
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/81054

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk


Revised July 2014 

   

 

Library Declaration and Deposit Agreement 

 
1. STUDENT DETAILS 

Please complete the following: 

Full name: ……………………………………………………………………………………………. 

University ID number: ………………………………………………………………………………. 

 
2. THESIS DEPOSIT  

2.1   Under your registration at the University, you are required to deposit your thesis with the 
University in BOTH hard copy and in digital format. The digital copy should normally be saved as 
a single pdf file. 

 
2.2   The hard copy will be housed in the University Library. The digital copy will be deposited in the 

University’s Institutional Repository (WRAP). Unless otherwise indicated (see 2.6 below), this will 
be made immediately openly accessible on the Internet and will be supplied to the British Library 
to be made available online via its Electronic Theses Online Service (EThOS) service. 
[At present, theses submitted for a Master’s degree by Research (MA, MSc, LLM, MS or 
MMedSci) are not being deposited in WRAP and not being made available via EthOS. This may 
change in future.] 

 
2.3   In exceptional circumstances, the Chair of the Board of Graduate Studies may grant permission 

for an embargo to be placed on public access to the thesis in excess of two years. This must be 
applied for when submitting the thesis for examination (further information is available in the 
Guide to Examinations for Higher Degrees by Research.) 

 
2.4   If you are depositing a thesis for a Master’s degree by Research, the options below only relate to 

the hard copy thesis. 
 
2.5 If your thesis contains material protected by third party copyright, you should consult with your 

department, and if appropriate, deposit an abridged hard and/or digital copy thesis. 
 

2.6 Please tick one of the following options for the availability of your thesis (guidance is available in 
the Guide to Examinations for Higher Degrees by Research): 
 

Both the hard and digital copy thesis can be made publicly available immediately  
 

The hard copy thesis can be made publicly available immediately and the digital copy 
thesis can be made publicly available after a period of two years (should you 
subsequently wish to reduce the embargo period please inform the Library) 

                 
Both the hard and digital copy thesis can be made publicly available after a period of two 
years (should you subsequently wish to reduce the embargo period please inform the 
Library) 

 
Both the hard copy and digital copy thesis can be made publicly available after 
_______________ (insert time period in excess of two years).  This option requires the 
prior approval of the Chair of the Board of Graduate Studies (see 2.3 above) 

 
The University encourages users of the Library to utilise theses as much as possible, and unless 
indicated below users will be able to photocopy your thesis. 
 

I do not wish for my thesis to be photocopied  
 
 

3. GRANTING OF NON-EXCLUSIVE RIGHTS 

Whether I deposit my Work personally or through an assistant or other agent, I agree to the following: 
 



Revised July 2014 

 Rights granted to the University of Warwick and the British Library and the user of the thesis 
through this agreement are non-exclusive. I retain all rights in the thesis in its present version or 
future versions. I agree that the institutional repository administrators and the British Library or 
their agents may, without changing content, digitise and migrate the thesis to any medium or 
format for the purpose of future preservation and accessibility. 

 

4. DECLARATIONS 
 

I DECLARE THAT: 
 

 I am the author and owner of the copyright in the thesis and/or I have the authority of the 
authors and owners of the copyright in the thesis to make this agreement. Reproduction 
of any part of this thesis for teaching or in academic or other forms of publication is 
subject to the normal limitations on the use of copyrighted materials and to the proper and 
full acknowledgement of its source. 
 

 The digital version of the thesis I am supplying is either the same version as the final, 
hard-bound copy submitted in completion of my degree once any minor corrections have 
been completed, or is an abridged version (see 2.5 above).  

 

 I have exercised reasonable care to ensure that the thesis is original, and does not to the 
best of my knowledge break any UK law or other Intellectual Property Right, or contain 
any confidential material. 

 

 I understand that, through the medium of the Internet, files will be available to automated 
agents, and may be searched and copied by, for example, text mining and plagiarism 
detection software. 

 

 At such time that my thesis will be made publically available digitally (see 2.6 above), I 
grant the University of Warwick and the British Library a licence to make available on the 
Internet the thesis in digitised format through the Institutional Repository and through the 
British Library via the EThOS service. 

 

 If my thesis does include any substantial subsidiary material owned by third-party 
copyright holders, I have sought and obtained permission to include it in any version of 
my thesis available in digital format and that this permission encompasses the rights that I 
have granted to the University of Warwick and to the British Library. 

 
5. LEGAL INFRINGEMENTS 
 

I understand that neither the University of Warwick nor the British Library have any obligation to take legal 
action on behalf of myself, or other rights holders, in the event of infringement of intellectual property 
rights, breach of contract or of any other right, in the thesis. 

 
Please sign this agreement and ensure it is bound into the final hard bound copy of your thesis, which should be 
submitted to Student Reception, Senate House.  
 
 
Student’s signature: ......................................................…… Date: .......................................................... 



One-Dimensional Interacting Particle

Systems as Pfaffian Point Processes

by

Barnaby James Garrod

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Mathematics Institute

May 2016



Contents

Acknowledgments iii

Declarations iv

Abstract v

Glossary of terms vi

Chapter 1 Overview 1

1.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Introduction to Pfaffians 4

2.1 Pfaffian of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Pfaffian Point processes . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 General theory of point processes . . . . . . . . . . . . . . . . 10

2.2.2 Definition and properties . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Generating new point processes from old . . . . . . . . . . . . 26

Chapter 3 Discrete models 33

3.1 Interacting particle systems on Z . . . . . . . . . . . . . . . . . . . . 33

3.2 Coalescing and annihilating random walks . . . . . . . . . . . . . . . 35

3.2.1 Definition of models and statement of results . . . . . . . . . 36

3.2.2 Proof of theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Models with branching or immigration . . . . . . . . . . . . . . . . . 47

3.3.1 Annihilating random walks with pairwise immigration . . . . 49

3.3.2 Branching coalescing random walks . . . . . . . . . . . . . . . 54

3.3.3 Relation between branching and immigration models . . . . . 67

i



Chapter 4 Continuum scaling limits 72

4.1 Convergence of Pfaffian point processes via kernels . . . . . . . . . . 73

4.2 Limits of coalescing and annihilating random walks . . . . . . . . . . 80

4.2.1 Symmetric rates and independent initial conditions . . . . . . 80

4.2.2 Symmetric rates and scaled independent initial conditions . . 89

4.2.3 Exploratory work on further models . . . . . . . . . . . . . . 93

4.3 Heuristics for limits of annihilating random walks with pairwise im-

migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Homogeneous rates and scaled independent initial conditions 99

4.3.2 Large-time limit for constant rates . . . . . . . . . . . . . . . 102

4.3.3 Exploratory work on the Brownian Firework . . . . . . . . . 103

4.4 Heuristics for limits of branching coalescing random walks . . . . . . 106

4.4.1 Homogeneous rates and scaled independent conditions . . . . 106

4.4.2 Continuum relation between branching and immigration . . . 111

Chapter 5 Extended Pfaffian point processes 113

5.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Extended Pfaffian property for annihilating random walks with pair-

wise immigration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix A Uniqueness for ODEs 135

Appendix B Convergence of whole space PDE approximations 139

ii



Acknowledgments

First and foremost, I extend the warmest of thanks to my supervisors, Roger

Tribe and Oleg Zaboronski, whose insight and guidance made this work possible.

The door was always open and each time I stepped through your enthusiasm and

expertise profoundly inspired me. Your encouragement and patience have made this

journey both exciting and extremely rewarding. It has also been a great pleasure

working with Mihail Poplavskyi and I thank him for all our fruitful discussions.

I would like to thank my family for all their support, especially my parents, Sally

and Toby, and my grandparents, Adrienne and Michael, who have always believed

in me. Thanks also to my Watly, Sieben Kölsch and Tachbrook friends for making
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Chapter 1

Overview

Identifying underlying algebraic structure of an interacting particle system unlocks

its analysis. The most natural place to look is in the intensity functions, which

essentially represent the probability of finding particles at given space-time positions.

These functions typically characterise the process and are a pathway to investigate

further properties. By algebraic structure we mean that the intensity is given by

first generating, via some kernel, a square matrix indexed by the positions under

consideration, and then substituting into a polynomial in the matrix entries. The

polynomial of interest here is the Pfaffian, whose square is given by the determinant.

There are many examples of systems governed by Pfaffians and determinants, most

notably arising in random matrix theory.

The primary motivation for the models considered in this thesis comes from a

system of interacting Brownian motions. In [59] Tribe and Zaboronski show that at

an arbitrary fixed time the positions of instantly coalescing Brownian motions and

instantly annihilating Brownian motions, started from a maximal initial condition,

form Pfaffian point processes on R. The aim is to investigate how deep this Pfaffian

structure goes. We illuminate the picture by generalising in a number of ways.

Firstly we establish that continuous-time random walk models on Z with general

inhomogeneous jump rates and mixed interactions, started from deterministic initial

conditions, are Pfaffian. We then extend the pure interaction models further. For

the case of pure annihilation we include inhomogeneous pairwise immigration of

particles, and for pure coalescence we allow inhomogeneous left and right branching

of particles. Both extensions are also Pfaffian. Thus, the structure in [59] is not a

coincidence, Pfaffians are fundamentally interwoven with annihilating and coalescing

particle systems.
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To come full circle, we develop the convergence of Pfaffian point processes via

their kernels, then apply this to investigate diffusive scaling limits of the discrete

point processes. We focus on convergence of spatially homogeneous models with

certain initial conditions, in particular recovering the Pfaffian point processes for

interacting Brownian motions.

Tribe and Zaboronski note in [59] that the one-dimensional distributions of the

annihilating Brownian motion system, appropriately rescaled with time, coincide

with the distribution of real eigenvalues in the bulk scaling limit of the real Ginibre

ensemble of random matrix theory [8]. The eigenvalue point process under the edge

scaling limit is also Pfaffian [8]. We locate this point process as the scaling limit

of annihilating random walks with a one-sided initial condition, thus extending the

mysterious link between annihilating Brownian motions and the real eigenvalues of

the real Ginibre ensemble to the edge of the spectrum.

In [58] Tribe and Zaboronski extend their single-time result of [59] to show that

the finite-dimensional marginals of instantly annihilating Brownian motions under

a maximal entrance law are described by Pfaffians, identifying the model as an

extended Pfaffian point process. We generalise this by proving that the annihilat-

ing random walk models with pairwise immigration satisfy the extended Pfaffian

property.

1.1 Outline of the thesis

The thesis is separated into three main parts: discrete-space models at single

times; the passage to and study of continuum models at single times; and multi-

time analysis for discrete-space models. All of the processes considered in the thesis

are in continuous time and all interactions are instantaneous. We give an outline of

the content in each chapter.

We begin by introducing the foundational concept of the Pfaffian in chapter 2.

The Pfaffian of a matrix is defined and basic theory reviewed, including some useful

formulae for its analysis. We then turn to point processes, recapping the general

framework before defining Pfaffian point processes and exploring their properties.

The theory is put into action by discussing some explicit examples.

With the fundamental machinery in hand, we initiate our study in chapter 3 with

discrete-space interacting particle systems. The class of models we consider com-
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prises independent random walks on Z defined by general inhomogeneous jump rates

and instantaneous coalescence or annihilation, determined at each coincidence by

an independent Bernoulli variable. We show that for deterministic initial conditions

the distribution of particles at an arbitrary fixed time is a Pfaffian point process

with kernel characterised by the solution to an associated two-dimensional ODE.

We then extend the models in the pure interaction regimes. For pure annihilation

we include inhomogeneous pairwise immigration of particles, and for pure coales-

cence we allow inhomogeneous left and right branching of particles. Both extensions

are shown to be Pfaffian with corresponding ODEs governing the kernels. We close

the chapter by deriving a relation between the two extensions.

The passage to continuum point processes via scaling limits is addressed in chap-

ter 4. We firstly develop convergence of Pfaffian point processes via their kernels.

This facilitates the investigation of diffusive scaling limits for the discrete point pro-

cesses, which boils down to uniform convergence of the characterising lattice ODEs

to continuum PDEs. For the coalescing and annihilating random walk model, we

prove convergence of the one-dimensional marginals of the scaled discrete processes

in the case of symmetric homogeneous rates and independent initial conditions. The

appropriate scaling for the immigration and branching models is discussed and the

limit point processes identified. The continuum limits are Pfaffian point processes

with kernels characterised by the associated two-dimensional limit PDEs.

Multi-time generalisations are considered in chapter 5. We introduce the notion

of an extended Pfaffian point process and prove that the annihilating random walk

model with pairwise immigration is an example.

Finally, some auxiliary PDE results are contained in the appendices.
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Chapter 2

Introduction to Pfaffians

Pfaffians and Pfaffian point processes are central concepts of this work and in this

chapter we set out the general theory.

Section 2.1 contains an introduction to Pfaffians along with some useful formulae

for its analysis. In section 2.2 we turn to point processes, recapping the general

framework before developing the theory of Pfaffian point processes, including prop-

erties and examples.

2.1 Pfaffian of a matrix

The concept of the Pfaffian is inextricably connected to anti-symmetry and we

begin with the definition of an anti-symmetric matrix. Throughout the thesis we

deal exclusively with real matrices and so restrict attention accordingly, but remark

that one may just as well consider complex entries.

Definition 1. A real square matrix A is said to be anti-symmetric if it satisfies

AT = −A,

where AT denotes the transpose of A.

The determinant of a 2n×2n anti-symmetric matrix is the square of a polynomial

in the matrix entries. This polynomial is the Pfaffian of the matrix. Its study

was instigated by Pfaff early in the nineteenth century and the name Pfaffian was

coined by Cayley. See Knuth [35], and references therein, for more on the origins

and historical development. We now give the formal definition and basic properties,
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referring to Stembridge [54] for some of the proofs. Similarly to the determinant the

Pfaffian may be defined combinatorially as a sum over permutations.

Definition 2. Let A = (aij)
2n
i,j=1 be a real anti-symmetric matrix. The Pfaffian of

the matrix A, denoted by Pf(A), is defined by

Pf(A) =
1

2nn!

∑
σ∈Σ2n

sgn(σ)
n∏
i=1

aσ(2i−1),σ(2i),

where Σ2n is the set of permutations on {1, 2, . . . , 2n}.

Due to anti-symmetry there are many cancellations and the sum may be replaced

by a subset of permutations, so-called perfect matchings. In particular, the Pfaffian

of a matrix may be expressed in terms of the upper-triangular entries.

Proposition 1. Let A = (aij)
2n
i,j=1 be a real anti-symmetric matrix. Then

Pf(A) =
∑
σ∈Σ′2n

sgn(σ)

n∏
`=1

ai`,j` ,

where Σ′2n is the set of permutations on {1, 2, . . . , 2n} with σ(2`−1) = i`, σ(2`) = j`

and i` < j` for ` = 1, . . . , n, and i1 < i2 < · · · < in.

Proof of proposition 1. We obtain the claimed expression by developing the defi-

nition of Pf(A). Consider the summand sgn(σ)
∏n
i=1 aσ(2i−1),σ(2i) for some per-

mutation σ ∈ Σ2n. Let σ′ ∈ Σ2n be obtained from σ by changing a pair (σ(2i −
1), σ(2i)) to (σ(2i), σ(2i−1)). This flips the sign of the product since aσ(2i−1),σ(2i) =

−aσ(2i),σ(2i−1) by anti-symmetry. However, sgn(σ′) = − sgn(σ) since σ′ may be ex-

pressed as σ followed by a single transposition σ(2i− 1)↔ σ(2i). All together, the

summands for σ and σ′ coincide. This is also true if σ′ is obtained from σ by exchang-

ing the order of two pairs, that is, changing (σ(2i− 1), σ(2i), σ(2i+ 1), σ(2i+ 2)) to

(σ(2i+1), σ(2i+2), σ(2i−1), σ(2i)). Indeed the product is unaffected and sgn(σ′) =

sgn(σ) since σ′ may be expressed as σ followed by two transpositions. Iterating this

shows that the summand does not depend on the order in each pair (σ(2i−1), σ(2i)),

nor the order of pairs (σ(1), σ(2)), (σ(3), σ(4)), . . . , (σ(2n− 1), σ(2n)). Thus, there

are 2nn! permutations whose summand coincides with that for σ. This partitions

Σ2n into (2n)!/(2nn!) equivalence classes (corresponding to perfect matchings) and

it remains to pick a representative from each, since the prefactor 1/(2nn!) cancels

with the number of summands in each class. Let σ(2` − 1) = i` and σ(2`) = j`.

There is a unique permutation in each equivalence class satisfying the conditions
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i` < j` and i1 < i2 < · · · < in. Indeed the first condition fixes an order in each pair

(σ(2` − 1), σ(2`)) and the second fixes an ordering of the pairs. The set of chosen

representatives is exactly Σ′2n.

The connection to determinants is made explicit in the following proposition.

Proposition 2. Let A be a 2n× 2n real anti-symmetric matrix. Then

det(A) = Pf(A)2.

Proof of proposition 2. See [54] proposition 2.2.

The determinant of an anti-symmetric matrix of odd dimension vanishes and ac-

cordingly the Pfaffian is defined to be zero. Indeed, let A be an anti-symmetric

(2n+ 1)× (2n+ 1) matrix then

det(A) = det(AT ) = det(−A) = (−1)2n+1 det(A) = −det(A).

Before exploring properties of the Pfaffian we find our footing by recording the

smallest non-trivial cases:

Pf

(
0 a

−a 0

)
= a, Pf


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

 = af − be+ dc.

Owing to its origin the Pfaffian enjoys many analogous properties to the deter-

minant. The following conjugation result is useful for manipulating Pfaffians, for

example, we often conjugate with the matrix of an elementary row or column oper-

ation.

Proposition 3 (Conjugation). Let A and B be 2n× 2n real matrices with A anti-

symmetric. Then

Pf(BTAB) = det(B) Pf(A).

Proof of proposition 3. See [54] proposition 2.3.

The next formula is an expansion for the Pfaffian of the sum of two matrices.

Proposition 4 (Summation). Let A and B be 2n×2n real anti-symmetric matrices.

Then

Pf(A+B) =
∑
U

(−1)|U |/2(−1)s(U) Pf(A|U ) Pf(B|Uc),
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where the sum is over subsets U ⊆ {1, . . . , 2n} with |U |/2 ∈ {1, . . . , n}, s(U) =∑
j∈U j (with s(∅) = 0), and A|U means the matrix A restricted to the rows and

columns indexed by U .

Proof of proposition 4. See [54] lemma 4.2.

A consequence of the summation formula is a Laplace expansion for Pfaffians. We

give the formula for expanding in a row, but note that by anti-symmetry it may be

rewritten as a column expansion.

Proposition 5 (Row expansion). Let A = (aij)
2n
i,j=1 be a real anti-symmetric ma-

trix. Then for any i ∈ {1, . . . , 2n}

Pf(A) =
2n∑

j=1,j 6=i
(−1)i+j+1+1(j<i)aij Pf(A(i,j)),

where A(i,j) is the (2n − 2) × (2n − 2) submatrix formed by removing the i-th and

j-th rows and columns from A, and 1(·) is the indicator function.

Proof of proposition 5. The expression follows upon decomposing A into the sum of

two 2n× 2n anti-symmetric matrices, by separating the i-th row and column from

A, and applying proposition 4.

Looking ahead, we are interested in particle systems characterised by Pfaffians.

Particles in these systems are indistinguishable and the matrix indices of the Pfaffi-

ans correspond to particles. From this it is already not surprising that the matrices

involved are highly structured with some symmetry among the entries. We now

look at different forms of structure in matrix entries and in each case develop the

Pfaffian. For convenience when dealing with anti-symmetric matrices we introduce

the sign function sgn : R → {±1, 0} defined by sgn(z) = 1 if z > 0, sgn(z) = −1

if z < 0 and sgn(z) = 0 if z = 0. Although strictly this is an abuse of notation

with the sign of a permutation it will always be clear from context which function is

being used. When working with Pfaffians it is often more convenient to indicate a

matrix by its entries. In particular if A = (aij)
2n
i,j=1 is an anti-symmetric matrix and

we wish to stress the dependence on entries we will write Pf(aij : i, j ≤ 2n) instead

of Pf(A). Due to anti-symmetry a Pfaffian is defined by the upper triangular entries

alone, so we also write Pf(aij : i < j ≤ 2n).

For general square matrices the simplest non-trivial matrix with entries of the

same form is the constant matrix consisting of all 1’s. The anti-symmetric analogue

7



of this has values 1 in the upper triangular entries (−1 in the lower) and is denoted

by 1. It is useful to compute Pf(1) since it comes up in various places, including

the proof of subsequent properties.

Proposition 6. Let 1 be the 2n× 2n matrix with entries 1ij = sgn(j − i). Then

Pf(1) = 1.

Proof of proposition 6. Proceed by induction on n. For n = 1 the result is trivial.

For n > 1 expanding in the top row by proposition 5 and substituting in the inductive

hypothesis

Pf(1) =

2n∑
j=2

(−1)j Pf(1(1,j)) =

2n∑
j=2

(−1)j = 1.

The following scaling relation leads to the generalised expression Pf(c1) = cn for

c ∈ R.

Proposition 7. Let A be a 2n× 2n real anti-symmetric matrix and fix a constant

c ∈ R. Then

Pf(cA) = cn Pf(A).

Proof of proposition 7. Appealing directly to the definition of the Pfaffian, for any

permutation the factor cn may be pulled outside the product of entries and outside

the summation. What remains in the summation is Pf(A).

If the entries admit a product or quotient form then the Pfaffian is explicit.

Proposition 8. For a1, . . . , a2n ∈ R

Pf(aiaj : i < j ≤ 2n) =
2n∏
i=1

ai.

Proof of proposition 8. Apply the conjugation formula to BT1B, where B is a di-

agonal matrix with entries a1, . . . , a2n, and conclude with proposition 6.

Proposition 9. For non-zero a1, . . . , a2n ∈ R

Pf

(
ai
aj

: i < j ≤ 2n

)
=

n∏
i=1

a2i−1

a2i
.

8



Proof of proposition 9. Let A = (aij)
2n
i,j=1 denote the anti-symmetric matrix defined

by its upper triangular entries aij = ai/aj (for i < j). By conjugating with a

suitable elementary matrix we may subtract a multiple a1/a2 of the second row and

column from the first row and column. This produces a new matrix Ã, satisfying

Pf(A) = Pf(Ã) by proposition 3, which has the same entries as A but with first row

(0, a1/a2, 0, . . . , 0) (and corresponding anti-symmetric first column). Expanding Ã

in the first row

Pf(A) = Pf(Ã) =
a1

a2
Pf(Ã(1,2)) =

a1

a2
Pf(A(1,2)),

and by induction on n we find Pf(A) = (a1a3 . . . a2n−1)/(a2a4 . . . a2n).

Finally, the Pfaffian factorises if a matrix is of block diagonal form.

Proposition 10. Let A and B be real anti-symmetric matrices with dimensions

2k × 2k and (2n − 2k) × (2n − 2k) respectively, for some 1 < k < n. Let C

denote the 2n × 2n matrix whose top left 2k × 2k block is given by A, bottom right

(2n− 2k)× (2n− 2k) block is given by B, and remaining entries are all zero. Then

Pf(C) = Pf(A) Pf(B).

Proof of proposition 10. View C as the sum of two 2n × 2n matrices, formed by

adding rows and columns of zeroes to A and B, and apply proposition 4.

2.2 Pfaffian Point processes

The fundamental objects in this thesis are Pfaffian point processes. In order to

define them we first review some general theory of point processes in section 2.2.1.

In later chapters we study processes on both discrete and continuous spaces, but

rather than replicate theory for the different cases, section 2.2.1 is set in a general

topological framework. With the foundations laid we define Pfaffian point processes

and explore basic properties in section 2.2.2. The theory is put into action in

section 2.2.3, where we discuss examples from random matrix theory and interacting

particle systems, including the key model of coalescing and annihilating Brownian

motions. Finally, in section 2.2.4 we show that the set of Pfaffian point processes is

closed under particular thinning and thickening operations.
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2.2.1 General theory of point processes

We review some classical theory of point processes. A comprehensive exposition

may be found in Daley and Vere-Jones [10, 11], while references more specific to

our context are Anderson et al. [4] section 4.2, and Johansson [31]. We also refer to

Kallenberg [32] for measure theoretic considerations.

Let Λ be a locally compact, second countable Hausdorff space (think Z or R).

A measure µ on Λ is called locally finite if µ(B) < ∞ for Borel B ⊂ Λ that are

relatively compact, that is, with compact closure (boundedness for Z or R). Denote

by MLFP(Λ) the space of locally finite point measures on Λ, that is locally finite

measures µ such that µ(B) ∈ N for relatively compact Borel B ⊂ Λ. The vague

topology on MLFP(Λ) is generated by the projections µ 7→ µf =
∫

Λ f dµ for f ∈
C0(Λ), the space of continuous functions f : Λ → [0,∞) with compact support,

and we take the associated σ-algebra on MLFP(Λ). We view a point process as a

random element of MLFP(Λ) characterised by its law.

Definition 3. The law of a point process on Λ is a probability measure P on

MLFP(Λ).

As for random variables, it is convenient and standard practice to work with canon-

ical variables and we refer to the point process X as a random measure with the law

P. In particular for each Borel B ⊂ Λ, X(B) is an integer-valued random variable.

Moreover if B is relatively compact then µ ∈ MLFP(Λ) restricted to B may be

written as

µ|B =

µ(B)∑
i=1

δxi , (2.1)

for some (not necessarily disjoint) x1, . . . , xX(B) ∈ Λ. This elucidates the interpreta-

tion of point processes as random configurations of point masses, or particles, on Λ.

We will not be interested in the case of multiple particles simultaneously occupying

the same site. With this consideration in mind, we say that a measure µ ∈MLFP(Λ)

is simple if µ({x}) is equal to 0 or 1 for each x ∈ Λ. The set of simple measures is

denoted by M0(Λ).

Definition 4. A point process X is simple if P[X is simple] = 1.

All of the point processes we consider are simple. With the definition in hand, we

turn to the question of how best to describe and work with point processes. There

are several approaches to this, suited to different objectives. Here we endorse joint

intensities which have a natural interpretation in terms of configurations. We state

10



the central definition, fixing a reference measure ν ∈ MLFP(Λ) (counting measure

for Z and Lebesgue for R).

Definition 5. Let X be a simple point process on Λ. Suppose that there exist locally

integrable functions ρ(n) : Λn → [0,∞) for n ∈ N such that for mutually disjoint

Borel sets B1, . . . , Bn

E [X(B1) . . . X(Bn)] =

∫
B1×···×Bn

ρ(n)(x1, . . . , xn) ν(dx1) . . . ν(dxn).

Then the function ρ(n) is called the n-th (joint) intensity.

To digest the definition, note that Lebesgue’s differentiation theorem (see [53], p.

106) gives for νn-almost every (x1, . . . , xn) ∈ Λn with distinct xi

ρ(n)(x1, . . . , xn) = lim
ε↓0

E [X(Bε(x1)) . . . X(Bε(xn))]

ν(Bε(x1)) . . . ν(Bε(xn))
,

where Bε(x) is the ball of radius ε centred at x ∈ Λ. We obtain the following powerful

intuition for distinct points

“ρ(n)(x1, . . . , xn)ν(dx1) . . . ν(dxn) = P[X has particles at x1, . . . , xn]”.

This is rigorous in the case of discrete Λ since the intensities may be identified

pointwise by choosing singleton sets Bi = {xi}. Indeed for a point process on Z
with the counting reference measure

ρ(n)(x1, . . . , xn) = E [X(x1) . . . X(xn)] for distinct x1, . . . , xn ∈ Z, (2.2)

and ρ(n)(x1, . . . , xn) is equal to the probability that the point process has particles

at x1, . . . , xn. The intensities are therefore natural objects and we see how they

should characterise point processes.

The intensities also give formulae for expected particle counts on overlapping sets.

Note that the intensities are not (pointwise) unique. Indeed according to definition 5,

ρ(n) is only defined νn-almost everywhere. For discrete spaces the diagonals, where

xi = xj for some i 6= j, are not null sets and we must define the intensity on

them to work with overlapping sets. To facilitate the following proposition, we set

ρ(n)(x1, . . . , xn) = 0 on the diagonals. Note that since we only consider simple point

processes, this is also a natural choice to make. We introduce the falling factorial

notation bzck = z!/(z− k)! = z(z− 1) . . . (z− k+ 1) for z, k ∈ N. Extending this to

11



MLFP(Λ), for relatively compact, mutually disjoint B1, . . . , Bm and n1, . . . , nm ∈ N
satisfying n1 + · · ·+ nm = n the (joint) falling factorial moment is defined by

Mn(Bn1
1 , . . . , Bnm

m ) = E

[
m∏
i=1

bX(Bi)cni

]
. (2.3)

Proposition 11. Let B1, . . . , Bm ⊂ Λ be relatively compact and mutually disjoint.

For n1, . . . , nm ∈ N satisfying n1 + · · ·+ nm = n

Mn(Bn1
1 , . . . , Bnm

m ) =

∫
B
n1
1 ×···×B

nm
m

ρ(n)(x1, . . . , xn) ν(dx1) . . . ν(dxn).

Proof of proposition 11. See [4] lemma 4.2.5.

We will not need it, but we remark that there exists a formula for the integral of

the intensity over a general relatively compact set B ⊂ Λn involving an associated

process of ordered samples of points (see [4] lemma 4.2.5).

Taking stock, we arrive at the following understanding of intensities. A natural

measure on the product space Λn is the (rectangular) product measure M ′n defined,

for Borel B1, . . . , Bn ⊂ Λ, by

M ′n(B1, . . . , Bn) = E [X(B1) . . . X(Bn)] .

If it exists, the intensity ρ(n) is the Radon-Nikodym derivative of the absolutely

continuous part of M ′n with respect to the product reference measure νn. As ex-

emplified by proposition 11, in the context of intensities there is a more natural

measure on Λn. It can be shown that (2.3) defines a measure Mn on Λn. If it exists,

the intensity ρ(n) is the Radon-Nikodym derivative of Mn with respect to νn.

The questions are now when do intensities exist and when do they determine

a point process. There are examples of point processes for which intensities do

not exist, but these are generally pathological and all processes we consider admit

intensities. Assuming that intensities exist it is often the case that they uniquely

determine the point process. This is closely related to well-posedness of the classical

moment problem and in particular growth conditions on the intensities. For Pfaffian

point processes we derive a sufficient condition (proposition 13) for intensities to

determine the process.
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To summarise, intensities are a useful concept when working with point processes

and they are the central object of study in this thesis.

2.2.2 Definition and properties

With the general framework set we define Pfaffian point processes and explore

their properties. We bring forward the standing assumptions of section 2.2.1 and,

as before, Λ can be thought of as Z or R.

A point process is determined to be Pfaffian if the intensities take a certain Pfaf-

fian form. Note that intensities take any integer number of arguments, but Pfaffians

are only non-trivial for square matrices of even dimension. The two concepts are

connected by assigning to each argument of the intensity a pair of rows and columns.

This leads to a key object, the Pfaffian kernel, a 2× 2 matrix-valued function. Note

also that the intensity ρ(n) of a point process on Λ is only defined νn-almost every-

where, and this is reflected in the definition of the kernel. We denote by L1
loc(Λ

n)

the set of (equivalence classes of) νn-locally integrable functions on Λn taking values

in R, noting that a function f ∈ L1
loc(Λ

n) is defined νn-almost everywhere.

Definition 6. A (Pfaffian) kernel on Λ is a 2 × 2 matrix-valued function K :

Λ2 → R2×2 with K(x, y) =
(

K11(x,y) K12(x,y)
K21(x,y) K22(x,y)

)
, constructed by defining functions

Kij(x, y) ∈ L1
loc(Λ

2),

K12(x, x) ∈ L1
loc(Λ),

(2.4a)

(2.4b)

satisfying the anti-symmetry condition Kij(x, y) = −Kji(y, x) for x, y ∈ Λ.

Definition 7. Let X be a simple point process on Λ with intensities {ρ(n) : n ∈ N}.
Suppose that there exists a kernel K such that

ρ(n)(x1, . . . , xn) = Pf(K(xi, xj) : i, j ≤ n) for x1, . . . , xn ∈ Λ, (2.5)

Then X is called a Pfaffian point process on Λ with kernel K.

We make some remarks on the definitions before exploring properties and examples.

Firstly, the notation Pf(K(xi, xj) : i, j ≤ n) represents the Pfaffian of the 2n × 2n

matrix generated by the n2 kernel blocks K(xi, xj) where the arguments range over

x1, . . . , xn. The anti-symmetry condition on the kernel guarantees that the matrix

is anti-symmetric. Note that the ordering of the xi is arbitrary. Indeed the matrix

with the xi and xj entries swapped is obtained by exchanging two pairs of rows and
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columns. This transformation may be realised by conjugation with a matrix of unit

determinant, which by proposition 3 does not alter the Pfaffian. For convenience

we generally (relabelling if necessary) assume the ordering x1 < x2 < · · · < xn. We

introduce the notation K(x) for the matrix of (2.5) where x = (x1, . . . , xn), and

in the case x1 < · · · < xn when stressing dependence on upper triangular entries

we write Pf(K(xi, xj) : i < j ≤ n) for Pf(K(x)). Although (2.5) is a νn-almost

everywhere equality, the definition satisfies the desired condition ρ(n)(x1, . . . , xn) = 0

if xi = xj for some i 6= j. Indeed, in this case the pairs of rows (and columns) of the

matrix corresponding to xi and xj are identical. By proposition 3, subtracting one

of the rows (and corresponding column) from its counterpart by conjugating with

an elementary matrix leaves the Pfaffian unchanged, but results in a row of zeroes.

Expanding the Pfaffian in this row shows that it indeed vanishes. Note that the

law of a Pfaffian point process depends on the kernel on the diagonal, for example

E [X(B)] =
∫
B K12(x, x) ν(dx). In fact, expanding the definition of intensities the

terms of E [X(B1) . . . X(Bn)] involving the diagonal are all, by anti-symmetry, of

the form
∫
Bi

K12(x, x) ν(dx). In the case Λ = R, however, {x = y} ⊂ Λ2 is a ν2-null

set and so K12(x, x) is not defined by (2.4a) alone. This is the reason we allow a

pointwise description (2.4b) of K12 (up to ν-null sets). Note that in the discrete

case Λ = Z the only νn-null set of Λn is the empty set and so (2.4b) is superfluous.

Remark 1. There is an alternative definition of a continuum Pfaffian point process

in terms of integral operators. The motivation comes from the well-established the-

ory of determinantal point processes, which we briefly review, referring to [51] for a

full account. First studied by Macchi [40], a point process X on R is called deter-

minantal if its intensities are of the form ρ(n)(x1, . . . , xn) = det (K(xi, xj) : i, j ≤ n)

for a kernel K : R2 → [0,∞)2. In order to give a classification of determinantal

point processes we consider kernels K that act as the kernel for a non-negative lo-

cally trace class integral operator K on L2(R). More precisely, the integral operator

K : L2(R)→ L2(R) associated to a kernel K : R2 → [0,∞)2 is defined by

(Kf)(x) =

∫
R
K(x, y)f(y) dy for x ∈ R, f ∈ L2(R).

Let e1, e2, . . . be an orthonormal basis of L2(R) with inner product given by 〈f, g〉 =∫
R f(y)g(y) dy for f, g ∈ L2(R), then the operator K is non-negative if 〈Kf, f〉 ≥ 0

for all f ∈ L2(R) and of trace class if

Tr(K) =

∞∑
`=1

〈Ke`, e`〉 <∞.
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The trace is also given by summing the eigenvalues of K. Finally, K is locally trace

class if the restricted operator 1BK1B, with kernel 1B(x)K(x, y)1B(y), is trace class

for bounded Borel B ⊂ R, where 1B is the indicator of the set B. The operator K
characterises the kernel K(x, y) up to Lebesgue null sets of R2, but note that the

law of the point process X depends on the diagonal values K(x, x), for example

E [X(B)] =
∫
BK(x, x) dx. Expanding the definition of intensities the terms of

E [X(B1) . . . X(Bn)] involving K(x, x) are all of the form
∫
Bi
K(x, x) dx, and it

suffices to add the constraint

Tr (1BK1B) =

∫
B
K(x, x) dx for bounded Borel B ⊂ R.

For non-negative locally trace class operators K it is indeed possible to pick such

a kernel K. Under this choice of kernel there is a simple characterisation result:

a Hermitian locally trace class operator K determines a determinantal point pro-

cess if and only if 0 ≤ K ≤ 1, in the sense that both K and 1 − K are non-

negative operators. Returning to Pfaffians, the alternative definition of a Pfaf-

fian point process on R (see Soshnikov [52], for instance) is that (2.5) holds for

a kernel K(x, y) =
(

K11(x,y) K12(x,y)
K21(x,y) K22(x,y)

)
which acts as a kernel for a locally trace

class integral operator K on L2(R) ⊕ L2(R). In particular, the integral operator

K : L2(R) ⊕ L2(R) → L2(R) ⊕ L2(R) associated to a kernel K is defined, for

f = (f1, f2) with f1, f2 ∈ L2(R), by

(Kf)(x1, x2) =

∫
R

(
K11(x1, y) K12(x1, y)

K21(x2, y) K22(x2, y)

)(
f1(y)

f2(y)

)
dy

=

(∫
R (K11(x1, y)f1(y) +K12(x1, y)f2(y)) dy∫
R (K21(x2, y)f1(y) +K22(x2, y)f2(y)) dy

)
,

and the inner product on L2(R) ⊕ L2(R) is given, for f =
(
f (1), f (2)

)
and g =(

g(1), g(2)
)
, by

〈f, g〉 =

∫
R
f (1)(y)g(1)(y) dy +

∫
R
f (2)(y)g(2)(y) dy.

Comparing with definition 6, condition (2.4a) ensures that a kernel K acts as a

kernel for an integral operator on L2(R) ⊕ L2(R). However, there is still the is-

sue of determining the kernel on the diagonals. By anti-symmetry it suffices to

define the integrals
∫
B K12(x, x) dx for bounded Borel B ⊂ R. Instead of impos-

ing a local trace condition we offer (2.4b). The reason is that we are not aware of

a classification theorem for Pfaffian point processes in terms of integral operators
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and in practice it is not straightforward to check whether a kernel defines a locally

trace class operator. With this in mind, it is natural to characterise the integrals∫
B K12(x, x) dx by allowing a direct pointwise definition of K12(x, x) : R → R (up

to null sets of R), namely (2.4b). This is also convenient, for example Poisson pro-

cesses are then Pfaffian with simple kernels and more importantly so are branching

coalescing systems. In any case, this thesis is self-contained and does not rely on

any external results for Pfaffian point processes, so we are justified in choosing the

most convenient definition. Note that in the discrete case there is no ambiguity in

the definition of a Pfaffian point process, because the intensity function is exactly

the occupation probability (2.2).

The point process X in definition 7 is well-defined in the sense that its law does

not depend on the choice of representatives for the equivalence classes in (2.4a) and

(2.4b). Note, however, that the kernel of a Pfaffian point process is not uniquely

determined. This is easy to acknowledge in light of the conjugation formula (propo-

sition 3), for one may conjugate with a determinant one matrix but preserve the

kernel form. This is the standard method for manipulating kernels and we now give

some common examples.

Proposition 12. Let X be a Pfaffian point process on Λ with kernel K =
(

K11 K12
K21 K22

)
.

The kernel K̃ may be taken as an alternative kernel for X in the following cases:

1. (Shifting constants) K̃ =
(
cK11 K12

K21
1
c
K22

)
for c 6= 0;

2. (Inhomogeneous shift) K̃(x, y) =

(
f(x)f(y)K11(x,y)

f(x)
f(y)

K12(x,y)

f(y)
f(x)

K21(x,y) 1
f(x)f(y)

K22(x,y)

)
for non-

zero f : Λ→ R;

3. (Adding rows/columns) K̃ =
(

K11 K12+cK11

K21+cK11 K22+cK21+cK12+c2K11

)
for c ∈ R;

4. (Swapping order) K̃ = −
(

K22 K21
K12 K11

)
.

Proof of proposition 12. It suffices to show that K̃ produces the same intensities

as K. Fix n ∈ N and x = (x1, . . . , xn) ∈ Λn then we must show that Pf(K̃(x)) =

Pf(K(x)). To see this apply proposition 3 to BTK(x)B with the 2n×2n determinant

one matrix B given, in each case, by the elementary matrix corresponding to:

1. part 2. in the special case f(x) =
√
c;

2. multiplying the 2i − 1-st column by f(xi) and the 2i-th by f(xi)
−1 for i =

1, . . . , n, namely a diagonal matrix with entries

(
f(x1), f(x1)−1, f(x2), f(x2)−1, . . . , f(xn), f(xn)−1

)
;
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3. adding a multiple c of the 2i−1-st column to the 2i-th for i = 1, . . . , n, namely

a block diagonal matrix with blocks ( 1 c
0 1 );

4. swapping the 2i − 1-st and 2i-th columns for i = 1, . . . , n, namely a block

diagonal matrix with blocks
(

0 −1
−1 0

)
.

Note that for part 1 the matrix B may have complex entries, which is a priori

outside the scope of part 2. However, the resulting matrix BTK(x)B is real and

proposition 3 extends directly.

Another important property is that a bounded kernel is sufficient to determine the

associated point process.

Proposition 13. Let X be a Pfaffian point process on Λ (Z or R) with kernel K.

Suppose that K is locally bounded in the sense that for each interval [a, b] ⊂ R

‖K‖[a,b] = sup
x,y∈[a,b]

max
i,j∈{1,2}

|Kij(x, y)| ≤ C(a, b),

for some constant C(a, b) > 0 depending on a and b. Then the law of X is determined

on MLFP(Λ).

Proof of proposition 13. The family of laws of the random variables X(f) =
∫

Λ f dX

for f ∈ C0(Λ) determine the law of X onMLFP(Λ) (see [32] p. 225). We show that

the law of each X(f) is determined by the intensities, and hence the kernel. Firstly,

each f ∈ C0(Λ) may be uniformly approximated from below by step functions

fk(x) =
∑k

i=1 ci1(x ∈ Bi) for ci ≥ 0 and bounded, mutually disjoint intervals

B1, . . . , Bk. The moments of X(fk) are given by

E
[
X(fk)

n
]

=
∑

m1+···+mk=n

(
n

m1, . . . ,mk

) k∏
i=1

cmii E
[ k∏
i=1

X(Bi)
mi
]
.

The joint moments of X(Bi) may be written in terms of the falling factorial moments

E
[ k∏
i=1

X(Bi)
mi
]

=

m1∑
r1=1

· · ·
mk∑
rk=1

k∏
i=1

S(mi, ri)E
[ k∏
i=1

bX(Bi)cri
]
,

where S(m, r) denotes the Stirling numbers of the second kind (see [10], for ex-

ample). By proposition 11 the falling factorial moments, and hence the moments,

are determined by the intensities on Br1
1 × · · · × Brk

k . In fact, proposition 11 it-

self, and hence the moments, only require the intensities on B1 × · · · × Bk, that

is on bounded, mutually disjoint intervals. It remains to recover the moments of
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X(f) and show that the corresponding moment problem is well-posed. Note that

there exist a, b ∈ Λ such that E [X(f)n] ≤ Mn
f E
[
X([a, b])n

]
where supp(f) ⊂ [a, b]

and Mf = supx∈Λ f(x) < ∞. By proposition 2, Hadamard’s inequality (see [29] p.

477) and the local kernel bound, the intensity at x = (x1, . . . , xn) for xi ∈ [a, b] is

bounded as follows

|Pf(K(x))| = | det(K(x))|1/2 ≤ ‖K‖n[a,b](2n)n/2 ≤ (2C(a, b))nnn, (2.6)

noting for the last inequality that (2n)n/2 ≤ (2n)n. Substituting into proposition 11,

the falling factorial moments are bounded by E [bX([a, b])cn] ≤ (2C(a, b)ν([a, b]))n nn.

Finally, using

zn ≤

3nbzcn, if z ≥ 3n/2,

(3n/2)n, if z ≤ 3n/2,

for z ∈ R, the moments may be (crudely) bounded by the falling factorial moments,

giving E [X([a, b])n] ≤ C ′(a, b)nnn for a constant C ′(a, b) depending only a and

b. Thus, absorbing Mn
f into the constant we arrive at the bound E [X(f)n] ≤

C ′(a, b)nnn. Finally, the dominated convergence theorem gives convergence of the

moments E [X(fk)
n]→ E [X(f)n], and the moment problem for X(f) is well posed,

for example the Carleman condition is satisfied (see [2], p. 65).

Alternatively, note that the bound (2.6) on the intensities is sufficient to determine

the law of the point process X by a condition of Lenard [38].

Remark 2. For Pfaffian point processes on R with locally bounded kernels, def-

inition 5 for intensities can be reduced to bounded, mutually disjoint intervals

B1, . . . , Bk ⊂ R. Indeed the proof of proposition 13 shows that the intensities

on these sets determine the law of the point process.

2.2.3 Examples

We put the above theory into practice by considering some examples of Pfaffian

point processes, including those arising from classical random matrix ensembles and

the key motivational model of coalescing and annihilating Brownian motions.

Example 1 (Product Bernoulli on Z). Define a point process X on Z by setting

X(x) to be independent Bernoulli(λx) random variables for some λx ∈ [0, 1]. The
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intensities of X are given by

ρ(n)(x1, . . . , xn) = E [X(x1) . . . X(xn)] =

n∏
i=1

λxi .

A simple Pfaffian kernel for this point process is K(x, y) defined by

K(x, x) =

(
0 λx

−λx 0

)
, K(x, y) =

(
0 0

0 0

)
for x 6= y.

By iteratively applying elementary row and column operations, we may derive al-

ternative simple kernels, for example

K(1)(x, x) =

(
0 λx

−λx 0

)
, K(1)(x, y) =

(
λx λx

λx λx

)
for x < y.

Rather than list alternative kernels, we turn to the more interesting continuum

counterpart.

Example 2 (Poisson process on R). Suppose that X is a Poisson point process on

R with intensity measure λ(x) dx for some λ ∈ L1
loc(R) with λ(x) ≥ 0. The expected

particle count on disjoint sets B1, . . . , Bn is

E [X(B1) . . . X(Bn)] =
n∏
i=1

E [X(Bi)] =
n∏
i=1

∫
Bi

λ(x)dx,

whereby we may take as intensity functions ρ(n)(x1, . . . , xn) =
∏n
i=1 λ(xi). A simple

Pfaffian kernel for X is

K(x, x) =

(
0 λ(x)

−λ(x) 0

)
, K(x, y) =

(
0 0

0 0

)
for x 6= y.

Note that K fits definition 6, however using the alternative definition in remark 1

the integral operator defined by K is the zero operator. As in the discrete analogue,

there are many equivalent kernels. For the homogeneous case λ(x) = λ ∈ [0,∞),

elementary row and column operations give the equivalent kernel

K(1)(x, y) = λ

(
sgn(y − x) 1

−1 − sgn(y − x)

)
for x, y ∈ R.
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A kind of spatially-dependent equivalent kernel is given by

K(2)(x, y) = −λ

(
e−λ|y−x| sgn(y − x) −e−λ|y−x|

e−λ|y−x| e−λ|y−x| sgn(y − x)

)
. (2.7)

Note that for both of these examples the corresponding integral operator is not the

zero operator and should be locally of trace class. We give a proof that K(2) is a

kernel for the rate λ Poisson process.

Proof of kernel K(2). It suffices to show that the intensity λn is given by Pf(K(2)(x))

for x = (x1, . . . , xn), where without loss of generality we may assume that x1 <

· · · < xn. The approach is to introduce a matrix whose Pfaffian we can compute

and then relate it to the claimed Pfaffian. Fix y1 < y2 < · · · < y2n and define the

anti-symmetric 2n× 2n matrix A = (aij) by its upper-triangular entries

aij = eλ(yi−yj) for i < j.

The entries of A are in quotient form and proposition 9 gives

Pf(A) = Pf

(
eλyi

eλyj
: i < j ≤ 2n

)
=

n∏
i=1

eλ(y2i−1−y2i). (2.8)

To recover the desired Pfaffian we take derivatives in the even-indexed variables and

then take limits as y2i ↓ y2i−1. By definition the Pfaffian of A is a sum of products

aπ1,π2 . . . aπ2n−1,π2n , where π is a permutation on {1, . . . , 2n}. Each product only

contains each variable yi once and the derivative ∂y2i acts on the factor aπk,πk+1

where either πk = 2i or πk+1 = 2i. Recombining the sum gives the Pfaffian A in

which each entry involving y2i, forming one row and one column, is differentiated

with respect to y2i. Differentiating with respect to all of the even-indexed variables

gives ∂y2 . . . ∂y2n Pf(A) = Pf(A′), where A′ splits into 2 × 2 blocks given on the

diagonal and off the diagonal by(
0 ∂y2ia2i−1,2i

∂y2ia2i,2i−1 0

)
,

(
a2i−1,2j−1 ∂y2ja2i−1,2j

∂y2ia2i,2j−1 ∂y2i∂y2ja2i,2j

)
.

The same method applies to the limits which act on the even-indexed variables. All

together

lim
y2↓y1

. . . lim
y2n↓y2n−1

∂y2 . . . ∂y2n Pf(A) = Pf(Ã′),
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where the 2× 2 blocks of Ã′ are given by(
0 limy2i↓y2i−1

∂y2ia2i−1,2i

limy2i↓y2i−1
∂y2ia2i,2i−1 0

)
,(

a2i−1,2j−1 limy2j↓y2j−1
∂y2ja2i−1,2j

limy2i↓y2i−1
∂y2ia2i,2j−1 limy2i↓y2i−1

limy2j↓y2j−1
∂y2i∂y2ja2i,2j

)
.

Performing the operations on aij entries the diagonal and upper-triangular blocks

of Ã′ are given by(
0 −λ
λ 0

)
,

(
eλ(y2i−1−y2j−1) −λeλ(y2i−1−y2j−1)

λeλ(y2i−1−y2j−1) λ2eλ(y2i−1−y2j−1)

)
.

We have shown that

lim
y2↓y1

. . . lim
y2n↓y2n−1

∂y2 . . . ∂y2n Pf(A) = Pf(K̃(yodd)),

where yodd = (y1, y3, . . . , y2n−1) and the kernel K̃ is defined, for x, y ∈ R, by

K̃(x, y) =

(
e−λ|y−x| sgn(y − x) −λe−λ|y−x|

λe−λ|y−x| λ2e−λ|y−x| sgn(y − x)

)
.

By proposition 12 part 1, we can move a factor of λ from K̃22 to K̃11, and then by

proposition 7 introduce a factor of−1. This gives the claimed kernel (−1)n Pf(K̃(yodd)) =

Pf(K(2)(yodd)). Applying the operations to the right-hand side of (2.8) we arrive

at the desired intensity

Pf(K(2)(yodd)) = (−1)n lim
y2↓y1

. . . lim
y2n↓y2n−1

∂y2 . . . ∂y2n

n∏
i=1

e2λ(y2i−1−y2i) = λn.

Example 3 (Determinantal point processes). A simple point process on Λ is called

determinantal if its intensities satisfy

ρ(n)(x1, . . . , xn) = det (K(xi, xj) : i, j ≤ n) for x1, . . . , xn ∈ Λ,

for some (determinantal) kernel K : Λ2 → R. See Soshnikov [51] and remark 1

above for more details. Any determinantal point process is also Pfaffian. Indeed

a determinantal point process with kernel K is equal in distribution to a Pfaffian
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point process with kernel K(x, y) =
(

0 K(x,y)
−K(y,x) 0

)
, for example. Assuming that

K is locally bounded, the law is determined by proposition 13 and it suffices to show

that intensities coincide. This follows from a determinantal expression for Pfaffian

matrices which are chequered with zeroes.

Proposition 14 (Chequerboard Pfaffian). Let A = (aij)
2n
i,j=1 be a 2n × 2n real

anti-symmetric matrix satisfying aij = 0 if i+ j is even. Then

Pf(A) = det
(
Ã
)
,

where Ã = (ãij)
n
i,j=1 is an n× n matrix with entries ãij = a2i−1,2j.

Proof of proposition 14. The result follows by comparing the expansions of the Pfaf-

fian (proposition 5) and determinant along their top rows and using an inductive

argument in n.

Random matrix ensembles. The most widely studied Pfaffian point processes

are those arising in classical models of random matrix theory. A random matrix

ensemble is a probability measure on a space of N × N matrices. Each ensemble

has an associated point process given by the induced random eigenvalues. Over the

last 50 years eigenvalue distributions and their universality properties as N → ∞
have been intensely studied and the Pfaffian shown to be a fundamental structure.

Example 4 (Real Ginibre ensemble). Random matrices with independent real,

complex or quaternion Gaussian entries were introduced by Ginibre [26]. The most

challenging of the three classical models is the real Ginibre ensemble, in which the

matrix entries are independent standard Gaussian random variables. The ensemble

may be defined as the following probability density, with respect to the product

Lebesgue measure, on RN×N

dµN (z) = (2π)−N
2/2e−Tr(zT z)/2 dz.

Since the matrix entries are real, the fundamental theorem of algebra implies that

almost surely the N eigenvalues are either real or come in complex conjugate pairs.

Through a burst of activity, the intensity functions and their asymptotics were even-

tually computed by the random matrix community, see [8, 23, 48–50]. In particular,

the intensities for the real eigenvalues of the real Ginibre ensemble on N ×N ma-

trices are Pfaffian. By suitably scaling with N , the eigenvalue process converges as

N →∞ with different limits emerging in the bulk or near the edge of the spectrum.
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One should scale so that the expected number of eigenvalues per unit interval con-

verges. The appropriate scaling is indicated by a classical result of Ginibre [26], the

circular law, stating that under the normalisation N−1/2 the (complex) eigenvalue

density converges to the uniform distribution on the unit disc as N → ∞. In par-

ticular, the real eigenvalues in the bulk and edge scaling limits form Pfaffian point

processes on R with explicit kernels. We introduce the Gaussian error function and

its compliment

erf(z) =
2√
π

∫ z

0
e−w

2
dw, erfc(z) = 1− erf(z) =

2√
π

∫ ∞
z

e−w
2

dw. (2.9)

The limit process of real eigenvalues of the real Ginibre ensemble in the bulk

scaling regime as N → ∞ is a Pfaffian point process on R with kernel given in [8]

by

KGinibre
Bulk (x, y) =

 1√
2π

(y − x)e−
1
2

(y−x)2 1√
2π
e−

1
2

(y−x)2

− 1√
2π
e−

1
2

(y−x)2 1
2 sgn(x− y) erfc

(
|y−x|√

2

) .

Moving a factor of−2−1/2 from (KGinibre
Bulk )22 to (KGinibre

Bulk )11 (by proposition 12 part 1)

gives an equivalent kernel K̃Ginibre
Bulk with a simple form. Let F1(z) = 2−1 erfc(z/2)

and define K(z) by

K(z) =

(
−F ′′1 (z) −F ′1(z)

F ′1(z) sgn(z)F1(|z|)

)
, (2.10)

then K̃Ginibre
Bulk (x, y) =

√
2K
(√

2(y − x)
)
.

Under the edge scaling regime (for definiteness, at the right edge of the spectrum),

the limit process of real eigenvalues of the real Ginibre ensemble is a Pfaffian point

process on R with kernel KGinibre
Edge given in [8] by

KGinibre
Edge (x, y) =

(
∂1∂2F2(x, y) −∂1F2(x, y)

−∂2F2(x, y) 1
2 sgn(x− y) + F2(x, y)

)
,

where

F2(x, y) =
1

2π

∫∫
R2\(−∞,0)2

e−(x+w1)2−(y+w2)2 sgn(w1 − w2) dw1dw2. (2.11)

(The original version of [8] has a slightly incorrect derivation of (KGinibre
Edge )22, see a

forthcoming erratum.)

Example 5 (Gaussian ensembles). The most studied of the random matrix en-
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sembles are the three classical Gaussian ensembles, which have independent real,

complex or quaternion Gaussian entries on and above the diagonal and a suitable

symmetry defining the remaining entries. It is convenient to label the ensembles

with a parameter β ∈ {1, 2, 4} and in each case the ensemble is defined by giving its

density with respect to the Lebesgue measure on independent elements. We refer

to Deift and Gioev [13] for a full account, which contains the formulae and detailed

references.

Gaussian orthogonal ensemble (GOE), β = 1. The GOE is defined on

the space HN of real symmetric N × N matrices H = (Hij) by the following

probability density

dµ(H) = cGOE
N e−Tr(H2)

N∏
i=1

dHii

∏
i<j

dHij ,

where cGOE
N is a normalisation constant.

Gaussian unitary ensemble (GUE), β = 2. The GUE is defined on the space

HN of complex Hermitian N×N matrices H = (Hij) by the following probability

density

dµ(H) = cGUE
N e−Tr(H2)

N∏
i=1

dHii

∏
i<j

d Re(Hij) d Im(Hij),

where cGUE
N is a normalisation constant.

Gaussian symplectic ensemble (GSE), β = 4. The GSE is defined on the

space H2N of self-dual quaternion 2N × 2N matrices H = (Hij)
N
i,j=1, whose 2× 2

blocks take the form Hij =
(
αij+iβij γij+iδjk
−γij+iδij αij−iβij

)
with αij , βij , γij , δij real, by the

probability following probability density

dµ(H) = cGSE
2N e−Tr(H2)

N∏
i=1

dαii
∏

1≤i<j≤N
dαijdβijdγijdδij ,

where cGSE
2N is a normalisation constant.

For each ensemble the matrices are Hermitian, so the N eigenvalues are almost

surely real and distinct. Moreover the joint intensities for each eigenvalue process

are explicit, having the following density with respect to the Lebesgue measure for
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β = 1, 2 or 4

ρ
(N)
β (x1, . . . , xN ) = CN,β

∏
1≤i<j≤N

|xj − xi|β
N∏
i=1

e−qβx
2
i ,

where qβ = 1 + 1(β = 4) and CN,β is a normalisation constant. Using orthogonal

polynomials, for example, there are kernels for which the intensities can be expressed

as determinants or Pfaffians. In particular, the GUE (β = 2) is a determinantal point

process (see example 3) and the GOE/GSE (β = 1 or 4) are Pfaffian point processes,

with explicit kernels dependent on N and β. Under suitable scaling in N , limit

processes emerge in the bulk or near the edge of the spectrum as N → ∞ for each

β. The appropriate scaling is indicated by Wigner’s semicircle law [60], giving that

under the normalisation N−1/2 the density of eigenvalues in the Gaussian ensembles

converges to an explicit semicircle distribution supported on [−2, 2].

Consider scaling limits in the bulk of the spectrum. The sine kernel function is

defined by Ksine : R→ R by Ksine(z) = sin(πz)
πz . The scaled GUE eigenvalue process

converges to the determinantal point process with kernel KGUE
Bulk (x, y) = Ksine(y−x).

For scaled GOE/GSE the limiting eigenvalues processes are Pfaffian with kernels

KGOE
Bulk (x, y) =

(
−∂xKsine(x− y) Ksine(x− y)

Ksine(x− y)
∫ x−y

0 Ksine(z) dz − 1
2 sgn(x− y)

)
,

KGSE
Bulk(x, y) =

(
−∂xKsine(2(x− y)) Ksine(2(x− y))

Ksine(2(x− y))
∫ x−y

0 Ksine(2z) dz

)
.

For scaling limits at the (right) edge of the spectrum, the Airy kernel function

KAiry : R2 → R is defined in terms of the standard Airy function Ai : R→ R by

KAiry(x, y) =
Ai(x) Ai′(y)−Ai′(x) Ai(y)

x− y
,

Ai(z) =
1

π

∫ ∞
0

cos

(
w3

3
+ wz

)
dw.

The scaled GUE eigenvalue process converges to a determinantal point process with

kernel KGUE
EDGE(x, y) = KAiry(x, y). For scaled GOE/GSE the limiting eigenvalue

processes are Pfaffian with explicit kernels in terms of KAiry and Ai. See Deift and

Gioev [12] for details.

Example 6 (Coalescing and annihilating Brownian motions on R). The primary

motivation for this thesis is a model of coalescing and annihilating Brownian mo-
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tions. In [59] Tribe and Zaboronski showed that, under a maximal entrance law, in-

stantaneously coalescing Brownian motions and instantaneously annihilating Brow-

nian motions at a fixed time are both Pfaffian point processes on R.

The kernel for annihilating Brownian motions at time t > 0 is given by KABM
t (x, y) =

t−1/2K
(
t−1/2(y − x)

)
, where K(z) is defined by (2.10). In particular, as noted in

[59], we have the following equivalence of kernels

KABM
t (x, y) =

1√
2t

K̃Ginibre
Bulk

(
x√
2t
,
y√
2t

)
. (2.12)

In terms of processes, the one-dimensional distribution of annihilating Brownian

motions under the maximal entrance law is equivalent to the distribution of real

eigenvalues in the bulk limit of the real Ginibre ensemble. By proposition 12 part 1,

moving a factor of t−1/2 from (KABM
t )22 to (KABM

t )11 gives an equivalent kernel

K̃ABM
t with

K̃ABM
t (x, y) =

(
−F ′′t (y − x) −F ′t(y − x)

F ′t(y − x) sgn(y − x)Ft(|y − x|)

)
, (2.13)

where Ft(z) = F1(z/
√
t) = 2−1 erfc

(
z/2
√
t
)
.

For coalescing Brownian motions the kernels differ by a factor of 2, namely

KCBM
t (x, y) = 2KABM

t (x, y) and K̃CBM
t (x, y) = 2K̃ABM

t (x, y). The connection be-

tween the coalescing and annihilating kernels is a manifestation of the fact that the

processes are related via a thinning procedure (see [59] for more details).

2.2.4 Generating new point processes from old

We show that the set of Pfaffian point processes is closed under certain thinning

and thickening operations. At the end of the section we present some preliminary

remarks on convergence of point processes.

Proposition 15. Let X be a Pfaffian point process on Λ with a locally bounded

kernel K. Fix λ ∈ [0, 1] and let X̃ denote the point process obtained from X by

removing each particle independently with probability 1−λ, i.e. the process X thinned

at rate λ. Then X̃ is the Pfaffian point process on Λ with kernel K̃ = λK.

Proof of proposition 15. For mutually disjoint Borel sets B1, . . . , Bn, thinning at
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rate λ and substituting in the definition of the X intensities ρ
(n)
X gives

E
[
X̃(B1) . . . X̃(Bn)

]
= λnE [X(B1) . . . X(Bn)] = λn

∫
B1×···×Bn

ρ
(n)
X (x) dνn(x).

Note that λnρ
(n)
X (x) = λn Pf(K(x)) = Pf(K̃(x)) by proposition 7, so that X̃ is a

Pfaffian point process with kernel K̃. Since K̃ is locally bounded X̃ is uniquely

determined.

For discrete spaces, we have a simple expression for the intensity and it is straight-

forward to prove an inhomogeneous extension to the thinning property.

Proposition 16. Let X be a Pfaffian point process on Z with a locally bounded

kernel K. Fix λx ∈ [0, 1] for x ∈ Z and let X̃ denote the point process obtained from

X by removing a particle at x independently with probability 1− λx, i.e. the process

X thinned at rate λx. Then the intensities of X̃ are given, for x = (x1, . . . , xn) with

distinct xi, by

ρX̃(x) =
n∏
i=1

λxi ρ
X(x).

Equivalently, X̃ is the Pfaffian point process on Z with kernel K̃(x, y) =
√
λxλyK(x, y).

Proof of proposition 16. The intensity of X̃ is given by

ρX̃(x) = E
[
X̃(x1) . . . X̃(xn)

]
=

n∏
i=1

λxi E [X(x1) . . . X(xn)] =
n∏
i=1

λxi ρ
X(x).

Substituting in the kernel gives ρX̃(x) =
∏n
i=1 λxi Pf (K(x)). The product may be

moved inside the Pfaffian by writing it as the determinant of a diagonal matrix B,

with entries B2i−1,2i−1 = B2i,2i =
√
λxi , and applying the conjugation formula to

BTK(x)B. We arrive at

ρX̃(x) = Pf
(√

λxiλxjK(xi, xj) : i, j ≤ n
)
,

whence X̃ is a Pfaffian point process on Z with kernel K̃(x, y). Since the kernel is

locally bounded X̃ is uniquely determined.

The thickening relation is considered separately for Z and R. The superposition of

two point processes is found by combining the particles of each. For simple point

processes, to define this unambiguously on a discrete space one must declare what

happens at the overlaps, where both processes place particles at the same site. For
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α ∈ [0, 1] the α-superposition is defined to be the superposition in which each overlap

results in a particle with probability α. We define J =
(

0 1
−1 0

)
.

Proposition 17. Let X be a Pfaffian point process on Z with locally bounded kernel

K(x, y) and Y a point process of independent product Bernoulli random variables

on Z with site-dependent rates P[Y (x) = 1] = 1 − P[Y (x) = 0] = λ(x) ∈ [0, 1]. Fix

α ∈ [0, 1] and define I = {x ∈ Z : 1− (2− α)λ(x) = 0}. Then for x = (x1, . . . , xn)

with x1 < · · · < xn and xi /∈ I for all 1 ≤ i ≤ n, the α-superposition of X and Y ,

denoted (X + Y )α, has intensities

ρ(X+Y )α(x) =
n∏
i=1

(1− (2− α)λ(xi)) Pf (K(x) + Kµ(x)) , (2.14)

where µ(x) = λ(x)
1−(2−α)λ(x) and Kµ(x, y) = µ(x)J1(x = y). More generally, if xi ∈ I

for some i, then letting xI and xIc be the vectors formed by the points of x in and

not in I, respectively, we have

ρ(X+Y )α(x) = Pf (Kλ(xI))
∏
xi∈Ic

(1− (2− α)λ(xi)) Pf (K(xIc) + Kµ(xIc)) . (2.15)

Equivalently, (X + Y )α is the Pfaffian point process with kernel

K(X+Y )α(x, y) =
√

(1− (2− α)λ(x)) (1− (2− α)λ(y))K(x, y) + Kλ(x, y).

For certain choices of parameters the prefactor in K(X+Y )α may be complex, so

a priori this kernel falls outside the current framework. This is not a problem

however since the Pfaffian definition immediately extends to complex matrices and

the corresponding intensities, which define the point process, are real. This subtlety

can be avoided by incorporating the intensity prefactor into the kernel in a different

way, but the expression is not as simple.

Proof of proposition 17. Consider first the case that I is empty. The intensity of
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(X + Y )α at x = (x1, . . . , xn) is

ρ(X+Y )α(x) = E
[ n∏
i=1

(
X(xi)(1− λ(xi)) + (1−X(xi))λ(xi) + αX(xi)λ(xi)

)]
=

n∏
i=1

(
1− (2− α)λ(xi)

)
E
[ n∏
i=1

(
X(xi) + µ(xi)

)]
=

n∏
i=1

(
1− (2− α)λ(xi)

) n∑
r=0

∑
|V |=r

E
[∏
i∈V

X(xi)
] ∏
i∈V c

µ(xi),

where the inner sum is over subsets V ⊆ {1, 2, . . . , n} of the particle indices with

|V | = r. In view of example 1, the V c product may be written as Pf (Kµ(x)|U ),

where U ⊆ {1, . . . , 2n} with |U | = 2(n − r) is given by U =
⋃
i∈V c{2i, 2i + 1},

the subset of matrix indices corresponding to xi with i ∈ V c (recall each xi has

two associated rows and columns). The expectation E
[∏

i∈V X(xi)
]

is then given

by Pf (K(x)|Uc). Consider Pf (Kµ(x)|U ) for a general set U ⊆ {1, . . . , 2n} with

|U |/2 ∈ N. If U is not of the previous form, then there exists a point xi which

only contributes one of its associated rows and columns to Kµ(x)|U . Since Kµ(x)

is block diagonal, this row and column become identically zero in Kµ(x)|U , giving

Pf (Kµ(x)|U ) = 0. All together

ρ(X+Y )α(x) =

n∏
i=1

(
1− (2− α)λ(xi)

)∑
U

Pf (K(x)|Uc) Pf (Kµ(x)|U ) ,

where the sum is over subsets U ⊆ {1, . . . , 2n} with |U |/2 ∈ N. Expression (2.14)

now follows from the Pfaffian summation formula (proposition 4). Indeed the only

non-zero terms in the sum are for U ⊆ {1, . . . , 2n} composed of pairs of indices

{2i− 1, 2i}, for which the factor (−1)|U |/2(−1)s(U) equals 1.

If I is non-empty, then the intensity is given by

ρ(X+Y )α(x) =
∏
xi∈I

λ(xi)
∏
xi /∈I

(
1− (2− α)λ(xi)

)
E
[ ∏
xi /∈I

(
X(xi) + µ(xi)

)]
.

The product over xi ∈ I may be replaced by Pf (Kλ(xI)) and the terms for xi /∈ I
may be treated exactly as above, giving the general expression (2.15).

It remains to obtain the claimed kernel K(X+Y )α . Suppose that |xIc | = k. Move

the xIc prefactor of (2.15) inside the 2k × 2k Pfaffian by applying the conjugation

formula (proposition 3) with a 2k × 2k diagonal matrix B, having 2 × 2 diagonal

29



blocks B2i−1,2i−1 = B2i,2i =
√

1− (2− α)λ(yi)) where xIc = (y1, . . . , yk) and y1 <

· · · < yk. We arrive at

ρ(X+Y )α(x) = Pf
(
Kλ(xI)

)
Pf
(
K(X+Y )α(xIc)

)
.

Noting that K(X+Y )α(x, y) = Kλ(x, y) if either of x or y are in I, and Kλ(x, y) = 0

unless x = y, proposition 10 gives

ρ(X+Y )α(x) = Pf
(
K(X+Y )α(x)

)
,

where we recall that the ordering of xi in the matrix K(X+Y )α(x) is irrelevant. This

shows that K(X+Y )α(x) is a suitable kernel, and since it is locally bounded, the

superposition is uniquely determined.

There is no problem with overlaps in the continuum because we consider independent

point processes that do not charge given singletons.

Proposition 18. Let X be a Pfaffian point process on R with locally bounded kernel

K(x, y) and Y a Poisson point process with intensity measure λ(x) dx where λ : R→
[0,∞) is bounded and dx is the Lebesgue measure. Then the superposition of X and

Y is the Pfaffian point process with kernel

K(x, y) + Kλ(x, y),

where Kλ(x, y) = λ(x)J1(x = y).

Proof of proposition 18. Denote the superposition of X and Y by X + Y . For mu-

tually disjoint Borel sets B1, . . . , Bn

E [(X + Y )(B1) . . . (X + Y )(Bn)] =

n∑
r=0

∑
|V |=r

E
[∏
i∈V

X(Bi)
]
E
[ ∏
i∈V c

Y (Bi)
]
,

where the inner sum is over subsets V ⊆ {1, 2 . . . , n} of the particle indices with

|V | = r. In view of example 2, the intensity for Y at x = (x1, . . . , xn) is
∏n
i=1 λ(xi),

which may be written as the Pfaffian of Kλ(x). Exactly as for the discrete ana-

logue, Pf (Kλ(x)|U ) vanishes unless the subset of matrix indices U ⊆ {1, . . . , 2n} is

composed of pairs {2i− 1, 2i}. Substituting in the intensities, the previous display

is equal to ∫
B1×···×Bn

∑
U

Pf(K(x)|Uc) Pf (Kλ(x)|U ) dx1 . . . dxn,
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where the sum is over subsets U ⊆ {1, . . . , 2n} with |U |/2 ∈ N. The integrand gives

the intensity for X + Y , which by the summation formula (proposition 4) may be

rewritten as the single Pfaffian Pf (K(x) + Kλ(x)), giving the claimed kernel. Since

K(x, y)+Kλ(x, y) is locally bounded, the superposition is uniquely determined.

Finally, we comment on the important operation that is convergence of Pfaffian

point processes. This tool is brought to the fore in chapter 4, developing contin-

uum point processes as limits of discrete approximations. We delay results until

then, with the remainder of this section dedicated to reviewing a suitable notion of

convergence for point processes. Firstly, all of the point processes we consider live

on subsets of R, namely εZ or R itself, so can be viewed as random measures on

M0(R) ⊂ MLFP(R). An appropriate notion of convergence for random measures

is in distribution, that is, convergence of the expectations of certain functionals. A

sequence of random measures X(n) converges to X in distribution, on MLFP(R)

equipped with the topology of vague convergence, if

E[f(X(n))]→ E [f(X)] ,

for all bounded continuous f : MLFP(R) → R. The space MLFP(R) is Polish in

the vague topology. (Indeed the set of locally finite measuresMLF(R) is Polish and

MLFP(R) is a closed subset.) However the set of simple measures M0(R) is not

closed in MLFP(R) and one must check that the limit of a convergent sequence on

M0(R) remains supported on M0(R). Note that this formulation of convergence

is not particularly practical, since we do not have a deep intuition for functionals

defined on MLFP(R). We are more familiar with convergence in distribution on R.

Fortunately, there is an equivalent formulation requiring convergence in distribution

of the random variables

X(n)f → Xf, for f ∈ C0(R).

Expanding, a sequence X(n) converges to X in distribution, on MLFP(R) equipped

with the topology of vague convergence, if

E[h(X(n)f)]→ E [h(Xf)] ,

for all bounded continuous h : R → R and f ∈ C0(R). Since our point processes

have unbounded support, we require functions f with compact support to ensure the

integrals are finite. A stronger notion, weak convergence, corresponds to bounded
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and continuous test functions. See Kallenberg [32], for example, for a thorough

exposition.
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Chapter 3

Discrete models

We begin our study of one-dimensional interacting particle systems with models

defined on Z. The discrete particle-space facilitates a convenient framework for

rigorous construction and analysis of processes. Whilst interesting in their own

right, these models also form the basis for investigating continuum analogues by

taking scaling limits of discrete approximations, see chapter 4. It is satisfactory

that Pfaffian structure already appears at the discrete level.

Section 3.1 provides a whistle-stop tour of discrete-space interacting particle sys-

tems, as well as contextualising the essentials of Pfaffian point processes and intro-

ducing notation. The core models of coalescing and annihilating random walks are

the subject of section 3.2. In section 3.2.1 the models are defined, along with the

statement of the main result identifying them as Pfaffian point processes. The proof

of this result is given in section 3.2.2. In section 3.3 two extensions to the pure in-

teraction models are shown to be Pfaffian. The first, in section 3.3.1, is annihilating

random walks with pairwise immigration. The proof of the Pfaffian result is a small

extension to that for the core model of pure annihilation. The second extension,

in section 3.3.2, is coalescing random walks with branching. This case is more sub-

tle, with delicate conditions on the rates, and the proof for the core model of pure

coalescence requires a non-trivial modification. In section 3.3.3 the two extended

models are shown to be related, for particular initial conditions, via a generalised

thinning relation that also involves thickening.

3.1 Interacting particle systems on Z

The backbone of the thesis is interacting particle systems on Z. Intuitively by

this we simply mean a collection of particles at sites of Z whose evolutions in time
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may depend on other particles. In the spirit and notation of Liggett [39] a natural

way to describe the system is through occupation variables ηt(x), where ηt(x) = 1

indicates that site x ∈ Z is occupied at time t and ηt(x) = 0 for unoccupied. The

collection ηt = (ηt(x) : x ∈ Z) ∈ {0, 1}Z is the whole particle configuration at time

t. As interactions occur ηt evolves in {0, 1}Z. We are only concerned with time-

homogeneous Markovian dynamics and we therefore consider an interacting particle

system on Z as a time-homogeneous Markov process (ηt : t ≥ 0) with values in

{0, 1}Z.

We briefly review some classical theory, referring to Liggett [39] and Rogers and

Williams [45] for detailed accounts. Let (ηt : t ≥ 0) be a Markov process on {0, 1}Z,

equipped with the discrete topology and Borel σ-algebra. The process may be

described by its transition operators on functionals. To wit, a semigroup of operators

(Pt : t ≥ 0) acting on bounded measurable functions F : {0, 1}Z → R is defined by

PtF (η) = E [F (ηt)|η0 = η] for η ∈ {0, 1}Z. Indicating the initial condition in the

subscript, the expectation is also written PtF (η) = Eη [F (ηt)]. Such transition

operators are rarely explicit, but we can also consider infinitesimal movements. A

key concept is the infinitesimal generator LF defined by LF (η) = limt↓0(PtF (η)−
F (η))/t whenever the limit exists. The set of functions for which the limit exists

is called the domain of the generator. The generator encodes much information on

the Markov process (ηt : t ≥ 0), for example the connection to derivatives

d

dt
Eη0 [F (ηt)] = LEη0 [F (ηt)] = Eη0 [LF (ηt)] , (3.1)

where the operator in central expression acts on the expectation as a function of the

initial condition. The first equality is the Kolmogorov backward equation, and the

second equality is due to the Markov semigroup and its generator commuting. On

a finite state space the generator determines the process and takes the form

LF (η) =
∑
η′

ω(η, η′)(F (η′)− F (η)), (3.2)

where ω(η, η′) is the rate at which the process jumps from η to η′. For an uncountable

state space we are outside the standard theory and it is not a priori clear whether

the whole process is determined uniquely by the local dynamics. For general state

spaces, Liggett [39] gives conditions on the rates that ensure (3.2) holds at least for

F : {0, 1}Z → R depending on only finitely many coordinates, so that the generator

determines a unique Markov process. In other words, under the rate conditions
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the formula for L is defined on a big enough class of functions F to determine a

semigroup, then there exists a unique Markov process with this semigroup (see [45]

section III, for example).

The processes we consider have nearest neighbour interactions. The conditions of

Liggett ([39], p. 27) demand uniform control of the total transition rate for subsets

involving a given site and uniform control of the smoothness of transition rates as

functions of configurations. Both are simple to verify in the case of nearest neighbour

interactions when all rates ω(η, η′) are uniformly bounded.

To summarise, we may define the law of a unique time-homogeneous Markov

process on Z, hence an interacting particle system, by a generator of the form

(3.2) provided the (nearest neighbour interaction) rates are uniformly bounded. In

particular (3.1) and (3.2) hold for functions depending on finitely many coordinates.

We finish by connecting interacting particle systems to Pfaffian point processes.

With (2.1) in mind, a variable η with values in {0, 1}Z can be interpreted as a simple

point process on Z. Expression (2.2) for the intensities in discrete space leads to the

following definition of a Pfaffian point process in this context: there exists a kernel

K : Z2 → R2×2 such that for distinct x1, . . . , xn ∈ Z

E [η(x1) . . . η(xn)] = Pf(K(xi, xj) : i, j ≤ n).

The kernel K has the form K(x, y) =
(

K11(x,y) K12(x,y)
K21(x,y) K22(x,y)

)
for some Kij : Z2 → R

satisfying Kij(x, y) = −Kji(y, x) for all i, j ∈ {1, 2} and x, y ∈ Z.

Finally, for an interacting particle system (ηt : t ≥ 0) we can ask whether at each

fixed time the point process ηt is Pfaffian. In the current framework a single-time

description is the best we can hope for. We remark here that there is a multi-time

extension of the theory of Pfaffian point processes to deal with a full stochastic

process (ηt : t ≥ 0), involving multi-time intensities and multi-time kernels. We

return to this concept in Chapter 5.

3.2 Coalescing and annihilating random walks

A class of interacting particle systems on Z, involving instantaneously annihilating

or coalescing random walks, are shown to be Pfaffian point processes for a large set

of initial conditions, including deterministic.
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In [59], systems of instantly coalescing, or instantly annihilating, Brownian mo-

tions, under a maximal entrance law, were shown to be Pfaffian point processes at

any fixed time t > 0 (see example 6). The aim of this section is to generalize this

result in the following ways: we consider (i) analogous particle systems on Z; (ii)

spatially inhomogeneous nearest neighbour motion; (iii) general deterministic initial

conditions. The Pfaffian point process structure survives all of these changes.

3.2.1 Definition of models and statement of results

The models involve coalescence and annihilation of particles. In a coalescent

system there would be an instantaneous coalescence where the two particles merge

to leave a single particle; in an annihilating system there would be an instantaneous

annihilation where both particles disappear. We consider a mixed system, whose

dynamics we now describe informally before explicitly defining the generator.

Between interactions all particles jump independently following a nearest neigh-

bour random walk on Z, jumping

x→ x− 1 at rate qx, and x− 1→ x at rate px.

The parameter θ ∈ [0, 1] is fixed, and when two particles interact they instanta-

neously annihilate with probability θ or coalesce with probability 1− θ.

These Markovian dynamics are encoded carefully in the generator of the process.

For suitable F : {0, 1}Z → R, the generator is given by

LF (η) =
∑
x∈Z

qx
(
θF (ηax,x−1) + (1− θ)F (ηcx,x−1)− F (η)

)
+
∑
x∈Z

px
(
θF (ηax−1,x) + (1− θ)F (ηcx−1,x)− F (η)

)
,

where ηax,y (respectively ηcx,y) is the new configuration after a jump from site x to y

followed by instantaneous annihilation (respectively coalescence). These are defined,

when x 6= y, by 
ηax,y(z) = ηcx,y(z) = η(z) for z 6∈ {x, y},
ηax,y(x) = ηcx,y(x) = 0,

ηax,y(y) = (η(x) + η(y)) mod(2),

ηcx,y(y) = min{1, η(x) + η(y)}.
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We take (px, qx ≥ 0 : x ∈ Z) uniformly bounded, then this generator determines the

law of a unique Markov process, for any given initial condition η0 ∈ {0, 1}Z, which

we refer to as coalescing and annihilating random walks (CARW). We denote its law

by Pη0 and Eη0 on path space with canonical variables (ηt : t ≥ 0).

By choosing θ = 0 or θ = 1, our results apply to both purely coalescing and

purely annihilating systems, referred to as coalescing random walks (CRW) and

annihilating random walks (ARW), respectively. We note that the mixed system

arises as the dual process to the multi-valued voter model (also known as the Potts

model) started from Bernoulli initial conditions, where there are q ≥ 2 colours and

θ = 1/(q − 1) (see [14], [15]). The spatially inhomogeneous version of the process

occurs in studies on reaction diffusion models with quenched disorder (see [37]).

The matrix kernel for CARW is constructed from a single scalar function (Kt(x, y) :

x ≤ y) defined as follows. For x, y ∈ Z with x ≤ y, and for η ∈ {0, 1}Z, we define

η[x, y) =
∑
x≤z<y

η(z) if x < y, (3.3)

and η[x, x) = 0, and we define the ‘spin pair’ by

σx,y(η) = (−θ)η[x,y).

We use the convention that 00 = 1 so that when θ = 0 the spin pair reduces to the

indicator of an empty interval, that is σx,y(η) = 1(η[x, y) = 0). We now set

Kt(x, y) = Eη0 [σx,y(ηt)] , for t ≥ 0, x, y ∈ Z with x ≤ y. (3.4)

We also need the difference operators D+ and D−, defined for f : Z→ R by

D+f(x) = f(x+ 1)− f(x), D−f(x) = f(x− 1)− f(x). (3.5)

The notation D±i means that the operator D± is applied in the i-th variable. We

can now state the main result for CARW.

Theorem 1. For any initial condition η0 ∈ {0, 1}Z, and at any fixed time t ≥ 0, the

CARW variable ηt is a Pfaffian point process on Z with kernel K given, for x < y,

by

K(x, y) =
−1

1 + θ

(
Kt(x, y) D+

2 Kt(x, y)

D+
1 Kt(x, y) D+

1 D
+
2 Kt(x, y)

)
(3.6)
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and K12(x, x) = −1
1+θ D

+
2 Kt(x, x), and other entries determined by the symmetry

conditions.

Although the theorem is stated for deterministic initial conditions, under certain

random choices, including when all sites (η0(x) : x ∈ Z) are independent, the variable

ηt remains a Pfaffian point process (see remark 6 after the proof of theorem 1).

The scalar function Kt(x, y) that underlies the Pfaffian matrix kernel K can be

characterized as the solution to a system of differential equations indexed over part

of the lattice. We define a one-particle generator L, acting on f : Z→ R, by

Lf(x) = qxD
+f(x) + pxD

−f(x). (3.7)

We will show that the function (Kt(x, y) : t ≥ 0, x, y ∈ Z, x < y) is the unique

bounded solution to the equation
∂tKt(x, y) = (Lx + Ly)Kt(x, y) for x < y, t > 0,

Kt(x, x) = 1 for all x, t > 0,

K0(x, y) = σx,y(η0) for x ≤ y.

(3.8)

The notation Lx is used to indicate that the operator L acts on the x variable.

Remark 3. Instantly coalescent systems and instantly annihilating systems are

related by a well known thinning relation (see corollary 1, also [59] section 2.1 or

[6]). This can be extended to show that CRW can be thinned to give the CARW

system (and as expected one thins by a factor 1/(1+θ)). Thinning also acts naturally

on Pfaffian point processes (see proposition 15), changing the underlying kernel by

the same factor. However, this connection seems to relate the two systems only

when the initial conditions are similarly related by thinning, and so does not apply

to a deterministic initial condition for our process.

3.2.2 Proof of theorem 1

Sketch of argument. The proof of the theorem follows similar lines to [59]. The

key tool is a Markov duality. Indeed for any n ≥ 1 the product of n spin pairs

η 7→ σx1,x2(η) . . . σx2n−1,x2n(η) is a suitable Markov duality function, as shown in

Lemma 1. Exploiting this allows us to calculate the expectations

Eη0
[
σx1,x2(ηt) . . . σx2n−1,x2n(ηt)

]
,
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as the solutions of 2n-dimensional (spatially inhomogeneous) lattice heat equations.

This is similar to the Markov dualities used in [7] to study the ASEP and q-TASEP

models.

The dual process can be taken to be (a spatially inhomogeneous version of) the

one-dimensional Glauber spin chain (see remark 4 after lemma 1). This model

is known to be solvable by mapping to a system of free fermions operators (see

[20, 21]). Fermions are naturally associated to Pfaffians, and it turns out that the

duality expectations are given by 2n × 2n Pfaffians of a matrix built from a scalar

kernel Kt(xi, xj), as shown in lemma 2.

The final step is to reconstruct the particle intensities from the product spin

expectations. This is possible via the identity

η(x) =
1− σx,x+1(η)

1 + θ
. (3.9)

This leads to a linear reconstruction formula for the n-point intensity in terms of

the 2n × 2n Pfaffians for the product of n spin pairs. The Pfaffian structure is

preserved by the reconstruction formula, with the matrix breaking into 2× 2 blocks

corresponding to the spin pairs, and this yields the desired matrix kernel K(xi, xj).

Proof of theorem 1. The key to the argument is the following Markov duality

function. For n ≥ 1 and x = (x1, . . . , x2n) with x1 ≤ x2 ≤ · · · ≤ x2n we define the

product spin function by

Σx(η) =
n∏
i=1

σx2i−1,x2i(η).

Note that Σx(η) depends only on finitely many coordinates of η and so lies in the

domain of the generator L. The Markov duality is encoded in the following generator

calculation.

Lemma 1. For x = (x1, . . . , x2n) with x1 < x2 < · · · < x2n the action of the particle

generator L on Σx(η) is

LΣx(η) =

2n∑
i=1

LxiΣx(η),

where Lxi, given by (3.7), acts on the coordinate xi in Σx.

Remark 4. We do not make use of a dual Markov process, but this lemma could

be cast into the standard framework (see Ethier and Kurtz [17] chapter 4) relating
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two Markov processes. The dual process can be taken to be a finite system of

particles with motion generator L that are instantly annihilating (with state space

the disjoint union
⋃n
m=0 R2m). This annihilating system describes the motion of

domain walls in the Ising spin chain with (a spatially inhomogeneous version of) the

Glauber dynamics [27] and the dual process could also be taken to be this spin chain.

The formulae connecting a set of spins (σ(x) ∈ {−1,+1}, x ∈ Z) to the occupation

variables (η(x) ∈ {0, 1}, x ∈ Z) of domain walls, where η(x) = 1 indicates different

spins at x and x+ 1, are

η(x) =
1− σ(x)σ(x+ 1)

2
, (−1)η[x,y) = σ(x)σ(y).

We do not exploit the link between the spin chain and annihilating systems but it

is the origin of our use of the term ‘spin pair’.

Proof of lemma 1. Each term in the generator L involves a modified configuration,

ηax,y or ηcx,y, which differs from η on at most two neighbouring sites. The condition

that xi < xi+1 ensures that this modified configuration will agree with η on all but

at most one of the intervals [x2i−1, x2i), and hence the value of at most one of the

spins σx2i−1,x2i will change. This allows us to separate the action of the generator

as follows

LΣx(η) =
n∑
i=1

 n∏
j=1,j 6=i

σx2j−1,x2j (η)

Lσx2i−1,x2i(η). (3.10)

We turn our attention to a single spin σx,y(η). Fix x < y and consider the part of

the generator ∑
z∈Z

qz
(
θσx,y(η

a
z,z−1) + (1− θ)σx,y(ηcz,z−1)− σx,y(η)

)
,

corresponding to left jumps. The terms in this sum indexed by z ≤ x − 1 and by

z ≥ y + 1 are zero, as the modified configurations are unchanged in the interval

[x, y). The terms corresponding to x + 1 ≤ z ≤ y − 1 are also zero since we claim

that

θσx,y(η
a
z,z−1) + (1− θ)σx,y(ηcz,z−1)− σx,y(η) = 0.

Indeed, since {z − 1, z} ∈ [x, y), the left hand side is proportional to

θ(−θ)η(z−1)+η(z) mod(2) + (1− θ)(−θ)min(1,η(z−1)+η(z)) − (−θ)η(z−1)+η(z),

and checking the three cases η(z−1)+η(z) ∈ {0, 1, 2} shows that this is always zero.
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(This identity is similar to a key quadratic identity behind the ASEP dualities in

[7].) Thus jumps between sites both lying outside or both lying inside the interval

[x, y) give zero contribution to the generator and only the terms when z = x or

z = y, where a jump crosses an endpoint of the interval, contribute. It was this key

property that was looked for when trying to find a duality function.

For the two remaining terms, when z = x or z = y, two similar short calculations

lead to

θσx,y(η
a
x,x−1) + (1− θ)σx,y(ηcx,x−1)− σx,y(η) = σx+1,y(η)− σx,y(η) = D+

x σx,y(η),

θσx,y(η
a
y,y−1) + (1− θ)σx,y(ηcy,y−1)− σx,y(η) = σx,y+1(η)− σx,y(η) = D+

y σx,y(η).

Collecting the terms from all possible z ∈ Z gives

∑
z∈Z

qz
(
θσx,y(η

a
z−1,z) + (1− θ)σx,y(ηcz−1,z)− σx,y(η)

)
= qxD

+
x σx,y(η) + qyD

+
y σx,y(η).

Similar calculations for the terms corresponding to right jumps show that

∑
z∈Z

pz
(
θσx,y(η

a
z−1,z) + (1− θ)σx,y(ηcz−1,z)− σx,y(η)

)
= pxD

−
x σx,y(η) + pyD

−
y σx,y(η),

and hence

Lσx,y(η) = (Lx + Ly)σx,y(η).

Using this in (3.10) completes the proof.

For x = (x1, . . . , x2n) with x1 < · · · < x2n, the expectation u(t,x, η0) = Eη0 [Σx(ηt)]

satisfies

∂tu(t,x, η0) = Eη0 [LΣx(ηt)] = Eη0

[
2n∑
i=1

LxiΣx(ηt)

]
=

2n∑
i=1

Lxiu(t,x, η0). (3.11)

Indeed the first equality comes from the Kolmogorov backward equation (3.1) for

the Markov process (ηt : t ≥ 0), the second equality is due to lemma 1, and the final

equality is interchanging a finite sum and expectation. Thus the duality allows us to

recast an infinite dimensional Kolmogorov equation in (t, η0) as a finite dimensional
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ODE in (t,x). We now show that this ODE is exactly solved by a Pfaffian.

Lemma 2. For all η0 ∈ {0, 1}Z, for all n ≥ 1, x = (x1, . . . , x2n) with x1 ≤ · · · ≤ x2n

and t ≥ 0,

Eη0 [Σx(ηt)] = Pf(K(2n)(t,x)),

where K(2n)(t,x) is the anti-symmetric 2n × 2n matrix with entries Kt(xi, xj) for

i < j for the function Kt defined in (3.4), that is Kt(x, y) = Eη0 [σx,y(ηt)] for x ≤ y.

Proof of lemma 2. For n ≥ 1 denote

V2n = {x ∈ Z2n : x1 < · · · < x2n},

V 2n = {x ∈ Z2n : x1 ≤ · · · ≤ x2n},

∂V
(i)

2n = {x ∈ Z2n : x1 < · · · < xi = xi+1 < xi+2 < . . . x2n},

∂V2n =

2n−1⋃
i=1

∂V
(i)

2n .

We now detail a system of ODEs indexed by V2n, which will involve driving terms

indexed by ∂V2n. Fix an initial condition η0 ∈ {0, 1}Z and n ≥ 1, then define

u(2n)(t,x) = Eη0 [Σx(ηt)] for t ≥ 0, and x ∈ V 2n.

For n ≥ 1, u(2n) solves the following system of ODEs:

(ODE)2n


∂tu

(2n)(t,x) =
∑2n

i=1 Lxiu
(2n)(t,x) on [0,∞)× V2n,

u(2n)(t,x) = u(2n−2)(t,xi,i+1) on [0,∞)× ∂V (i)
2n ,

u(2n)(0,x) = Σx(η0) on V2n.

The notation xi,i+1 is for the vector x with coordinates xi and xi+1 removed. Thus,

when n ≥ 2, for x ∈ ∂V (i)
2n we have xi,i+1 ∈ V2n−2. (ODE)2n is a system of ODEs

indexed over V2n. For n ≥ 2, to evaluate Lxiu
(2n) one may need the values of u(2n)

at some points x ∈ ∂V
(i)

2n , which then act as driving functions for the differential

equation. The second equation, which we call the boundary condition, states that

these can be deduced from the values of u(2n−2). Indeed the boundary condition

follows simply from the fact that

Σx(η) = Σxi,i+1(η) for x ∈ ∂V (i)
2n and n ≥ 2.

By setting u(0) = 1, the equation also holds for n = 1, encoding the fact that

u(2)(t, (x, x)) = 1 for all t ≥ 0, x ∈ Z.
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The infinite sequence of equations ((ODE)2n : n = 1, 2, . . .) are uniquely solvable,

within the class of continuously differentiable functions satisfying

sup
t≥0

sup
x∈V2n

|u(2n)(t,x)| <∞.

Indeed the boundary condition for u(2) is simply that u(2)(t, (x, x)) = 1, and standard

(weighted) Gronwall estimates show uniqueness of solutions of (ODE)2. Inductively,

the boundary condition for u(2n) is given by the uniquely determined values of

u(2n−2) and hence u(2n) can be found uniquely from (ODE)2n. See appendix A for

details.

We now check that (Pf(K(2n)(t,x)) : n = 1, 2, . . . ) also satisfies ((ODE)2n : n =

1, 2, . . . ). First we consider the initial conditions. Fix x ∈ V2n and choose x0 ≤ x1.

For θ > 0 the entries in the Pfaffian at time zero can be rewritten as quotients,

namely for i < j

K0(xi, xj) = σxi,xj (η0) =
(−θ)η0[x0,xj)

(−θ)η0[x0,xi)
.

Proposition 9 shows that

Pf(K(2n)(0,x)) =

n∏
i=1

(−θ)η0[x0,x2i−1)

(−θ)η0[x0,x2i)
= Σx(η0), (3.12)

and by letting θ ↓ 0 the identity is true when θ = 0.

Next we check the boundary conditions. We fix x ∈ ∂V (i)
2n , t ≥ 0 and write K(2n)

for the matrix K(2n)(t,x). By conjugating with a suitable elementary matrix B, the

matrix

K̂(2n) = BTK(2n)B

is the result of subtracting row i+1 from row i, and column i+1 from column i. The

Pfaffian conjugation identity (proposition 3) ensures that Pf(K̂(2n)) = Pf(K(2n)).

However the equality xi = xi+1 implies that the i-th row of K̂(2n) has all zero

entries except for K̂
(2n)
i i+1 = 1. Expanding the Pfaffian of K̂(2n) along row i (using

proposition 5) shows that, when n ≥ 2,

Pf(K̂(2n)(t,x)) = Pf(K(2n−2)(t,xi,i+1)).

When n = 1 we obtain Pf(K̂(2)) = 1. This is exactly the desired boundary condition.
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Finally we check the differential equation in (ODE)2n. Note that the entries in

K(2n)(t,x) solve (ODE)2, that is ∂tKt(xi, xj) = (Lxi +Lxj )Kt(xi, xj). Moreover the

Pfaffian Pf(K(2n)(t,x)) is a sum of terms each of product form

Kt(xπ1 , xπ2) . . .Kt(xπ2n−1 , xπ2n) (3.13)

for some permutation π, containing each of the variables (xi : i ≤ 2n) exactly once.

Hence by the product rule, each term, and therefore the entire Pfaffian, solves the

desired equation ∂tu =
∑2n

i=1 Lxiu when x ∈ V2n.

Note that |Kt(x, y)| ≤ 1 and hence the Pfaffian Pf(K(2n)(t,x)) is a uniformly

bounded function on [0,∞) × V2n (by (2.6), for example). Uniqueness of solutions

to the sequence ((ODE)2n : n = 1, 2, . . .) now implies that

Eη [Σx(ηt)] = u(2n)(t,x) = Pf(K(2n)(t,x)), for n ≥ 1, t ≥ 0 and x ∈ V2n.

The lemma under consideration states that this identity holds also for x ∈ V 2n.

However, by repeating the argument for the boundary conditions, for x ∈ V 2n any

equalities in x1 ≤ x2 ≤ · · · ≤ x2n can be removed, pair by pair, until

u(2n)(t,x) = u(2m)(t, z), and Pf(K(2n)(t,x)) = Pf(K(2m)(t, z))

for some m ≤ n and z ∈ V2m, and hence equality also holds on the larger set.

Remark 5. Averaging (3.12) over configurations gives

Eη0 [Σx(ηt)] = Eη0
[
Pf(σxi,xj (ηt) : i < j ≤ 2n)

]
.

Hence we may interpret lemma 2 as an interchange of expectation and Pfaffian.

Proof of theorem 1. The particle intensities E[ηt(x1) . . . ηt(xn)] can be recovered from

the product spin expectations. Indeed

D+
y σx,y(η) = σx,y+1(η)− σx,y(η)

= σx,y(η)
(

(−θ)η(y) − 1
)

= −(1 + θ) η(y)σx,y(η),

so that

D+
y σx,y(η)

∣∣
y=x

= −(1 + θ)η(x). (3.14)
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Thus out of a spin pair, we can reconstruct a single occupancy variable by first a

discrete derivative, and then an evaluation. We now iterate this to get at multiple

occupancy variables. Fix n ≥ 1 and consider x = (x1, x̂1, . . . , xn, x̂n) ∈ V 2n where

x1 ≤ x̂1 < x2 ≤ x̂2 < x3 ≤ · · · < xn ≤ x̂n.

The restriction that x̂i < xi+1 allows us to apply the operators D+
x̂1
, . . . , D+

x̂n
to both

sides of the identity (from Lemma 2)

Eη [Σx(ηt)] = Pf(K(2n)(t,x)).

The left hand side becomes

(−1)n(1 + θ)nEη

[
ηt(x1) . . . ηt(xn)

n∏
i=1

σxi,x̂i(ηt)

]
.

After setting xi = x̂i for all i we reach the intensity (−1)n(1+θ)nEη[ηt(x1) . . . ηt(xn)].

Applying the operators D+
x̂1
, . . . , D+

x̂n
to the Pfaffian on the right hand side preserves

the Pfaffian structure. Indeed applying D+
x̂1

to the single Pfaffian term (3.13) will

change only a single factor in the product, namely

Kt(xπ2i−1 , xπ2i)→

{
D+

1 Kt(xπ2i−1 , xπ2i) if π2i−1 = 1,

D+
2 Kt(xπ2i−1 , xπ2i) if π2i = 1.

The terms can then be summed into a new Pfaffian where the entries in the second

row and column, which are the only entries containing the variable x̂1, are changed.

Repeating this for the operators D+
x̂2
, . . . , D+

x̂n
and then setting xi = x̂i for all i, we

still have a Pfaffian, and incorporating the factor (−1)n(1 + θ)n the final entries are

given exactly by the kernel K stated in the theorem.

Remark 6. For random initial conditions the point process ηt will not in general

be a Pfaffian point process, although by conditioning on the initial condition, the

intensities can always be written as the expectation of a Pfaffian. However, under

some random initial conditions, ηt does remain a Pfaffian point process. Indeed,

examining the proof of Lemma 2, one needs only that the expectation E [Σx(η0)], for

x ∈ V2n, can be written as a Pfaffian Pf(Φ(xi, xj) : i < j ≤ 2n) for some Φ : V2 → R.

One then replaces the initial condition in the equation (3.8) for Kt(x, y) by Φ(x, y)

and the rest of the argument goes through. An important example is independent

sites (η0(x) : x ∈ Z) with η0(x) a Bernoulli(λx) variable for some λx ∈ [0, 1]. Indeed

for x ∈ V2n and x0 < x1, one may use the Pfaffian quotient formula (proposition 9)

45



with ai =
∏xi−1
z=x0

(1− λz(1 + θ))−1 to write

E [Σx(η0)] =

n∏
i=1

a2i−1

a2i
= Pf

 ∏
z∈[xi,xj)

(1− (1 + θ)λz) : i < j ≤ 2n

 .

Remark 7. A slightly more combinatorial way of writing out the argument for

the last part of the proof of theorem 1 is as follows. Starting from (3.9) we may

reconstruct the product intensities as

E

[
n∏
i=1

ηt(xi)

]
= E

[
n∏
i=1

(1− σxi,xi+1(ηt))

1 + θ

]

= (1 + θ)−n
n∑

m=0

(−1)m
∑

y1<···<ym
∈{x1,...,xn}

E

[
m∏
i=1

σyi,yi+1(ηt)

]
. (3.15)

Since the vector y(2m) = (y1, y1 + 1, . . . , ym, ym + 1) ∈ V 2m we may apply Lemma 2

to see that

E

[
n∏
i=1

ηt(xi)

]
= (1 + θ)−n

n∑
m=0

(−1)m
∑

y1<···<ym
∈{x1,...,xn}

Pf
(
K(2m)(t, y(2m))

)
.

By the formula for the Pfaffian of a sum (see proposition 4) this may be recombined

as the single Pfaffian

E

[
n∏
i=1

ηt(xi)

]
= (−1)n(1 + θ)−n Pf

(
K(2n)(t, y(2n))− J2n

)
,

where J2n is the block diagonal matrix formed by n copies of
(

0 1

−1 0

)
. This shows

that ηt is a Pfaffian point process with the kernel K̃ given, for x < y, by

K̂(x, y) =
−1

1 + θ

(
Kt(x, y) Kt(x, y + 1)

Kt(x+ 1, y) Kt(x+ 1, y + 1)

)
,

and K̃12(x, x) = −1
1+θ (Kt(x, x + 1) − 1), and other entries determined by anti-

symmetry. Finally, the desired kernel K is obtained from K̂ by applying the el-

ementary transform of subtracting the first row and column from the second row

and column. By proposition 12 (part 3) the kernels K̂ and K determine the same

point process.

Example 7. We conclude this section by putting theorem 1 into action through a
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concrete example. Consider symmetric CARW on Z with product Bernoulli initial

condition. The process is defined by setting qx = px = 1 and η0(x) to be independent

Bernoulli(λ) for all x ∈ Z and some λ ∈ [0, 1]. Note that the λ = 1 case is the

discrete analogue of example 6. The one-particle generator is the discrete Laplacian

∆ = D+ + D−. Theorem 1 ensures that the system is Pfaffian with kernel (3.6)

given in terms of Kt(x, y), solving
∂tKt(x, y) = (∆x + ∆y)Kt(x, y) for x < y, t > 0,

Kt(x, x) = 1 for all x, t > 0,

K0(x, y) = (1− (1 + θ)λ)y−x for x ≤ y.

(3.16)

The discrete two-dimensional heat kernel pt : Z2 → [0,∞) is given by

pt(x, y) = e−4tIx(2t)Iy(2t), (3.17)

where Ix(t) = 1
π

∫ π
0 et cos(w) cos(xw) dw is the modified Bessel function of the first

kind. Using linearity to force Dirichlet boundary conditions and recasting from

{x < y} to Z2 by the method of images, the ODE (3.16) may be solved explicitly

in terms of pt, namely

Kt(x, y) = 1 +
∑

w1,w2∈Z
pt(x− w1, y − w2)

(
(1− (1 + θ)λ)|w2−w1| − 1

)
sgn(w2 − w1),

for x ≤ y. We return to this example in chapter 4, where we give the asymptotics

under diffusive scaling.

3.3 Models with branching or immigration

Two generalisations of CARW, in the pure interaction regimes of ARW and CRW,

are shown to be Pfaffian point processes for a wide class of initial conditions, in-

cluding deterministic. The models are annihilating random walks with pairwise

immigration, and coalescing random walks with branching. Besides extending the

theory, these models arise in various contexts.

Annihilating random walks with pairwise immigration. The Ising model

of equilibrium statistical mechanics was introduced by Lenz and Ising as a model

of ferromagnetism in metals. The model is a random assignment of ±1 spin values

to each site of Z. Glauber [27] proposed viewing the Ising model as the large-time

equilibrium limit of an evolution of spin configurations. Under the so-called Glauber
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dynamics, spin values independently flip according to rates determined by nearest

neighbour spins. Glauber established an expression for the interaction intensity in

terms of the constants: magnetisation, temperature and the Boltzmann constant.

This model has since become one of the most popular in non-equilibrium statisti-

cal mechanics, as it many cases it can be solved explicitly and important system

characteristics written in terms of special functions [9, 21, 28, 41].

Within a spin configuration, the right-most site in a block of aligned spins is

called a domain wall. Under the dynamics of the chain, the domain walls form

a system of annihilating random walks on Z [3, 44]. As mentioned in remark 4,

a spatially inhomogeneous version of the Glauber dynamics leads to the domain

walls being described by the purely annihilating random walk model of section 3.2.

These dynamics are said to be at zero temperature because the spins only move to

increase local alignment and have no ‘thermal energy’ to flip of their own volition.

The positive temperature Glauber dynamics allow for spins to flip regardless of

their neighbours. In this case the domain walls still form an annihilating system,

however the event of a spin flipping out of local alignment represents creation of two

adjacent domain walls. Thus a system of annihilating random walks with pairwise

immigration is embedded in the Ising spin chain under positive temperature Glauber

dynamics.

Branching coalescing random walks. The mechanisms of branching and co-

alescence are mainstays in a variety of research areas. In population dynamics,

for example, branching coalescing random walks can effectively model growth and

propagation of a collection of organisms. Indeed migration is accounted for by the

random walk component, births are represented by branching and deaths by coa-

lescence, where deaths are interpreted to occur due to local overpopulation. Such

systems are also known as reaction-diffusion models and may be used to describe

chemical processes as well as those appearing in physics and biology.

Besides the rich applied literature, there is an another important motivation with

roots in stochastic processes. The Brownian web is a continuum system of instantly

coalescing Brownian motions started from all points in time and space, which arises

as the limit of various discrete models. It was introduced by Arratia [5] and subse-

quently developed by various authors, see [22, 47, 56] and references therein. It is

shown in [59] that at any given time the distribution of points on paths starting from

the origin is a Pfaffian point process. A related object is the Brownian net [47, 55],
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a continuum process involving branching coalescing Brownian motions. There is an

open question in [47] to identify Pfaffian structure in the point set of the Brownian

net. Branching coalescing random walks are a discrete-space counterpart that can

be scaled to obtain continuum processes.

Despite the unconnected model mechanics and motivations, we will show that

annihilating random walks with pairwise immigration and branching coalescing ran-

dom walks are related, for certain initial conditions, via a generalised thinning rela-

tion involving thickening.

3.3.1 Annihilating random walks with pairwise immigration

A class of annihilating random walk systems on Z with pairwise immigration are

shown to be Pfaffian point processes for a large set of initial conditions, including

deterministic.

The model is a generalisation of the ARW model in section 3.2. We explain the

dynamics informally before explicitly defining the model via its generator. Between

interactions all particles jump independently following a nearest neighbour random

walk on Z, jumping

x→ x− 1 at rate qx, and x− 1→ x at rate px.

Independently there is

immigration on sites {x− 1, x} at rate mx.

Immigration respects annihilation: if a particle immigrates onto an occupied site

then the existing and new particles instantaneously annihilate.

These dynamics are encoded in the generator, which, for suitable F : {0, 1}Z → R,

is given by

LAF (η) =
∑
x∈Z

qx (F (ηx,x−1)− F (η)) +
∑
x∈Z

px (F (ηx−1,x)− F (η))

+
∑
x∈Z

mx

(
F (ηix−1,x)− F (η)

)
, (3.18)
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where ηx,y (resp. ηix,y) is the new configuration resulting from a jump from x to y

(resp. immigration onto x and y)
ηx,y(z) = ηix,y(z) = η(z) for z 6∈ {x, y},
ηx,y(x) = 0,

ηx,y(y) = η(x) + η(y) mod 2,

ηix,y(z) = 1− η(z) for z ∈ {x, y}.

We take (px, qx,mx ≥ 0 : x ∈ Z) uniformly bounded, then the generator defines the

law of a unique Markov process, for any initial condition η0 ∈ {0, 1}Z, which we refer

to as annihilating random walks with pairwise immigration (ARWI). We denote its

law by Pη0 and Eη0 on path space with canonical variables {ηt : t ≥ 0}.

There is a bijection between the collection of ARWI models and domain walls for

Ising spin chains under inhomogeneous positive temperature Glauber dynamics.

Using the notation (3.3), we set Kt(x, y) to be the spin expectation

Kt(x, y) = Eη0
[
(−1)ηt[x,y)

]
, t ≥ 0, x, y ∈ Z with x ≤ y. (3.19)

We can now state the main result for ARWI.

Theorem 2. For any initial condition η0 ∈ {0, 1}Z, and at any fixed time t ≥ 0,

the ARWI variable ηt is a Pfaffian point process with kernel K given, for x < y, by

K(x, y) = −1

2

(
Kt(x, y) D+

2 Kt(x, y)

D+
1 Kt(x, y) D+

1 D
+
2 Kt(x, y)

)
, (3.20)

and K12(x, x) = −1
2D

+
2 Kt(x, x), with other entries determined by anti-symmetry.

As in the case of ARW, the spin expectation for ARWI may be characterised by

a differential equation. We define a one-particle generator LA, acting on f : Z→ R
by

LAf(x) = qxD
+f(x) + pxD

−f(x)− 2mxf(x). (3.21)

We will show that the spin expectation (Kt(x, y) : t ≥ 0, x, y ∈ Z, x < y) is the

unique bounded solution to the equation
∂tKt(x, y) = (LAx + LAy )Kt(x, y) for x < y, t > 0,

Kt(x, x) = 1 for all x, t > 0,

K0(x, y) = (−1)η0[x,y) for x ≤ y.

(3.22)
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Note that LA differs from the one-particle generator L for ARW (3.7) only through

the presence of an additional potential term, accounting for immigration.

Proof outline. The proof of theorem 2 is a small generalisation to theorem 1 for

ARW. Indeed the spin products η 7→ (−1)η[x1,x2) . . . (−1)η[x2n−1,x2n) for n ≥ 1 are

again suitable Markov duality functions, see lemma 3, with one-particle generator

LA. It then suffices to check that each step of the proof in section 3.2.2 extends to

one-particle generators with a potential term.

Theorem 2 also holds for certain random initial conditions, including when (η0(x) :

x ∈ Z) are independent. This follows from the same reasoning as for theorem 1,

explained in remark 6.

Proof of theorem 2. For n ≥ 1 and x = (x1, . . . , x2n) with x1 ≤ · · · ≤ x2n the

spin product is given by

Σx(η) =
n∏
i=1

(−1)η[x2i−1,x2i).

Note that Σx(η) only depends on a finite number of configuration sites and so lies

in the domain of the generator LA. The heart of the proof is in showing that the

spin products Σx(η) remain suitable Markov duality functions for LA. This duality

is encoded in the following computation.

Lemma 3. For x = (x1, . . . , x2n) with x1 < · · · < x2n the action of the particle

generator LA on Σx(η) is

LAΣx(η) =
n∑
i=1

LAxiΣx(η).

Proof of lemma 3. From lemma 1, the part of LAΣx(η) due to particle motion is

given by
∑2n

i=1 LxiΣx(η). It remains to compute the contribution from immigration,

namely ∑
z∈Z

mz

(
Σx(ηiz−1,z)− Σx(η)

)
.

Note that the modified configuration for immigration ηiz,z+1, differs from η on at

most two sites, z and z + 1. Since the entries of x are strictly ordered, the intervals

[x2i−1, x2i) are separated by at least one site, whereby adjacent sites z, z + 1 can

intersect at most one of these intervals. In particular the value of at most one of
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the spins (−1)η[x2i−1,x2i) will change in the event of an immigration. This allows us

to separate the immigration contribution to LA using

Σx(ηiz,z+1)− Σx(η)

=

n∑
i=1

∏
j 6=i

(−1)η[x2j−1,x2j)

((−1)η
i
z,z+1[x2i−1,x2i) − (−1)η[x2i−1,x2i)

)
. (3.23)

Fix x < y and consider the contribution for a single spin product (−1)η[x,y), namely∑
z∈Z

mz

(
(−1)η

i
z−1,z [x,y) − (−1)η[x,y)

)
.

The terms indexed by z ≤ x−1 and z ≥ y+1 are zero, as the modified configuration

in these cases is unchanged in the interval [x, y). The terms x + 1 ≤ z ≤ y − 1 are

also zero, since

(−1)η
i
z−1,z [x,y) − (−1)η[x,y)

=
( y−1∏

w=x
w 6=z−1,z

(−1)η(w)
)(

(−1)1−η(z−1)(−1)1−η(z) − (−1)η(z−1)(−1)η(z)
)

= 0.

The remaining terms give identical non-zero contributions. For example, when z = x

the computation is

(−1)η
i
x−1,x[x,y) − (−1)η[x,y) =

( y−1∏
w=x+1

(−1)η(w)
)(

(−1)1−η(x) − (−1)η(x)
)

= −2(−1)η[x,y).

The case z = y is similar. Using (3.23) the immigration term is given by

∑
z∈Z

mz

(
Σx(ηiz−1,z)− Σx(η)

)
= −2Σx(η)

2n∑
i=1

mxi .

Collecting the jump and immigration terms gives the desired expression

LAΣx(η) =

2n∑
i=1

LxiΣx(η)− 2Σx(η)

2n∑
i=1

mxi =

2n∑
i=1

LAxiΣx(η).
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Following the proof outline for theorem 1, the duality of lemma 3 allows us (via

(3.11)) to recast the Kolmogorov equation for the product spin expectation as an

ODE built from LA. We check that generalising the one-particle generator does not

destroy the scalar Pfaffian solution.

Lemma 4. For all η0 ∈ {0, 1}Z, for all n ≥ 1, x = (x1, . . . , x2n) with x1 ≤ · · · ≤ x2n

and t ≥ 0

Eη0 [Σx(ηt)] = Pf(K(2n)(t,x)), (3.24)

where K(2n)(t,x) is the anti-symmetric 2n × 2n matrix with entries Kt(xi, xj) for

i < j, defined by (3.19).

Proof of lemma 4. The result is an extension to lemma 2 for more general one-

particle generators and the proof is identical. We give a brief outline of the steps.

Using the ODE framework of lemma 2, for n ≥ 1 the ARWI product spin expectation

u(2n)(t,x) = Eη0 [Σx(ηt)] solves

(ODE)A2n


∂tu

(2n)(t,x) =
∑2n

i=1 L
A
xiu

(2n)(t,x) on [0,∞)× V2n,

u(2n)(t,x) = u(2n−2)(t,xi,i+1) on [0,∞)× ∂V (i)
2n ,

u(2n)(0,x) = Σx(η0) on V2n,

with u(0) = 1. The infinite sequence of equations ((ODE)A2n : n = 1, 2, . . . ) are

uniquely solvable, within the class of continuously differentiable functions that are

uniformly bounded on [0,∞)×V2n (see appendix A for details). It remains to check

that the sequence of scalar Pfaffians (Pf(K(2n)(t,x)) : n = 1, 2, . . . ) is a uniformly

bounded solution. The verification of initial conditions, boundary conditions and the

differential equation pass through unchanged from the proof of lemma 2. Moreover

the Pfaffian is uniformly bounded on [0,∞) × V2n, whereby uniqueness gives the

desired equality on V2n. Finally the solution may be extended to V 2n by sequentially

removing coincidental points.

Proof of theorem 2. All that remains is to recover the particle intensities from the

product spin expectations. The steps in the proof of theorem 1 apply to any point

process whose spin product expectations are given by a scalar Pfaffian. In particular

the particle intensities are Pfaffian with kernel of the form (3.6) (with θ = 1). This

completes the proof of theorem 2.

Example 8. We apply the theorem to a simple example. Consider annihilating

symmetric random walks on Z with homogeneous pairwise immigration and product

Bernoulli initial condition. This is the case qx = px = 1, mx = m and η0(x) is
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Bernoulli(λ) for all x ∈ Z and some m > 0, λ ∈ [0, 1]. The one-particle generator is

LA = ∆− 2m. By theorem 2 the position of particles at time t ≥ 0 is Pfaffian with

kernel (3.20), solving
∂tKt(x, y) = (∆x + ∆y)Kt(x, y)− 4mKt(x, y) for x < y, t > 0,

Kt(x, x) = 1 for all x, t > 0,

K0(x, y) = (1− 2λ)y−x for x ≤ y.

(3.25)

Building on example 7 and using Duhamel’s principle to handle the additional driv-

ing term (of the equation forced to have Dirichlet boundary conditions), the explicit

solution is given by

Kt(x, y) = 1 + e−4mt
∑

w1,w2∈Z
pt(x− w1, y − w2)

(
(1− 2λ)|w2−w1| − 1

)
sgn(w2 − w1)

− 4m

∫ t

0
e−4ms

∑
w1,w2∈Z

ps(x− w1, y − w2) sgn(w2 − w1) ds, (3.26)

for x ≤ y, where pt is the discrete two-dimensional heat kernel (3.17). More details

are given in section 4.3.1, where we consider the continuum scaling limit.

Remark 8. By setting the immigration rate to zero, mx = 0 for all x ∈ Z, the

ARW model with rates (px, qx ≥ 0 : x ∈ Z) is recovered.

3.3.2 Branching coalescing random walks

A class of coalescing random walk systems on Z with branching are shown to be

Pfaffian point processes for a large set of initial conditions, including deterministic.

The model is a generalisation of the CRW model in section 3.2. We explain the

dynamics informally before explicitly defining the model via its generator. Between

interactions particles perform independent nearest neighbour random walks with

jumps

x→ x− 1 at rate qx, and x− 1→ x at rate px.

If a particle jumps onto an occupied site then the two particles instantaneously

coalesce. Independently a particle branches

x→ {x− 1, x} at rate `x, and x− 1→ {x− 1, x} at rate rx.

Branching events respect coalescence: if a particle branches onto an occupied site

then the existing and new particles instantaneously coalesce.
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The generator for these dynamics is given, for suitable F : {0, 1}Z → R, by

LCF (η) =
∑
z∈Z

qx (F (ηz,z−1)− F (η)) +
∑
z∈Z

px (F (ηz−1,z)− F (η))

+
∑
z∈Z

`x

(
F (ηbz,z−1)− F (η)

)
+
∑
z∈Z

rx

(
F (ηbz−1,z)− F (η)

)
, (3.27)

where ηx,y (resp. ηbx,y) is the new configuration resulting from a jump (resp. branch-

ing) from x to y 
ηx,y(z) = ηbx,y(z) = η(z) for z 6∈ {x, y},
ηx,y(x) = 0,

ηbx,y(x) = η(x),

ηx,y(y) = ηbx,y(y) = min{1, η(x) + η(y)}.

We take (px, qx, `x, rx ≥ 0 : x ∈ Z) to be uniformly bounded, then the generator

defines the law of a unique Markov process, for any initial condition η0 ∈ {0, 1}Z,

which we refer to as branching coalescing random walks (BCRW). We denote its law

by Pη0 and Eη0 on path space with canonical variables {ηt : t ≥ 0}.

Using the notation (3.3), we set Kt(x, y) to be the empty interval probability

Kt(x, y) = Eη0 [1 (ηt[x, y) = 0)] , t ≥ 0, x, y ∈ Z with x ≤ y. (3.28)

In order for BCRW to be Pfaffian we impose the following conditions on the rates

`x
qx

=
rx+1

px+1
< M,

c = rx − `x,

(3.29a)

(3.29b)

for all x ∈ Z and some M, c ∈ R. An interpretation of the conditions is discussed

in remark 11. Under condition (3.29a), we may define a bounded function φ : Z→
[1,∞) by

φx =

√
1 +

`x
qx

=

√
1 +

rx+1

px+1
. (3.30)

We now set

K̃t(x, y) = Kt(x, y)

y−1∏
z=x

φz, for t ≥ 0, x, y ∈ Z with x ≤ y, (3.31)
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using the convention that the empty product is equal to 1, so that K̃t(x, x) = 1.

Theorem 3. Let (3.29) be satisfied. For any initial condition η0 ∈ {0, 1}Z, and at

any fixed time t ≥ 0, the BCRW variable ηt is a Pfaffian point process with kernel

K̃ given, for x < y, by

K̃(x, y) = − 1√
φxφy

(
K̃t(x, y) D+

2 K̃t(x, y)

D+
1 K̃t(x, y) D+

1 D
+
2 K̃t(x, y)

)
, (3.32)

and K̃12(x, x) = 1− 1
φx
K̃t(x, x+1), with other entries determined by anti-symmetry.

The technical origins of φx and the conditions (3.29) in the context of the under-

lying proof method are discussed in remark 12 after the proof of theorem 3.

As for CRW, the BCRW empty interval probability Kt(x, y) may be characterised

by a differential equation. We define one-particle generators LC,(1) and LC,(2), acting

on f : Z→ R, by

LC,(1)f(x) = qxD
+f(x) + pxD

−f(x) + rxD
−f(x), (3.33)

LC,(2)f(x) = qxD
+f(x) + pxD

−f(x) + `xD
+f(x). (3.34)

We will see that the empty interval probability (Kt(x, y) : t ≥ 0, x, y ∈ Z, x < y)

solves 
∂tKt(x, y) = (L

C,(1)
x + L

C,(2)
y )Kt(x, y) for x < y, t > 0,

Kt(x, x) = 1 for all x, t > 0,

K0(x, y) = 1 (η0[x, y) = 0) for x ≤ y.

(3.35)

Looking forward, this already shows us that the empty interval indicators η 7→
1(η[x1, x2) = · · · = η[x2n−1, x2n) = 0) for n ≥ 1 are not suitable Markov duality

functions for BCRW, because even for n = 1 the resultant ODEs distinguish odd-

and even-indexed sites. Indeed, for our proof method, we are aiming for a scalar

Pfaffian expression for the duality expectations, whose corresponding ODEs would

be in terms of a single one-particle operator applied to all variables xi (see the

proof of lemma 2). One way to get around this is to introduce a judicious choice

of multiplicative factor to the empty interval indicators, forcing the resultant ODEs

to have the desired form. This is the origin of the φx factor (3.30). The price

we pay for suitable ODEs is that the modified empty interval indicators are no

longer bounded, however they are of exponential growth. We define a one-particle

56



generator L̃C , acting on f : Z→ R, by

L̃Cf(x) = qxφxD
+f(x) + pxφx−1D

−f(x)−
(qx

2
(1− φx)2 +

px
2

(1− φx−1)2
)
f(x).

(3.36)

We will show that, under conditions (3.29), the modified empty interval probability

(K̃t(x, y) : t ≥ 0, x, y ∈ Z, x < y) is the unique solution to the equation
∂tK̃t(x, y) = (L̃Cx + L̃Cy )K̃t(x, y) for x < y, t > 0,

K̃t(x, x) = 1 for all x, t > 0,

K̃0(x, y) = 1 (η0[x, y) = 0)
∏y−1
z=x φz for x ≤ y,

(3.37)

within the class of functions of exponential growth.

Remark 9. Note that the kernel K̃ for BCRW at time t ≥ 0 is locally bounded,

since by condition (3.29a)

|K̃t(x, y)| ≤ (1 +M)|y−x|/2,

so that K̃ satisfies

max
i,j∈{1,2}

|K̃i,j(x, y)| ≤ 4(1 +M)(|y−x|+1)/2.

Proposition 13 guarantees that K̃ determines the Pfaffian point process.

Remark 10. As usual the result extends to certain random initial conditions, fol-

lowing the reasoning of remark 6. One example is independent Bernoulli(λ) initial

conditions for λ ∈ (0, 1]. In this case the initial condition of (3.36) is given by

K̃0(x, y) =
∏y−1
z=x(1 − λ)φz. Note that K̃0(x, y), and hence K̃t(x, y), is uniformly

bounded provided λ ≥ 1 − 1/φz for all z ∈ Z. By condition (3.29a) this holds for

λ ≥ 1− (1 +M)−1/2.

Remark 11. The rate condition (3.29a) may be interpreted as a kind of local flux

conversation. Indeed the ratio `x/qx comprises rates for leftward jump and branching

events from the site x ∈ Z, and this is balanced by the analogous rightward quantity

rx+1/px+1 for site x. The conditions simplify in the homogeneous case px = p > 0,

qx = q > 0, `x = ` and rx = r for all x ∈ Z. In particular condition (3.29b)

is automatically satisfied and therefore obsolete. The rate conditions reduce to

`/q = r/p. In section 4.4 we develop diffusive scaling limits for BCRW and we

will see that this condition actually represents symmetry of the branching rates (see

remark 20).

57



Proof outline. As indicated above, establishing theorem 3 requires a modification

to the proof of theorem 1 for CRW. Indeed the empty interval indicators η 7→
1(η[x1, x2) = · · · = η[x2n−1, x2n) = 0) for n ≥ 1 are not suitable Markov duality

functions for LC , because the dual action splits between two one-particle generators,

as shown in lemma 5. Imposing conditions (3.29) and introducing φx, the modified

empty interval indicators

η 7→ 1(η[x1, x2) = · · · = η[x2n−1, x2n) = 0)
n∏
i=1

x2i−1∏
z=x2i−1

φz,

for n ≥ 1 have the desired action under LC , as shown in lemma 6. It follows that

the modified empty interval probabilities

Eη0 [1(η[x1, x2) = · · · = η[x2n−1, x2n) = 0)]

n∏
i=1

x2i−1∏
z=x2i−1

φz,

for n ≥ 1 are solutions of 2n-dimensional ODEs built from a single one-particle

generator. We are now in familiar territory. The ODEs are of the right form to

be solved exactly by Pfaffians built from the scalar kernel K̃t(x, y), as shown in

lemma 7.

It remains to recover the particle intensities from the modified empty interval

probabilities. Dividing the modified empty interval probabilities and the Pfaffian

through by the φx product and passing the factors onto the kernel entries, the

empty interval probabilities are given by Pfaffians with a 2 × 2 block structure.

As in the proof of theorem 1, we can reconstruct particle intensities from empty

interval probabilities by discrete derivatives. The Pfaffian and 2× 2 block structure

are preserved, leading to the desired kernel K̃.

Proof of theorem 3. For n ≥ 1 and x = (x1, . . . , x2n) with x1 ≤ · · · ≤ x2n we

define the empty interval product

Σx(η) =
n∏
i=1

1(η[x2i−1, x2i) = 0),

and its modification

Σ̃x(η) = Σx(η)Φx, (3.38)
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where the modification factor is given by

Φx =

n∏
i=1

x2i−1∏
z=x2i−1

φz. (3.39)

Since Σx(η) and Σ̃x(η) only depend on finitely many sites of η, both lie in the

domain of the generator LC . The proceeding computations determine the suitability

of Σx(η) and Σ̃x(η) as Markov duality functions.

Lemma 5. For x = (x1, . . . , x2n) with x1 < · · · < x2n the action of the particle

generator LC on Σx(η) is

LCΣx(η) =
n∑
i=1

(LC,(1)
x2i−1

+ LC,(2)
x2i )Σx(η).

Lemma 6. For x = (x1, . . . , x2n) with x1 < · · · < x2n the action of the particle

generator LC on Σ̃x(η) is

LCΣ̃x(η) =
2n∑
i=1

L̃CxiΣ̃x(η).

Proof of lemma 5. From lemma 1 for CRW, the part of LCΣx(η) due to particle

motion is given by
∑2n

i=1 LxiΣx(η), where L is defined by (3.7). It remains to

compute the contribution from branching. Consider the left branching term∑
z∈Z

`z

(
Σx(ηbz,z−1)− Σx(η)

)
.

The modified configuration due to left branching ηbz,z−1 differs from η on at most one

site, z − 1, so for each z ∈ Z there will be a change in at most one of the indicators

1(η[x2i−1, x2i) = 0). This allows us to separate the left branching contribution to

LC using

Σx(ηbz,z−1)− Σx(η)

=
n∑
i=1

(∏
j 6=i

1(η[x2i−1, x2i) = 0)
)(

1(ηbz,z−1[x2i−1, x2i) = 0)− 1(η[x2i−1, x2i) = 0)
)
.

(3.40)

Fix x < y and consider the contribution for a single empty interval indicator
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1(η[x, y) = 0), namely∑
z∈Z

`z

(
1(ηbz,z−1[x, y) = 0)− 1(η[x, y) = 0)

)
.

The terms indexed by z ≤ x and z ≥ y + 1 are zero, as the modified configuration

in these cases is unchanged in the interval [x, y). The terms x + 1 ≤ z ≤ y − 1 are

also zero, since for the empty interval indicator to differ on ηbz,z−1 and η, there must

be a particle at z to branch to the left from, in which case both indicators are zero.

The remaining term, z = y, follows from a simple computation

1(ηby,y−1[x, y) = 0)− 1(η[x, y) = 0) = 1(η[x, y + 1) = 0)− 1(η[x, y) = 0)

= D+
y 1(η[x, y) = 0).

Using (3.40), the left branching term is given by

∑
z∈Z

`z

(
Σx(ηbz,z−1)− Σx(η)

)
=

n∑
i=1

`x2iD
+
x2iΣx(η).

A similar calculation reveals that the contribution from right branching is

∑
z∈Z

rz

(
Σx(ηbz−1,z)− Σx(η)

)
=

n∑
i=1

rx2i−1D
−
x2i−1

Σx(η).

Collecting the jump and branching terms gives the desired expression

LCΣx(η) =
2n∑
i=1

LxiΣx(η) +
n∑
i=1

`x2iD
+
x2iΣx(η) +

n∑
i=1

rx2i−1D
−
x2i−1

Σx(η)

=
n∑
i=1

(LC,(1)
x2i−1

+ LC,(2)
x2i )Σx(η).

Proof of lemma 6. We prove the result by direct calculation. Since Φx is indepen-

dent of η, lemma 5 gives

LCΣ̃x(η) = ΦxLCΣx(η) = Φx

n∑
i=1

LC,(1)
x2i−1

Σx(η) + Φx

n∑
i=1

LC,(2)
x2i Σx(η). (3.41)

For both terms, we expand and massage into the form of an operator applied to

ΦxΣx(η). For the sake of clarity it is convenient in the calculations to replace Σx(η)
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by a function of one argument, f : Z→ R. Expanding the L
C,(1)
x2i−1 term

ΦxL
C,(1)
x2i−1

f(x2i−1) = Φxqx2i−1f(x2i−1 + 1) + Φx(px2i−1 + rx2i−1)f(x2i−1 − 1)

− Φx(qx2i−1 + px2i−1 + rx2i−1)f(x2i−1).

We develop the first two terms separately, in each case applying the decomposition

Φx = Φx2i−1,2i

∏x2i−1
z=x2i−1

φz. For the first term

Φxqx2i−1f(x2i−1 + 1) = qx2i−1φx2i−1Φx2i−1,2i

( x2i−1∏
z=x2i−1+1

φz

)
f(x2i−1 + 1).

For the second term

Φx(px2i−1+rx2i−1)f(x2i−1−1) =
px2i−1 + rx2i−1

φx2i−1−1
Φx2i−1,2i

( x2i−1∏
z=x2i−1−1

φz

)
f(x2i−1−1).

Using (3.30) the ratio may be expressed as

px + rx
φx−1

= pxφx−1. (3.42)

All together, for an odd-indexed variable x = x2i−1, the L
C,(1)
x term may be written

as an operator applied to Φxf(x)

ΦxL
C,(1)
x f(x) = qxφxD

+
x (Φxf(x)) + pxφx−1D

−
x (Φxf(x))

− (qx(1− φx) + px(1− φx−1) + rx) Φxf(x). (3.43)

A similar calculation for the L
C,(2)
x term, with an even-indexed variable x = x2i,

gives

ΦxL
C,(2)
x f(x) = qxφxD

+
x (Φxf(x)) + pxφx−1D

−
x (Φxf(x))

− (qx(1− φx) + px(1− φx−1) + `x) Φxf(x), (3.44)

where we use (3.30) to write
qx + `x
φx

= qxφx. (3.45)

The operators on the right-hand sides of (3.43) and (3.44) still differ. The coefficients

of the discrete derivative terms coincide and match L̃C , but those of the potential

term do not. Note that by using (3.29a) the potential coefficient of L̃C may be
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rewritten as

qx
2

(1− φx)2 +
px
2

(1− φx−1)2 = qx(1− φx) + px(1− φx−1) +
rx + `x

2
.

Moreover condition (3.29b) allows us to substitute

rx =
rx + `x

2
+
c

2
and `x =

rx + `x
2

− c

2
, (3.46)

into (3.43) and (3.44), respectively, giving

ΦxL
C,(1)
x f(x2i−1) = L̃C(Φxf(x2i−1)) +

c

2
Φxf(x2i−1),

ΦxL
C,(2)
x f(x2i) = L̃C(Φxf(x2i))−

c

2
Φxf(x2i).

Returning to the function Σ̃x(η), (3.41) becomes

LCΣ̃x(η) =
n∑
i=1

(
L̃Cx2i−1

Σ̃x(η) +
c

2
Σ̃x(η)

)
+

n∑
i=1

(
L̃Cx2iΣ̃x(η)− c

2
Σ̃x(η)

)
.

The c terms cancel leaving the claimed formula in terms of a single generator.

The duality of lemma 6 allows us (via (3.11)) to recast the Kolmogorov equation

for the modified empty interval probabilities as an ODE built from L̃C . We check

that the scalar Pfaffian is a solution to this ODE system.

Lemma 7. For all η0 ∈ {0, 1}Z, for all n ≥ 1, x = (x1, . . . , x2n) with x1 ≤ · · · ≤ x2n

and t ≥ 0

Eη0
[
Σ̃x(ηt)

]
= Pf(K̃(2n)(t,x)),

where K̃(2n)(t,x) is the anti-symmetric 2n × 2n matrix with entries K̃t(xi, xj) for

i < j, defined by (3.31).

Proof of lemma 7. The result is the analogue for BCRW of lemma 2 and we fol-

low the same proof outline. For n ≥ 1 the modified empty interval probability

u(2n)(t,x) = Eη0
[
Σ̃x(ηt)

]
solves

(ODE)C2n


∂tu

(2n)(t,x) =
∑2n

i=1 L̃
C
xiu

(2n)(t,x) on [0,∞)× V2n,

u(2n)(t,x) = u(2n−2)(t,xi,i+1) on [0,∞)× ∂V (i)
2n ,

u(2n)(0,x) = Σ̃x(η0) on V2n,

with u(0) = 1. The only step to check is the boundary condition. Note that Φx
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may be pulled outside the expectation, u(2n)(t,x) = ΦxEη0 [Σx(ηt)]. The boundary

condition for u(2n)(t,x) follows from the analogous boundary conditions for the

empty interval probability Eη0 [Σx(ηt)], which we have already seen in lemma 2, and

for Φx. The boundary condition for Φx is immediate from its product form (3.39).

Note that Φx is not bounded, however by (3.29a)

Φx ≤ (1 +M)
∑n
i=1(x2i−x2i−1)/2,

so u(2n)(t,x) has exponential growth of rate 1
2 ln(1 +M).

The infinite sequence of equations ((ODE)C2n : n = 1, 2, . . . ) are uniquely solvable,

within the class of continuously differentiable functions on [0,∞) × V2n that have

exponential growth of rate 1
2 ln(1 + M) (see appendix A for details). In fact for

convenience we note that each equation (ODE)C2n has a unique solution in the larger

space of functions with exponential growth of rate n
2 ln(1 + M) ≥ 1

2 ln(1 + M). It

remains to check that the sequence of scalar Pfaffians (Pf(K̃(2n)(t,x)) : n = 1, 2, . . . )

is a solution with the claimed exponential growth. The one-particle generator L̃C has

the same form as the generator LA for ARWI, and as in the analogous ARWI result,

lemma 4, the verification of the differential equation passes through unchanged from

the proof of lemma 2. The boundary condition check also translates directly, as all

the proof relies on is the Pfaffian structure and the n = 1 boundary condition

K̃t(x, y) = 1 for x = y. For the initial conditions, fix x ∈ V2n and choose x0 ≤ x1.

The entries of the Pfaffian at time zero can be rewritten as

K̃0(xi, xj) = lim
θ↓0

(−θ)η0[x0,xj)

(−θ)η0[x0,xi)

∏xj−1
z=x0

φz∏xi−1
z=x0

φz
.

Applying proposition 9 to the pre-limiting θ > 0 entries, and then letting θ ↓ 0,

gives

Pf(K̃(2n)(0,x)) =
n∏
i=1

1(η0[x0, x2i−1) = 0)

1(η0[x0, x2i) = 0)

∏x2i−1−1
z=x0

φz∏x2i−1
z=x0

φz
= Σ̃x(η0).

Finally, by (3.29a) and the penultimate bound of (2.6), the Pfaffian satisfies

|Pf(K̃(2n)(t,x))| ≤ (1 +M)n(xn−x1)/2(2n)n/2, for x ∈ V2n,

so has exponential growth of rate n
2 ln(1 + M). (It is this bound that dictates the

above choice of function space.) The claimed equality on V2n follows by uniqueness.

Finally, the result extends to V 2n by the standard method of removing coincidental

points.
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Proof of theorem 3. It remains to recover the particle intensities from the modified

empty interval probabilities. Pulling the modification factor Φx outside the expec-

tation, lemma 7 gives

Eη0
[
Σ̃x(ηt)

]
= ΦxEη0 [Σx(ηt)] = Pf(K̃(2n)(t,x)).

Dividing both sides through by Φx, the empty interval probabilities are given by

Eη0 [Σx(ηt)] = Pf(K̃(2n)(t,x))Φ−1
x .

The outline is to pass the Φx factor onto the kernel, apply derivatives to obtain

intensities, and then pull the remaining φx terms outside the Pfaffian. Fix x and

choose x0 ≤ x1. The factor Φ−1
x may be written as the determinant of a 2n × 2n

diagonal matrix B with entries

B2i−1,2i−1 =

x2i−1−1∏
z=x0

φz, B2i,2i =

x2i−1∏
z=x0

1

φz
.

Applying the conjugation formula (proposition 3) to BT K̃(2n)(t,x)B, the empty

interval probabilities are themselves Pfaffian

Eη0 [Σx(ηt)] = Pf(K̂(2n)(t,x)),

where K̂(2n)(t,x) is the anti-symmetric 2n× 2n matrix in 2× 2 block form with the

general (2i− 1, 2i)× (2j − 1, 2j) block, for i < j, given by
x2i−1−1∏
z=x0

φz
x2j−1−1∏
z=x0

φz K̃t(x2i−1, x2j−1)
x2j−1∏
z=x2i−1

1
φz
K̃t(x2i−1, x2j)

x2j−1−1∏
z=x2i

φz K̃t(x2i, x2j−1)
x2i−1∏
z=x0

1
φz

x2j−1∏
z=x0

1
φz
K̃t(x2i, x2j)

 ,

and
(
K̂(2n)(t,x)

)
2i−1,2i

=
x2i−1∏
z=x2i−1

1
φz
K̃t(x2i−1, x2i). As in the proof of theorem 1, the

particle intensities are recovered by applying discrete derivatives and evaluations to

the empty interval probabilities. These operations may be passed onto the entries,

preserving the 2 × 2 block structure and leading to the kernel K(1)(x, y) for the

64



particle intensities, given, for x0 ≤ x < y, by−
x−1∏
z=x0

φz
y−1∏
z=x0

φz K̃t(x, y) −D+
y

(
y−1∏
z=x

1
φz
K̃t(x, y)

)
−D+

x

(
y−1∏
z=x

φz K̃t(x, y)

)
−D+

xD
+
y

(
x−1∏
z=x0

1
φz

y−1∏
z=x0

1
φz
K̃t(x, y)

)
 ,

and K
(1)
12 (x, x) = −D+

y

(
y−1∏
z=x

1
φz
K̃t(x, y)

) ∣∣
y=x

. We now perform manipulations to

obtain the desired kernel K̃. First we expand the discrete derivatives to give

K
(1)
11 (x, y) = −

x−1∏
z=x0

φz
y−1∏
z=x0

φz K̃t(x, y);

K
(1)
12 (x, y) = −

∏y−1
z=x

1
φz

(
1
φy
K̃t(x, y + 1)− K̃t(x, y)

)
;

K
(1)
21 (x, y) = −

∏y−1
z=x φz

(
1
φx
K̃t(x+ 1, y)− K̃t(x, y)

)
;

K
(1)
22 (x, y) = −

x−1∏
z=x0

1
φz

y−1∏
z=x0

1
φz

(
1

φxφy
K̃t(x+ 1, y + 1)

− 1
φx
K̃t(x+ 1, y)− 1

φy
K̃t(x, y + 1) + K̃t(x, y)

)
,

and K
(1)
12 (x, x) = 1− 1

φx
K̃t(x, x+1). We can now identify K(1) as an inhomogeneous

shift, as in proposition 12 part 2, of the equivalent kernel K(2) with the function

f(x) =
∏x−1
z=x0

φz, given, for x < y, by

K
(2)
11 (x, y) = −K̃t(x, y);

K
(2)
12 (x, y) = − 1

φy
K̃t(x, y + 1) + K̃t(x, y);

K
(2)
21 (x, y) = − 1

φx
K̃t(x+ 1, y) + K̃t(x, y);

K
(2)
22 (x, y) = − 1

φxφy
K̃t(x+ 1, y + 1)

+ 1
φx
K̃t(x+ 1, y) + 1

φy
K̃t(x, y + 1)− K̃t(x, y),

and K
(2)
12 (x, x) = 1− 1

φx
K̃t(x, x+1). We remark that transforming from K(1) to K(2)

is achieved by conjugating with a determinant one diagonal matrix B̂ with entries

B̂2i−1,2i−1 =

x2i−1−1∏
z=x0

φz, B̂2i,2i =

x2i−1−1∏
z=x0

1

φz
.

Note that the matrix B̂ is the same as B under the evaluations to derive particle

intensities, and in this way, the transformation can be interpreted as undoing the

original conjugation by B after obtaining intensities. Continuing, K(2) is itself a

transformation of a simpler kernel. Indeed proposition 12 part 3 (with c = 1)
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implies that an equivalent alternative kernel is given, for x < y, by

K(3)(x, y) = −

(
K̃t(x, y) 1

φy
K̃t(x, y + 1)

1
φx
K̃t(x+ 1, y) 1

φxφy
K̃t(x+ 1, y + 1)

)
,

and K
(3)
12 (x, x) = 1− 1

φx
K̃t(x, x+1). The φx factors may be tidied up by applying an

inhomogeneous shift (proposition 12 part 2) with f(x) = 1/
√
φx, giving the kernel

K(4)(x, y) = − 1√
φxφy

(
K̃t(x, y) K̃t(x, y + 1)

K̃t(x+ 1, y) K̃t(x+ 1, y + 1)

)
,

and K
(4)
12 (x, x) = 1− 1

φx
K̃t(x, x+ 1). Finally, the desired kernel K̃ is obtained from

K(4) by subtracting the first row and column from the second (proposition 12 part

3 with c = −1) in order to form discrete derivatives of K̃t(x, y).

Remark 12. In (3.39) we chose the modification factor Φx : V2n → R for the empty

interval indicators to be a product of φx factors, defined in (3.30). We show that

these choices are natural for our purposes. For the modification to be useful, the

ODEs for the modified probabilities should have Pfaffian solutions. In particular the

modified probabilities, and hence Φx itself, should solve the appropriate boundary

conditions, namely

Φx = Φxi,i+1 for x ∈ ∂V (i)
2n , (3.47)

with Φ(x,y) = 1 if x = y. Moreover the differential equation for the ODEs should

be in terms of a single one-particle generator. As a first step, the action of the

particle generator LC on Σ̃x(η) should decompose into a sum of (at this stage not

even necessarily the same) one-particle generators,
∑2n

i=1 L
(i)
xi Σ̃x(η). This occurs

provided
Φx

Φxi+
and

Φx

Φxi−
are dependent only on xi, (3.48)

for each 1 ≤ i ≤ 2n, where xi± is the vector x with the i-th variable incre-

mented by ±1. It can be proved by induction on n that (3.47) and (3.48) im-

ply Φx has the product form (3.39) for some φ : Z → R. The question is now

when do the one-particle generators L
(i)
x coincide. Each generator has the form

L
(i)
x f(x) = α

(i)
x D+f(x) + β

(i)
x D−f(x) + γ

(i)
x f(x). Provided Φx is of product form,

the discrete derivative coefficients coincide provided (3.42) and (3.45) are satisfied,

which is equivalent to condition (3.29a) and definition (3.30) for φx. For the po-

tential term, constant multiples may be redistributed evenly amongst the L
(i)
xi , each

receiving 1
2n

∑2n
i=1 γ

(i)
xi f(x). Hence to obtain a single one-particle generator, the po-
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tential term coefficients must not differ by more than a constant. Provided (3.29a)

holds, this condition is equivalent to (3.29b). To summarise, within this framework,

we do not believe that there are more general choices for Φx, that is, the conditions

(3.29) characterise the richest BCRW structure.

Example 9. We consider a simple example of BCRW. Consider coalescing symmet-

ric random walks on Z with homogeneous branching rates and product Bernoulli

initial condition. This is the case qx = px = 1, `x = rx = b and η0(x) is Bernoulli(λ)

for all x ∈ Z and some b > 0, λ ∈ [0, 1]. The modification factor is given by

φ =
√

1 + b. The corresponding one-particle generator is L̃C = φ∆− (1−φ)2. The-

orem 3 gives that the particle positions of BCRW with these rates at time t ≥ 0 is

Pfaffian with kernel (3.32), built from the function K̃t(x, y) solving
∂tK̃t(x, y) = φ(∆x + ∆y)K̃t(x, y)− 2(1− φ)2K̃t(x, y) for x < y, t > 0,

K̃t(x, x) = 1 for all x, t > 0,

K̃0(x, y) = (φ(1− λ))y−x for x ≤ y.

Note that the ODE (3.25) for symmetric ARWI in example 8 has the same form.

In particular, K̃t(x, y) may be expressed explicitly in terms of the discrete two-

dimensional heat kernel

K̃t(x, y) = 1+e−2(1−φ)2t
∑

w1,w2∈Z
pt(x−w1, y−w2)

(
(φ(1− λ))|w2−w1| − 1

)
sgn(w2−w1)

− 2(1− φ)2

∫ t

0

∑
w1,w2∈Z

ps(x− w1, y − w2) sgn(w2 − w1) ds.

The aforementioned ODE congruence forms the basis of a relation between BCRW

and ARWI, explored further in section 3.3.3. We return to this example in chapter 4,

where we investigate continuum scaling limits.

Remark 13. Upon setting the branching rates `x and rx to zero for all x ∈ Z, the

core model of coalescing random walks with rates (px, qx > 0 : x ∈ Z) is recovered.

3.3.3 Relation between branching and immigration models

A relation between the one-dimensional distributions of ARWI and BCRW, under

particular initial conditions, is derived. More precisely, we show that at a given time

the distribution of BCRW particles suitably thinned is equal to the superposition of

ARWI with an independent Bernoulli system. The basis for this connection is the

observation that the defining ODEs for the kernel functions of BCRW and ARWI
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have the same form, and can be shown to coincide for carefully chosen rates and

initial conditions.

According to theorem 3, the kernel K̃ for BCRW with rates (qx, px, `x, rx ≥ 0 :

x ∈ Z) satisfying (3.29) is given in terms of K̃t(x, y), characterised by an ODE built

from the operator

L̃Cf(x) = qxφxD
+f(x) + pxφx−1D

−f(x)−
(qx

2
(1− φx)2 +

px
2

(1− φx−1)2
)
f(x),

where φx is given by (3.30). Note that the coefficient of the potential term is non-

positive. On the other hand, theorem 2 gives the kernel K for ARWI with rates

(qx, px,mx ≥ 0 : x ∈ Z) in terms of Kt(x, y), determined by an ODE with operator

LAf(x) = qxD
+f(x) + pxD

−f(x)− 2mxf(x).

The key observation is that the operators have the same form and coincide for a

particular choice of rates. Indeed the one-particle generator for ARWI with rates(
qxφx, pxφx−1,

qx
4 (1− φx)2 + px

4 (1− φx−1)2 : x ∈ Z
)

is L̃C . More precisely, under

this choice, Kt(x, y) solves
∂tKt(x, y) = (L̃Cx + L̃Cy )Kt(x, y) for x < y, t > 0,

Kt(x, x) = 1 for all x, t > 0,

K0(x, y) = (−1)η0[x,y) for x ≤ y.

The BCRW kernel function K̃t(x, y) solves
∂tK̃t(x, y) = (L̃Cx + L̃Cy )K̃t(x, y) for x < y, t > 0,

K̃t(x, x) = 1 for all x, t > 0,

K̃0(x, y) = 1 (η0[x, y) = 0)
∏y−1
z=x φz for x ≤ y.

If we can match the initial conditions then the ODEs coincide and we have a relation

between the kernels for BCRW and ARWI. Recall that theorems 2 and 3 hold for

certain random initial conditions, in particular when (η0(x) : x ∈ Z) are indepen-

dent. Fix θx ∈ [0, 1] for x ∈ Z and take η0(x) to be independent Bernoulli(θx). The

corresponding initial conditions are given, for Kt(x, y), by

K0(x, y) = E

[
y−1∏
z=x

(−1)η0(z)

]
=

y−1∏
z=x

(1− 2θz),
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and, for K̃t(x, y), by

K̃0(x, y) = E

[
y−1∏
z=x

1(η0(z) = 0)φz

]
=

y−1∏
z=x

(1− θz)φz.

The expressions coincide upon taking the initial condition for ARWI to be in-

dependent Bernoulli(θ′x) with θ′x = 1
2 (1− φx(1− θx)). We impose the condition

θx ≥ 1 − 1/φx, so that θ′x ∈ [0, 1]. Note that this condition guarantees K̃t(x, y)

is uniformly bounded, see remark 10. We henceforth consider BCRW with rates

(qx, px, `x, rx ≥ 0 : x ∈ Z) satisfying (3.29) and initial condition independent

Bernoulli(θx) with θx ≥ 1 − 1/φx, and ARWI with rates (qxφx, pxφx−1,
qx
2 (1 −

φx)2 + px
2 (1 − φx−1)2 : x ∈ Z) and initial condition independent Bernoulli(θ′x)

with θ′x = 1
2 (1− φx(1− θx)), both at a fixed time t ≥ 0. We have shown that

K̃t(x, y) = Kt(x, y).

In order to develop the connection it is convenient to work with intensities. This

is also justified as at a fixed time the ARWI and BCRW kernels are both locally

bounded, so by proposition 13 the processes are determined by their intensities. The

outline is to expand the BCRW intensities and identify the resulting expressions as

intensities for a point process involving ARWI. By theorem 3 the particle intensity

for BCRW at x = (x1, . . . , xn) with x1 < · · · < xn is

ρBCRWt(x) =

n∏
i=1

1

φxi
Pf
(
K̂(2n)(t,x)

)
,

where K̂(2n)(t,x) is the anti-symmetric 2n× 2n matrix with 2× 2 blocks given, for

i < j, by

−

(
K̃t(xi, xj) D+

2 K̃t(xi, xj)

D+
1 K̃t(xi, xj) D+

1 D
+
2 K̃t(xi, xj)

)
,

and, for i = j, by (
0 φxi − K̃t(xi, xi + 1)

K̃t(xi, xi + 1)− φxi 0

)
.

The term
∏n
i=1

1
φxi

comes from pulling the factors 1/
√
φxφy of K̃ outside the in-

tensity Pfaffian, for example by conjugating with a diagonal matrix B with entries

B2i−1,2i−1 = B2i,2i =
√
φxi . Upon substituting K̃t(x, y) = Kt(x, y), the upper-

triangular blocks of K̂(2n)(t,x) are given exactly in terms of the ARWI kernel (3.20)

by 2K(xi, xj). Collecting the diagonal-block discrepancies into a separate matrix
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B(x), the particle intensity of BCRW is given by

ρBCRWt(x) =

n∏
i=1

2

φxi
Pf

(
K(x) +

1

2
B(x)

)
,

where B(x) is a block-diagonal matrix generated by
(

0 φxi−1

1−φxi 0

)
. By proposi-

tion 17 we may rewrite the right-hand side in terms of the intensity for the α-

superposition of ARWI and Y , a system of independent Bernoulli(λ(x)) random

variables with rates λ(x) ∈ [0, 1] to be determined, namely

ρBCRWt(x) =

n∏
i=1

2

φxi

1

1− (2− α)λ(xi)
ρ(ARWIt +Y )α(x).

In particular, the parameter µ(x) of proposition 17 is given by

µ(x) =
λ(x)

1− (2− α)λ(x)
=
φx − 1

2
.

Note that µ(x) ∈ [0, 1
2(
√

1 +M − 1)] by (3.29a), so that 1− (2−α)λ(x) 6= 0 and we

are justified in applying (2.14). Solving for λ(x) gives

λ(x) =
φx − 1

(φx − 1)(2− α) + 2
,

and we note that λ(x) ∈ [0, 1] for all φx ≥ 1 and α ∈ [0, 1]. The remaining product

is given by

n∏
i=1

2

φxi

1

1− (2− α)λ(xi)
=

n∏
i=1

(φxi − 1)(2− α) + 2

φxi
≥ 1,

with the inequality holding for all φx ≥ 1 and α ∈ [0, 1]. With proposition 16 in

mind, we interpret an intensity multiplied by a product as inhomogeneous thinning.

Dividing through by the product, so it takes values in [0, 1], we arrive at

n∏
i=1

φxi
(φxi − 1)(2− α) + 2

ρBCRWt(x) = ρ(ARWIt +Y )α(x). (3.49)

We have proved the following result.

Theorem 4. Fix (qx, px, `x, rx ≥ 0 : x ∈ Z) satisfying (3.29), θx ∈ [1 − 1/φx, 1],

where φx is defined by (3.30), and α ∈ [0, 1]. Fix t ≥ 0 and consider the following

independent point processes on Z:
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• BCRWt, BCRW at time t with rates (qx, px, `x, rx : x ∈ Z) and initial condition

independent Bernoulli(θx);

• ARWIt, ARWI at time t with rates(
qxφx, pxφx−1,

qx
4

(1− φx)2 +
px
4

(1− φx−1)2 : x ∈ Z
)
,

and initial condition independent Bernoulli(1
2(1− φx(1− θx));

• Y , a system of independent Bernoulli
(

φx−1
(φx−1)(2−α)+2

)
random variables.

Then the law of BCRWt with inhomogeneous thinning at rate φx
(φx−1)(2−α)+2 is equal

to the law of the α-superposition of ARWIt and Y . In particular (3.49) holds for

the intensities.

As a consequence, we recover the well known thinning relation between CRW and

ARW. By taking branching rates `x = rx = 0 for x ∈ Z, we obtain CRW. In this

case φx = 1 and the ARWI immigration rate is zero, giving ARW. Moreover the

Bernoulli rate for Y is zero, rendering the superposition redundant (since any point

process is unchanged under α-superposition with the empty point process). Finally

the thinning factor simplifies to 1/2, both for the coalescing system and the initial

condition of the annihilating system.

Corollary 1. Fix θx ∈ [0, 1] for x ∈ Z. The law of thinned CRW at time t ≥ 0

with independent Bernoulli(θx) initial conditions is equal to the law of ARW at time

t with independent Bernoulli(θx/2) initial conditions.
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Chapter 4

Continuum scaling limits

We investigate continuum point processes by taking scaling limits of the discrete

models developed in chapter 3. The limits remain Pfaffian and each kernel is built

from the solution to a PDE and its derivatives. The key tool is a kernel continuity

result, giving that Pfaffian point processes converge provided their corresponding

kernels converge in an appropriate sense. For an interacting particle system this cor-

responds to convergence (of the one-dimensional marginals of the scaled processes)

at a single (scaled) time. Each discrete kernel in chapter 3 is defined in terms of

the solution to an ODE, and the kernel convergence amounts to checking uniform

convergence of lattice approximations to a two-dimensional continuum PDE, at a

fixed t > 0, along with their first and second derivatives.

We begin in section 4.1 with the convergence lemma for Pfaffian point processes.

We then consider in turn the models of chapter 3, developing the limits of some

spatially homogeneous models, namely with homogeneous rates and independent

Bernoulli initial conditions. In particular, the corresponding limit PDEs may be

solved explicitly in terms Gaussian integrals. For CARW the PDE convergence is

shown to boil down to suitable convergence of the initial conditions and in section 4.2

we prove convergence of the scaled CARW models. The estimates do not apply to

the ARWI and BCRW models, however we can still read off and solve the limit

PDEs, characterising the limit point processes. The ARWI limits are considered in

section 4.3, where we also consider the large-time limit. In section 4.4 we consider

the more delicate case of BCRW, deriving the limit and obtaining the continuum

analogue for scaling limits of the relation in section 3.3.3 between ARWI and BCRW.

Note that convergence results should hold for the full temporal discrete processes,

but so far we have only described their one-dimensional marginals. We expect that in
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each case there are underlying continuum stochastic processes with one-dimensional

marginals given by the point process scaling limits we obtain. In chapter 5 we move

in this direction by extending the Pfaffian structure to multiple times for ARWI.

4.1 Convergence of Pfaffian point processes via kernels

A kernel continuity result for sequences of Pfaffian point processes on εZ is proved,

giving that convergence to a continuum point process follows from convergence of

suitably scaled kernels. The scaling is ε−1, reflecting that the mean number of

particles per unit interval must converge.

Lemma 8. For ε > 0, let X(ε) be a Pfaffian point process on εZ with kernel K(ε).

Suppose that

sup
ε>0
‖ε−1K(ε)‖∞ = sup

ε>0
max

i,j∈{1,2}
sup

x,y∈εZ,x≤y
ε−1|K(ε)

ij (x, y)| <∞, (4.1)

and

lim
ε↓0

ε−1K
(ε)
ij (xε, yε) = Kij(x, y), for i, j ∈ {1, 2}, (4.2)

when (xε, yε)→ (x, y) with x < y, or when xε = yε → y = x,

for some continuum kernel K : R2 → R2×2. Then the point processes converge

X(ε) → X in distribution as ε ↓ 0, on the space MLFP(R) equipped with the topology

of vague convergence, and the limit X is a Pfaffian point process with kernel K.

For each discrete model of chapter 3, the limiting kernel K(x, y) is discontinuous at

x = y, leading to the careful point-wise convergence condition in the statement.

Proof of lemma 8. We follow the standard two-step proof for convergence in dis-

tribution: establish tightness and uniqueness of limits. The method hinges on the

subsequence principle, asserting that convergence holds if and only if there is a limit

such that any subsequence has a further subsequence, convergent to said limit. By

Prohorov’s theorem, tightness is equivalent to relative compactness in distribution,

meaning that any subsequence of (X(ε) : ε > 0) contains a further convergent sub-

sequence. It then remains, by the subsequence principle, to establish a unique limit

for convergent sequences. A short introduction to the vague topology may be found

at the end of section 2.2.2. We use Kallenberg [32] as the standard reference for

probability theory.
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Tightness follows from the fact that the first moments of X(ε) may be uniformly

bounded. Indeed to establish tightness of (X(ε) : ε > 0) as elements of MLFP(R),

one must show that for any β > 0 there exists a compact set U ⊂ MLFP(R) such

that P
[
X(ε) /∈ U

]
≤ β for all ε > 0. For γ > 0 define the set Uγ by

Uγ =

{
µ ∈MLFP(R) : µ ([−2n, 2n]) ≤ 4n

γ
for all n ∈ N

}
.

Note that Uγ is relatively compact in the vague topology, since supµ∈Uγ µf <∞ for

all positive continuous f : R→ R with compact support ([32], p. 564). The closure

cl (Uγ) ⊂MLFP(R) is compact and the union bound and Markov inequality give

P
[
X(ε) /∈ cl (Uγ)

]
≤ P

[
X(ε) /∈ Uγ

]
≤
∞∑
n=1

P
[
X(ε)([−2n, 2n]) >

4n

γ

]

≤
∞∑
n=1

γ

4n
E
[
X(ε)([−2n, 2n])

]
.

We now bound the first moments uniformly in ε. Fix a < b, then writing in terms

of the one-point intensity

E
[
X(ε)([a, b])

]
=

∑
x∈εZ∩[a,b]

ρ(1)(x) =
∑
x∈εZ

K
(ε)
12 (x, x)1(x ∈ [a, b]).

Fix M > 0 such that supε>0 ‖ε−1K(ε)‖∞ < M . We may bound the first moment

E
[
X(ε)([a, b])

]
=

∫
R
ε−1K

(ε)
12

(
ε
⌊
xε−1

⌋
, ε
⌊
xε−1

⌋)
1
(
ε
⌊
xε−1

⌋
∈ [a, b]

)
dx

≤M
∫
R

1
(
ε
⌊
xε−1

⌋
∈ [a, b]

)
dx

≤M(b− a+ ε).

Since we are interested in the limit ε ↓ 0 we may assume ε ≤ 1. Substituting in gives

the following uniform bound

P
[
X(ε) /∈ cl (Uγ)

]
≤ γM

∞∑
n=1

2n+1 + ε

4n
≤ γM

(
2 +

1

3

)
.

The right-hand side can be made arbitrarily small by taking γ sufficiently small and

we have proved tightness.
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Take an arbitrary subsequence of X(ε) and consider by Prohorov’s theorem ([32],

p. 309) a further convergent subsequence, for convenience also denoted by X(ε). The

spaceMLFP(R) equipped with the topology of vague convergence is Polish ([32], p.

564) and hence so too is the set of probability measures onMLFP(R) equipped with

the topology of weak convergence. In particular the latter space is closed, whereby

the subsequence X(ε) is convergent to a limit law onMLFP(R), which we denote by

Y . It remains to show that Y is uniquely determined and has the same distribution

as X. By proposition 13 the law of X is determined by virtue of it being a Pfaffian

point process with bounded kernel K, where boundedness follows from assumptions

(4.1) and (4.2)

sup
x,y∈R

max
i,j∈{1,2}

|Kij(x, y)| = sup
x,y∈R

lim
ε↓0

max
i,j∈{1,2}

ε−1|K(ε)
ij (x, y)| ≤ lim

ε↓0
‖ε−1K(ε)‖∞ <∞.

It therefore suffices to show that Y is Pfaffian with kernel K. This is ultimately

achieved by identifying the intensities, but we must first show that Y concentrates on

the subset of simple measures M0(R) ⊂ MLFP(R). This must be checked because

M0(R) is not a closed subset ofMLFP(R). To this end, we repeat the above moment

calculation for the second factorial moment. Using proposition 11 to introduce

intensities

E
[
bX(ε)([a, b])c2

]
=

∑
x,y∈εZ∩[a,b]

ρ(2)(x, y) =
∑

x,y∈εZ∩[a,b]

Pf
(
K(ε)

(
(x, y)

))
.

Writing as an integral and moving the ε−1 factors onto the kernel (proposition 7)

E
[
bX(ε)([a, b])c2

]
=∫

R2

Pf
(
ε−1K(ε)

( (
ε
⌊
xε−1

⌋
, ε
⌊
yε−1

⌋) ))
1
(
ε
⌊
xε−1

⌋
, ε
⌊
yε−1

⌋
∈ [a, b]

)
dxdy.

Finally, the kernel bound and (2.6) give

E
[
bX(ε)([a, b])c2

]
≤ 16M2(b− a+ ε)2. (4.3)

We show that the bound also holds for the limit law

E [bY ([a, b])c2] ≤ E
[
bX(ε)([a, b])c2

]
.

Firstly, note that X(ε) → Y is equivalent to convergence in distribution of the

random variables X(ε)f → Y f for all continuous f : R → [0,∞) with compact
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support, where X(ε)f =
∫
R f(x)X(ε)(dx). Define functions h : R → R and f :

R → [0,∞) by h(x) = x(x − 1) and f(x) = 1(x ∈ [a, b]). For m, n ∈ N introduce

continuous compactly supported approximations hm : R → R and fn : R → [0,∞),

satisfying hm(x)↗ h(x) and fn(x)↗ f(x), by

hm(x) =

h(x)1(x ∈ [−m,m]) if x ∈ (−∞,−m− 1] ∪ [−m,m] ∪ [m+ 1,∞),

linear interpolation if x ∈ [−m− 1,−m] ∪ [m,m+ 1],

fn(x) =

1(x ∈ [a+ 1/n, b− 1/n]) if x ∈ [−∞, a] ∪ [a+ 1/n, b− 1/n] ∪ [b,∞),

linear interpolation if x ∈ [a, a+ 1/n] ∪ [b− 1/n, b].

Noting that h(x) ≤ h(z) for z ∈ N and 0 ≤ x ≤ z

E
[
hm

(
X(ε)fn

)]
≤ E

[
h
(
X(ε)fn

)]
≤ E

[
h
(
X(ε)f

)]
= E

[
bX(ε)([a, b])c2

]
.

Taking limits in ε, the aforementioned convergence in distribution gives

E [hm(Y fn)] ≤ E
[
bX(ε)([a, b])c2

]
.

It remains to take limits in n and m. The limit in n may be moved onto Y fn by

the dominated convergence theorem and continuity of hm

lim
n→∞

E [hm(Y fn)] = E
[
hm

(
lim
n→∞

Y fn

)]
.

The monotone convergence theorem guarantees that limn→∞ Y fn = Y f almost

surely. Moreover, for the limit in m, the same theorem facilitates the exchange of

limit and expectation

lim
m→∞

E [hm(Y f)] = E
[

lim
m→∞

hm(Y f)
]

= E [h(Y f)] = E [bY ([a, b])c2] .

Pulling everything together, we arrive at the claimed inequality

E [bY ([a, b])c2] = lim
m→∞

lim
n→∞

E [hm(Y fn)] ≤ E
[
bX(ε)([a, b])c2

]
.

Combining with (4.3) and taking limits in ε, we obtain the uniform bound

E [bY ([a, b])c2] ≤ 16M2(b− a)2.

76



Finally, the simplicity of Y follows from a routine covering argument

P [Y ({x}) ≥ 2, for some x ∈ [−L,L]] ≤
Lm∑

i=−Lm
P
[
Y

([
i

m
,
i+ 1

m

])
≥ 2

]

=
Lm∑

i=−Lm

∞∑
k=2

P
[
Y

([
i

m
,
i+ 1

m

])
= k

]

≤
Lm∑

i=−Lm

∞∑
k=0

(k2 − k)P
[
Y

([
i

m
,
i+ 1

m

])
= k

]

=
Lm∑

i=−Lm
E
[⌊
Y

([
i

m
,
i+ 1

m

])⌋
2

]

≤ 16M2
Lm∑

i=−Lm
m−2 → 0 as m→∞.

We now turn to deriving the intensities for Y . Fix mutually disjoint inter-

vals A1, . . . , Ak ⊂ R and define the functional φk : MLFP(R) → R by φk(µ) =∏k
i=1 µ(Ai). The aim is to take limits in the expectations E

[
φk(X

(ε))
]
. Since the

functional φk is neither continuous nor bounded, convergence in distribution does

not allow us a priori to replace X(ε) by Y . However, note that any measure in

the discontinuity set of φk has a point mass at the boundary of some interval Ai.

Moreover the first moment bound for X(ε) passes to the limit

E [Y ([a, b])] ≤M(b− a),

so the discontinuity set is not charged by Y . (The bound can be proved as for

E [bY ([a, b])c2], replacing h by h(x) = x.) Hence, by the continuous mapping the-

orem ([32], p. 76), we have convergence in distribution of the random variables

φk(X
(ε)) → φk(Y ). In order to conclude the desired convergence of means, it suf-

fices to show that the family φk(X
(ε)) are uniformly integrable. Indeed Skorokhod’s

representation theorem guarantees existence of copies of the random variables, on

some abstract probability space, converging almost surely ([32], p. 79). These copies

are still uniformly integrable and Vitali’s convergence theorem implies convergence

in mean, and hence convergence of means ([46], p. 94). Since the mean is deter-

mined by the law, the result holds for the original random variables. We now check
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uniform integrability of φk(X
(ε)), which follows from the kernel bound. For L > 0

E
[
φk(X

(ε))1(φk(X
(ε)) ≥ L)

]
≤ 1

L
E
[
φk(X

(ε))2
]

=
1

L
E

[
k∏
i=1

X(ε)(Ai)
2

]
.

To incorporate intensities we write the expectation in terms of factorial moments

E

[
k∏
i=1

X(ε)(Ai)
2

]
= E

[
k∏
i=1

(
bX(ε)(Ai)c2 +X(ε)(Ai)

)]

=
2∑

r1=1

· · ·
2∑

rk=1

E

[
k∏
i=1

bX(ε)(Ai)cri

]
.

Suppose that Ai = [ai, bi]. Fix r1, . . . , rk and set R = r1 + · · · + rk, then we

develop the expectation by using proposition 11, moving constants onto the kernel

and applying (2.6)

E

[
k∏
i=1

bX(ε)(Ai)cri

]
=

∑
(x1,...,xR)∈

∏k
i=1 A

ri
i

Pf
(
K(ε)(xi, xj) : i, j ≤ R

)
=

∫
RR

Pf
(
ε−1K(ε)

(
ε
⌊
xiε
−1
⌋
, ε
⌊
xjε
−1
⌋)

: i, j ≤ R
)
·

· 1
(

(ε
⌊
x1ε
−1
⌋
, . . . , ε

⌊
xRε

−1
⌋
) ∈

k∏
i=1

Arii

)
dx1 . . . dxR

≤ (2M)RRR
k∏
i=1

(bi − ai + ε)ri .

The right-hand side can be bounded independently of r1, . . . , rk and uniformly in ε,

for example by

C(k,M, {Ai}ki=1) = (2 max{M, 1})2k(2k)2k max
1≤i≤k

{(bi − ai + 1)2} <∞.

Combining everything, we obtain the uniform bound

E
[
φk(X

(ε))1(φk(X
(ε)) ≥ L)

]
≤ C(k,M, {Ai}ki=1)2k

L
,

which can be made arbitrarily small by varying L. Uniform integrability of φk(X
(ε))

is established.
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We may now pass to the limit as ε ↓ 0 in the expectations

E[φk(X
(ε))]→ E [φk(Y )] .

On the other hand, the expectations are given in terms of intensities

E[φk(X
(ε))] =

∑
xi∈εZ∩Ai

ρ(k)(x1, . . . , xk)

=
∑
xi∈εZ

Pf
(
K(ε)(xi, xj) : i, j ≤ k

) k∏
i=1

1 (xi ∈ Ai)

=

∫
Rk

Pf
(
ε−1K(ε)(ε

⌊
xiε
−1
⌋
, ε
⌊
xjε
−1
⌋
) : i, j ≤ k

)
·

·
∏k
i=1 1

(
ε
⌊
xiε
−1
⌋
∈ Ai

)
dx1 . . . dxk

→
∫
∏k
i=1 Ai

Pf (K(xi, xj) : i, j ≤ k) dx1 . . . dxk.

The convergence of integrals follows from the assumptions. Indeed, (4.2) implies

that the integrand converges pointwise and (4.1) facilitates the exchange of limit

and integral by the dominated convergence theorem. Combining the two preceding

displays, uniqueness of limits for real sequences gives

E [φk(Y )] =

∫
∏k
i=1 Ai

Pf (K(xi, xj) : i, j ≤ k) dx1 . . . dxk.

This identifies the intensities of Y (see remark 2), proving it is a Pfaffian point

process with kernel K. This completes the proof.

A similar result holds if the approximating sequences of points processes are de-

fined on R. In this case, there is another parameter λ in which limits are taken. For

interacting particle systems the parameter is typically taken to be time, in order to

study the large-time asymptotics λ→∞.

Lemma 9. For λ > 0, let X(λ) be a Pfaffian point process on R with kernel K(λ).

Suppose that

sup
λ>1
‖K(λ)‖∞ = sup

λ>1
max

i,j∈{1,2}
sup
x,y∈R

|K(λ)
ij (x, y)| <∞, (4.4)

and

lim
λ→∞

K
(λ)
ij (x, y) = Kij(x, y), for i, j ∈ {1, 2}, (4.5)
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for some continuum kernel K : R2 → R2×2. Then the point processes converge

X(λ) → X in distribution as λ → ∞, on the space MLFP(R) equipped with the

topology of vague convergence, and the limit X is a Pfaffian point process with

kernel K.

Proof of lemma 9. The proof translates directly from lemma 8, since the discrete

point processes are already considered as elements of MLFP(R). The sums over εZ
are replaced by integrals over R.

4.2 Limits of coalescing and annihilating random walks

The scaling theory is developed for the CARW model of section 3.2 in the homo-

geneous symmetric case.

We begin by proving in section 4.2.1 convergence of the scaled CARW point

processes for symmetric rates and independent initial conditions. This gives a single

maximal continuum initial condition and the limit point processes are determined

by the particle rates. In section 4.2.2 we extend the results to independent initial

conditions that scale with the discrete models, giving a family of Poisson limit initial

conditions. We close the section by discussing some further models, in each case

identifying the limiting continuum kernel.

4.2.1 Symmetric rates and independent initial conditions

The underling process is the CARW model of section 3.2, denoted (Xt : t ≥ 0),

with rates px = qx = 1 for x ∈ Z and interaction parameter θ ∈ [0, 1]. We take

the initial condition to be independent Bernoulli(λ) for some λ ∈ (0, 1], noting that

λ = 0 would correspond to the empty process. The model consists of coalescing

and annihilating symmetric random walks and in particular the system is spatially

homogeneous. This homogeneity simplifies the proof of convergence and enables

explicit Gaussian expressions for the limit kernel. We now describe the scaled point

processes.

Diffusive scaling theory for individual random walks is well understood and in-

forms a suitable scaling for the associated interacting particle systems. For ε > 0

the scaled point process X(ε) on εZ is constructed by scaling diffusively

X(ε)(dx) = Xε−2t(ε
−1dx) on εZ. (4.6)
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Note that one could carry t through to the subscript of X(ε), however it is omitted

to avoid confusion, since the convergence here is at a single (scaled) time and we

do not claim existence of an underlying limiting stochastic process evolving in time.

The aim is to apply lemma 8 to prove convergence in distribution of X(ε). To prove

convergence of Pfaffian point processes on εZ to a point process on R, it suffices to

check suitable convergence of the kernel entries, namely conditions (4.1) and (4.2).

With this in mind, we take a closer look at the kernel K(ε) for X(ε).

By theorem 1 and remark 6 the underlying point process Xt at time t > 0 is

Pfaffian with kernel K(x, y), given, for x < y, by

K(x, y) =
−1

1 + θ

(
Kt(x, y) D+

2 Kt(x, y)

D+
1 Kt(x, y) D+

1 D
+
2 Kt(x, y)

)
,

and K12(x, x) = −1
1+θ D

+
2 Kt(x, x), where (Kt(x, y) : t ≥ 0, x, y ∈ Z, x < y) is the

unique bounded solution to following discrete heat equation on a wedge
∂tKt(x, y) = (∆

(1)
x + ∆

(1)
y )Kt(x, y) for x < y, t > 0,

Kt(x, x) = 1 for all x, t > 0,

K0(x, y) = (1− (1 + θ)λ)y−x for x ≤ y.

The one-particle generator, given by (3.7), is the central discrete Laplacian, defined

by

∆(ε)f(x) = ε−2 (f(x+ ε) + f(x− ε)− 2f(x)) , (4.7)

where f : Z → R and a subscript indicates in which variable the operator acts.

Consider now the scaled point process X(ε). We define a scaled kernel function

K
(ε)
t (x, y) by

K
(ε)
t (x, y) = Kε−2t(ε

−1x, ε−1y) for x, y ∈ εZ, (4.8)

and introduce the following discrete right derivative approximations on εZ2

D(1,0)
ε f(x, y) = ε−1 (f(x+ ε, y)− f(x, y)) ,

D(0,1)
ε f(x, y) = ε−1 (f(x, y + ε)− f(x, y)) ,

D(1,1)
ε f(x, y) = ε−2 (f(x+ ε, y + ε)− f(x+ ε, y)− f(x, y + ε) + f(x, y)) ,

for f : εZ2 → R. Since diffusive scaling is just a relabelling of the underlying process,

theorem 1 implies that X(ε) is a Pfaffian point process on εZ. The kernel K̃(ε)(x, y)
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may be expressed, for x < y, by

K̃(ε)(x, y) =
−1

1 + θ

(
K

(ε)
t (x, y) εD

(0,1)
ε K

(ε)
t (x, y)

εD
(1,0)
ε K

(ε)
t (x, y) ε2D

(1,1)
ε K

(ε)
t (x, y)

)
, (4.9)

and K̃
(ε)
12 (x, x) = −ε

1+θ D
(0,1)
ε K

(ε)
t (x, x). With lemma 8 in mind, we redistribute the

factors of ε (proposition (12), part (1)) to give an equivalent kernel K(ε)(x, y) for

X(ε)

K(ε)(x, y) =
−ε

1 + θ

(
K

(ε)
t (x, y) D

(0,1)
ε K

(ε)
t (x, y)

D
(1,0)
ε K

(ε)
t (x, y) D

(1,1)
ε K

(ε)
t (x, y)

)
, (4.10)

for x < y and K
(ε)
12 (x, x) = −ε

1+θ D
(0,1)
ε K

(ε)
t (x, x). The function (K

(ε)
t (x, y) : t ≥

0, x, y ∈ εZ, x < y) is also characterised as the unique bounded solution to the

discrete heat equation
∂tK

(ε)
t (x, y) = (∆

(ε)
x + ∆

(ε)
y )K

(ε)
t (x, y) for x < y, t > 0,

K
(ε)
t (x, x) = 1 for all x, t > 0,

K
(ε)
0 (x, y) = (1− (1 + θ)λ)ε

−1(y−x) for x ≤ y,

(4.11)

where uniqueness follows from appendix A as for the Z analogue. We prove the

following result.

Theorem 5. Fix t > 0, θ ∈ [0, 1] and λ ∈ (0, 1]. Then the scaled symmetric CARW

point process X(ε) with interaction parameter θ and initial condition independent

Bernoulli(λ) converges in distribution to Xc, the Pfaffian point process on R with

kernel Kc(x, y), given, for x < y, by

Kc(x, y) =
−1

1 + θ

(
K
c
t (x, y) ∂2K

c
t (x, y)

∂1K
c
t (x, y) ∂1∂2K

c
t (x, y)

)
, (4.12)

and K
c
12(x, x) = −1

1+θ ∂2K
c
t (x, x), where (K

c
t (x, y) : t ≥ 0, x, y ∈ R, x < y) is the

unique bounded solution to the heat equation
∂tK

c
t (x, y) = (∆x + ∆y)K

c
t (x, y) for x < y, t > 0,

K
c
t (x, x) = 1 for all x, t > 0,

K
c
0(x, y) = 0 for x ≤ y.

(4.13)

In particular, K
c
t (x, y) may be written explicitly, for x < y and t ≥ 0, as

K
c
t (x, y) = erfc

(
y − x
2
√

2t

)
. (4.14)
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Remark 14. Scaling the jump rates to px = qx = a for a > 0 may be realised as a

scaling t 7→ at in time. The one-particle generator for Brownian motion is 1
2∆ and,

as expected, computing the derivatives of K
c
t (x, y) explicitly and setting a = 1/2,

the kernel Kc coincides, at least when θ = 0 or 1, with the kernel for interacting

Brownian motions under a maximal entrance law [59]. In particular, for θ = 1 the

kernel Kc coincides with K̃ABM
t in (2.13) (after using proposition 12 to swap the

order of entries). This kernel is equivalent to the Pfaffian kernel for the positions

of real eigenvalues in the real Ginibre random matrix ensemble in the bulk limit as

N → ∞. For θ = 0, the kernel Kc coincides with K̃CBM
t (after swapping the order

of entries). See examples 4 and 6 for more details.

Remark 15. The parameter λ plays no role in the limit point process. For any

λ ∈ (0, 1] the expected number of particles for the scaled process at time zero in a

bounded set is proportional to ε−1 and in the limit the particles become dense in

the real line. In order to preserve an initial condition parameter in the limit, one

should scale λ with ε, in the form λ(ε)ε−1 → µ > 0. We develop this intuition in

section 4.2.2.

Proof of theorem 5. The desired convergence follows from lemma 8 provided we can

establish the boundedness and pointwise convergence conditions (4.1) and (4.2) for

the kernels ε−1K(ε) (converging to Kc), where ε−1K(ε) is given, for x < y, by

ε−1K(ε)(x, y) =
−1

1 + θ

(
K

(ε)
t (x, y) D

(0,1)
ε K

(ε)
t (x, y)

D
(1,0)
ε K

(ε)
t (x, y) D

(1,1)
ε K

(ε)
t (x, y)

)
, (4.15)

and ε−1K
(ε)
12 (x, x) = −1

1+θ D
(0,1)
ε K

(ε)
t (x, x). The outline is to prove uniform conver-

gence of the kernel functions K
(ε)
t to K

c
t , along with the first and second derivatives,

and show that this is enough to satisfy conditions (4.1) and (4.2). The first step is

to recast the wedge heat equations (4.11) and (4.13) on εZ2 and R2. This facilitates

standard PDE estimates for uniform convergence and explicit heat kernel solutions.

To wit, forcing Dirichlet boundary conditions on the wedge PDEs (by considering

auxiliary functions with 1 subtracted), then applying the method of images to write

as a full-space PDE (by anti-symmetrising the initial conditions in the line y = x),

we have, for x < y, the expressions

K
(ε)
t (x, y) = 1 + u

(ε)
t (x, y),

K
c
t (x, y) = 1 + ut(x, y),

(4.16)
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where (u
(ε)
t (x, y) : t ≥ 0, x, y ∈ εZ) solves the heat equation{

∂tu
(ε)
t (x, y) = (∆

(ε)
x + ∆

(ε)
y )u

(ε)
t (x, y) for x, y ∈ εZ, t > 0,

u
(ε)
0 (x, y) =

(
(1− (1 + θ)λ)ε

−1|y−x| − 1
)

sgn(y − x) for x, y ∈ Z,

and (ut(x, y) : t ≥ 0, x, y ∈ R) solves the heat equation{
∂tut(x, y) = (∆x + ∆y)ut(x, y) for x, y ∈ R, t > 0,

u0(x, y) = sgn(y − x) for x, y ∈ R.
(4.17)

The l∞ norm on εZ2 is defined by ‖f‖l∞ = supx,y∈εZ |f(x, y)| for f : εZ2 → R and

the L∞ norm on R2 by ‖f‖L∞ = supx,y∈R2 |f(x, y)| for f : R2 → R. We aim to

prove the uniform convergence

‖Dα
ε u

(ε)
t −Dαut‖l∞ → 0 for |α| ≤ 2, as ε ↓ 0. (4.18)

A sufficient condition for (4.18) in terms of convergence of the initial conditions is

derived in appendix B. In particular, for bounded initial conditions u
(ε)
0 and u0 it

suffices to check that

‖(u(ε)
0 − Pδu0) ? p

(ε)
t ‖l∞ → 0 as ε ↓ 0, (4.19)

where δ = εk for some k < 2, Pt is the continuum semigroup for the heat equation,

p
(ε)
t : εZ2 → R is the discrete heat kernel and the two-dimensional convolution on

εZ2 is defined for f, g : εZ2 → R by

(f ? g)(x, y) =
∑

w1,w2∈εZ
f(x− w1, y − w2)g(w1, w2). (4.20)

We return to prove that (4.19) holds for our particular initial conditions at the end.

Note the first estimate of lemma 14 in appendix B gives uniqueness of ut solving

(4.17) within the class of continuously differentiable in time and twice continuously

differentiable in space functions satisfying supt≥0 ‖ut(x, y)‖L∞ <∞. By (4.16) this

implies uniqueness for the limit wedge PDE (4.13).

We now show that conditions (4.1) and (4.2) follow from the uniform convergence

(4.18). Considering first the boundedness condition, note that

‖Dα
ε u

(ε)
t ‖l∞ ≤ ‖Dα

ε u
(ε)
t −Dαut‖l∞ + ‖Dαut‖l∞ .
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The first term on the right-hand side converges to zero by (4.18) and the second

term on the right-hand side is independent of ε and bounded, for example by the

first estimate in lemma 14. By (4.16) this gives a uniform bound on

max
i,j∈{1,2}

ε−1‖Dα
ε K

(ε)
ij (x, y)‖l∞ ,

and condition (4.1) is satisfied. Suppose now that xε, yε ∈ εZ and x, y ∈ R satisfy

xε → x and yε → y or xε = yε → y = x. Note that (4.18) implies
∣∣Dα

ε u
(ε)
t (xε, yε) −

Dαut(xε, yε)
∣∣→ 0 and continuity of Dαut gives

∣∣Dαut(xε, yε)−Dαut(x, y)
∣∣→ 0. By

the triangle inequality and (4.16) we find

lim
ε↓0

ε−1K
(ε)
ij (xε, yε) = Kij(x, y), for i, j ∈ {1, 2},

which is condition (4.2).

It remains to show that the limit (4.19) holds for the initial conditions

u
(ε)
0 (x, y) =

(
(1− (1 + θ)λ)ε

−1|y−x| − 1
)

sgn(y − x),

u0(x, y) = sgn(y − x),

which we note are bounded in [−1, 1]. Developing the convolution formula for the

solution to the heat equation (4.17) gives the following expression

ut(x, y) =

∫∫
R2

1

4πt
e−

(x−w1)
2

4t e−
(y−w2)

2

4t sgn(w1 − w2) dw1dw2 = erf

(
x− y
2
√

2t

)
.

(4.21)

The claimed solution to the wedge PDE (4.13) is recovered from (4.16)

K
c
t (x, y) = 1 + ut(x, y) = erfc

(
y − x
2
√

2t

)
.

For now we exclude the case θ = λ = 1, returning to it at the end. Condition (4.19)

demands control of

‖(u(ε)
0 − uδ) ? p

(ε)
t ‖l∞ = sup

x,y∈εZ

∣∣∣∣∣∣
∑

w1,w2∈εZ
(u

(ε)
0 − uδ)(x− w1, y − w2) p

(ε)
t (w1, w2)

∣∣∣∣∣∣ ,
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where δ = εk for some k < 2 and p
(ε)
t is the discrete heat kernel on εZ2, namely{

∂tp
(ε)
t (x, y) = (∆

(ε)
x + ∆

(ε)
y )p

(ε)
t (x, y) for x, y ∈ εZ, t > 0,

p
(ε)
0 (x, y) = 1(x = 0)1(y = 0) for x, y ∈ εZ.

Substituting in for u
(ε)
0 and uδ gives

|u(ε)
0 − uδ|(x, y) ≤ |1− (1 + θ)λ|ε

−1|y−x| + erfc

(
|y − x|
2
√

2δ

)
, (4.22)

for x, y ∈ εZ. The outline is to split ‖(u(ε)
0 − uδ) ? p

(ε)
t ‖l∞ into two parts and show

that each vanishes as ε ↓ 0. For γ > 0, we introduce complimentary sets

A1 = {w1, w2 ∈ R : |w2 − w1| ≤ εγ}, A2 = {w1, w2 ∈ R : |w2 − w1| > εγ},

and consider

‖(u(ε)
0 −uδ)?p

(ε)
t ‖l∞ ≤ ‖|u

(ε)
0 −uδ|1(A1)?p

(ε)
t ‖l∞+‖|u(ε)

0 −uδ|1(A2)?p
(ε)
t ‖l∞ . (4.23)

The intuition is that |u(ε)
0 − uδ| is small on A2 and bounded on the thin strip A1.

Noting that ‖u(ε)
0 − uδ‖l∞ ≤ 2

‖|u(ε)
0 −uδ|1(A1) ? p

(ε)
t ‖l∞ ≤ 2 sup

x,y∈εZ

 ∑
w1,w2∈εZ

1 ((x− w1, y − w2) ∈ A1) p
(ε)
t (w1, w2)

 .

The sum has a probabilistic interpretation, since p
(ε)
t is the transition function for

a continuous-time random walk
(
Z

(ε)
t : t ≥ 0

)
on εZ2. The components of

(
Z

(ε)
t :

t ≥ 0
)

are independent symmetric random walks on εZ with jump rate ε−2, and

Z
(ε)
0 = (0, 0). For fixed x, y ∈ εZ∑

w1,w2∈εZ
1 ((x− w1, y − w2) ∈ A1) p

(ε)
t (w1, w2) = P

[
Z

(ε)
t ∈ (x, y) +A1

]
,

where (x, y) + A1 = {w1, w2 ∈ R : |w2 − w1 − (y − x)| ≤ εγ}. The probability may

be expressed in terms of the one-dimensional process
(
Y

(ε)
t : t ≥ 0

)
, the difference

between the components of Z
(ε)
t , which evolves as a symmetric random walk on εZ

with jump rates 2ε−2 and Y
(ε)

0 = 0

P
[
Z

(ε)
t ∈ (x, y) +A1

]
= P

[∣∣∣Y (ε)
t − (y − x)

∣∣∣ ≤ εγ] .
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This probability is maximised by taking x = y and we arrive at the bound

‖|u(ε)
0 − uδ|1(A1) ? p

(ε)
t ‖l∞ ≤ P

[∣∣Y (ε)
t

∣∣ ≤ εγ] .
The following lemma finishes the proof that the A1 contribution vanishes as ε ↓ 0.

Lemma 10. In the standing notation

lim
ε↓0

P
[∣∣Y (ε)

t

∣∣ ≤ εγ] = 0.

Proof of lemma 10. The proof is an exercise in applying Donsker’s theorem to com-

pare with Brownian probabilities. We show that for β > 0 there exists ε0 > 0

such that P
[∣∣Y (ε)

t

∣∣ ≤ εγ] < β for ε < ε0. By Donsker’s theorem, the random walk(
Y

(ε)
t : t ≥ 0

)
converges in distribution to the Brownian motion

(
Bt : t ≥ 0

)
with dif-

fusion coefficient 2. The event depends on ε and in order to compare with Brownian

probabilities we consider an arbitrary strip width L > 0

P [|Bt| ≤ L] =

∫ L

−L

1

2
√
πt
e−

w2

4t dw ≤ CL√
t
.

Let L0 be such that P [|Bt| ≤ L] < β/2 for L < L0. For sufficiently small ε, we can

pick L ∈ (εγ , L0) then

P
[∣∣Y (ε)

t

∣∣ ≤ εγ] ≤ P
[∣∣Y (ε)

t

∣∣ ≤ L] .
The discontinuity set of the function w 7→ 1(|w| ≤ L) has Lebesgue measure zero

and is not charged by the law of Bt. Consequently, the probabilities converge and

there exists ε0 > 0 such that for ε < ε0∣∣∣P [∣∣Y (ε)
t

∣∣ ≤ L]− P [|Bt| ≤ L]
∣∣∣ < β

2
.

Summing with P [|Bt| ≤ L] and applying the triangle inequality gives the desired

bound.

Turning to the second term of (4.23)

‖|u(ε)
0 − uδ|1(A2) ? p

(ε)
t ‖l∞ ≤ ‖|u

(ε)
0 − uδ|1(A2)‖l∞‖1 ? p

(ε)
t ‖l∞ .
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Note that 1 ? p
(ε)
t = 1, then substituting in (4.22) we arrive at the bound

‖|u(ε)
0 − uδ|1(A2) ? p

(ε)
t ‖l∞ ≤ sup

x,y∈A2

(
|1− (1 + θ)λ|ε

−1|y−x| + erfc

(
|x− y|
2
√

2δ

))
≤ |1− (1 + θ)λ|ε

γ−1

+ erfc

(
εγ

2
√

2δ

)
.

Picking δ = ε and γ = 1/3, for example, the right-hand side converges to zero as

ε ↓ 0, and we have established condition (4.19).

We now turn to the case θ = λ = 1. Note that the above method no longer works

since 1− (1 + θ)λ = −1 so the last bound does not converge to zero. The problem

is that bounding u
(ε)
0 − uδ by |u(ε)

0 − uδ| is too crude, as it discards cancellations.

Note that in this case

(u
(ε)
0 − uδ)(x, y) = (−1)ε

−1|y−x| sgn(y − x) + erfc

(
|y − x|
2
√

2δ

)
sgn(x− y).

The second term does not depend on θ or λ, so may be handled as above. The

remaining term of ‖(u(ε)
0 − uδ) ? p

(ε)
t ‖l∞ to control is

sup
x,y∈εZ

∣∣∣∣∣∣
∑

w1,w2∈εZ
(−1)ε

−1|w2−w1| sgn(w2 − w1)p
(ε)
t (x− w1, y − w2)

∣∣∣∣∣∣ . (4.24)

Consider the function (−1)ε
−1|w2−w1| sgn(w2−w1) on εZ2. Note that (−1)ε

−1|w2−w1|

is an assignation of alternating ±1 values. The factor sgn(w2−w1) turns the values

on the diagonal set {w2 = w1} to zero and changes the sign of those below the diag-

onal. Overall the graph has a diagonal of zeroes dividing two regions of alternating

signs. An adjacent pair of alternating signs contributes a discrete derivative of p
(ε)
t

to the sum, scaled by a factor of ε. Which argument the derivative acts on depends

on how the adjacent pairs are grouped. For definiteness we pair terms in the w1

plane, giving derivatives in w1. For fixed x, y ∈ εZ, the sum in (4.24) is bounded by

pairing off the ±1 terms as discrete derivatives and summing their absolute values.

Taking the full sum on εZ2 gives an upper bound of ε‖D(1,0)
ε p

(ε)
t ‖l1 . The l1 norm

may be bounded by lemma 15 of appendix B, giving

sup
x,y∈εZ

∣∣∣∣∣∣
∑

w1,w2∈εZ
(−1)ε

−1|w2−w1| sgn(w2 − w1)p
(ε)
t (x− w1, y − w2)

∣∣∣∣∣∣ ≤ Cεt−1/2,
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for some C > 0 and for sufficiently small ε, namely t ≥ ε2. The right-hand side

converges to zero as ε ↓ 0, completing the proof in the case θ = λ = 1.

Remark 16. Alternatively, the multiplicative factor 1/(1+θ) may be deduced from

the case θ = 0 by a thinning argument, a generalisation of the result for discrete

models, see remarks 3 and 6.

4.2.2 Symmetric rates and scaled independent initial conditions

We generalise section 4.2.1 to ε-dependent initial conditions. Consider the scaled

symmetric CARW point process X(ε) on εZ with rates px = qx = 1, interaction

parameter θ ∈ [0, 1] and initial conditions that are Bernoulli(λε) for λε ∈ (0, 1]. We

assume that λε → λ0 ∈ [0, 1] as ε ↓ 0. Inspecting the proof of theorem 5, the limit

of the scaled point processes is determined by the convergence of the discrete initial

conditions and in particular convergence of (1− (1 + θ)λε)
ε−1

. The limit is given by

lim
ε↓0

(1− (1 + θ)λε)
ε−1

= e−(1+θ)µ, where µ = lim
ε↓0

ε−1λε.

The limit point process is determined by the value of µ ∈ [0,∞], which is the

asymptotic density of particles in the initial condition. The case µ = 0 corresponds

to λε converging to zero too fast for the process have any chance of propagating.

The degenerate empty point process is obtained in the limit. The case µ = ∞
corresponds to λε converging to zero slowly or λε → λ0 ∈ (0, 1], and we are back

in the setting of theorem 5. Finally, µ ∈ (0,∞) represents an intermediate scale, in

which the mean density of particles is preserved in the limit, and a new family of

point processes emerges. Underlying this is convergence of the independent Bernoulli

point process to a Poisson process. We collect everything together in a single result,

which generalises theorem 5.

Theorem 6. Fix t > 0, θ ∈ [0, 1] and λε ∈ [0, 1] for ε > 0. Then the scaled symmet-

ric CARW point process X(ε) with interaction parameter θ and initial condition inde-

pendent Bernoulli(λε) converges in distribution to Xc, the Pfaffian point process on

R with kernel Kc(x, y) of the form (4.12), where (K
c
t (x, y) : t ≥ 0, x, y ∈ R, x < y)

is the unique bounded solution to the heat equation
∂tK

c
t (x, y) = (∆x + ∆y)K

c
t (x, y) for x < y, t > 0,

K
c
t (x, x) = 1 for all x, t > 0,

K
c
0(x, y) = e−(1+θ)µ(y−x) for x ≤ y,

(4.25)

where µ = limε↓0 ε
−1λε ∈ [0,∞]. In particular, K

c
t (x, y) may be written explicitly,
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for x < y and t ≥ 0, as

K
c
t (x, y) = erfc

(
y − x
2
√

2t

)
+ Fµθ,t(y − x)− Fµθ,t(x− y), (4.26)

where µθ = (1 + θ)µ and Fµθ,t : R→ [0,∞) is defined by

Fµθ,t(z) =
e2µ2θt

2
e−µθz erfc

(
4µθt− z

2
√

2t

)
. (4.27)

In view of example 2 (redistributing constants in (2.7)) and the thinning result

proposition 15, the point process for t = 0 is a rate µ Poisson process. By the

comments after theorem 5, the case µ = ∞ corresponds to the one-dimensional

marginals of a system of interacting Brownian motions under a maximal entrance

law (at least in the case of θ = 0 or 1). Thus, it is natural to conjecture that the

case of finite µ corresponds to the one-dimensional marginals of interacting Brownian

motions started from rate µ Poisson initial conditions.

Remark 17. Since the result hinges on convergence of (1− (1 + θ)λε)
ε−1

we could

just as well scale the interaction parameter θ with ε. Suppose X(ε) is as in theorem 6

but with interaction parameter θε ∈ [0, 1], then X(ε) converges to Xc with kernel

(4.12), characterised by (4.25) with θ replaced by θ0 where θε → θ0 ∈ [0, 1]. That

is, the limit point process depends on the limit interaction parameter. The fact

that the initial condition involves 1 + θε precludes any interesting interplay with the

Bernoulli rate λε.

Proof of theorem 6. The only difference to theorem 5 is the initial conditions, which

remain bounded in [−1, 1]. Inspecting the proof, it suffices to show that |u(ε)
0 −

uδ|(x, y) is uniformly bounded on εZ2 and its supremum on |y − x| > εγ converges

to zero as ε ↓ 0 for some γ > 0 and δ = εk with k < 2.

We begin with the maximal case µ =∞. The corresponding kernel function (4.26)

is given by (4.14) and the result follows by replacing λ in the proof of theorem 5 by

λε. Indeed note that |1− (1 + θ)λε|ε
−1|y−x| ≤ 1 and, provided we are not in the case

θ = λ0 = 1, |1 − (1 + θ)λε|ε
γ−1 → 0 for γ < 1 as ε ↓ 0. For θ = λ0 = 1 we must

consider separately an oscillating term of ‖(u(ε)
0 −uδ) ? p

(ε)
t ‖l∞ , namely the analogue

of (4.24)

sup
x,y∈εZ

∣∣∣∣∣∣
∑

w1,w2∈εZ
(1− 2λε)

ε−1|w2−w1| sgn(w2 − w1)p
(ε)
t (x− w1, y − w2)

∣∣∣∣∣∣ . (4.28)
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We split 1− 2λε as (−1)(2λε − 1) and note that since λε → λ0 = 1 we may assume

2λε − 1 > 0. The terms in the sum have the same signs as (4.24) and we group

adjacent pairs as before. In this way, we bound by a sum of terms ε
∣∣∣D(1,0)

ε f(w1, w2)
∣∣∣

where f(w1, w2) = (2λε−1)ε
−1|w2−w1|p

(ε)
t (x−w1, y−w2). Applying a discrete product

rule and the triangle inequality, ε
∣∣∣D(1,0)

ε f(w1, w2)
∣∣∣ is bounded by

(2λε − 1)ε
−1|w2−w1|

∣∣∣p(ε)
t (x− (w1 + ε), y − w2)− p(ε)

t (x− w1, y − w2)
∣∣∣

+
∣∣∣(2λε − 1)ε

−1|w2−(w1+ε)| − (2λε − 1)ε
−1|w2−w1|

∣∣∣ ∣∣∣p(ε)
t (x− (w1 + ε), y − w2)

∣∣∣ .
Note that (2λε − 1)ε

−1|w2−w1| ≤ 1, since ε−1|w2 − w1| ∈ N, and∣∣∣(2λε − 1)ε
−1|w2−(w1+ε)| − (2λε − 1)ε

−1|w2−w1|
∣∣∣

=

(2λε − 1)ε
−1(w1−w2−ε)

∣∣1− (2λε − 1)1
∣∣ if w2 > w1,

(2λε − 1)ε
−1(w1−w2)

∣∣(2λε − 1)1 − 1
∣∣ if w2 ≤ w1.

All together we find

ε
∣∣∣D(1,0)

ε f(w1, w2)
∣∣∣ ≤ ∣∣∣p(ε)

t (x− (w1 + ε), y − w2)− p(ε)
t (x− w1, y − w2)

∣∣∣
+ 2(1− λε)

∣∣∣p(ε)
t (x− (w1 + ε), y − w2)

∣∣∣ .
Taking the full sum in εZ2 gives the bound ε‖D(1,0)

ε p
(ε)
t ‖l1 + 2(1 − λε)‖p(ε)

t ‖l1 for

(4.28). Bounding the l1 norms by lemma 15 of appendix B gives

ε‖D(1,0)
ε p

(ε)
t ‖l1 + 2(1− λε)‖p(ε)

t ‖l1 ≤ C(εt−1/2 + 2(1− λε)),

for some C > 0 and for sufficiently small ε, namely t ≥ ε2. The right-hand side

converges to zero as ε ↓ 0 since λε → λ0 = 1. This completes the proof for µ =∞.

Consider now the case µ ∈ (0,∞). The characterising heat equation on R2 is{
∂tut(x, y) = (∆x + ∆y)ut(x, y) for x, y ∈ R2, t > 0,

u0(x, y) = (e−(1+θ)µ|y−x| − 1) sgn(y − x) for x, y ∈ R2.

By linearity we can solve the PDE by splitting the initial conditions. From theorem 5

we already have the explicit solution for the initial condition sgn(x−y). This solution

is generalised to the initial condition e−(1+θ)µ|y−x| sgn(y−x) by developing the heat

91



kernel convolution, namely∫∫
R2

1

4πt
e−

(x−w1)
2

4t e−
(y−w2)

2

4t e−µθ|w2−w1| sgn(w2 − w1) dw1dw2

= sgn(y − x)
(
Fµθ,t

(
|y − x|

)
− Fµθ,t

(
− |y − x|

))
, (4.29)

where µθ = (1 + θ)µ and Fµθ,t(z) is given by (4.27). The claimed expression (4.26)

for K
c
t (x, y) follows by summing the two solutions and from (4.16). All together,

substituting in for u
(ε)
0 and uδ

|u(ε)
0 − uδ|(x, y) ≤

∣∣∣∣∣(1− (1 + θ)λε)
ε−1|y−x| − e2µ2θδ

2
e−µθ|y−x| erfc

(
4µθδ − |y − x|

2
√

2δ

)∣∣∣∣∣
+
e2µ2θδ

2
eµθ|y−x| erfc

(
4µθδ + |y − x|

2
√

2δ

)
+ erfc

(
|y − x|
2
√

2δ

)
.

We derive a uniform bound on |u(ε)
0 −uδ|(x, y). Using the bound erfc(z) ≤ (

√
πz)−1e−z

2

for z > 0, note that

eµθ|y−x| erfc

(
4µθδ + |y − x|

2
√

2δ

)
≤ 2

√
2δ√

π|y − x|
e|y−x|(µθ−(8δ)−1|y−x|) ≤ 2

√
2δ√
πL

,

where the last equality holds for |y− x| ≥ L (with sufficiently small δ ≤ (8µθ)
−1L).

Bounding instead the error function by 1 gives the bound eµθ for |y − x| < 1.

Combining with the last display for L = 1, we arrive at the uniform bound

‖u(ε)
0 − uδ‖l∞ ≤ 2 + e2µ2θδ

(
1 +

√
2δ

π
+
eµθ

2

)
≤ 2 + e2µ2θ

(
1 +

√
2

π
+
eµθ

2

)
,

where the last inequality holds for sufficiently small δ < 1. When |y − x| > εγ ,

|u(ε)
0 − uδ|(x, y) is bounded as follows

|u(ε)
0 − uδ|(x, y) ≤

∣∣∣∣∣e−µθ|y−x| − e2µ2θδ

2
e−µθ|y−x| erfc

(
4µθδ − |y − x|

2
√

2δ

)∣∣∣∣∣
+
∣∣∣(1− (1 + θ)λε)

ε−1|y−x| − e−µθ|y−x|
∣∣∣+ e2µ2θδ

√
2δ√
πεγ

+ erfc

(
εγ

2
√

2δ

)
.

92



Taking δ = ε and γ = 1/3, the right-hand side converges to zero as ε ↓ 0. Indeed

the convergence (1− (1 + θ)λε)
ε−1|y−x| → e−µθ|y−x| holds by assumption and

e2µ2θδ

2
erfc

(
4µθδ − |y − x|

2
√

2δ

)
→ 1,

by continuity of the error function, since

4µθδ − |y − x|
2
√

2δ
≤ 4µθδ − εγ

2
√

2δ
→ −∞.

This completes the proof for µ ∈ (0, 1).

Finally, consider the case µ = 0. By assumption the discrete initial condition

converges u
(ε)
0 (x, y) → 0. Consequently, the initial condition on R2 is u0(x, y) = 0,

which has solution ut(x, y) = 0, giving the claimed empty point process kernel func-

tion K
c
t (x, y) = 1 in (4.26). Proving convergence however is subtle since u

(ε)
0 (x, y)

tends to −1 in the tails |y − x| → ∞ for λε 6= 0 and we cannot apply the developed

methods. Since this case is degenerate, we do not dwell on it.

4.2.3 Exploratory work on further models

We consider scaling limits for three more CARW models. Convergence is not

proved, but the limit point processes are identified by their Pfaffian kernels.

Symmetric coalescing and annihilating random walks with Heaviside ini-

tial condition. The limit process of real eigenvalues near the (right) edge of the

spectrum in the real Ginibre ensemble is Pfaffian (see example 4). To locate the edge

kernel KGinibre
Edge with interacting particle systems, we consider the symmetric CARW

system (Xt : t ≥ 0) from section 4.2.1 with a one-sided initial condition X0(x) = 1

for x ≤ 0 and X0(x) = 0 for x > 0. Since the initial condition is deterministic,

theorem 1 gives that Xt is Pfaffian. Comparing with the product Bernoulli example

of section 4.2.1, the scaled point process X(ε) is Pfaffian and the only change to the

kernel K(ε)(x, y) is the initial condition

K
(ε)
0 (x, y) = (−θ)min{ε−1y,0}−min{ε−1x,0}, for x ≤ y.
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The limit point process Xc is Pfaffian and the kernel is again given in the form

(4.12) with the corresponding continuum initial condition
∂tK

c
t (x, y) = ∆K

c
t (x, y) for x < y, t > 0,

K
c
t (x, y) = 1 for x = y, t > 0,

K
c
0(x, y) = 1(x, y ≥ 0) for x ≤ y.

(4.30)

To prove that the scaled point processes X(ε) converge to Xc, one must check that

condition (4.19) holds for the initial conditions K
(ε)
0 and K

c
0 recast on εZ2 and R2,

which should follow along similar lines to theorem 5. Recasting the PDE (4.30) to

R2 by (4.16) and using the explicit heat kernel, the function K
c
t (x, y) is given by

K
c
t (x, y) = 1− 2F2

(
x√
2t
,
y√
2t

)
,

where F2 is defined by (2.11). Using proposition 12 to move a factor of (2t)−1/2

from (K
c
t)22 to (K

c
t)11 and to swap the order of entries gives an equivalent kernel

K̃
c
t(x, y), which for θ = 1 satisfies

K̃
c
t(x, y) =

1√
2t

KGinibre
Edge

(
x√
2t
,
y√
2t

)
.

Thus, comparing with (2.12), the mysterious link between annihilating particle sys-

tems and real eigenvalues for the real Ginibre ensemble works not only in the bulk

but also at the edge of the spectrum.

Absorbed coalescing and annihilating random walks. Consider the CARW

process (Xt : t ≥ 0) on Z defined by the following rates and initial conditions

qx =


1 for x ≥ 1,

2 for x = 0,

0 for x < 0,

px =

1 for x ≥ 1,

0 for x < 1,
X0(x) =

1 for x ≥ 0,

0 for x < 0,

for some θ ∈ [0, 1]. This is a system of coalescing and annihilating simple symmetric

random walks on {−1, 0, 1, . . . } that are absorbed at the site −1. The anomalous

rate q0 reflects an accelerated rate of absorption 0 7→ −1. This is chosen for technical

convenience, as we see below, but we believe that it does not affect the scaling limit

of the process. The corresponding one-particle generator L, given by (3.7), is the

generator for a reflected random walk on {0, 1, 2, . . . }, which jumps x → x ± 1 at

rate 1 for x ≥ 1 and jumps 0 7→ 1 at rate 2. By theorem 1 Xt is Pfaffian with kernel
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defined by Kt solving
∂tKt(x, y) = (Lx + Ly)Kt(x, y) for x < y, t > 0,

Kt(x, y) = 1 for x = y, t > 0,

K0(x, y) = (−θ)max{y,0}−max{x,0} for x ≤ y.

(4.31)

Note that this does not immediately fit into the developed framework as L is spa-

tially dependent. However, since no particle ever visits {. . . ,−3,−2} and absorbed

particles never escape {−1}, it is natural to restrict attention to the point process

(Xt(x) : x = 0, 1, 2, . . . ). Correspondingly, the discrete PDE (4.31) need only be de-

fined on {0 ≤ x < y}. In particular the point process (Xt(x) : x = 0, 1, 2, . . . ) is

Pfaffian with kernel defined by K ′t = Kt|0≤x<y, which solves
∂tK

′
t(x, y) = (∆

(1)
x + ∆

(1)
y )K ′t(x, y) for 0 < x < y, t > 0,

∂tK
′
t(x, y) = (2D+

x + ∆
(1)
y )K ′t(x, y) for 0 = x < y, t > 0,

K ′t(x, y) = 1 for 0 ≤ x = y, t > 0,

K ′0(x, y) = (−θ)y−x for 0 ≤ x ≤ y.

(4.32)

The equation does not appear simple, however the x = 0 differential equation dis-

guises a Neumann boundary condition. To see this, extend to the wedge {|x| ≤ y} by

the method of images. In particular, consider the symmetrised extension K̃ ′t(x, y) =

K ′t(|x|, y) on {|x| ≤ y}. Firstly, note that∇(1)
x K̃ ′t(0, y) = 1

2

(
K̃ ′t(1, y)− K̃ ′t(−1, y)

)
=

0. Moreover

2D+
xK

′
t(0, y) = 2K ′t(1, y)− 2K ′t(0, y)

= K̃ ′t(1, y) + K̃ ′t(−1, y)− 2K̃ ′t(0, y) = ∆(1)
x K̃ ′t(0, y),

and hence

∂tK̃ ′t(x, y) = ∂tK
′
t(|x|, y) = (∆(1)

x + ∆(1)
y )K̃ ′t(x, y).

All together, the symmetrised function solves
∂tK̃ ′t(x, y) = (∆

(1)
x + ∆

(1)
y )K̃ ′t(x, y) for |x| < y, t > 0,

∇(1)K̃ ′t(x, y) = 0 for |x| < y, t > 0,

K̃ ′t(x, y) = 1 for |x| = y, t > 0,

K̃ ′0(x, y) = (−θ)y−|x| for |x| ≤ y.

(4.33)

The simple form of this PDE is facilitated by, and justifies, the choice q0 = 2. In

particular we can now read off the candidate limit PDE on {0 ≤ x < y}.
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The point process (Xt(x) : x = 0, 1, 2, . . . ) has a scaling limit which is a Pfaffian

on [0,∞) with kernel in the form (4.12) where (K
c
t (x, y) : t ≥ 0, 0 ≤ x ≤ y) solves

∂tK
c
t (x, y) = ∆K

c
t (x, y) for 0 < x < y, t > 0,

∂1K
c
t (x, y) = 0 for 0 = x < y, t > 0,

K
c
t (x, y) = 1 for 0 < x = y, t > 0,

K
c
0(x, y) = 0 for 0 ≤ x ≤ y.

The limit PDE recast on R2 has initial condition 2 1(|y| ≤ |x|), and developing the

convolution with the heat kernel gives the explicit solution for K
c
t as

K
c
t (x, y) = 1− erf

(
y + x

2
√

2t

)
erf

(
y − x
2
√

2t

)
.

To prove the convergence one must check that condition (4.19) holds.

Reflecting coalescing and annihilating random walks. Consider the CARW

process (Xt : t ≥ 0) on Z defined by the following rates and initial conditions

qx = px =

1 for x ≥ 1,

0 for x < 1,
, X0(x) =

1 for x ≥ 0,

0 for x < 0,

for some θ ∈ [0, 1]. This is a system of coalescing and annihilating simple symmetric

random walks on {0, 1, . . . } that are reflected at the origin. As for the absorbed

example, we restrict attention to {0, 1, . . . }. The corresponding one-particle gener-

ator L is the generator for a random walk on {0, 1, . . . } absorbed at 0. The limiting

continuum kernel, for a Pfaffian point process on [0,∞), is of the form (4.12) where

(K
c
t (x, y) : t ≥ 0, 0 ≤ x ≤ y) solves

∂tK
c
t (x, y) = ∆K

c
t (x, y) for 0 < x < y, t > 0,

K
c
t (x, y) = 1 for 0 < x = y, t > 0,

K
c
0(x, y) = 0 for 0 ≤ x ≤ y,

with a further Dirichlet boundary condition K
c
t (0, y) = Φt(y) for y ≥ 0 where Φ

solves 
∂tΦt(y) = ∆Φt(y) for 0 < y, t > 0,

Φt(0) = 1 for t > 0,

Φ0(y) = 0 for 0 ≤ y.
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The boundary condition can be found first for the discrete case, by showing that the

expectation Kt(0, y) = EX0

[
(−θ)Xt[0,y)

]
satisfies the analogous discrete equation in

t, y. The equations can be solved explicitly and are given in the scaling form

K
c
t (x, y) = K

c
1
4

(
x

2
√
t
,
y

2
√
t

)
,

where

K
c
1
4

(x, y) = 1− 1

4

∫ y

x

∫ ∞
y

erf ′′
(
w − z√

2

)
erf

(
w + z√

2

)
+erf ′′

(
w + z√

2

)
erf

(
w − z√

2

)
dzdw.

Asymmetric rates and independent initial conditions. Consider the CARW

process with homogeneous, but not necessarily symmetric, rates px = p > 0, qx =

q > 0 for x ∈ Z, interaction parameter θ ∈ [0, 1] and initial condition independent

Bernoulli(λ) for λ ∈ (0, 1]. The one-particle generator is given by (3.7)

L(1)f(x) =
q + p

2
∆(1)f(x) + (q − p)∇(1)f(x),

for f : Z→ R, where the discrete operators are defined by

∇(ε)f(x) = (f(x+ ε)− f(x− ε)) /(2ε),
∆(ε)f(x) = ε−2 (f(x+ ε) + f(x− ε)− 2f(x)) .

(4.34)

As for individual random walks, for the scaled point processes to converge to a non-

degenerate limit the asymmetry must be scaled. To construct the scaled processes,

we first define a sequence of models on Z with ε-dependent rates. For ε > 0 the

process (X
[ε]
t : t ≥ 0) is defined to be a CARW process on Z with weakly asymmetric

rates p
(ε)
x = p(ε) > 0 and q

(ε)
x = q(ε) > 0 for x ∈ Z, with

p(ε) =
q + p

2
− q − p

2
ε, q(ε) =

q + p

2
+
q − p

2
ε,

and initial condition independent Bernoulli(λε) for λε ∈ [0, 1]. For fixed t > 0, the

scaled processes X(ε) on εZ are then given by scaling diffusively

X(ε)(dx) = X
[ε]
ε−2t

(ε−1dx) on εZ. (4.35)
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The point process X(ε) is Pfaffian with kernel of the form (4.10) in terms of the

kernel function K
(ε)
t solving

∂tK
(ε)
t (x, y) = (L

(ε)
x + L

(ε)
y )K

(ε)
t (x, y) for x < y, t > 0,

K
(ε)
t (x, x) = 1 for all x, t > 0,

K
(ε)
0 (x, y) = (1− (1 + θ)λ)ε

−1(y−x) for x ≤ y,

(4.36)

where the one-particle generator L(ε) is given, for f : εZ→ R, by

L(ε)f(x) =
q(ε) + p(ε)

2
∆(ε)f(x) + ε−1(q(ε) − p(ε))∇(ε)f(x)

=
q + p

2
∆(ε)f(x) + (q − p)∇(ε)f(x).

We can read off the candidate limit PDE. The only difference to (4.25) is the one-

particle generator, given, for f : R→ R, by

Lcf(x) =
q + p

2
∂2
xf(x) + (q − p)∂xf(x).

The solution is given by (4.26), the solution to (4.25), with t 7→ q+p
2 t. Indeed the

additional first order terms cancel, (∂x + ∂y)K
c
t (x, y) = 0, since K

c
t (x, y) depends

on y − x. The single solution makes sense because choosing asymmetric homoge-

neous rates corresponds to time-scaling the original symmetric CARW process (as

in remark 14) and adding an (ε-dependent) drift to particles. Since the point pro-

cesses are spatially homogeneous, a global shift does not change the distribution of

particles. In fact, the same limit point process should emerge for general weakly

asymmetric rates, where

p(ε) =
q + p

2
+ c1

q − p
2

ε+O(ε2), q(ε) =
q + p

2
+ c2

q − p
2

ε+O(ε2),

for c1, c2 ∈ R with c2 − c1 = 1. Note that p(ε) > 0 and q(ε) > 0 for sufficiently small

ε.

To prove convergence of scaled asymmetric CARW, we cannot simply follow the

proof of theorem 6 because the drift plays a role when recasting the PDEs on the

whole space. The resultant equation does not have constant coefficients and so falls

outside the scope of the derived convergence condition. We believe, however, that

the analogous estimates for half-space PDEs remain standard.

Remark 18. Convergence of the characterising PDEs in the general case of spatially-

dependent coefficients should hold under some conditions on the coefficients and
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their derivatives. The limit PDE is clear but the proof will necessarily be more

involved.

4.3 Heuristics for limits of annihilating random walks

with pairwise immigration

Scaling limits for the ARWI model of section 3.3.1 are developed in some simple

cases, building on the work of section 4.2.

As for the construction of the discrete models, the scaling theory for ARWI is a

direct extension of CARW in the case θ = 1. The only difference is the addition

of a potential term in the characterising PDEs. This is enough, however, to take

us outside the scope of the whole-space PDE estimates of appendix B. We consider

in section 4.3.1 convergence of the scaled point processes for homogeneous rates

and scaled independent initial conditions. Unlike CARW, for ARWI there is a non-

degenerate steady state continuum point process under the additional limit t→∞,

computed in section 4.3.2. Finally, in section 4.3.3 we consider a natural spatially

inhomogeneous model and its limit, the Brownian Firework.

4.3.1 Homogeneous rates and scaled independent initial conditions

Consider the ARWI process (Xt : t ≥ 0) on Z with homogeneous rates px = p > 0,

qx = q > 0 and mx = m ≥ 0 for x ∈ Z, and independent Bernoulli(λ) initial

condition for some λ ∈ (0, 1]. Theorem 2 and remark 6 give that Xt is Pfaffian and

provide an expression for the kernel. Fixing rates p(ε) > 0, q(ε) > 0, m(ε) ≥ 0 and

λε ∈ [0, 1] for ε > 0, the scaled point process X(ε) on εZ is defined by diffusively

scaling the ARWI process with these ε-dependent rates, i.e. scaling via (4.35). It

follows that X(ε) is Pfaffian with kernel K(ε)(x, y) given, for x < y, by

K(ε)(x, y) = − ε
2

(
K

(ε)
t (x, y) D

(0,1)
ε K

(ε)
t (x, y)

D
(1,0)
ε K

(ε)
t (x, y) D

(1,1)
ε K

(ε)
t (x, y)

)
, (4.37)

and K
(ε)
12 (x, x) = − ε

2 D
(0,1)
ε K

(ε)
t (x, x). The function (K

(ε)
t (x, y) : t ≥ 0, x, y ∈

εZ, x < y) is the unique bounded solution to
∂tK

(ε)
t (x, y) = (L

(ε)
x + L

(ε)
y )K

(ε)
t (x, y) for x < y, t > 0,

K
(ε)
t (x, x) = 1 for all x, t > 0,

K
(ε)
0 (x, y) = (1− 2λε)

ε−1(y−x) for x ≤ y,

(4.38)
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where the one-particle operator L(ε) is given, for f : εZ → R and in terms of the

operators (4.34), by

L(ε)f(x) =
q(ε) + p(ε)

2
∆(ε)
x f(x) + ε−1(q(ε) − p(ε))∇(ε)

x f(x)− ε−22m(ε)f(x). (4.39)

Note that for ε = 1 this is equivalent to (3.21). With lemma 8 in mind, the candi-

date continuum kernel is given by the limit of ε−1K(ε)(x, y) and we hence consider

convergence of K
(ε)
t (x, y) and its discrete derivatives. In order for the PDE solutions

to converge, the one-particle generators L(ε) should converge and this informs the

appropriate scaling of rates. As for the asymmetric CARW example above, we take

weakly asymmetric jump rates q(ε) and p(ε). To avoid immigration swamping the

limit, the rate m(ε) must be dampened and balance with annihilation. All together,

fixing a > 0, b ∈ R, c ≥ 0 and c1, c2 ∈ R with c2 − c1 = 1, we pick rates

p(ε) =
a

2
+ c1

b

2
ε+O(ε2), q(ε) =

a

2
+ c2

b

2
ε+O(ε2), m(ε) =

c

2
ε2 +O(ε3). (4.40)

The candidate limit one-particle generator is then given, for f : R→ R, by

Lcf(x) = a∂2
xf(x) + b∂xf(x)− cf(x). (4.41)

As for CARW, the initial condition of the limit is determined by the convergence of

ε−1λε. We arrive at the following conjecture.

Conjecture 1. Fix t > 0, a > 0, b ∈ R, c ≥ 0 and λε ∈ [0, 1] for ε > 0. Then the

scaled ARWI point process X(ε) with rates (4.40) and initial condition independent

Bernoulli(λε) converges in distribution to Xc, the Pfaffian point process on R with

kernel Kc(x, y), given, for x < y, by

Kc(x, y) = −1

2

(
K
c
t (x, y) ∂2K

c
t (x, y)

∂1K
c
t (x, y) ∂1∂2K

c
t (x, y)

)
, (4.42)

and K
c
12(x, x) = −1

2 ∂2K
c
t (x, x), where (K

c
t (x, y) : t ≥ 0, x, y ∈ R, x < y) is the

unique bounded solution to
∂tK

c
t (x, y) = (L

c
x + L

c
y)K

c
t (x, y) for x < y, t > 0,

K
c
t (x, x) = 1 for all x, t > 0,

K
c
0(x, y) = e−2µ(y−x) for x ≤ y,

(4.43)

with Lc given by (4.41) and µ = limε↓0 ε
−1λε ∈ [0,∞]. In particular, K

c
t (x, y) may
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be written explicitly, for x < y and t ≥ 0, as

K
c
t (x, y) =

2√
π

∫ ∞
α/
√
t
e−w

2
e−2cα2/w2

dw+e−2ct
(
F2µ,at(y−x)−F2µ,at(x−y)

)
, (4.44)

where α = y−x
2
√

2a
and F2µ,at(z) is given by (4.27).

Remark 19. Even in the symmetric case, we cannot simply recycle the proofs of

theorems 5 and 6. Indeed, due to the additional potential term, the PDE (4.43)

recast on R2 only has piecewise continuous second derivatives and the derived esti-

mates do not apply. As for asymmetric CARW, we believe that the corresponding

estimates for half-space PDEs remain standard.

To see that (4.44) is the solution to (4.43), we first force Dirichlet boundary

conditions by considering ut(x, y) = K
c
t (x, y)− 1, which solves

∂tut(x, y) = (L
c
x + L

c
y)ut(x, y)− 2c for x < y, t > 0,

ut(x, x) = 0 for all x, t > 0,

u0(x, y) = e−2µ(y−x) − 1 for x ≤ y.

(4.45)

Using linearity we split into a homogeneous and an inhomogeneous PDE, writing

ut(x, y) = u
(1)
t (x, y) + u

(2)
t (x, y), where

∂tu
(1)
t (x, y) = (L

c
x + L

c
y)u

(1)
t (x, y) for x < y, t > 0,

u
(1)
t (x, x) = 0 for all x, t > 0,

u
(1)
0 (x, y) = e−2µ(y−x) − 1 for x ≤ y,

(4.46)

and 
∂tu

(2)
t (x, y) = (L

c
x + L

c
y)u

(2)
t (x, y)− 2c for x < y, t > 0,

u
(2)
t (x, x) = 0 for all x, t > 0,

u
(2)
0 (x, y) = 0 for x ≤ y.

(4.47)

The solution to (4.46) is given by inspecting the proofs of theorems 5 and 6. Indeed

the a = 1, b = 0, c = 0, µ =∞ case is given in theorem 5 by (4.21), upon restricting

to the set {x ≤ y}. Theorem 6 shows that for µ ∈ (0,∞) there is an additional

term (4.29). As in the final example of section 4.2.3, general a > 0 corresponds to

a time-scaling t 7→ at and the solutions are all independent of any drift b ∈ R. The

only difference to the PDE for c > 0 is the additional potential term −2cu
(1)
t (x, y).

This translates into an exponential factor and pulling everything together we arrive
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at

u
(1)
t (x, y) = e−2ct erf

(
x− y
2
√

2at

)
+ e−2ct

(
F2µ,at(y − x)− F2µ,at(x− y)

)
.

Consider now the inhomogeneous equation (4.47) with driving term. Firstly, the

homogeneous solution above gives the solution to the auxiliary equation
∂tũ

(2)
t (x, y) = (L

c
x + L

c
y)ũ

(2)
t (x, y) for x < y, t > 0,

ũ
(2)
t (x, x) = 0 for all x, t > 0,

ũ
(2)
0 (x, y) = −2c for x ≤ y.

(4.48)

Using Duhamel’s principle u
(2)
t (x, y) may then be expressed as follows

u
(2)
t (x, y) =

∫ t

0
ũ(2)
s (x, y) ds = 2c

∫ t

0
e−2cs erf

(
x− y
2
√

2as

)
ds. (4.49)

All together the limit kernel is given by

K
c
t (x, y) = 1 + e−2ct erf

(
x− y
2
√

2at

)
+ 2c

∫ t

0
e−2cs erf

(
x− y
2
√

2as

)
ds

+ e−2ct
(
F2µ,at(y − x)− F2µ,at(x− y)

)
.

Integration by parts simplifies the first three terms

1 + e−2ct erf

(
x− y
2
√

2at

)
+ 2c

∫ t

0
e−2cs erf

(
x− y
2
√

2as

)
ds

=

∫ t

0
e−2cs

(
∂s erf

(
x− y
2
√

2as

))
ds,

and the claimed expression (4.44) is then obtained upon evaluating the derivative

and changing variables with s 7→
( x−y

2
√

2a

)2
w−2.

4.3.2 Large-time limit for constant rates

The number of particles in the CARW process decreases as time evolves and the

process is degenerate in the limit as t → ∞. For ARWI, however, the number

of particles increases due to immigration, and balancing with annihilation there is

a chance for a non-degenerate steady state. The above scaling regime for ARWI

balances immigration with annihilation and we now investigate the behaviour of

the continuum point processes at large times. With lemma 9 in mind, consider the

limit as t→∞ of the kernel function K
c
t (x, y) in (4.44), denoted by K

c
∞(x, y). This
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should solve the elliptic version of (4.43), namely{
0 = (L

c
x + L

c
y)K

c
∞(x, y) for x < y,

K
c
∞(x, x) = 1 for all x,

where Lc is given by (4.41). The unique bounded solution is K
c
∞(x, y) = e−

√
c
a

(y−x).

Indeed we recover this expression by taking limits in (4.44). The large-time limit

point process is Pfaffian with corresponding kernel of the form (4.42). Arguing as

for the initial condition of theorem 6, by example 2 and proposition 15 this point

process is a rate 1
2

√
c
a Poisson process. Moreover this distribution is invariant in

the sense that we recover the solution e−
√

c
a

(y−x) upon substituting µ = 1
2

√
c
a into

(4.44). Indeed the time derivative of K
c
t (x, t) vanishes for this choice of µ, then

picking t = 0 or t = ∞, for example, gives the desired expression. We expect that

there are underlying stochastic processes with one-dimensional marginals given by

our Pfaffian scaling limits and the large-time limit should correspond to the unique

steady state. It is reasonable that for c > 0 there is a single steady state, since

the influence of the initial condition should quickly dissipate due to infinitesimal

pairwise immigration and annihilation. Note that for c = 0 the steady state is the

degenerate empty point process, highlighting that the corresponding analysis is not

interesting for CARW.

4.3.3 Exploratory work on the Brownian Firework

We discuss a particular ARWI model, investigating the scaling limit via some for-

mal calculations. The motivation is to better understand the infinitesimal pairwise

immigration mechanism in the continuum. The underlying model (Xt : t ≥ 0) on Z
is defined by taking constant jump rates px = qx = 1/2 for x ∈ Z. It remains to de-

fine the immigration parameter and initial conditions. To single out the immigration

mechanism we consider the case of empty initial conditions and mx = m
2 1(x = 0)

for some m > 0. Thus, particles can only enter the system via immigration ‘at the

origin’, i.e. as a pair onto the sites {−1, 0}. It is interesting to understand if there

is a scaling limit of this process and how the balance between annihilation and im-

migration manifests itself. For example, what is the typical dispersion of particles?

How does the parameter m enter the distribution? What are the large-time asymp-

totics? In the continuum limit, the immigration occurs at the origin where there is a

constant explosion of infinitesimal pairs entering the system but mostly annihilating

with each other. We have come to call the model the Brownian Firework.
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We consider scaled rates p
(ε)
x = q

(ε)
x = 1/2 and m

(ε)
x = m

2 ε1(x = 0) for x ∈ εZ,

then the one-particle generator is given, for f : εZ→ R, by

L(ε)f(x) =
1

2
∆(ε)
x f(x)−mε−11(x = 0)f(x).

Note that the immigration rate is scaled differently to the homogeneous case. This

is in order to see a non-degenerate contribution from immigration in the continuum

limit. By theorem 2 the scaled point process X(ε) in (4.6) is Pfaffian with kernel in

the form (4.37), where (K
(ε)
t (x, y) : t ≥ 0, x ≤ y) solves (4.38) with initial condition

K
(ε)
0 (x, y) = 1 for x ≤ y. Formally the continuum limit is given by

∂tK
c
t (x, y) =

(
1
2∆−m

(
δ0(x) + δ0(y)

))
K
c
t (x, y) for x < y, t > 0,

K
c
t (x, x) = 1 for all x, t > 0,

K
c
0(x, y) = 1 for x ≤ y.

(4.50)

To find an explicit expression for K
c
t (x, y), consider gt(z, w) : R2 → [0,∞) defined

by

gt(z, w) = Ez
[
δ0(Bt)e

−mLwt
]

= Ez−w
[
δ−w(Bt)e

−mL0
t

]
,

where (Bt : t ≥ 0) is a Brownian motion with B0 = z and Lwt denotes the local time

at level w up to time t. For fixed w ∈ R, the Feynman-Kac formula implies that

gt(z, w) solves{
∂tgt(z, w) =

(
1
2∆z −mδw(z)

)
gt(z, w) for z ∈ R, t > 0,

g0(z, w) = δ0(z) for z ∈ R.

One way to see this is to solve the discrete equation with the discrete Feynman-

Kac formula and note that the term in the exponential converges to Brownian local

time. This illustrates the appropriate scaling in the immigration parameter m
(ε)
x .

The solution to (4.50) is then given by

K
c
t (x, y) = 1−m

∫ t

0
hs(x, y) ds,

where

ht(x, y) =

∫
R2

gs(x−w1,−w1)gs(y−w2,−w2)(δ0(w1)+δ0(w2)) sgn(w2−w1) dw1dw2.
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Using the explicit joint distribution for Brownian motion and its local time [33] we

find

gt(z − w,−w) =
1√
2πt

(
e−

(z−w)2

2t − e−
(z+w)2

2t

)
I{zw>0}

+ em|w|+m|z|
∫ ∞
|w|+|z|

e−mu
u√
2πt3

e−
u2

2t du.

Consider now the large-time asymptotics. With lemma 9 in mind, we take limits

in the kernel function K
c
∞(x, y) = limt→∞K

c
t (x, y). A calculation reveals

Kc
∞(x, y) = 1 +

2m

π

∫ ∞
0

e−mu
(

arctan

(
x

z + |y|

)
− arctan

(
y

z + |x|

))
dz,

for x ≤ y. Let Φ : R2 → R be a smooth test function with compact support

satisfying the boundary condition Φ(x, x) = 0. It can be checked that K
c
∞ weakly

satisfies the elliptic form of (4.50)∫∫
x<y

Kc
∞(x, y)

1

2
∆Φ(x, y) dxdy =

∫∫
x<y

m (δ0(x) + δ0(y))Kc
∞(x, y)Φ(x, y) dxdy.

The kernel function simplifies further in the limit m→∞

lim
m→∞

Kc
∞(x, y) =


1 + 2

π

(
arctan(xy )− arctan( yx)

)
if 0 < x < y,

0 if x < 0 < y,

1 + 2
π

(
arctan( yx)− arctan(xy )

)
if x < y < 0.

Computing derivatives, the kernel K∞ for the t → ∞, m → ∞ point process is

given, for x < y, by

K∞(x, y) =

−1
2 −

1
π

(
arctan

(
x
|y|

)
− arctan

(
y
|x|

))
x
π

sgn(x)+sgn(y)
x2+y2

− y
π

sgn(x)+sgn(y)
x2+y2

1
π

sgn(x)+sgn(y)
(x2+y2)2

(y2 − x2)

 ,

and (K∞)12(x, x) = 1
π|x| . The one-point intensity is ρ(1)(x) = 1

π|x| , suggesting that

there may be an accumulation point at the origin. Note that K∞(x, y) = ( 0 0
0 0 )

for x < 0 < y, then using proposition 10 the intensity for x1, . . . , xn < 0 and

y1, . . . , ym > 0 factorises

ρ(n+m)(x1, . . . , xn, y1, . . . , ym) = ρ(n)(x1, . . . , xn)ρ(m)(y1, . . . , ym).
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The infinite strength firework of particles at the origin leads to the two half spaces

being independent.

4.4 Heuristics for limits of branching coalescing random

walks

Scaling limits of the BCRW model from section 3.3.2 are developed, building on

the preceding theory for CARW and ARWI.

This extension to the CARW scaling theory of section 4.2 is more subtle than

the case of ARWI, due to the pervasion of φ factors and the delicate conditions on

the rates. However, with section 3.3.3 in mind, it is not surprising that the scaled

BCRW processes are related to scaled ARWI for certain initial conditions. This

connection allows us to derive convergence as a direct consequence of conjecture 1

and leads to a continuum relation.

Convergence of the scaled BCRW point processes for homogeneous rates and

scaled independent initial conditions is considered in section (4.4.1). The relation

between the BCRW and ARWI continuum scaling limits is given in section 4.4.2.

4.4.1 Homogeneous rates and scaled independent conditions

Consider the BCRW process (Xt : t ≥ 0) with homogeneous rates px = p > 0,

qx = q > 0, `x = ` and rx = r for x ∈ Z with p` = qr, and Bernoulli(λ) initial

conditions for some λ ∈ (0, 1]. Note that conditions (3.29) are satisfied. It follows

from theorem 3, and the extension to random initial conditions, that Xt is a Pfaffian

point process on Z. Fixing rates p(ε) > 0, q(ε) > 0, `(ε) ≥ 0, r(ε) ≥ 0 satisfying

p(ε)`(ε) = q(ε)r(ε) and λε ∈ [0, 1] for ε > 0, the scaled point process X(ε) on εZ is

defined, as in (4.35), by diffusive scaling and is Pfaffian with kernel K̃(ε)(x, y) given,

for x < y, by

K̃(ε)(x, y) = − ε

φ(ε)

(
K̃

(ε)
t (x, y) D

(0,1)
ε K̃

(ε)
t (x, y)

D
(1,0)
ε K̃

(ε)
t (x, y) D

(1,1)
ε K̃

(ε)
t (x, y)

)
, (4.51)

and K̃
(ε)
12 (x, x) = 1− 1

φ(ε)
K̃

(ε)
t (x, x+ ε), where

φ(ε) =

√
1 +

`(ε)

q(ε)
=

√
1 +

r(ε)

p(ε)
.
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The function (K̃
(ε)
t (x, y) : t ≥ 0, x, y ∈ εZ, x < y) is the unique solution of expo-

nential growth to
∂tK̃

(ε)
t (x, y) = (L̃

(ε)
x + L̃

(ε)
y )K̃

(ε)
t (x, y) for x < y, t > 0,

K̃
(ε)
t (x, x) = 1 for all x, t > 0,

K̃
(ε)
0 (x, y) =

(
φ(ε)(1− λε)

)ε−1(y−x)
for x ≤ y,

(4.52)

where the one-particle operator L̃(ε) is given, for f : εZ→ R, by

L̃(ε)f(x) =
q(ε) + p(ε)

2
φ(ε)∆(ε)

x f(x) +
q(ε) − p(ε)

ε
φ(ε)∇(ε)

x f(x)

− q(ε) + p(ε)

2ε2

(
1− φ(ε)

)2
f(x). (4.53)

Note that this is equivalent to (3.36) when ε = 1. As for the underlying Z models,

the one-particle generators for the scaled ARWI and BCRW point processes are of

the same form and in particular the relations of section 3.3.3 have analogues on εZ.

In section 4.4.2 we give a continuum relation between the scaling limits. We now

turn to the rates. Since the CRW model is recovered by setting the branching rates

to zero, we should pick weakly asymmetric jump rates. The branching rates must be

picked to (asymptotically) balance the ε−2 factor in the potential term coefficient.

Condition (3.29a) implies that they should be equal up to their leading order of ε

(see remark 20). For definiteness we set the following explicit rates

p(ε) = a, q(ε) = a+ εb, r(ε) = 2ε
√
ac, `(ε) =

q(ε)r(ε)

p(ε)
= 2ε
√
ac

(
1 +

εb

a

)
,

(4.54)

for some a > 0, b ∈ R and c ≥ 0. Note that conditions (3.29) are satisfied by

construction and p(ε) > 0, q(ε) > 0, r(ε) ≥ 0 and `(ε) ≥ 0 for sufficiently small ε. A

Taylor expansion of φ(ε) gives

φ(ε) =

(
1 + 2ε

√
c

a

) 1
2

= 1 + ε

√
c

a
+O(ε2), (4.55)

so that the potential coefficient satisfies

q(ε) + p(ε)

2ε2

(
1− φ(ε)

)2
=

2a+ εb

2a
c+O(ε).
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All together, as ε ↓ 0 the coefficients of L̃(ε) converge as follows

q(ε) + p(ε)

2
φ(ε) → a,

q(ε) − p(ε)

ε
φ(ε) → b,

q(ε) + p(ε)

2ε2

(
1− φ(ε)

)2
→ c, (4.56)

and the candidate limit one-particle generator is given by (4.41). As for CARW

and ARWI, the limit initial condition depends on the convergence of ε−1λε, however

there is also a contribution from branching. Indeed using the above expansion

φ(ε)(1− λε) =

(
1 + ε

√
c

a
+O(ε2)

)
(1− λε) = 1 + ε

(√
c

a
− ε−1λε

)
+ λεO(ε),

and we see that the initial condition of (4.52) satisfies

K̃
(ε)
0 (x, y)→ e−(µ−

√
c
a)(y−x),

where µ = limε↓0 ε
−1λε. All together, the limit PDE is given by

∂tK̃
c
t (x, y) = (L

c
x + L

c
y)K̃

c
t (x, y) for x < y, t > 0,

K̃
c
t (x, x) = 1 for all x, t > 0,

K̃
c
0(x, y) = e−(µ−

√
c
a)(y−x) for x ≤ y.

(4.57)

For µ >
√
c/a the initial condition corresponds to a Poisson point process of rate

µ −
√
c/a > 0 and, upon making the transformation µ −

√
c/a 7→ 2µ, the PDE

coincides with (4.43) for the ARWI limit. Explicitly, K̃
c
t (x, y) is given by (4.44) with

µ replaced by 1
2

(
µ−

√
c
a

)
> 0. We revisit this connection in section 4.4.2, where we

use the PDE equivalence to derive a relation between the ARWI and BCRW limit

processes. Note that, perhaps surprisingly, increasing the branching parameter c

decreases the Poisson rate. In effect, at small times, more branching leads to more

coalescences and on average a net decrease in the number of particles. The case µ =√
c/a corresponds to the initial condition K̃

c
0(x, y) = 1 and we may express K̃

c
t (x, y)

as K̃
c
0(x, y) = 1 + ut(x, y) where ut(x, y) solves (4.47), namely (4.49). Finally, for

µ ∈ [0,
√
c/a), K̃

c
0(x, y) is no longer bounded, only of exponential growth. Since

we are interested in comparing to CARW and ARWI limits, we focus on the case

µ >
√
c/a. To find the limit of ε−1K̃(ε)(x, y), note that 1/φ(ε) = 1− ε

√
c/a+O(ε2)
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and that ε−1K̃
(ε)
12 (x, x) converges as follows

ε−1K̃
(ε)
12 (x, x) = − 1

φ(ε)
D(0,1)
ε K̃

(ε)
t (x, x) +

1

ε

(
1− 1

φ(ε)

)
→ −∂2K̃

c
t (x, x) +

√
c

a
.

We arrive at the following conjecture.

Conjecture 2. Fix t > 0, a > 0, b ∈ R, c ≥ 0 and λε ∈ [0, 1] for ε > 0. Suppose

that ε−1λε → µ with for some µ >
√
c/a. Then the scaled BCRW point process

X(ε) with rates (4.54) and initial condition independent Bernoulli(λε) converges in

distribution to Xc, the Pfaffian point process on R with kernel K̃c(x, y), given, for

x < y, by

K̃c(x, y) = −

(
K̃
c
t (x, y) ∂2K̃

c
t (x, y)

∂1K̃
c
t (x, y) ∂1∂2K̃

c
t (x, y)

)
,

and K̃
c
12(x, x) = −∂2K̃

c
t (x, x)+

√
c
a . The function (K̃

c
t (x, y) : t ≥ 0, x, y ∈ R, x < y)

is the unique bounded solution to (4.57). In particular, K̃
c
t (x, y) has the explicit

expression (4.44) with µ replaced by 1
2

(
µ−

√
c
a

)
> 0.

Remark 20. There is nothing special about the choice of rates (4.54) and the point

process Xc will emerge as the scaling limit provided that the one-particle generators

L̃(ε) converge to Lc, namely that the coefficient satisfy (4.56). We examine the

appropriate scaling of rates. Since BCRW reduces to CRW in the case c = 0, the

jump rates should be weakly asymmetric. Consider the scaling of r(ε). To satisfy

condition (4.56) we must have

q(ε) + p(ε)

2ε2

(
1− φ(ε)

)2
→ c.

Note that 1/p(ε) = O(1) so φ(ε) = (1+r(ε)O(1))1/2 and r(ε) should scale as a positive

power of ε to balance the ε−2 factor. This is intuitive: we must dampen the rate

so that branching does not swamp the limit. We perform an order analysis to

obtain the appropriate scaling for r(ε). Note that q(ε) + p(ε) = O(1) and by a Taylor

expansion

φ(ε) =
(

1 + r(ε)O(1)
) 1

2
= 1 + r(ε)O(1) +

(
r(ε)
)2
O(1).

All together, we obtain

q(ε) + p(ε)

2ε2

(
1− φ(ε)

)2
=
O(1)

ε2
(
r(ε)
)2
.
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This expression must be O(1), so the leading order of r(ε) is ε. For the other

branching rate `(ε), note that q(ε)/p(ε) = 1 + O(ε) then condition (3.29a) gives

`(ε) = r(ε)q(ε)/p(ε) = r(ε)(1 + O(ε)). We see that `(ε) also has leading order ε and

moreover the branching rates are equal at this order. All together, we take equal

branching rates at leading order ε and modify one of them at higher orders to

satisfy condition (3.29a). We now see that condition (3.29a) does not represent

genuine asymmetry, rather it ensures that the discrete point processes are Pfaffian

and in doing so disguises the underlying symmetry in the branching rates. This now

raises the question of whether we lose generality via the modified empty interval

probability procedure. However, the impression of there being a different class of

continuum models with asymmetric branching is illusory, as we now demonstrate.

Consider the BCRW model on Z with constant jump rates p, q, and constant

branching rates r, `. By lemma 5 and rewriting (3.33) and (3.34), the empty interval

probability Kt(x, y), defined in (3.28), satisfies the differential equation

∂tKt(x, y) = (L(1)
x + L(2)

y )Kt(x, y),

where the one-particle generators are given, for f : Z→ R, by

L(1)f(x) =
q + p+ r

2
∆(1)
x f(x) + (q − p− r)∇(1)

x f(x),

L(2)f(x) =
q + p+ `

2
∆(1)
x f(x) + (q − p+ `)∇(1)

x f(x).

Fixing rates p(ε), q(ε), r(ε) and `(ε), the empty interval probability K
(ε)
t for the

scaled process (4.35) satisfies the differential equation with the following one-particle

generators for f : εZ→ R

L(1),(ε)f(x) =
q(ε) + p(ε) + r(ε)

2
∆(ε)
x f(x) + ε−1

(
q(ε) − p(ε) − r(ε)

)
∇(ε)
x f(x),

L(2),(ε)f(x) =
q(ε) + p(ε) + `(ε)

2
∆(ε)
x f(x) + ε−1

(
q(ε) − p(ε) + `(ε)

)
∇(ε)
x f(x).

We pick weakly asymmetric jump rates and order ε branching rates satisfying

p(ε) + q(ε)

2
→ a,

q(ε) − p(ε)

ε
→ b, ε−1r(ε) → r0, ε−1`(ε) → `0, (4.58)
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as ε ↓ 0 for some a > 0, b ∈ R and r0, `0 ≥ 0. The continuum limit K
c
t of K

(ε)
t

satisfies

∂tK
c
t (x, y) = a∆K

c
t (x, y) + (b− r0)∂xK

c
t (x, y) + (b+ `0)∂yK

c
t (x, y).

This may be converted into the differential equation for equal branching rates by

a suitable Galilean transformation, corresponding to adding a global drift to the

system. The change of variables is given by

t′ = t, x′ = x− vt, y′ = y − vt, for some v ∈ R,

and in the transformed system we have

∂t′K
c
t′(x
′, y′) = a∆K

c
t′(x
′, y′) + (v + b− r0)∂x′K

c
t′(x
′, y′) + (v + b+ `0)∂y′K

c
t′(x
′, y′).

Choosing v = r0−`0
2 − b the differential equation becomes

∂t′K
c
t′(x
′, y′) = a∆K

c
t′(x
′, y′)− β∂x′K

c
t′(x
′, y′) + β∂y′K

c
t′(x
′, y′),

where β = r0+`0
2 ≥ 0. This corresponds to the limit of scaled processes with symmet-

ric jump rates and symmetric branching rates, that is, with b = 0 and r0 = `0 = β

in (4.58). We already know that jump rate asymmetry translates into a drift b. The

above shows that the manifestation of branching rate asymmetry is also an effective

drift. Thus, for constant rates, the family of symmetric branching rate continuum

point processes contains all BCRW scaling limits. For independent Bernoulli initial

conditions this class is characterised by conjecture 2. In other words, developing

BCRW via modified empty interval probabilities does not embody a loss of gener-

ality.

4.4.2 Continuum relation between branching and immigration

A relation between the continuum scaling limits of ARWI and BCRW, under

particular initial conditions, is derived. At the heart of the result is theorem 4

relating the underlying ARWI and BCRW models. Unlike the discrete case, the

superposition of continuum point processes that do not charge given singletons is

unambiguous and the relation follows quickly from the kernels.

Proposition 19. Fix a > 0, c ≥ 0 and µ >
√

c
a . Consider the following independent

point processes on R:

• XA
µ , the Pfaffian scaling limit of ARWI in conjecture 1;
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• XB
µ , the Pfaffian scaling limit of BCRW in conjecture 2;

• Y , a rate 1
2

√
c
a Poisson process.

Then the law of the process XB
µ thinned at rate 1

2 is equal to the law of the superpo-

sition of XA
µ′ and Y , where µ′ = 1

2

(
µ−

√
c
a

)
.

Proof of proposition 19. The kernel KA
µ for XA

µ is given by (4.42) and (4.43). The

kernel for XB
µ is 2KA

µ′(x, y) +
√

c
aJ1(x = y) where J =

(
0 1
−1 0

)
. Proposition 15 im-

plies that the point process XB
µ thinned at rate 1

2 is Pfaffian with kernel KA
µ′(x, y)+

1
2

√
c
aJ1(x = y). On the other hand, the superposition of XA

µ′ and Y also has this

kernel by proposition 18. Finally, since the kernel is uniformly bounded, the law of

the associated Pfaffian point process is determined by proposition 13.

Consulting the comments proceeding theorem 6, we expect that when c = 0 the

point processes XA
µ and XB

µ correspond to systems of annihilating and coalescing

Brownian motions, respectively, with Poisson initial conditions. Proposition 19 for

c = 0 then gives the associated thinning relation (see remark 3). Indeed note that

in this case Y is the empty point process and µ′ = µ/2. When µ = ∞ we recover

the thinning relation between coalescing and annihilating Brownian motions under

the maximal entrance law.

Repeating the ARWI steps of section 4.3.2 and using the thickening result proposi-

tion 18, the invariant distribution for the BCRW limit is a rate 2
√

c
a Poisson process.

This is consistent with the above relation, which in the case t = ∞ is simply the

algebra of independent Poisson processes.
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Chapter 5

Extended Pfaffian point

processes

We have so far only described the one-dimensional marginals of interacting particle

systems as Pfaffian. We now develop a generalised construction of Pfaffian point

processes on multiple copies of Z or R, the so-called extended property, enabling a

multi-time Pfaffian description of interacting particle systems. The ARWI model of

section 3.3.1 is shown to be an extended Pfaffian point process.

An introduction to extended Pfaffian point processes is given in section 5.1. We

prove in section 5.2 the extended Pfaffian property for ARWI and compare with

annihilating Brownian motions.

5.1 Definition and examples

We introduce extended Pfaffian point processes, giving definitions as well as some

known examples.

Our random walk interacting particle systems are time-homogeneous continuous-

time Markov processes taking values in the set of simple measuresM0(R). We have

so far described the one-dimensional marginals and their diffusive scaling limits.

Our investigation now turns to characterising the evolution of processes via multi-

time statistics. The concept of intensity function extends to time-dependent point

processes, taking a set of space-time points as its argument and, at least informally,

returning the probability of the process occupying those positions. The multi-time

intensity functions determine the finite-dimensional distributions for the stochastic
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process evolving inM0(R). Accordingly, one hopes that, given certain regularity of

the measures, the multi-time intensities characterise the process.

The structure of Pfaffians may be incorporated by asking for a multi-time intensity

to be given by the Pfaffian of a matrix indexed by space-time points and generated

by a kernel K(s, x; t, y) taking two space-time arguments. This is the essence of an

extended Pfaffian point process. Intuitively a time-dependent process is an extended

Pfaffian point process on Λ if the finite-dimensional marginal for fixed times t1 <

· · · < tL is a Pfaffian point process on the state space Λq . . .qΛ (L copies), where

q denotes the disjoint union of sets. Note that by taking L = 1 we recover the

Pfaffian structure for single times.

We will show in section 5.2 that ARWI is an extended Pfaffian point process on

Z. We do not develop here the convergence theory for extended processes and, as

such, we focus on the definition for discrete processes. In this case, the multi-time

intensity is exactly the aforementioned occupation probability. Let (Xt : t ≥ 0)

be a collection of simple point processes on Z, for us, a continuous-time Markov

process on {0, 1}Z. For n ∈ N, t1, . . . , tn ∈ [0,∞) and x1, . . . , xn ∈ Z satisfying

(ti, xi) 6= (tj , xj) for i 6= j, the multi-time intensity is defined by

ρ(n)(t1, x1; . . . ; tn, xn) = E [Xt1(x1) . . . Xtn(xn)] .

An extended kernel is defined to be a 2×2 matrix-valued function K : ([0,∞)×Z)2 →
R2×2 with K(s, x; t, y) =

(
K11(s,x;t,y) K12(s,x;t,y)
K21(s,x;t,y) K22(s,x;t,y)

)
, constructed by defining

Kij : ([0,∞)× Z)2 → R,

satisfying the anti-symmetry condition Kij(s, x; t, y) = −Kji(t, y; s, x).

Definition 8. Let (Xt : t ≥ 0) be a collection of simple point processes on Z with

multi-time intensities {ρ(n) : n ∈ N}. Suppose that there exists an extended kernel

K such that

ρ(n)(t1, x1; . . . ; tn, xn) = Pf (K(ti, xi; tj , xj) : i, j ≤ n) , (5.1)

for t1, . . . , tn ∈ [0,∞) and x1, . . . , xn ∈ Z. Then (Xt : t ≥ 0) is called an extended

Pfaffian point process on Z with (extended) kernel K, and is said to satisfy the

extended Pfaffian property.

The notation Pf (K(ti, xi; tj , xj) : i, j ≤ n) represents the Pfaffian of the 2n × 2n
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matrix generated by the n2 kernel blocks K(ti, xi; tj , xj) where the arguments range

over (t1, x1), . . . , (tn, xn). For fixed L, the space Λ = Z q . . . q Z (L copies) is a

locally compact, second countable Hausdorff space, in the disjoint union topology,

and so the characterisation of the extended property as finite-dimensional marginals

being Pfaffian on Λ is well-defined. Through this interpretation, extended Pfaffian

point processes inherit several properties immediately, for instance, the multi-time

intensity vanishes if (ti, xi) = (tj , xj) for some i 6= j. Moreover the ordering of points

makes no difference and for convenience we generally order by temporal and then

spatial position. Proposition 12 applies to extended processes, giving equivalent

extended kernels. Invoking proposition 13 guarantees a suitably bounded extended

kernel determines the law of the finite-dimensional marginals of (Xt : t ≥ 0) on

Z q . . . q Z. We expect stronger results to hold for any extended Pfaffian random

walk model, since there is an underlying continuous-time Markov process.

Extended Pfaffian point processes on R are defined similarly: multi-time intensity

functions are introduced and must satisfy condition (5.1) for x1, . . . , xn ∈ R.

Examples of extended Pfaffian point processes are still fairly uncommon. The key

example is a system of annihilating Brownian motions.

Example 10 (Annihilating Brownian motions on R). In [58] Tribe and Zaboronski

showed that annihilating Brownian motions under a maximal entrance law are an

extended Pfaffian point process on R. This extends their result of [59] for the

one-dimensional distributions, see example 6. The extended kernel is given by

convolving the single-time kernel K̃ABM
t , defined by (2.13), and the heat kernel

p
c
t(z) = (2πt)−1/2e−z

2/2t, namely for s < t and x, y ∈ R

KABM
ij (s, x; t, y) = −

(
p
c
t−s ? (K̃ABM

s )ij

)
(x, y) + 1(i = 2, j = 1)p

c
t−s(y − x). (5.2)

Note that K̃ABM
t (x, y) depends on y − x and so the one-dimensional convolution

makes sense. The additional term in the (2, 1) entry represents the event that the

particle at (t, y) evolved from (s, x). (Note that the kernel in [58] contains a typo:

the additional term should have a prefactor of −1 instead of −2.)

Example 11 (A Markov process on strict partitions). In [42] Petrov introduced a

continuous time Markov process on the space of strict partitions λ = (λ1 > · · · >
λL > 0) where λi ∈ {1, 2, . . . }. This space may be identified with certain types

of Young diagrams. The one-dimensional marginals coincide with a determinantal

random strict partition model of Borodin. The dynamical model (λt : t ≥ 0) may be
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defined by the transition probabilities for adding and deleting boxes from the Young

diagrams, which depend on a continuous time birth-death process. It is shown that

(λt : t ≥ 0) is an extended Pfaffian point process with kernel given in terms of the

Gauss hypergeometric function. See [42] for a full description.

As for single times (example 3), there is a determinantal counterpart to extended

processes. An extended determinantal point process is defined by replacing the Pfaf-

fian in (5.1) by a determinant and the kernel by K : ([0,∞)×R)2 → R. Extended de-

terminantal point process have received more attention than Pfaffian due to explicit

tractable examples arising in random matrix theory and interacting particle systems.

In particular, extended determinantal point processes arise when the multi-time in-

tensities are given by a product of determinants [31], which arise naturally in sys-

tems of non-interacting Markov processes due to the determinantal Karlin-McGregor

transition probability [34] and its discrete analogue, the Lindström-Gessel-Viennot

theorem [54]. We remark that the epithet ‘extended’ is normally suppressed, since

the context is clear from the form of the kernel.

Example 12 (Dyson’s Brownian motion). The GUE (β = 2) model of random

matrix theory is introduced in example 5. The ensemble comprises N ×N Hermi-

tian matrices with independent complex Gaussian entries. Dyson [16] considered a

temporal extension in which the entries evolve as independent Brownian motions.

More precisely, define a Hermitian matrix-valued Brownian motion
(
H(N)(t) =(

H
(N)
ij (t)

)N
i,j=1

: t ≥ 0
)

by its entries

H
(N)
ij (t) =


1√
N

(Bij(t) + iB′ij(t)) for i < j,

1√
N

(Bij(t)− iB′ij(t)) for i > j,√
2
NBii(t) for i = j,

where Bij , B
′
ij are independent standard Brownian motions. Dyson showed that

the eigenvalues λ
(N)
1 (t) < λ

(N)
2 (t) < · · · < λ

(N)
N (t) solve the following system of

stochastic differential equations

dλ
(N)
i (t) =

1√
N

dWi(t) +
1

N

∑
j 6=i

1

λ
(N)
i (t)− λ(N)

j (t)
dt, for i = 1, . . . , N,

where Wi are independent standard Brownian motions. This is known as Dyson’s

Brownian motion. The eigenvalues evolve as Brownian motions with an additional

repulsion term guaranteeing they stay ordered. In other words, the eigenvalues
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form a system of non-colliding Brownian motions. The intensities are given by

determinants of the extended Hermite kernel [19, 30], so that Dyson’s Brownian

motion is an extended determinantal point process for each N .

We now consider scaling limits, referring to [1], for instance, and references therein

for further details and formulae. Scaling the extended Hermite kernel leads to two

more extended kernels, describing limiting behaviour in the bulk or near the edge

of Dyson’s Brownian motion as N →∞. Scaling in the bulk gives the Sine process

[57] defined by the extended sine kernel. At the edge, scaling near the largest

eigenvalue λ
(N)
N leads to the Airy process [43] defined by the extended Airy kernel.

Both extended determinantal point processes correspond to infinite collections of

non-colliding processes. Upon taking coincidental times, the extended sine and

extended Airy kernels reduce to the ordinary sine and Airy kernels for the GUE

scaling limits (see example 5).

Generalising example 3, an extended determinantal point processes with kernel

K(s, x; t, y) is trivially Pfaffian, for example take the extended kernel K(s, x; t, y) =(
0 K(s,x;t,y)

−K(t,y;s,x) 0

)
.

5.2 Extended Pfaffian property for annihilating random

walks with pairwise immigration

The ARWI model of section 3.3.1 is shown to be an extended Pfaffian point process

for a wide class of initial conditions, including deterministic.

In [58], a system of annihilating Brownian motions, under a maximal entrance

law, was shown to be an extended Pfaffian point process on R. This builds on the

work of [59], which established the Pfaffian property at single times. Sections 3.2

and 3.3.1 extended these single-time results to ARWI and the aim of this section is

to do the same for the multi-time results of [58]. Precisely, we extend the annihilat-

ing Brownian motion result by considering: (i) analogous particle systems on Z with

an (optional) additional mechanism of pairwise immigration; (ii) spatially inhomo-

geneous nearest neighbour motion; (iii) general deterministic initial conditions. The

extended Pfaffian structure survives all of these changes.

By theorem 2 ARWI at a fixed time t ≥ 0 is Pfaffian with kernel K(x, y) given

by (3.20), in terms of the spin expectation Kt(x, y) defined on {x ≤ y} ⊂ Z2. The
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extended kernel must be defined for space-time points (s, x) and (t, y) in [0,∞)×Z.

Anti-symmetry allows us to just define the kernel at times s ≤ t, but we must

consider spatial points x, y ∈ Z. Because of this, it is convenient to extend Kt(x, y)

to Z2. We define K̃t : Z2 → R by

K̃t(x, y) = Kt(min{x, y},max{x, y}) sgn(y − x).

Note that K̃t(x, x) = 0 6= 1 = Kt(x, x), however K(x, y) may be written in terms

of K̃t(x, y) at the expense of additional indicator terms. The single-time parameter

plays a role in the extended picture and we append t to the subscript of the kernel.

The single-time kernel Kt(x, y) for ARWI at time t is given, for x, y ∈ Z, by

(Kt)11(x, y) = −1
2K̃t(x, y),

(Kt)12(x, y) = −1
2

(
D+

2 K̃t(x, y)− 1(x = y + 1)− 1(x = y)
)
,

(Kt)21(x, y) = −1
2

(
D+

1 K̃t(x, y) + 1(x = y − 1) + 1(x = y)
)
,

(Kt)22(x, y) = −1
2

(
D+

1 D
+
2 K̃t(x, y) + 1(x = y + 1)− 1(x = y − 1)

)
.

(5.3)

The extended kernel for ARWI is built from the one-dimensional convolution, and

its derivatives, of K̃t against the Green’s function pt : Z2 → R for the one-particle

generator LA, given by (3.21), on Z, namely pt(x, y) is the solution to{
∂tpt(x, y) = LAy pt(x, y) for y ∈ Z, t > 0,

p0(x, y) = 1(x = y) for y ∈ Z.

For a function f : Z2 → R, one-dimensional convolution with pt is defined by

(pt ∗ f)(x, y) =
∑
z∈Z

pt(z, y)f(x, z), for x, y ∈ Z.

We can now state the main result of this section.

Theorem 7. For any initial condition, η0 ∈ {0, 1}Z, the ARWI system (ηt : t ≥ 0)

is an extended Pfaffian point process on Z with kernel K(s, x; t, y) given, for s < t
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and i, j ∈ {1, 2}, by

K11(s, x; t, y) = −1
2

((
pt−s ∗ K̃s

)
(x, y)− pt−s(x, y)

)
,

K12(s, x; t, y) = −1
2

(
D+

2

(
pt−s ∗ K̃s

)
(x, y)− pt−s(x, y + 1) + pt−s(x, y)

)
,

K21(s, x; t, y) = −1
2

(
D+

1

(
pt−s ∗ K̃s

)
(x, y) + pt−s(x, y − 1) + pt−s(x, y)

)
,

K22(s, x; t, y) = −1
2

(
D+

1 D
+
2

(
pt−s ∗ K̃s

)
(x, y) + pt−s(x, y + 1)− pt−s(x, y − 1)

)
.

(5.4)

and, for s = t, by

K(s, x; t, y) = Kt(x, y). (5.5)

The s > t entries are determined by anti-symmetry of the kernel.

Remark 21. The derivatives in the extended kernel (5.4) may be moved inside the

convolution

K11(s, x; t, y) = −1
2

((
pt−s ∗ K̃s

)
(x, y)− pt−s(x, y)

)
,

K12(s, x; t, y) = −1
2

(((
D+

2 pt−s
)
∗ K̃s

)
(x, y)− pt−s(x, y + 1) + pt−s(x, y)

)
,

K21(s, x; t, y) = −1
2

((
pt−s ∗

(
D+

1 K̃s

))
(x, y) + pt−s(x, y − 1) + pt−s(x, y)

)
,

K22(s, x; t, y) = −1
2

(((
D+

2 pt−s
)
∗
(
D+

1 K̃s

))
(x, y) + pt−s(x, y + 1)− pt−s(x, y − 1)

)
.

In the case of constant rates, px = p, qx = q and mx = m for all x ∈ Z, the function

pt−s is spatially invariant, depending on x and y only through y−x. In this case the

derivatives in the convolution may be moved between functions and the extended

kernel (5.4) can be expressed as a convolution of the single-time kernel with two

additional terms

Kij(s, x; t, y) = (pt−s ∗ (Ks)ij) (x, y) +

(
1

2
1(i = j = 1)− 1(i = 1, j = 2)

)
pt−s(x, y).

(5.6)

For example, writing the spatially homogeneous Green’s function as pt−s(y− x) for
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convenience, the (1, 2) entry of K(s, x; t, y) is given by

(−2)K12(s, x; t, y)

=
∑
z∈Z

(pt−s(y + 1− z)− pt−s(y − z)) K̃s(x, z)− pt−s(y + 1− x) + pt−s(y − x)

=
∑
z∈Z

pt−s(y − z)
(
K̃s(x, z + 1)− K̃s(x, z)

)
− pt−s(y + 1− x) + pt−s(y − x)

=
∑
z∈Z

pt−s(y − z)
(
D+

2 K̃s(x, z)− 1(x = z − 1)− 1(x = z)
)

+ 2pt−s(y − x).

The claimed expression then follows from (5.3). The other entries may be developed

similarly. We develop the case of symmetric annihilating random walks under the

maximal initial condition in remark 27 after the proof, comparing with the annihi-

lating Brownian motion model of example 10.

Remark 22. For general rates the Green’s function is spatially invariant in the

limit limr↓0 pr(x, y) = 1(x = y). Thus, the limit as t ↓ s in the extended kernel (5.4)

coincides with the limit of (5.6), namely the single-time kernel with indicator terms

in the K11 and K12 entries

lim
t↓s

Kij(s, x; t, y) = (Ks)ij(x, y) +

(
1

2
1(i = j = 1)− 1(i = 1, j = 2)

)
1(x = y).

The additional indicator terms arise due to the event that the particle at (t, y)

evolved from the particle at (s, x) (instead of the two space-time points representing

different particles). The necessity for additional terms can be seen through the

following consistency check (based on the heuristic remark in [58]) for the one-point

intensity E [ηs(x)] = −1
2D

+
2 Ks(x, x). For x ∈ Z

E [ηs(x)] = E
[
ηs(x)2

]
= lim

t↓s
E [ηs(x)ηt(x)] ,

and by theorem 7 the multi-time intensity is given by the Pfaffian

Pf


0 (Ks)12(x, x) K11(s, x; t, x) K12(s, x; t, x)

−(Ks)12(x, x) 0 K21(s, x; t, x) K22(s, x; t, x)

−K11(s, x; t, x) −K21(s, x; t, x) 0 (Kt)12(x, x)

−K12(s, x; t, x) −K22(s, x; t, x) −(Kt)12(x, x) 0

 .

Expanding the Pfaffian, taking limits and substituting in the single-time kernel
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(3.20) gives the required intensity

lim
t↓s

E [ηs(x)ηt(x)] = ((Ks)12(x, x))2 −
(

(Ks)11(x, x) +
1

2

)
(Ks)22(x, x)

+ ((Ks)12(x, x)− 1) (Ks)21(x, x)

=
1

4

(
D+

2 Ks(x, x)
)2 − (−1

2
Ks(x, x) +

1

2

)(
−1

2
D+

1 D
+
2 Ks(x, x)

)
+

(
−1

2
D+

2 Ks(x, x)− 1

)
1

2
D+

2 Ks(x, x)

= −1

2
D+

2 Ks(x, x).

Without the additional indicator terms the limit is given by −1
4D

+
1 D

+
2 Ks(x, x) and

we do not recover the intensity. The extended kernel for the annihilating Brownian

motion system in [58] has the same form of a convolution between the single-time

kernel and the Green’s function, with the (1, 2) entry featuring an additional Green’s

function term with prefactor −1. There is no additional Green’s function term in

the (1, 1) entry; this is purely a discrete artefact. Indeed for suitable approximating

ARW systems the term disappears in the diffusive scaling limit and we recover the

annihilating Brownian motion extended kernel (see remark 27 after the proof of

theorem 7).

Theorem 7 is proved by showing that the multi-time intensities satisfy (5.1) with

the claimed kernel. The proof is based on the method in [58] for annihilating Brow-

nian motions. The idea is to extend the ODE characterisation result for spin expec-

tations, lemma 4, to certain multi-time mixed expectations of intensities and spins.

A Pfaffian representation for these expectations may be established inductively and

theorem 7 is recovered as a special case. An induction is performed on the number

of disjoint times, so it is convenient to partition and relabel the space-time points

according to the temporal component. We prove the following result.

Theorem 8. Fix a number of time slices L ∈ N and spin pairs m ∈ N. For times

t1 < · · · < tL ≤ t, particle counts n1, . . . , nL, particle positions x
(`)
1 < · · · < x

(`)
n` in Z

at time t` for 1 ≤ ` ≤ L, and spin positions y1 ≤ · · · ≤ y2m, the following Pfaffian
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expression holds for a mixed intensity and spin expectation

E

 L∏
`=1

n∏̀
i=1

ηt`

(
x

(`)
i

) m∏
j=1

(−1)ηt[y2j−1,y2j)


= (−2)−

∑L
`=1 n` Pf

(
K̃(s1, w1; s2, w2) : (s1, w1), (s2, w2) ∈ A

)
, (5.7)

where the extended kernel K̃ ranges over space-time points from

A =
L⋃
`=1

n⋃̀
i=1

(
t`, x

(`)
i

)
︸ ︷︷ ︸

Particles

∪
2m⋃
j=1

(t, yj)︸ ︷︷ ︸
Spins

, (5.8)

with the particle positions (t`, x
(`)
i ) appearing before the (ordered) spin positions

(t, yj), and is defined as follows: for t` ≤ tk, x,w ∈ Z and i < j

K̃(t`, x; tk, w) = −2K(t`, x; tk, w) (2× 2 entry),

K̃(t`, x; t, yj) = (
pt−t` ∗ K̃t`

)
(x, yj)− pt−t`(x, yj)

D+
1

(
pt−t` ∗ K̃t`

)
(x, yj) + pt−t`(x, yj − 1) + pt−t`(x, yj)

 (2× 1 entry),

K̃(t, yi; t, yj) = Kt(yi, yj) (1× 1 entry).

(5.9)

The remaining entries are defined by anti-symmetry.

Note that theorem 7 is recovered upon setting m = 0, since the factors of −1/2

may be moved onto the kernel (proposition 7). We turn attention to the proof of

theorem 8. For convenience we introduce the shorthand Pf(K̃(A)) for the Pfaffian

on the right-hand side of (5.7).

Remark 23. Theorem 8, and hence theorem 7, hold for certain random initial

conditions. Indeed by virtue of the inductive proof, we need only check the claim

for spin expectations. This is already addressed in remark 6 for ARW, extending

immediately to ARWI. The condition is that the spin expectations at time zero are

Pfaffian. Independent Bernoulli initial conditions are such an example.

Remark 24. In (5.7) the ordering of points (t`, x
(`)
i ) in the matrix does not affect the

Pfaffian and for convenience we fix the natural ordering via temporal, then spatial,

122



components. The assumption that the particle positions (t`, x
(`)
i ) appear before the

(ordered) spin positions (t, yj) means that (5.9) defines the upper triangular entries

for Pf(K̃(A)). The general spin-spin entry for example is given by

K̃(t, yi; t, yj) = Kt(min{yi, yj},max{yi, yj}) sgn(j − i).

Remark 25. A natural guess for how to extend the single-time result would be to

consider multi-time spin expectations and then use the explicit connection (3.14)

between spins and intensities to derive the multi-time intensities. Unfortunately,

however, multi-time spin expectations are not Pfaffian. The mixed expectation acts

as a suitable intermediary between multi-time spin expectations and multi-time

intensities. In fact, by its inductive proof, theorem 8 shows that a suitable way to

develop multi-time intensities is to build them up from spin expectations one time

slice at a time.

Remark 26. Although we follow the continuum blueprint for annihilating Brown-

ian motions, there are important differences on the lattice. As we have already seen

for single times, switching between spins and intensities by (3.14) is straightforward

for discrete processes, whereas the continuum analogue is given by a distributional

derivative, forcing technical consideration. On the other hand, this explicit con-

nection involves adjacent lattice sites, introducing subtleties with coincidental spin

positions. Moreover the model we address here is spatially inhomogeneous and the

formulae are accordingly more involved.

Proof of theorem 8. The proof proceeds via an induction on the number of time

slices L. The base of the induction, L = 0, is the content of lemma 4. For L > 0

we follow a similar strategy of characterising the mixed expectations by a system of

ODEs in the spin positions and showing that the claimed Pfaffians are also solutions.

The inductive hypothesis is used to establish the boundary and initial conditions.

Fix L > 0 and particle positions x
(`)
1 < · · · < x

(`)
n` for 1 ≤ ` ≤ L, then for y =

(y1, . . . , y2m) with y1 ≤ · · · ≤ y2m, set

u(2m)(t,y) = E

 L∏
`=1

n∏̀
i=1

ηt`

(
x

(`)
i

) m∏
j=1

(−1)ηt[y2j−1,y2j)

 .
Using the notation and framework of lemma 2, u(2m)(t,y) solves the following system
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of ODEs in the variables t ∈ [tL,∞) and y ∈ V2m

(ODE)′2m



∂tu
(2m)(t,y) =

∑2m
j=1 L

A
yju

(2m)(t,y) on [tL,∞)× V2m,

u(2m)(t,y) = u(2m−2)(t,yj,j+1) on [tL,∞)× ∂V (j)
2m ,

u(2)(t,y) = E
[∏L

`=1

∏n`
i=1 ηt`

(
x

(`)
i

)]
on [tL,∞)× {y1 = y2},

u(2m)(tL,y) =

E
[∏L

`=1

∏n`
i=1 ηt`

(
x

(`)
i

)∏m
j=1(−1)ηtL [y2j−1,y2j)

]
on V2m.

The boundary and initial conditions are immediate. The only part to comment on

is the differential equation. Since the process is time-homogeneous and Markov, this

follows lemma 4, the single-time ODE characterisation for spin expectations. For

example, by the tower property u(2m)(t,y) may be written as an iterated expectation

with the inner expectation conditioned on the σ-algebra generated by the process

up to time tL. Pulling the product of intensities outside inner expectation and

applying the Markov property at tL leaves a spin expectation at time t − tL with

initial condition given by the original process at time tL. Lemma 4 implies both

that this initial condition is Pfaffian and then, by its extension to random initials,

that the spin expectation solves the differential equation. It remains to exchange the

time derivative with the outer expectation, which follows from regularity properties

of the spin expectation.

Since the mixed expectation is bounded in absolute value by 1, the reasoning in

lemma 2 extends to give unique solvability of the infinite sequence ((ODE)′2m : m =

1, 2, . . . ), within the class of continuously differentiable functions satisfying

sup
t≥tL

sup
y∈V2m

|u(2m)(t,y)| <∞.

It remains to show that the claimed Pfaffian (−2)−
∑L
`=1 n` Pf(K̃(A)) is a solution

for t ∈ [tL,∞) and y ∈ V2m, then extend to y ∈ V 2m.

Firstly, consider the differential equation in (ODE)′2m. By definition the Pfaffian

Pf(K̃(A)) is a sum of products of the matrix entries, each space-time point of (5.8)

appearing exactly once in each product. The entries containing the variables t and y

come from the K̃(t, yi; t, yj), with i < j, and K̃(t`, x; t, yj) terms of (5.9) (and their

lower triangular anti-symmetric counterparts). We have already seen in lemma 4

that the spin expectation K̃(t, yi; t, yj) = Kt(yi, yj) solves

∂tK̃(t, yi; t, yj) = (LAyi + LAyj )K̃(t, yi; t, yj).
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Noting thatD+
1

(
pt−t`∗K̃t`

)
(x, yj) =

(
pt−t`∗D

+
1 K̃t`

)
(x, yj), each entry of K̃(t`, x; t, yj)

may be expressed as a convolution against pt−t` and so solves the equation in one

spatial dimensional

∂tK̃(t`, x; t, yj) = LAyjK̃(t`, x; t, yj).

Hence each product, and therefore the entire Pfaffian, solves the desired equation

∂tu =
∑2m

j=1 L
A
yju for y ∈ V2m.

Next we check the boundary conditions. For m > 1 these follow exactly as

for single-time spin expectations. Indeed K̃(t, yj ; t, yj+1) = 1 if yj = yj+1, and

subtracting the yj+1-th row (and column) from the yj-th, then expanding in the

yj-th row, gives the Pfaffian with these rows and columns removed, which is the

desired boundary condition. For m = 1 these steps give the Pfaffian

Pf
(
K̃
(
t`, x

(`)
i ; tk, x

(k)
j

)
: `, k ≤ L, i ≤ n`, j ≤ nk

)
.

To complete the boundary conditions, we must show that this Pfaffian is equal to

E
[∏L

`=1

∏n`
i=1 ηt`

(
x

(`)
i

)]
. Note that this represents exactly the claim of theorem 7,

since the m = 1 boundary condition corresponds to taking zero spin pairs. The

desired equivalence coincides with the m = 0 initial condition and we therefore turn

attention to establishing the initial conditions for m ≥ 0.

To prove that the initial conditions are satisfied, we develop the mixed expectation

u(2m)(tL,y) = E

 L∏
`=1

n∏̀
i=1

ηt`

(
x

(`)
i

) m∏
j=1

(−1)ηtL [y2j−1,y2j)

 ,
and show that it coincides with the Pfaffian

(−2)−
∑L
`=1 n` Pf(K̃(A0)) where A0 =

L⋃
`=1

n⋃̀
i=1

(
t`, x

(`)
i

)
︸ ︷︷ ︸

Particles

∪
2m⋃
j=1

(tL, yj)︸ ︷︷ ︸
Spins

. (5.10)

The outline is to rewrite the intensities at tL in terms of spins, in order to express

the mixed expectation as a product of intensities at L − 1 time slices and spins

at a later time. The inductive hypothesis allows us to write such expectations as

Pfaffians and we then check that the claimed Pfaffians emerge when the spins at tL

are turned back into intensities. The explicit relation between spins and intensities
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is given by (3.14)

D+
y (−1)η[x,y)

∣∣∣
y=x

= (−1)η[x,x+1) − 1 = −2η(x).

Using this we may express the initial condition as

u(2m)(tL,y) = (−2)−nL

(
nL∏
i=1

D+
xiE [ — ]

)∣∣∣∣
x1=x

(L)
1 , ..., xnL=x

(L)
nL

,

where the expectation is given by

E [ — ] = E

L−1∏
`=1

n∏̀
i=1

ηt`

(
x

(`)
i

) nL∏
i=1

(−1)ηtL [x
(L)
i ,xi)

m∏
j=1

(−1)ηtL [y2j−1,y2j)

 . (5.11)

By the inductive hypothesis this expectation is given by a Pfaffian of K̃, but to

give the Pfaffian explicitly we must fix an ordering on the set of spin positions

S = {(tL, x(L)
i ) ∪ (tL, xi) ∪ (tL, yj) : 1 ≤ i ≤ L, 1 ≤ j ≤ 2m} at coincidental

points. Note that xi takes the value x
(L)
i or x

(L)
i + 1. Moreover the underlying tL

particle positions x
(L)
i are distinct, so we may assume that the spin positions in the

expectation coming from the intensities satisfy

x
(L)
1 ≤ x1 ≤ x(L)

2 ≤ x2 ≤ · · · ≤ x(L)
nL
≤ xnL . (5.12)

This gives an ordering on these spin positions, but we must also incorporate the

yj positions. The choice of ordering on coincidental points is arbitrary, but for

convenience we fix the ordering θ : S → {1, 2, . . . , 2nL + 2m} in which the (ordered

by index) coincidental yj slot in immediately below the smallest x
(L)
i that is larger

or equal. An example of this ordering on a set of points is

x
(L)
1 = x1 < y1 = y2 = x

(L)
2 < x2 = y3 = x

(L)
3 < x3 < y4.

This choice is practical because the pairs x
(L)
i and xi are kept adjacent. With this

choice, the expectation (5.11) is given by the inductive hypothesis as

(−2)−
∑L−1
`=1 n` Pf(K̃(A′0)) where A′0 =

L−1⋃
`=1

n⋃̀
i=1

(
t`, x

(`)
i

)
︸ ︷︷ ︸

Particles

∪ S︸︷︷︸
Spins

,
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with the ordering θ for coincidental spin points. Before recombining the discrete

derivatives to restore the initial condition, we manipulate the Pfaffians by exchang-

ing rows and columns to obtain the desired ordering, in which the (ordered) x
(L)
i

and xi come before the (ordered) yj . Exchanging a pair of rows (and correspond-

ing columns) corresponds to conjugation by an elementary matrix with determinant

−1, and so flips the sign of the Pfaffian. The ordering θ was chosen as it takes

an even number of transpositions to reach the desired ordering. Indeed, since the

pairs x
(L)
i and xi are adjacent, it takes an even number of transpositions to move

y2m to the end, then an even number to move y2m−1 immediately before y2m, then

an even number to move y2m−2 immediately before y2m−1, and so on. In terms of

particle positions, acting spins arising from particle positions and genuine spins, the

resulting Pfaffian expression for the expectation (5.11) has the block form

(−2)−
∑L−1
`=1 n` Pf


Mp-p Mp-a Mp-s

−MT
p-a Ma-a Ma-s

−MT
p-s −MT

a-s Ms-s


, (5.13)

where each block has the following entries from (5.9)

• Mp-p is the 2
∑L−1

`=1 n`×2
∑L−1

`=1 n` anti-symmetric matrix containing the 2×2

(particle,particle) entries K̃(t`, x
(`)
i ; tk, x

(k)
j );

• Mp-a is the 2
∑L−1

`=1 n`×2nL matrix containing the 2×1 (particle, acting spin)

entries K̃(t`, x
(`)
i ; tL, x

(L)
j ) and K̃(t`, x

(`)
i ; tL, xj);

• Mp-s is the 2
∑L−1

`=1 n`× 2m matrix containing the 2× 1 (particle, spin) entries

K̃(t`, x
(`)
i ; tL, yj);

• Ma-a is the 2nL×2nL anti-symmetric matrix containing the 1×1 (acting spin,

acting spin) entries K̃(tL, x
(L)
i ; tL, x

(L)
j ), K̃(tL, x

(L)
i ; tL, xj), K̃(tL, xi; tL, x

(L)
j )

and K̃(tL, xi; tL, xj);

• Ma-s is the 2nL × 2m matrix containing the 1 × 1 (acting spin, spin) entries

K̃(tL, x
(L)
i ; tL, yj) and K̃(tL, xi; tL, yj);

• Ms-s is the 2m × 2m anti-symmetric matrix containing the 1 × 1 (spin, spin)

entries K̃(tL, yi; tL, yj).
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The entries of Ma-a, Ma-s and Ms-s are given by

K̃(tL, w1; tL, w2) = KtL(min{w1, w2},max{w1, w2}) sgn(θ(w2)− θ(w1)),

for (tL, w1), (tL, w2) ∈ S. Note that θ respects the ordering on
⋃2m
j=1(tL, yj), so the

matrix Ms-s is the spin matrix with entries

K̃(tL, yi; tL, yj) = Kt(min{yi, yj},max{yi, yj}) sgn(j − i).

Moreover the ordering (5.12) is respected by θ and the matrix Ma-a is also a spin

matrix, with upper triangular entries

K̃(tL, w1; tL, w2) = KtL(w1, w2),

for (tL, w1), (tL, w2) ∈
⋃nL
i=1(tL, x

(L)
i ) ∪ (tL, xi). Unpicking the ordering, the entries

of Ma-s are given in terms of the anti-symmetrised function K̃tL by

K̃(tL, x
(L)
i ; tL, yj) = K̃tL(x

(L)
i , yj)− 1(x

(L)
i = yj),

K̃(tL, xi; tL, yj) = K̃tL(xi, yj) + 1(xi = yj)
(

1(xi = x
(L)
i + 1)− 1(xi = x

(L)
i )
)
.

(5.14)

It remains to apply the discrete derivatives and evaluations to (5.13) to restore the

initial condition, then show that this coincides with the claimed Pfaffian expression

(5.10). As explained in the proof of theorem 1, each discrete derivative may be passed

onto the row and column on which it acts. All together, applying the derivatives

and evaluations, the initial condition is given by

u(2m)(tL,y) = (−2)−
∑L
`=1 n` Pf


Mp-p M̃p-a Mp-s

−M̃T
p-a M̃a-a M̃a-s

−MT
p-s −M̃T

a-s Ms-s


,

where

• M̃p-a is obtained from Mp-a by replacing

K̃(t`, x
(`)
i ; tL, xj) 7→ D+

2 K̃(t`, x
(`)
i ; tL, x

(L)
j ),

where the operator acts on each entry of the (2× 1) term;
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• M̃a-a is obtained from Ma-a by replacing

K̃(tL, x
(L)
i ; tL, xj) 7→ D+

2 K̃(tL, x
(L)
i ; tL, x

(L)
j ),

K̃(tL, xi; tL, x
(L)
j ) 7→ D+

1 K̃(tL, x
(L)
i ; tL, x

(L)
j ),

K̃(tL, xi; tL, xj) 7→ D+
1 D

+
2 K̃(tL, x

(L)
i ; tL, x

(L)
j );

• M̃a-s is obtained from Ma-s by replacing

K̃(tL, xi; tL, yj) 7→ D+
1 K̃(tL, x

(L)
i ; tL, yj).

The matrices Mp-p and Mp-s, which do not involve acting spins, are trivially in the

desired form, and we have seen that so is Ms-s. It remains to deal with the acting

spin entries of M̃p-a, M̃a-a and M̃a-s. In particular, referring to (5.9), we must show

that the acting spin entries combine to form the corresponding particle entries in

(5.10). Firstly, for M̃p-a the entries K̃(t`, x
(`)
i ; tL, x

(L)
j ) and D+

2 K̃(t`, x
(`)
i ; tL, x

(L)
j )

are given by

K̃(t`, w; tL, z) =

 (
ptL−t` ∗ K̃t`

)
(w, z)− ptL−t`(w, z)

D+
1

(
ptL−t` ∗ K̃t`

)
(w, z) + ptL−t`(w, z − 1) + ptL−t`(w, z)

,
D+

2 K̃(t`, w; tL, z) = D+
2

(
ptL−t` ∗ K̃t`

)
(w, z)− ptL−t`(w, z + 1) + ptL−t`(w, z)

D+
2 D

+
1

(
ptL−t` ∗ K̃t`

)
(w, z) + ptL−t`(w, z + 1)− ptL−t`(w, z − 1)

,
where w = x

(`)
i and z = x

(L)
j . The 2 × 2 block formed by combining these terms is

the desired (particle, particle) entry K̃(t`, x
(`)
i ; tL, x

(L)
j ) of (5.10) (taking into account

the factor of −2 for K̃). Next the entries of M̃a-a combine to give, for x
(L)
i < x

(L)
j ,

the upper triangular block(
K̃(tL, x

(L)
i ; tL, x

(L)
j ) D+

2 K̃(tL, x
(L)
i ; tL, x

(L)
j )

D+
1 K̃(tL, x

(L)
i ; tL, x

(L)
j ) D+

1 D
+
2 K̃(tL, x

(L)
i ; tL, x

(L)
j )

)

=

(
KtL(x

(L)
i , x

(L)
j ) D+

2 KtL(x
(L)
i , x

(L)
j )

D+
1 KtL(x

(L)
i , x

(L)
j ) D+

1 D
+
2 KtL(x

(L)
i , x

(L)
j )

)
,

and D+
2 K̃(tL, x

(L)
i ; tL, x

(L)
i ) = D+

2 KtL(x
(L)
i , x

(L)
i ). These blocks coincide with the

corresponding single-time (particle,particle) entries K̃(tL, x
(L)
i ; tL, x

(L)
j ) of (5.10),

and the lower triangular blocks are determined by anti-symmetry. Finally, appealing
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to (5.14), the entries of M̃a-s combine to give(
K̃(tL, x

(L)
i ; tL, yj)

D+
1 K̃(tL, x

(L)
i ; tL, yj)

)
=

(
K̃tL(x

(L)
i , yj)− 1(x

(L)
i = yj)

D+
1 K̃tL(x

(L)
i , yj) + 1(x

(L)
i + 1 = yj) + 1(x

(L)
i = yj)

)
,

the desired 2 × 1 (particle, spin) entry K̃(tL, x
(L)
i ; tL, yj) of (5.10). This completes

the proof that the mixed expectation initial condition u(2m)(tL,y) coincides with

the Pfaffian initial condition (5.10). Moreover, by the above remarks, taking m = 0

finishes the proof of the boundary conditions.

Finally, the entries of K̃(A) in (5.7) are uniformly bounded in absolute value.

Indeed each entry may be written as a finite sum of terms (pr ∗ f)(w, z) for some

r ≥ 0, f : Z2 → R with ‖f‖l∞ ≤ 1 and w, z ∈ Z. For example, expanding the

discrete derivatives and writing pr(x, y) =
∑

z∈Z pr(z, y)1(x = z) = (pr ∗ 1(·)) (x, y),

the (2, 2) (particle-particle) entry of (5.9) is given by

−2K22(t`, x; tL, y) =
(
ptL−t` ∗ K̃t`

)
(x+ 1, y + 1) +

(
ptL−t` ∗ K̃t`

)
(x, y)

−
(
ptL−t` ∗ K̃t`

)
(x+ 1, y)−

(
ptL−t` ∗ K̃t`

)
(x, y + 1)

+ (ptL−t` ∗ 1(·)) (x, y + 1)− (ptL−t` ∗ 1(·)) (x, y − 1).

Noting that |K̃r(x, y)| ≤ 1 the triangle inequality gives | − 2K22(t`, x; tL, y)| ≤
6(pr ∗ 1). The convolution (pr ∗ 1) may be interpreted as a probability for the

random walk with generator LA, so is bounded by 1. (More precisely, (pr ∗1) equals

the probability that the random walk with generator qxD
+ + pxD

−, killed at rate

2mx, survives till time r.) It follows that the Pfaffian (−2)−
∑L
`=1 n` Pf(K̃(A)) is a

uniformly bounded function on [tL,∞) × V2m. The aforementioned uniqueness of

solutions gives the desired identity (5.7) for y ∈ V2m. To complete the induction

it remains to show that equality also holds on V 2m. This extension may be proved

exactly as in lemma 2, by repeating the argument for the boundary conditions to

iteratively remove any equalities in y1 ≤ y2 ≤ · · · ≤ y2m until

u(2m)(t,y) = u(2k)(t, z) and Pf(K̃(A)) = Pf(K̃(Az)),
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for some subset z = (z1, . . . , zk) ∈ V2k of y with k ≤ m and

Az =

L⋃
`=1

n⋃̀
i=1

(
t`, x

(`)
i

)
︸ ︷︷ ︸

Particles

∪
k⋃
j=1

(tL, zj)︸ ︷︷ ︸
Spins

.

Equality on the larger set follows and the proof of theorem 8 is complete.

Example 13. Consider example 8 of annihilating symmetric random walks with

homogeneous pairwise immigration, defined by setting qx = px = 1 and mx = m for

some m > 0, and initial condition η0(x) product Bernoulli(λ) for some λ ∈ (0, 1].

By theorem 7 and remark 23 the system is an extended Pfaffian point process with

kernel K(s, x; t, y) defined by (5.5) and (5.6), where Kt(x, y) is given by (3.26) and

the Green’s function pt : Z2 → R is defined in terms of the modified Bessel function

of the first kind by

pt(x, y) = e−2(1+m)tIy−x(2t), where Ix(t) =
1

π

∫ π

0
et cos(w) cos(xw) dw.

Remark 27. By considering asymptotics of an ARW system, we compare the ex-

tended kernel K in theorem 7 with that given in [58] for annihilating Brownian

motions under a maximal entrance law. The underlying ARW process (Xt : t ≥ 0)

on Z is defined by setting px = qx = 1/2, mx = 0 and η0(x) to be independent

Bernoulli(λ) for some λ ∈ (0, 1]. The diffusive scaling theory for the single-time

projection Xt is developed in section 4.2.1 (taking θ = 1 and scaling time t 7→ t
2).

This scaling regime is suitable for the whole temporal process and for ε > 0 we

define (X
(ε)
t : t ≥ 0) on εZ by

X
(ε)
t (dx) = Xε−2t(ε

−1dx) on εZ.

The process (X
(ε)
t : t ≥ 0) is an extended Pfaffian point process on εZ with kernel

K(ε)(s, x; t, y). Appealing to (5.6) and the basic scaled kernel (4.9), the entries of

the extended kernel K(ε)(s, x; t, y) for s < t and x, y ∈ εZ are given explicitly in

terms of the single-time kernel function K
(ε)
t (x, y) in (4.11) and the scaled Green’s
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function p
(ε)
t (x, y) = pε−2t(ε

−1x, ε−1y) by

K
(ε)
11 (s, x; t, y) =

∑
z∈εZ p

(ε)
t−s(z, y)

(
−1

2K
(ε)
s (x, z)

)
+ 1

2p
(ε)
t−s(x, y),

K
(ε)
12 (s, x; t, y) =

∑
z∈εZ p

(ε)
t−s(z, y)

(
− ε

2D
(0,1)
ε K

(ε)
s (x, z)

)
− p(ε)

t−s(x, y),

K
(ε)
21 (s, x; t, y) =

∑
z∈εZ p

(ε)
t−s(z, y)

(
− ε

2D
(1,0)
ε K

(ε)
s (x, z)

)
,

K
(ε)
22 (s, x; t, y) =

∑
z∈εZ p

(ε)
t−s(z, y)

(
− ε2

2 D
(1,1)
ε K

(ε)
s (x, z)

)
.

Redistributing factors of ε gives an alternative extended kernel K̃(ε)(s, x; t, y), with

entries given in terms of the single-time kernel K
(ε)
t (x, y) in (4.10) by

K̃
(ε)
11 (s, x; t, y) = ε

∑
z∈εZ p

(ε)
t−s(z, y)(K

(ε)
s )11(x, z) + ε

2p
(ε)
t−s(x, y),

K̃
(ε)
12 (s, x; t, y) = ε

∑
z∈εZ p

(ε)
t−s(z, y)(K

(ε)
s )12(x, z)− p(ε)

t−s(x, y),

K̃
(ε)
21 (s, x; t, y) = ε

∑
z∈εZ p

(ε)
t−s(z, y)(K

(ε)
s )21(x, z),

K̃
(ε)
22 (s, x; t, y) = ε

∑
z∈εZ p

(ε)
t−s(z, y)(K

(ε)
s )22(x, z).

With the single-time theory in mind, the candidate limit kernel is given by taking

limits of ε−1K̃(ε), scaled to balance the mean number of particles per unit interval

at each time, which has entries

ε−1K̃
(ε)
11 (s, x; t, y) = ε

∑
z∈εZ

(
ε−1p

(ε)
t−s(z, y)

)(
ε−1(K

(ε)
s )11(x, z)

)
+ 1

2p
(ε)
t−s(x, y),

ε−1K̃
(ε)
12 (s, x; t, y) = ε

∑
z∈εZ

(
ε−1p

(ε)
t−s(z, y)

)(
ε−1(K

(ε)
s )12(x, z)

)
− ε−1p

(ε)
t−s(x, y),

ε−1K̃
(ε)
21 (s, x; t, y) = ε

∑
z∈εZ

(
ε−1p

(ε)
t−s(z, y)

)(
ε−1(K

(ε)
s )21(x, z)

)
,

ε−1K̃
(ε)
22 (s, x; t, y) = ε

∑
z∈εZ

(
ε−1p

(ε)
t−s(z, y)

)(
ε−1(K

(ε)
s )22(x, z)

)
.

Convergence of the one-dimensional marginals is proved in section 4.2. Theorem 5

gives that X
(ε)
t converges in distribution to X

c
t with kernel K

c
t(x, y) given by

K
c
t(x, y) = −

(
Ft(|y − x|) sgn(y − x) F ′t(y − x)

−F ′t(y − x) −F ′′t (y − x)

)
,
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for x, y ∈ R where Ft(z) = 2−1 erfc
(
z/2
√
t
)
. In particular, the proof gives conver-

gence of the kernels ε−1(K
(ε)
s )ij → (K

c
s)ij . A local central limit theorem gives conver-

gence of the scaled Green’s functions to the continuum heat kernel ε−1p
(ε)
t (xε, yε)→

p
c
t(y−x) = (2πt)−1/2e−(y−x)2/2t for xε → x, yε → y. This implies moreover that the

additional (1, 1) term of the extended kernel ε−1K̃(ε)(s, x; t, y), namely 1
2p

(ε)
t (xε, yε),

vanishes in the limit. Finally, the summations in ε−1K̃(ε)(s, x; t, y) are Riemann

approximations to integrals and all together the candidate limit extended kernel

Kc(s, x; t, y) is given, for s < t and x, y ∈ R, by

K
c
ij(s, x; t, y) =

(
p
c
t−s ? (Kc

s)ij

)
(x, y)− 1(i = 1, j = 2)p

c
t−s(y − x),

where the one-dimensional convolution makes because K
c
s(x, y) depends on y −

x. The extended kernel Kc coincides with K̃ABM, given by (5.2), for annihilating

Brownian motions under a maximal entrance law (after swapping the order of entries

by proposition 12 part 4). See example 10 for more details. Note that we have

not proved convergence of the scaled processes (X
(ε)
t : t ≥ 0), we have only shown

convergence of the extended kernel entries. It is natural to conjecture that the scaled

ARW system converges to annihilating Brownian motions in a stronger process

sense. In fact, we could repeat the above analysis for scaled independent Bernoulli

initial conditions appearing in section 4.2.2. The limit extended kernel has the same

form but is defined by the single-time kernel in theorem 6. Building on the single-

time section, the corresponding conjecture is that the limit process is annihilating

Brownian motions started from rate µ Poisson initial conditions.

Remark 28. The analysis in remark 27 may be extended to ARWI processes with

constant immigration, such as example 13. We scale the discrete processes as for

single times in section 4.3, namely with p
(ε)
x = q

(ε)
x = 1/2, m(ε) = ε2c

2 for some c ≥ 0

and λ ∈ (0, 1] for the initial condition Bernoulli rate. The candidate limit extended

kernel Kc(s, x; t, y) is given for s = t by conjecture 1, namely for x < y

K
c
ij(s, x; t, y) = K

c
t(x, y) = −1

2

(
K
c
t (x, y) ∂2K

c
t (x, y)

∂1K
c
t (x, y) ∂1∂2K

c
t (x, y)

)
,

and K
c
12(s, x; t, x) = (K

c
t)12(x, x) = −1

2 ∂2K
c
t (x, x), where K

c
t (x, y) is defined by

(4.44) and only depends on y − x. The extended kernel for s < t is then

K
c
ij(s, x; t, y) =

(
e−c(t−s)p

c
t−s ? (Kc

s)ij

)
(x, y)− 1(i = 1, j = 2)e−c(t−s)p

c
t−s(y − x),

where p
c
t(z) = (2πt)−1/2e−z

2/2t is the heat kernel and the one-dimensional convo-
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lution makes sense because K
c
s(x, y) depends on y − x. We expect that the scaled

ARWI processes converge to a stochastic process whose finite-dimensional distribu-

tions are characterised by the extended kernel Kc(s, x; t, y). There is not a natural

Brownian motion system to conjecture as the limit. Due to infinitesimal immigration

we do not even expect the paths to be càdlàg.

The Brownian web [5, 22, 47, 56] is a system of instantly coalescing Brownian

motions started from all points in time and space. By restricting to certain paths,

the Brownian web contains a wealth of interacting particle systems. For example,

annihilating systems may be obtained from coalescing systems by thinning. In fact,

there are points of the Brownian web where two trajectories begin at the same point,

so-called (0, 2)-points, which are dense in R×{t} for each time t (see [22, 47]). These

could represent infinitesimal pairwise immigration and we see how the ARWI limit

may also be contained the Brownian web.

Given convergence of the finite-dimensional distributions, to construct a limit pro-

cess it suffices to prove tightness of the approximating processes in a suitable space.

Theory for the space of processes with càdlàg paths is well developed and there are

simple tightness criteria, however we expect non-càdlàg paths for our process. Sup-

pose that (X
c
t : t ≥ 0) is a stochastic process with finite-dimensional distributions

characterised by the extended kernel Kc(s, x; t, y). Consider the product measure

Yt = Xt ×Xt on R2 and let φ be a continuous test function with compact support.

If φ is supported away from the diagonal then Yt(φ) is well behaved when an in-

finitesimal pair is immigrated. The continuity of t 7→ Yt(φ) may be investigated

as the support of φ is extended to the diagonal, leading to the theory of weighted

topologies. As a first step, there is a tightness criterion of Kurtz [36] in the space of

simple processes with measurable paths. This translates into a uniform convergence

condition on the extended kernels of the approximating discrete processes.

In [24] an alternative approach to the continuum process is considered, as a limit

of annihilating Brownian motion processes with pairwise immigration. The approx-

imating models have immigration of pairs with initial separation ε and pair centres

distributed according to rate θε Poisson process. To obtain a non-degenerate limit

θε is scaled so that εθε → θ as ε ↓ 0. This gives a continuum limit process with

parameter θ which has equivalent Pfaffian one-dimensional marginals under a maxi-

mal entrance law to the ARWI limit in conjecture 1. The approximating continuum

processes however are not Pfaffian at each fixed time.
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Appendix A

Uniqueness for ODEs

We show that the infinite systems of ODEs appearing in chapter 3 are uniquely

solvable within the class of functions with exponential growth. This follows from

standard (weighted) Gronwall estimates. A function f : Rd → R satisfying |f(x)| ≤
C1e

C0|x| for some constants C0, C1 > 0, where |(x1, . . . , xd)| =
∑d

i=1 |xi|, is said

have exponential growth (of rate C0). To write down the ODE system, we introduce

a one-particle generator L given, for f : Z→ R, by

Lf(x) = a(x)∆(1)f(x) + b(x)∇(1)f(x)− c(x)f(x),

where the central discrete operators are defined by (4.34). The coefficients satisfy

a(x) > 0, b(x) ∈ R, c(x) ≥ 0 and the uniform bound |a(x)| + |b(x)| ≤ M for some

M > 0. Fixing C
(n)
0 > 0, we consider the sequence ((ODE)2n : n = 1, 2, . . .) defined,

in the framework of lemma 2, by

(ODE)2n


∂tu

(2n)(t,x) =
∑2n

i=1 Lxiu
(2n)(t,x) on [0,∞)× V2n,

u(2n)(t,x) = u(2n−2)(t,xi,i+1) on [0,∞)× ∂V (i)
2n ,

u(2n)(0,x) = h(2n)(x) on V2n,

where u(0) = 1 and for each n the function h(2n) has exponential growth of rate

C
(n)
0 . We prove the following uniqueness result.

Lemma 11. The sequence ((ODE)2n : n = 1, 2, . . .) is uniquely solvable within the

class of functions with exponential growth. For each n the rate of exponential growth

may be taken as C
(n)
0 .

Note that the ODE systems for CARW, ARWI and BCRW in chapter 3 all fall

into this framework.
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Proof of lemma 11. We prove the result inductively, since once (ODE)2n is shown to

be uniquely solvable, the next order system (ODE)2n+2 has well-defined boundary

functions and is well-posed. To wit, fix n ≥ 1 and assume that (ODE)2m is uniquely

solvable within the class of functions with exponential growth of rate C
(m)
0 for m <

n. The system (ODE)2n is well-posed. Suppose that (ODE)2n has two solutions

u(2n)(t,x) and v(2n)(t,x) with exponential growth of rate C
(n)
0 . Denote the difference

by w(t,x) = u(2n)(t,x) − v(2n)(t,x). It suffices to show that w(2n)(t,x) = 0 for all

t ∈ [0,∞) and x ∈ V2n. Note that w(2n)(t,x) solves the equation
∂tw

(2n)(t,x) =
∑2n

i=1 Lxiw
(2n)(t,x) on [0,∞)× V2n,

w(2n)(t,x) = 0 on [0,∞)× ∂V (i)
2n ,

w(2n)(0,x) = 0 on V2n,

Consider the energy functional E(t) : [0,∞)→ [0,∞) defined by

E(t) =
∑

x∈V2n

(w(2n)(t,x))2e−γ
(n)|x|,

for some γ(n) > 2C
(n)
0 . The last condition ensures that E(t) is finite, since the

weight γ(n) sufficiently compensates exponential growth of rate C
(n)
0 . It suffices to

show that E(t) = 0 for all t ∈ [0,∞). This is achieved by bounding E(t) in terms of

itself and using Gronwall’s inequality. To this end, differentiating with respect to t

and developing using the differential equation for w(2n)(t,x)

∂

∂t
E(t) =

∑
x∈V2n

2w(2n)(t,x)e−γ
(n)|x| ∂

∂t
w(2n)(t,x)

=
∑

x∈V2n

2w(2n)(t,x)e−γ
(n)|x|

2n∑
i=1

Lxiw
(2n)(t,x)

=
2n∑
i=1

∑
xj :j 6=i

e−γ
(n)

∑
j 6=i |xj |

∑
xi

2w(2n)(t,x)e−γ
(n)|xi|Lxiw

(2n)(t,x),

where
∑

xj :j 6=i
indicates the sum over the variables excluding xi and

∑
xi

=
xi+1−1∑

xi=xi−1+1
,

with the understanding that in the cases i = 1 and 2n the limits may be ±∞.
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Substituting in for L, the inner summation is given by three terms∑
xi

2w(2n)(t,x)e−γ
(n)|xi|Lxiw

(2n)(t,x) =
∑
xi

2w(2n)(t,x)e−γ
(n)|xi|a(xi)∆

(1)
xi w

(2n)(t,x)

+
∑
xi

2w(2n)(t,x)e−γ
(n)|xi|b(xi)∇(1)

xi w
(2n)(t,x)

−
∑
xi

2w(2n)(t,x)e−γ
(n)|xi|c(xi)w

(2n)(t,x).

The c(xi) sum is non-positive and may be discarded in pursuit of an upper bound.

Recall the notation xi± for the vector x with the i-th variable incremented by ±1.

For the b(xi) term, we crudely bound the derivative, take absolute values and then

use the inequality αβ ≤ 1
2(α2 + β2)∑

xi

2w(2n)(t,x)e−γ
(n)|xi|b(xi)∇(1)

xi w
(2n)(t,x)

≤M
∑
xi

|w(2n)(t,x)|e−γ(n)|xi|
(
|w(2n)(t,xi+)|+ |w(2n)(t,xi−)|

)
≤ M

2

∑
xi

e−γ
(n)|xi|

(
2(w(2n)(t,x))2 + (w(2n)(t,xi+))2 + (w(2n)(t,xi−))2

)
=
M

2

∑
xi

(w(2n)(t,x))2
(

2e−γ
(n)|xi| + e−γ

(n)|xi−1| + e−γ
(n)|xi+1|

)
+
M

2

(
(w(2n)(t,x))2|xi=xi+1−1e

−γ(n)|xi+1−1| − (w(2n)(t,x))2|xi=xi−1e
−γ(n)|xi−1|

)
+
M

2

(
(w(2n)(t,x))2|xi=xi−1+1e

−γ(n)|xi−1+1| − (w(2n)(t,x))2|xi=xi+1e
−γ(n)|xi+1|

)
,

where the last equality holds by changing variables, leading to additional boundary

terms (a subset of which appear in the cases i = 1 and 2n). The boundary conditions

for w(2n)(t,x) give (w(2n)(t,x))2|xi=xi−1 = (w(2n)(t,x))2|xi=xi+1 = 0. Replacing the

remaining boundary terms with the full sum
∑
xi

we arrive at the bound

∑
xi

2w(2n)(t,x)e−γ
(n)|xi|b(xi)∇(1)

xi w
(2n)(t,x)

≤M
∑
xi

(w(2n)(t,x))2
(
e−γ

(n)|xi| + e−γ
(n)|xi−1| + e−γ

(n)|xi+1|
)
.

Noting that e−γ
(n)(|x±1|−|x|) ≤ eγ

(n)
, we have the bound e−γ

(n)|x−1| + e−γ
(n)|x+1| ≤
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2eγ
(n)
e−γ

(n)|x|. All together

∑
xi

2w(2n)(t,x)e−γ
(n)|xi|b(xi)∇(1)

xi w
(2n)(t,x)

≤M(1 + 2eγ
(n)

)
∑
xi

(w(2n)(t,x))2e−γ
(n)|xi|.

Crudely bounding the discrete Laplacian, the above also gives a bound for the a(xi)

term∑
xi

2w(2n)(t,x)e−γ
(n)|xi|a(xi)∆

(1)
xi w

(2n)(t,x)

≤ 2M
∑
xi

|w(2n)(t,x)|e−γ(n)|xi|
(
|w(2n)(t,xi+)|+ |w(2n)(t,xi−)|+ 2|w(2n)(t,x)|

)
≤ 2M

∑
xi

(w(2n)(t,x))2
(

3e−γ
(n)|xi| + e−γ

(n)|xi−1| + e−γ
(n)|xi+1|

)
≤ 2M(3 + 2eγ

(n)
)
∑
xi

(w(2n)(t,x))2e−γ
(n)|xi|.

Bringing everything together, we arrive at

∂

∂t
E(t) ≤M(7 + 6eγ

(n)
)E(t).

Noting that E(0) = 0, integrating over [0, t] gives

E(t) ≤M(7 + 6eγ
(n)

)

∫ t

0
E(s) ds.

Finally, Gronwall’s inequality [18] gives the desired equality E(t) = 0 for all t ∈
[0,∞).
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Appendix B

Convergence of whole space

PDE approximations

We establish a sufficient condition for uniform convergence of lattice approxi-

mations to the heat equation on R2, along with first and second derivatives. The

condition requires suitable convergence of the initial conditions.

Let (ut(x) : t ≥ 0,x = (x, y) ∈ R2) be the solution to the heat equation

∂tut(x, y) = ∆ut(x, y) for t ∈ [0,∞) and x, y ∈ R2, (B.1)

with initial condition u0 : R2 → R. The aim is to show that ut is, together with its

derivatives, close to the corresponding discrete equation

∂tvt(x, y) = ∆(ε)vt(x, y) for t ∈ [0,∞) and x, y ∈ εZ2, (B.2)

with initial condition v0 : εZ2 → R a suitable approximation to u0, where the central

approximation to the Laplacian is given by (4.7) and ∆(ε)f(x) = (∆
(ε)
x + ∆

(ε)
y )f(x)

for f : εZ2 → R. Closeness is measured in the supremum norm, given by ‖f‖l∞ =

supx∈εZ2 |f(x)|. We write Dα for a mixed derivative with multi-index α ∈ N2.

Noting that the kernels of chapter 3 involve right discrete derivatives, we write Dα
ε

for the discrete counterpart with mixed right derivatives. Convolution on εZ2 is

given by (4.20). The key estimates are given in the following lemma.

Lemma 12. Fix t > 0, ε > 0 and δ = εk for some k < 2. Then the solutions to

(B.1) and (B.2), with bounded initial conditions u0 and v0, satisfy

‖Dαut −Dα
ε vt‖l∞ ≤ C(ε, t)‖u0‖L∞ + C(t)‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞ , (B.3)
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for multi-indices α ∈ N2 with |α| ≤ 2, where C(ε, t)→ 0 as ε ↓ 0, C(t) is independent

of ε, Pt is the heat equation semigroup, and p
(ε)
t : εZ2 → R is the discrete heat kernel

on εZ2.

The discrete heat kernel p
(ε)
t : εZ2 → R on εZ2 satisfies{

∂tp
(ε)
t (x, y) = ∆(ε)p

(ε)
t (x, y) for x, y ∈ εZ, t > 0,

p
(ε)
0 (x, y) = 1(x = 0)1(y = 0) for x, y ∈ εZ,

and we have the explicit convolution expression vt(x, y) = (v0 ? p
(ε)
t )(x, y) for the

solution to the discrete heat equation (B.2) with initial condition v0(x, y). Note

that due to the central Laplacian approximation and symmetric initial condition,

the discrete heat kernel satisfies the symmetry condition p
(ε)
t (x, y) = p

(ε)
t (−x,−y).

The solution to (B.1) with initial condition u0(x, y) may be written in terms of the

semigroup Pt as ut(x, y) = Ptu0(x, y). Note that in general ‖v0 − Pδu0‖l∞ does not

vanish as ε ↓ 0 because the initial conditions v0 may be highly oscillatory. However

one expects the right-hand side of (B.3) is small exactly when v0 is a reasonable ‘dis-

tributional’ approximation to u0. Rephrasing the lemma, we arrive at the following

sufficient conditions for uniform convergence of heat equation approximations.

Lemma 13. For fixed t > 0, the solutions at time t of (B.1) and (B.2), with

bounded initial conditions u0 and v0, along with their first and second derivatives,

converge uniformly provided

‖(v(i)
0 − Pδu

(i)
0 ) ? p

(ε)
t/2‖l∞ → 0 as ε ↓ 0,

where δ = εk for some k < 2 and Pt, p
(ε)
t are as in lemma 12.

Remark 29. The PDE estimates underlying the sufficient condition are fairly stan-

dard but there are several subtleties that take it outside the standard theory. For

example, the domains are unbounded, the solutions are bounded but not necessar-

ily decaying, and the initial conditions only converge in distribution. We provide

details of the method here, since we found it hard to find a clean account.

Before embarking on the proof, we collect some estimates for derivatives of ut and

vt. Throughout C ≥ 0 may vary from line to line, but its dependence on parameters

will always be indicated. In particular, C(ε, t) always denotes a quantity converging

to zero as ε ↓ 0. We begin with well-known heat equation estimates for ut. The

L1 and L∞ norms on R2 are given, for f : R2 → R, by ‖f‖L1 =
∫
R2 |f(x)|dx and

‖f‖L∞ = supx∈R2 |f(x)|.
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Lemma 14. For all t > 0 and multi-indices α ∈ N2

1. ‖Dαut‖L∞ ≤ Ct−
|α|
2 ‖u0‖L∞,

2. ‖Dαut‖L1 ≤ Ct−
|α|
2 ‖u0‖L1.

The above estimates may be proved by exploiting the convolution formula for ut with

the explicit Green’s function. An alternative method is to use Fourier transforms,

which has the advantage of a tractable discrete analogue. The l1 norm and inner

product are given, for f, g : εZ2 → R, by

‖f‖l1 = ε2
∑
x∈Z2

|f(εx)|, 〈f, g〉 = ε2
∑
x∈Z2

f(εx)g(εx).

Note that for small times discrete effects kick in.

Lemma 15. For all ε > 0 and t > 0

‖vt‖l1 ≤ ‖v0‖l1 .

For all ε > 0, t ≥ ε2 and multi-indices α ∈ N2

1. ‖Dα
ε vt‖l∞ ≤ Ct−

|α|
2 ‖v0‖l∞,

2. ‖Dα
ε vt‖l1 ≤ Ct−

|α|
2 ‖v0‖l1.

The remaining estimates are consequences of these basic results. Firstly, the analo-

gous estimates hold for the central discrete approximation to the Laplacian.

Corollary 2. For all ε > 0 and t ≥ ε2

1. ‖∆(ε)vt‖l∞ ≤ Ct−1‖v0‖l∞.

2. ‖∆(ε)vt‖l1 ≤ Ct−1‖v0‖l1.

The mean value theorem gives error estimates between first and second order deriva-

tives of ut and their discrete analogues.

Corollary 3. For all ε > 0 and t > 0, the central discrete derivative satisfies

‖∆ut −∆(ε)
x ut‖L∞ ≤ Cεt−

3
2 ‖u0‖L∞ .

Similarly, for right discrete derivatives and |α| ≤ 2

‖Dαut −Dα
ε ut‖L∞ ≤ Cεt−

|α|+1
2 ‖u0‖L∞ .
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The mean value theorem also gives bounds for combinations of derivatives.

Corollary 4. For all ε > 0, t > 0 and multi-indices α, β ∈ N2

1. ‖DβDα
ε ut‖L∞ ≤ Ct−

|α|+|β|
2 ‖u0‖L∞.

2. ‖∆(ε)Dα
ε ut‖L∞ ≤ Ct−

|α|+2
2 ‖u0‖L∞.

Corollary 5. For all ε > 0, t ≥ ε2 and multi-indices α ∈ N2

‖∆(ε)Dα
ε vt‖l1 ≤ Ct−

|α|+2
2 ‖v0‖l1 .

With these results in hand, we now turn to the proof of lemma 12.

Proof of lemma 12. We begin with the proof of (B.3) for |α| = 0, which forms

the template for the |α| = 1, 2 cases. The supremum norm of a function may be

controlled by uniformly bounding the inner product against test functions, as shown

in the following lemma.

Lemma 16. Let f : εZ2 → R satisfy |〈f, ψ〉| ≤ C‖ψ‖l1 for all ψ : εZ2 → R and

some C > 0. Then ‖f‖l∞ ≤ C.

Proof of lemma 16. We prove the contrapositive. With this in mind, suppose that

‖f‖l∞ > C, then there exists y ∈ εZ2 such that f(y) > C. Defining ψ : εZ2 → R to

be the indicator of the set {y}

|〈f, ψ〉| = ε2f(y) > ε2C = C‖ψ‖l1 ,

and the contrapositive is established.

Setting wt = ut − vt, it suffices to show

|〈wt, ψ0〉| ≤
(
C(ε, t)‖u0‖L∞ + C(t)‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞

)
‖ψ0‖l1 .

Here ψ0 forms the initial condition of (ψt(x) : t ≥ 0,x ∈ εZ2), also solving (B.2)

∂tψt(x) = ∆(ε)ψt(x) on [0,∞)× εZ2. (B.4)

The reason for taking this equation is that we may develop the inner product as

follows

〈wt, ψ0〉 = 〈w0, ψt〉+

∫ t

0
〈∂sws, ψt−s〉+ 〈ws, ∂sψt−s〉 ds.
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Using (B.4) we may replace the time derivative by a discrete spatial derivative ∆(ε),

then move this operator from ψt−s onto ws by taking its adjoint. In order to cancel

and combine terms of the integrand, the natural choice for ψt is the operator whose

adjoint is (B.2), namely itself. Note that the estimates in lemma 15 and corollaries

2 and 5 hold for ψt. Following the outline, for the vt component of wt

〈vt, ψ0〉 = 〈v0, ψt〉+

∫ t

0
〈∂svs, ψt−s〉+ 〈vs, ∂sψt−s〉 ds

= 〈v0, ψt〉+

∫ t

0

(
〈∆(ε)vs, ψt−s〉 − 〈vs,∆(ε)ψt−s〉

)
ds. (B.5)

The adjoint remarks above may be formalised by expanding the discrete operators

and recombining, giving the following summation by parts formula

〈vs,∆(ε)ψt−s〉 =

2∑
i=1

∑
x∈Z2

vs(εx) (ψt−s(εx + εei) + ψt−s(εx− εei)− 2ψt−s(εx))

=

2∑
i=1

∑
x∈Z2

(vs(εx− εei) + vs(εx + εei)− 2vs(εx))ψt−s(εx)

= 〈∆(ε)vs, ψt−s〉. (B.6)

Substituting back into (B.5) and cancelling terms we arrive at

〈vt, ψ0〉 = 〈v0, ψt〉.

For 0 < δ < t, we may similarly develop the ut term using summation by parts

〈ut, ψ0〉 = 〈uδ, ψt−δ〉+

∫ t

δ
〈∂sws, ψt−s〉+ 〈ws, ∂sψt−s〉 ds

= 〈uδ, ψt−δ〉+

∫ t

δ

(
〈∆us, ψt−s〉 − 〈us,∆(ε)ψt−s〉

)
ds

= 〈uδ, ψt−δ〉+

∫ t

δ
〈E(us), ψt−s〉 ds,

where E(us) = ∆us −∆(ε)us. Using corollary 3

‖E(us)‖L∞ = ‖∆us −∆(ε)us‖L∞ ≤ Cεs−
3
2 ‖u0‖L∞ .

Note that it is these estimates that prevent the choice δ = 0. We implicitly assume

that ε is sufficiently small with respect to t, so we can apply lemma 15 provided
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δ ≥ ε2

∣∣ ∫ t

δ
〈E(us), ψt−s〉 ds

∣∣ ≤ Cε‖u0‖L∞
∫ t

δ
s−

3
2 ‖ψt−s‖l1 ds

≤ Cε‖u0‖L∞‖ψ0‖l1
∫ t

δ
s−

3
2 ds (B.7)

≤ Cε‖u0‖L∞‖ψ0‖l1δ−
1
2 .

Setting δ = εk > ε2 for k < 2, the right-hand sides above converges to zero as ε ↓ 0,

and we arrive at the estimate

∣∣ ∫ t

δ
〈E(us), ψt−s〉ds

∣∣ ≤ C(ε, t)‖u0‖L∞‖ψ0‖l1 .

It remains to show that 〈uδ, ψt−δ〉 ≈ 〈v0, ψt〉. First, the triangle inequality gives

|〈uδ, ψt−δ〉 − 〈v0, ψt〉| ≤ |〈uδ, ψt − ψt−δ〉|+ |〈v0 − uδ, ψt〉|. (B.8)

For the first term, there is s ∈ (t− δ, t) by the mean value theorem such that

〈uδ, ψt − ψt−δ〉 = δ〈uδ, ∂sψs〉 = δ〈uδ,∆(ε)ψs〉.

Using corollary 2 and lemma 14, we obtain

|〈uδ, ψt − ψt−ε〉| ≤ δ‖uδ‖l∞‖∆(ε)ψs‖l1
≤ Cδ(t− δ)−1‖u0‖L∞‖ψ0‖l1
≤ C(ε, t)‖u0‖L∞‖ψ0‖l1 .

For the second term of (B.8), expanding notation ut = Ptu0 and ψt = ψ0 ? p
(ε)
t ,

exchanging the inner product and convolution summations, and using the symmetry

of p
(ε)
t , we find

〈v0 − uδ, ψt〉 = 〈(v0 − Pδu0) ? p
(ε)
t , ψ0〉.

Note that (v0 − Pδu0) ? p
(ε)
t solves (B.2) on [0, t] with initial condition (v0 − Pδu0).

Interpreting this as the solution on [t/2, t] with initial condition (v0 − Pδu0) ? p
(ε)
t/2

and applying lemma 15

‖(v0 − Pδu0) ? p
(ε)
t ‖l∞ ≤ ‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞ .
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Combining everything, we arrive at the desired estimate

|〈wt, ψ0〉| ≤ |〈uδ, ψt−δ〉 − 〈v0, ψt〉|+
∣∣ ∫ t

ε
〈E(us), ψt−s〉 ds

∣∣
≤
(
C(ε, t)‖u0‖L∞ + C‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞

)
‖ψ0‖l1 .

We now turn to the approximation of derivatives. With lemma 16 in mind, the

aim is to control |〈Dα
ε wt, ψ0〉|. The outline is to repeat the above steps by moving

the discrete derivative onto ψ0. For the central approximation ∆(ε), we have seen

the summation by parts formula (B.6) for moving derivatives. However, for right

derivatives Dα
ε , the adjoint operator is given by left derivatives. Indeed the one-

dimensional case is given, for f, g : εZ → R with operators D+ and D− defined by

(3.5), by

〈D+f, g〉 = ε
∑
x∈Z

(f(εx+ ε)− f(εx)) g(εx)

= ε
∑
x∈Z

f(εx) (g(εx− ε)− g(εx)) = 〈f,D−g〉.

Denoting multi-index left derivatives by D̃α
ε , the general formula for f, g : εZ2 → R

is

〈Dα
ε f, g〉 = 〈f, D̃α

ε g〉.

Thus, we may control |〈Dα
ε wt, ψ0〉| by developing |〈wt, D̃α

ε ψ0〉|. We derive the fol-

lowing bound

|〈wt, D̃α
ε ψ0〉| ≤

(
C(ε, t)‖u0‖L∞ + C(t)‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞

)
‖ψ0‖l1 . (B.9)

This implies that

‖Dα
ε ut −Dα

ε vt‖l∞ ≤ C(ε, t)‖u0‖L∞ + C(t)‖(v0 − Pδu0) ? p
(ε)
t/2‖l∞ ,

and corollary 3 gives ‖Dαut − Dα
ε ut‖l∞ ≤ C(ε, t)‖u0‖L∞ , finishing the uniform

convergence of derivatives. The calculation for the vt term goes through with D̃α
ε ψ0.

However, to establish (B.9) there is a small change for the ut term, since analogues

of estimates like (B.7) diverge for |α| ≥ 2, namely∫ t

δ
s−

3
2 ‖D̃α

ε ψt−s‖l1 ds ≤ ‖ψ0‖l1
∫ t

δ
s−

3
2 (t− s)−

|α|
2 ds.

145



For |α| = 1 we could get away without the modification, but it is convenient to unify

the proof for the cases |α| = 1, 2. The modification is to fix 0 < δ < t/2 and argue

up to time t− δ as follows

〈ut−δ, D̃α
ε ψδ〉 = 〈uδ, D̃α

ε ψt−δ〉+

∫ t
2

δ
〈E(us), D̃

α
ε ψt−s〉 ds+

∫ t−δ

t
2

〈E(us), D̃
α
ε ψt−s〉 ds.

The first integral on the right-hand side may be treated as before and we show that

the second may also be bounded. We then show that 〈uδ, D̃α
ε ψt−δ〉 ≈ 〈v0, D̃

α
ε ψt−δ〉,

similarly to before, but there is an extra step to show that 〈ut, D̃α
ε ψ0〉 ≈ 〈ut−δ, D̃α

ε ψδ〉.
All together we split the desired quantity as follows

|〈wt, D̃α
ε ψ0〉| = |〈ut, D̃α

ε ψ0〉 − 〈v0, D̃
α
ε ψt〉|

≤ |〈ut, D̃α
ε ψ0〉 − 〈ut−δ, D̃α

ε ψδ〉|+ |〈ut−δ, D̃α
ε ψδ〉 − 〈v0, D̃

α
ε ψt〉|

≤ |〈ut, D̃α
ε ψ0〉 − 〈ut−δ, D̃α

ε ψδ〉|+ |〈uδ, D̃α
ε ψt−δ〉 − 〈v0, D̃

α
ε ψt〉|

+
∣∣ ∫ t

2

δ
〈E(us), D̃

α
ε ψt−s〉 ds

∣∣+
∣∣ ∫ t−δ

t
2

〈E(us), D̃
α
ε ψt−s〉 ds

∣∣. (B.10)

Noting that lemma 15 holds unchanged for left derivatives, we may bound the

δ < s < t
2 error term analogously to the |α| = 0 case, bounding ‖D̃α

ε ψt−s‖l1 by the

worst case s = t
2∣∣ ∫ t

2
δ 〈E(us), D̃

α
ε ψt−s〉 ds

∣∣ ≤ Cε‖u0‖L∞‖ψ0‖l1
∫ t

2
δ s−

3
2 (t− s)−

|α|
2 ds

≤ Cε‖u0‖L∞‖ψ0‖l1δ−
1
2

(
t
2

)− |α|
2 .

For t
2 < s < t− δ we must take care with the D̃α

ε ψt−s term but can bound the rest

of the integrands by their largest values

∣∣ ∫ t−δ

t
2

〈E(us), D̃
α
ε ψt−s〉 ds

∣∣ ≤ Cε‖u0‖L∞‖ψ0‖l1
∫ t−δ

t
2

s−
3
2 (t− s)−

|α|
2 ds

≤ Cε‖u0‖L∞‖ψ0‖l1
(
t

2

)− 3
2

fα

(
t

2
, t− δ

)
,

where

fα

(
t

2
, t− δ

)
=

∫ t−δ

t
2

(t− s)−
|α|
2 ds ≤

2
(
t
2

) 1
2 if |α| = 1,

ln
(
t

2δ

)
if |α| = 2.
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Since δ = εk > ε2 for k < 2, both error bounds converge to zero as ε ↓ 0, giving

∣∣ ∫ t
2

δ
〈E(us), D̃

α
ε ψt−s〉ds

∣∣+
∣∣ ∫ t−δ

t
2

〈E(us), D̃
α
ε ψt−s〉ds

∣∣ ≤ C(ε, t)‖u0‖L∞‖ψ0‖l1 .

We turn to the remaining error estimates of (B.10). Firstly consider

|〈uδ, D̃α
ε ψt−δ〉 − 〈v0, D̃

α
ε ψt〉| ≤ |〈uδ, D̃α

ε (ψt − ψt−δ)〉|+ |〈v0 − uδ, D̃α
ε ψt〉|. (B.11)

Following the same steps as before, for the first term there is s ∈ (t − δ, t), by the

mean value theorem, satisfying

|〈uδ, D̃α
ε (ψt − ψt−δ)〉| = δ|〈uδ, D̃α

ε ∆(ε)ψs〉|

≤ δ‖uδ‖l∞‖D̃α
ε ∆(ε)ψs‖l1

≤ Cδ(t− δ)−
|α|+2

2 ‖u0‖l∞‖ψ0‖l1
≤ C(ε, t)‖u0‖l∞‖ψ0‖l1 ,

where we use corollary 5 replacing right with left derivatives. Moving the discrete

derivative inside the convolution, we develop the second term of (B.11)

|〈v0 − uδ, D̃α
ε ψt〉| = |〈v0 − Pδu0, (D̃

α
ε ψ0) ? p

(ε)
t 〉|

= |〈(v0 − Pδu0) ? p
(ε)
t , D̃α

ε ψ0〉|

= |〈Dα
ε

(
(v0 − Pδu0) ? p

(ε)
t

)
, ψ0〉|

≤ ‖Dα
ε

(
(v0 − Pδu0) ? p

(ε)
t

)
‖l∞‖ψ0‖l1 .

As before, interpreting (v0 − Pδu0) ? p
(ε)
t as the solution to (B.2) on [t/2, t] with

initial condition (v0 − Pδu0) ? p
(ε)
t/2 and applying lemma 15

‖Dα
ε

(
(v0 − Pδu0) ? p

(ε)
t

)
‖l∞ ≤ Ct−

|α|
2 ‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞ .

All together, we obtain the following bound on (B.11)

|〈uδ, D̃α
ε ψt−δ〉−〈v0, D̃

α
ε ψt−δ〉| ≤

(
C(ε, t)‖u0‖L∞+ C(t)‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞

)
‖ψ0‖l1 .

The final error term to control is given by

|〈ut, D̃α
ε ψ0〉 − 〈ut−δ, D̃α

ε ψδ〉| ≤ |〈ut, D̃α
ε ψ0 − D̃α

ε ψδ〉|+ |〈ut − ut−δ, D̃α
ε ψδ〉|. (B.12)
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For the first term, there is s ∈ (0, δ) such that

|〈ut, D̃α
ε ψ0 − D̃α

ε ψδ〉| = δ|〈∆(ε)Dα
ε ut, ψs〉| ≤ δCt−

|α|+2
2 ‖u0‖l∞‖ψ0‖l1 ,

where the inequality follows from corollary 4 and lemma 15, giving the bound

C(ε, t)‖u0‖l∞‖ψ0‖l1 . Similarly, for the second term of (B.12), there is s ∈ (t − δ, t)
such that

|〈ut − ut−δ, D̃α
ε ψδ〉| = δ|〈Dα

ε ∆us, ψδ〉| ≤ δC(t− δ)−
|α|+2

2 ‖u0‖L∞‖ψ0‖l1 .

All together, (B.12) is bounded

|〈ut, D̃α
ε ψ0〉 − 〈ut−δ, D̃α

ε ψδ〉| ≤ C(ε, t)‖u0‖L∞‖ψ0‖l1 .

Finally, substituting everything into (B.10), we arrive at the desired bound

|〈wt, D̃α
ε ψ0〉| ≤

(
C(ε, t)‖u0‖L∞ + C(t)‖(v0 − Pδu0) ? p

(ε)
t/2‖l∞

)
‖ψ0‖l1 .

This completes the proof of lemma B.3.

148



Bibliography

[1] M. Adler and P. van Moerbeke, PDEs for the joint distributions of the

Dyson, Airy and Sine processes, Ann. Probab., 33 (2005), pp. 1326–1361.

[2] N. Akhiezer, The Classical Moment Problem: and some related questions in

analysis, University mathematical monographs, Oliver & Boyd, 1965.

[3] J. G. Amar and F. Family, Diffusion-annihilation and the kinetics of the

Ising model in one dimension, J. Stat. Phys., 65 (1991), pp. 1235–1246.

[4] G. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random

Matrices, vol. 118 of Cambridge Studies in Advanced Mathematics, Cambridge

University Press, 2010.

[5] R. Arratia, Coalescing Brownian motions on the line, PhD thesis, University

of Wisconsin, Madison, 1979.
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