū. We start from ū = δ = 0, we then succesively increment
ū by −0.01 and then increment δ by 0.01. For each new value of δ and ū we obtain the
equilibrium solution. The figure is then generated by placing the unit cells next to each
other. We note the three phases: liquid, solid and striped.

1.1 Invitation to the Field

We have already suggested that following [EG04] the PFC functional can be justified as

a combination of a double well potential and a potential that is minimised by a periodic

2



1.1. INVITATION TO THE FIELD CHAPTER 1. INTRODUCTION

density. However, a broader and possibly more instructive justification for the PFC model

is as an intermediate method between the microscopic method of molecular dynamics (MD,

see e.g. [Mel01]) and the macroscopic phase field methods.

1.1.1 PFC as a Mesoscopic Model

The basic hierarchy of models is shown in [WGT+12, Figure 2]. Consider a system of

interacting particles, a MD simulation is obtained by assuming that all particles interact

via Newtonian mechanics. The number of coupled equations to be solved increases with the

number of particles. This means that MD simulations quickly become impractical.

Density Functional Theory (DFT) is a model of an interacting particle system that

is simpler than MD but is still formulated on a microscopic scale. DFT is an equilibrium

theory so we can use it to obtain efficient paths from given initial conditions to equilibrium,

this is effectively equivalent to coarse-graining the time scale. An introduction to DFT is

given in [AM00]. The principle of DFT is that one can describe a particle system by its

free energy and that the free energy can be shown to be a functional of the one-particle

density (this is the Hohenberg-Kohn Theorem, see Section 2.3). Although in principle the

free energy is described by a functional of the one-particle density, in practice this functional

is rarely known and is almost always approximated.

The PFC model is obtained by a simple and general method of approximating the

free energy functional. We effectively use a curtailed density expansion in both real and

Fourier space. More detail on this method is given in Chapter 2. The PFC model is

particularly attractive as it has only two parameters, ū and δ; c.f. (1.1).

The PFC model creates areas of high density that can be considered as atoms. From

PFC simulations (e.g. the vacancy simulation of [EG04, Figure 7]) we can see that the PFC

model is coarse-grained in time, that is the fast phonon vibrations are ignored and we act

only on a diffusive time scale. Therefore “The PFC method operates on atomic length and

diffusive time scales” [WGT+12, page 1].

Two fundamental properties of this model should be highlighted. First, the deriva-

tion of the PFC model requires translational and rotational invariance and therefore the

minimising density is also translationally invariant along both axes. Translational invari-

ance along both axes is a necessary property required for a density that describes a crystalline

system. Secondly, by altering the two parameters of the model, the solution obtained tran-

sitions between a constant density state (a fluid), and a 2D lattice state (one can see a phase

diagram in [EKHG02, Figure 1a)] or Figure 1.1). This means that this model is well suited

to solid liquid transition; however, we will not consider this situation in the present work.

Finally, one can coarse-grain the PFC model to obtain a phase-field model. We will

briefly address this issue in Subsection 10.2.1. The PFC model is presented in the context

of general phase field models in [EP10].

3
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1.1.2 PFC Simulations

In the previous subsection we remarked that an advantage of the PFC model is that we

can view it as a mesoscopic method of particle simulation. A more pragmatic motivation

for studying the PFC model is that one can produce simulations that agree with observed

phenomena.

We will give references to some PFC simulations that demonstrate physical phe-

nomena in Subsection 1.2.2. Of particular interest is the study of [WK07] which shows

quantitative agreement between PFC simulations and MD simulations in iron. We note

that papers demonstrating such quantitative agreement seem to be rare. However, there

is extensive literature on qualitative PFC simulations. These include, but are not lim-

ited to, stacking faults (see [BPRS12]), grain boundaries (see [PDA+07]), dislocations (see

[EKHG02]), liquid-solid boundaries and colloidal crystal growth (see [GTTP11] for both).

We also note that PFC models can be undertaken in both two and three space dimensions

without major theoretical changes.

We illustrate a phenomenon that is accessible using the PFC methodology in Fig-

ure 1.2. Specifically, we use the PFC equation coming from Algorithm 7.1.1 on a domain

size L = 32. Using this simulation we see that locally a hexagonal lattice is formed and that

grain boundaries are formed at the intersection of these lattice like regions.

PFC after 708355 FFTs

Figure 1.2: Solution for the PFC algorithm (Algorithm 7.1.1) after 708355 FFTs starting
from random initial conditions given by (9.1) where L = 32. We note the formation of
grains.

We also note that several extensions to the PFC model have been developed, see

[WGT+12]. Many phenomena have been simulated using these extensions (see [WGT+12,

Table 1]). Since the PFC model we study is generally simpler than these extensions, it

is hoped that one may be able to better investigate these extensions through a thorough
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understanding of the basic PFC model.

1.2 Literature Review

1.2.1 Modelling

We give a brief overview of some of the (many) papers that describe variants of the PFC

model and their derivation. We place emphasis on the papers that develop features of the

PFC model that we will need in this work. We also outline several review papers that survey

the literature surrounding the PFC model. Finally, we mention two theses from the last five

years that consider PFC simulations and which provide a good introduction to the topic.

The PFC approach was introduced in the paper [EKHG02]. This paper introduces

the PFC functional which describes the energy of the model system. The authors then

introduce a basic method for minimising this functional, that is the PFC equation. This

paper provides a justification for using the PFC model by showing qualitative agreement

between the model and the predictions of Read and Shockley for a grain boundary energy

(see [RS50]). Finally, [EKHG02] introduces a binary PFC model which we will not consider

in this thesis.

Another important contribution in the development of the PFC model is [EPB+07],

which introduces the idea of deriving the PFC model from DFT. This idea is developed in

more detail in Chapter 2.

For the sake of clarity we briefly summarise the modified PFC (MPFC) model.

The reason for highlighting this extension to the PFC model is that it seems to be very

popular, in particular it is addressed in several of the numerical analysis papers we reference,

e.g. [GW14], [GP15] and [WW10]. The MPFC equation was introduced in [SHP06]. The

idea of this method is to minimise the PFC functional using a partial differential equation

that attempts to incorporate elastic interactions. To obtain the MPFC equation the PFC

equation is modified by adding a second-order time derivative, i.e. the MPFC equation is

(see [SHP06, Equation (3)])

∂2
t u+ β∂tu = α2∆δF [u]

where α, β > 0.

We now summarise several reviews of the PFC model that outline the key features

of the model and collate references to some of the major areas of interest.

An extensive review of work on the PFC model is found in [WGT+12]. This paper

reviews the justification for and derivation of the PFC model see [WGT+12, Chapter 1

and Sections 2.1, 2.3 and 3.1]. This paper also highlights several extensions to the basic

PFC model including the MPFC model, the VPFC model and the binary PFC model.

Although these models are not explicitly considered within this thesis, they suggest potential

extensions to the work of this thesis. This paper also surveys physical phenomena that have

been simulated using PFC-based techniques, see [WGT+12, Table 1].
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[EP10] presents the PFC model as a phase field model. This emphasises the link

between the PFC methodology and this well developed field. [EP10] also considers the

equilibrium properties of the one-mode approximation to the solution of the PFC equation

in [EP10, Section 8.4] and the elastic constants of the PFC model in [EP10, Section 8.5].

A recent review of the PFC model is found in [AZ15]. Again, in this paper there

is significant focus on the extensions to the original PFC model. However, this paper also

outlines work on quantitative applications of PFC-based techniques.

We now outline two theses that focus on the PFC model. Both theses share simi-

larities with this work although the specific focus is different in each.

The PhD thesis [Ban11] develops a numerical scheme to solve the PFC equation.

The approach used in this thesis is based on a semi-implicit operator splitting (see [Ban11,

Subsection 3.1.2]) and also addresses the binary PFC model. This thesis has an extensive

literature review in [Ban11, Chapter 2].

The MSc thesis [Lar14] considers the PFC model in both one and two space dimen-

sions.

1.2.2 Simulations and Applications

There is extensive literature on qualitative simulations undertaken using the PFC model.

References to these can be seen in the reviews detailed above, particularly [WGT+12].

However, we first give a review of work that compares the PFC model and experimental

results quantitatively. It should be noted that there appear to be very few papers specifically

on quantitative simulations using the original PFC model.

The first paper where a PFC model is compared quantitatively to experimental data

is [WK07]. This is also the most well-known quantitative PFC model. The PFC model is

compared quantitatively to MD simulations in iron (Fe). The results are shown in [WK07,

Table II], we see that there is good agreement in the interfacial free-energy. However,

[WK07, Page 8] claims that higher order anisotropies are needed to represent the whole

free energy plot and [WK07, Table II] demonstrates that the quantitative agreement with

these anisotropies is poor. This issue is also highlighted in [JAEAN09] which suggests that

a modification of the PFC model, the eighth-order fitting version of the PFC model (the

EOF-PFC), might lead to better quantitative simulations.

A more recent look at quantitative PFC simulations is [AZB14]. Again this paper

compares PFC simulations with results from iron (Fe). In this paper the authors compare

the PFC results to both MD simulations and experimental results. This paper obtains good

quantitative agreement for the surface free energy and the latent heat, see [AZB14, Table

V]. This paper notes that there is poor simulation of certain quantities such as the melting

expansions (again [AZB14, Table V]) and that since the model is developed for Fe near a

melting point it cannot be used for temperatures far from the melting point.

We now survey some of the work on qualitative PFC simulations. As noted above

qualitative simulations have been undertaken using the PFC model since its inception in
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[EKHG02].

A brief overview of several simulations from a variety of PFC models is given in

[PDA+07]. [PDA+07, Figure 2] plots grain boundary energy against grain boundary mis-

match and shows agreement between the PFC model, the Read-Shockley prediction and

experiments in several materials (tin, lead and copper). [PDA+07, Figure 9] shows a 3D

simulation with prominent grain boundaries. Grain boundaries are also simulated using

a coarse-grained version of the PFC model in [PDA+07, Figure 8]. Finally, this overview

discusses the MPFC equation and the binary PFC model. The MPFC equation is used to

simulate dislocation glide in [PDA+07, Figure 6] and the binary PFC model is used for a

variety of simulations, see e.g. [PDA+07, Figure 10].

We now outline several papers that consider PFC simulations of specific phenomena.

The first paper we mention considers a situation which is similar to the large simulation we

undertake in Section 9.1.

The paper [WV12] simulates grain growth in 2 dimensions using the PFC model

in several different situations. [WV12, Section 3] considers a grain embedded within a

larger grain where the first grain is misorientated with respect to the larger grain. The

evolution of the grain is shown in [WV12, Figure 6]. These simulations are broadly similar

to the situation we consider in Section 9.1; however, in our simulations the misorientated

grain is much smaller relative to the background grain. This paper also considers a 3-grain

simulation in [WV12, Section 4]. 3-grain simulations similar to those of [WV12, Section 4]

could be undertaken using the methods described in this thesis; however, for the sake of

brevity we do not pursue this option.

We briefly mention some papers that simulate interesting physical phenomena using

the PFC model. Although we do not specifically address these phenomena within this thesis,

these papers give a brief indication of the scope of the PFC model.

[BPRS12] uses the PFC model to simulate stacking faults. Illustrations of the quali-

tative results obtained by this paper are seen in [BPRS12, Figures 1 and 6]. This paper also

compares the results obtained for several modifications of the PFC model (see [BPRS12,

pages 5-7]).

The letter [HE08] shows that one can simulate the formation of epitaxial islands

using the PFC model with an additional cubic term. 2D and 3D simulations of these islands

are shown in [HE08, Figure 1]. This paper also uses a coarse-grained model to consider this

island formation.

Finally, we briefly mention an extension of the PFC model as an example of how

many phenomena can be simulated using simple modifications of the original PFC model.

In [GTTP11] the PFC model is extended by adding an appropriate potential energy term

(see [GTTP11, Section 2.3]) to the system. The paper shows that using this model one can

obtain qualitatively correct simulations of several interesting phenomena. [GTTP11, Figure

8] shows a simulation of the liquid ordering around fixed particles. In this case the authors

seem to obtain good qualitative agreement between experimental results and a PFC model

supplemented by an appropriate external potential and a noise term. [GTTP11, Figure 12]
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shows heterogeneous nucleation from a square lattice using the same model. This adaptation

of the PFC model is also used to simulate colloid patterning and the creation of particle

chains, the results of these simulations are compared to experimental results in [GTTP11,

Figures 14] and [GTTP11, Figure 16] respectively.

1.2.3 Numerical Analysis and Scientific Computing

In this section we survey some of the papers that undertake numerical analysis of algorithms

based on the PFC model. In general these papers focus on discretisations of the PFC

equation.

We first highlight two papers that use the  Lojasiewicz inequality to prove conver-

gence of the MPFC equation. If ϕ is an equilibrium point, the  Lojasiewicz inequality is

satisfied if there exist constants c ≥ 0, σ > 0 and θ ∈
(
0, 1

2

]
such that for all η ∈ ū+H2

#(Ω)

(see Definition C.1.2 for the definition of H2
#(Ω)) with ‖η − ϕ‖H2(Ω) ≤ σ

‖δF [η]‖H−2(Ω) ≥ c|F [η]−F [ϕ]|1−θ.

We will use the  Lojasiewicz inequality extensively in Chapters 5-7. The paper [GW14] uses

the  Lojasiewicz inequality to prove that the solution of the MPFC equation converges to

an equilibrium point of the PFC functional. We use similar methods to those used in this

paper in Chapter 5 and use discrete analogues of these methods in Chapters 6 and 7.

The paper [GP15] uses the  Lojasiewicz inequality to prove that the solution of a

discretisation of the MPFC converges to an equilibrium solution. Although we do not specif-

ically consider the MPFC equation we use the  Lojasiewicz inequality to prove convergence

of our schemes (which include a discretisation of the PFC equation) in Chapters 6 and 7.

We now survey several papers on the discretisation of the PFC equation. We con-

clude with the two papers ([WWL09] and [EW13]) that will be of most use for our thesis.

The recent paper [LSL15] introduces an operator splitting method for simulating

the PFC equation. The authors introduce first and second order splittings to treat the

non-linear term in [LSL15, Equations (10)] and [LSL15, Equation (18)] respectively. Basic

numerical tests are undertaken using this method in [LSL15, Section 3]. The approach used

by this paper is to split the scheme into linear and nonlinear subequations (see [LSL15,

Section 2]). The authors claim that the linear subequation has a closed form in Fourier

space. The operator splitting approach of this paper is compared favourably to the first

and second order energy stable methods of [HWWL09] in [LSL15, Section 3] (the first order

energy stable scheme is based on the method introduced in [WWL09]).

A semi-implicit method for both the SH and PFC equation is considered in [ZMQ13].

First order schemes for the SH and PFC equations are given in [ZMQ13, Equations (2.4)]

and [ZMQ13, Equations (2.5)] respectively. Additionally [ZMQ13, Equations (2.8)] and

[ZMQ13, Equations (2.9)] give second order finite difference schemes. Energy stability of

the 1st order schemes for both equations is given in [ZMQ13, Theorem 2.1] and is given

for the second order scheme in [ZMQ13, Theorem 2.2]. This paper also uses an adaptive
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time-step method where the time-step is updated using [ZMQ13, Equation (3.1)]. Finally

basic numerical tests are undertaken in [ZMQ13, Section 4].

Another semi-implicit approach to the PFC equation and the associated Swift-

Hohenberg (SH) equation is given in [CW08]. The scheme is outlined in [CW08, Equa-

tions (4) and (5)]. [CW08, Section 2.2] shows the unconditional stability of the scheme and

demonstrates that the Crank-Nicholson approach for the PFC equation is unstable. This

paper (see [CW08, Section 2.3]) also considers updates taken in Fourier space, which we

also use for our spatial discretisation in Chapter 8.

In [WWL09] the authors develop a time discretisation of the PFC equation using a

convex-concave splitting. In [WWL09, Theorem 1.1] it is proved that such a scheme is energy

stable. [WWL09] also introduces a space discretisation in Section 2. Finally, in [WWL09,

Theorem 3.11] the authors prove an error estimate that shows that the approximation

converges to a solution of the PFC equation when the time-step and grid spacing go to zero.

We analyse a different convex-concave splitting in Chapter 7.

A finite element method for the scheme of [WWL09] is developed in [HWWL09].

In this paper they also develop a second order scheme for the PFC equation, [HWWL09,

Equations (8)-(10)]. A multigrid numerical method for this second order scheme is developed

in [HWWL09, Section 5.2]. This scheme is used to simulate heterogeneous nucleation in

[HWWL09, Figures 7(a)-(c)].

The most significant reference for our thesis is [EW13]. This paper introduces a new

convex-concave splitting to discretise the PFC equation and the SH equation. The existence

of a similar scheme is proposed at the end of [HWWL09, Section 2]. The energy splitting

used in this paper is

F [u] = FC,Cstab
[u]−FE,Cstab

[u],

where, for Cstab > 0,

FC,Cstab
[u] =

1

2
‖∆u+ u‖2L2(Ω) −

δ

2
‖u‖2L2(Ω) +

Cstab

2
‖u‖2L2(Ω),

FE,Cstab
[u] =

Cstab

2
‖u‖2L2(Ω) −

1

4
‖u‖4L4(Ω).

We note that this splitting is only locally convex-concave. In particular FE,Cstab
is only

locally convex. The authors of [EW13] prove that a scheme for the SH and PFC equation

based on this splitting is stable ([EW13, Theorem 2.1]) and that the solution of the scheme

converges to the solution of the continuous flow (the SH or PFC equation depending on

which equation is being discretised) as the time step goes to zero ([EW13, Theorem 2.3]).

We carry out extensive analysis of this scheme in Chapter 7. The authors of [EW13] also use

pseudo-spectral methods for their spatial discretisation (see [EW13, Sections 3.2 and 4.1]).

This is the method we use for spatial discretisation in Chapter 8. The implementation is

described at the end of [EW13, Section 4.1].
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1.3 Outline and Summary of Results

The aim of this thesis is to develop and analyse various gradient-flow type algorithms to

minimise the PFC functional whilst conserving the mass. In particular we focus on obtaining

an efficient time discrete algorithm that converges to an equilibrium point of the PFC

functional.

1.3.1 Outline

We begin with a basic introduction to the PFC model. In Chapter 2 we outline the method

for deriving the PFC model from DFT. The link between DFT and the PFC model was first

shown in [EPB+07] and can be used to justify the wide range of potential applications for

the PFC model.

In Chapter 3 we introduce the basic machinery needed to formulate our PFC prob-

lem. We introduce the domain Ω and the space H2
ū(Ω) from which we will choose our solu-

tion. We also formulate the PFC functional (3.1) and its first and second variations (Lemma

3.1.4). Finally, we show that critical points of the PFC functional satisfy the Euler-Lagrange

equations (Lemma 3.3.1) and that the solution to the Euler-Lagrange equations is smooth

(Lemma 3.3.3).

In Chapter 4 we introduce a method of reaching critical points of the PFC functional.

Specifically, we use the technique of gradient flow (4.1). We introduce three gradient flows

namely the H−1-, L2- and H2-gradient flows (Definitions 4.2.1, 4.2.2 and 4.2.4), that is

〈ut, v〉L2(Ω) = −δF [u, v] ∀v ∈ H2
#(Ω)

〈ut, v〉H−1(Ω) = −δF [u, v] ∀v ∈ H2
#(Ω)

and

〈[(∆ + I)2 + γI]ut, v〉L2(Ω) = −δF [u, v] ∀v ∈ H2
#(Ω)

where γ > 0. We then prove the existence of a solution to all three of these gradient flows

(Lemmas 4.3.2 and 4.4.1) as well as uniqueness (Lemma 4.3.4) and regularity results (Lemma

4.3.3). The H2-gradient flow is compared with and motivated by Newton’s method.

After introducing the gradient flow methodology in Chapter 4 we then prove that

the solutions of these gradient flows converge to equilibria. In a similar way to [GW14]

we use a  Lojasiewicz inequality to prove the convergence results and an estimate on their

associated convergence rates. We first prove that the  Lojasiewicz inequality holds for the

PFC functional in the correct space, i.e. H2
#(Ω) (Theorem 5.0.1). We then use this result

and a theorem of [HJ15] to prove convergence of the solution (Theorem 5.0.2).

The next two chapters are dedicated to the spatial discretisation of the gradient flow.

This is the main focus of this thesis and also contains the majority of the novel results. We

first consider a discretisation of our H2-gradient flow in Chapter 6. In this chapter we
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introduce a variable metric approach ((6.3)), that is〈
[(∆ + I) + γnI]

(
un+1 − un

τn

)
, v

〉
= −δF [un, v] ∀v ∈ H2

#(Ω)

where

γn = max
(
γmin, 3u2

n − δ
)
.

In our simulations of Chapter 9 we show that the variable metric scheme reaches equilibrium

faster than the fixed metric scheme. Based on the variable metric approach we formulate an

algorithm to reach equilibrium (Algorithm 6.1.1) and show that such an algorithm is energy

stable (Proposition 6.2.3). Finally, we use the  Lojasiewicz inequality to prove a general

theorem that guarantees convergence of our scheme and the associated convergence rates

(Lemma 6.3.2).

Chapter 7 extends the results of [EW13]. We first justify and formulate the convex-

concave splitting schemes and then show that they are qualitatively similar to our H2-

gradient flow. Using similar techniques to Chapter 6 we can now prove energy stability of

the schemes of [EW13] (Lemma 7.2.1) and convergence to equilibrium (Theorem 7.1.3).

In order to demonstrate the validity of our method we numerically test our algo-

rithms. To do this we first introduce space discretisation via spectral methods in Chapter 8.

We review several methods of choosing a time-step and pick the most efficient ones (Section

8.2). We then perform some basic numerical tests. We first test the effect of the number

of spatial grid points on our methods and discuss an issue that arises when the number of

spatial grid points is low (Subsection 8.2.5). Finally, we show the effect of the domain size

on the convergence time of our algorithms (Subsection 8.2.6).

In Chapter 9 we undertake some larger simulations. We wish to show the potential

applications of our method especially on problems that might be interesting to practitioners.

In particular, we review simulations based on a lattice with a rotated crystal (Section 9.1)

and also based on a random environment (Section 9.2). The rotated crystal environment

has already been a focus of some PFC research in [Lar14].

Chapter 10 reviews the results of our thesis and outlines areas of future research.

1.3.2 Summary of Results

Having given a brief overview, we now highlight the novel features of this thesis. First

we note that the vast majority of the PFC literature has been developed by the physics

community. Therefore, although not unique in its numerical analysis focus, this thesis may

provide a useful introduction to researchers more interested in a mathematical approach to

the model.

The main novel aspect of this thesis is the introduction of a new H2-gradient flow

(Definition 4.2.4). We also introduce a variable metric version of the discrete form of this

gradient flow in Subsection 6.1.2.

In Chapter 4 the existence theory for the H2-gradient flow is based on well known
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techniques. The existence theory for the other two gradient flows is also new although it is

also based on well known techniques and similar existence results have been derived before

for the PFC equation in different ways, e.g. in [WWL09]. We also prove that the solutions

to the SH and PFC equations are continuously differentiable in H2(Ω) given appropriate

initial conditions (i.e. Lemma 4.3.3).

The  Lojasiewicz inequality technique of Chapter 5 has been used for the MPFC

equation, which is very similar to the PFC equation, in [GW14]. However the application

of this method to the H2- and L2-gradient flows seems to be novel.

Since the H2-gradient flow is a new feature of this thesis, Chapter 6, which fo-

cuses on developing an algorithm based on this method, is largely new. We note that the

 Lojasiewicz inequality has previously been applied to a discrete algorithm for minimising

the PFC functional in [GP15]. A particularly interesting aspect of this chapter is the general

convergence lemma, Lemma 6.3.2.

Although Chapter 7 focuses on a method developed in [EW13], we derive a new

energy stability theorem for this scheme. We also use the  Lojasiewicz inequality to prove

convergence to equilibrium of this scheme, this convergence result appears to be new. Finally

we develop a qualitative link between the scheme of [EW13] and our H2-gradient flow.

The main aim of Chapter 8 is to develop and test a spatial discretisation of our

schemes. However, we also highlight an issue when the number of spatial grid points is low

which seems to be hitherto unknown and potentially could be very important to address in

developing efficient simulations.
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Chapter 2

Derivation Of the PFC Model

To provide a justification for the study of the phase-field crystal (PFC) model, we derive

it via a series of approximations from density functional theory (DFT), which is a well-

established method in statistical mechanics. The derivation that we give in this chapter will

be purely formal.

We start from the statistical mechanics set-up of the canonical ensemble. That

is, we have a fixed number of particles with the N -particle density given by ρ̂N (XN ) =

exp[−βHN (XN , U1)](N !ZN (U1,Ω))−1. We choose to focus on a static system with a pair-

wise interaction potential and an external potential that acts equally on all particles.

It is then possible to derive the equilibrium one-particle density ρN (x) in three

different ways. We also introduce the free energy, FN [U1,Ω] = −β−1 ln [ZN (U1,Ω)], as an

important quantity that describes the system. The density is the quantity we will focus on

deriving as it will allow us to find the free energy.

We introduce the Hohenberg-Kohn functional and show the free energy can be

obtained from the minimisation of the Hohenberg-Kohn functional over all possible one-

particle densities, FN [U1,Ω] = min
ρ̃

[
FHK[ρ̃] +

∫
Ω

U1(x)ρ̃(x)dx

]
. It is also shown that the

minimising density corresponds to the equilibrium density. The Hohenberg-Kohn func-

tional is split into an ideal gas part and the excess energy contribution FHK[ρN (x)] =

FHK,id[ρN (x)] + FHK,exc[ρN (x)].

We can then formulate the PFC model by using a sequence of formal approximation

steps. The excess energy and ideal gas contribution are both approximated individually and

then re-combined to give the PFC functional as an approximation of the Hohenberg-Kohn

functional.

2.1 Set-Up

We consider the formulation of DFT in the canonical ensemble. This assumes a constant

number of particles which for the PFC model is physically reasonable. Indeed, most current

13
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works on the PFC model conserve particle density through their choice of evolution equation

(principally using the H−1-gradient flow), see for example [WGT+12] and [EW13].

In general we consider a system of N ∈ N particles where d is the dimension of

the system and positions are confined to a finite domain Ω ⊂ Rd. The Hamiltonian of the

system is given by

HN (XN , U1) =

N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

where XN = (x1, . . . , xN ) ∈ ΩN , U1 : Rd → R is the external potential and U2 : Rd → R
is the interaction potential between particles. For simplicity, we consider U2 as a pair-wise

potential which depends only on the distance between two particles, hence it is rotationally

and translationally invariant. We consider a static system; this means the Hamiltonian does

not depend on momentum. If we also take particle momentum into account we have no

additional difficulties. In fact we would only change the free energy computed below by an

additive constant multiplied by N .

2.1.1 The Canonical Ensemble

To describe the statistical mechanics approach to DFT we introduce the canonical Gibbs

measure. We define the Canonical Gibbs Ensemble following [Ada06, p.20], where we also

introduce a N ! factor to account for indistinguishability of particles (this is to resolve the

Gibbs paradox, see [Ada06, Section 4.1]).

Definition 2.1.1 (Canonical Gibbs Ensemble). Equip ΩN with the Borel σ-algebra BΩ.

Then the probability measure γβΩ ∈ P(ΩN ,BΩ) with density

ρ̂N (XN ) = ρ̂N (XN ;U1,Ω)

=
exp [−βHN (XN , U1)]

N !ZN (U1,Ω)
(2.1)

is called the canonical ensemble.

The normalisation constant ZN (U1,Ω) is called the partition function, and can there-

fore be written as

ZN (U1,Ω) =
1

N !

∫
ΩN

exp [−βHN (XN , U1)] dXN (2.2)

where the constant

β =
1

kBT
,

is the inverse temperature, scaled by Boltzmann’s constant kB .1

1(2.1) can be thought of as a probability measure weighting the various possible micro-states of the
system.

14
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2.1.2 The Helmholtz Free Energy

A quantity of great interest to us is the Helmholtz free energy hereafter referred to as the

free energy. The free energy is an important quantity as it can be used to find fundamental

quantities of the system including pressure and entropy see [Ada06, page 24]. Following

[Ada06, page 23] we know the free energy is given by

FN [U1,Ω] = −β−1 ln [ZN (U1,Ω)] .

Therefore, using the partition function (2.2), we can write the free energy as

FN [U1,Ω] = −β−1 ln

 1

N !

∫
ΩN

exp

−β
 N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

dXN


= β−1 lnN !

− β−1 ln

∫
ΩN

exp

−β
 N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

 dXN

 .
(2.3)

2.2 The One-particle Density

A fundamental object in DFT is the one-particle density. We present three equivalent ways

of defining it. In this section we only consider the equilibrium density. In a later section,

Section 2.3, we will introduce notation that allows this to be generalised.

2.2.1 Using δ-functions

The canonical definition of the one-particle density (see e.g. [WGT+12, Equation (2)]) is

as the average of N δ-functions centered at the particle positions, taken with respect to the

canonical Gibbs measure (2.1):

ρN (x) = ρN (x;U1,Ω)

=

∫
ΩN

N∑
i=1

δ(x− xi)ρ̂N (XN )dXN

=

∫
ΩN

N∑
i=1

δ(x− xi)
exp [−βHN (XN , U1)]

N !ZN (U1,Ω)
dXN

=
1

N !ZN (U1,Ω)

N∑
m=1

∫
ΩN

δ(x− x1) exp [−βHN (XN , U1)] dx1...dxN .
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Relabelling some of the terms leads to

ρN (x)

=
N

N !ZN (U1,Ω)

∫
ΩN

δ(x− x1) exp

−β
 N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

dx1...dxN

=
N

N !ZN (U1,Ω)

∫
ΩN−1

exp

−β
 N∑
i=2

U1(xi) +
∑

2≤i<j≤N

U2(|xi − xj |)


× exp

−β
U1(x) +

∑
2≤j≤N

U2(|x− xj |)

dx2...dxN .

(2.4)

We note that, since U1 is an external potential and U2 is rotationally and transla-

tionally invariant, the density is rotationally and translationally invariant as well.

2.2.2 Integrating the N-particle Density

We can define the one-particle density as a special case of the n-particle density n ≤ N (this

is the approach used by [WGT+12, Equation (26)]). In essence the n-particle density can

be obtained by integrating the spatial density (2.1) over the other N − n particle positions

and then multiplying by the number of ways of choosing n particles from the total set of N ,

this factor being necessary since the particles are indistinguishable. Thus the one-particle

density can be written as

ρN (x1) = N

∫
ΩN−1

ρ̂N (XN )dx2 . . . dxN . (2.5)

One can see that the integral of the one-particle density over Ω gives the particle number,

i.e.

N =

∫
Ω

ρN (x)dx. (2.6)
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The new definition of one-particle density (2.5) can be seen be equal to (2.4). Inserting the

canonical Gibbs measure (2.1) into (2.5) yields

ρN (x1) = N

∫
ΩN−1

exp[−βHN (X1, U1)]

N !ZN (U1,Ω)
dx2 . . . dxN

=
N

N !ZN (U1,Ω)

×
∫

ΩN−1

exp

−β
 N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

dx2 . . . dxN

=
N

N !ZN (U1,Ω)

∫
ΩN−1

exp

−β
 N∑
i=2

U1(xi) +
∑

2≤i<j≤N

U2(|xi − xj |)


× exp

−β
U1(x1) +

∑
2≤j≤N

U2(|x1 − xj |)

dx2...dxN .

Relabelling x1 as x gives (2.4).

2.2.3 Functional Derivative

Finally, we can also write the one-particle density at equilibrium as the functional derivative

of the free energy with respect to the external energy

ρN (x) =
δFN [U1,Ω]

δU1(x)
. (2.7)

In general this is defined in a distributional sense.

Using [Fre06, Equation (C.6)], some re-arrangement gives a variation on the defini-

tion of the Gâteaux derivative (see [Fre06, Equation (C.7)] or [BN08, Definition 3.1])∫
Ω

δFN [U1,Ω]

δU1(x)
ϕ(x)dx =

d

dε
FN [U1 + εϕ,Ω]

∣∣∣∣
ε=0

where ϕ(x) is an arbitrary test function.
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Thus we have, using the formula for the free energy (2.3),∫
Ω

δFN [U1,Ω]

δU1(x)
ϕ(x)dx

=
d

dε
β−1

(
lnN !

− ln

∫
ΩN

exp

−β
 N∑
i=1

(U1(xi) + εϕ(xi)) +
∑

1≤i<j≤N

U2(|xi − xj |)

dXN

)∣∣∣∣∣
ε=0

=

−β−1 d

dε

∫
ΩN

exp

−β
 N∑
i=1

(U1(xi) + εϕ(xi)) +
∑

1≤i<j≤N

U2(|xi − xj |)

 dXN

∣∣∣∣∣
ε=0∫

ΩN
exp

−β
 N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

dXN

=

∫
ΩN

N∑
i=1

ϕ(xi) exp

−β
 N∑
i=1

(U1(xi) + εϕ(xi)) +
∑

1≤i<j≤N

U2(|xi − xj |)

dXN

∣∣∣∣∣
ε=0

N !ZN (U1,Ω)

=

∫
ΩN

N∑
i=1

ϕ(xi) exp

−β
 N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

dXN

N !ZN (U1,Ω)

where we have used the definition of the partition function ZN (U1,Ω) (2.2) in the third

equality.

We now split into N integrals, one for each of the ϕ(xi). By re-labelling the xi we

see that these integrals are equivalent. Hence we have, labelling x as x1,∫
Ω

δFN [U1,Ω]

δU1(x1)
ϕ(x1)dx1

=

∫
Ω

Nϕ(x1)

∫
ΩN−1

exp

−β
 N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj |)

dx2 . . . dxNdx1

N !ZN (U1,Ω)
,

comparing the left and right-hand sides gives that the functional derivative is equivalent to

the definition of the one-particle density given in (2.4).

2.3 The Hohenberg-Kohn Functional

The idea of density functional theory is to construct a functional which is minimised by the

equilibrium one-particle density given in Section 2.2 and at this density is equal to the free

energy.
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A function g has permutation invariance if for all π in the symmetry group Sn

g(x1, ..., xn) = g(xπ(1), ..., xπ(n)). (2.8)

Given an arbitrary N -body distribution gN with permutation invariance (since the particles

are taken to be indistinguishable) such that∫
ΩN

gN (XN )dXN = 1 (2.9)

we define the associated one-particle density (following [DS11, Equation (56)]) by

ρ̃(x) =

∫
ΩN

gN (XN )

N∑
i=1

δ(x− xi)dXN . (2.10)

Remark 2.3.1. Comparing with the method of [DS11, Section VI] we have rescaled the

N -body distribution by N !.

A process analogous to the one first carried out in [Eva79, Section 2] for the grand

canonical ensemble and detailed for the canonical ensemble in [DS11, Section IV], shows

that there is a functional that depends on the density and the potential which is minimised

by the equilibrium density. This functional can be split into a functional FHK (known as

the Hohenberg-Kohn functional), which is purely a functional of density, and the product

of the density and the internal potential, that is,

FN [U1,Ω] = min
ρ̃(x)

[
FHK[ρ̃] +

∫
Ω

U1(x)ρ̃(x)dx

]
(2.11)

where the minimum is over all the one-particle densities given by (2.10). The Hohenberg-

Kohn functional is given by

FHK[ρ̃] = min
gN→ρ̃

∫
ΩN

gN (XN )

 ∑
1≤i<j≤N

U2(|xi − xj |) + β−1 ln[N !gN (XN )]

dXN


(2.12)

where gN → ρ̃ indicates that ρ̃ is obtained from gN via (2.10). The existence of such a

functional is a standard result, which is detailed in Appendix A.

Remark 2.3.2. If we define a functional

G[ρ̃] = FHK[ρ̃] +

∫
Ω

U1(x)ρ̃(x)dx,

then as above we have three ways of finding the density ρ̃. The first is as the average of N

δ-functions with respect to gN , i.e. (2.10). The second is by multiplying the integral of gN

over all but one variable by N by analogue with (2.5). The final method is the functional

derivative of G with respect to U1 by analogue with (2.7).
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From (A.2) and (2.11) we know the minimisation problem (2.11) is solved when ρ̃

is the equilibrium density ρN . Therefore we can write the free energy as

FN [U1,Ω] = FHK[ρN (x)] +

∫
Ω

U1(x)ρN (x)dx.

This formula gives a simple way of obtaining the free energy from the Hohenberg-

Kohn functional if the external potential and equilibrium density are known. Henceforth

we will mostly ignore the external potential U1 (essentially we are considering an isolated

system), and concentrate on calculating the Hohenberg-Kohn functional.

There is often no way to obtain an exact formula for the Hohenberg-Kohn functional,

hence we will introduce several approximations.

We split the Hohenberg-Kohn functional into two components,

FHK[ρN (x)] = FHK,id[ρN (x)] + FHK,exc[ρN (x)],

where FHK,id is the Hohenberg-Kohn functional associated with the ideal gas.

2.4 Ideal Gas Contribution

We now consider the free energy for the ideal gas FN,id[U1,Ω]. The ideal gas functional

is both an initial example of a DFT functional and a contribution to the Hohenberg-Kohn

PFC functional. The ideal gas in the canonical ensemble is considered in [WG02, Section 4].

In the ideal gas case there is no internal interaction between particles, i.e., U2(x1, x2) = 0.

Thus, using the formula for the free energy (2.3), we have

FN,id[U1,Ω] = −β−1 ln [ZN (U1,Λ)]

= −β−1 ln


∫

ΩN
exp

[
−β

N∑
i=1

U1(xi)

]
dXN

N !


= −β−1

(
ln

[∫
ΩN

N∏
i=1

exp [−βU1(xi)] dxi

]
− ln[N !]

)

= β−1

(
ln[N !]−N ln

[∫
Ω

exp [−βU1(x)] dx

])
. (2.13)

The product of exponentials in the third equality follows by separating out each term of the

sum within the exponential in the previous line.

Using the characterisation (2.7) of the one-particle density as the functional deriva-
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tive of the free energy we have∫
Ω

ρN (x)ϕ(x)dx

=
d

dε

(
β−1

(
ln[N !]−N ln

[∫
Ω

exp [−β (U1(x) + εϕ(x))] dx

])) ∣∣∣∣∣
ε=0

= −β−1N

d

dε

(∫
Ω

exp [−β (U1(x) + εϕ(x))] dx

) ∣∣∣∣∣
ε=0∫

Ω
exp [−βU1(x)] dx

.

Defining z(Ω) by

z(Ω) :=

∫
Ω

exp [−βU1(x)] dx

we have ∫
Ω

ρN (x)ϕ(x)dx =

∫
Ω
Nϕ(x) exp [−βU1(x)] dx

z(Ω)
.

Therefore, the density is given by

ρN (x) =
N exp [−βU1(x)]

z(Ω)
. (2.14)

We now want to re-arrange the free energy (2.13) to isolate the U1 dependent part.

From (2.14) we have

ln[z(Ω)] = − ln

[
ρN (x)

N

]
− βU1(x).

Since
∫

Ω
ρN (x)dx = N (2.6), we can substitute the formula for z(Ω) above into the free

energy (2.13) to give

FN,id[U1,Ω] = β−1

(
ln[N !] +

∫
Ω

ρN (x)

(
ln

[
ρN (x)

N

]
+ βU1(x)

)
dx

)
= β−1 (ln[N !]−N lnN) + β−1

∫
Ω

ρN (x) ln [ρN (x)] dx

+

∫
Ω

ρN (x)U1(x)dx.

(2.15)

2.4.1 Stirling’s Approximation

A generalisation of Stirling’s approximation from [Rob55] is

√
2πNNN exp[−N ] exp

[
1

12N + 1

]
≤ N ! ≤

√
2πNNN exp[−N ] exp

[
1

12N

]
.
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Taking logarithms we obtain

1

2
lnN+

1

2
ln[2π]+N lnN−N+

1

12N + 1
≤ ln[N !] ≤ 1

2
lnN+

1

2
ln[2π]+N lnN−N+

1

12N
.

Using these bounds we can simplify the approximation of ln[N !] (using N > 0) to give

ln[N !] = N(lnN − 1) +O(lnN).

Applying this approximation to the ideal gas free energy (2.15) we obtain

FN,id[U1,Ω] = β−1 (−N +O(lnN)) + β−1

∫
Ω

ρN (x) ln [ρN (x)] dx+

∫
Ω

ρN (x)U1(x)dx

= β−1

∫
Ω

ρN (x) (ln [ρN (x)]− 1) dx+

∫
Ω

ρN (x)U1(x)dx+O(lnN),

where we have used the relation between the density and the particle number (2.6) in the

last line. This is the same form as found in [WG02, Equation (71)].

When the number of particles N is large the right-hand term grows faster than

linearly and therefore it dominates and we discard the O(lnN) term. Hence we approximate

the ideal gas contribution to the Hohenberg-Kohn functional by

FHK,id[ρN (x)] = F̂HK,id[ρN (x)] +O(lnN)

where

F̂HK,id[ρN (x)] = β−1

∫
Ω

ρN (x) (ln (ρN (x))− 1) dx (2.16)

which agrees with the ideal gas Hohenberg-Kohn functional in the grand canonical ensemble

derived in [AM00, Section II.C] (up to a constant in the logarithmic term that arises from

consideration of particles with momentum and quantum considerations). This is what we

expect since in the thermodynamic limit all ensembles are postulated to agree, see [Ada06,

Section 5.3].

2.4.2 The Ideal Gas Contribution

We want to directly address the ln(ρN (x)) term in the approximation of the ideal gas

functional (2.16) by using a Taylor expansion on this term. We therefore assume that there

is a constant reference density ρref such that the density for N particles can be written as

ρN (x) = ρref(1 + ψ(x)) (2.17)

where |ψ(x)| � 1.

Substituting the approximation for the density (2.17) into the approximation of the
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ideal gas functional (2.16) gives

F̂HK,id[ρ] = β−1

∫
Ω

ρref(1 + ψ(x)) (ln (ρref(1 + ψ(x)))− 1) dx

= β−1

∫
Ω

ρref (ln (ρref)− 1) dx+ β−1

∫
Ω

ρrefψ(x) (ln (ρref)− 1) dx

+ β−1ρref

∫
Ω

ln(1 + ψ(x)) + ψ(x) ln(1 + ψ(x))dx.

We take the Taylor expansion of the logarithm and curtail at fourth order,

F̂HK,id[ρ] = β−1

∫
Ω

ρref (ln (ρref)− 1) dx+ β−1ρref

∫
Ω

ψ(x) (ln (ρref)− 1) dx

+β−1ρref

∫
Ω

ψ(x)− ψ(x)2

2
+
ψ(x)3

3
− ψ(x)4

4
+ ψ(x)2 − ψ(x)3

2
+
ψ(x)4

3
+O

(
ψ(x)5

)
dx

= β−1|Ω|ρref (ln (ρref)− 1)

+ β−1ρref

∫
Ω

ln(ρref)ψ(x) +
ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12
+O

(
ψ(x)5

)
dx

= F̂HK,id[ρref] + β−1ρref

∫
Ω

a0ψ(x) +
ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12
+O

(
ψ(x)5

)
dx,

where we use the notation

a0 = ln(ρref).

We have not stated the higher order terms explicitly as we will discard them in order

to obtain the PFC functional. In later sections we are only interested in

∆FHK,id[ρ] = FHK,id[ρ]−FHK,id[ρref]

the relative energy change from the reference density.

The fourth order expansion is the lowest order which enables the formation of stable

crystalline phases, see [EG04, Section I.B]. We can discard terms linear in ψ(x) as this

contribution is constant, i.e. we know∫
Ω

ψ(x)dx = C, (2.18)

where C is a constant. This follows from the definition of ψ (2.17) and the fact that the

integral of density is constant.

Hence our approximation of the ideal gas contribution is

∆FHK,id[ψ(x)] ≈ β−1ρref

∫
Ω

ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12
dx. (2.19)
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2.5 The Excess Energy Contribution

We now approximate FHK,exc[ρN (x)]. First, recall the reference density ρref from (2.17),

and take a functional Taylor expansion (see [Fre06, Equation (C.6)]) about a uniform fluid

density ρref using (2.17)

FHK,exc[ρN (x)] = F (0)
HK,exc(ρref) + β−1

∞∑
n=1

1

n!
F (n)

exc [ρN (x)]

where the higher order terms in the expansion are given by

F (n)
exc [ρN (x)] = −ρnref

∫
Ω

. . .

∫
Ω

c(n)(x1, . . . , xn)

n∏
i=1

ψ(xi)dx1 . . . dxn

with

c(n)(x1, . . . , xn) = −β δnFHK,exc[ρN (x)]

δρN (x1) . . . δρN (xn)

∣∣∣∣∣
ρref

.

This expansion of the energy was also used in [Eva79, Subsection 6.2]. The linearity of

FHK,exc in temperature T means that c(n) is independent of temperature. Since c(1) is

constant (see Appendix B.1) in space, by (2.18), the contribution F (1)
exc is constant and can

be absorbed in the reference term.

We note that c(2) is radial

c(2)(x1, x2) = c(2)(|x1 − x2|). (2.20)

This follows from the fact that the density is translationally and rotationally invariant; see

Appendix B.2.

Therefore, the simplest approximation of the excess part of the Hohenberg-Kohn

functional which has any contribution from the density is (see [YR79])

FHK,exc[ρN (x)] ≈ F (0)
HK,exc(ρref)−

1

2
β−1

∫
Ω

∫
Ω

c(2)(|x1 − x2|)ψ(x1)ψ(x2)dx1dx2. (2.21)

We again only care about the difference between the energy functional and the

energy functional at the reference density, hence we only consider

∆FHK,exc[ρN (x)] = FHK,exc[ρN (x)]−F (0)
HK,exc(ρref).

2.5.1 Gradient Expansion

The approximation for FHK,exc[ψ] (2.21) is currently non-local we now wish to transform

it to make it local. As remarked above, (2.20), c(2) depends only on the distance between
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particles. We consider the non-constant part of the excess energy approximation (2.21) i.e.

∆FHK,exc[ρN (x)] = −1

2
β−1ρ2

ref

∫
Ω

∫
Ω

ψ(x1)c(2)(|x1 − x2|)ψ(x2)dx1dx2.

Using the definition of a convolution integral, we have (see [Gra08, Proposition 2.2.11 (12)])∫
Ω

c(2)(|x1 − x2|)ψ(x2)dx2 =
(
c(2) ∗ ψ

)
(x1)

= F−1[ĉ(k)ψ̂(k)],

where F is the Fourier transform and ĉ(k) = F[c](k) and ψ̂(k) = F[ψ](k). We now expand

ĉ(k) as a Taylor series in |k| which is possible since ĉ is radial (see Appendix B.3),

∆FHK,exc[ψ] = −1

2
β−1ρ2

ref

∫
Ω

ψ(x1)F−1

[( ∞∑
m=0

c2m|k|2m
)
ψ̂(k)

]
dx1,

where terms of the form |k|2n+1, n ∈ N vanish since c(2) is spherically symmetric. That

is, F[c(2)(r)] =
∑∞
m=0 cm|k|m = F[c(2)(−r)] =

∑∞
m=0(−1)mcm|k|m and hence cm = 0 if

m = 2n+ 1. Since

F−1[kni ψ̂(k)] = in∂nxiψ, (2.22)

(see [Gra08, Proposition 2.2.11 (9)]) after applying the inverse Fourier transform to each

term in the product, we obtain

∆FHK,exc[ψ] =− 1

2
β−1ρ2

ref

∫
Ω

ψ(x1)

( ∞∑
m=0

(−1)mc2m∇2m

)
ψ(x1)dx1.

Thus, the excess energy difference can be formally approximated by

∆FHK,exc[ψ] ≈ −1

2
β−1ρ2

ref

∫
Ω

ψ(x1)

( ∞∑
i=0

(−1)mc2m∇2m

)
ψ(x1)dx1 (2.23)

The exact form of the constants c2m in (2.23) is non-obvious and depends on the dimension

and on U2. The terms of the Fourier series for ĉ can be found using successive derivatives

evaluated at zero, i.e.

cn =
1

n!

∂nĉ

∂kn
(0) =

∫
(ix)nc(2)(x)

n!
dx (2.24)

where the second equation follows from the relation between derivatives and the variable

in Fourier space (2.22). Hence as c(2)(r) depends on a variable r which is always positive

the signs of the coefficients ĉn will alternate. This is exactly the form required for the PFC

functional. The reasons for this are considered in (2.26) where we give the form of the

constants in the PFC functional.
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We also curtail the gradient expansion at fourth order as this is the lowest one that

makes stable periodic density fields possible, see the text above [EG04, Equation (6)] for

some justification. Curtailing at fourth order in the gradient expansion we can re-write the

approximate excess energy (2.23) as

∆FHK,exc[ψ(x)] ≈ −ρref

2
β−1

∫
Ω

A1ψ
2(x) +A2ψ(x)∇2ψ(x) +A3ψ(x)∇4ψ(x)dx

where (in 3 dimensions)

A1 = 4πρref

∫ ∞
0

r2c2(r)dr,

A2 =
2

3
πρref

∫ ∞
0

r4c2(r)dr, A3 =
ρrefπ

30

∫ ∞
0

r6c2(r)dr.

The form of these constants is taken from [WGT+12] and can be derived using (2.24).

2.6 Non-Dimensionalisation and the PFC Model

We now derive the PFC model by combining the ideal gas and excess energy contributions,

see Sections 2.4 and 2.5, these are approximations of the two parts of the Hohenberg-Kohn

functional of DFT. The link between DFT and PFC was suggested by [EPB+07], this paper

also include binary alloys whilst we will only focus on pure materials. A cogent account of

the derivation can also be found in [WGT+12]. We first follow [WGT+12, Section 2.3].

Combining the approximations of ∆FHK,id, (2.19), and ∆FHK,exc, (2.23), gives (this

is slightly different from [WGT+12] where the authors consider the true functional rather

then the difference from the reference functional)

∆FHK[ψ(x)] ≈

ρrefβ
−1

∫
Ω

(
A′1ψ(x)2 +A′2ψ(x)∇2ψ(x) +A′3ψ(x)∇4ψ(x)− ψ(x)3

6
+
ψ(x)4

12

)
dx (2.25)

where the constants are given by

A′1 =
1

2
(1−A1) A′2 = −1

2
A2 A′3 = −1

2
A3. (2.26)

[WGT+12] suggests A′2 should be positive in order to favour non-uniform phases, and A′3 > 0

for stability reasons. In particular the method used below (Theorem 3.2.1) for finding a

minimum will not work if A′3 < 0. The existence of a maximum is excluded by the L4-term

and the negative coefficient on the highest derivative excludes the possibility of a minimum.

Some heuristic justification of the form of the functional is given in [EG04, Section I.B] and

the signs of the coefficients of the functional are motivated from a physical point of view in

[EPB+07, Section III].

We wish to transform the functional (2.25) i.e. to reformulate the functional differ-
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ence to be of the form

F̃ =

∫
Ω

(
ψ̄

2

(
− ß +

(
k2

0 +∇2
)2)

ψ̄ +
ψ̄4

4

)
dx̄. (2.27)

The reason for this transformation is to exhibit the multi-well structure of the functional

and to allow easier comparison with existing literature on the PFC model, e.g. [WWL09],

[EG04], [Ban11] and [EW13].

This is the form initially given for PFC theory in [EKHG02]. This form can be

obtained by taking p = 0 in the normalised functional below (2.29) as in [WGT+12, Sub-

section 3.1.1.1]. However given the definition of p this seems to be unphysical so we use a

transformation to remove this term.

In contrast to discarding the cubic term of (2.25) we show that we can obtain (2.27)

from (2.25) by a change of variables. For simplicity we start with the desired functional

(2.27). We then substitute the formula ψ̄ = α(1 − 2ψ(x)) 2 into this functional. We can

discard constant terms and terms linear in ψ using the same arguments as in Section 2.4. Our

expansion of (2.27) then simplifies to the initial form of the functional (2.25). Substituting

ψ̄ in the desired form of the functional (2.27) we have

F̃ =

∫
Ω

(
α(1− 2ψ(x))

2

(
−ß +

(
k2

0 +∇2
)2)

α(1− 2ψ(x)) +
(α(1− 2ψ(x)))4

4

)
dx

expanding the quadratic in ψ and the square in ∇2 we have

F̃ =

∫
Ω

α2(1− 2ψ(x))2

2
(−ß + k4

0)− 2k2
0α

2(1− 2ψ(x))∇2ψ(x)− α2(1− 2ψ(x))∇4ψ(x)

+
α4

4
− 2α4ψ(x) + 6α4ψ(x)2 − 8α4ψ(x)3 + 4α4ψ(x)4dx.

Expanding out the first term we can write F̃ in terms of powers of ψ and its derivatives, i.e.

F̃ =

∫
Ω

α2(−ß + k4
0)

2
+
α4

4
− 2α2(−ß + k4

0)ψ(x)− 2α4ψ(x)− 2α2k2
0∇2ψ(x)

− α2∇4ψ(x) +
(
2α2(−ß + k4

0) + 6α4
)
ψ(x)2 − 8α4ψ(x)3 + 4α4ψ(x)4

+ 4α2k2
0ψ(x)∇2ψ(x) + 2α2ψ(x)∇4ψ(x)dx.

We discard the first two terms as they will remain constant regardless of the density used.

We use that linear multiplies of ψ are constant (2.18) to discard the next two terms. Finally

since ψ and its derivatives are periodic we can discard the next two terms as well. The

2Physically this is 1 minus the density fluctuation scaled by the coefficient of the higher order derivative
term.
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functional F̃ then simplifies to

F̃ =

∫
Ω

(
2α2(−ß + k4

0) + 6α4
)
ψ(x)2 − 8α4ψ(x)3 + 4α4ψ(x)4

+ 4α2k2
0ψ(x)∇2ψ(x) + 2α2ψ(x)∇4ψ(x)dx.

This is clearly of the desired form, that is we have completed the derivation of the PFC

functional (2.27).

2.7 Discussion

We now follow [WGT+12, Section 3.1.1], this allows us to simplify the functional form and

to give a physical intuition for the form of the constants involved. Consider the Taylor

expansion of ĉ(k)

ĉ(k) = c̃
(2)
0 + c̃

(2)
2 |k|2 + . . .

which has its first peak at k = 2πR−1
p

3 (Rp, the inter-particle distance). We re-scale ĉ to

include the reference density ρref and the inter-atomic spacing Rp, i.e.

c(k) = ρrefĉ(k) ≈
M∑
j=0

b2j (|k|Rp)2j
.

We can now rewrite the functional (2.25) using this reformulation and using the new variables

given in [WGT+12] (the authors state a relation to physical constants for B1 and Bs which

we will state and provide a justification for later)

B1 = 1 + |b0|

Bs =
|b2|2

4|b4|

R = Rp

(
2|b4|
|b2|

) 1
2

.

The functional difference we obtain is then

∆FHK ≈ ρrefβ
−1

∫
Ω

ψ

2

(
B1 +Bs

(
2R2∇2 +R4∇4

))
ψ − ψ3

6
+
ψ4

12
dx.

By comparison to [WGT+12, Equation (52)] we have set v = 1 where v according to

this source accounts for the zeroth order contribution for the particle correlations. By

dimensional analysis (in three dimensions) we obtain, a relation for B1, i.e.

B1 =
β

κρref
,

3This gives peaks separated by atomic distance Rp
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at least up to some dimensionless constant of proportionality, where κ is the compressibility.

We now use a second change of variables, i.e.

xi = Rx̃i ψ = (3Bs)
1
2 ψ̃ ∆FHK = (3ρrefβ

−1RdB2
s )∆F̃HK

substituting the above expressions for x̃, ψ̃ and ∆F̃HK into the expression for ∆FHK we

have

∆F̃HK ≈
1

3B2
s

∫
Ω̃

3Bs

(
ψ̃

2

(
B1 +Bs

(
1 +∇2

)2 −Bs) ψ̃)− 3
√

3B
3
2
s
ψ̃3

6
+ 9B2

s

ψ̃4

12
dx̃

≈
∫

Ω̃

ψ̃

2

(
B1 −Bs
Bs

+
(
1 +∇2

)2)
ψ̃ −

√
3√
Bs

1

2

ψ̃3

3
+
ψ̃4

4
dx̃ (2.28)

where Ω̃ is the appropriately rescaled domain. From this we can see that B1 and Bs have

the same dimensionality and thus (in three dimensions)

Bs =
Kβ

ρref

at least up to a dimensionless constant of proportionality, where K is the bulk modulus.

Therefore we can re-write the above energy difference (2.28) as

∆F̃HK ≈
∫

Ω̃

ψ̃

2

(
−ε+

(
1 +∇2

)2)
ψ̃ + p

ψ̃3

3
+
ψ̃4

4
dx̃ (2.29)

where the two constants are given by

ε =
Bs −B1

Bs
= 1− K

κ
, p = −

√
3√
Bs

1

2
.

ε is thus clearly dimensionless, [WGT+12] claims p is dimensionless.

2.8 Conclusion

In this chapter we have presented a formal derivation of the PFC model. We start with the

canonical ensemble of statistical mechanics and from this restate the formulation of DFT.

The DFT formulation means that we can formulate the free energy as a functional of the

one-particle density. We then justify the formula for the free energy for the ideal gas and

implement the splitting of the free energy into the ideal gas free energy and the excess free

energy. Finally we approximate the density as a fluctuation around a reference density and

expand the ideal gas energy using a Taylor series and the excess free energy using a gradient

expansion, curtailing at fourth order gives the required PFC functional.
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Chapter 3

Analysis of the PFC Model

In this chapter we consider the problem of minimising the PFC functional subject to a

prescribed average of the variable. We first prove several properties of the PFC functional

that will allow us to formulate the minimisation problem. We then prove the existence of

a minimum of the PFC functional, formulate the associated PDE and prove smoothness of

its solution.

Let Ω ⊂ Rd, (d = 2, 3) be a domain (with periodic boundary conditions), given by

Ω =

(0, Lx)× (0, Ly), when d = 2,

(0, Lx)× (0, Ly)× (0, Lz), when d = 3,

where Lx, Ly and Lz are integer multiples of the length of the unit domain in the x, y and z

directions respectively. For example, [EG04, Section II.C] suggests that, in two dimensions,

Lx = (2π/
√

3)n, Ly = 2πm for n,m ∈ N.

We impose periodic boundary conditions, since in Chapter 8 we will use Fourier spectral

methods for discretisation in space. Fourier methods are useful as we can obtain super-

algebraic convergence of the spatial discretisation to the solution (and possibly even expo-

nential convergence, see Subsection 8.2.2). The focus of our thesis is the time discretisation

and therefore we only consider Fourier spectral methods for the spatial discretisation; how-

ever, this discretisation could be undertaken using other methods, see [WWL09] for an

example of alternative spatial discretisation of the PFC equation.

We will consider trial functions for the PFC functional drawn from subspaces of the

space of periodic H2-functions. The use of a subspace of H2(Ω) rather than a subspace of

another Hk-space will be justified in the next section.

For convenience we use the equivalence of ‖∆η‖L2(Ω) and ‖∇2η‖L2(Ω) to give an

alternative definition of the H2-norm.
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Definition 3.0.1. The H2-norm for η in H2(Ω) is defined by

‖η‖2H2(Ω) = ‖η‖2L2(Ω) + ‖∇η‖2L2(Ω) + ‖∆η‖2L2(Ω).

Recall the PFC functional (2.27)

F [η] =
1

2
‖∆η + η‖2L2(Ω) −

δ

2
‖η‖2L2(Ω) +

1

4
‖η‖4L4(Ω), (3.1)

where δ is a positive constant. In line with [EKHG02] we wish to minimise F over all trial

functions with prescribed mean,

ū =
1

|Ω|

∫
Ω

ηdx.

As mentioned in the previous chapter this constraint is equivalent to the requirement that

mass is conserved within the system.

3.1 Preliminaries

For the sake of convenience we collect a series of inequalities that we will use for the proofs

and lemmas throughout this chapter. We also state the function space that we will use to

formulate our problem.

Definition 3.1.1. The function space of periodic H2-functions with fixed average ū is de-

fined by

H2
ū(Ω) :=

{
η ∈ H2(Ω)

∣∣∣∣∣ η = ū+ η0, η0 ∈ H2
#(Ω)

}
where H2

#(Ω) is defined in Definition C.1.2.

We now define a norm that will prove useful throughout this thesis.

Definition 3.1.2 (The A1-norm).

‖η‖2A1
:= ‖η‖2L2(Ω) + ‖∆η + η‖2L2(Ω).

We show this norm is equivalent to the H2-norm on H2
per(Ω).

Lemma 3.1.1. The A1-norm is an equivalent norm to the H2-norm, i.e.

1

5
‖η‖2H2(Ω) ≤ ‖η‖

2
A1
≤ 2‖η‖2H2(Ω)

for all η in H2
per(Ω).

Proof. Using the triangle inequality and Young’s inequality we can bound

‖∆η‖2L2(Ω) ≤ 2‖∆η + η‖2L2(Ω) + 2‖η‖2L2(Ω).
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Using integration by parts we can bound

‖∇η‖2L2 =

∫
Ω

−η∆η + η2 − η2dx,

≤
∣∣∣∣∫

Ω

η∆η + η2dx

∣∣∣∣+ ‖η‖2L2(Ω),

≤ ‖∆η + η‖L2(Ω)‖η‖L2(Ω) + ‖η‖2L2(Ω),

≤
(

1 +
1

2ε′

)
‖η‖2L2(Ω) +

ε′

2
‖∆η + η‖2L2(Ω), (3.2)

where we have used the triangle inequality in the second line and then used the Cauchy-

Schwarz inequality and Young’s inequality with ε′ on the left-hand term of the upper bound.

Using the definition of the H2-norm, Definition 3.0.1, we have a bound for the

H2-norm,

‖η‖2H2(Ω) = ‖η‖2L2(Ω) + ‖∇η‖2L2(Ω) + ‖∆η‖2L2(Ω),

≤ ‖η‖2L2(Ω) +

(
1 +

1

2ε′

)
‖η‖2L2(Ω) +

ε′

2
‖∆η + η‖2L2(Ω) + 2‖∆η + η‖2L2(Ω)

+ 2‖η‖2L2(Ω),

≤
(

4 +
1

2ε′

)
‖η‖2L2(Ω) +

(
2 +

ε′

2

)
‖∆η + η‖2L2(Ω).

Equating the two coefficients gives ε′ = 2 +
√

5 and thus

‖η‖2H2(Ω) ≤

(
6 +
√

5

2

)(
‖η‖2L2(Ω) + ‖∆η + η‖2L2(Ω)

)
,

≤ 5
(
‖η‖2L2(Ω) + ‖∆η + η‖2L2(Ω)

)
.

We now show that the A1-norm is bounded above by the H2-norm. Recall the

definition of the A1-norm, Definition 3.1.2, i.e.

‖η‖2A1
=
(
‖η‖2L2(Ω) + ‖∆η + η‖2L2(Ω)

)
.

We can expand the second term

‖∆η + η‖2L2(Ω) = ‖∆η‖2L2(Ω) + 2

∫
Ω

∆ηηdx+ ‖η‖2L2(Ω),

≤ ‖∆η‖2L2(Ω) − 2‖∇η‖2L2(Ω) + ‖η‖2L2(Ω),

≤ ‖∆η‖2L2(Ω) + ‖η‖2L2(Ω), (3.3)

the second line follows from the periodicity of η.
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Substituting this into the A1-bound we have

‖η‖2A1
≤ 2‖η‖2L2(Ω) + ‖∆η‖2L2(Ω) ≤ 2‖η‖2H2(Ω).

We note that the spaces introduced, Definitions C.1.1, C.1.2 and 3.1.1, are all sub-

spaces of H2. We now show that F [η] is well-defined and real if and only if η ∈ H2(Ω).

Lemma 3.1.2. For all η in H2(Ω) the PFC functional (3.1) is bounded above and below by

1

10
‖η‖2H2(Ω) − (δ + 1)2|Ω| ≤ F [η] ≤ 1

2
‖η‖2H2(Ω) +

1

4
‖η‖4H2(Ω).

In particular, F [η] is finite if and only if η ∈ H2(Ω).

Proof. We first prove the upper bound. This follows with some obvious adaptations from

[WW10, Lemma 3.1], however, we include the proof to emphasise the H2-dependence which

is not explicit in [WW10, Lemma 3.1].

By discarding the negative term in the PFC functional (3.1) we obtain

F [η] ≤ 1

2
‖∆η + η‖2L2(Ω) +

1

4
‖η‖4L4(Ω). (3.4)

Recall from (3.3) that the first term of this bound can easily be bounded by the H2-norm

‖∆η + η‖2L2(Ω) ≤ ‖η‖
2
H2(Ω).

Using Ladyzhenskaya’s inequality, Lemma C.2.1, we can estimate

‖η‖L4(Ω) ≤ ‖η‖
1− d4
L2(Ω)‖η‖

d
4

H1(Ω) ≤ ‖η‖H2(Ω). (3.5)

Combining this inequality with (3.3) and (3.4), we obtain

F [η] ≤ 1

2
‖η‖2H2(Ω) +

1

4
‖η‖4H2(Ω).

This completes the proof of the upper bound.

We now show that the PFC functional is bounded below for all η in H2(Ω), which

parallels the result of [WW10, Lemma 3.1]. A finite dimensional analogue is also consid-

ered in [WWL09, Lemma 3.7]. However, the bounds given here are more explicit and the

exposition of the proof is extended to improve clarity.

The PFC functional (3.1) can be re-written by splitting it into a positive term and

a double-well potential-like term,

F [η] =
1

2
‖(∆ + I)η‖2L2(Ω) +

1

2

∫
Ω

η2

(
η2

2
− δ
)

dx.
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The first term on the right-hand side is always positive while the second term is positive

outside the region were η is small, i.e. η2 ≤ 2δ. Let ε > 0, then we define the set Ωεδ :=

{η2 ≤ 2δ + ε}. We can now split the double-well term into

F [η] =
1

2
‖(∆ + I)η‖2L2(Ω) +

1

2

∫
(Ωεδ)

c
η2

(
η2

2
− δ
)

dx− 1

2

∫
Ωεδ

η2

(
δ − η2

2

)
dx,

where (Ωεδ)
c

= Ω\Ωεδ. Using η2 − 2δ ≥ ε on (Ωεδ)
c
, we have

F [η] ≥ 1

2
‖(∆ + I)η‖2L2(Ω) +

ε

4
‖η‖2

L2((Ωεδ)
c
) −

1

2

∫
Ωεδ

η2

(
δ − η2

2

)
dx,

=
1

2
‖(∆ + I)η‖2L2(Ω) +

ε

4
‖η‖2

L2((Ωεδ)
c
) −

1

2

∫
Ωεδ

η2

(
δ − η2

2

)
dx

+
ε

4
‖η‖2L2(Ωεδ)

− ε

4
‖η‖2L2(Ωεδ)

,

=
1

2
‖(∆ + I)η‖2L2(Ω) +

ε

4
‖η‖2L2(Ω) −

1

2

∫
Ωεδ

η2

(
δ − η2

2

)
dx− ε

4
‖η‖2L2(Ωεδ)

.

Using 0 ≤ η2 ≤ 2δ + ε in Ωεδ to bound the third and fourth terms of the right-hand

side, we have that the energy can be bounded below by

F [η] ≥ 1

2
‖(∆ + I)η‖2L2(Ω) +

ε

4
‖η‖2L2(Ω) −

(
(2δ + ε)

δ

2
+
ε

4
(2δ + ε)

)
|Ωεδ|,

≥ 1

2
‖(∆ + I)η‖2L2(Ω) +

ε

4
‖η‖2L2(Ω) −

(2δ + ε)2

4
|Ωεδ| (3.6)

for any ε > 0 .

The lower bound (3.6), together with Lemma 3.1.1, gives

F [η] ≥
min

(
1, ε2
)

10
‖η‖2H2(Ω) −

(2δ + ε)2

4
|Ωεδ|.

Since Ωεδ ⊂ Ω for all ε > 0 we have the uniform bound. For simplicity we set ε = 2.

From the previous lemma we obtain L∞-bounds on sublevels of F .

Lemma 3.1.3. There exist constants C1, C2 > 0 such that

‖η‖L∞(Ω) ≤
√
C1F [η] + C2|Ω|, ∀η ∈ H2

per(Ω).

Proof. We recall the upper bound for the H2-norm in terms of the energy, Lemma 3.1.2 and

re-arrange to give

‖η‖H2(Ω) ≤
√

10F [η] + 10(δ + 1)2|Ω|. (3.7)

Since a rectangular or parallelepiped domain satisfies the cone condition, we can use the
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result of [Ada75, Corollary 5.16] to bound the L∞-norm by the H2-norm, i.e.

‖η‖L∞(Ω) ≤ C(Ω)‖η‖H2(Ω). (3.8)

Let Q be the unit domain, i.e. the smallest domain on which the solution is periodic. Clearly

by (3.8) there exists a CQ > 0 such that

‖η‖L∞(Q) ≤ CQ‖η‖H2(Q) ≤ CQ‖η‖H2(Ω).

The domain Ω is constructed from Nx, Ny and Nz unit domains in the x,y and z directions

respectively (Nz = 1 in 3 dimensions). Let Qi,j,k denote the unit domain with origin

(iLx, jLy, kLz) then clearly

Ω =
⋃

0≤i≤Nx−1,0≤j≤Ny−1,0≤k≤Nz−1

Qi,j,k.

Then we have

‖η‖L∞(Ω) = sup
0≤i≤Nx−1,0≤j≤Ny−1,0≤k≤Nz−1

‖η‖L∞(Qi,j,k) = ‖η‖L∞(Q) ≤ CQ‖η‖H2(Ω).

Hence the constant C is independent of domain. (3.7) then implies a bound for the

L∞-norm,

‖η‖L∞(Ω) ≤ C
√

10F [η] + 10(δ + 1)2|Ω|.

In general we will consider minimisation of the PFC functional (3.1) by methods

associated with gradient flows. As a prerequisite to this we define the first and second

variations.

Lemma 3.1.4. The PFC functional is infinitely Fréchet differentiable and its first and

second variations are given, respectively, by

δF [η, v] =

∫
Ω

(∆η + η)(∆v + v)dx− δ
∫

Ω

ηvdx+

∫
Ω

η3vdx, ∀η, v ∈ H2(Ω), (3.9)

δ2F [η, v, v] = ‖ (∆ + I) v‖2L2(Ω) − δ‖v‖
2
L2(Ω) + 3‖ηv‖2L2(Ω), ∀η, v ∈ H2(Ω). (3.10)

We will also use the notation δF [η] ∈ H−2(Ω) and δ2F [η] ∈ L(H2(Ω), H−2(Ω)) to denote

the operators associated with these multi-linear forms.

Proof. To prove this lemma we compute the Fréchet derivatives of all orders by comparing

the difference in the PFC functional at two points along a given vector with the Taylor

expansion of the functional. We then show that all these derivatives are bounded in the

space H2(Ω).
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We consider the difference between the PFC functional evaluated at η and at η + v

where η, v in H2(Ω), i.e.

F [η + v]−F [η] =

∫
Ω

(∆ + I)η(∆ + I)vdx+
1

2
‖∆v + v‖2L2(Ω) − δ

∫
Ω

ηvdx

− δ

2
‖v‖2L2(Ω) +

∫
Ω

η3vdx+
3

2
‖ηv‖2L2(Ω) +

∫
Ω

ηv3dx+
1

4
‖v‖4L4(Ω).

(3.11)

Therefore the functional can be written as

F [η + v] = F [η] +

4∑
i=1

1

i!
δiF [η, v, .., v]

where δiF [η, v, .., v] are multi-linear forms corresponding to the ith-order Fréchet derivatives.

We can now see that the first and second variations are given by (3.9) and (3.10).

The third and fourth variations are given by:

δ3F [η, v1, v2, v3] = 6

∫
Ω

ηv1v2v3dx and δ4F [η, v1, v2, v3, v4] = 6

∫
Ω

v1v2v3v4dx.

It remains to show that these four non-zero variations are bounded in H2(Ω) and

hence are continuous. All four of these variations contain terms of the form
∫

Ω
f1f2f3f4dx.

Using the generalised Holder inequality, Lemma C.2.2, with pα = 4 for α = 1, 2, 3, 4 we have∫
Ω

f1f2f3f4dx ≤ ‖f1‖L4(Ω)‖f2‖L4(Ω)‖f3‖L4(Ω)‖f4‖L4(Ω).

Using the bound for L4-norms in terms of H2-norms (3.5) we have∫
Ω

f1f2f3f4dx ≤ ‖f1‖H2(Ω)‖f2‖H2(Ω)‖f3‖H2(Ω)‖f4‖H2(Ω). (3.12)

We note from (3.3) that

‖(∆ + I)v‖2L2(Ω) ≤ ‖v‖
2
H2(Ω).

Using this and (3.12), we can show that

|δF [η, v]| ≤
[(

1 + δ + ‖η‖2H2(Ω)

)
‖η‖H2(Ω)

]
‖v‖H2(Ω),

|δ2F [η, v, v]| ≤
(

1 + δ + 3‖η‖2H2(Ω)

)
‖v‖2H2(Ω),

|δ3F [η, v, v, v]| ≤ 6‖η‖H2(Ω)‖v‖3H2(Ω),

|δ4F [η, v, v, v, v]| ≤ 6‖v‖4H2(Ω).

Hence the Fréchet derivatives are well defined for all orders and thus the PFC

functional is infinitely Fréchet differentiable.
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Remark 3.1.1. Using the Banach space analogue of analyticity (Definition 5.2.3) we can

even see that F is in fact analytic; see Lemma 5.2.2.

3.2 Minimisation Problem

As stated in the introduction to this chapter we wish to find a minimum of the PFC func-

tional (3.1) over the function space H2
ū(Ω):

Find u such that F [u] = min
η∈H2

ū(Ω)
F [η], (P).

We can prove the existence of a solution to (P), using the direct method of calculus

of variations (see for example [Eva10, Theorem 2, Section 8.2]).

Theorem 3.2.1. There exists a solution to (P).

Proof. From the upper bound of the H2-norm in Lemma 3.1.2,

1

10
‖η‖2H2(Ω) − (δ + 1)2|Ω| ≤ F [η], (3.13)

the energy is bounded below,

−(δ + 1)2|Ω| ≤ F [η], ∀η ∈ H2
ū(Ω).

Therefore, the infimum d = infη∈H2
ū(Ω) F [η] exists.

We choose a minimising sequence uj ∈ H2
ū(Ω) such that limj→∞ F [uj ] = d. Then

(3.13) implies that the H2-norm is bounded i.e. ‖uj‖2H2(Ω) ≤ C, where C is independent of j.

Since H2(Ω) is a Hilbert space, uj has a weakly convergent subsequence ujk ⇀ u∗ ∈ H2(Ω).

The Rellich-Kondrachov Compactness Theorem ([Eva10, Theorem 1, Section 5.7]) implies

that ujk → u∗ in L2(Ω) and in L4(Ω). By [KZ05, Theorem 7.2.3] we see that ‖∆η+ η‖2L2(Ω)

is weakly lower semi-continuous. Using this weak lower semi-continuity and the continuity

of the L2-, L4-terms in the energy functional we obtain that F [u∗] ≤ lim infj F [uj ] and thus

have shown that u∗ satisfies (P).

3.3 The Euler-Lagrange Equation

We now derive the Euler-Lagrange equation satisfied by the minimiser of the PFC func-

tional (3.1) (the Euler-Lagrange equation for a more general functional is given in [Eva10,

Subsection 8.1.2]). Initially we state the weak form of this equation.

Definition 3.3.1 (Euler-Lagrange Equation (Weak Form)). A function u in H2
ū(Ω) solves

the Euler-Lagrange equation if

δF [u, v] = 0, ∀v ∈ H2
#(Ω).
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Existence of a solution to this equation is given by Theorem 3.2.1 and the following

lemma.

Lemma 3.3.1. The minima of the PFC functional (3.1) satisfy the Euler-Lagrange equa-

tion, Definition 3.3.1.

Proof. Let u solve (P) (page 37) and choose v in H2
#(Ω), then let i(ε) = F [u + εv] where

clearly u + εv ∈ H2
ū(Ω) and thus i has a critical point at ε = 0. Since by Lemma 3.1.4 i is

Fréchet differentiable so i′(ε) is well-defined and i′(0) = 0 which translates to

δF [u, v] =
d

dε
F [u+ εv]

∣∣∣∣
ε=0

= i′(0) = 0,

and hence the first variation vanishes.

We now wish to prove that solutions of the Euler-Lagrange equation (Definition

3.3.1) are smooth. We first prove an auxiliary regularity result for a linear PDE.

Lemma 3.3.2. If η ∈ H2
#(Ω), f ∈ Hm

per(Ω),m ≥ 0 and

〈∆η,∆v〉 = 〈f, v〉, ∀v ∈ H2
#(Ω) (3.14)

then η ∈ Hm+4
# (Ω).

Proof. Recall Parseval’s Theorem (on periodic domains)

〈f, g〉 = 〈f̂ , ĝ〉

where f̂ and ĝ are the Fourier transforms of f and g respectively (this follows from [BO12,

Equation (1.1)] with s = 0 applied to f + g). Using this on (3.14) we have

〈F [∆η] ,F [∆v]〉 = 〈f̂ , v̂〉 ∀v̂ such that F−1[v̂] ∈ H2
#(Ω).

Using that derivatives become multiples by k in Fourier space (2.22) we have

〈−|k|2η̂,−|k|2v̂〉 = 〈f̂ , v̂〉 ∀v̂ such that F−1[v̂] ∈ H2
#(Ω).

Therefore we have

〈|k|4η̂, v̂〉 = 〈f̂ , v̂〉 ∀v̂ such that F−1[v̂] ∈ H2
#(Ω).

The inner product in Fourier space can be written as a sum (this follows from [Gra08,

Equation (3.1.5)] with rescaling to generalise from Td to Ω). Hence we have∑
k∈Zd

|k|4η̂(k)v̂(k) =
∑
k∈Zd

f̂(k)v̂(k).
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Consider

v̂(0) =

∫
Ω

v(x)ei0xdx =

∫
Ω

v(x)dx = 0.

Hence the first Fourier mode corresponds to the average and is thus already specified.

Therefore we no longer consider the k = 0 case and we have

|k|4η̂(k) = f̂(k) ∀k ∈ Zd/{0}. (3.15)

It is easy to see that

g ∈ Hs
per(Ω) iff |k|sĝ ∈ l2(Zd). (3.16)

Therefore since f ∈ Hs
per(Ω) we have from (3.15)

|k|s+4η(k) ∈ l2(Zd\{0}).

Hence from (3.16) we have that

η ∈ Hs+4
# (Ω).

We can now prove that u is smooth.

Lemma 3.3.3. Any solution to the Euler-Lagrange equation, Definition 3.3.1, belongs to

C∞per(Ω).

Proof. We show this result by using induction to show that u ∈ Hk
ū(Ω) for all k. From (P)

(page 37) we already know that u ∈ H2
ū(Ω), our inductive step is to show that, if we know

that u ∈ Hk
ū(Ω), then we can deduce u ∈ Hk+2

ū (Ω) for all k ≥ 2.

Consider the weak Euler-Lagrange equation, Definition 3.3.1, which we re-arrange

to give

〈∆η,∆v〉 = 〈f, v〉, ∀v ∈ H2
#(Ω)

where η = u− ū ∈ Hk+2
# (Ω) for all k ≥ 0 and

f = −2∆u+ (δ − 1)u− u3. (3.17)

Since Hk+2
per (Ω) is a Banach algebra for k ≥ 0 (see [Pel11, Appendix B.1]) it follows that u3 ∈

Hk+2
per (Ω). Therefore, from (3.17), f ∈ Hk

per(Ω). Lemma 3.3.2 implies that η ∈ Hk+4
per (Ω),

and hence u ∈ Hk+4
ū (Ω). Starting from k = 0 induction gives that u ∈ Hk+4

per (Ω) for all

k ≥ 0 taking the limit k →∞ gives that u is smooth.

To formulate the strong form of the Euler-Lagrange equation, we first note that for
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any w in H2
per(Ω), w can be written as

w = w̄ + w̃, where

∫
Ω

w̃dx = 0.

Using this formulation in the weak form of the Euler-Lagrange equation, Definition 3.3.1,

we have

0 = δF [u, w̃],

= δF [u,w]− δF [u, w̄],

= δF [u,w]−
∫

Ω

(∆ + I)u(∆ + I)w̄ − δuw̄ + u3w̄dy.

Using that u ∈ C∞(Ω), which follows from Lemma 3.3.3, we have

0 = δF [u,w]−
∫

Ω

(∆ + I)2u

∫
Ω
wdx

|Ω|
− δu

∫
Ω
wdx

|Ω|
+ u3

∫
Ω
wdx

|Ω|
dy,

= δF [u,w]− 1

|Ω|

∫
Ω

∫
Ω

(∆y + I)2u(y)w(x)− δu(y)w(x) + u(y)3w(x)dxdy,

= δF [u,w]−
∫

Ω

w(x)
1

|Ω|

∫
Ω

(∆ + I)2u(y)− δu(y) + u(y)3dydx,

=

∫
Ω

(∆ + I)u (∆ + I)wdx− δ
∫

Ω

uwdx+

∫
Ω

u3wdx− λ
∫

Ω

wdx,

where since 1/|Ω| ∈ H2(Ω), λ is given by

λ = δF =

〈
δF [η],

1

|Ω|

〉
= (1− δ)ū+−

∫
Ω

u3dx.

We can now give the strong form of this equation.

Definition 3.3.2 (Euler-Lagrange Equation (Strong Form)). A function u ∈ H4(Ω), solves

the strong form of the Euler-Lagrange equation if(∆ + I)
2
u− δu+ u3 − λ = 0,∫

udx = ū.

It is clear that, if this equation is satisfied, then its weak form, Definition 3.3.1 is

satisfied as well. Since from Lemma 3.3.3 the solutions of the weak form are sufficiently

regular (u ∈ H4(Ω)) the reverse relation is true as well.

Remark 3.3.1. The Euler-Lagrange equation can also be obtained by finding the critical

points of the functional

I[η, λ̃] = F [η]− λ̃
(∫

Ω

ηdx− |Ω|ū
)
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over the space η ∈ H2
per(Ω) and λ̃ ∈ R.

3.4 Conclusion

In this chapter we have formulated the minimisation problem for the PFC functional which

we will focus on solving throughout the rest of this thesis. To achieve this we defined the

space from which the minimiser is sought and proved properties of the PFC functional

which will prove important in this and subsequent chapters. We also showed that the

minimisation problem has a solution, i.e., there is a minimum of the PFC functional under

the constraint that mass is conserved. The PDE problem associated with this minimisation

is also formulated and we prove that the solution to this problem is smooth.
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Chapter 4

Gradient Flow Analysis

In this chapter we introduce the method of gradient flows as a technique for finding a

minimum of the problem (P) (page 37) and then prove results on the global existence,

uniqueness and regularity of the solutions of three specific gradient flows, the L2-, H−1- and

H2-gradient flows.

4.1 Bochner Spaces

We now introduce spaces involving time, called the Bochner spaces. More detailed accounts

on Bochner spaces can be found in [Eva10, Section 5.9.2] and [CF10, Section 5]. For the sake

of generality we let X denote a real Banach space. We can define integrability and measura-

bility of functions on Banach spaces in an analogous way to integrability and measurability

of functions on subsets of Rd (see [Eva10, Appendix E]). Specifically, u : [0, T ] → X is

Bochner integrable if and only if ‖u‖X is Lebesgue integrable [HP57, Definition 3.7.2]. Sim-

ilarly, u is strongly measurable if and only if for all v ∈ X∗ the mapping t → 〈v, u(t)〉 is

Lebesgue measurable and u is almost separably valued [Eva10, Appendix E.5]. The first

Bochner spaces we define are analogous to the Lp-spaces, see [Eva10, Section 5.9.2].

Definition 4.1.1 (The Bochner-Lebesgue Spaces). The space

Lp(0, T ;X)

consists of all strongly measurable functions u : [0, T ]→ X with

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖pXdt

) 1
p

<∞

for 1 ≤ p <∞, or, if p =∞,

‖u‖L∞(0,T ;X) := ess sup
0≤t≤T

‖u(t)‖X <∞.
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We can also define the space of time continuous functions, see [Eva10, Section 5.9.2].

Definition 4.1.2. The space

C([0, T ];X)

comprises all continuous functions u : [0, T ]→ X with

‖u‖L∞(0,T ;X) := ess sup
0≤t≤T

‖u(t)‖X <∞.

Since we will consider derivatives with respect to time we need to define the weak

time derivative, see [Eva10, Subsection 5.9.2].

Definition 4.1.3. Let u ∈ L1(0, T ;X), T > 0. We say v ∈ L1(0, T ;X) is the weak

derivative of u, written

∂tu = v,

provided ∫ T

0

∂tφ(t)u(t)dt = −
∫ T

0

φ(t)v(t)dt

for all scalar test functions φ ∈ C∞c (0, T ).

We can use this method inductively to define the j-th weak derivative for j ∈ N,

i.e. ∂jt u.

For the sake of simplicity we will use the notation ut = ∂tu for the rest of this thesis.

Analogously to C([0, T ];X), we can define the spaces Ck([0, T ];X) for k ∈ N, k > 0

(see [Pen13, Definition 2.55] or [MNRR96, Subsection 1.2.6]).

Definition 4.1.4. The space

Ck([0, T ];X)

comprises all continuous functions u : [0, T ] → X where, for all j ∈ N, 0 ≤ j ≤ k,

∂jt u : [0, T ]→ X is continuous and

‖u‖Ck(0,T ;X) :=

k∑
j=0

sup
0≤t≤T

‖∂jt u(t)‖X <∞.

Finally we define the analogue of the Sobolev spaces, i.e. the Bochner-Sobolev

spaces, again following [Eva10, Section 5.9.2].

Definition 4.1.5. The Sobolev space

W 1,p(0, T ;X)

consists of all functions u ∈ Lp(0, T ;X) such that ut exists in the weak sense and belongs
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to Lp(0, T ;X). Furthermore

‖u‖W 1,p(0,T ;X) :=


(∫ T

0
‖u(t)‖pX + ‖ut(t)‖pXdt

) 1
p

for 1 ≤ p <∞,

ess sup
0≤t≤T

(‖u(t)‖X + ‖ut(t)‖X) for p =∞.

Following [CF10, Subsection 5.3] we define the k-th Bochner-Sobolev space induc-

tively.

Definition 4.1.6 (The k-th Bochner-Sobolev Spaces).

W k,p(0, T ;X) := {u ∈W 1,p(0, T ;X) : ut ∈W k−1,p(0, T ;X)}.

These are Banach spaces for the norms

‖u‖Wk,p(0,T ;X) :=


 k∑
j=0

‖∂jt u‖
p
Lp(0,T ;X)

 1
p

for 1 ≤ p <∞,

max
{
‖u‖L∞(0,T ;X), ..., ‖∂kt u‖L∞(0,T ;X)

}
for p =∞.

For the sake of simplicity we define Hk(0, T ;X) := W k,2(0, T ;X).

Remark 4.1.1. Throughout this thesis we will use the notation Lp(X), Hk(X) and W k,p(X)

to denote the spaces Lp(0,∞;X), Hk(0,∞;X) and W k,p(0,∞;X) respectively.

4.2 Gradient Flows

As stated in the previous chapter we wish to solve the minimisation problem (P) (page 37),

i.e. to find η ∈ H2
ū(Ω) that minimises the PFC functional (3.1). In Chapters 6, 7 and 8

we will introduce numerical schemes to obtain an approximation of the minimiser. These

schemes are discrete versions of gradient flows as in [Bar15, Section 2.3]. Therefore we first

study the corresponding continuous gradient flows,

〈ut, v〉H = −δF [u, v], ∀v ∈ H2
#(Ω) (4.1)

where the inner-product is over the Hilbert space defined by a positive definite operator

Ĥ, i.e.

〈η, v〉H = 〈Ĥη, v〉L2(Ω).

The idea of using a gradient flow method is that, as we follow the trajectory u, we

reduce the value of the PFC functional. Formally, if u is a solution to (4.1) and sufficiently

regular, which we show in Lemmas 4.3.2 and 4.4.1, then we have

d

dt
F [u(t)] = δF [u, ut] = −‖ut‖2H .
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Therefore we have that F [u(t)] is decreasing and, by integration,∫ ∞
0

‖ut(s)‖2Hds <∞.

Hence we expect that ut → 0 in H as t→∞, thus we also expect that u(t)→ u∗ in H2(Ω)

where u∗ is a minimiser. We will prove this convergence and give an estimate of the rate in

Chapter 5.

Remark 4.2.1. In general, gradient flows are of interest in themselves (see for exam-

ple the extensive literature on the similar Cahn-Hilliard and Allen-Cahn equations, e.g.

[ES86],[CE94]), however for the purpose of this thesis we consider gradient flows primarily

as methods for minimising the PFC functional (3.1).

We will consider three distinct gradient flows. The first gradient flow we consider

is the L2-gradient flow where the associated partial differential equation is known as the

Swift-Hohenberg equation.

Definition 4.2.1 (Swift-Hohenberg Equation, Weak Form). u ∈ ū + W 1,1(0, T ;L2(Ω)) ∩
L∞(0, T ;H2

#(Ω)) is a solution to the weak Swift-Hohenberg equation if

〈ut, v〉L2(Ω) = −δF [u, v], ∀v ∈ H2
#(Ω),

for a.e. t in (0, T ).

The second gradient flow we consider is the gradient flow typically used in PFC

calculations, see e.g. [EKHG02], [EG04, Section II], [EW13, Section 1], [WGT+12, Subsec-

tion 3.1.1.2], [Lar14] or [WWL09, Section 1.1]. This is the H−1-gradient flow, known in the

strong form as the PFC equation.

Definition 4.2.2 (PFC Equation, Weak Form). u ∈ ū+W 1,1(0, T ;H−1(Ω))∩L∞(0, T ;H2
#(Ω))

is a solution to the weak PFC equation if

〈ut, v〉H−1(Ω) = −δF [u, v], ∀v ∈ H2
#(Ω),

for a.e. t in (0, T ).

Remark 4.2.2. We recall the H−1-inner-product from Definition C.1.4 to obtain the strong

form of Definition 4.2.2

ut = ∆[(∆ + I)2u− δu+ u3]. (4.2)

This partial differential equation is known as the PFC equation and is the form considered

in the physics literature, e.g. [EG04], [EKHG02] and [WGT+12].

Remark 4.2.3. Several papers, for example [EKHG02], argue that the H−1-norm is the

natural norm for the gradient flow since it automatically enforces mass conservation. This
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is true if the gradient flow is well formulated, i.e. we fix the zeroth mode of the transform of

the variable to ensure the norm is well defined. This is equivalent to conserving the average.

In the L2-case and the H2-case (see Definition 4.2.4) we enforce conservation in the

weak form by taking a test function in the zero average space H2
#(Ω).

As an alternative to the two established gradient flows introduced in Definitions 4.2.1

and 4.2.2 we introduce a gradient flow which can be thought of as a gradient flow in the

H2-norm. First consider a weak form of a Newton type descent flow

δF [u, v] = −δ2F [u, ut, v]. (4.3)

A similar flow for a different functional is considered in [Rin07, Equation (26a)].

Clearly the second variation is not positive definite for all u and v, we also desire

the operator Ĥ to be easily invertible. This leads us to define the operator

A := (∆ + I)2 + γI

where γ > 0 is a constant.

We also have an associated norm.

Definition 4.2.3 (A-norm).

‖η‖2A := 〈Aη, η〉 = ‖∆η + η‖2L2(Ω) + γ‖η‖2L2(Ω).

We consider the A-norm as it resembles the second variation (3.10), i.e. it is the

closest approximation to the second variation that is independent of the solution u. This

operator has two advantages over the second variation; (1) it is positive definite and thus

unlike the second variation induces a norm; and (2) the operator is homogeneous and thus

diagonalises Fourier space.

Lemma 4.2.1. The A-norm is equivalent to the A1-norm, Definition 3.1.2, (and hence to

the H2-norm),i.e., ∃C̃b, C̃u > 0 that depend only on γ such that

C̃b‖v‖2A1
≤ ‖v‖2A ≤ C̃u‖v‖2A1

.

Remark 4.2.4. In the numerical algorithms we introduce in Chapters 6, 8 and Appendix E

we will use an adaptive version of γ. For the sake of simplicity in the following analysis we

take γ to be constant. The numerical tests shown in Figure 8.3 suggest that a good choice

of constant γ is

γom = 3u2
om − δ

where uom is the one-mode solution (see (8.11)). In the range where the one-mode approxi-

mation is valid, i.e. 0 < δ < 1 and 36ū2 < 15δ, we can show that γom > 0, the condition of

Definition 4.2.3.
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We now have an equivalent norm to the H2-norm and thus can define a new gradient

flow equation.

Definition 4.2.4 (H2-gradient flow equation). u ∈ ū+W 1,1(0, T ;H2(Ω))∩L∞(0, T ;H2
#(Ω))

is a solution to the H2-gradient flow equation if

〈ut, v〉A = −δF [u, v], ∀v ∈ H2
#(Ω),

for a.e. t in (0, T ), where 〈·, ·〉A is the inner product associated with the A-norm, Definition

4.2.3.

Remark 4.2.5. Following [CF10, Equation (3.1)] we use the notation ∇HF for the unique

element in H which represents the derivative δF [u] with respect to the inner product in H,

i.e., ∇HF [u] ∈ H such that

δF [u, ϕ] = 〈∇HF [u], ϕ〉H , ∀ϕ ∈ H2
#(Ω).

We set

H =


L2

#(Ω) for the SH equation,

H−1
# (Ω) for the PFC equation,

H2
#(Ω) for the H2−gradient flow equation,

(4.4)

where L2
#(Ω) and H−1

# (Ω) are defined in Definitions C.1.3 and C.1.5. Therefore Definitions

4.2.1, 4.2.2 and 4.2.4 can, formally, be written as

ut +∇HF [u] = 0.

4.3 SH and PFC Equations

First we recall an embedding result from [Sim87] that that we will use to prove existence

and a regularity result for the SH and PFC equations.

Lemma 4.3.1 ([Sim87, Corollary 4]). Let X,B and Y be Banach spaces where X ⊂ B ⊂ Y
with the embedding X to B being compact.

Let (un)n∈N be a sequence bounded in Lp(0, T ;X) where 1 ≤ p <∞ and (unt )n∈N be

bounded in L1(0, T ;Y ), then (un)n∈N is relatively compact in Lp(0, T ;B).

Let (un)n∈N be a sequence bounded in L∞(0, T ;X) and (unt )n∈N be bounded in

Lr(0, T ;Y ) where r > 1, then (un)n∈N is relatively compact in C(0, T ;B).

We also recall Picard’s theorem (see for example [Isl97, Theorem 2.2] and [Bre11,

Theorem 7.3]). This is required for the existence proof of the SH and PFC equations

(Lemma 4.3.2). Additionally, this theorem is also used to prove existence and uniqueness

of the H2-gradient flow (Definition 4.2.4) as well as giving the required regularity for this

flow.
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Theorem 4.3.1. Let Y be a real Banach space and let t0 ∈ R, y0 ∈ Y and

Qb := {(t, y) ∈ R× Y : |t− t0| ≤ a, ‖y − y0‖Y ≤ b}

for fixed a, b > 0. Suppose f : Qb → Y is continuous and

‖f(t, x)− f(t, y)‖Y ≤ L‖x− y‖Y , ∀(t, x), (t, y) ∈ Qb

and

‖f(t, y)‖Y < K, ∀(t, y) ∈ Qb,

where L ≥ 0 and K > 0 are fixed real numbers. Choose c such that 0 < c < a and

c < min
{
b
K ,

1
L

}
. Then the

IVP : xt(t) = f(t, x(t)), x(t0) = y0

has exactly one continuously differentiable solution on the interval Ic = [t0 − c, t0 + c].

Remark 4.3.1. We can not use Picard’s theorem directly to prove the existence of a solution

to the SH or PFC gradient flows since re-arranging these equations to the IVP form given

in Theorem 4.3.1 gives an f that maps between two different Banach spaces. That is f :

H2
per(Ω) → H−2

per(Ω) in the SH case and f : H2
per(Ω) → H−4

per(Ω) in the PFC case whereas

f : H2
per(Ω)→ H2

per(Ω) for the H2-gradient flow.

4.3.1 Existence

We now show the existence of a solution to the SH and PFC gradient flows. The reason for

showing existence of these trajectories, beyond general interest, is that we also obtain corre-

sponding regularity results, which will be of particular use in Chapter 5 to show convergence

of the gradient flows to equilibrium.

Remark 4.3.2. Proofs of the existence of a solution to the PFC equation can be found in

[WWL09, Remark 3.12] and an adaptation (β = 0) of [WW10, Theorem 5.3]. These proofs

rely on proving that solutions exist to a specific time-discretisation and taking the limit.

It is worth noting that such a method could probably be adapted to prove the existence of

alternative gradient flows.

Conversely we use a Galerkin discretisation of the solution and prove the existence

of a solution to the discretisation. We then show by taking the limit that we obtain a

solution to the original gradient flow. The advantage of our method is that it is easier to

obtain regularity results. Specifically, we can adapt this method in Lemma 4.3.3 to obtain

the solution we need for Chapter 5.

We use one lemma to prove the existence of a solution to the L2- and H−1-gradient

flows, Definitions 4.2.1 and 4.2.2, and another (in Section 4.4) to prove the existence of
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a solution to the H2-gradient flow, Definition 4.2.4. In principle the method of the first

lemma, Lemma 4.3.2, could be applied to the H2-gradient flow. However, we choose to

prove the existence of a solution to the H2-gradient flow separately as such a result can

be obtained more easily from Picard’s theorem, Theorem 4.3.1, and adapting the proof of

Lemma 4.3.2 would be much more tedious.

Lemma 4.3.2. Consider the initial value problem, written in the notation of Remark 4.2.5,

ut +∇HF [u] = 0,

u(x, 0) = u0(x),

where H = L2
#(Ω) for the SH case and H = H−1

# (Ω) for the PFC case.

If u0 ∈ H2(Ω), then there exists a global weak solution,

u ∈ C(H1(Ω)) ∩H1
loc(H) ∩ L∞(H2(Ω)).

Proof. We adapt the proof of [KN14, Theorem 2.1].

This proof uses standard methods. However, we lay out the arguments in detail

as we will use the regularity obtained here along with methods similar to Step 3 to prove

the regularity result Lemma 4.3.3. This regularity result is required for the proof of the

convergence of the SH and PFC equations given in Chapter 5.

To prove this result we use a Galerkin approximation. The proof is then split into

three steps, first we prove the existence of a global solution to the Galerkin approximation.

We then prove bounds on the Galerkin approximation. Finally we show convergence of the

Galerkin approximation to the solution of the initial value problem.

We consider the gradient flow (4.1), for all v ∈ H2
#(Ω), i.e.

〈ut, v〉H +

∫
Ω

(∆ + I)u, (∆ + I)v − f ′(u)vdx = 0, (4.5)

where

f ′(u) = δu− u3.

Step 1. We use a Galerkin method. Let {φi}i∈N be an L2-orthonormal basis of −∆ with

ordered eigenvalues {λi}i∈N. We note that the φi are in C∞per(Ω) and define the associated

space as (see [CHQZ88, Equation (9.7.2)])

SN = span {φi(x)|i = 1, .., N} .

We also define the space of zero average functions (i.e. φ1(x) is constant)

S#
N = span{φi(x)|i > 1}.
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The Galerkin approximation

uN (x, t) =

N∑
i=1

aNi (t)φi(x), (4.6)

satisfies the IVP

〈
uNt , v

N
〉
H

= −δF
[
uN , vN

]
, ∀vN ∈ S#

N , (4.7)

uN (x, 0) =

N∑
i=1

〈u0, φi〉L2(Ω)φi(x).

Since vN can be written as

vN =

N∑
i=2

bNi (t)φi(x)

for some set of bi(t), (4.7) leads to a system of ODEs for the coefficients aNj . That is, since

λj > 0, for j ≥ 2 we have d
dta

N
j (t) + (−λj)χ(−λj + 1)2aNj (t)− 〈(−λj)χf ′(uN ), φj〉L2(Ω) = 0,

aNj (0) = 〈u0, φj〉L2(Ω)

(4.8)

where

χ =

1 for the PFC equation

0 for the SH equation.

Using Picard’s theorem, Theorem 4.3.1,(with x = aNj , Y = RN and where the local Lipschitz

property and boundedness follow from the local Lipschitz property of f ′ and the boundedness

of λj) these equations have a local in time solution. We take
(
aNj (t)

)N
i=1

to be a maximal

solution, then to prove the ODE has a global solution we must show these coefficients are

bounded. To do this we will prove uN ∈ L∞(0, T,H2(Ω)).

Since uNt ∈ S
#
N we can test the first variation with uNt , using the notation of (4.4)

(specifically we can also consider the norm H = H2(Ω)), to obtain

〈
δF
[
uN
]
, uNt

〉
= −

∥∥uNt ∥∥2

H
=

d

dt
F
[
uN
]

integrating this, we have

∥∥uNt ∥∥2

L2(0,T ;H)
+ F

[
uN (T )

]
≤ F

[
uN (0)

]
. (4.9)
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Recall the lower bound for F , Lemma 3.1.2, then we have from (4.9)

∥∥uNt ∥∥2

L2(0,T ;H)
+

1

10

∥∥uN (T )
∥∥2

H2(Ω)
≤
∥∥uNt ∥∥2

L2(0,T ;H)
+ F

[
uN (T )

]
+ (δ + 1)2|Ω|

≤ F
[
uN (0)

]
+ (δ + 1)2|Ω|. (4.10)

Since uN (0)→ u0 in H2(Ω) as N →∞ and F is continuous, which follows from (3.11), we

have uN ∈ L∞(H2(Ω)) and thus by an embedding uN ∈ L∞(L2(Ω)). Since the L2-norm of

uN can be written as ∥∥uN∥∥2

L2(Ω)
=

N∑
i=1

(
aNi (t)

)2
,

the bound on uN in L∞(L2(Ω)) gives us an a-priori global bound on the aNj and hence the

ODE (4.8) has a global solution.

Step 2. We now wish to prove bounds on the Galerkin solution and its derivative, namely

uN ∈ L2(0, T ;H2(Ω)) and uNt ∈ L2(0, T ;H). The time derivative bound follows simply

from (4.9). From this the uNt are bounded in L2(0, T ;H). We can also see that

∥∥uN∥∥2

L2(0,T ;H2(Ω))
≤
∥∥uN∥∥2

L∞(0,T ;H2(Ω))
T. (4.11)

Step 3. Now there exists (u, ut) and subsequences denoted {uN}, {uNt } such that

uN → u weakly∗ in L∞(0, T ;H2(Ω)),

uNt ⇀ ut weakly in L2(0, T ;H).

Using that H2(Ω) is compactly embedded in H and H1(Ω) is embedded in H and

embeds H2(Ω) we can use Lemma 4.3.1 ([Sim87, Corollary 4]) with r = 2, X = H2(Ω), B =

H1(Ω) and Y = H to obtain relative compactness in C(0, T ;H1(Ω)). Hence we can take a

sub-sequence which we again rename uN so that

uN → u strongly in C(0, T ;H1(Ω)).

uN ∈ L2(0, T ;H) follows from (4.11) by the embedding H2(Ω) ⊂ H. The weak convergence

of uNt in L2(0, T ;H) and uN in L2(0, T ;H) gives that

u ∈ H1
loc(0, T ;H).

We have uN ⇀ u weakly in L2(0, T ;H2(Ω)) therefore to obtain a solution of the weak

gradient flow (4.5) we only have to deal with the non-linearity f ′(u). Since L∞(Ω) embeds

H and from [Ada75, Corollary 5.16] L∞(Ω) is compactly embedded in H2(Ω), we can use

Lemma 4.3.1 ([Sim87, Corollary 4]) with r = 2, X = H2(Ω), B = L∞(Ω) and Y = H to

obtain relative compactness in C(0, T ;L∞(Ω)). Hence we can take a sub-sequence which
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we again rename uN so that

uN → u strongly in C(0, T ;L∞(Ω)).

Since f ′(u) is continuous we have that f ′(uN (t)) converges strongly to f ′(u(t)) in C(0, T ;L∞(Ω)).

We now have the appropriate regularity for the approximation, i.e. uN ∈ C(H1(Ω))∩
H1

loc(H)∩L∞(H2(Ω)). Consider the Galerkin approximation (4.7) since we have weak con-

vergence of uNt in L2(H) the left-hand side converges. For convergence of the right-hand

side we separate the linear and non-linear (f ′(u)) parts of the first variation. The weak

convergence of uN in L∞(H2(Ω)) gives that the linear part of the first variation converges.

Finally the non-linear part converges by the convergence of f ′(u(t)) in C(0, T ;L∞(Ω)).

Consequently we can pass to the limit in (4.7) and obtain a (u, ut) that satisfies

the initial value problem in the weak sense. The initial condition converges by the strong

convergence of uN in C(H1(Ω)).

4.3.2 Regularity

We can now show that trajectories for the SH and PFC equations are continuously differ-

entiable in H2(Ω). In Chapter 5 this is one of the conditions we require for the convergence

of these trajectories to equilibrium.

Lemma 4.3.3. Suppose the initial condition u0 for the Swift-Hohenberg equation (Definition

4.2.1) or the PFC equation (Definition 4.2.2) satisfies

u0 ∈ H8
ū(Ω), for the SH case,

u0 ∈ H9
ū(Ω), for the PFC case.

(4.12)

Then the weak solutions of the Swift-Hohenberg equation and of the PFC equation are con-

tinuously differentiable in H2(Ω), that is, u ∈ ū+ C1(H2
#(Ω)).

Proof. This proof is split into three steps. First we use the Galerkin approximation to show

that uNt (0) is bounded in H4−χ(Ω). Then we use the Galerkin approximation again to show

u ∈ H2
loc(H−χ(Ω)) ∩W 1,∞

loc (H4−χ(Ω)) where χ = 0 for the SH case and χ = 1 for the PFC

case. Finally we use the result of Lemma 4.3.1 to prove that u ∈ C1(H2(Ω)).

Step 1. Recall the Galerkin approximation of Lemma 4.3.2, i.e. (4.7). This can be

rewritten as

〈(−∆)−χuNt , v
N 〉+ 〈(∆ + I)uN , (∆ + I)vN 〉 = δ〈uN , vN 〉 − 〈(uN )3, vN 〉 ∀vN ∈ S#

N ,

(4.13)

which holds for all time t and in particular t = 0.

We now test (4.13) at t = 0 with vN = (−∆)χ+juNt (0) ∈ H2
#(Ω) , where 0 ≤ j ≤
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4− χ, to obtain

‖(−∆)
j
2uNt (0)‖2L2(Ω)

= (δ − 1)〈(−∆)
j
2 +χuN (0), (−∆)

j
2uNt (0)〉 − 〈(−∆)2+ j

2 +χuN (0), (−∆)
j
2uNt (0)〉

+ 2〈(−∆)1+ j
2 +χuN (0), (−∆)

j
2uNt (0)〉 − 〈(−∆)

j
2 +χ(uN (0))3, (−∆)

j
2uNt (0)〉

≤ 2
[
‖(−∆)

j
2 +χuN (0)‖2L2(Ω) + ‖(−∆)2+ j

2 +χuN (0)‖2L2(Ω)

]
+ 2

[
4‖(−∆)1+ j

2 +χuN (0)‖2L2(Ω) + ‖(−∆)
j
2 +χ(uN (0))3‖2L2(Ω)

]
+

1

2
‖(−∆)

j
2uNt (0)‖2L2(Ω)

≤ 2
[
6‖uN (0)‖2H4+j+2χ(Ω) + ‖uN (0)3‖2H4+j+2χ(Ω)

]
+

1

2
‖(−∆)

j
2uNt (0)‖2L2(Ω),

where we use Young’s inequality in the first inequality and that the H4+j+2χ-norm bounds

the Hj+2χ-,H2+j+2χ- and H4+j+2χ-semi-norms in the final line.

Re-arranging and using that H4+j+2χ(Ω) is a Banach algebra (see [Ada75, Theorem

5.23]) we have

‖(−∆)
j
2uNt (0)‖2L2(Ω) ≤ 4

[
6‖uN (0)‖2H4+j+2χ(Ω) + ‖uN (0)‖6H4+j+2χ(Ω)

]
. (4.14)

If u(0) ∈ H4+j+2χ(Ω) then uN (0)→ u0 ∈ H4+j+2χ(Ω) as N →∞, hence uN (0) is bounded

in H4+j+2χ(Ω) and uNt (0) is bounded in Hj(Ω).

Step 2. In the Galerkin approximation (4.6) the coefficients in {aNi }Ni=1 are smooth func-

tions of t. We can therefore differentiate (4.13) with respect to time and re-arrange to

obtain, for all vN ∈ S#
N ,

∫
Ω

(−∆)−χuNtt v
N + (∆ + I)2uNt v

N + uNt v
Ndx =

∫
Ω

(δ + 1)uNt v
N − 3(uN )2uNt v

Ndx.

(4.15)

We test (4.15) with vN = (−∆)puNtt , where p ≥ 0, which is clearly in S#
N since

utt = ηtt, where η = u− ū ∈ S#
N . Therefore we obtain

‖∇puNtt ‖2H−χ(Ω) +
1

2

d

dt

[
‖(∆ + I)∇puNt ‖2L2(Ω) + ‖∇puNt ‖2L2(Ω)

]
= (δ + 1)〈uNt , (−∆)puNtt 〉 − 3〈(−∆)puNtt , u

N
t (uN )2〉.

(4.16)

Consider the non-linear term

|3〈(−∆)puNtt , u
N
t (uN )2〉| = |3〈∇puNtt ,∇p

(
uNt (uN )2

)
〉|

≤

∥∥∇puNtt∥∥2

H−χ(Ω)

4
+ 9

∥∥∥∇p (uNt (uN)2)∥∥∥2

Hχ(Ω)

≤

∥∥∇puNtt∥∥2

H−χ(Ω)

4
+ 9

∥∥∥uNt (uN)2∥∥∥2

Hp+χ(Ω)
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where we use Young’s inequality in the second line and that the Hp+χ-norm bounds the

Hp- and Hp+χ-semi-norms in the last line.

Choosing p+ χ ≤ 2 then we have

|3〈(−∆)puNtt , u
N
t (uN )2〉| ≤

∥∥∇puNtt∥∥2

H−χ(Ω)

4
+ 9

∥∥∥uNt (uN)2∥∥∥2

H2(Ω)

≤

∥∥∇puNtt∥∥2

H−χ(Ω)

4
+ 9

∥∥uNt ∥∥2

H2(Ω)

∥∥uN∥∥4

H2(Ω)
(4.17)

where we use that H2(Ω) is a Banach algebra in the last line.

Substituting (4.17) into (4.16) we have

‖∇puNtt ‖2H−χ(Ω) +
1

2

d

dt

[
‖(∆ + I)∇puNt ‖2L2(Ω) + ‖∇puNt ‖2L2(Ω)

]
≤ (δ + 1)〈uNt , (−∆)puNtt 〉+

∥∥∇puNtt∥∥2

H−χ(Ω)

4
+ 9

∥∥uNt ∥∥2

H2(Ω)

∥∥uN∥∥4

H2(Ω)

≤

∥∥∇puNtt∥∥2

H−χ(Ω)

2
+
(

9
∥∥uN∥∥4

H2(Ω)
+ (δ + 1)2

)∥∥uNt ∥∥2

H2(Ω)
.

We know that uN ∈ L∞(H2(Ω)) (see Lemma 4.3.2) thus for p+ χ ≤ 2 there exists

a C > 0 such that

‖∇puNtt ‖2H−χ(Ω) +
d

dt

[
‖(∆ + I)∇puNt ‖2L2(Ω) + ‖∇puNt ‖2L2(Ω)

]
≤ C

∥∥uNt ∥∥2

H2(Ω)
. (4.18)

Given this inequality we define

eN (t) = ‖(∆ + I)∇puNt (t)‖2L2(Ω) + ‖∇puNt (t)‖2L2(Ω).

Since p ≥ 0 we have, from Lemma C.2.3, that

‖uNt ‖2H2(Ω) ≤ C1‖uNt ‖2H−χ(Ω) + c2‖∆∇puNt ‖2L2(Ω)

≤ C1‖uNt ‖2H−χ(Ω) + c2eN (t) (4.19)

where the last line follows from the triangle inequality. We define

ϕN (t) := ‖uNt ‖2H−χ(Ω).

Substituting (4.19) into (4.18) we have

ėN (t) ≤ C1ϕN (t) + c2eN (t).

Therefore by Grönwall’s inequality, and using ϕN (t) ∈ L1(0,∞) by Lemma 4.3.2, we have

eN (T ) ≤ exp(c2T )eN (0) + C3 exp(c2T ). (4.20)
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Using Lemma 3.1.1 and then (4.20) we have

1

5
‖∇puNt (T )‖2H2(Ω) ≤ ‖(∆ + I)∇puNt (T )‖2L2(Ω) + ‖∇puNt (T )‖2L2(Ω)

≤ exp(c2T )
[
‖(∆ + I)∇puNt (0)‖2L2(Ω) + ‖∇puNt (0)‖2L2(Ω)

]
+ C3 exp(c2T )

≤ exp(c2T )
[
2‖∇puNt (0)‖2H2(Ω) + C3

]
where we use Lemma 3.1.1 in the final inequality.

Summing p = 0 to p = 2− χ we have

‖uNt (T )‖2H4−χ(Ω) ≤ 5(3− χ) exp(c2T )
[
2‖uNt (0)‖2H4−χ(Ω) + C3

]
where we use that the H4−χ-norm bounds the H2-,H3- and H4−χ-semi-norms.

From (4.14) we have that uNt (0) ∈ H4−χ(Ω) if uN (0) ∈ H8+χ(Ω), i.e. (4.12). We

have shown that uNt ∈ L∞loc(H4−χ(Ω)) and hence by integration uN ∈ L∞loc(H4−χ(Ω)). Using

this, integration on (4.18) gives uNtt ∈ L2
loc(H−χ(Ω)). Therefore we have uN is bounded in

H2
loc(H−χ(Ω)) ∩W 1,∞

loc (H4−χ(Ω)).

Since uN is bounded inH2
loc(H−χ(Ω))∩W 1,∞

loc (H4−χ(Ω)) by taking the limitN →∞,

u ∈ H2
loc(H−χ(Ω)) ∩W 1,∞

loc (H4−χ(Ω)).

Step 3. Using that H4−χ(Ω) is compactly embedded in H−χ(Ω) and H2(Ω) is embedded

in H−χ(Ω) and embeds H4−χ(Ω) we can use Lemma 4.3.1 ([Sim87, Corollary 4]) with

r = 2, X = H4−χ(Ω), B = H2(Ω) and Y = H−χ(Ω) to obtain relative compactness in

C(0, T ;H2(Ω)). Hence we can take a sub-sequence which we again rename uN so that

uN → u strongly in C(0, T ;H2(Ω)).

Also we can take a subsequence uNt so that

uNt → ut strongly in C(0, T ;H2(Ω))

so that we have u ∈ C1(0, T ;H2(Ω)).

Remark 4.3.3. It may be possible to remove the assumption (4.12) using the smoothing

property of the PFC and SH equations. For the sake of simplicity we did not pursue this

option.

4.3.3 Uniqueness

Finally, we show that the solutions of the L2- and the H−1-gradient flows starting from

given initial data are unique.

Lemma 4.3.4. The solution u of the gradient flows defined in Definitions 4.2.1 and 4.2.2

are unique for given initial conditions u0(x) ∈ H2
ū(Ω).
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Proof. Assume there exist two solutions u1, u2 that satisfy the weak form (4.1) with

u1(x, 0) = u0(x) = u2(x, 0).

We define the difference as

ũ = u1 − u2.

Then clearly ũ(x, 0) = 0. Inserting u1 and u2 into the weak form (4.1) and subtracting one

from the other we have

〈ũt, v〉H = −〈(∆ + I)ũ, (∆ + I)v〉+ δ〈ũ, v〉 − 〈u3
1 − u3

2, v〉

for all v ∈ H2
#(Ω). Testing with v = ũ(t) ∈ H2

#(Ω) we obtain

1

2

d

dt
‖ũ‖2H ≤ δ‖ũ‖2L2(Ω) − ‖(∆ + I)ũ‖2L2(Ω) − 〈u

3
1 − u3

2, ũ〉. (4.21)

We can see that the cross-term is positive i.e.,

〈u3
1 − u3

2, ũ〉 = 〈
(
u2

1 + u1u2 + u2
2

)
(u1 − u2), ũ〉

=
1

2
〈
[
u2

1 + u2
2 + (u1 + u2)2

]
, ũ2〉

≥ 0.

We can thus discard the cross-term from (4.21) to obtain

1

2

d

dt
‖ũ‖2H ≤ δ‖ũ‖2L2(Ω) − ‖(∆ + I)ũ‖2L2(Ω). (4.22)

Consider the L2-norm

‖ũ‖2L2(Ω) =

∫
Ω

ũ2dx ≤ 1

2
‖ũ‖2H−1(Ω) +

1

2
‖∇ũ‖2L2(Ω).

Using (3.2) with ε = 1 we have

‖ũ‖2L2(Ω) ≤
1

2
‖ũ‖2H−1(Ω) +

3

4
‖ũ‖2L2(Ω) +

1

4
‖∆u+ u‖2L2(Ω).

Re-arranging we have

‖ũ‖2L2(Ω) − ‖∆ũ+ ũ‖2L2(Ω) ≤ 2‖ũ‖2H−1(Ω). (4.23)

Hence we can bound the right-hand side of (4.22) by the H−1- or L2-norm depending on

H. Therefore we can write
d

dt
‖ũ‖2H ≤ 2C‖ũ‖2H ,
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where the constant C is defined

C =

δ, for the Swift-Hohenberg equation,

2, for the PFC equation.

Applying Grönwall’s lemma, recalling from Lemmas 4.3.3 that u ∈ C1(0, T ;H2(Ω)), yields

the result.

4.4 H2-gradient Flow

Using Picard’s theorem, Theorem 4.3.1, we can show that the solution of the H2-gradient

flow equation, Definition 4.2.4, is continuous. We use Picard’s theorem for the H2-gradient

flow as it is much simpler than the Galerkin method of Lemma 4.3.2 and gives the additional

regularity required for Chapter 5.

Lemma 4.4.1. For each u0 ∈ H2(Ω). There exists a unique u ∈ C1(H2(Ω)) that satisfies

Definition 4.2.4.

Proof. Recall that we have chosen u ∈ H2
ū(Ω) therefore η = u − ū ∈ H2

#(Ω) and we can

rewrite Definition 4.2.4 as

〈ηt, v〉A = −δF [ū+ η, v], ∀v ∈ H2
#(Ω).

Since, from Lemma 4.2.1, the A-norm is equivalent to the H2-norm we can use the A-inner

product to define an operator G : H2
#(Ω)→ H2

#(Ω),

〈AG[η], v〉 = −δF [ū+ η, v] ∀v ∈ H2
#(Ω). (4.24)

From Lemma 3.1.4 δF [ū+ η] ∈ H−2(Ω), hence the variational problem (4.24) is well-posed.

That is, for each η ∈ H2
#(Ω) the variational problem (4.24) defines a G[η] ∈ H2

#(Ω).

Since, from Lemma 3.1.4, F ∈ C4(H2(Ω)) in the sense of Fréchet we immediately

have that G is locally bounded and locally Lipschitz. Therefore we can use Picard’s theorem,

Theorem 4.3.1, to obtain a T > 0 and a η ∈ C1(0, T ;H2
#(Ω)) such that ηt = G[η] and η is

the unique solution on this interval.

Since we have chosen u0 in H2(Ω) then we can define the set

S := {v ∈ H2
#(Ω)|F [v + ū] ≤ F [u0]}.

Since F is decreasing along our trajectory we have that

{η(t)} ⊆ S.

Since F ∈ C4(H2(Ω)) we have that G : S → H2
#(Ω) is Lipschitz and bounded where the

bounds depend on u0.
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Recall Theorem 4.3.1 since we know that for v0 ∈ S, L and K depend only on u0

therefore for all v0 ∈ S we can choose the same c > 0. Let T be maximal. For T maximal

we consider the solution at time T − c/2, i.e. v0 = u(T − c/2). By Theorem 4.3.1 we have

that the solution u exists in the interval [T − 3c/2, T + c/2] in particular the solution exists

at T + c/2 > T which contradicts the assumption that T is maximal. Therefore there is no

maximal t, i.e. we have global existence of u.

4.5 Conclusion

In this chapter we discuss several methods to find the minimiser of the PFC functional by

finding the solution to the associated Euler-Lagrange equation. The technique chosen in this

thesis to compute the solution to the Euler-Lagrange equation is the gradient flow technique.

Other minimisation techniques can be seen in [NW06], we also show a trust region method

in Appendix E. We introduce three gradient flows in the norms H−1, L2 and H2. We then

prove existence, uniqueness and regularity results for the solutions to each of these gradient

flows.
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Chapter 5

Convergence to Equilibrium

In this chapter we obtain rates of convergence to equilibrium for the solution of the gra-

dient flows introduced in the previous chapter. The technique we employ is based on the

 Lojasiewicz gradient inequality. This method is used for the modified phase-field crystal

equation in [GW14]. Similarly to [GW14] we split our proof into two steps: first we prove

the  Lojasiewicz inequality, second we prove that the trajectory of our gradient flow is com-

pact (here, we use a different method to [GW14]).

We will show in Section 5.2 that the PFC functional (3.1) satisfies the  Lojasiewicz

gradient inequality:

Theorem 5.0.1. The PFC functional (3.1) satisfies the  Lojasiewicz inequality. That is,

for every ϕ ∈ H2
ū(Ω) such that δF [ϕ, v] = 0 for all v ∈ H2

#(Ω), there exist constants

θ ∈
(
0, 1

2

]
, c ≥ 0 and σ > 0 such that, for all η ∈ H2

ū(Ω), with ‖η − ϕ‖H2(Ω) ≤ σ,

‖δF [η]‖H−2(Ω) ≥ c|F [η]−F [ϕ]|1−θ.

The constant θ is called a  Lojasiewicz exponent.

We now state the convergence theorem which is the main result of this chapter.

Theorem 5.0.2. Let u be a trajectory that satisfies Definition 4.2.1, Definition 4.2.2 or

Definition 4.2.4 with u0 ∈ Hs
ū(Ω) where s = 8, 9 or 4 respectively. Then there exists ϕ ∈

H2
ū(Ω) such that δF [ϕ, v] = 0 for all v ∈ H2

#(Ω) and

lim
t→∞

‖u(t)− ϕ‖H2(Ω) = 0.

Moreover, let θ be any  Lojasiewicz exponent of the PFC functional F at ϕ. Then we have

‖u(t)− ϕ‖H ≤

Ce−βt for some β > 0 if θ = 1
2 ,

Ct−
θ

1−2θ if 0 < θ < 1
2 ,

where C > 0 and the H-norm is defined by the spaces H given in (4.4).
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5.1 Abstract Convergence Theory

In this section we review an abstract convergence theorem which we employ in the proof of

Theorem 5.0.2. First we take two Hilbert spaces V and H such that

V ⊂ H = H∗ ⊂ V ∗

where the embeddings are continuous and dense. In our case, we take V = H2
# (see Definition

C.1.2) and H is determined by (4.4).

The principle results we use are [HJ15, Theorem 11.3.1] and [CF10, Theorem 12.2]

for the case V = H. We recall a version of these theorems here for convenience. Let

E ∈ C1(V,R), we define δE [η] by δE [u, v] = 〈δE [u], v〉. Using the notation of Remark 4.2.5

we have the following result.

Theorem 5.1.1 ([HJ15, Theorem 11.3.1] and [CF10, Theorem 12.2] for the case V = H).

Let η ∈ C1(V ) be a solution of the gradient system

ηt +∇HE [η] = 0.

Assume that

i)
⋃
t≥1{η(t)} is compact in V ;

ii) E satisfies the  Lojasiewicz inequality near every point ϕ ∈ V,∇HE [ϕ] = 0, that is

there exist θ ∈ (0, 1
2 ], σ > 0 and C ≥ 0 such that for every v ∈ V with ‖v−ϕ‖V ≤ σ one has

|E [v]− E [ϕ]|1−θ ≤ C‖δE [v]‖V ∗ .

Then limt→∞ ‖η(t)− ϕ‖V = 0. Moreover,

‖η(t)− ϕ‖H ≤

Caee
−ct for some c > 0, if θ = 1

2 ,

Catt
− θ

1−2θ if θ ∈ (0, 1
2 ),

where Cae, Cat > 0.

We consider the functional E : H2
#(Ω)→ R defined by

E [η] = F [η + ū]. (5.1)

Then the problem (P) (see page 37) can be written as

min
η̃∈H2

#(Ω)
E [η̃].

If we let u = ū+ η where η ∈ H2
#(Ω), then ηt = ut. Therefore the weak gradient flow (4.1)

can be written in abstract form as
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ηt +∇HE [η] = 0.

If E and η satisfy the assumptions of Theorem 5.1.1 we can use this theorem to prove

Theorem 5.0.2. Therefore we now have to prove four assumptions: two on the energy; E ∈
C1(H2

#(Ω),R) and the  Lojasiewicz inequality, and two on the trajectory; η ∈ C1(H2
#(Ω))

and
⋃
t≥1{η(t)} is compact in H2

#(Ω).

The requirement that E [η] ∈ C1(H2
#(Ω),R) is established in Lemma 3.1.4.

Regularity of η follows from that of u. We have already proved that u ∈ ū +

C1(H2
#(Ω)) for the H2-gradient flow in Lemma 4.4.1 and for the PFC- and SH-gradient

flows in Lemma 4.3.3.

Therefore we have two assumptions to check before we can use Theorem 5.1.1. These

are that the translated PFC functional (5.1) satisfies the  Lojasiewicz inequality and that⋃
t≥1{η(t)} is relatively compact in H2

#(Ω). We first prove the  Lojasiewicz inequality for E
in Section 5.2. We then prove the compactness of the trajectories η in Section 5.3.

5.2 The  Lojasiewicsz Gradient Inequality

We wish to prove that the translated PFC functional (5.1) satisfies the  Lojasiewicz inequal-

ity, Theorem 5.0.1. This is also shown in [GW14, Lemma 6.1]; however we lay out the

argument in more detail. We first give a version of [HJ15, Theorem 11.2.7] which gives

general conditions under which the  Lojasiewicz gradient inequality holds. We then show

that in the specific case of the translated PFC functional (5.1) these conditions are satisfied.

To facilitate the rest of this section we recall the definition of the  Lojasiewicz gradient

inequality (see [Sim83, Theorem 3] and also [HJ15, Definition 11.0.3]).

Definition 5.2.1 (The  Lojasiewicz gradient inequality). We say that the functional E0 ∈
C1(V,R) satisfies the  Lojasiewicz gradient inequality near some ϕ ∈ V , if there exist con-

stants θ ∈
(
0, 1

2

]
, c ≥ 0 and σ > 0 such that, for all η ∈ V with ‖η − ϕ‖V ≤ σ,

‖δE0[η]‖V ∗ ≥ c|E0[η]− E0[ϕ]|1−θ. (5.2)

In order to prove the  Lojasiewicz gradient inequality we will need the second varia-

tion to be a semi-Fredholm operator. Therefore we recall the relevant definition. Let E,F

be two Banach spaces and B : E → F be a linear operator. We denote by N(B) and R(B)

the null space and the range of B, respectively.

Definition 5.2.2 ([HJ15, Definition 2.2.1]). A bounded linear operator B ∈ L(E,F ) is said

to be semi-Fredholm if

• N(B) is finite dimensional, and

• R(B) is closed.
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We then say B ∈ SF(E,F ).

We also define a Banach-space analogue of analyticity.

Definition 5.2.3 ([HJ15, Definition 2.3.1]). Let X,Y be two real Banach spaces and a ∈ X.

Let U be an open neighbourhood of a in X. A map f : U → Y is called analytic at a if there

exists r > 0 and a sequence of n-linear continuous symmetric maps (Mn)n∈N fulfilling the

following conditions:

•
∑
n∈N ‖Mn‖Ln(X,Y )r

n <∞
where ‖Mn‖Ln(X,Y ) = sup{‖Mn(x1, .., xn)‖Y , supi ‖xi‖X ≤ 1},

• B̄(a, r) ⊂ U ,

• ∀h ∈ B̄(0, r), f(a+ h) = f(a) +
∑
n≥1Mn(h(n)) where h(n) = (h, .., h)︸ ︷︷ ︸

n times

.

If E0 is analytic and E0 ∈ C1(V,R) then we can see from [HJ15, Proposition 2.3.4]

that δE0 : V → V ∗ is analytic as well.

We can then obtain the  Lojasiewicz inequality needed for convergence (see Theorem

5.1.1) from the following abstract theorem. For any E0 ∈ C2(V,R) and fixed η0 ∈ H2(Ω)

such that δE0[η0] = 0 this theorem follows directly from [HJ15, Theorem 11.2.7] by applying

the result of that theorem to G[v] = E0[v + η0]− E0[η0].

Theorem 5.2.1. Let E0 ∈ C2(V,R) and let η0 ∈ V . Assume that Â = δ2E0[η0] is a semi-

Fredholm operator and that N := kerÂ ⊂ Z and Z ⊂ H where this embedding is continuous

and dense. Let the operator L be defined by L = Π + Â where Π : V → kerÂ is the

H-orthogonal-projection. We define the space W = L−1(Z).

Assume that:

• (H2) E0 : U → R is analytic in the sense of Definition 5.2.3 where U ⊂ W is an

open neighbourhood of η0, such that δE0(U) ⊂ Z.

Then there exist θ ∈
(
0, 1

2

]
, σ > 0 and c > 0 such that, for all η ∈ V ,

‖η − η0‖V < σ ⇒ ‖δE0[η]‖V ∗ ≥ c|E0[η]− E0[η0]|1−θ.

In order to prove that δ2E0[η0] is a semi-Fredholm operator for a specific E0 we recall

two abstract theorems of [HJ15] which state properties that a bounded operator satisfies if

it is a semi-Fredholm operator.

Theorem 5.2.2 ( [HJ15, Theorem 2.2.3]). Let E,F be two Banach spaces. Let B ∈ L(E,F )

and assume that N(B) is finite dimensional. Then we have B ∈ SF(E,F ) if and only if

∃ρ > 0, ∀u ∈ X ‖Bu‖F ≥ ρ‖u‖E ,

where X is a closed subset of E such that E = N(B)⊕X.
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Theorem 5.2.3 ([HJ15, Theorem 2.2.5]). Let E,F be two Banach spaces. Let B ∈ SF(E,F )

and let G ∈ L(E,F ) be a compact operator, then B +G ∈ SF(E,F ).

We now consider the specific case of the shifted PFC functional (5.1). To obtain the

 Lojasiewicz gradient inequality in this case, using Theorem 5.2.1, we have two hypotheses

to check: that δ2E [η] is a semi-Fredholm operator for all η ∈ H2
#(Ω) and that E and δE are

analytic. Clearly these hypotheses follow from the equivalent hypotheses on F , i.e., that

δ2F [ū+ η] is a semi-Fredholm operator and that F and δF are analytic.

Recalling the abstract Theorems 5.2.2 and 5.2.3 we are able to prove that δ2F [u] is

a semi-Fredholm operator for any u ∈ H2
per(Ω).

Lemma 5.2.1. For all u ∈ H2
per(Ω), δ2F [u] ∈ SF(H2

per(Ω), H−2
per(Ω)).

Proof. Recall the second variation (3.10), the associated operator can be written as

δ2F [u] = A1 − (δ + 1)I + 3u2I, (5.3)

where

A1 := (∆ + I)2 + I (5.4)

is an isomosphism from H2
per(Ω) to H−2

per(Ω). Hence the conditions of Theorem 5.2.2 are

satisfied and the operator A1 is semi-Fredholm.

Following the splitting (5.3) we define

p(x) = 3u(x)
2 − (δ + 1).

If u ∈ H2
per(Ω) then u ∈ L∞(Ω) and therefore p ∈ L∞(Ω). We define Gv := pv for all

v ∈ H2
per(Ω). Since p ∈ L∞(Ω), G : H2

per(Ω)→ L2
per(Ω) is bounded ( G : H2

per(Ω)→ L2
per(Ω)

as ‖Gv‖L2(Ω) ≤ ‖p‖L∞(Ω)‖v‖L2(Ω) ≤ ‖p‖L∞(Ω)‖v‖H2(Ω)) and since L2
per(Ω) ⊂⊂ H−2

per(Ω), it

follows that G is compact.

We have by the splitting (5.3) that δ2F [u] = A1 +G. Since G is compact and A1 ∈
SF(H2

per(Ω), H−2
per(Ω)) by Theorem 5.2.3 we have δ2F [u] ∈ SF(H2

per(Ω), H−2
per(Ω)).

We now prove that the PFC functional is analytic.

Lemma 5.2.2. The PFC functional (3.1) is analytic at every point η ∈ H2(Ω).

Proof. Recall the PFC functional difference (3.11),

F [a+ h]−F [a] = 〈∆a+ a,∆h+ h〉 − δ〈a, h〉+ 〈a3, h〉+
1

2
‖∆h+ h‖2L2(Ω) −

δ

2
‖h‖2L2(Ω)

+
3

2
‖ah‖2L2(Ω) + 〈a, h3〉+

1

4
‖h‖4L4(Ω).
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Then by comparison with Definition 5.2.3, we have

M1(x1) = 〈∆a+ a,∆x1 + x1〉 − δ〈a, x1〉+ 〈a3, x1〉,

M2(x1, x2) =
1

2

[
〈∆x1 + x1,∆x2 + x2〉 − δ〈x1, x2〉+ 3〈a2x1, x2〉

]
,

M3(x1, x2, x3) = 〈a, x1x2x3〉,

M4(x1, x2, x3, x4) =
1

4
〈x1x2x3, x4〉,

Mn(x1, ..., xn) = 0, ∀n > 4.

These are exactly the same, up to multiplicative constants, as the variations of F given

in Lemma 3.1.4. Since in this lemma we show that these variations are all bounded if

x1, x2, x3, x4 ∈ H2(Ω), we now have that F is analytic.

Since we are considering the translated PFC functional (5.1) we consider the case

where V = H2
#(Ω) and thus we have η0 ∈ H2

#(Ω). We can show that for −2 ≤ k ≤ 2

δ2E [η0] : Hk+4
# (Ω)→ Hk

#(Ω).

Lemma 5.2.3. For −2 ≤ k ≤ 2, δ2E [η0] : Hk+4
# (Ω)→ Hk

#(Ω) is bounded.

Proof. The k = −2 case follows from the definition of δ2E [η0].

From Lemma 3.1.4 we have

δ2E [η0] = (∆ + I)2 − δ + 3(η0 + ū)2.

For all v ∈ Hk+4(Ω) we have

‖δ2E [η0]v‖Hk(Ω) = ‖∆2v + 2∆v + (1− δ)v + 3(η0 + ū)2v‖Hk(Ω)

≤ ‖∆2v‖Hk(Ω) + 2‖∆v‖Hk(Ω) + ‖v‖Hk(Ω) + 3‖(η0 + ū)2v‖Hk(Ω)

≤ 4‖v‖H4+k(Ω) + 3‖(η0 + ū)2v‖H2(Ω)

≤ 4‖v‖H4+k(Ω) + 3‖η0 + ū‖2H2(Ω)‖v‖H2(Ω)

≤
(

4 + 3‖η0 + ū‖2H2(Ω)

)
‖v‖H4+k(Ω)

where we use that the H4+k-norm bounds the Hk-, H2+k- and H4+k-semi-norms in the

third and final lines and that H2(Ω) is a Banach algebra (see [Pel11, Appendix B.1]) in the

fourth line.

By comparison with Theorem 5.2.1, for −2 ≤ k ≤ 2 we define L : Hk+4
# (Ω) →

Hk
#(Ω). We can find a stricter embedding for ker(δ2E [η0]).

Lemma 5.2.4. Let η0 ∈ H2
#(Ω) then ker(δ2E [η0]) ⊆ H6

#(Ω).

Proof. By definition, z ∈ker(δ2E [η0]) if

δ2E [η0]z = 0. (5.5)
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From the definition of (3.10) we know that z ∈ H2
#(Ω). The weak form of (5.5) is

〈δ2E [η0]z, ϕ〉 = 0 ∀ϕ ∈ H2
#(Ω)

using (3.10) we can re-arrange to obtain

〈∆z,∆ϕ〉 = −2〈∆z, ϕ〉+ (δ − 1)〈z, ϕ〉 − 3〈(η0 + ū)2z, ϕ〉.

This is clearly an equation of the form (3.14) with η = z and

f = −2∆z + (δ − 1)z − 3(η0 + ū)2z.

Clearly since z ∈ H2
#(Ω) then ∆z ∈ L2

#(Ω). We also know that η0 ∈ H2
#(Ω) and hence

η0 + ū ∈ H2
per(Ω) therefore 3(η0 + ū)2z ∈ H2

per(Ω) since H2
per(Ω) is a Banach algebra.

Therefore we have f ∈ L2
per(Ω).

Using Lemma 3.3.2 we therefore obtain that z ∈ H4
#(Ω). Since z ∈ H4

#(Ω), ∆z ∈
H2

#(Ω) and therefore f ∈ H2
per(Ω). Hence we can use Lemma 3.3.2 again to obtain that

z ∈ H6
#(Ω).

Since H6
#(Ω) ⊂ H2

#(Ω) then kerδ2E [η0] ⊂ H2
#(Ω). Also since in (4.4) we choose

H2
#(Ω) ⊆ H, for an analogy of Theorem 5.2.1 we need Z = H2

#(Ω). From the definition

of L (see Theorem 5.2.1) we have, for −2 ≤ k ≤ 2, L−1 : Hk
#(Ω) → Hk+4

# (Ω) hence W =

L−1(Z) = H6
#(Ω). From the method of Lemma 3.3.3, if u ∈ Hk(Ω) then δE [u] ∈ Hk−4(Ω).

Therefore, δE [η0] ⊂ H2
#(Ω) for all η0 ∈ H6

#(Ω).

We are now in a position to use Theorem 5.2.1 with E = E0 , V = Z = H2
#(Ω)

and W = H6
#(Ω). Since Theorem 5.2.1 holds for all η0 ∈ H2

#(Ω) such that δE0[η0] = 0 we

choose η0 = u0 such that δE [u0] = 0. Then we use Theorem 5.2.1 to prove the  Lojasiewicz

inequality in H2
#(Ω).

Theorem 5.2.4. The translated PFC functional (5.1) satisfies the  Lojasiewicz inequality

(5.2). That is, near any u0 ∈ H2
#(Ω) such that δE [u0] = 0, there exist constants θ ∈(

0, 1
2

]
, c ≥ 0 and σ > 0 such that, for all η ∈ H2

#(Ω) with ‖η − u0‖H2
#(Ω) ≤ σ,

‖δE [η]‖H−2
# (Ω) ≥ c|E [η]− E [u0]|1−θ.

Proof. From Lemma 5.2.1, picking u = u0 + ū we have that δ2F [u0 + ū] is a semi-Fredholm

operator. From Lemma 5.2.2 and [HJ15, Proposition 2.3.4] we see that E and δE are analytic.

Hence the conditions of Theorem 5.2.1 are fulfilled and we have that the translated PFC

functional (5.1) obeys a  Lojasiewicz gradient inequality on H2
#(Ω) at u0, i.e. Theorem 5.2.4.
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5.3 Compactness

Having established the  Lojasiewicz inequality, the remaining condition in Theorem 5.1.1 is

compactness of trajectories in H2(Ω). We use a different argument here from the one in

[GW14] as we want to avoid the more involved method of attractors that is necessary to

deal with the utt-term in the MPFC equation, see [GW14, Section 5]. Furthermore, we also

require a different method to prove compactness for the H2-gradient flow.

To prove that the trajectory η is compact, we first prove that ut is bounded for

t > 1, in an appropriate space. We then rearrange the gradient-flow equation (5.6) to show

that boundedness of ut implies u ∈ L∞([1,∞);H4(Ω)). The compact embedding of H4(Ω)

in H2(Ω) gives that the trajectory is compact in H2(Ω). We use a separate lemma to prove

u ∈ L∞(H4(Ω)) for the H2-gradient flow.

We take E [η] = F [ū + η] ∈ C1(H2
#(Ω),R) then we have the abstract evolution

equation

ηt(t) +∇HE [η(t)] = 0, ∀t ≥ 0. (5.6)

We use a positive operator H̃ which is defined as

H̃ =


I, for the SH case,

(−∆)−1, for the PFC case,

A, for the H2-gradient flow case.

Hence we can rewrite (5.6) in weak form, using u = η + ū, as

〈H̃ut(t), v〉+ 〈δF [u(t)], v〉 = 0, ∀v ∈ H2
#(Ω). (5.7)

As the first stage of proving compactness we show that ut is bounded for all t > 1.

Lemma 5.3.1. For the solutions of the weak partial differential equations Definition 4.2.1,

4.2.2 and 4.2.4 ut is bounded for all t > 1. That is,

ut ∈ L∞([1,∞);L2
#(Ω)) for the Swift-Hohenberg case,

ut ∈ L∞([1,∞);H−1
# (Ω)) for the PFC case,

ut ∈ L∞([1,∞);H2
#(Ω)) for the H2-gradient flow case.

(5.8)

Proof. We use a Galerkin method and split this proof into two steps. We first prove that for

each interval [j, j + 1] there exists a tNj ∈ [j, j + 1] such that ‖H̃ 1
2uNt (tNj )‖L2(Ω) is uniformly

bounded for all N and j. We then prove that for t− tNj ≤ 2 we can bound ‖H̃ 1
2ut(t)‖L2(Ω)

by ‖H̃ 1
2ut(t

N
j )‖L2(Ω). This allows us to show that ‖H̃ 1

2ut(t)‖L2(Ω) is bounded for all t > 1.

Step 1. We prove that for the interval [j, j + 1] there exists a tNj ∈ [j, j + 1] such that

‖H̃ 1
2uNt (tNj )‖L2(Ω) is bounded uniformly in N and j.
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From (4.9) we obtain∫ ∞
0

‖H̃ 1
2uNt (s)‖2L2(Ω)ds ≤ F [uN (0)]− inf

t∈[0,∞)
F [uN (t)] ≤ C̃

where C̃ > 0 and is independent of N , since F is bounded below (see Lemma 3.1.2). By

splitting the integral into partitions of size 1 we obtain the following bound∫ j

j−1

‖H̃ 1
2uNt (s)‖2L2(Ω)ds ≤ C̃. (5.9)

It follows from (5.9) that for every interval [j, j + 1] there exists a tNj such that

sup
N,j
‖H̃ 1

2uNt (tNj )‖2L2(Ω) ≤ C̃. (5.10)

Step 2. Recall the Galerkin approximation (4.6) and (4.15) from Lemma 4.3.3. From this

we test with vN = uNt to obtain

1

2

d

dt
‖H̃ 1

2uNt ‖2L2(Ω) +
∥∥(∆ + I)uNt

∥∥2

L2(Ω)
+ 3

∥∥uNt uN∥∥2

L2(Ω)
≤ δ

∥∥uNt ∥∥2

L2(Ω)
.

Therefore we have
1

2

d

dt
‖H̃ 1

2uNt ‖2L2(Ω) ≤ 2‖H̃ 1
2uNt ‖2L2(Ω) (5.11)

which follows immediately for the L2- and H2-flows since δ ≤ 2. For the H−1- gradient flow

we recall (4.23), replacing ũ with uN and recalling that δ ≤ 1 we have

δ
∥∥uN∥∥2

L2(Ω)
−
∥∥(∆ + I)uN

∥∥2

L2(Ω)
≤ 2

∥∥uN∥∥2

H−1(Ω)
.

Hence (5.11) follows for the H−1-norm as well.

From the inequality (5.11), for any t0 < t, we integrate from t0 to t to obtain a

bound on uNt , using Grönwall’s inequality,

‖H̃ 1
2uNt (t)‖2L2(Ω) ≤ C1 exp[C2(t− t0)]‖H̃ 1

2uNt (t0)‖2L2(Ω), (5.12)

for constant C1, C2 > 0.

For any t > 1 there exists j ∈ N such that t ∈ [j + 1, j + 2], from (5.10) we know

that there exists tNj ∈ [j, j + 1] so that

sup
N
‖H̃ 1

2uNt (tNj )‖2L2(Ω) ≤ C̃.

Hence recalling the relation between the uNt -norm at t and the uNt -norm at t0 (5.12)
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and (5.10) if we choose t0 = tNj then we have

‖H̃ 1
2uNt (t)‖L2(Ω) ≤

√
C1 exp[C2(t− tNj )]

√
C̃,

≤
√
C1C̃ exp[2C2],

where the second line follows from the fact that t− tNj ≤ 2.

Therefore we have that uNt is bounded, i.e., there exists a Ĉ > 0 such that

‖H̃ 1
2uNt (t)‖L2(Ω) ≤ Ĉ.

Since this result holds independent of N we take the limit N → ∞ and we obtain

the stated result.

We can now prove the compactness of the trajectories. In all cases we will show that

u ∈ L∞([1,∞);H4
ū(Ω)) and then use the compact embedding of H4(Ω) in H2(Ω). Since both

the PFC and SH equations have a smoothing property we can prove compactness for both

using a similar method. The smoothing property gives us the required increase in regularity

needed for compactness. However, the H2-gradient flow does not have a smoothing property

and hence we need a different proof. We first prove compactness for the SH and PFC cases.

Lemma 5.3.2. For the SH and PFC equations η = u − ū ∈ L∞([1,∞);H4
#(Ω)) and in

particular
⋃
t≥1{η(t)} is compact in H2

#(Ω).

Proof. We recall (5.7), which can be written as

〈H̃ut, v〉+ 〈∆u,∆v〉+ 2〈∆u, v〉+ 〈u, v〉 − δ〈u, v〉+ 〈u3, v〉 = 0, ∀v ∈ H2
#(Ω),

or, equivalently,

〈∆u,∆v〉 = 〈f, v〉, ∀v ∈ H2
#(Ω) (5.13)

where

f = −2∆u− (1− δ)u− u3 − (−∆)−χut

(this is an equality in L2(Ω) since u ∈ C1(H2(Ω))) and χ = 0, 1 for the SH and PFC cases

respectively.

We have u ∈ L∞(H2
per(Ω)) and hence ∆u ∈ L∞(L2

per(Ω)) and u3 ∈ L∞(H2
per(Ω))

since H2
per(Ω) is a Banach algebra. From (5.8) we have ut ∈ L∞([1,∞);L2

#(Ω)) for the SH

case (χ = 0). For the PFC case (χ = 1) we have ut ∈ L∞([1,∞);H−1
# (Ω)) and by the

embedding H−1
# (Ω) ⊆ H−2

# (Ω), (−∆)−χut ∈ L∞([1,∞);L2(Ω)). Therefore we have shown

that f ∈ L∞([1,∞);L2(Ω)).

We now use Lemma 3.3.2 to obtain u− ū ∈ L∞([1,∞);H4
#(Ω)).

By the compact embedding of H4(Ω) in H2(Ω), u is pre-compact in H2(Ω) and thus

since the space is closed u(t) is compact in H2(Ω) for t > 1 and hence η(t) is compact in

H2
#(Ω) for t > 1.

68



5.3. COMPACTNESS CHAPTER 5. CONVERGENCE TO EQUILIBRIUM

Remark 5.3.1. Since for the PFC case we already have u ∈ L∞([1,∞);H3
ū(Ω)) we can

differentiate (5.13) to obtain an equation of the form (3.14) with f = −2(−∆)
3
2u − (1 −

δ)(−∆)
1
2u − (−∆)

1
2 (u3) − (−∆)−

1
2ut. Since H2

per(Ω) is a Banach algebra and thus u3 ∈
H2

per(Ω). Therefore since u ∈ H3
ū(Ω) and from the strong form of (5.7) u is periodic, finally

from (5.8) we have ut ∈ L∞([1,∞);H−1
# (Ω)) then f ∈ L∞([1,∞);L2

per(Ω)). Choosing η =

(−∆)
1
2u ∈ L∞([1,∞);H2

#(Ω)) and f ∈ L∞([1,∞);L2
per(Ω)) we have η ∈ L∞([1,∞);H4

#(Ω))

and thus we even obtain u− ū ∈ L∞([1,∞);H5
#(Ω)).

We can also prove for the H2-gradient flow equation, Definition 4.2.4, that the

trajectory is bounded in H4(Ω). The technique used in this case is different from the

method used in the SH and PFC cases, Lemma 5.3.2, since in this case the differential

equation no longer has a smoothing property.

Lemma 5.3.3. Assume that u0 ∈ H4
ū(Ω) then for η = u − ū where u is the trajectory for

the H2-gradient flow equation, η ∈ L∞(H4
#(Ω)) and in particular

⋃
t≥1{η(t)} is compact

in H2
#(Ω).

Proof. For simplicity, without loss of generality, we take γ = 1. We can then rewrite

Definition 4.2.4 as

〈[(∆ + I)2 + I]ut + [(∆ + I)2 + I]u, v〉 = 〈(δ + 1)u− u3, v〉 ∀v ∈ H2
#(Ω). (5.14)

We use the Galerkin approximation (4.6).

Testing the Galerkin approximation of (5.14) with A1η
N = A1(uN − ū) ∈ H2

#(Ω)

we obtain

〈A1u
N
t +A1u

N , A1η
N 〉 =

〈
(δ + 1)uN −

(
uN
)3
, A1η

N
〉
.

Since A1η
N ∈ H2

#(Ω) we have

〈A1η
N
t +A1η

N , A1η
N 〉 = 〈fN , A1η

N 〉 (5.15)

where

fN = (δ + 1)uN −
(
uN
)3
.

Using Young’s inequality on (5.15) we have

1

2

d

dt

∥∥A1η
N
∥∥2

L2(Ω)
+
∥∥A1η

N
∥∥2

L2(Ω)
≤ 1

2

∥∥fN∥∥2

L2(Ω)
+

1

2

∥∥A1η
N
∥∥2

L2(Ω)
,
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which rearranges as

d

dt

∥∥A1η
N
∥∥2

L2(Ω)
+
∥∥A1η

N
∥∥2

L2(Ω)
≤
∥∥fN∥∥2

L2(Ω)

≤
∥∥fN∥∥2

H2(Ω)

≤
(

(δ + 1)
∥∥uN∥∥

H2(Ω)
+
∥∥uN∥∥3

H2(Ω)

)2

≤ C0,

where we have used that H2(Ω) is a Banach algebra in the third line and we have used that

‖uN‖H2(Ω) is bounded uniformly in t and N , which follows by taking the N → ∞ limit of

(4.10), in the final line.

Applying Grönwall’s inequality we obtain

∥∥A1η
N
∥∥2

L2(Ω)
≤
∥∥A1η

N (0)
∥∥2

L2(Ω)
+ C0. (5.16)

We can bound the right-hand norm by

∥∥A1η
N (0)

∥∥
L2(Ω)

≤
∥∥∆2ηN (0)

∥∥
L2(Ω)

+ 2
∥∥∆ηN (0)

∥∥
L2(Ω)

+ 2
∥∥ηN (0)

∥∥
L2(Ω)

≤ 2
∥∥ηN (0)

∥∥
H4(Ω)

. (5.17)

From the assumption η0 = u0− ū ∈ H4
#(Ω) we can use (5.17) and take the limit N →∞ in

(5.16) to obtain that for all t > 0 there exists a C > 0 such that

‖A1η(t)‖L2(Ω) ≤ C. (5.18)

We can also find a bound for the H4-norm of η

‖η‖2H4(Ω) ≤ C4

(
‖(∆ + I)2η‖2L2(Ω) + ‖η‖2L2(Ω)

)
≤ C4

(∥∥(∆ + I)2η
∥∥2

L2(Ω)
+ 2‖(∆ + I)η‖2L2(Ω) + ‖η‖2L2(Ω)

)
= C4‖A1η‖2L2(Ω) (5.19)

where the first inequality follows from Lemma C.2.4.

Therefore from (5.18) and (5.19) we have η ∈ H4
#(Ω). Since η is bounded in H4

#(Ω),

by the compact embedding of H4
#(Ω) in H2

#(Ω), the union of η is pre-compact in H2
#(Ω)

and thus since the space is closed
⋃
t≥1{η(t)} is compact in H2

#(Ω).

Remark 5.3.2. If we use the test function vN = A1∆pηN for 0 < p ≤ 2 in (5.15) we can

prove η ∈ H4+p(Ω) if we choose u0 ∈ H4+p(Ω).
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5.4 Conclusion

In this chapter we have demonstrated that the trajectories produced by the L2-, H−1- and

H2-gradient flows introduced in the previous chapter converge to critical points.
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Chapter 6

Semi-Discretisation of H2-Flow

We wish to discretise the gradient flow given by Definition 4.2.4 in both space and time so

that we can implement a computational scheme for the minimisation problem (P) (page

37). We first discretise in time. Space discretisation is undertaken in Chapter 8. After

introducing a time-discrete formulation of the H2-gradient flow equation we give the con-

ditions under which this algorithm is stable and converges a critical point. The method we

formulate is a variable-metric steepest descent algorithm, see [NW06, Equation (3.2)].

6.1 Steepest Descent-Type Algorithm

6.1.1 Forward Euler Method

A simple method for discretising partial differential equations is the forward Euler method.

In this case we approximate ut as vn = (un+1 − un)/τn where τn > 0. The discretisation of

the gradient flow equation (4.1) using the forward Euler method is〈
un+1 − un

τn
, w

〉
H

=
〈
− (∆ + I)

2
un + δun − (un)3, w

〉
∀w ∈ H2

#(Ω) (6.1)

where, on the left hand side, we use the L2-, H−1- and A-inner-products for the SH, PFC

and H2-gradient flow cases respectively. In this case, in the notation of Remark 4.2.5, this

scheme can be seen to be a steepest descent algorithm of the form discussed in [NW06,

Section 2.2].

The forward Euler method means that the un+1-term is only included in the H-

inner product on the left-hand side. This means that un+1 is no longer confined to the

space H2
ū(Ω) but is in the space H−2−2χ(Ω), χ = 0 for the SH case, χ = 1 for the PFC case

and χ = −2 for the H2-gradient flow case. In the H2-gradient flow case the H-inner-product

is equivalent to the H2-inner-product so we have no problem; however, in the SH and PFC

cases the H-inner product is not equivalent to the H2-inner product so the forward Euler

method is ill-defined. That is, in the case of the forward Euler discretisation of the Swift-
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Hohenberg and PFC equations, even for an initial condition u0 ∈ H2
ū(Ω), un is no longer

in a subset of H2(Ω) and hence we no longer have iterates for which the PFC functional is

bounded.

It can also be seen that, for the PFC and SH equations, the associated strong

equation is very stiff. We can use the same argument as [EW13]. An analogue of the

Courant-Friedrichs-Lewy condition, using a finite difference approximation of the Laplacian,

gives restrictive conditions on the time step in relation to the grid size (e.g. for the PFC

equation the time step is restricted by the sixth power of the grid size). For the remainder

of the chapter we investigate a variant of the forward Euler discretisation of the H2-flow.

6.1.2 Adaptive Forward Euler/ Line Search Method

In this chapter, rather than using a constant γ as in the previous chapters, we use an adaptive

γ that changes at each time-step. Recall that the aim of this thesis is to formulate algorithms

to minimise the PFC functional (3.1), i.e. to solve problem (P) (page 37). Changing γ at

each time-step means that our method is no longer a discretisation of Definition 4.2.4, but we

are able to show, in Figure 8.3, that an adaptive γ method is significantly faster than a fixed

γ method. The results of this chapter only require that γ is bounded, hence these results

also apply to the case where γ is fixed. Therefore we could just use a direct discretisation

of Definition 4.2.4 (e.g. (6.1)) but such a method would take longer to reach a solution to

(P)(page 37).

Given un we now define the discrete A(n)-norm and the adaptive constant γn.

Definition 6.1.1 (The A(n)-norm). For un ∈ L∞(Ω) we define the A(n)-norm by

‖η‖2A(n) := ‖∆η + η‖2L2(Ω) + γn‖η‖2L2(Ω),

where

γn = max
(
γmin, 3u2

n − δ
)
. (6.2)

The choice of γn is motivated by the form of the second variation (3.10). In Chapter

9 we show that in the pre-asymptotic regime, using a variable γn leads to a significant

numerical improvement, when compared to using an appropriately chosen constant γ (see

Figure 9.6). If, however, we are in the asymptotic regime then the effect of a variable γ is

less pronounced (see Figure 9.4).

By analogy with (6.1), we can now define a variable metric steepest descent iteration〈
un+1 − un

τn
, w

〉
A(n)

= −δF [un, w] , ∀w ∈ H2
#(Ω) (6.3)

where 〈·, ·〉A(n) is the inner product associated with the A(n) -norm, Definition 6.1.1. For

future reference we define vn := (un+1 − un)/τn. We note that this method is essentially a

method of the form of [NW06, Equation (3.2)].
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We now prove that the A(n)-norm is an equivalent norm to the H2-norm and there-

fore that (6.3) is well-defined.

Lemma 6.1.1. For un ∈ H2(Ω) the A(n)-norm is equivalent to the A1-norm, Definition

3.1.2, (and hence to the H2-norm). More precisely, ∃C̃b, C̃u > 0 that depend on γmin and

on ‖un‖L∞(Ω), such that for all v ∈ H2(Ω),

C̃b‖v‖2A1
≤ ‖v‖2A(n) ≤ C̃u‖v‖2A1

.

In particular, (6.3) is well-posed.

Proof. Recalling that the A-norm, Definition 4.2.3, is equivalent to the H2-norm (Lemma

4.2.1), therefore all we require is that γn is bounded.

We can show that for all C1 > 0 there exists a C = C(C1) such that γn ≤ C in

{‖u‖L∞(Ω) ≤ C1 }.
Recall the definition of γn (6.2) for this to be bounded we need to bound 3u2

n.

Clearly

u2
n =

1

|Ω|

∫
Ω

u2
ndx ≤ ‖un‖2L∞(Ω),

therefore

|γn| ≤ max(γmin, 3C
2
1 − δ) =: C.

6.1.3 Algorithm

We briefly describe the algorithm used for finding the sequence {un}n∈N generated by (6.3).

This algorithm is similar to [NW06, Algorithm 11.4]. Recall that δ and ū are fixed model

parameters.

Algorithm 6.1.1.

(0) INPUT u0, τmax < 2, γmin > 0, 0 < Θ < 1/2

(1) FOR n = 0, 1, 2, . . .

(2) γn = max
(
γmin, 3u2

n − δ
)
, τn = τmax

(3) SOLVE 〈vn, w〉A(n) = −δF [un, w] for all w ∈ H2
#(Ω)

(4) WHILE F [un + τnvn] > F [un]−Θτn‖δF [un]‖2(A(n))−1

(5) τn ← τn/2

(6) un+1 = un + τnvn
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The condition for energy reduction such that the while condition of step (4) is satis-

fied is known as the Armijo condition. Steps (4) and (5) are equivalent to the backtracking

line search of [NW06, Algorithm 3.1].

In the numerical implementation of Chapter 8 we will use a more refined method

in step (5). In particular we will use a cubic interpolation to find τn and we will use τn to

formulate our initial guess for τn+1 in step (2).

We now state a theorem that gives us the rate of convergence of a sequence defined

through Algorithm 6.1.1. This theorem is the main result of this chapter and the rest of the

chapter will be dedicated to proving it.

Theorem 6.1.1. Let u0 ∈ H4
ū(Ω) then we have

(a) Algorithm 6.1.1 is well-defined. That is, it produces a sequence {un}n∈N ⊂ H2
ū(Ω).

(b) There exists θ ∈
(
0, 1

2

]
and ũ ∈ H2

ū(Ω) such that δF [ũ] = 0 and

‖un − ũ‖H2(Ω) ≤ C

νn, θ = 1
2

n−
θ

1−2θ , θ < 1
2

where C > 0 and ν ∈ (0, 1).

6.2 Energy Stability and Convergence of Residual

We want to show that Algorithm 6.1.1 produces a sequence un that converges to a critical

point of the PFC functional. First we need to show that for, a given n and un, the while

loop starting at line (4) terminates. This means that for small enough τn we want to show

that the Armijo condition of line (4) is fulfilled.

We therefore seek bounds for the energy difference.

Proposition 6.2.1. Let un ∈ H2
ū(Ω), τn > 0 and ṽ ∈ H2

#(Ω), then

F [un + τnṽ]−F [un] ≤ τ2
n

2
‖∆ṽ + ṽ‖2L2(Ω) +

3τ2
n

2
‖un‖2L∞(Ω)‖ṽ‖

2
L2(Ω)

+ τ3
n‖un‖L∞(Ω)‖ṽ‖3L3(Ω) +

τ4
n

4
‖ṽ‖4L4(Ω) + τnδF [un, ṽ].

(6.4)

Proof. Using the first variation (3.9) we can write the energy difference (3.11), for all ṽ ∈
H2

#(Ω), as

F [un + τnṽ]−F [un] =
τn

2

2
‖∆ṽ + ṽ‖2L2(Ω −

τn
2δ

2
‖ṽ‖2L2(Ω) +

3τn
2

2
‖unṽ‖2L2(Ω)

+ τn
3

∫
Ω

unṽ
3dx+

τn
4

4
‖ṽ‖4L4(Ω) + τnδF [un, ṽ].

75



6.2. ENERGY STABILITY CHAPTER 6. SEMI-DISCRETISATION OF H2-FLOW

We can re-write this energy decrease as an inequality. For all ṽ ∈ H2
#(Ω), we have

F [un + τnṽ]−F [un] ≤ τn
2

2
‖∆ṽ + ṽ‖2L2(Ω) +

3τn
2

2
‖un‖2L∞(Ω)‖ṽ‖

2
L2(Ω)

+ τn
3‖un‖L∞(Ω)‖ṽ‖3L3(Ω) +

τn
4

4
‖ṽ‖4L4(Ω) + τnδF [un, ṽ],

where we have discarded the purely negative term associated with δ.

To obtain our desired energy reduction we have the following proposition (which

follows from the Riesz representation theorem), which links vn to the first variation.

Proposition 6.2.2. Let h ⊇ H2
#(Ω) be a Hilbert space where the embedding is dense. Let

vn be given by 〈vn, ϕ〉h = −δF [un, ϕ] for all ϕ ∈ H2
#(Ω) then

‖vn‖h = ‖δF [un]‖h∗ .

We can now obtain stability of the sequence {un} given by Algorithm 6.1.1.

Proposition 6.2.3. Let un ∈ H2
ū(Ω), then there exist constants c1 = c1(‖un‖L∞(Ω)), c2 =

c2(‖un‖L∞(Ω)) such that, if

τn ≤ c1
τn‖vn‖A(n) ≤ c2

then the Armijo condition is satisfied with Θ = 1/2 (and hence for any θ ∈ (0, 1/2)), i.e.,

F [un + τnvn]−F [un] ≤ −1

2
τn‖vn‖2A(n) = −1

2
τn‖δF [un]‖2(A(n))−1 . (6.5)

Proof. From Lemmas 3.1.1 and 6.1.1 we obtain the following bounds

‖∆v + v‖L2(Ω) ≤ ‖v‖H2(Ω) ≤ CH‖v‖A(n) ,

‖v‖L2(Ω) ≤ ‖v‖H1(Ω) ≤ CH‖v‖A(n) ,
(6.6)

where CH > 0 is a constant and the second set of inequalities follows by the fact that

H2(Ω) ⊂ H1(Ω) ⊂ L2(Ω).

Consider Proposition 6.2.1 and recall the interpolation of Hölder’s inequality which

allows us to approximate the L3-term, Lemma C.2.5, we can therefore write the change in

the energy functional as, for all ṽ ∈ H2
#(Ω),

F [un + τnṽ]−F [un] ≤ τn
2

2
‖∆ṽ + ṽ‖2L2(Ω) +

3τn
2

2
‖un‖2L∞(Ω)‖ṽ‖

2
L2(Ω)

+ τn
3‖un‖L∞(Ω)‖ṽ‖L2(Ω)‖ṽ‖2L4(Ω) +

τn
4

4
‖ṽ‖4L4(Ω)

+ τnδF [un, ṽ].
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Recall Ladyzhenskaya’s inequality in d-dimensions, Lemma C.2.1, using this and defining

ṽ = vn by (6.3) we have

F [un + τnvn]−F [un] ≤ τn
2

2
‖∆vn + vn‖2L2(Ω) +

3τn
2

2
‖un‖2L∞(Ω)‖vn‖

2
L2(Ω)

+ τn
3‖un‖L∞(Ω)‖vn‖3H1(Ω) +

τn
4

4
‖vn‖4H1(Ω) − τn‖vn‖

2
A(n) .

(6.7)

where we have used H1(Ω) ⊂ L2(Ω) in the cubic term.

We desire the energy decrease to be proportional to the ‖vn‖2A(n) -term, i.e. (6.5).

Using (6.7) with (6.6) to bound the vn-norms we can obtain an upper bound for the func-

tionals. Setting this upper bound to less than the right-hand side of (6.5) and re-arranging

we have

τ2
n

(
1 + 3‖un‖2L∞(Ω)

)
2

(CH‖v‖A(n))
2

+
τ4
n

4
(CH‖v‖A(n))

4
+ τ3

n‖un‖L∞(Ω) (CH‖v‖A(n))
3

≤ 1

2
‖vn‖2A(n)τn.

Cancellation of ‖vn‖2A(n)τn gives

τn

(
1 + 3‖un‖2L∞(Ω)

)
C2
H

2
+
τ3
nC

4
H

4
‖vn‖2A(n) + C3

Hτ
2
n‖un‖L∞(Ω)‖vn‖A(n) ≤

1

2
.

We can reduce this to two conditions

τn

(
1 + 3‖un‖2L∞(Ω)

)
C2
H ≤

1

2
, (6.8)

C4
H

4
(τn‖vn‖A(n))2 + ‖un‖L∞(Ω)C

3
H(τn‖vn‖A(n)) ≤

1

4τn
. (6.9)

Clearly the first condition gives us the existence of the upper bound for τn. (6.8) also gives

us a lower bound for τ−1
n . Hence (6.9) simplifies to

C4
H

4
(τn‖vn‖A(n))2 + ‖un‖L∞(Ω)C

3
H(τn‖vn‖A(n)) ≤

(
1 + 3‖un‖2L∞(Ω)

)
C2
H

2

which is satisfied if τn‖vn‖A(n) is small enough.

Remark 6.2.1. Using Definition 6.1.1 and Lemma 3.1.2 we can find an explicit value for

CH . Then following through the proof of Proposition 6.2.3 with explicit upper bounds gives
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us the conditions

τn ≤
min(1, γmin)

10
(

1 + 3‖un‖2L∞(Ω)

) ,

τn‖vn‖A(n) ≤

√
3 min(1, γmin)

(
1 + 3‖un‖2L∞(Ω)

)
4
√

5
.

Statement (a) of Theorem 6.1.1 now follows from Proposition 6.2.3.

Remark 6.2.2. The constants c1 and c2 of Proposition 6.2.3 depend on ‖un‖L∞(Ω). Specif-

ically, we have c1 → 0 as ‖un‖L∞(Ω) →∞. In practice, e.g. in the simulations of Chapters

8 and 9, we see that ‖un‖L∞(Ω) = O(‖u0‖L∞(Ω)). Therefore we expect that the constants c1

and c2 of Proposition 6.2.3 depend only on ‖u0‖L∞(Ω). Since the energy is decreasing (6.5)

and the ‖un‖L∞(Ω) is bounded by the energy (Proposition 3.1.3) we know that ‖un‖L∞(Ω) is

bounded for all n, however this bound may depend on |Ω|.

We want the sequence {un}n∈N generated by Algorithm 6.1.1 to converge to an

equilibrium point. As a first step we prove that δF [un]→ 0.

Lemma 6.2.1. For any sequence {un}n∈N generated by Algorithm 6.1.1, we have

‖δF [un]‖H−2
# (Ω) → 0 as n→∞.

Moreover, there exists τmin > 0 such that τn ≥ τmin for all n ∈ N.

Proof. The method used is similar to that used for a general line search algorithm, see

[NW06, Pages 38-39]. An interesting aspect is that we obtain τn ≥ τmin as a consequence of

‖δF [un]‖H−2
# (Ω) → 0, whereas normally one obtains ‖δF [un]‖H−2

# (Ω) → 0 from the fact that

τn ≥ τmin.

Re-arranging the bound on the difference between the functionals, from Proposition

6.2.3, and using that F [un] is decreasing in n we have

1

2

∞∑
n=0

τn‖vn‖2A(n) ≤ F [u0]− inf
n
F [un]. (6.10)

We want the right-hand side to be bounded. This is clearly true in a bounded domain using

the fact that the PFC energy functional (3.1) is bounded below in this case, i.e.

F [u] ≥ −(δ + 1)2|Ω|.

This bound follows from the lower bound for the energy in Lemma 3.1.2 by discarding the

purely positive term.
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Therefore from (6.10) we have

∞∑
n=0

τn‖vn‖2A(n) <∞. (6.11)

From Proposition 6.2.3 we know that if τn ≤ c1 and τn‖vn‖A(n) ≤ c2 or equivalently if

τn‖vn‖A(n) ≤ min(c2, c1‖vn‖A(n) , τmax‖vn‖A(n))

then the Armijo condition (6.5) is satisfied. By inspecting steps (4) and (5) of Algorithm

6.1.1, we deduce that

τn‖vn‖A(n) ≥
1

2
min(c2, c1‖vn‖A(n) , τmax‖vn‖A(n)). (6.12)

Using this lower bound and (6.11) we obtain

∞∑
n=0

1

2
min (c1, c2‖vn‖A(n) , τmax‖vn‖A(n)) ‖vn‖A(n) ≤

∞∑
n=0

τn‖vn‖2A(n) <∞.

Therefore we have that ‖vn‖A(n) min(c1‖vn‖A(n)/2, , τmax‖vn‖A(n)/2, c2/2) converges

to 0 and hence ‖vn‖A(n) → 0 and also, by Proposition 6.2.2, ‖δF [un]‖(A(n))−1 converges to

0. Since, from Proposition 6.2.2 and vn ∈ H2
#(Ω), the (A(n))−1-norm is an equivalent norm

to the H−2
# -norm we have ‖δF [un]‖H−2

# (Ω) → 0.

Using (6.12) and ‖vn‖A(n) → 0 we have for sufficiently large n

τn ≥
1

2
min

(
c2, τmax,

c1
‖vn‖A(n)

)
≥ min(c2, τmax)

2
.

Hence τn is bounded below.

6.3 Convergence to Equilibrium

As in Theorem 5.0.2 we want to use a  Lojasiewicz inequality to obtain rates of convergence.

By analogy with Theorem 5.1.1 in addition to the  Lojasiewicz inequality, Theorem 5.0.1,

we need compactness of the sequence {un}n∈N.

Lemma 6.3.1. Consider the sequence generated by Algorithm 6.1.1. If u0 ∈ H4
ū(Ω) then

the iterates ηn = un−ū are bounded in H4
#(Ω) for all n ∈ N and hence the sequence {ηn}n∈N

is compact in H2
#(Ω).
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Proof. The H2-gradient flow (6.3) can be rewritten as, ∀ϕ ∈ H2
#(Ω),

〈∆un+1,∆ϕ〉 = −2〈∆un+1, ϕ〉 − (1 + γn)〈un+1, ϕ〉+ (1− τn)〈∆un,∆ϕ〉

+ 2(1− τn)〈∆un, ϕ〉+ ((1 + γn)− τn(1− δ))〈un, ϕ〉 − 〈τnu3
n, ϕ〉.

This is clearly an equation of the form (3.14) where ηn+1 = un+1 − ū and

fn = −2∆un+1−(1+γn)un+1+(1−τn)∆2un+2(1−τn)∆un+((1+γn)−τn(1−δ))un−τnu3
n.

Consider the case n = 0 we know that u1 ∈ H2
ū(Ω) (by the construction in step (6) of

Algorithm 6.1.1 and the fact that vn ∈ H2
#(Ω) through Proposition 6.2.2 and Lemma 3.1.4)

and by assumption u0 ∈ H4
ū(Ω). From Algorithm 6.1.1 we know that |τn| is bounded. Hence,

fn ∈ L2
per(Ω) and therefore through Lemma 3.3.2 u1 − ū ∈ H4

#(Ω) and thus u1 ∈ H4
ū(Ω).

Induction gives us that un ∈ H4
ū(Ω) for all n ∈ N.

We also know that (6.3) can be rewritten as

〈A1un+1, ϕ〉 = (1− τn)〈A1un, ϕ〉+ 〈gn, ϕ〉 ∀ϕ ∈ H2
#(Ω) (6.13)

where

gn = −(γn − 1)un+1 + ((γn − 1) + τn(1 + δ))un − τnu3
n.

Since we have a uniform bound on the un in H2(Ω) for all n ∈ N and H2(Ω) is a Banach

algebra then we have a uniform bound on gn in L2(Ω), i.e. ‖gn‖L2(Ω) ≤ C for all n ∈ N.

Taking the L2-norms of both sides of the strong form of (6.13) we have

‖A1un+1‖L2(Ω) ≤ (1− τn)‖A1un‖L2(Ω) + C. (6.14)

From Lemma 6.2.1, we have τn ≥ τmin for n ∈ N. From step (0) of Algorithm 6.1.1 we have

τn ≤ τmax < 2 for all n ∈ N. Therefore, for all i, we have

|1− τi| ≤ max(|1− τmin|, |1− τmax|) =: θ < 1.

Using θ to bound (1− τn) for all n induction on (6.14) gives us

‖A1un+1‖L2(Ω) ≤ θn+1‖A1u0‖L2(Ω) + C

(
1 +

n∑
i=1

θi

)
.

Using this, (5.17) and (5.19), we have

1

C4
‖un+1‖H4(Ω) ≤ 2θn+1‖u0‖H4(Ω) + C

(
1 +

1

1− θ

)
.

We now follow the method of [Lev12, Theorems 4.1 and 4.2] to prove a general
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result on the rate of convergence. We establish this more general result as we can also use

it directly in Chapter 7.

Lemma 6.3.2. Consider a sequence {un}n∈N which is compact in H2
ū(Ω) and obeys the

conditions

Cen‖un+1 − un‖2H2(Ω) ≤ F [un+1]−F [un] (6.15)

‖δF [un]‖H−2
# (Ω) ≤ CdF‖un+1 − un‖H2(Ω) (6.16)

where Cen, CdF > 0.

There exists θ ∈
(
0, 1

2

]
and ũ ∈ H2

ū(Ω) such that δF [ũ] = 0 and

‖un − ũ‖H2(Ω) ≤ C

νn, θ = 1
2

n−
θ

1−2θ , θ < 1
2

where C > 0 and ν ∈ (0, 1).

Proof. We first prove the compactness of the ω-limit set. We then prove a uniform Lo-

jasiewicz inequality for points in this set. We can use the  Lojasiewicz inequality, (6.15) and

(6.16) to show the sequence converges to the minima. Finally we can obtain the stated rates

of convergence.

Step 1. Compactness of the ω-limit set.

We define the set of limit points

Γ :=

{
lim
j→∞

unj
∣∣{unj} converges in H2(Ω)

}
.

Γ is closed (since this is an ω-limit set; this follows from [Chi06, Proposition 1.167]). Since

the sequence un is compact, Γ is non-empty.

Using (6.15) and (6.16) and summing, since F [un] is decreasing in n, we have

Cen

CdF

∞∑
n=0

‖δF [un]‖2
H−2

# (Ω)
≤ F [u0]− inf

n
F [un] <∞.

Since the PFC functional has a minimum, Theorem 3.2.1, we have

Cen

CdF

∞∑
n=0

‖δF [un]‖2
H−2

# (Ω)
<∞

and hence ‖δF [un]‖H−2
# (Ω) → 0.

By definition for all ũ ∈ Γ, there exists a sequence unj → ũ in H2
ū(Ω). Therefore

δF [ũ] = limj→∞ δF [unj ] = 0.
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For all ũ ∈ Γ, since F [un] is decreasing in n, we have

F [ũ] = lim
j→∞

F [unj ] = lim
n→∞

F [un] =: F̃ .

If ũ ∈ Γ we have δF [ũ] = 0 this can be re-arranged to the weak form of ∆2η = f

(i.e. (3.14)) where η = ũ− ū and

f = −2∆ũ− (1− δ)ũ− ũ3. (6.17)

Therefore from Lemma 3.3.2 we have ũ ∈ H4(Ω). From (3.7) we have that, for ũ ∈ Γ,

‖ũ‖H2(Ω) ≤ C‖u0‖H2(Ω), for some C > 0. Using that H2(Ω) is a Banach algebra and (6.17)

we have a uniform bound on f , that is

‖f‖L2(Ω) ≤ (2 + |1− δ|)‖ũ‖H2(Ω) + ‖ũ‖3H2(Ω).

Hence we have a uniform bound on the H4-semi-norm and on ‖ũ‖H2(Ω) and thus we have a

uniform bound on ‖ũ‖H4(Ω). Therefore Γ is compact in H2
ū(Ω) and non-empty.

Step 2. Uniform  Lojasiewicz inequality.

Since the  Lojasiewicz inequality holds for critical points, Theorem 5.0.1, we can

apply it to every point in Γ. Therefore for all ũ ∈ Γ there exist constants θũ, cũ, ρũ > 0 such

that

∀v ∈ H2
ū(Ω) ‖ũ− v‖H2(Ω) ≤ ρũ ⇒ cũ|F [v]− F̃|1−θũ ≤ ‖δF [v]‖H−2

# (Ω).

Since Γ is compact we can obtain a finite subcover of Γ. That is there exist ũi ∈ Γ,

i = 1, . . . , I and constants θi, ci, ρi > 0 such that

Γ ⊆
I⋃
i=1

B ρi
2

(ũi)

and ∀v ∈ H2
ū(Ω), i = 1, . . . , I we have

‖ũi − v‖H2(Ω) ≤ ρi ⇒ ci|F [v]− F̃|1−θi ≤ ‖δF [v]‖H−2
# (Ω). (6.18)

Let θ = min θi, for 0 < s ≤ 1 we have

s1−θi

s1−θ =
s−θi

s−θ
≥ 1. (6.19)

Let s0 = 2 max((δ + 1)2|Ω|, |F [u0]|) from (6.19) we have there exists ĉi such that for all

s ∈ (0, s0) we have

s1−θi ≥ ĉis1−θ. (6.20)

From (3.13) we have F [v], F̃ ≥ −(δ + 1)2|Ω|. Since from (6.15) the energy is

decreasing we have F [un] ≤ F [u0] for all n ∈ N. Using this we have |F [v] − F̃| ≤
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2 max((δ + 1)2|Ω|, |F [u0]|). Therefore from (6.20) for any i ∈ I we have

ĉi|F [v]− F̃|1−θ ≤ |F [v]− F̃|1−θi .

From this and (6.18), for all i ∈ I and v ∈ H2(Ω) such that ‖ũi − v‖H2(Ω) ≤ ρi, we have

ĉi|F [v]− F̃|1−θ ≤ 1

mini ci
‖δF [v]‖H−2

# (Ω).

Therefore if we define c = 1/(min ci min ĉi) we have

‖ũi − v‖H2(Ω) ≤ ρi ⇒ |F [v]− F̃|1−θ ≤ c‖δF [v]‖H−2
# (Ω).

Finally, let dist(v,Γ) ≤ min
(
ρi
2

)
:= ρΓ, then we have

dist(v,Γ) ≤ ρΓ ⇒ |F [v]− F̃|1−θ ≤ c‖δF [v]‖H−2
# (Ω).

Step 2′. We wish to show that d(un,Γ)→ 0 as n→∞.

Assume this is not true then there exists a subsequence unj and a constant ε > 0

such that, ∀nj and ∀ũ ∈ Γ

‖ũ− unj‖H2(Ω) ≥ ε. (6.21)

Using that the sequence {un} is compact in H2
ū(Ω) the subsequence unj is compact and

hence has a convergent subsequence {unjk} with limk→∞ unjk ∈ Γ. Therefore there exists

a ũ such that lim ‖unjk − ũ‖H2(Ω) → 0 which contradicts (6.21).

In conclusion, there is an n0 ∈ N such that for n > n0,

|F [un]− F̃|1−θ ≤ c‖δF [un]‖H−2
# (Ω). (6.22)

Step 3. Convergence to equilibrium.

We now wish to show that there exists a ũ ∈ Γ such that un → ũ strongly in H2(Ω).

First we define

ek =

∞∑
l=k

‖ul+1 − ul‖H2(Ω). (6.23)

From Step (1) we know there exists unj → ũ such that ũ ∈ Γ using this, the triangle

inequality and (6.23) we have

‖uk − ũ‖H2(Ω) ≤ ek ∀k. (6.24)

It remains to prove that ek is finite for all k.

Consider the decreasing energy R[u] = F [u] − F̃ > 0. From Young’s inequality we

have

R[uk]1−θR[uk+1]θ ≤ (1− θ)R[uk] + θR[uk+1].
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Re-arranging this and using that R is always positive, we have

R[uk]θ −R[uk+1]θ ≥ θ

R[uk]1−θ
(R[uk]−R[uk+1]) .

If we choose k ≥ k0 = n0 then the  Lojasiewicz inequality (6.22) holds and we have

R[uk]θ −R[uk+1]θ ≥ θ (R[uk]−R[uk+1])

c‖δF [uk]‖H−2
# (Ω)

≥ θCen

‖uk+1 − uk‖2H2(Ω)

c‖δF [uk]‖H−2
# (Ω)

≥ θCen

cCdF
‖uk+1 − uk‖H2(Ω) (6.25)

where we use (6.15) in the second line and (6.16) in the last line.

We can see from (6.23) and (6.25), since R is decreasing, that

θCen

cCdF
ek ≤ R[uk]θ − inf

k
R[uk]θ

≤ R[uk]θ

≤
[
c‖δF [uk]‖H−2

# (Ω)

] θ
1−θ

, (6.26)

where we have used that limk→∞ F [uk] = F̃ in the second inequality and the  Lojasiewicz

inequality (6.22) in the third inequality.

Since ‖δF [un]‖H−2
# (Ω) → 0 it follows that ek → 0.

Step 4 Convergence rates.

We now use the relationship (6.26) to obtain the stated rates of convergence.

Substituting (6.16) into (6.26) we have

θcCen

CdF
ek ≤

[
cCdF‖uk+1 − uk‖H2(Ω)

] θ
1−θ

≤ [cCdF]
θ

1−θ [ek − ek+1]
θ

1−θ .

Taking the (1− θ)/θ power of both sides and rearranging we have that there is a constant

ν > 0 such that

ek+1 ≤ ek − νe
1−θ
θ

k . (6.27)

In the case θ = 1/2 by induction we obtain

ek+1 ≤ (1− ν)ke0.
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Using (6.15), (6.23) and (6.24) we have

‖uk − ũ‖H2(Ω) ≤ (1− ν)k

√
F [u0]− F̃

Cen

and thus since |F̃ | ≤ max(|F [u0]|, (δ + 1)2|Ω|) we have the θ = 1/2 rate.

In the case θ 6= 1/2 we define

yk := c̃k−p.

Hence we have

yk+1 = c̃(k + 1)−p

≥ c̃k−p
(

1− p

k

)
≥ yk

(
1− pc̃−

1
p y

1
p

k

)
. (6.28)

Let p = θ/(1− 2θ) then from (6.27) we have

ek+1 ≤ ek
(

1− νe
1
p

k

)
.

If we choose k0 and let yk0
≥ ek0

then from (6.28) we have

yk0+1 ≥ yk0

(
1− pc̃−

1
p y

1
p

k0

)
.

We choose c̃ > (ν/p)−p and then choose c̃ large enough so that

1− νe
1
p

k0
≤ 1− pc̃−

1
p y

1
p

k0
.

Therefore we have that

yk0+1 ≥ yk0

(
1− pc̃−

1
p y

1
p

k0

)
≥ ek0

− νe
1−θ
θ

k0

≥ ek0+1

where the final line follows from (6.27). Using induction we have that yk ≥ ek for k ≥ k0.

Fixing ek0 we can then increase c̃ so that yk ≥ ek for k < k0.

Defining y0 = y1 = c̃ and (6.24) then we have

‖uk − ũ‖H2(Ω) ≤ c̃k−
θ

1−2θ
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and hence we obtain the result.

We can now draw together the results of Sections 6.2 and 6.3 to prove part (b) of

Theorem 6.1.1.

Proof of Theorem 6.1.1 (b)

Proof. Consider the sequence given by the Algorithm 6.1.1. Clearly this is compact from

Lemma 6.3.1. From Lemma 6.2.1 and step (0) of Algorithm 6.1.1, τn is bounded above and

below for all n ∈ N. Using this, the equivalence of the A(n)-norm and the H2-norm, Lemma

6.1.1, gives us (6.15) from Proposition 6.2.3 and (6.16) from Proposition 6.2.2. Hence by

Lemma 6.3.2 we have part (b) of Theorem 6.1.1.

Remark 6.3.1. Consider an h-norm which is an equivalent norm to the H2-norm. Then

for the sequence un given by〈
un+1 − un

τn
, w

〉
h

= −δF [un, w] ∀w ∈ H2
#(Ω)

with u0 ∈ H4
ū(Ω) we can obtain exact analogues to the results of this chapter. As noted

above, our choice of h-norm, Definition 6.1.1, is motivated by its relation to the second

variation (3.10).

6.4 Conclusion

In this chapter we introduced a time discretisation for the H2-gradient flow given by Def-

inition 4.2.4. We introduced an adaptive method for choosing γ and defined an inductive

algorithm for finding the discrete solution un. We then proved that this iterative scheme is

stable and that the residual converges to zero. Finally we used the  Lojasiewicz inequality

to show the iterate converges to a critical point and gave rates of convergence.
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Chapter 7

Convex-Concave Splitting

In the previous chapter we introduced a time discretisation for the H2-gradient flow given

by Definition 4.2.4. We now wish to discretise the gradient flows given by Definitions 4.2.1

and 4.2.2 in time so that we can implement analogous computational schemes for the min-

imisation problem (P) (page 37). (As noted in Chapter 6 we undertake space discretisation

for (4.1) in Chapter 8). In this chapter we introduce a time-discrete formulation of both the

SH and PFC equations (Definitions 4.2.1 and 4.2.2) and give the conditions under which

this algorithm is stable and convergent. We will also show that, qualitatively, the methods

developed in this chapter are similar to that of Chapter 6.

7.1 Time Discretisation

In Subsection 6.1.1 we introduced the forward Euler method as a way of discretising (4.1).

In that section we argued that this method can not be used to discretise the PFC or Swift-

Hohenberg equations since the discretisation is ill-defined. We also noted that after space

discretisation these equations are stiff and that a restriction on the time-step can be derived

from the CFL condition.

Therefore, in this section, we consider different methods of discretising Definitions

4.2.1 and 4.2.2. We first consider the implicit method of time discretisation and then proceed

to consider two semi-implicit methods based on a convex-concave splitting.

7.1.1 Backward Euler Method

A method for unconditional stability is the backward Euler method. Using the backward

Euler method with H = L2(Ω) for the Swift-Hohenberg case and H = H−1(Ω) for the PFC

case we have〈
un+1 − un

τn
, w

〉
H

= 〈− (∆ + I)
2
un+1 + δun+1 − (un+1)3, w〉 ∀w ∈ H2

#(Ω).

87



7.1. TIME DISCRETISATION CHAPTER 7. CONVEX-CONCAVE SPLITTING

Since the non-linear term is one of the implicit terms, at each iteration we have to use

Newton’s method to find the variable at the new time step and thus each iteration will be

computationally expensive. Also, since we are now solving a weak equation of the form

f(un+1) = un where f is not convex we only have a locally unique solution if the time-step

is small.

7.1.2 Convex-Concave Splitting

We want a scheme that is stable for any τn, therefore we consider a different method for time

discretisation of the two gradient flows, the Swift-Hohenberg equation, Definition 4.2.1, and

the PFC equation, Definition 4.2.2. Specifically, since we have excluded the fully implicit

(backward Euler) and fully explicit (forward Euler) schemes, we consider a semi-implicit

scheme.

A common approach, used for the Cahn-Hilliard equation in [Eyr98] and used for

the PFC equation in [EW13] and [WWL09], is the convex-concave splitting. We focus on

the approach of [EW13]. The idea is to write the functional as the sum of a concave and

convex part. Taking the convex part implicitly and the concave part explicitly gives us

energy stability of the solution. The fact that the implicit part is now a convex function

means the non-linear equation to be solved at each time-step has a unique solution and

hence we no longer have the time-step restriction of the backward Euler method.

A simple convex-concave splitting, used in [WWL09, Equation (1.5)], is F [u] =

Fc[u]−Fe[u], where

Fc[u] =
1

2
‖∆u‖2L2(Ω) +

1− δ
2
‖u‖2L2(Ω) +

1

4
‖u‖4L4(Ω),

Fe[u] = ‖∇u‖2L2(Ω)

are clearly convex functionals (the notation Fc and Fe is borrowed from [WWL09] and

[Eyr98] where c refers to the contractive part of the energy and e refers to the expansive

part of the energy). In this case the semi-implicit time-stepping, with H = L2(Ω) for the

Swift-Hohenberg case and H = H−1(Ω) for the PFC case, can be written as〈
un+1 − un

τn
, w

〉
H

= 〈−∆2un+1 − (1− δ)un+1 − (un+1)
3 − 2∆un, w〉 ∀w ∈ H2

#(Ω).

Unconditional stability of such schemes is given in [WWL09, Theorem 3.6] and an error

estimate is given in [WWL09, Theorem 3.11]. However, this scheme requires us to solve a

non-linear equation, which is expensive, particularly for spectral methods.

To deal with this issue [EW13] suggest a different convex-concave splitting by adding

and subtracting an L2-norm.

Definition 7.1.1 (Convex-Concave Splitting).

F [u] = FC,Cstab
[u]−FE,Cstab

[u],
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where, for Cstab > 0, we have

FC,Cstab
[u] =

1

2
‖∆u+ u‖2L2(Ω) −

δ

2
‖u‖2L2(Ω) +

Cstab

2
‖u‖2L2(Ω),

FE,Cstab
[u] =

Cstab

2
‖u‖2L2(Ω) −

1

4
‖u‖4L4(Ω),

which is equivalent to [EW13, Equations (1.7) and (1.8)].

Remark 7.1.1. This convex-concave splitting can be generalised by using a stabilisation

term ‖Lu‖L2(Ω) instead of ‖u‖L2(Ω). L is a general differential operator such that ‖Lu‖L2(Ω) ≥
c‖u‖L2(Ω) for some c > 0. A version of this generalisation, where the stabilisation term is

replaced by the H1-semi-norm, is seen in [EW13, Equation (1.7) and (1.8)] .

We now give two lemmas on the properties of these functionals.

Lemma 7.1.1. For large enough Cstab the functional FC,Cstab
[u] is convex.

Lemma 7.1.2. If C1 > 0 and Cstab ≥ 3C2
1 then FE,Cstab

is convex in {‖u‖L∞(Ω) ≤ C1}.

Proof. We follow the method outlined in the proof of [EW13, Theorem 2.1].

We calculate the second variation by finding the second order terms in v of the

Taylor expansion of FE,Cstab
at u+ εv. The functional expansion is then

FE,Cstab
[u+ εv] =

Cstab

2
‖u‖2L2(Ω) + Cstabε

∫
Ω

uvdx+
Cstab

2
ε2‖v‖2L2(Ω) −

1

4
‖u‖4L2(Ω)

− ε
∫

Ω

u3vdx− 3

2
ε2‖uv‖2L2(Ω) − ε

3

∫
Ω

uv3dx− 1

4
ε4‖v‖4L2(Ω).

Thus the second variation is

〈δ2FE,Cstab
[u]v, v〉 =

(
Cstab‖v‖2L2(Ω) − 3‖uv‖2L2(Ω) − 6ε

∫
Ω

uv3dx− 3ε2‖v‖4L2(Ω)

)
ε=0

= Cstab‖v‖2L2(Ω) − 3‖uv‖2L2(Ω).

We have a lower bound for the second variation, using that u has a maximum, Lemma 3.1.3,

which follows from the boundedness of the energy. That is,

〈δ2FE,Cstab
[u]v, v〉 ≥ Cstab‖v‖2L2(Ω) − 3‖u‖2L∞(Ω)‖v‖

2
L2(Ω)

≥ 0,

if ‖u‖2L∞(Ω) ≤
Cstab

3 . Therefore if ‖u‖L∞(Ω) ≤ C1 we have that FE,Cstab
[u] is convex if

Cstab ≥ 3C2
1 .

On a bounded domain we have that u has a maximum, Lemma 3.1.3; therefore, from

Lemmas 7.1.1 and 7.1.2, for a sufficiently large constant Cstab both FC,Cstab
and FE,Cstab

are convex on {‖u‖L∞(Ω) ≤ C1} (see also [EW13, pages 4-5]). Hence we have stability and

we no longer have to solve the non-linear part implicitly.
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We note that the first variation of the functionals of Definition 7.1.1 are given as

δFC,Cstab
[u, v] = 〈(∆ + I)2u− δu+ Cstabu, v〉,

δFE,Cstab
[u, v] = 〈Cstabu− u3, v〉.

At each step we want to choose Cstab as small as possible whilst preserving the con-

vexity of FE,Cstab
[un+1] and FC,Cstab

[un+1]. The sufficient condition on Cstab for convexity

obtained from Lemma 7.1.2 depends on the iteration number. Therefore we choose a Cstab

that depends on the iteration number and relabel this Cn = Cstab.

Since Cn now depends on the iteration number it acts like an inverse time step.

Therefore, and also for the sake of simplicity, we take a constant τ = τn.

The time-stepping scheme for gradient flow in a general H-norm can be written,

using the notation vn = (un+1 − un)/τ , as

〈vn, w〉H = −δFC,Cn [un+1, w] + δFE,Cn [un, w] ∀w ∈ H2
#(Ω). (7.1)

We can now write the weak form of the discretised Swift-Hohenberg equation.

Definition 7.1.2 (Discrete Convex-Concave SH Equation). ∀v ∈ H2
#(Ω)〈

un+1 − un
τ

, v

〉
L2(Ω)

= −
〈
(∆ + I)2un+1 − δun+1 + Cn(un+1 − un) + u3

n, v
〉
.

We can also write the weak form of the discretised PFC equation.

Definition 7.1.3 (Discrete Convex-Concave PFC Equation). ∀v ∈ H2
#(Ω)〈

un+1 − un
τ

, v

〉
H−1(Ω)

= −
〈
(∆ + I)2un+1 − δun+1 + Cn(un+1 − un) + u3

n, v
〉
.

In [EW13, Equation (2.6)] the constant Cn appears to be domain dependent. By

contrast in Remark 6.2.2 we suggested that the corresponding n-dependent parameter τn

has an upper bound that depends only on ‖u0‖L∞(Ω). We show in Lemma 7.2.1 that we

actually have similar constraints on Cn in the asymptotic regime.

We first recall theorems for stability and convergence (see also [EW13]). We first

state the theorem for stability from [EW13, Theorem 2.1].

Theorem 7.1.1. [([EW13, Theorem 2.1]) Stability].

Let δ < 1. For any u0 : Ω→ R with finite energy F there exists a Cn such that the

schemes given by Definition 7.1.2 and Definition 7.1.3 are stable for any τ > 0. That is,

F [un+1] ≤ F [un], ∀n ∈ N

∃ U > 0 such that ‖un‖L∞(Ω) ≤ U ∀n ∈ N.
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We also state the theorem that gives an error estimate for the discretisation, from

[EW13, Theorem 2.3].

Theorem 7.1.2. [[EW13, Theorem 2.3]) Error Estimate].

Suppose the Swift-Hohenberg or Phase Field Crystal equation is solved by a smooth

spatially periodic function u : [0, T ]× Ω→ R for some T ∈ (0,∞). We denote the solution

to the scheme Definition 7.1.2 or 7.1.3 by un, n = 0, 1, . . . where u0 = u(0) and Cn is chosen

according to Theorem 7.1.1. Then there exists a constant C̃ > 0 independent of τ such that

‖u(nτ)− un‖L2(Ω) ≤ C̃τ

for all n with nτ ≤ T .

Despite this theorem, most practitioners are only interested in the case of large τ

(even in [EW13, Section 5] τ = 1 is used).

We note that the proofs of Theorems 7.1.1 and 7.1.2 are analogous to those in

[EW13], however care must be taken to ensure the average of u is conserved in the SH case.

In the following discussion we show that we can rewrite the discrete convex-concave

flow as a discrete gradient flow in a norm equivalent to the H2-norm. In Chapter 6 we

considered a discrete H2-gradient flow given by (6.3). This means that there is a close

qualitative link between the two schemes (6.3) and (7.1).

Fix τ > 0. Let H = L2(Ω) for the Swift-Hohenberg case and H = H−1(Ω) for the

PFC case. For Cn ≥ δ we can define a new norm

‖v‖2Hcon,n
:= ‖v‖2H + τ

[
‖∆v + v‖2L2(Ω) + (Cn − δ)‖v‖2L2(Ω)

]
. (7.2)

We first show that the convex-concave splitting scheme (7.1) can be rewritten as a discrete

gradient flow in theHcon,n-norm. We then show in Lemma 7.1.3 that, for Cn > δ, theHcon,n-

norm is an equivalent norm to the H2-norm. This means that (7.3) can be considered as a

discrete gradient flow for vn = (un+1 − un)/τ in a norm equivalent to the H2-norm.

The convex-concave splitting (7.1) can be rearranged as, ∀ϕ ∈ H2
#(Ω),〈

un+1 − un
τ

, ϕ

〉
H

+ 〈(∆ + I)un+1, (∆ + I)ϕ〉+ (Cn − δ)〈un+1, ϕ〉 = Cn〈un, ϕ〉 − 〈u3
n, ϕ〉

this can be rewritten using the first variation as, ∀ϕ ∈ H2
#(Ω),

〈vn, ϕ〉H + τ〈(∆ + I)vn, (∆ + I)ϕ〉+ τ(Cn − δ)〈vn, ϕ〉 = −δF [un, ϕ] (7.3)

where vn = (un+1 − un)/τ . Using the definition of the Hcon,n-norm (7.2) we can re-write

(7.3) as

〈vn, ϕ〉Hcon,n
= −δF [un, ϕ] ∀ϕ ∈ H2

#(Ω).

To highlight the similarity to the H2-gradient flow we now show that the Hcon,n-

91



7.1. TIME DISCRETISATION CHAPTER 7. CONVEX-CONCAVE SPLITTING

norm is equivalent to the H2-norm which is the result of the following lemma.

Lemma 7.1.3. There exists C > 0 such that for all Cn <∞ with Cn ≥ C + δ, ‖v‖Hcon,n
is

equivalent to the H2-norm. That is, for fixed n, there exist Ccon,l, Ccon,u,n > 0 such that for

all v ∈ H2(Ω)

Ccon,l‖v‖2H2(Ω) ≤ ‖v‖
2
Hcon,n

≤ Ccon,u,n‖v‖2H2(Ω).

We note that Ccon,l is independent of n for Cn > C + δ.

Also from this we can show that

‖δF [un]‖H−1
con,n

≤

√
1

Ccon,l
‖δF [un]‖H−2

# (Ω). (7.4)

Proof. Since for the PFC (H = H−1(Ω)) and SH (H = L2(Ω)) case, H2(Ω) ⊂ H we have,

∀v ∈ H2(Ω),

‖v‖2H2(Ω) ≤ ‖v‖
2
H + ‖v‖2H2(Ω) ≤ C(Ω)‖v‖2H2(Ω) (7.5)

where C(Ω) > 0 is a domain dependent constant.

Let 0 < ε ≤ 1, therefore using Lemma 3.1.1, (7.5) and (7.2) we have an equivalent-

norm to H2(Ω)

ετ

5
‖v‖2H2(Ω) ≤ ‖v‖

2
H + τε

[
‖(∆ + I)v‖2L2(Ω) + ‖v‖2L2(Ω)

]
≤ ‖v‖2Hcon,n

≤ (max(2τ, 1)C(Ω) + τ(Cn − δ)) ‖v‖2H2(Ω).

(7.6)

where from the second line onwards we use that Cn is sufficiently large, i.e. Cn > δ + ε. In

the final line we use Lemma 3.1.1 and (7.5).

Consider the dual norm

‖δF [un]‖H−1
con,n

= sup
ϕ∈H2

#(Ω)

|〈δF [un], ϕ〉|
‖ϕ‖Hcon,n

≤ sup
ϕ∈H2

#(Ω)

√
5

τε

|〈δF [un], ϕ〉|
‖ϕ‖H2(Ω)

where we have used the lower bound (7.6) in the second line. Using Cauchy-Schwartz on

our upper bound for the dual yields the result, that is

‖δF [un]‖H−1
con,n

≤ sup
ϕ∈H2

#(Ω)

√
5

τε

‖δF [un]‖H−2
# (Ω)‖ϕ‖H2(Ω)

‖ϕ‖H2(Ω)

≤
√

5

τε
‖δF [un]‖H−2

# (Ω).

Remark 7.1.2. Since both (6.3) and (7.1) can be reformulated as discrete gradient flows

in a norm that is equivalent to the H2-norm we might expect both methods to perform
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similarly. However, the simulations of Chapters 8 and 9 suggest that the discretisation of

Algorithm 6.1.1 reaches a minimum faster than the discretisation of Algorithm 7.1.1. Also

we see that for the large simulations undertaken in Sections 9.1 and 9.2 the method of

(7.1) converges faster in the pre-asymptotic regime whereas Algorithm 6.1.1 converges faster

in the asymptotic regime. In Section 9.2 we also obtain qualitatively different minima for

Algorithm 6.1.1 and the method of (7.1).

7.1.3 Algorithm

We briefly describe the algorithm used for finding the sequence {un}n∈N generated by (7.1).

We assume a fixed δ, ū and τ > 0. We let H = L2(Ω) for the Swift-Hohenberg case and

H = H−1(Ω) for the PFC case.

Algorithm 7.1.1.

(0) INPUT u0, τ > 0, 0 < Θ < 1/2

(1) FOR n = 0, 1, 2, ..

(2) Cn = 3‖un‖2L∞(Ω) + δ

(3) SOLVE 〈vn, w〉Hcon ,n = −δF [un, w] ∀w ∈ H2
#(Ω)

(4) WHILE F [un + τvn] > F [un]− τΘ‖δF [un]‖2
H−1

con ,n

(5) Cn ← 2Cn

(6) SOLVE 〈vn, w〉Hcon ,n
= −δF [un, w] ∀w ∈ H2

#(Ω)

(7) un+1 = un + τvn

This algorithm is very similar to Algorithm 6.1.1. Again the while condition is an

Armijo condition. Step (5) is equivalent to the backtracking of Algorithm 6.1.1 since from

(7.3) Cn acts like an inverse time-step. The main difference between Algorithm 6.1.1 and

7.1.1 is that in the while loop of Algorithm 7.1.1 we have to recalculate vn every time we

change Cn whereas in Algorithm 6.1.1 for each while loop vn is independent of τn.

We now state a theorem that gives us the rate of convergence of a sequence defined

through Algorithm 7.1.1. The method of obtaining this result is very similar to the method

for obtaining Theorem 6.1.1. This theorem is the main result of this chapter and the rest

of the chapter is dedicated to its proof.

Theorem 7.1.3. Let u0 ∈ H2
ū(Ω), then we have

(a) Algorithm 7.1.1 is well-defined. That is, it produces a sequence {un}n∈N ⊂ H2
ū(Ω).
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(b) There exists θ ∈
(
0, 1

2

]
and ũ ∈ H2

ū(Ω) such that δF [ũ] = 0 and

‖un − ũ‖H2(Ω) ≤ C

νn, θ = 1
2

n−
θ

1−2θ , θ < 1
2

where C > 0 and ν ∈ (0, 1).

7.2 Energy Stability and Convergence of Residual

To obtain analogous results to those obtained for the H2-gradient flow in Chapter 6 we need

to prove energy decrease. This also ensures that step (4) of Algorithm 7.1.1 will be fulfilled.

Lemma 7.2.1. Let the sequence {un}n∈N be defined through (7.1). Also take 0 < Θ < 1/2

and fix the constant τ > 0.

There exists a C̃ = C̃(δ, ‖un‖L∞(Ω)) > 0 such that for Cn ≥ C̃ we have energy

decrease, i.e.,

F [un + τvn]−F [un] ≤ −Θτ‖vn‖2Hcon,n
= −Θτ‖δF [un]‖2

H−1
con,n

. (7.7)

In particular we have

F [un + τvn]−F [un] ≤ −Θ̃τ‖δF [un]‖2
H−2

# (Ω)
(7.8)

and

F [un + τvn]−F [un] ≤ −Θ̃τ‖vn‖2H2(Ω) (7.9)

where Θ̃(τ) > 0.

Proof. We split the proof into two steps. First we show that the energy decrease (7.7) is

satisfied if we satisfy certain bounds on Cn and the L3- and L4-norms. We then show that

for large enough Cn the bounds on L3- and L4-norms are satisfied.

Step 1. Let H = L2(Ω) for the SH case and H = H−1(Ω) for the PFC case. We recall

the definition of the Hcon,n-norm (7.2), that is

‖v‖2Hcon,n
= ‖v‖2H + τ‖∆v + v‖2L2(Ω) + τ(Cn − δ)‖v‖2L2(Ω).

We want the energy decrease of (7.7). Clearly the equality in this line follows from Propo-

sition 6.2.2, hence we now prove (7.7) with the ‖v‖Hcon,n
form of the right hand side. We

recall (6.4) with ṽ = vn defined by 〈vn, w〉Hcon,n
= −δF [un, w] for all w ∈ H2

#(Ω) and τn = τ

for all n. Setting this upper bound for the energy difference as less than the upper bound
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we desire for (7.7) and re-arranging we obtain

τ2

2
‖∆vn + vn‖2L2(Ω) +

3τ2

2
‖un‖2L∞(Ω)‖vn‖

2
L2(Ω) + τ3‖un‖L∞(Ω)‖vn‖3L3(Ω) +

τ4

4
‖vn‖4L4(Ω)

≤ (1−Θ)τ‖vn‖2Hcon,n
.

If we substitute in the definition of the Hcon,n-norm (7.2) we have

τ2

2
‖∆vn + vn‖2L2(Ω) +

3τ2

2
‖un‖2L∞(Ω)‖vn‖

2
L2(Ω) + τ3‖un‖L∞(Ω)‖vn‖3L3(Ω) +

τ4

4
‖vn‖4L4(Ω)

≤ (1−Θ)τ
[
‖vn‖2H + τ‖∆vn + vn‖2L2(Ω) + τ(Cn − δ)‖vn‖2L2(Ω)

]
which simplifies to(

3‖un‖2L∞(Ω) − (Cn − δ)
)
τ2

2
‖vn‖2L2(Ω) + τ3‖un‖L∞(Ω)‖vn‖3L3(Ω) +

τ4

4
‖vn‖4L4(Ω)

≤
(

1

2
−Θ

)[
τ2‖∆vn + vn‖2L2(Ω) + τ2(Cn − δ)‖vn‖2L2(Ω) + τ‖vn‖2H

]
+
τ

2
‖vn‖2H .

(7.10)

We use the Hcon,n-norm to simplify this condition. The three conditions

3‖un‖2L∞(Ω) ≤ (Cn − δ), (7.11)

‖vn‖3L3(Ω) ≤
(1− 2Θ)

4τ2‖un‖L∞(Ω)
‖vn‖2Hcon,n

, (7.12)

‖vn‖4L4(Ω) ≤
(1− 2Θ)

τ3
‖vn‖2Hcon,n

. (7.13)

are now sufficient to obtain (7.10). We note that condition (7.11) is automatically satisfied

for a sequence generated by Algorithm 7.1.1 due to line (2).

Step 2. To prove that, for Cn sufficiently large, (7.12) and (7.13) are satisfied we first show

that ‖vn‖L2(Ω)‖vn‖H2(Ω) decreases as Cn increases. We then show that both ‖vn‖L3(Ω) and

‖vn‖L4(Ω) can be bounded by powers of ‖vn‖L2(Ω)‖vn‖H2(Ω). Finally we can combine these

to show that, for Cn sufficiently large, (7.12) and (7.13) are satisfied.

Step 2 a) We wish to show that ‖vn‖L2(Ω)‖vn‖H2(Ω) → 0 as Cn →∞. We first prove an

upper bound ‖vn‖L2(Ω)‖vn‖H2(Ω) in terms of Cn and ‖vn‖Hcon,n and then prove that there

is a uniform upper bound for ‖vn‖Hcon,n .

Let 0 < ε ≤ 1. From Young’s inequality we have

2τ

√
(Cn − ε− δ)ε

5
‖vn‖H2(Ω)‖vn‖L2(Ω) ≤ τ(Cn − ε− δ)‖vn‖2L2(Ω) +

τε

5
‖vn‖2H2(Ω)

≤ ‖vn‖2Hcon,n
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where the final inequality follows from Lemma 3.1.1 and (7.2). This re-arranges to

‖vn‖H2(Ω)‖vn‖L2(Ω) ≤
√

5

2τ
√
ε(Cn − ε− δ)

‖vn‖2Hcon,n
. (7.14)

In order to justify the claim that ‖vn‖H2(Ω)‖vn‖L2(Ω) → 0 as Cn → ∞ we must

show that ‖vn‖Hcon,n has a uniform upper bound for un uniformly bounded in H2(Ω). From

Proposition 6.2.2 we have

‖vn‖Hcon,n
= ‖δF [un]‖H−1

con,n
.

Using this with (7.4) we have

‖vn‖Hcon,n ≤

√
1

Ccon,l
‖δF [un]‖H−2

# (Ω) (7.15)

using this bound in (7.14) we have

‖vn‖H2(Ω)‖vn‖L2(Ω) ≤
√

5

2τCcon,l

√
ε(Cn − ε− δ)

‖δF [un]‖2
H−2

# (Ω)
. (7.16)

From Lemma 3.1.4 we can see

‖δF [un]‖H−2
# (Ω) ≤

(
2 + |δ|+ ‖un‖2H2(Ω)

)
‖un‖H2(Ω). (7.17)

Therefore in the set ‖un‖H2(Ω) ≤ C, C > 0 we have that ‖δF [un]‖H−2
# (Ω) is bounded.

Therefore from (7.15) and (7.17) there exists a Ĉ > 0 such that

‖vn‖Hcon,n
≤ Ĉ.

Substituting this bound into (7.14) we have

‖vn‖H2(Ω)‖vn‖L2(Ω) ≤
√

5Ĉ2

2τ
√
ε(Cn − ε− δ)

(7.18)

and therefore clearly ‖vn‖H2(Ω)‖vn‖L2(Ω) → 0 as Cn →∞.

Step 2 b) We now wish to show that both ‖vn‖L3(Ω) and ‖vn‖L4(Ω) are bounded by

powers of ‖vn‖L2(Ω)‖vn‖L4(Ω).

Recall the L3-norm, from Lemma C.2.5 we have

‖vn‖3L3(Ω) ≤ ‖vn‖L2(Ω)‖vn‖2L4(Ω) (7.19)

We therefore consider the L4-norm, from Ladyzhenskaya’s inequality (Lemma C.2.1) and
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H2(Ω) ⊂ H1(Ω) ⊂ L2(Ω) we have (see Lemma C.2.6)

‖vn‖L4(Ω) ≤
8
√

2‖vn‖
1
2

H2(Ω)‖vn‖
1
2

L2(Ω). (7.20)

Using this upper bound and H2(Ω) ⊂ L2(Ω) in (7.19) we have (see Lemma C.2.7)

‖vn‖3L3(Ω) ≤
4
√

2‖vn‖
3
2

H2(Ω)‖vn‖
3
2

L2(Ω). (7.21)

Clearly substituting (7.14) and (7.18) into (7.21) and (7.20) we obtain

‖vn‖3L3(Ω) ≤
4
√

2(5)
3
2 Ĉ‖vn‖2Hcon,n

(2τ)
3
2 (ε(Cn − ε− δ))

3
4

,

‖vn‖4L4(Ω) ≤
5
√

2Ĉ2‖vn‖2Hcon,n

(2τ)2ε(Cn − ε− δ)
.

From these equations it is clear that if Cn is large enough (7.12) and (7.13) are

satisfied.

We now show that we can obtain (7.8) and (7.9) from (7.7).

Since we can choose a finite Cn such that (7.12) and (7.13) are satisfied, the second

form of the energy decrease (7.8) follows from (7.7) by using (7.1) and the equivalence of

the Hcon,n-norm and the H2-norm for Cn sufficiently large, Lemma 7.1.3. In particular this

means Θ̃ > 0.

The third inequality (7.9) follows simply from the lower bound of Lemma 7.1.3 and

0 < ε ≤ 1.

Statement (a) of Theorem 7.1.3 now follows.

We want the sequence {un}n∈N generated by Algorithm 7.1.1 to converge to an

equilibrium point. We can obtain this result using Lemma 7.2.1 from the following lemma.

Lemma 7.2.2. For any sequence {un}n∈N generated by Algorithm 7.1.1, we have

‖δF [un]‖H−2
# (Ω) → 0 as n→∞.

Proof. As in Lemma 6.2.1, the method used is similar to that used for a general line search

algorithm, see [NW06, Pages 38-39].

Re-arranging the bound on the difference between the functionals from Lemma 7.2.1

(7.8), since F is decreasing, we have

Θ̃τ

∞∑
n=0

‖δF [un]‖2
H−2

# (Ω)
≤ F [u0]− inf

n
F [un].

The result follows since we have chosen a fixed τ > 0 and from Lemma 7.2.1 Θ̃ > 0.
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Remark 7.2.1. Let 0 < ε ≤ 1. From (7.14), (7.16), (7.20) and (7.21) since ‖δF [un]‖H−2
# (Ω) →

0, for large enough n the conditions (7.12) and (7.13) will be satisfied for any Cn > δ + ε.

Therefore, in the asymptotic regime, only (7.11) is required for stability (as we can choose

ε ≤ 3‖un‖2L∞(Ω) since |ū| ≤ ‖un‖L∞(Ω)) which justifies the initial choice of Cn in line (2)

of Algorithm 7.1.1.

7.3 Convergence to Equilibrium

We are able to prove that the sequence {un} generated by Algorithm 7.1.1 is compact using

a similar method to Lemma 5.3.2.

Lemma 7.3.1. For all n ∈ N, n ≥ 1 the terms of the sequence un defined by Algo-

rithm 7.1.1 are bounded in H4(Ω). That is for ηn = un − ū in the case n ≥ 1 we have

supn∈N ‖ηn‖H4
#(Ω) <∞ and thus the sequence {ηn}n∈N,n≥1 is compact in H2

#(Ω).

Proof. Let χ = 0 for the SH case and χ = 1 for the PFC case and define

H1 := CnI +
(−∆)−χ

τ
.

From (7.14), (7.16), (7.20) and (7.21) we have that, for 0 < ε ≤ 1, there exists c3(‖δF [un]‖H−2
# (Ω)) ≥

0 such that (7.12) and (7.13) are satisfied if Cn ≥ δ + ε+ c3. Using (7.11) we have that the

Armijo condition (7.8) is satisfied if

Cn ≥ max(δ + ε+ c3, 3‖un‖2L∞(Ω) + δ).

Inspecting steps (4) and (5) of Algorithm 7.1.1 we have

Cn ≤ 2 max(δ + ε+ c3, 3‖un‖2L∞(Ω) + δ). (7.22)

Therefore, Cn is bounded above and below.

Now (7.1) can be re-written as, ∀v ∈ H2
#(Ω),

〈∆un+1,∆v〉 = −2〈∆un+1, v〉 − 〈((1− δ)I +H1)un+1, v〉+ 〈H1un, v〉 − 〈u3
n, v〉. (7.23)

Using ηn+1 = un+1 − ū ∈ H2
#(Ω), we can rewrite this equation as the weak form of

∆2ηn+1 = fn (i.e. (3.14)), where

fn = −2∆un+1 − ((1− δ)I +H1)un+1 +H1un − u3
n. (7.24)

We have un ∈ H2
per(Ω) for all n ∈ N, hence ∆un ∈ L2

per(Ω) and H1un ∈ H2
per(Ω)

for all n ∈ N. Additionally, since H2
per(Ω) is a Banach algebra, u3

n ∈ H2
per(Ω) for all n ∈ N.

Therefore, we have fn ∈ L2
per(Ω) for all n ∈ N.
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We now use Lemma 3.3.2 to obtain un+1 − ū ∈ H4
#(Ω) for all n ∈ N. Therefore for

n ≥ 1 we have un ∈ H4
ū(Ω).

Given (3.8), (7.17), (7.22), that H2(Ω) is a Banach algebra, and (7.24), there exists

a constant c4(‖un‖H2(Ω)) such that ‖fn‖L2(Ω) ≤ c4.

From (3.7), for a fixed domain size |Ω|, F [un+1] ≤ F [un] implies ‖un+1‖H2(Ω) ≤
‖un‖H2(Ω). The fact the energy is reducing follows from (7.8), therefore we know that

‖un‖H2(Ω) ≤ ‖u0‖H2(Ω) for all n ∈ N. Hence we have a uniform bound for fn that is there

exists a constant c5(‖u0‖H2(Ω)) such that

‖fn‖L2(Ω) ≤ c5 n ∈ N.

Using this bound from (7.23) and Lemma 3.3.2 we have a uniform bound on the H4-semi-

norm of un for all n ∈ N and since we already have a uniform bound on ‖un‖H2(Ω) for all

n ∈ N we now have a uniform bound on ‖un‖H4(Ω) for all n ∈ N.

By the compact embedding of H4
ū(Ω) in H2

ū(Ω), the sequence {un}n∈N,n≥1 is com-

pact in H2
ū(Ω).

The results that we have obtained in this chapter mean that we are now in a position

to use Lemma 6.3.2 to obtain convergence rates for the sequence {un}n∈N given by Algorithm

7.1.1, that is part (b) of Theorem 7.1.3.

Proof of Theorem 7.1.3 (b)

Proof. We use Lemma 6.3.2. We have three conditions to prove. The first is compactness

of the sequence {un}n∈N in H2
ū(Ω) which, since we are only interested in the n→∞ limit,

follows from Lemma 7.3.1. The second condition is a lower bound for the difference in the

PFC functional evaluated at successive elements of the sequence {un}n∈N in terms of the

H2-norm of the difference of these elements, i.e. (6.15), this is just the statement (7.9). The

final condition to check is an upper bound for ‖δF [un]‖H−2
# (Ω) in terms of the H2-norm of

the difference between successive iterates un+1 and un, i.e. (6.16). From Proposition 6.2.2

we have ‖vn‖Hcon,n
= ‖δF [un]‖H−1

con,n
, the lower bound (7.6) and the upper bound (7.4)

together with the fact that τ is constant then give us (6.16).

7.4 Conclusion

In this chapter we developed a variation on a numerical method proposed in [EW13] for

obtaining the solution of (P) (page 37). We obtained energy stability and convergence

results for this method using similar techniques to in Chapter 6. We also showed that

this scheme can be formulated as a semi-discrete gradient flow in a norm equivalent to the

H2-norm. We therefore note that the methods of Chapters 6 and 7 are qualitatively very

similar.
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Chapter 8

Implementation

In this chapter we describe an implementation of Algorithms 6.1.1 and 7.1.1 introduced in

Chapters 6 and 7. We first introduce the pseudo-spectral method, which we will use to

discretise our algorithms in space, and review the associated notation. We then describe

the implementation of the fully discrete schemes on some test problems. For all simulations

undertaken in this thesis we use MATLAB. We look at the convergence of the schemes with

respect to the number of spatial grid points and investigate a striking issue that arises when

the number of grid points is low. Finally we consider the convergence of the residual with

domain size.

8.1 Spatial Discretisations

Having discussed several methods of time discretisation in Chapters 6 and 7 we now proceed

with the discretisation in space. Space discretisation is necessary in order to implement our

algorithms computationally and therefore be able to numerically compare the different time

discretisation. For the purpose of clarity we will confine ourselves to two space dimensions.

Formulations in three space dimensions are completely analogous and we show basic three

dimensional simulations in Section 9.3.

As a first stage recall the periodic domain we introduced in Chapter 3, that is

Ω = (0, Lx)× (0, Ly)

where Lx and Ly are integer multiples of the length of the unit domain in the x and y

directions.

We let a be the unit length in the x-direction, i.e. the difference between two areas of

high density (which we call atoms) along the x-direction. We expect the minimum solution

will be a periodic triangular lattice. We consider the periodic cubic unit cell (see Figure

8.1a), i.e. the minimal rectangular subset of the lattice (henceforth we call this the unit

cell). Since we know this is the unit cell of a triangular lattice, we can see the difference
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between two successive atoms along the y-axis is
√

3a (the source of this
√

3 scaling can be

seen in Figure 8.1b, the distance between two rows of atoms can be seen to be twice the

height of an equilateral triangle of side length a, which is (
√

3/2)a by Pythagoras’ theorem).

Hence the unit domain can be written as

Ωuc = (0, a)× (0,
√

3a). (8.1)

We also wish to consider larger domains. It is clear that any domain composed of an integer

number of unit cells in the x- and y-directions has the right periodicity. We wish our domains

to be roughly square therefore, since
√

3/2 ≈ 0.87, we take half the number of unit domains

in the y-direction that we take in the x-direction. We therefore define our domain, for an

even integer L, by

ΩL = L(0, a)× L

2
(0,
√

3a). (8.2)

For convenience we define Ω1 as the unit cell that is Ω1 = Ωuc.

We now wish to discretise the domains. Since L/2 ∈ N, we can see that, if we

discretise the unit cell (8.1) we can translate this discretisation to the general domain (8.2).

For the unit cell we take the number of grid points to be

(N,M)

where N ∈ 2N is the number of spatial grid points along the x-axis and considering (8.1)

we define M = 2
⌈√

3N/2
⌉
. We require M and N to be powers of 2 in order to obtain

the O(N logN) computation time of MATLAB’s FFT function (a similar point is made on

[Tre00, page 24]).

Using N and M we now define the grid spacing along the x- and y-axes by

hx =
a

N
, hy =

√
3a

M
.

A co-ordinate point in our discrete domain is now given by (xi, yj) where i, j ∈ N and

xi = ihx and yj = jhy.

Having defined a discrete domain we can now introduce our method of obtaining a

spatially discrete approximation.

Due to the C∞-regularity (possibly even analyicity) of equilibria (see Lemma 3.3.3,

we discuss this issue more in Subsection 8.2.2), and the periodic boundary conditions we

use Fourier spectral methods. We also recall that the Fourier transform diagonalises the

Laplace operator (see (8.4)) which makes this method particularly convenient.

Because we have chosen a different scaling between the x-axis and the y-axis in the

case of the unit cell (8.1) as compared to the scaling used for the general domain (8.2) we
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define a new function M ′ where

LM ′ =

M, L = 1 (unit cell)

LM
2 , L > 1.

Since we have imposed periodic boundary conditions we know that our Fourier

modes are integers. To correspond to our discretisation of the domain we have the following

conditions on the two modes

−LN
2

+ 1 ≤k1 ≤
LN

2

−LM
′

2
+ 1 ≤k2 ≤

LM ′

2

where we note that we have chosen N,M ∈ 2N.

We can now define a basis for our approximations,

ϕk1,k2
(xi, yj) = exp

(
2πi

(
1

a
k1xi +

1√
3a
k2yj

))
,

where xi = ihx for i ∈ [0, LN ], yj = jhy for j ∈ [0, LM ′].

Following the one-dimensional example of [Tre00, Equations (3.2) and (3.3)] and the

equal-axis (i.e. N = M) example of [CHQZ88, Equation (9.7.6)] we can define the discrete

Fourier transform of u and then use this to give the spectral approximation of u ([LSL15,

Equation (6)] uses the same form but rescaled by 1/hxhy). That is,

Û(k1, k2) = hxhy

LN∑
i=1

LM ′∑
j=1

u(xi, yj)ϕk1,k2
(xi, yj)

U(xi, yj) =
2√

3a2L′2

∑
−NL2 +1≤k1≤NL2

∑
−LM′2 +1≤k2≤LM

′
2

Û(k1, k2)ϕk1,k2
(xi, yj)

(8.3)

where

L′ =


√

2 for the unit cell

L for the general domain.

We note the difference between the solution evaluated at the discrete points u(xi, yj) in the

first line of (8.3) and the discrete approximation U(xi, yj) in the second line of (8.3).

As noted in [Tre00, Page 24] for the purposes of implementation, in our notation,

MATLAB stores wavenumbers in the order 0,1, . . . , LN/2, - LN/2 +1, - LN/2 +2, . . . ,-1.

Henceforth we choose our iterates Un from the set SN (see [CHQZ88, Equation

(9.7.2)] and Lemma 4.3.2) defined by, k1, k2, i, j ∈ N, i ∈ [0, LN ], j ∈ [0, LM ′]

SN = span

{
ϕk1,k2

(xi, yj)

∣∣∣∣∣−LN/2 + 1 ≤ k1 ≤ LN/2,−LM ′/2 + 1 ≤ k2 ≤ LM ′/2,
xi = ihx, yj = jhy

}
.
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Differentiation in real space then becomes multiplication by polynomials of k in

Fourier space (see [Tre00, page 23]) which is a reason for choosing the method.

Following [EW13, Section 4.2] we wish to define the discrete analogues of the energy

and some of the norms introduced in Chapters 3, 6 and 7.

Definition 8.1.1 (The Discrete Inner Product and Lp-norms). For simplicity we index our

inner-products and norms by N where implicitly they depend on N and L.

Consider two LN ×LM ′ matrices, U and V . The discrete inner product is given by

(U, V )N = hxhy

LN∑
i=1

LM ′∑
j=1

U(xi, yj)V (xi, yj)

where xi = ihx, yj = jhy.

The discrete Lp-norm for 1 ≤ p < ∞ are given by (see [EW13, Equations (4.5)-

(4.6)])

‖U‖p
LpN

= (|U |p, I)N , where I is the LN × LM ′ identity matrix

and for p =∞ we have

‖U‖L∞N = max
i,j
|U(xi, yj)|.

The application of the Laplacian in discrete space can be obtained through the

discrete Fourier transform using (8.3),

∆U(xi, yj)

= − 2√
3a2L′2

(
2π

a

)2 ∑
−NL2 +1≤k1≤NL2

∑
−LM′2 +1≤k2≤LM

′
2

(
k2

1 +
k2

2

3

)
Û(k1, k2)ϕk1,k2

(xi, yj).

(8.4)

Next, we define the discrete energy, as in [EW13, Equation (4.11)].

Definition 8.1.2 (Discrete PFC Functional).

FN [U ] =
1

2
‖∆U + U‖2L2

N
− δ

2
‖U‖2L2

N
+

1

4
‖U‖4L4

N
.

Again, implicitly FN depends on the domain size L.

By direct analogy with Lemma 3.1.4, we can define the discrete first and second

variations, 〈δFN [U ], V 〉 and 〈δ2FN [U ]V, V 〉.
By analogy, with Definition 7.1.1 we define the discrete convex-concave splittings.

Definition 8.1.3 (Discrete Convex-Concave Splitting).

FN [U ] = FNC,Cn [U ]−FNE,Cn [U ],
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where, for Cn > 0, we have

FNC,Cn [U ] =
1

2
‖∆U + U‖2L2

N
− δ

2
‖U‖2L2

N
+
Cn
2
‖U‖2L2

N
,

FNE,Cn [U ] =
Cn
2
‖U‖2L2

N
− 1

4
‖U‖4L4

N
.

Again, implicitly these functionals depend on the domain size L.

Finally we define the discrete analogue of the A(n)-norm defined in Definition 6.1.1.

Definition 8.1.4 (Discrete A(n)-norm).

‖U‖2
A

(n)
N

= ‖∆U + U‖2L2
N

+ γn‖U‖2L2
N

where for γmin > 0 we have

γn = max
(
γmin, 3U2

n − δ
)
.

Again, implicitly this norm depends on the domain size L. For v ∈ H−2(Ω) we denote the

inverse norm by

‖v‖N,n = ‖v‖(
A

(n)
N

)−1 . (8.5)

Remark 8.1.1. Using this form of spatial discretisation one should be able to prove con-

vergence results for the fully discrete scheme that are analogous to the results we obtained

for the time discrete schemes in Theorems 6.1.1 and 7.1.3. Since the focus of this thesis is

time discretisation we don’t address this issue.

8.2 Review of Time Discretisations

We now consider the numerical implementation of the discrete versions of Algorithms 6.1.1

and 7.1.1. We will first consider methods of ensuring convergence through the choice of

Cn for the PFC and Swift-Hohenberg algorithms and through the choice of τn for the H2-

gradient flow based algorithm. Finally we use some simple numerical tests to compare

the methods outlined above and to choose an appropriate point to terminate the resulting

algorithms.

8.2.1 Adaptive Convex-Concave Splitting

The proof of [EW13, Theorem 2.1] and Theorem 7.2.1 show that if the constant Cn is

large enough then Algorithm 7.1.1 is well-defined. However, for the purposes of numerical

simulations we require a way to calculate an initial estimate for Cn. It is important to try

to optimise Cn as numerical tests suggest the larger the value of Cn the slower the rate of

convergence (which is also suggested by [EW13, Theorem 3.1]).
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Remark 7.2.1 motivates us to initially choose Cn as

Cn = 3‖Un‖2L∞N + δ. (8.6)

In the numerical simulations we undertake the initial choice of Cn (8.6) already

ensures energy decrease except in the case, given in Section 9.2, of random initial conditions

on a large domain. Even in the case of Section 9.2 the choice (8.6) ensures energy decrease

down to a residual of approximately 10−6.

We can see that for this numerical implementation the only change we need to make

to Algorithm 7.1.1 is discretisation in space. Hence, in the remainder of the thesis, when we

refer to Algorithm 7.1.1 we implicitly mean the discrete in space version of this algorithm.

8.2.2 Exponential Convergence

From [Tre00, Chapter 4] we know that for analytic functions we would obtain exponential

convergence of the spectral approximation and for C∞ functions the order of convergence is

super-algebraic. We know from Lemma 3.3.3 that the solution to the problem (P) (page 37)

is C∞; however, we do not prove that the solution is analytic. Nevertheless, the numerical

test shown in Figure 8.2 suggest exponential convergence of the energy.

For our first numerical simulations the basic test environment we use is the rectan-

gular unit cell (8.1). This test environment is shown below in Figure 8.1a.

Figure 8.1
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(a) We show the unit cell for
δ = −ū = 0.3. This is generated
using the Swift-Hohenberg equation on
the initial condition given in (8.11).
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(b) We show four unit cells (i.e. the do-
main Ω4 given by (8.2)) for δ = −ū =
0.3. This is also generated using the
Swift-Hohenberg equation on the initial
condition given in (8.11). From this di-
agram we can more easily see the trian-
gular form of the lattice.

We can see the convergence of the difference between minimum of the discrete PFC

functional FN [U ] at N and at N = N + 2 against the number of grid points in Figure 8.2,

which appears to be exponential. The increase near the end is probably due to the energy
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difference stagnating because we have reached computational accuracy.
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Figure 8.2: We show the reduction of energy with grid points. The error is calculated by
finding the difference between the energy of the minimiser at N grid points and the energy of
the minimiser at N + 2 grid points. The decline in error appears to be roughly exponential.
An exponential reduction is shown as a guide to the eye.

8.2.3 Line Search Method

We consider the case of the H2-gradient flow based approach of Chapter 6. As mentioned in

Subsection 6.1.3, we wish to improve the time-step selection in Algorithm 6.1.1. We make

two changes, first we change the initial choice of τ in line (2) and secondly we change how

we update τ in line (5).

We consider the case where in line (2) the initial choice of τ is motivated by the

value of τ at the previous time-step. Our initial choice of τn is motivated by [NW06, Page

59]. Specifically, we initialise the line search with

τn =

min
(

1, 1
‖δFN [U0]‖N,0

)
if n = 0

τn−1
‖δFN [Un−1]‖N,n
‖δFN [Un]‖N,n−1

otherwise,
(8.7)

where the dual norm is defined through (8.5).

To find a suitable τ we could use a back-tracking approach (e.g. [NW06, Algorithm

3.1]) or a more sophisticated cubic interpolation (see for example [NW06, Section 3.5]). In

the numerical simulations below, we choose the cubic interpolation, that is, at each iterate
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of the line search loop we update τn using

τn ← τn − τn

(
〈δFN [Un + τnVn], δFN [Un]〉N,n + h2 − h1

〈δFN [Un + τnVn], δFN [Un]〉N,n − ‖δFN [Un]‖2N,n + 2h2

)
(8.8)

where

h1 = ‖δFN [Un]‖2N,n + 〈δFN [Un + τnVn], δFN [Un]〉N,n −
3 [FN [Un + τnVn]−FN [Un]]

τn
,

h2 =
√
h2

1 − 〈δFN [Un + τnVn], δFN [Un]〉N,n‖δFN [Un]‖2N,n

and again the dual norm is defined through (8.5).

In Chapter 6 we showed that the back-tracking method is sufficient to ensure sta-

bility; however, we obtain faster convergence by using the cubic interpolation method, see

Figure 8.4. For convenience we now state the cubic line search algorithm we will use through-

out the rest of this thesis. Again δ and ū are fixed constants.

Algorithm 8.2.1.

(0) INPUT U0, γmin > 0, 0 < Θ < 1/2

(1) FOR n = 0, 1, 2, . . .

(2) γn = max
(
γmin, 3U2

n − δ
)

(3) INITIALISE τn using (8.7)

(4) UPDATE Vn = −
(
A

(n)
N

)−1

ΠδFN [Un]

(5) WHILE FN [Un + τnVn] > FN [Un]−Θτn‖δFN [Un]‖2N,n
(6) UPDATE τn using (8.8)

(7) Un+1 = Un + τnVn

Π in line (4) is defined by

Πd := d−−
∫

Ω

ddx (8.9)

and the dual norm in line (5) is defined through (8.5).

Motivated by (6.1) with H = A we want to consider the effect of the constant γ on

the rate of convergence. We define the constant γ as a function of u, i.e.

γ(u) = 3u2 − δ. (8.10)

Definition 6.1.1 and (3.10) suggest that our choice for γ should be γ = γ(u∗) where u∗ is

the solution to (P) (page 37). Obviously, we can not know a priori what u∗ is. As an
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approximation to u∗ we use the one mode solution of the PFC equation (see for example

[EG04, Equation (37)]), that is

uom(x, y) = −4

5

(
|ū|+ 1

3

√
15δ − 36ū2

)(
cos

(
2πy

a

)
cos

(
2πx

a
√

3

)
− 0.5 cos

(
4πx

a
√

3

))
+ ū

(8.11)

where again a is the unit length along the x-axis. The one mode solution lets us define the

fixed value of γ, γom = γ(uom) which can be shown to be positive.

The performance of an algorithm is measured using the number of fast Fourier

transforms (FFTs) as we expect this to be the slowest process in our algorithms if they are

fully optimised. We do not use the iteration number as in Algorithm 7.1.1 the while loop

(line (4)-(6)) may be very expensive since we may have to continually solve (7.3). Also we

will introduce a trust region (Algorithm E.1.1) which requires us to solve a sub-problem

(Definition E.0.1) at each iteration which can be very expensive. To clarify this issue for

the complex domain simulations (Subsection 8.2.6) and random initial condition simulations

(Section 9.2) we reproduce the convergence plots Figure 8.9 and 9.6 with time measured in

iteration number. For these simulations we also show that for the trust region algorithms

the number of FFTs per iteration changes dramatically. Since we are looking for critical

points, i.e. ‖δF [u]‖H−2
# (Ω) = 0, we consider the residual, i.e.

‖δFN [Un]− δFN [Un]‖L∞N

and look for values of Un where this residual is small. We use the L∞-norm as this norm

is independent of the domain size, is relatively easy to compute, and is also independent of

the numerical discretisation choice.

In Figure 8.3 we show the decrease of the residual plotted against the number of fast

Fourier transforms for γ = γom, γ = 1 and γ adaptive as in Definition 6.1.1. We start on a

unit domain with random initial conditions given by rand(x, y) − 0.5 + ū and set N = 16.

As noted in Remark 4.2.4 the rate of convergence for γ = γom constant is similar to the rate

of convergence for adaptive γ but slightly slower.

8.2.4 Choice of Line Search Algorithm

We wish to justify our choice of algorithms by comparing the speed of convergence for a

test problem on a small domain.

Specifically, we wish to show that the line search algorithm (Algorithm 8.2.1) is a

good choice. To do this we will compare Algorithm 8.2.1 to its analogue where line (6) is

replaced by a back-tracking scheme (i.e. τn ← τn/2) or by a quadratic approximation (see

[NW06, Equation (3.58)]). Finally we will compare these three line search algorithms to

their analogues with line (2) replaced by γn = γom for all n.

To compare these algorithms we look at the rates of convergence of the different
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Figure 8.3: Residual of the solution against number of FFTs, from random initial conditions
on a unit cell, using adaptive γ, γ = γom and γ = 1. For N = 16 and residual tolerence
10−7.

algorithms detailed above against the number of grid points. We take the initial number

of grid points to be 12, this will be justified in the next subsection. We start with random

initial conditions generated by the MATLAB function rand, i.e. rand−0.5 + ū. The same

initial conditions are used for all methods. We use the same termination criterion for all

algorithms, ∥∥δFN − δFN∥∥L∞N ≤ 10−7. (8.12)

For more stringent termination criteria, numerical round-off prevents us from checking the

Armijo condition. Hence this is the lowest residual tolerance we can sensibly use. We show

the number of FFTs required to satisfy (8.12) against grid size for the different line search

algorithms in Figure 8.4.

We can see, from Figure 8.4, that for all the methods of interpolating τn choosing

an adaptive γn rather than a fixed γ leads to a reduction in the number of FFTs required to

converge. Therefore, henceforth, we always use an adaptive γn. We can also see, from Figure

8.4, that the cubic interpolation is generally better than the other interpolation methods.

Also, since calculating the energy and the first variation can be done at the same cost (in

fast Fourier transforms) as just calculating the PFC functional, there is no real disadvantage

in using the cubic interpolation over using the quadratic interpolation.

Therefore, for the numerical simulations undertaken in the rest of this thesis we

chiefly consider three algorithms:

• Algorithm 8.2.1 for the line search method, with the cubic interpolation of [NW06,

Section 3.5]

• the discrete form of Algorithm 7.1.1 with H = L2(Ω) for the Swift-Hohenberg case,

• the discrete form of Algorithm 7.1.1 with H = H−1(Ω) for the PFC case.

In the next section we encounter an issue with the number of grid points which leads us to
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Figure 8.4: Number of FFTs required for convergence of the solution against grid size,
starting from random initial conditions, using the six line search methods generated from
Algorithms 8.2.1 by fixing γn = γom and replacing line (6) by a back tracking or quadratic
interpolation. For fixed residual tolerence 10−7.

introduce a trust region algorithm (Algorithm E.1.1) which will we also include in all the

remaining simulations.

In the simulations of Chapter 9 we will include simulations using Algorithm 8.2.1

with γn = γom for all n ∈ N in line (2) to justify the assertions of Subsection 6.1.2.

8.2.5 Convergence with Number of Grid Points

We now wish to compare the speed of convergence for the Algorithms 7.1.1 and 8.2.1 against

the number of grid points. We use exactly the same test problem as detailed in Subsection

8.2.4 with the termination criterion (8.12). However, as well as comparing the different

algorithms, we also start from a lower number of grid points, that is N = 4. The results are

shown in Figure 8.5.

We can see that for all the methods there is a drastic increase in the number of

FFTs when the number of grid points is small. This is the justification for starting at

N = 12 for Figure 8.4. To demonstrate that this issue can not be resolved simply by using

the full second variation we also tested a trust region method. More detail on the trust

region method used is given in Appendix E. The trust region algorithm, Algorithm E.1.1, is

also shown in Figure 8.5 and this demonstrates that for this method we still encounter the

same effect. For the purposes of comparison we include this algorithm in all the remaining

simulations.

We believe this “divergence” occurs because the translational invariance of the PFC

functional is broken by the discretisation. The translational invariance of the original PFC
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Figure 8.5: Number of FFTs required for convergence of the solution against grid size, start-
ing from random initial conditions, using the four different methods described in Algorithms
7.1.1, 8.2.1 and E.1.1. For fixed residual tolerence 10−7.

functional follows from Appendix B.The discretised PFC functional therefore has a minimum

associated with each of the grid points, while between each minimum there lies a saddle.

As the number of points grows the energy barrier between minima becomes smaller (and

eventually vanishes at the continuum) therefore the oscillation between different states ceases

to be an issue. The existence of a saddle point and the dependence of its energy on the

number of grid points are shown in the figure below, Figure 8.6a. We take one converged

solution U and translate all the points by one grid point UT , we then plot the energy of the

linear combination of the two solutions tU + (1− t)UT against t ∈ (0, 1). We plot the figure

for 6, 8 and 10 grid points.

We see that the initial minimum and the perturbed solution have the same energy

and that between them lies a saddle. We also see that the saddle is less pronounced for higher

numbers of grid points as suggested in the previous paragraph. The second figure, Figure

8.6b, shows that the difference between successive maxima of the interpolation declines with

the number of grid points. Since we interpolate between two minima we do not necessarily

find the true saddle and hence the decline in energy difference is not exponential.

The “divergence” in the number of FFTs when the number of grid points is low can

be treated in several ways. The first and most obvious method is to take the number of

grid points to be large enough so that this problem never occurs, e.g. greater than ten (this

is what we did in Subsection 8.2.4). The issue with only using a relatively large number of

grid points is that we wish to consider large domain sizes and if we require ten grid points

on the x-axis per unit cell, which is much larger than the minimum required (at least two

according to [Tre00, page 67]), then calculations especially in three dimensions will be very
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Figure 8.6
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results for 6, 8 and 10 grid points.
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computationally expensive. A second possible solution and the one we adopt in this chapter

is to choose the residual tolerance large enough so that the algorithm terminates before an

accuracy where the saddle affects the iteration. The obvious disadvantage of increasing the

residual tolerance we terminate the algorithm at when the number of grid points is low is

that it affects the accuracy of the solution.

To negate this issue of accuracy we choose the residual we converge at to get smaller

with increasing number of grid points until the residual becomes so small that the energy

change reaches computational accuracy, i.e. 10−7. Experimentally, we found that

∥∥δFN − δFN∥∥L∞N ≤ max

(
10−2 × exp

[
− 6

hx

]
, 2× 10−7

)
(8.13)

is a suitable choice.

The corresponding graph is shown in Figure 8.7. We can see that the preconditioned

line search method introduced in Chapter 6 scales in a similar way to the other methods.

An appropriate choice of parameters could mean the other methods perform substantially

better; however, the results here are at least indicative that this method is promising.

From Figure 8.7 we can see that the number of FFTs required for convergence seems

to increase with grid size N . This is even the case at high grid point numbers when the

upper bound (8.13) is uniformly 2 × 10−7 (this occurs for hx < 0.52 which translates to

N > 14). We believe that this increase occurs because the fluctuations we have chosen are

only bounded uniformly in L∞(Ω) and not necessarily in H2(Ω). We therefore repeat this

test with random fluctuations that are bounded in H2(Ω).

To facilitate quick convergence we start from the equilibrium solution (u∗) to which

we then add random fluctuations. To obtain the equilibrium solution we start from an initial
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Figure 8.7: Number of FFTs required for convergence of the solution against grid
size, from random initial conditions, using the four different methods described
in Algorithms 7.1.1, 8.2.1 and E.1.1. For adaptive residual tolerance given by
max

(
10−2 × exp [−6/hx] , 2× 10−7

)
.

condition of the one mode solution (8.11) and run the trust region algorithm (Algorithm

E.1.1) until (8.13) is satisfied.

To obtain the random fluctuations we first need to ensure that we are bounded in

H2(Ω). We start with a scaled random fluctuation in Fourier space, that is

v̂(k1, k2) = (1 + |k|2)−2rand(k1, k2). (8.14)

We know that ‖v‖H2(Ω) is an equivalent norm to ‖(1 + |k|2)v̂‖L2(Ω) therefore for the scaled

random fluctuation given by (8.14) we have ‖v‖H2(Ω) ≤ C, for C > 0. To ensure the

fluctuation is not too large we divide v by its maximum. That is, we define a scaled random

H2-fluctuation

ζ(x, y) =
v(x, y)

2 max
ΩL

[v(x, y)]
(8.15)
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where v is defined through (8.14). We want to mollify this fluctuation to ensure that our

initial condition has the right continuity. We use the C2-mollifier of [Mur12, Page 58],

φ(r) =

−6r5 + 15r4 − 10r3 + 1 r ∈ [0, 1]

0 r > 1.
(8.16)

We want our mollifier to be centred at the middle of our domain. To do this for the domain

ΩL we define the normalised radial distance from the centre of the domain, that is

ra,L(x, y)2 =

(
x− La

2

)2

+

(
y − L̃

√
3a

4

)2

where

L̃ =

2 for the unit cell (L = 1)

L for the general domain.

To obtain our centred fluctuation we combine the mollifier (8.16) with our fluctuation (8.15).

We now modify our equilibrium solution by multiplying u∗ by the identity minus our centred

fluctuation, that is

u0(x, y) = u∗(x, y)(1− φ(ra,L)ζ(x, y)).

This solution is essentially equivalent to subtracting some random fluctuations from the

centre of the lattice. This means our initial condition is a lattice with a vacancy. To ensure

the average is conserved we prescribe the average of u0 that is

F[u0(x, y)](k1, k2) =

ū|ΩL| k1 = k2 = 0,

F[u∗(x, y)(1− φ(ra,L)ζ(x, y))](k1, k2) otherwise,
(8.17)

where F denotes the Fourier transform.

We then rerun the simulation of Figure 8.7 with this initial condition and the adap-

tive termination criterion (8.13). The results are shown in Figure 8.8. The slight increase

for high grid point numbers seems to have disappeared, in fact there seems to be a decrease.

This decrease is probably due to the higher resolution of our model when the number of

grid points is high. We can see that the algorithms remain in the same order, in terms of

FFTs required to reach a minimum, and therefore there is still evidence that the line search

is a promising method.

8.2.6 Domain Convergence

We shall now use the new initial condition (8.17) to test the effect of domain size on our

algorithms. The initial simulations used to show grid size convergence were taken on the

unit cell. We now wish to consider larger domains, i.e. (8.2).

Given the section on grid convergence above (Subsection 8.2.5) we take the number

114



8.2. REVIEW OF TIME DISCRETISATIONS CHAPTER 8. IMPLEMENTATION

2 4 6 10 100
10

1

10
2

10
3

Grid Size (N)

#F
F

T
s

 FFT against Grid size for different methods (2D)

 

 

P−Trust−region
Line−search
SH
PFC

Figure 8.8: Number of FFTs required for convergence of the solution against grid
size, from the initial condition (8.17), using the four different methods described
in Algorithms 7.1.1, 8.2.1 and E.1.1. For adaptive residual tolerance given by
max

(
10−2 × exp [−6/hx] , 2× 10−7

)
.

of points along the x-axis, N , to be sixteen and the convergence criterion to be (8.13). As

remarked above the initial condition is given by (8.17). The results are shown in Figure 8.9.

We can see that the number of FFTs required for the convergence of the solution

increases with domain size before plateauing for all methods. All the algorithms seem to

plateau between L = 16 and L = 32. We suspect that the increase in the pre-asymptotic

regime is due to resolving the high wavelengths that are not present in a small domain. All

four methods scale similarly and again the convex-concave schemes (Algorithm 7.1.1) seem

to take an order of magnitude more FFTs than the line search algorithm (Algorithm 8.2.1).

We note that the PFC algorithm is significantly slower than the SH algorithm; however it

may be that a different choice of parameters would eliminate this effect.

We can see that for all our domains the line search algorithm is significantly faster

than the two convex-concave splitting schemes. The line search algorithm and the trust
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Figure 8.9: Number of FFTs required for convergence of the solution against domain size.
The initial condition is given by (8.17) and we use the four different methods described by
Algorithms 7.1.1, 8.2.1 and E.1.1. For adaptive residual tolerence (8.13) and N = 16.

region algorithm (Algorithm E.1.1) seem to take roughly the same number of FFTs to

converge. These two facts demonstrate that the line search maybe a promising alternative

scheme for solving problem (P) (see page 37). Even though the trust region method seems

to be roughly the same speed as the line search algorithm, there is some indication that

the line search algorithm may be more reliable. Specifically, we show in Section 9.2 that,

in contrast to Algorithm 8.2.1, the trust region method Algorithm E.1.1 fails to reach the

expected minima, that is, it behaves qualitatively differently.

In Subsection 8.2.3 we argued that the speed of our algorithms should be measured

using the number of FFTs. The domain simulations undertaken above are some of the most

complex undertaken in this thesis as the domain size is larger than the one generally used

in Chapter 9. Therefore we reproduce these simulations with the speed of our algorithms

measured using iteration number (see Figure 8.10a). We can see that the graph is quali-

tatively similar for all the algorithms except the trust region. To highlight the difference

between using the number of FFTs and using the iteration number to measure the speed

of convergence we plot the average number of FFTs per iteration (see Figure 8.10b). We

can see that the number of FFTs per iteration is constant for the line search algorithm.

We would expect this as the only difference between iterations is the amount of time spent

in the while loop (lines (5) and (6) of Algorithm 8.2.1) and no FFTs are undertaken in

this loop. The average number of FFTs per iteration is also constant for the SH and PFC

algorithms. Since, again, the only difference between iterations is the amount of time spent

in the while loop (lines (4)-(6) of Algorithm 7.1.1) this suggests that the initial value of Cn
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(8.6) is normally accepted. By contrast, the average number of FFTs per iteration varies

widely for the trust region algorithm, this is because the sub-problem Definition E.0.1 may

require many FFTs to solve. This graph (Figure 8.10b) demonstrates part of the reason for

using FFTs to measure the speed of our algorithms.

Figure 8.10
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(a) Number of iterations required for
convergence of the solution against do-
main size. The initial condition is given
by (8.17) and we use the four differ-
ent methods described by Algorithms
7.1.1, 8.2.1 and E.1.1. For adaptive
residual tolerence (8.13) and N = 16.
This graph is qualitively similar to Fig-
ure 8.9.
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(b) Average number of FFTs per itera-
tions against domain size. We note that
for the PFC, SH and line search algo-
rithms the number of FFTs per itera-
tion is constant, However, for the trust
region algorithm the number of FFTs
per iteration varies widely. This ex-
plains the difference between Figure 8.9
and 8.10a

8.3 Conclusion

In this chapter we introduced the spatial discretisation used for our numerical tests. We

use a pseudo-spectral method as in this case we expect exponential convergence. We then

detailed the adaptive methods for choosing the constants τn and Cn so that the discrete

forms of Algorithms 6.1.1 and 7.1.1 respectively are well-defined and perform well. We

discussed an issue that arises with the “divergence” of convergence time at a low number

of spatial grid points and possible methods for resolving this issue. Finally, we studied the

convergence of the residual with domain size.

117



Chapter 9

Model Problems

Having considered the minimisation problem (P) (page 37) on a unit cell we now consider

simulations on larger domains. These simulations are closer to problems that practition-

ers consider and they demonstrate interesting properties of and differences between the

algorithms used.

In principle we expect the minima reached by each algorithm to be the same but

the process by which we reach the minima may differ. We wish to compare the behaviour

of the different methods after a long time (a large number of FFTs) or near a critical

point (i.e. when the residual is small), in this case it may be possible to show that the

qualitative behaviour of the four methods (Algorithms 8.2.1, E.1.1, and the discrete version

of Algorithm 7.1.1 with H = L2(Ω) and H = H−1(Ω)) have similarities.

9.1 Rotated Crystal

We consider the case of a rotated crystal, i.e. where the initial condition is the reference

lattice with a small central portion rotated out of orientation. This was previously studied

using the PFC model, for example in [Lar14, Chapter 5].

9.1.1 Numerics

In this case to generate the initial condition there are several steps. We start with a L = 64

lattice (defined by (8.2)), generated by periodically repeating the solution with residual 10−7

on a unit cell, i.e. 64 unit cells along the x-direction and 32 in the y-direction. We then

rotate a central circle of diameter one (in terms of the period of the unit cell a) through

π/6. This initial condition is shown below in Figure 9.1. We consider the four algorithms,

Algorithms E.1.1, 8.2.1 and the discrete version of Algorithm 7.1.1 with H = L2(Ω) and

H = H−1(Ω). To justify the choice of adaptive γ, introduced in Subsection 6.1.2, we also

use Algorithm 8.2.1 with fixed γ, i.e. γn = γom for all n.
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Rotated Crystal Initial Condition

Rotated Portion

Figure 9.1: The initial condition for the rotated crystal. A L = 64 lattice is generated and
a central circle of diameter one is rotated through π/6. The inset on the right highlights
the rotated portion, demarked on the larger diagram by a rectangle.

We run the algorithms for 105 FFTs. After this time, the rotated defect is absorbed

and we obtain the standard lattice. This final condition is shown below in Figure 9.2.

We plot the reduction of the residual for the five algorithms. We see that the residual

initially reduces quickly before stagnating; however, for this initial condition the line search

(both fixed and adaptive γ) and trust-region methods converge faster than the other two

methods. In contrast the PFC and the Swift-Hohenberg methods initially perform better.

Figure 9.3 shows the reduction of the residual where the y-axis is plotted on a logarithmic

scale and the x-axis is plotted on a linear scale. After the initial reduction, all algorithms get

stuck in a metastable state before reducing further, this effect can be seen more clearly in

Figure 9.4 where both axes are plotted on a logarithmic scale. We note that terminating at

a residual of 10−5 should be sufficient; however, we curtail at 10−7 to make the convergence

clearer.

9.1.2 Discussion

Here we can see that in contrast to the case of random initial conditions below, Section

9.2, we spend very little time in the metastable state for the line search or trust region

algorithms. The Swift-Hohenberg and PFC algorithms enter a metastable state for longer

but even they do not persist there for very long. This contrast suggests that the problem

of metastability is reduced when one chooses an initial condition which is not far from

the reference lattice, which under no strain should be the true minimum. In this case all
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Rotated Crystal Final Condition

Close Up

Figure 9.2: The final state of the rotated crystal, whose initial condition is given by Figure
9.1. The solution is given after 105 FFTs or when the residual is less than 10−7. We thus
have the standard lattice, the solutions of Section 9.2 are close to this. The inset zooms in
the central portion to highlight the hexagonal lattice structure.
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Figure 9.3: The reduction in residual for the rotated crystal, whose initial condition is
given by Figure 9.1. We note that the residuals initially converge quickly before stagnating
and then finally converging to a low residual with the line search and trust-region methods
performing better. The x-axis is linear and the y-axis logarithmic.
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Figure 9.4: The reduction in residual for the rotated crystal, whose initial condition is given
by Figure 9.1. Both axes are given on a logarithmic scale. This image emphaisises the
behaviour around the metastable state. We can also see that the PFC and Swift-Hohenberg
algorithms perform better initially.

algorithms obtain the same final state, as predicted, although the speed of the line search

algorithm demonstrates that it may be potentially useful. We can see that there is little

difference between the adaptive and fixed line search algorithms. We believe this is because

we are in the asymptotic regime as mentioned in Subsection 6.1.2.

9.2 Random Initial Conditions

We start with one of the simplest possible initial conditions, i.e. where the domain is filled

with random fluctuations around the average ū.

9.2.1 Numerics

We start with a large, L = 64, domain with random initial conditions, i.e.

u0(x, y) = rand(x, y)− 0.5 + ū. (9.1)

The initial condition is shown below in Figure 9.5. We then run all the five algorithms

(Algorithm E.1.1, Algorithm 8.2.1 with γ = γn and γn = γom for all n and the discrete

form of Algorithm 7.1.1 with H = L2(Ω) and H = H−1(Ω)) for 5 × 106 FFTs or until the

residual is less than 10−7 and compare the results.

Figure 9.6 shows that the residuals for all the algorithms initially converge quickly

before stagnating. The residual then reduces slowly suggesting that, as we would expect, we
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Figure 9.5: The initial condition for the algorithms, a L = 64 domain with random initial
condition given by (9.1).

are not at a minimum. Both the trust region method and the line search then enter a regime

where the residual again decreases faster; however, this happens earlier and the decrease is

faster for the trust region method. In the case of the fixed line search this final decrease is

much later than for the line search. The SH and PFC equation methods eventually decrease

so that they reach the termination criterion. All the algorithms terminate before the end of

the five million FFTs; however, they do not reach the reference lattice which is expected to

be the minimum state. Figure 9.7 gives the residual decrease where both axes are plotted

on a logarithmic scale as this makes the initial behaviour clearer.
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Figure 9.6: We show the convergence of the residual upto 5 × 106 FFTs starting from the
random initial conditions given by (9.1). We note the residual converges quickly before
stagnating, it then appears to reduce slowly. The adaptive line search and trust region
methods then relatively quickly enter a phase where they reduce further. We note that
in this case the fixed line search is much worse than the adaptive line search. All the
algorithms eventually reach a point where their residual is low enough that they are taken
to have converged.
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Figure 9.7: We show the convergence of the residual upto 5×106 FFTs starting from random
initial conditions given by (9.1). In this case both axes are plotted on a logarithmic scale. We
note the residual converges quickly before stagnating particularly for the Swift-Hohenberg
and PFC methods.

In Subsection 8.2.3 we argued that the speed of our algorithms should be measured

using the number of FFTs. The simulations undertaken above are some of the most complex

undertaken in this thesis as the initial conditions are deliberately chosen to be far away

from the expected solution. Therefore we reproduce these simulations with the speed of

our algorithms measured using iteration number (see Figure 9.8a). We can see that the

graph is qualitatively similar for all the algorithms except the trust region. To highlight the

difference between using the number of FFTs and using the iteration number to measure the

speed of convergence we plot the average number of FFTs per iteration (see Figure 9.8b).

We can see that the number of FFTs per iteration is constant for the line search algorithm.

We would expect this as the only difference between iterations is the amount of time spent

in the while loop (lines (5) and (6) of Algorithm 8.2.1) and no FFTs are undertaken in

this loop. The average number of FFTs per iteration is also constant for the SH and PFC

algorithms. Since, again, the only difference between iterations is the amount of time spent

in the while loop (lines (4)-(6) of Algorithm 7.1.1) this suggests that the initial value of Cn

(8.6) is normally accepted. By contrast, the average number of FFTs per iteration varies

widely for the trust region algorithm, this is because the sub-problem Definition E.0.1 may

require many FFTs to solve. This graph (Figure 9.8b) along with Figure 8.10b demonstrates

part of the reason for using FFTs to measure the speed of our algorithms.
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Figure 9.8
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(a) Convergence of residue against iter-
ation number. The initial condition is
given by (9.1) and we use the four dif-
ferent methods described by Algorithms
7.1.1, 8.2.1 and E.1.1. This graph is
qualitively similar to Figure 9.7.
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(b) Residue against average number of
FFTs per iterations . We note that for
the PFC, SH and line search algorithms
the number of FFTs per iteration is con-
stant, However, for the trust region al-
gorithm the number of FFTs per iter-
ation varies widely. This explains the
difference between Figure 9.7 and 9.8a

From the residue plots Figures 9.6 and 9.7 we can see that all our methods enter

a region where the residue decreases slowly. This is a metastable region. As mentioned in

Chapter 1 much of the current PFC literature is interested in metastable states, see e.g.

[Lar14] and [WV12]. Therefore we show the solutions of the various algorithms within their

metastable regimes. As expected none of the algorithms have reached the expected minima,

i.e. the lattice. However we have chosen a number of FFTs so that all the solutions have

a lattice like structure. We show the solution of the cubic line search algorithm (Algorithm

8.2.1) after 1200FFTs (see Figure 9.11), the solution resembles a lattice with multiple dis-

locations. The final solution of the line search algorithm (see Figure 9.17) suggests that the

dislocations pair up to recover the true lattice. We have therefore chosen the number of

FFTs for the line search algorithm so that it looks most qualitatively similar to the solutions

obtained for the other algorithms (see below, i.e. Figures 9.9, 9.10, 9.12 9.13). We show the

solution for the other four algorithms (i.e. Algorithm E.1.1, Algorithm 8.2.1 with γn = γom

for all n and the discrete form of Algorithm 7.1.1 with H = L2(Ω) and H = H−1(Ω)) after

3500FFTs. The trust region solution is shown in Figure 9.9, the fixed line search solution

is shown in 9.10, the SH solution is shown in Figure 9.12 and the PFC solution is shown in

Figure 9.13. For all these algorithms multiple grains are formed and they look qualitatively

similar. However all these metastable solutions differ significantly from the metastable so-

lution obtained for the cubic line search (see Figure 9.11). We show the residue against the

number of FFTs for the various algorithms in Figure 9.14 to demonstrate that we are in the

metastable state and to show the relative progress of the algorithms.
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Trust region after 3504 FFTs Close up

Figure 9.9: Solution for the trust region algorithm after 3504 FFTs starting from random
initial conditions given by (9.1). We note the formation of grains. The area highlighted by
the white rectangle in the left image is enlarged in the right image can see multiple grain
boundaries. The grains look qualitively similar to the fixed line search solution Figure 9.10,
the SH solution Figure 9.12 and the PFC solution Figure 9.13.

Fixed line search after 3504 FFTs Close up

Figure 9.10: Fixed line search algorithm (γ = γom) after 3504 FFTs starting from random
initial conditions given by (9.1). We note the formation of grains. The area highlighted by
the white rectangle in the left image is enlarged in the right and we can see multiple grain
boundaries. The grains look qualitively similar to the trust region solution Figure 9.9, the
SH solution Figure 9.12 and the PFC solution Figure 9.13.
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Cubic line search after 1204 FFTs

Figure 9.11: Line search algorithm after 1204 FFTs starting from random initial conditions
given by (9.1). We note that in general we have a uniform lattice, however there are multiple
dislocations. There are no grain boundaries unlike the trust region solution Figure 9.9, the
fixed line search solution Figure 9.10, the SH solution Figure 9.12 and the PFC solution
Figure 9.13.

Swift Hohenberg after 3507 FFTs Close up

Figure 9.12: Swift-Hohenberg algorithm after 3507 FFTs starting from random initial con-
ditions given by (9.1). We note the formation of grains. The area highlighted by the white
rectangle in the left image is enlarged in the right image and we can see multiple grain
boundaries. The grains look qualitively similar to the trust region solution Figure 9.9, the
fixed line search solution Figure 9.10 and the PFC solution Figure 9.13.
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PFC after 3505 FFTs Close up

Figure 9.13: PFC algorithm after 3505 FFTs starting from random initial conditions given
by (9.1). We note the formation of grains. The area highlighted by the white rectangle in
the left image is enlarged in the right image and we can see multiple grain boundaries. The
grains look qualitively similar to the trust region solution Figure 9.9, the fixed line search
solution Figure 9.10 and the SH solution Figure 9.12
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Figure 9.14: We show the convergence of the residual upto 3500 FFTs for the trust region,
fixed line search, SH and PFC algorithms and 1200 FFTs for the cubic line search algorithm
starting from the random initial conditions given by (9.1). We note the residual converges
quickly before stagnating, it then appears to reduce slowly. The trust region method is
much slower than the others. A log-log plot is shown on the left and a log linear plot is
shown on the right.
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As mentioned above all the algorithms converge, i.e. the residue is less than 10−7 for

a number of FFTs less than 5× 106. For completeness we show the final solution obtained

by each algorithm. From Figure 9.15 we can see that two large grains are formed for the

trust region algorithm (Algorithm E.1.1). Figures 9.16, 9.18 and 9.19 show the results of

the fixed line search (Algorithm 8.2.1 with γn = γom for all n ∈ N), the Swift-Hohenberg

and the PFC algorithms respectively (the discrete form of Algorithm 7.1.1 with H = L2(Ω)

and H = H−1(Ω) respectively), here we see that multiple grains are formed. For the

Swift-Hohenberg and PFC algorithms we also see the formation of isolated dislocations (see

Figures 9.18 and 9.19) that we do not see with the fixed line search algorithm. For the

adaptive line search method (Algorithm 8.2.1) we recover the reference lattice; however, the

lattice is mis-orientated, see Figure 9.17. As compared to the metastable states shown above

(Figures 9.9-9.13) the line search algorithm has reached the true minimum. By contrast the

solutions for the other algorithms still have multiple grains but the number of grains seem

to be fewer.

Trust region after 45528 FFTs Close up

Figure 9.15: Solution for the trust region algorithm after 45528 FFTs starting from random
initial conditions given by (9.1). We note the formation of grains. The area highlighted by
the white rectangle in the left image is enlarged in the right image and we can see two grain
boundaries, towards the centre at the top and towards the bottom left.
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Fixed line search after 535606 FFTs Close up

Figure 9.16: Fixed line search algorithm (γ = γom) after 535606 FFTs starting from random
initial conditions given by (9.1). We note the formation of grains. The area highlighted by
the white rectangle in the left image is enlarged in the right and we can see multiple grain
boundaries, towards the top right and bottom left and running through the centre.

Cubic line search after 155402 FFTs

Figure 9.17: Line search algorithm after 155402 FFTs starting from random initial con-
ditions given by (9.1). We note that in general we have a uniform lattice. However the
oreintation is different from the basic lattice shown in Figure 9.2
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Swift Hohenberg after 1497804 FFTs Close up

Figure 9.18: Swift-Hohenberg algorithm after 1497804 FFTs starting from random initial
conditions given by (9.1). We note the formation of grains. The area highlighted by the
white rectangle in the left image is enlarged in the right image and we can see multiple grain
boundaries. An isolated dislocation is highlighted by white lines.

PFC after 1162855 FFTs Close up

Figure 9.19: PFC algorithm after 1162855 FFTs starting from random initial conditions
given by (9.1). We note the formation of grains. The area highlighted by the white rectangle
in the left image is enlarged in the right image and we can see multiple grain boundaries.
An isolated dislocation is highlighted by white lines.
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9.2.2 Orientational Ordering

In the previous subsection we showed that the adaptive line search algorithm (Algorithm

8.2.1) is the only algorithm that reaches the true minimum. We wish to investigate whether

this effect persists for different domain sizes.

For our minimisation problem (P) (see page 37) the true solution is the lattice. Con-

sidering the PFC functional (3.1) we see that grain boundaries increase energy compared to

the lattice. Therefore we suspect that a smaller number of grains will be more energetically

favourable than a large number of grains.

We first reconsider the line search algorithm on the L = 64 domain with initial

conditions given by (9.1).We rerun the simulation multiple times with the rand function

giving us different initial conditions. In some cases we initially have a large number of

dislocations and we appear to almost form to grains, see Figure 9.20 which shows the result

of the algorithm after 1200FFTs . However all the cases simulated the dislocations pair up

and eventually we obtain the true lattice (with possibly some misorientation), see Figure

9.17.

Figure 9.20: Line search algorithm after 1200 FFTs starting from random initial conditions
given by (9.1). We note the large number of dislocations

This effect of orientational ordering does appear to be domain dependent. As shown

in Figures 1.2 and 9.21 if we start on an L = 32 domain with random initial conditions given

by (9.1) we obtain a grain boundary. However in this case we still have a degree of ordering

as we seem to only ever generate two grains. The other four algorithms (Algorithm E.1.1,

Algorithm 7.1.1 or Algorithm 8.2.1 with γn = γom for all n), obtain the same or a greater

number of grain boundaries.
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Figure 9.21: Line search algorithm after 105 FFTs starting from random initial conditions
given by (9.1). We note the large single grain

If we start with random initial conditions (9.1) on a L = 128 domain we obtain

a large number of dislocations. In some cases these dislocations join up to form a grain

boundary however we only ever seem to form one grain. We show the L = 128 domain

domain starting from random initial conditions (9.1) after 105 FFTs in Figure 9.22. In

Figure 9.23 we show the fixed line search algorithm (Algorithm 8.2.1 with γn = γom for all

n) for L = 128 after 5×105 FFTs. This image is quantitatively similar to those produced by

the trust region algorithm and the SH and PFC algorithms after 5×105 FFTs. By contrast

with Figure 9.22 instead of isolated dislocations we see true grain boundaries. This means

that even in this case the adaptive line search imposes more orientational ordering than the

other algorithms.

Figure 9.22: Line search algorithm after 105 FFTs starting from random initial conditions
given by (9.1). We note the large number of dislocations
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Figure 9.23: Fixed line search algorithm after 5 × 105 FFTs starting from random initial
conditions given by (9.1). We note the formation of many grains.

Finally we look at the L = 256 domain. If we start with random initial conditions

(9.1) on a L = 128 domain we obtain a large number of dislocations. These dislocations

join up to form multiple grain boundaries. We show the L = 256 domain domain starting

from random initial conditions (9.1) after 105 FFTs in Figure 9.24.

Figure 9.24: Line search algorithm after 105 FFTs starting from random initial conditions
given by (9.1). The area highlighted by the white rectangle in the left image is enlarged in
the right image and we can see multiple dislocations.

In conclusion the orientational ordering seen in Figure 9.17 does not occur for the

L = 32 or L = 256 case and may not occur for the L = 128 case. However, in the L = 32,

L = 64 and L = 128 the line search algorithm forms an equal number of fewer grains than

the other algorithms (Algorithm E.1.1, Algorithm 7.1.1 or Algorithm 8.2.1 with γn = γom for

all n) which is more energetically favourable. We suspect that this trend continues although
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is less pronounced for L = 256 and larger domains; however simulations demonstrating this

are unfeasibly expensive.

9.2.3 Discussion

This model problem demonstrates the issue of metastability, i.e. the algorithm reaches a

point where the reduction in residual at each step is small and so it stagnates. The numerical

tests demonstrated above suggest this is less of an issue for the adaptive line search method

we have implemented. The vast difference in final outcome and the speed of convergence

between the adaptive and fixed line search is a justification for our introduction of this

variable metric technique in Subsection 6.1.2.

This model problem shows that, as noted above, although all the algorithms are

discretisations of the problem (P) (page 37), the process by which they reach the minima

is not necessarily the same. This raises an issue over the comparison of numerical tests as

although we suspect all algorithms will eventually obtain the reference lattice, it appears

that it would take an infeasibly long time to demonstrate this numerically. We might be

able to refine our algorithms to reach lower residuals which are currently available due to

the limitations imposed by computational precision.

In terms of the metastable state we can see, from Figure 9.14, that the fixed line

search algorithm (Algorithm 8.2.1 with γn = γom for all n ∈ N) seems to reach the same

metastable state as the PFC, SH and trust region algorithms. However, it appears that the

cubic line search algorithm (Algorithm 8.2.1) never passes through this metastable state.

The PFC and SH algorithms seem to reach the metastable state faster than the other

algorithms. However, the relative speed of the adaptive line search method suggests that

this may allow us to find equilibrium configurations that are infeasible by other methods.

In addition the fixed line search algorithm appears to reach a similar final condition to the

SH and PFC algorithms in approximately half the number of FFTs.

For the L = 64 domain the line search algorithm imposes an orientational order on

the solution and therefore avoids grain boundaries. For different domain sizes the solutions

of the line search algorithm still have a high degree of order but can now produce grain

boundaries with the frequency of such boundaries roughly increasing with domain size.

9.3 3D Simulations

An obvious advantage of undertaking calculations in three dimensions is that we should

be able to simulate a much greater variety of physical phenomena. Three dimensional

simulations are considered in [EW13] and [WGT+12].

In Chapters 4 and 5 we derived analytical results that hold in both two and three

dimensions. The time discretisations of Chapters 6 and 7 are also valid for both two and

three dimensions. It is therefore justifiable to consider analogues to our numerical algorithms

in three dimensions.
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The spatially discrete norms and gradients introduced in Section 8.1 are only valid

for calculations in two dimensions; however, these discretisations can easily be adapted to

the three dimensional case (using similar notation to that of [EW13, Section 4.2]). In fact

some three dimensional simulations are undertaken in [EW13, Sections 5.5 and 5.6].

Following the work of [EW13] we can reformulate the algorithms for the PFC and

SH equations in three dimensions (i.e. we reformulate Algorithm 7.1.1). We are also able

to formulate a three dimensional version of the line search algorithm (i.e. we reformulate

Algorithm 8.2.1).

9.3.1 Vacancy Diffusion

To demonstrate the feasibility of three dimensional simulations we undertake a basic simu-

lation.

Initially, since we expect our minimal solution to be a body centered cubic (BCC)

lattice (see the phase diagram [WGT+12, Figure 9 b)] as we use −ū = δ = 0.3), we start

with a cubic domain whose side-length is the expected period of the lattice (in the x, y and

z-directions). To avoid the issue of divergence at low grid points (see Subsection 8.2.5),

which we assume will be analogous in 3 dimensions, we take N = 16 along each axis. We

then take an initial condition of random fluctuations around our prescribed average and run

the Swift-Hohenberg equation until a residual of 10−7 is obtained (i.e. the residual is given

by the 3 dimensional analogue of (8.12)). From this simulation we obtain the unit cube.

We then create a three dimensional lattice by taking two unit cubes in each of the

three dimensions. We then remove the central atom to obtain a vacancy which we fill with

the constant value u(x, y, z) = 0, this initial condition is shown in Figure 9.25.
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Figure 9.25: The initial condition for our three dimensional simulations. A lattice is gen-
erated by taking two unit cells in each of the three dimensions. The central atom is then
removed. The left figure shows the level set plot and the right figure shows a composition
of contour plot slices.
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We run the three algorithms (the PFC, SH and line search algorithms) until a

residual of 10−7 is obtained. In all three cases we obtain the same final condition which is

a homogeneous lattice, shown in Figure 9.26. We note that the vacancy has been absorbed,

this is the analogous result to the result seen in two dimensions, see e.g. [EG04, Figure 7].

The physical justification for the vacancy being absorbed is that the PFC model acts on a

diffusive time-scale and therefore, since the vacancy moves through the lattice, each site is

equally likely to be a vacancy site so that, on average, no site is empty.
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Figure 9.26: The final condition for our three dimensional simulations. This lattice is
obtained by running the algorithms until a residual of 10−7 is obtained. The initial condition
is given in Figure 9.25. The left figure shows the level set plot and the right figure shows a
composition of contour plot slices.

We can compare the three algorithms by looking at the number of fast Fourier

transforms needed to obtain a given residual. From Figure 9.27 we can see that the SH

and PFC algorithms have faster initial convergence; however, the line search algorithm

then becomes much faster and overall takes about an order of magnitude fewer FFTs to

reach the desired residual (10−7). The superior speed of the line search algorithm yet again

provides a justification for considering this method. Since three dimensional simulations

will in general require many more grid points than a two dimensional simulation, choosing

the fastest method is particularly advantageous in three dimensions.

9.4 Conclusion

In this chapter we demonstrated the performance of the various numerical algorithms on

large test problems. We considered two 2D problems defined by their initial conditions. The

first test problem’s initial condition is a large lattice with a rotated crystal at the centre and

the second problem has an initial condition of random fluctuations around the average of

u. We demonstrated that for the first problem all our algorithms converge to the same final
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Figure 9.27: We show the residual plotted against the number of FFTs for the SH and
PFC algorithms as well as for the line search algorithm. The residual and number of FFTs
are plotted on a log-log scale. The initial condition is given in Figure 9.25 and the final
condition is given in Figure 9.26.

state. However, for the second problem the algorithms converge to different final states.

We also included a three dimensional test where the initial condition is a lattice with a

vacancy. In this case we only compare three algorithms the SH, PFC and adaptive line

search algorithm. All three algorithms converge to the same final state of a BCC lattice.

In all three cases we showed that Algorithms E.1.1 and 8.2.1 obtain a small residual

in a much smaller number of FFTs than the methods from Algorithm 7.1.1. However, in the

case of the second problem where we have a persistent metastable state the adaptive line

search does not appear to pass through the same metastable state as all the other algorithms.

The adaptive line search seems to recover the true lattice in this case, for different domain

sizes this adaptive line search produces more highly ordered states but may not recover the

true solution. In the case of Section 9.2, by contrast the fixed line search appears to obtain

the same metastable state as the PFC, SH and trust region algorithms. The fixed line search

algorithm also lies between the three algorithms in the sense that it obtains the metastable

state faster than the trust region algorithm but slower than the SH and PFC algorithms,

but persists in the metastable state for longer than the trust region algorithm but for less

FFTs than the SH and PFC algorithms.
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Chapter 10

Conclusions and Further Work

In this chapter we summarise the results of the thesis and outline related areas for possible

further work.

10.1 Conclusions

We recall that the aim of this thesis is to develop and analyse various gradient-flow type

algorithms to minimise the PFC functional whilst conserving the average of the variable.

That is we formulate gradient-flow type methods to solve problem (P) (see page 37). We

analysed and developed two kinds of time-discrete gradient-type algorithms (see Chapters

6 and 7). We concluded this thesis with a series of numerical tests to demonstrate the

performance of the various schemes surveyed (Chapters 8 and 9).

The rest of this section is split into four subsections each of which highlights a

significant aspect of this thesis which appears to be novel.

10.1.1 Novel Algorithms

In this thesis all our minimisation algorithms for problem (P) are based around solving

gradient flow equations, i.e. equations of the form (4.1).

In this thesis we introduced a novel H2-like gradient flow, i.e. Definition 4.2.4. We

proved existence and uniqueness of this flow in Lemma 4.4.1.

This gradient flow is discretised in Chapter 6. In this chapter we also introduced a

variable metric version of this flow, i.e. Definition 6.1.1. This variable metric flow is shown

to converge in a smaller number of FFTs than its fixed metric analogue in the simulations

of Chapter 9. Finally, we formulated a line search algorithm based on this gradient flow,

Algorithm 6.1.1, we then showed that such an algorithm is energy stable and converges to

equilibrium.

In Chapter 7 we use the convex-concave splitting method of [EW13] (see Definition

7.1.1) to discretise the SH and PFC equations. In contrast to [EW13] we give a formula
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for initialising the stabilisation constant Cn at each iteration step (see line (2) of Algorithm

7.1.1). This allows us to formulate an algorithm for this convex-concave splitting method,

that is Algorithm 7.1.1.

Chapters 8 and 9 are dedicated to testing the validity and performance of the various

algorithms. We tested the H2-gradient flow against the discretisation of the SH and PFC

equations from [EW13] and the trust region algorithm, Algorithm E.1.1. In all our simula-

tions the new H2-flow algorithm seem to reach equilibrium in roughly the same number of

FFTs as the trust region algorithm and in significantly fewer FFTs than the SH and PFC

algorithms. The relatively fast convergence of the line search algorithm, in terms of FFTs,

compared to these other methods suggests that this algorithm might be useful in further

studies.

10.1.2  Lojasiewicz Method

In Chapter 5 we used the  Lojasiewicz inequality to prove the convergence of the H−1- and

L2-gradient flows and of our H2-gradient flow to an equilibrium point of the PFC functional.

We also used this inequality to prove the convergence of our line search algorithm (Algorithm

6.1.1), in Theorem 6.1.1, and the SH and PFC algorithms from [EW13], in Theorem 7.1.3.

The  Lojasiewicz inequality for the PFC functional has been proved in [GW14,

Lemma 6.1] and this technique has been used to prove the convergence of the MPFC equa-

tion in [GW14] and a discretisation of the MPFC in [GP15]. However, the use of this

inequality to prove the convergence of the H2- and L2-gradient flows seems to be new.

Since, as described in the subsection above, our formulation of the H2-gradient flow

is new, the proof that the discrete H2-gradient flow converges to an equilibrium point of the

PFC functional is new. We note that Lemma 6.3.2 allows us to formulate a more general

convergence result than is strictly necessary and may therefore be generally useful.

Finally, we used the  Lojasiewicz inequality to extend the results of [EW13]. In

particular we were able to prove convergence to equilibrium for these schemes and give rates

of convergence.

10.1.3 Equivalence of Discrete Algorithms

In Chapter 7 we were able to prove that the discretisations of the PFC and SH equations

from [EW13] can both be formulated in the gradient flow form (7.3). As noted in this

chapter this form of the gradient flow is qualitatively similar to an H2-gradient flow.

The fact that these formulas are closely linked to the H2-gradient flow may provide

more justification for using the H2-flow. That is, since there is already interest in minimi-

sation algorithms for the PFC functional that are similar to the H2-flow, it is reasonable to

study the true H2-flow.

Additionally, although this link suggests that Algorithms 7.1.1 and 8.2.1 should

behave similarly, in practice we do not always observe this. In particular, in the simulations

of Section 9.2 a different metastable state is obtained using Algorithm 8.2.1. This seems to
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be a consequence of using an adaptive metric (see Definition 6.1.1) since if we fix γn = γom

for all n ∈ N in Algorithm 8.2.1 we seem to obtain the same metastable states as the

SH, PFC and trust region algorithms. This unexpected difference is an interesting avenue

for further research. Furthermore, we have demonstrated that the orientational ordering

imposed by the adaptive line search algorithm becomes less pronounced when the domain

is larger. However, it seems likely that even on larger domains the adaptive line search will

reach a more energetically favourable state than the other algorithms tested. This could

also be investigated further.

10.1.4 Divergence at Low Grid Point Numbers

In Subsection 8.2.5 we highlighted an issue that arises when the number of spatial grid points

is low. That is, the number of FFTs required to reach a low residual increases drastically

when the number of grid points is low. This issue does not seem to have been highlighted

by previous work; however, Figure 8.5 shows that this issue occurs for all our methods and

thus we believe it arises from the translational invariance of the functional. The fact this

divergence problem arises from the spatial discretisation of the PFC functional rather than

from the schemes themselves suggests that this problem may be an issue for most spatially

discrete schemes that attempt to minimise the PFC functional, or indeed any translation

invariant energy functional.

We suggested two ad hoc ways of avoiding this issue. The first was essentially to

ignore the issue by taking the number of grid points high enough (i.e. N > 10). The second

method was to have a residual tolerance that adapts to the number of grid points, i.e. (8.13).

Although the methods we have introduced deal with the issue, see Figure 8.7, we

are still unable to reach low residuals at low grid point numbers which might affect the

simulation of meta-stable phenomena. Resolving the low grid point issue might also be

another area for further research.

10.2 Further Work

In Subsection 10.1.3 we suggested that further research could be conducted into why Algo-

rithms 7.1.1 and 8.2.1 are qualitatively similar but produce quantitatively different results.

Also in Subsection 10.1.4 we mentioned the issue that the number of FFTs required to reach

a low residual increases drastically when the number of grid points is low. Since for large

simulations to be efficient we need a small number of grid points per atom we suspect that

it may be worthwhile to reformulate our algorithms so that this issue does not occur even

when the residual is low.

In Remark 6.2.2 we noted that for energy stability of Algorithm 6.1.1 we need

‖un‖L∞(Ω) < ∞. This is also the case for Algorithm 7.1.1. Our numerical simulations

demonstrated that ‖un‖L∞(Ω) = O(‖u0‖L∞(Ω)); however, we were unable to prove a rigorous

result confirming this observation.
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Finally, in Subsection 8.2.2 we noted that to obtain exponential convergence of our

spatially discrete scheme we need the solution of the weak Euler-Lagrange equation to be

analytic. We proved in Lemma 3.3.3 that the solution to the weak Euler-Lagrange equation

is C∞. Figure 8.2 gives numerical evidence that our solution is analytic; however, again, we

were unable to prove a rigorous result confirming this observation.

We now briefly outline two extensions of the PFC model and suggest how they could

be linked to the work of this thesis. To maintain clarity and to keep this section short we

focus on methods that are derived from the PFC functional (3.1). We note that many

successful extensions of the PFC model exist which are based around a subtly different

functional, e.g. the 2M-PFC model, the EOF-PFC model, the VPFC model, and the binary

PFC model (see [WGT+12, Equation (54), (56), (58) and (67)] respectively).

10.2.1 Coarse-Graining the Solution

In Chapter 1 we noted that although the PFC model acts on a diffusive time-scale it is atomic

on the spatial scale. The fact that the model has to resolve the spatial scale atomically

means that stimulating large crystalline structures is still very computationally expensive.

To resolve this issue we wish to spatially coarse-grain the PFC model.

We briefly survey a popular method for coarse-graining the PFC equation using

renormalistion group techniques. This technique was introduced in [GAD05] to simulate

grain boundaries and more rigourously justified using multi-scale techniques in [GAD06b,

Section V] or for 1D in [GAD06b, Section VII].

As an example we give a heuristic justification of coarse-graining of the PFC equation

(4.2) in two dimensions using renormalisation group techniques (see [CGO96, Section V]

where they use similar techniques on the Swift-Hohenberg equation). We borrow the re-

scaling technique [GAD06b] to re-write (4.2), using ψ̂ =
√
δu to obtain

ψ̂t = ∆
[
(∆ + I)

2
ψ̂ − δψ̂ + δψ̂3

]
. (10.1)

Assume that ψ̂ is a fluctuation around the average i.e. ψ̂ = ψ̄+ψ where |ψ|�ψ̄ and

ψ̄ =
√
δū. Using this approximation and the fact that ū is constant the linearised version

of (10.1) is

ψt = ∆
[
(∆ + I)

2
ψ − δψ + δ3ψ

2
ψ
]
. (10.2)

Appealing to the hexagonal symmetry of the solution we consider a splitting moti-

vated by the one mode approximation

ψ =

3∑
j=1

Aj(x, y, t)e
ikjx +A∗j (x, y, t)e

−ikjx, (10.3)

141



10.2. FURTHER WORK CHAPTER 10. CONCLUSIONS AND FURTHER WORK

where the ki are the directions associated with the hexagonal lattice

k1 =
−~i
√

3

2
−
~j

2
, k2 = ~j, k3 =

~i
√

3

2
−
~j

2
.

The idea we shall use in approximating (10.3) is that the coefficients Ai vary on a larger scale

than the lattice structure described by the exponentials (see [GAD05, Page 1]). This idea

is where the power of this technique comes from since we can coarse-grain the Ai. We now

want to find an equation for the coefficients Ai. Substitution of the approximation (10.3)

in the linear equation (10.2) and considering only the coefficients of eikix (other terms can

be ignored as they are non-resonant see [GAD06b, Page 5] or [CGO96]) gives

∂Ai
∂t
−∆3Ai−6iki ·∇5Ai+13∆2Ai+12iki ·∇3Ai−4∆Ai+δ(1−3ψ

2
)[∆Ai+2iki ·∇Ai−Ai] = 0

(10.4)

(see [GAD06b, Section III] for an alternative derivation).

Following [GAD06b, Equation (9)] we define the linear operator

Lki = ∆ + 2iki · ∇.

Then we can re-write (10.4) as

∂Ai
∂t

+ (1− Lki)L2
kiAi + δ(1− 3ψ

2
)LkiAi − δ(1− 3ψ

2
)Ai = 0. (10.5)

If we rewrite the linear spatial operator as

M̂ki = (1− Lki)(δ(1− 3ψ
2
)− L2

ki)

then (10.5) simplifies to
∂Ai
∂t

= M̂kiAi

where the operator M̂ki is a rotationally covariant operator (see [AGD+07, Equation (8)]).

To obtain (10.2) we discarded the non-linear terms associated with ψ̂3. Therefore

we consider the non-linear term in (10.1), i.e.

∆(ψ̂3). (10.6)

We consider a version of the one mode approximation (10.3)

ψ0 =

3∑
j=1

Aj(t)e
ikjx +A∗j (t)e

−ikjx + ψ.

The term associated with eik1x in (10.6) (see [GAD06a, Equation (13)]) is

−3ψ
2
A1 − 6ψA∗2A

∗
3 − 3A1(|A1|2 + 2|A2|2 + 2|A3|2)
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using this to replace the term not associated with the differential operator (i.e. −3ψ̄2Ai) in

(10.5) we have (for the coefficient A1)

∂A1

∂t
+ (1− Lk1)L2

k1
A1 + δ(1− 3ψ

2
)Lk1A1 − δ(1− 3ψ

2
)A1

= −6δψA∗2A
∗
3 − 3δA1(|A1|2 + 2|A2|2 + 2|A3|2)

see [GAD06b, Equation (15)], similar equations can be derived for A2 and A3. We can also

obtain this by starting with the rescaled equation (10.1) and substituting in (10.3) and then

discarding terms associated with the non-linear action of differential operators, e.g. terms

such as A1∆A1.

The results obtained using this approximation seem quite promising, a 10 times

speed up in the CPU time required to undertake the Read-Shockley tests is obtained in

[GAD05]. In [AGD+07] they split the Ai into phase amplitude equations (see [AGD+07,

Equations (9)-(11)]) and use the frozen gradient approximation ([AGD+07, Section D]) to

obtain a mesh refinement algorithm ([AGD+07, Table 1]). Using this approximation the

authors obtain a 1000 times speed up (quantified by [AGD+07, Equation (15)]) in some

situations (see [AGD+07, Equations (17) and (19)]).

The derivation above seems rather ad hoc; however, more justification is given in

[GAD06b] and it may be possible to obtain a more rigorous derivation by first appealing to

[CGO96]. A more serious problem appears to be that this regime relies on δ being a small

parameter (see the more extensive renormalisation examples in [CGO96]) which is likely

to take us out of the hexagonal regime, see the phase diagram [EKHG02, Figure 1 a)] or

Figure 1.1.

These techniques have already been applied to the Swift-Hohenberg equation in

[CGO96, Section V.A]. It is not quite clear how this technique could be applied to Definition

4.2.4 as in this case we would have space and time derivatives of the Ai-coefficients, e.g.

∆∂tA1, which do not appear in any of the current examples.

10.2.2 Evolving Surfaces

Recently, work has been undertaken on formulating a PFC model on an evolving surface.

In [SV14] they use the PFC model on a surface to simulate the patterns of distributed

particles on a catenoid surface. They claim that defects on surfaces “provide the key to self-

assembly into complex hierarchical structures with emergent novel macroscopic properties”.

In particular [IVC10] suggests that defects on catenoids may allow us to engineer structures

with curvature which the PFC model of [SV14] can simulate. It is shown within [SV14] that

these PFC simulations can approximate experimental results seen in [IVC10].
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In [SV14, Equations (3)-(5)] the PFC equation is formulated as

∂tu = ∆Γµ

µ = 2ν + ∆Γν + (1− δ)u+ u3

ν = ∆Γu

where ∆Γ is the surface Laplacian. In analogue to Definition 4.2.2 this equation is obtained

as the H−1-gradient flow of the Swift-Hohenberg free energy (see also [SV14, Equation (1)])

on the surface Γ

FΓ[u] =

∫
Γ

−|∇Γu|2 +
1

2
|∆Γu|2 +

1

2
(1− δ)u2 +

1

4
u4dΓ (10.7)

where ∇Γ is the surface gradient.

Considering the free energy on the surface (10.7) the analogous minimisation prob-

lem to (P) (see page 37) is

find u such that FΓ[u] = min
η∈H2

#(Γ)
FΓ[η + ū].

The corresponding gradient flow for (10.7) (following (4.1)) is

〈ut, v〉H = −δFΓ[u, v] ∀v ∈ H2
#(Γ)

where the first variation δFΓ is defined analogously to the first variation (3.9). If we define

AΓ = (∆Γ + I)2 + γI

for constant γ > 0 then we can choose H = L2(Γ) or 〈ut, v〉H = 〈AΓut, v〉 to obtain

analogous gradient flows to Definitions 4.2.1 and 4.2.4 where the gradient (∇) and Laplacian

are replaced by their corresponding surface operators (∇Γ and ∆Γ).

In terms of formulating a numerical algorithm for the gradient flow, the time dis-

cretisation should be exactly analogous to the time discretisations of Chapters 6 and 7.

However, due to the evolving nature of the surface the spatial discretisation of Chapter 8

will be much more complex. The spatial discretisation used to obtain numerical results

in [SV14] is a finite element method. There is extensive literature on methods for finite

elements on evolving surfaces, see for example [DE07].
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Appendix A

Minimisation of the

Hohenberg-Kohn Functional

We follow the method of [DS11, Section II and VI]. Recall that gN is an arbitrary N -body

distribution with permutation invariance, i.e. (2.8), which satisfies (2.9).

We define the functional F by

F [gN ] =

∫
ΩN

gN (XN )HN (XN , U1) + β−1gN (XN ) ln[N !gN (XN )]dXN . (A.1)

Remark A.0.1. Recalling the definition of entropy from [Ada06, Theorem 4.7] (A.1) can be

seen to be analogous to the average of the energy (with respect to gN ) minus the temperature

multiplying the entropy.

Recalling the formula for the equilibrium N -particle density (2.1), we define

ĝN (XN ) = ρ̂N (XN ) =
exp[−βHN (XN , U1)]

N !ZN (U1,Ω)
.

Inserting this into (A.1) we have

F [ĝN ] =

∫
ΩN

ĝN (XN )HN (XN , U1) + β−1ĝN (XN ) ln[N !ĝN (XN )]dXN

=

∫
ΩN

ĝN (XN )HN (XN , U1)− β−1ĝN (XN ) ln[ZN (U1,Ω)]dXN

−
∫

ΩN
ĝN (XN )HN (XN , U1)dXN

=

∫
ΩN
−β−1ĝN (XN ) ln[ZN (U1,Ω)]dXN

= −β−1 ln[ZN (U1,Ω)]

where the last line follows from the normalisation of ĝN . Thus we have shown that the free
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energy is given by

FN [U1,Ω] = F [ĝN ].

The functional (A.1) is minimised at the equilibrium density

FN [U1,Ω] = min
gN

F [gN ]. (A.2)

Next, we demonstrate this.

Proof. of (A.2).

We consider the functional (A.1) at the equilibrium density and show that it can be manip-

ulated into a form where it only differs from the functional evaluated at a general gN in the

entropy term. To begin we compute

F [ĝN ]− β−1

∫
ΩN

gN (XN ) ln[N !ĝN (XN )]dXN

=

∫
ΩN

ĝN (XN )HN (XN , U1)dXN +

∫
β−1(ĝN (XN )− gN (XN )) ln[N !ĝN (XN )]dXN

=

∫
ΩN

ĝN (XN )HN (XN , U1)dXN

+

∫
ΩN

β−1ĝN (XN )[−βHN (XN , U1)− ln[ZN (U1,Ω)]]dXN

−
∫

ΩN
β−1gN (XN )[−βHN (XN , U1)− ln[ZN (U1,Ω)]]dXN

=

∫
ΩN

gN (XN )HN (XN , U1)dXN + β−1 ln[ZN (U1,Ω)]

∫
ΩN

(gN (XN )− ĝN (XN ))dXN

=

∫
ΩN

gN (XN )HN (XN , U1)dXN

where the final line follows by the normalisation of gN and ĝN .

Using this we can write F [gN ] as

F [gN ] = F [ĝN ] + β−1

∫
ΩN

gN (XN ) ln

[
gN (XN )

ĝN (XN )

]
dXN . (A.3)

The second term on the right-hand side is known as the relative entropy or Kullback-Leibler

information [Ada06, Definition 7.1]. We now show that it is non-negative. We know that

ln[x] ≤ x− 1 for x ≥ 0 with equality only if x = 1. If we define

gN ln

[
ĝN
gN

]
= 0 at gN = 0

then, since gN ≥ 0, we have

gN ln

[
ĝN
gN

]
≤ gN

(
ĝN
gN
− 1

)
.
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Since ĝN ≥ 0 we have equality if and only if gN = ĝN .

Hence we have a bound for the logarithmic term∫
ΩN

gN ln

[
gN
ĝN

]
dXN ≥

∫
ΩN

(gN − ĝN )dXN = 0.

The last line follows from the normalisation of gN and ĝN . This inequality is known as

Gibbs’ inequality, see [HM06, Appendix B].

Therefore, from (A.3) we have the lower bound for the functional

F [gN ] ≥ F [ĝN ]

with equality if and only if gN = ĝN .

Let the one-particle density ρ̃ be defined from gN via (2.10). Recalling our definition

of the Hamiltonian we can now write

FN [U1,Ω] = min
ρ̃

min
gN→ρ̃

[∫
ΩN

gN (XN )

( ∑
1≤i<j≤N

U2(|xi − xj |)

+

N∑
i=1

U1(xi) + β−1 ln[N !gN (XN )]

)
dXN

] (A.4)

where the relation gN → ρ̃ is defined through (2.10), i.e. we choose the minimum gN

that corresponds to ρ̃ through this relation. Recalling Subsection 2.2.2 we can re-write the

density

ρ̃(x) = N

∫
ΩN−1

gN (x, x2, .., xN )dx2 . . . dxN

which follows from the fact that particles are indistinguishable and hence gN is invariant

under permutation of the xi. We can now see that the term in (A.4) associated with the

external potential U1 can be re-written as

∫
ΩN

gN (xN )

N∑
i=1

U1(xi)dXN = N

∫
ΩN

gN (xN )U1(x1)dXN

=

∫
Ω

U1(x)ρ̃(x)dx.

Then the minimisation (A.4) can now be written as

FN [U1,Ω] = min
ρ̃

[∫
Ω

U1(x)ρ̃(x)dx+ FHK [ρ̃(x)]

]
,
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where the Hohenberg-Kohn functional is given by

FHK[ρ̃] = min
gN→ρ̃

∫
ΩN

gN (XN )

 ∑
1≤i<j≤N

U2(|xi − xj |) + β−1 ln[N !gN (XN )]

dXN

 .
This completes the proof of (2.11) given (2.12) in Section 2.3.
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Correlation Function

B.1 c(1) is constant

Consider the first-order contribution

F1
exc[ρN (x)] = −ρref

∫
Ω

c(1)(x1)ψ(x1)dx1.

Since the density is invariant under translation t we have

F1
exc[ρN (x)] = −ρref

∫
Ω

c(1)(x1)ψ(x1 + t)dx1

= −ρref

∫
Ω

c(1)(x1 − t)ψ(x1)dx1

where the second line follows by a change of variables.

Hence we have∫
Ω

c(1)(x1 − t)ψ(x1)dx1 =

∫
Ω

c(1)(x1)ψ(x1)dx1

which holds for all ψ and t.

Therefore for all t

c(1)(x1) = c(1)(x1 − t).

Therefore choosing t = x1 we have that c(1)(x1) = c(1)(0) and thus c(1) is constant.

B.2 c(2) is radial

Consider the second-order contribution

F2
exc[ρN (x)] = −ρ2

ref

∫
Ω

∫
Ω

c(2)(x1, x2)ψ(x1)ψ(x2)dx1dx2.
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Since the density is invariant under translation t we have

F2
exc[ρN (x)] = −ρ2

ref

∫
Ω

∫
Ω

c(2)(x1, x2)ψ(x1 + t)ψ(x2 + t)dx1dx2

= −ρ2
ref

∫
Ω

∫
Ω

c(2)(x1 − t, x2 − t)ψ(x1)ψ(x2)dx1dx2

where the second line follows by a change of variables.

Hence we have∫
Ω

∫
Ω

c(2)(x1 − t, x2 − t)ψ(x1)ψ(x2)dx1dx2 =

∫
Ω

∫
Ω

c(2)(x1, x2)ψ(x1)ψ(x2)dx1dx2

which holds for all ψ and t.

Therefore for all t

c(2)(x1, x2) = c(2)(x1 − t, x2 − t).

Therefore choosing t = x2 we have that c(2) depends only on the distance between particles,

i.e.

c(2)(x1, x2) = c(2)(x1 − x2, 0). (B.1)

Since the density is rotationally invariant, for a rotation R we have

F2
exc[ρN (x)] = −ρ2

ref

∫
Ω

∫
Ω

c(2)(x1, x2)ψ(x1)ψ(x2)dx1dx2

= −ρ2
ref

∫
Ω

∫
Ω

c(2)(x1, x2)ψ(Rx1)ψ(Rx2)dx1dx2

= −ρ2
ref

∫
Ω

∫
Ω

c(2)(RTx1, R
Tx2)ψ(x1)ψ(x2)dx1dx2

where the third line follows from a change of variables and the fact that detR=1 for any

rotation R.

Since the above equality follows for all ψ we have

c(2)(x1, x2) = c(2)(RTx1, R
Tx2)

= c(2)(RT (x1 − x2))

where the second line follows from the fact that c(2)(x1, x2) = c(2)(x1−x2) derived in (B.1).

Hence c(2) is radial.
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B.3 ĉ(k) is radial

ĉ(k) is the Fourier transform of c(2) , i.e.

ĉ(k) = F[c(2)]

=

∫
e−ik·xc(2)(x)dx.

Since c(2) is rotationally invariant, for any rotation R

ĉ(k) =

∫
e−ik·xc(2)(Rx)dx

=

∫
e−ik·R

T xc(2)(x)dx

=

∫
e−iRk·xc(2)(x)dx

= ĉ(Rk)

where the third and fourth lines follow from a change of variable and the fact that detR=1

for any rotation R.

Since ĉ(k) = ĉ(Rk), for any rotation R, ĉ(k) is radial.
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Function Space Results

In this appendix we collect together several important results. The aim is to compile defi-

nitions and lemmas which are not specific to the case of the PFC functional. Most of these

results are already known, therefore we recall them here for the sake of convenience.

The function spaces Hk(Ω) are defined in generality in [Eva10, Subsection 5.2.2]:

Definition C.0.1. Let k ∈ N. If η ∈ Hk(Ω), the Hk-norm for η is defined by

‖η‖2Hk(Ω) :=

k∑
i=0

‖∇iη‖2L2(Ω).

C.1 Subspaces of H2

In this section we give the definitions of some common subspaces of H2(Ω) which will be

useful in formulating the minimisation problem (P) (see page 37).

The first space we introduce is the function space of periodic H2-functions (see

[GP15, Section 2.1] or [CHQZ88, Section A.11 (d)] for an equivalent definition).

Definition C.1.1. The function space of periodic H2-functions is defined by

H2
per(Ω) :=

{
η ∈ H2

loc(Rd)

∣∣∣∣∣ η periodic with respect to Ω

}
.

To obtain the correct function space for minimisation we need the space of periodic

H2-functions with average zero. In total, we will introduce three spaces of mean zero

functions corresponding to the spaces H2(Ω), L2(Ω) and H−1(Ω). All of these spaces are

examples of a more general type of Sobolev space denoted by Ḣm
per in [GP15, Section 2.1].

.

Definition C.1.2. The function space of periodic H2-functions with zero average is defined
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by

H2
#(Ω) :=

{
w ∈ H2

per(Ω)

∣∣∣∣∣
∫

Ω

wdx = 0

}
.

We will also need an analogous version of the space L2(Ω).

Definition C.1.3. The function space of periodic L2-functions with zero average is defined

by

L2
#(Ω) :=

{
w ∈ L2

per(Ω)

∣∣∣∣∣
∫

Ω

wdx = 0

}
.

In addition, we will need the dual spaces of certain Hilbert spaces therefore we define

the general dual space of a Hilbert space Hk(Ω) (following [Eva10, Section 5.9] and [WW10,

Equation (2.4)]).

Definition C.1.4. The general dual space to Hm
per(Ω) is denoted by H−mper (Ω).

If f ∈ H−mper (Ω), we define the norm on H−mper (Ω) by

‖f‖H−mper (Ω) := sup
‖φ‖Hm(Ω)=1

φ∈Hmper(Ω)

|〈φ, f〉|,

where 〈, 〉 denotes the pairing between Hm(Ω) and its dual H−m(Ω).

As with the spaces L2(Ω) and H2(Ω), we are interested in the space corresponding

to H−1 with −
∫
ηdx = 0 for all η ∈ H−1

per(Ω). The definition for this space is now stated.

Definition C.1.5. The function space of periodic H−1-functions with zero average is defined

by

H−1
# (Ω) :=

{
w ∈ H−1

per(Ω)

∣∣∣∣∣
∫

Ω

wdx = 0

}
.

C.2 Relations between Function Spaces

In this section we state seven lemmas which relate the different function spaces associated

with the PFC functional (3.1) and the problem (P) (see page 37).

First we recall Ladyzhenskaya’s inequality in d-dimensions (see [CDRS09, Equation

(5.7)] for v : T2 → R, and [Nir66, Theorem 1] for v : Ω → R where Ω ⊂ Rd has the cone

property).

Lemma C.2.1. Ladyzhenskaya’s inequality states that

‖v‖L4(Ω) ≤ ‖v‖
1− d4
L2(Ω)‖v‖

d
4

H1(Ω)

for all v ∈ H1(Ω).

We also recall the generalised Hölder inequality [Che01, Theorem 2.1].
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Lemma C.2.2 (The generalised Hölder inequality). Let m > 0 and let p1, ..., pm > 0 be

real numbers such that
m∑
α=1

1

pα
= 1.

Let fα ∈ Lpα(Ω) with α = 1, ..,m. Then
∏m
α=1 fα ∈ L1(Ω) and∥∥∥∥∥

m∏
α=1

|fα|

∥∥∥∥∥
L1(Ω)

≤
m∏
α=1

‖fα‖Lpα (Ω).

We now give a lemma that allows us to simplify the upper bound of the Hk-norm.

Lemma C.2.3. For p > 0 the Hp+2-norm can be bounded by the Hp+2-semi-norm and

the H−χ-norm where χ = 0 or 1. That is, there exists constant C1, c2 > 0 such that,

∀v ∈ Hp+2(Ω)

‖v‖2Hp+2(Ω) ≤ C1‖v‖2H−χ(Ω) + c2‖∆∇pv‖2L2(Ω).

In particular

‖v‖2H2(Ω) ≤ C1‖v‖2H−χ(Ω) + c2‖∆∇pv‖2L2(Ω).

Proof. We can see that

(1 + |k|2)
p+2

2 ≤

2
p+2

2 |k|p+2 |k| > 1

2
p+2

2 |k|−χ |k| ≤ 1

≤ 2
p+2

2

(
|k|p+2 + |k|−χ

)
. (C.1)

Then using a rescaled version of [BO12, Equation (1.1)] we have from (C.1) that

‖v‖H2(Ω) ≤ ‖v‖H2+p(Ω)

≤
∥∥∥(1 + |k|2)

p+2
2 v̂
∥∥∥
L2(Ω)

≤ 2
p+2

2

(
‖|k|p+2v̂‖L2(Ω) + ‖|k|−χv̂‖L2(Ω)

)
≤ 2

p+2
2

(
‖∆∇pv‖L2(Ω) + ‖v‖H−χ(Ω)

)
, (C.2)

where we use the triangle inequality in the second inequality and the last line follows from

[Gra08, Proposition 3.1.2 (10)] and [BO12, Equation (1.1)]. Using Young’s inequality on

(C.2) we have

‖v‖2H2(Ω) ≤ 2p+3
(
‖∆∇pv‖2L2(Ω) + ‖v‖2H−χ(Ω)

)
.

We now state two lemmas that allow us to bound norms in higher order Hk-spaces

in terms of norms related to the operator A1 (5.4).

Lemma C.2.4. Let η ∈ H2
per(Ω) and (∆ + I)2η ∈ L2(Ω), then we have the following bound

on the H4-norm,

‖η‖2H4(Ω) ≤ C4

(
‖(∆ + I)2η‖2L2(Ω) + ‖η‖2H2(Ω)

)
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for some C4 > 0.

Proof. Expanding ‖(∆ + I)2η‖L2(Ω) and using that η is periodic we have

‖(∆ + I)2η‖2L2(Ω) = ‖∆2η‖2L2(Ω) + 4

∫
Ω

∆η∆2ηdx+ 4‖∆η‖2L2(Ω) + 4

∫
Ω

η∆ηdx+ ‖η‖2L2(Ω)

+ 2

∫
Ω

η∆2ηdx,

≥ 1

2
‖∆2η‖2L2(Ω) +

1

2
‖η‖2L2(Ω) − 10‖∆η‖2L2(Ω), (C.3)

where the final line follows from using Young’s inequality with ε = 1/4 on the first two

inner products and using the periodicity of η to rewrite the final inner product as the

H2-semi-norm.

Using the fact that η is periodic, Young’s inequality and that ‖∆η‖L2(Ω) = ‖∇2η‖L2(Ω)

we have bounds on the H1- and H3-semi-norms, that is

‖∇η‖2L2(Ω) = −
∫

Ω

η∇2ηdx ≤ ε

2
‖η‖2L2(Ω) +

1

2ε
‖∆η‖2L2(Ω),

‖∇3η‖2L2(Ω) = −
∫

Ω

∇4η∇2ηdx ≤ ε′

2
‖∆2η‖2L2(Ω) +

1

2ε′
‖∆η‖2L2(Ω).

Using these inequalities, that ‖∆η‖L2(Ω) = ‖∇2η‖L2(Ω) and the definition of the

Hk-norm, Definition C.0.1, we have

‖u‖2H4(Ω) = ‖η‖2L2(Ω) + ‖∇η‖2L2(Ω) + ‖∇2η‖2L2(Ω) + ‖∇3η‖2L2(Ω) + ‖∇4η‖2L2(Ω)

≤
(

1 +
ε

2

)
‖η‖2L2(Ω) +

(
1 +

1

2ε
+

1

2ε′

)
‖∇2η‖2L2(Ω) +

(
1 +

ε′

2

)
‖∇4η‖2L2(Ω)

≤ 2 +
√

2

2

(
‖η‖2L2(Ω) + ‖∇2η‖2L2(Ω) + ‖∇4η‖2L2(Ω)

)
,

where we have used ε = ε′ =
√

2 in the last line. Hence we have the following bound on the

H4-norm

‖η‖2H4(Ω) ≤
2 +
√

2

2

(
‖η‖2L2(Ω) + ‖∇2η‖2L2(Ω) + ‖∇4η‖2L2(Ω)

)
≤ (2 +

√
2)

(
‖(∆ + I)2η‖2L2(Ω) +

21

2
‖∇2η‖2L2(Ω)

)
≤ (2 +

√
2)

(
‖(∆ + I)2η‖2L2(Ω) +

21

2
‖η‖2H2(Ω)

)
,

where the second line follows from (C.3) and the final line follows from Definition C.0.1.

Setting

C4 =
21(2 +

√
2)

2

completes the proof.
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An interpolation of Hölder’s inequality allows us to approximate L3-terms in terms

of L2- and L4-norms.

Lemma C.2.5. For all η ∈ L2(Ω) ∩ L4(Ω) we have

‖η‖3L3(Ω) ≤ ‖η‖L2(Ω)‖η‖2L4(Ω).

We now state a lemma that follows from the Ladyzhenskaya inequality and allows

us to bound the L4-norm by a combination of the L2- and H2-norms.

Lemma C.2.6. We now show that for all η ∈ H2
per(Ω) we have a bound for the L4-norm

in terms of the H2- and L2-norms that is independent of dimension. That is for d = 2 or

d = 3 we have

‖η‖L4(Ω) ≤
8
√

2‖η‖
1
2

H2(Ω)‖η‖
1
2

L2(Ω). (C.4)

Proof. From Ladyzhenskaya inequality (Lemma C.2.1) we have

‖η‖L4(Ω) ≤ ‖η‖
d
4

H1(Ω)‖η‖
1− d4
L2(Ω),

so for d = 2 the result follows immediately by the embedding H2(Ω) ⊂ H1(Ω). For d = 3

we have

‖η‖L4(Ω) ≤ ‖η‖
3
4

H1(Ω)‖η‖
1
4

L2(Ω). (C.5)

Given this, the bound we require for the H1-norm is

‖η‖
1
2

H1(Ω) ≤ C‖η‖
1
4

H2(Ω)‖η‖
1
4

L2(Ω) (C.6)

for some C > 0.

Using the definition of the H1-norm, Definition C.0.1, and the fact that η is periodic

we have

‖η‖2H1(Ω) = ‖η‖2L2(Ω) + ‖∇η‖2L2(Ω)

= ‖η‖2L2(Ω) −
∫

Ω

η∆ηdx.

Using Cauchy-Schwartz on the right-hand term we have

‖η‖2H1(Ω) ≤ ‖η‖
2
L2(Ω) + ‖η‖L2(Ω)‖∆η‖L2(Ω)

≤ ‖η‖L2(Ω)

(
‖η‖L2(Ω) + ‖∆η‖L2(Ω)

)
. (C.7)
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Consider the term on the right side

(
‖η‖L2(Ω) + ‖∆η‖L2(Ω)

)2
= ‖η‖2L2(Ω) + 2‖η‖L2(Ω)‖∆η‖L2(Ω) + ‖∆η‖2L2(Ω)

≤ 2
[
‖η‖2L2(Ω) + ‖∆η‖2L2(Ω)

]
≤ 2‖η‖2H2(Ω) (C.8)

where the second line follows by Young’s inequality and the last line follows from the defi-

nition of the H2-norm, Definition C.0.1.

Inserting (C.8) into (C.7) we have

‖η‖2H1(Ω) ≤
√

2‖η‖L2(Ω)‖η‖H2(Ω). (C.9)

Therefore (C.6) is satisfied with C = 8
√

2.

Inserting (C.6) into (C.5) and using that 1 ≤ 8
√

2 (C.4) is satisfied for d = 2 and

d = 3.

Finally we state a lemma that allows us to bound the L3-norm by a combination of

the L2- and H2-norms.

Lemma C.2.7. We now show that for all η ∈ H2
per(Ω) we have a bound for the L3-norm

in terms of the H2- and L2-norms that is independent of dimension. That is for d = 2 or

d = 3 we have

‖η‖L3(Ω) ≤
4
√

2‖η‖
1
2

H2(Ω)‖η‖
1
2

L2(Ω).

Proof. Recall the L4-bound (Lemma C.2.6) and the interpolation of the L3-norm (Lemma

C.2.5), that is

‖η‖L4(Ω) ≤
8
√

2‖η‖
1
2

H2(Ω)‖η‖
1
2

L2(Ω),

‖η‖3L3(Ω) ≤ ‖η‖L2(Ω)‖η‖2L4(Ω).

Combining these we have

‖η‖3L3(Ω) ≤
4
√

2‖η‖2L2(Ω)‖η‖H2(Ω) (C.10)

Using that H2(Ω) ⊂ L2(Ω), that is

‖η‖
1
2

L2(Ω) ≤ ‖η‖
1
2

H2(Ω). (C.11)

Combining (C.10) and (C.11) gives the result.
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Proof of Theorem 5.2.1

Theorem ([HJ15, Theorem 11.2.7]). .

Assume that Â = δ2E [0] is a semi-Fredholm operator and that N =kerÂ ⊂ Z.

Assume that:

• (H2) E : U → R is analytic in the sense of Definition 5.2.3 where U ⊂ W is an

open neighbourhood of 0, such that δE(U) ⊂ Z and δE : U → Z is analytic.

Then there exists θ ∈
(
0, 1

2

]
, σ > 0 and c > 0 such that

‖u‖V < σ ⇒ ‖δE [u]‖V ∗ ≥ c|E [u]|1−θ.

First we need a C1 map from V to V ∗ in a neighbourhood of the origin this follows

from the following proposition.

Proposition D.0.1 (Proposition 11.2.3 of [HJ15]). Assume that Â = δ2E [0] is a semi-

Fredholm operator and let

N : V → V ∗

u 7→ Πu+ δE [u].

Then there exists a neighbourhood of 0, W1(0) in V , a neighbourhood of 0, W2(0)

in V ∗ and a C1 map Ψ : W2(0)→W1(0) which satisfies

N (Ψ(f)) = f, ∀f ∈W2(0),

Ψ(N (u)) = u, ∀u ∈W1(0),

‖Ψ(f)−Ψ(g)‖V ≤ C1‖f − g‖V ∗ , ∀(f, g) ∈W2(0).

where C1 > 0.

Proof. The function N is C1 and DN (0) = Π + Â is an isomorphism. Therefore classical

local inversion theorem applies to give us Ψ.
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We can now establish that in a neighbourhood of 0 this C1-map corresponds to an

analytic map Ψ1 : Z →W .

Lemma D.0.8 (Lemma 11.2.8 of [HJ15]). There exists a neighbourhood of 0, V1(0) in W ,

a neighbourhood of 0, V2(0) in Z and an analytic map Ψ1 : V2(0)→ V1(0) which satisfies

N (Ψ1(f)) = f, ∀f ∈ V2(0),

Ψ1(N (u)) = u, ∀u ∈ V1(0),

Ψ1 = Ψ, ∈ V2(0) ∩W2(0)

‖Ψ(f)−Ψ(g)‖W ≤ C1‖f − g‖Z , ∀(f, g) ∈ V2(0) ∩W2(0).

Proof. We first establish that

N : W → Z,

u 7→ Πu+ δE [u],

is a C1-diffeomorphism near 0, because DN (0) = Π + Â = L ∈ L(W,Z) is an isomorphism

and the classical local inversion theorem applies. Therefore we can find a neighbourhood

V1(0) of 0 in W and a neighbourhood V2(0) of 0 in Z such that N : V1(0) → V2(0) is a

C1-diffeomorphism. Finally it is clear that Ψ1 = N−1 in V2(0)∩W2(0). By [HJ15, Theorem

2.3.7] we have Ψ1 is analytic in V2(0).

We now split our energy bound into two parts, one where the classical  Lojasiewicz

inequality for analytic functions can be applied and one which is the difference between

the energy and its analytic approximation. We can then use the properties of Ψ and δE to

bound the norm of the discrete first variation by ‖δE‖V ∗ . Finally, we use the properties of

Ψ and δE to bound the difference between the energy and its analytic approximation by

‖δE‖2V ∗ .
We first give our analytic approximation of the energy near the origin.

Let (ϕ1, ϕ2, ..., ϕd) denote an orthonormal basis of ker(Â) relative to the inner-

product of H. For ξ ∈ Rd small enough to achieve Π(u) =
∑d
j=1 ξjϕj ∈W2(0) we define

Γ(ξ) = E

Ψ

 d∑
j=1

ξjϕj

 .
By the chain rule (see [HJ15, Theorem 2.3.5]) since E : U → R, δE : U → Z and Ψ :

V2(0) ∩W2(0)→ V1(0) are analytic, the function Γ is real analytic in some neighbourhood

of 0 in Rd. We now have by sub-additivity

|E [u]|1−θ ≤ |Γ(ξ)|1−θ + |Γ(ξ)− E [u]|1−θ.

Applying the classical  Lojasiewicz inequality (see [HJ15, Theorem 10.1.3] and [ Loj62] or
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[ LZ99] for a proof) to the scalar analytic function Γ defined above we obtain ( since 1− θ ∈
(0, 1)).

|E [u]|1−θ ≤ 1

C0
‖∇Γ(ξ)‖Rd + |Γ(ξ)− E [u]|1−θ. (D.1)

We first consider the gradient term. We want to bound this by ‖δE‖V ∗ .

Lemma D.0.9 (see [HJ15, Proposition 11.2.4]). We can bound the discrete gradient by

‖δE‖V ∗ , that is

‖∇Γ(ξ)‖Rd ≤ C‖δE [u]‖V ∗ (D.2)

where C > 0.

Proof. Consider the norm of ∇Γ

‖∇Γ(ξ)‖Rd =

∥∥∥∥ ∂Γ

∂ξk
(ξ)ϕk

∥∥∥∥
V ∗
,

≤

∥∥∥∥∥∥ ∂Γ

∂ξk
(ξ)ϕk − δE

Ψ

 d∑
j=1

ξjϕj

∥∥∥∥∥∥
V ∗

+

∥∥∥∥∥∥δE
Ψ

 d∑
j=1

ξjϕj

∥∥∥∥∥∥
V ∗

. (D.3)

We want to approximate the first term of the left-hand side. First differentiate Γ

∂Γ

∂ξk
=

d

ds
E

Ψ

∑
j 6=k

ξjϕj + (ξk + s)ϕk

∣∣∣∣∣∣
s=0

,

=

〈
δE

Ψ

 d∑
j=1

ξjϕj

 , DΨ

 d∑
j=1

ξjϕj

ϕk

〉
.

Using this we have∥∥∥∥∥∥ ∂Γ

∂ξk
(ξ)ϕk − δE

Ψ

 d∑
j=1

ξjϕj

∥∥∥∥∥∥
V ∗

=

∥∥∥∥∥∥
d∑
k=1

〈
δE

Ψ

 d∑
j=1

ξjϕj

 , DΨ

 d∑
j=1

ξjϕj

ϕk − ϕk

〉
ϕk

∥∥∥∥∥∥
V ∗

.

Therefore we have∥∥∥∥∥∥ ∂Γ

∂ξk
(ξ)ϕk − δE

Ψ

 d∑
j=1

ξjϕj

∥∥∥∥∥∥
V ∗

≤
d∑
k=1

∥∥∥∥∥∥δE
Ψ

 d∑
j=1

ξjϕj

∥∥∥∥∥∥
V ∗

∥∥∥∥∥∥DΨ

 d∑
j=1

ξjϕj

ϕk − ϕk

∥∥∥∥∥∥
V ∗
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using that DΨ is continuous and DΨ(0)u = u we have∥∥∥∥∥∥ ∂Γ

∂ξk
(ξ)ϕk − δE

Ψ

 d∑
j=1

ξjϕj

∥∥∥∥∥∥
V ∗

≤ |ξ|

∥∥∥∥∥∥δE
Ψ

 d∑
j=1

ξjϕj

∥∥∥∥∥∥
V ∗

.

Hence using this equation in (D.3) we have

‖∇Γ(ξ)‖Rd ≤ C4‖δE [Ψ(Π(u))]‖V ∗ ,

= C4‖δE [Ψ(Π(u))]− δE [u] + δE [u]‖V ∗ ,

since E is C1 we have

‖∇Γ(ξ)‖Rd ≤ C4‖δE [u]‖V ∗ + C3C4‖Ψ(Π(u))− u‖V ,

≤ C4‖δE [u]‖V ∗ + C3C4‖Ψ(Π(u))−Ψ(Π(u) + δE [u])‖V ,

where we have used the definition of Ψ in the last line. Using the continuity of Ψ we have

(D.2).

Consider the energy difference term of (D.1).

Lemma D.0.10 (see [HJ15, Proposition 11.2.4]). We can bound the difference between the

energy and its analytic approximation by the square of ‖δE [u]‖V ∗ , That is,

|E [u]− Γ(ξ)| ≤ K‖δE [u]‖2V ∗ . (D.4)

Proof.

|E [u]− Γ(ξ)| = |E [u]− E [Ψ(Π(u)]|,

=

∣∣∣∣∫ 1

0

d

dt
[E [u+ t(Ψ(Π(u))− u)]]dt

∣∣∣∣ ,
=

∣∣∣∣∫ 1

0

〈δE [u+ t(Ψ(Π(u))− u)],Ψ(Π(u))− u〉dt
∣∣∣∣ ,

≤ ‖Ψ(Π(u))− u‖V
∫ 1

0

‖δE [u+ t(Ψ(Π(u))− u)]‖V ∗dt,

= ‖Ψ(Π(u))− u‖V
∫ 1

0

‖δE [u]− δE [u] + δE [u+ t(Ψ(Π(u))− u)]‖V ∗dt,

≤ ‖Ψ(Π(u))− u‖V
∫ 1

0

‖δE [u]‖V ∗ + ‖δE [u+ t(Ψ(Π(u))− u)]− δE [u]‖V ∗dt,

≤ ‖Ψ(Π(u))− u‖V
∫ 1

0

(‖δE [u]‖V ∗ + tC3‖Ψ(Π(u))− u‖V ∗)dt, (D.5)

where the last line follows by the continuity of δE . The definition of Ψ and its continuity
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give us

‖Ψ(Π(u))− u‖V = ‖Ψ(Π(u))−Ψ(Π(u) + δE [u])‖V ,

≤ C7‖δE [u]‖V ∗ .

Therefore, using this bound in (D.5), we have (D.4).

Inserting the bound for the energy difference (D.4) and the bound for the derivative

(D.2) into the bound for the power of the energy (D.1) we have

|E [u]|1−θ ≤ C

C0
‖δE [u]‖V ∗ +K1−θ‖δE [u]‖2(1−θ)

V ∗ . (D.6)

Since E is C1 we have

‖δE [u]− δE [v]‖V ∗ ≤ C3‖u− v‖V .

There exists a constant Ĉ > 0 such that ‖δE [0]‖V ∗ ≤ Ĉ. Therefore

‖δE [u]‖V ∗ ≤ ‖δE [u]− δE [0] + δE [0]‖V ∗ ≤ C3‖u‖V + Ĉ.

Hence ‖δE [u]‖V ∗ ≤ C3σ + Ĉ and from (D.6) we have

|E [u]|1−θ ≤ ‖δE [u]‖V ∗
(
C

C0
+K1−θ

)(
1 + ‖δE [u]‖1−2θ

V ∗

)
,

≤ ‖δE [u]‖V ∗
(
C

C0
+K1−θ

)(
1 + (C3σ + Ĉ)1−2θ

)
.

Therefore, there exists σ > 0, c > 0 such that

‖δE [u]‖V ∗ ≥ c|E [u]|1−θ, ∀u ∈ V such that ‖u‖V < σ.

Hence [HJ15, Theorem 11.2.7] is proved.
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Trust Region Method

Another method for solving problem (P) (see page 37), which is similar to the H2-gradient

flow method used in Chapter 6, is based on the trust region method (see [NW06, Chapter

4] for a general trust method). This is a method that is widely used in optimisation (see

[CGT00, Section 1.3] for a wide range of references on applications of trust region methods)

and hence provides a good comparison method for the methods of Algorithms 6.1.1 and

7.1.1. A trust region method that automatically enforces the constraint that the average

is preserved is the constrained trust region method of [BSS87]; however, this method does

not include a pre-conditioner and therefore the computational cost grows with the number

of grid points.

We follow a pre-conditioned trust-region method based on the Steihaug method of

[Ste83]. We introduce a minor modification from the Steihaug method in that the average is

conserved by each update. This specific pre-conditioned constrained trust region approach

is a novel method; however, the convergence and stability theory is very similar to that of

the Steihaug method of [Ste83].

At each step, if the energy decease is large enough, we update out iterate as un+1 =

un + Πdn, where Π is defined by (8.9) and Πdn is the minima of

qn(d) := 〈δF [un],Πd〉+
1

2
〈δ2F [un]Πd,Πd〉,

subject to ‖Πd‖A(n) ≤ ∆, where the norm is the one introduced by the averaged second

variation operator, Definition 6.1.1. Therefore at each step we solve a sub-problem, which

we now define.

Definition E.0.1 (Trust-region Sub-problem).

minimize : 〈δF [un],Πd〉+
1

2
〈δ2F [un]Πd,Πd〉,

subject to : ‖Πd‖A(n) ≤ ∆.
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Remark E.0.1. In principle the A(n)-norm could be replaced by the A-norm with γ = γom

where γom is defined through (8.10) and (8.11). As shown in Figure E.1 this choice of norm

does not seriously affect the speed of convergence.

The PFC functional’s second variation (3.10) is not positive definite; therefore the

sub-problem is solved using the method of [Ste83, Section 2] which is capable of dealing

with non-positive second variations. As in [Ste83, Section 2] we have three different termi-

nation criteria for the sub-problem. First, we terminate when we have a sufficiently good

approximation for the quasi-Newton step, i.e. the solution to the sub-problem without the

constraint. Second, we terminate if the norm of the projection of the approximation is

too large. Our final termination criterion is that if we encounter a direction of negative

curvature we move from the current iterate along the proposed direction to the boundary.

At each step of the trust-region algorithm we update the size of the trust region

using the method of [NW06, Algorithm 4.1]. We evaluate the ratio

ρn =
F [un]−F [un + Πdn]

−qn(dn)
,

then the size of the trust region at the n+ 1th step becomes

∆n+1 =


1
4∆n if ρn <

1
4 ,

min(2∆n, ∆̂) if ρn >
3
4 and ‖Πdn‖A(n) = ∆n,

∆n otherwise,

(E.1)

where ∆̂ > 0 is the maximum size allowed for the trust region and we define an initial trust

region size ∆0 > 0. For η ∈ [0, 1/4] we update un by

un+1 =

un + Πdn for ρn > η,

un otherwise.

We can see that in unconstrained optimisation (i.e. ∆ arbitrarily large) the min-

imisation problem, Definition E.0.1, is equivalent to the Newton method (4.3) and hence is

broadly similar to the H2-gradient flow approach of Chapter 6. In theory the trust-region

approach would involve inverting a dense operator, the second variation (3.10); however,

using the method of [Ste83, Section 2] (which is similar to a conjugate gradient method) we

never actively invert the dense second variation.

Energy stability follows from the update step, [Ste83, Equation (3.1)-(3.2)], i.e. we

update only if

ρk =
F [uk]−F [uk + Πdk]

−qn(dk)
≥ η,

where η > 0. We note by definition that qn(0) = 0 therefore for energy stability we only

need to prove that, in the sub-problem Definition E.0.1, ‖Πdk‖A(n) is strictly increasing and

qn is strictly decreasing which is the analogue of [Ste83, Theorem 2.1].
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Convergence follows by analogy with [Ste83, Theorem 3.1].

E.1 Algorithm

Using this notation we can now formulate the discrete trust region algorithm. This algorithm

is very similar to [NW06, Algorithm 4.1], however we state it here for convenience. Again

ū and δ are fixed constants.

Algorithm E.1.1.

(0) INPUT U0, η ∈ [0, 1/4] , ∆̂ > 0,∆ ∈ (0, ∆̂)

(1) FOR n = 0, 1, 2, . . .

(2) γn = max
(
γmin, 3U2

n − δ
)

(3) SOLVE Definition E.0.1 with the termination criteria of [Ste83, Section 2]

(4) CALCULATE qn(dn) := 〈δFN [Un],Πdn〉+ 0.5〈δ2FN [Un]Πdn,Πdn〉,

(5) CALCULATE ρn = (FN [Un]−FN [Un + Πdn])/(−qn(dn))

(6) UPDATE ∆n+1 using (E.1)

(7) UPDATE Un+1 =

Un + Πdn for ρn > η,

Un otherwise

E.2 Choice of Pre-conditioner

We wish to prove that for the trust region algorithm, Algorithm E.1.1, the choice of an

adaptive γ in line (2) is justified. To show this we will compare Algorithm E.1.1 to an

adaptation of this algorithm where line (2) is replaced by γn = γom for all n. We plot the

number of FFTs needed for convergence against the number of grid points for these two

trust region algorithms. To negate the divergence issue discussed in Subsection 8.2.5 we

also choose the minimum number of grid points to be N = 12.

We can see from Figure E.1 that, as suggested in Remark E.0.1, Algorithm E.1.1

performs marginally better than its analogue with γ = γom for all n. By comparison with the

adaptive and fixed line search simulations of Section 9.2, we expect that this improvement

will be more dramatic, though still small, for simulations on larger domains. Therefore from

this point onwards when considering the trust method we will use Algorithm E.1.1 only.
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 FFT against Grid size for different trust region methods (2D)
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Fixed P−Trust−region

Figure E.1: Number of FFTs required for convergence of the solution against grid size, from
random initial conditions, using the trust region method, Algorithm E.1.1, and its analogue
with γ = γom. For fixed residual tolerence 10−7.
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[BO12] Á. Bényi and T. Oh. The sobolev inequality on the torus revisited. Publicationes

Mathematicae Debrecen, 83(3):359–374, 2012.

167



BIBLIOGRAPHY BIBLIOGRAPHY

[BPRS12] J. Berry, N. Provatas, J. Rottler, and C.W. Sinclair. Defect stability in phase-

field crystal models: Stacking faults and partial dislocations. Physical Review

B, 86:224112, 2012.

[Bre11] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Diffferential Equa-

tions. Springer, 2011.

[BSS87] R.H. Byrd, R.B. Schnabel, and G.A. Shultz. A trust region algorithm for

nonlinearly constrained optimization. SIAM Journal of Numerical Analysis,

24(5):1152–1170, 1987.

[CDRS09] S.L. Cottar, M. Dashti, J.C. Robinson, and A.M. Stuart. Bayesian inverse

problems for functions and applications to fluid mechanics. Inverse Problems,

25:115008, 2009.

[CE94] X. Chen and C.M. Elliott. Asymptotics for a parabolic double obstacle problem.

Proceedings of the Royal Society of London, Series A, 444:429–445, 1994.
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