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Abstract

This paper establishes the local-in-time existence and uniqueness of solutions to
the viscous, non-resistive magnetohydrodynamics (MHD) equations in R

d , where
d = 2, 3, with initial data B0 ∈ Hs(Rd) and u0 ∈ Hs−1+ε(Rd) for s > d/2 and
any 0 < ε < 1. The proof relies on maximal regularity estimates for the Stokes
equation. The obstruction to taking ε = 0 is explained by the failure of solutions
of the heat equation with initial data u0 ∈ Hs−1 to satisfy u ∈ L1(0, T ; Hs+1); we
provide an explicit example of this phenomenon.

1. Introduction

In this paper we consider the equations of MHD with zero magnetic resistivity,

ut − �u + (u · ∇)u + ∇ p = (B · ∇)B, ∇ · u = 0, (1.1a)

Bt + (u · ∇)B = (B · ∇)u, ∇ · B = 0, (1.1b)

along with specified initial data u(0) = u0 and B(0) = B0. Jiu and Niu [7]
established the local existence of solutions in 2D for initial data in Hs for integer
s � 3, and more recently Ren et al. [12] and Lin et al. [10] have established the
existence of global-in-time solutions for initial data sufficiently close to certain
equilibrium solutions (again in 2D).

In a previous paper [6] we proved a local existence result for these equations
taking arbitrary initial data in u0, B0 ∈ Hs(Rd) with s > d/2 for d = 2, 3.
However, given the presence of the diffusive term in the equation for u, it is natural
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to expect that such a local existence result should be possible with less regularity
for u0 than for B0.

To this end, it was shown in [5] that one can prove local existence when the
initial data B0 ∈ Bd/2

2,1 (Rd) and u0 ∈ Bd/2−1
2,1 (Rd). The underlying observation

that allowed for such a result is that when u0 ∈ Bd/2−1
2,1 (Rd) the solution u of the

heat equation with initial data u0 is an element of L1(0, T ; Bd/2+1
2,1 (Rd)): in these

Besov spaces the solution regularises sufficiently that an additional two derivatives
become integrable in time.

In Sobolev spaces this does not occur: in Lemma 2.1 we show that for u0 ∈ Hs

we have

u ∈ L∞(0, T ; Hs) ∩ L2(0, T ; Hs+1) ∩ Lq(0, T ; Hs+2)

for any 0 < q < 1, and this is in some sense the best possible. The failure of the
estimate u ∈ L1(0, T ; Hs+2) is ‘well known’, but it is not easy to find any explicit
example in the literature, so we provide one here in Lemma 2.2.

In this paper we therefore take B0 ∈ Hs(Rd), with s > d/2, and u0 slightly
more regular than Hs−1(Rd), namely u0 ∈ Hs−1+ε(Rd), with 0 < ε < 1. By
making use of maximal regularity results for the heat equation (which we recall
in the next section) we are then able to prove the local existence of a solution that
remains bounded in these spaces (see Theorem 3.1 for a precise statement).

Throughout the paper we use the notation�s to denote the fractional derivative
of order s, given in terms of the Fourier transform by

�̂s f = |ξ |s f̂ .

We write

‖u‖2Hs = ‖�su‖2 + ‖u‖2, s > 0,

which is equivalent to the standard Hs norm when s is a positive integer.

2. Estimates for Solutions of the Heat Equation in Sobolev Spaces

2.1. Energy Estimates

First we prove some standard estimates for solutions of the heat equation, including
the Lq(0, T ; Hs+2) estimate for 0 < q < 1.We give the proofs, since we will need
to keep careful track of the dependence of the estimates on T ; for simplicity we
restrict to T � 1, which will of course be sufficient for local existence arguments.

We use relatively elementary energy methods, but the results can be derived
by other means; for example, the fact that u ∈ Lq(0, T ; Hs+2) follows from the
smoothing estimate ‖∂βe�t f ‖L2 � Ct−|β|/2‖ f ‖L2 , as kindly pointed out by the
referee.
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Lemma 2.1. If u0 ∈ Hs(Rd) and u denotes the solution of the heat equation

∂t u = �u with u(0) = u0

then u ∈ L∞(0, T ; Hs)∩ L2(0, T ; Hs+1) and
√
tu ∈ L2(0, T ; Hs+2(Rd)). When

T � 1

sup
0�t�T

‖u(t)‖2Hs ,

∫ T

0
‖u(t)‖2Hs+1 ,

∫ T

0
t‖u(t)‖2Hs+2 � ‖u0‖2Hs .

Consequently u ∈ Lq(0, T ; Hs+2(Rd)) for any 0 < q < 1, and
∫ T

0
‖u(t)‖q

Hs+2 ds � CqT
1−q‖u0‖qHs (2.1)

provided that T � 1.

Proof. We start with the L2 estimate obtained by taking the inner product with u
in L2 to give

1

2

d

dt
‖u‖2 + ‖∇u‖2 = 0

and then integrating in time,

1

2
‖u(t)‖2 +

∫ t

0
‖∇u(τ )‖2 dτ = 1

2
‖u0‖2.

To bound the higher derivatives we act on the equations with �s and then take the
L2 inner product with �su to obtain

1

2

d

dt
‖�su‖2 + ‖�s+1u‖2 = 0,

followed by an integration in time,

1

2
‖�su(t)‖2 +

∫ t

0
‖�s+1u(τ )‖2 dτ = 1

2
‖�su0‖2. (2.2)

Combining these two estimates shows that u ∈ L∞(0, T ; Hs) ∩ L2(0, T ; Hs+1),
with

sup
0�t�T

‖u(t)‖2Hs � ‖u0‖2Hs

and ∫ T

0
‖u‖2Hs+1 � 1

2
‖�su0‖2 + T ‖u0‖2;

in particular, if T � 1, then
∫ T

0
‖u‖2Hs+1 � ‖u0‖2Hs .
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To obtain the bound on
√
tu in Hs+2 we act on the equations with �s+1 and

take the L2 inner product with t�s+1u. Then

1

2

d

dt

(
t‖�s+1u‖2

)
− 1

2
‖�s+1u‖2 + t‖�s+2u‖2 = 0.

Integrating from 0 to T yields

T

2
‖�s+1u(T )‖2 +

∫ T

0
t‖�s+2u(t)‖2 dt � 1

2

∫ T

0
‖�s+1u(t)‖2 dt � 1

4
‖�su0‖2,

(2.3)
using the bound from (2.2). We also have

∫ T

0
t‖u(t)‖2 dt � T 2

2
‖u0‖2,

from which it follows that
√
tu ∈ L2(0, T ; Hs+2). For T � 1 we can combine this

with (2.3) to obtain the estimate
∫ T

0
t‖u‖2Hs+2 dt � 1

2
‖u0‖2Hs .

For any q < 1 we have, using Hölder’s inequality with exponents 2/q and
2/(2 − q),

∫ T

0
‖u(t)‖q

Hs+2 =
∫ T

0
t−q/2tq/2‖u(t)‖q

Hs+2

�
(∫ T

0
t−q/(2−q)

)1−(q/2) (∫ T

0
t‖u(t)‖2Hs+2

)q/2

� CqT
1−q‖u0‖qHs ,

since 0 < q < 1 ensures that q/(2 − q) < 1 and the first term is integrable. �	

2.2. An Example of u0 ∈ L2 with u /∈ L1(0, T ; H2)

We now provide an explicit example of an initial condition u0 ∈ L2(Rd) such that
u /∈ L1(0, T ; H2(Rd)).

Lemma 2.2. There exists u0 ∈ L2(Rd) such that the solution u of the heat equation
with initial data u0 is not an element of L1(0, T ; H2(Rd)).

Proof. We let u0 be the function with Fourier transform

û0(ξ) = 1

|ξ |d/2 log(2 + |ξ |) . (2.4)

The solution u(t) of the heat equation with initial data u0 has Fourier transform

û(t, ξ) = û0(ξ)e−|ξ |2t
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and

‖u(t)‖2
Ḣ2 =

∫
Rd

|ξ |4|û0(ξ)|2e−2|ξ |2t dξ.

We therefore have

I :=
∫ T

0
‖u(t)‖Ḣ2 dt =

∫ T

0

(∫
Rd

|ξ |4|û0(ξ)|2e−2|ξ |2t dξ
)1/2

dt.

In order to bound this frombelowwe split the range of time integration, choosing
j0 such that j−2

0 � T , and write

I �
N∑

j= j0

∫ j−2

( j+1)−2

(∫
Rd

|ξ |4|û0(ξ)|2e−2|ξ |2t dξ
)1/2

dt

�
N∑

j= j0

∫ j−2

( j+1)−2

(∫
|ξ |� j

|ξ |4|û0(ξ)|2e−2|ξ |2t dξ
)1/2

dt

� e−1
N∑

j= j0

∫ j−2

( j+1)−2

(∫
|ξ |� j

|ξ |4|û0(ξ)|2 dξ
)1/2

dt

� e−1
N∑

j= j0

1

j2( j + 1)

(∫
|ξ |� j

|ξ |4|û0(ξ)|2 dξ
)1/2

.

By our choice of û0(ξ) in (2.4) we have

∫
|ξ |� j

|ξ |4|û0(ξ)|2 dξ =
∫

|ξ |� j
|ξ |4 1

|ξ |d [log(2 + |ξ |)]2 dξ

� 1

[log(2 + j)]2
∫

|ξ |� j
|ξ |4−d dξ

� c

[log(2 + j)]2 j4.

It follows that

I � ce−1
N∑

j= j0

1

( j + 1) log(2 + j)
,

as since the sum is unbounded as N → ∞ it follows that u /∈ L1(0, T ; Ḣ2) as
claimed. �	
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2.3. Maximal Regularity-Type Results

Usually, ‘maximal regularity’ results for the heat equation yield

∂t u, �u ∈ L p(0, T ; Lq)

when u solves

∂t u − �u = f, u(0) = 0

with f ∈ L p(0, T ; Lq). The results follow from maximal regularity when p = q,
obtained as inequality (3.1) in Chapter IV, Section 3, pages 289–290 of [9] using the
MihlinMultiplier Theorem [11] and then an interpolation theorem due toBenedek
et al. [1]; the procedure is clearly explained in [8], for example. However, in this
paper we will only require the following L2-based Sobolev-space result, for which
the basic L2(0, T ; L2)maximal regularity estimate canbeobtained relatively easily.

Proposition 2.3. There exists a constant Cr such that if f ∈ Lr (0, T ; Hs), s � 0,
and u satisfies

∂t u − �u = f, u(0) = 0,

then u ∈ Lr (0, T ; Ḣ s+2) with

‖u‖Lr (0,T ;Ḣ s+2) � Cr‖ f ‖Lr (0,T ;Hs ). (2.5)

The constant Cr can be chosen uniformly for all 0 � T � 1.

Proof. First we treat the case s = 0, that is we bound u ∈ Lr (0, T ; H2) in terms
of f ∈ Lr (0, T ; L2). The passage from estimates for the case r = 2 to the case
1 < r < ∞ is covered in [8]. We therefore only prove the estimates in the case
r = 2.

The L2 norm of u is bounded simply by taking the L2 inner product with u,
using the Cauchy-Schwarz inequality, and integrating in time:

1

2

d

dt
‖u‖2 + ‖∇u‖2 = 〈 f, u〉 � ‖ f ‖‖u‖ � 1

2
‖u‖2 + 1

2
‖ f ‖2,

and so

d

dt
[e−t‖u‖2] � e−t‖ f (t)‖2,

which implies (since u(0) = 0) that

‖u(t)‖2 �
∫ t

0
‖ f (s)‖2et−s ds,

whence ∫ T

0
‖u(t)‖2 �

∫ T

0

∫ t

0
‖ f (s)‖2et−s ds dt

=
∫ T

0

∫ T

s
‖ f (s)‖2et−s dt ds � eT

∫ T

0
‖ f (s)‖2 ds,
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that is

‖u‖L2(0,T ;L2) � eT ‖ f ‖L2(0,T ;L2). (2.6)

For ‖u‖Ḣ2 we can argue directly from the Fourier transform of the solution u,
since

�̂2u(ξ, t) =
∫ t

0
|ξ |2e−|ξ |2(t−s) f̂ (s, ξ) ds.

Define

G(ξ, t) =
{

|ξ |2e−|ξ |2t t � 0

0 t < 0

and

F(ξ, t) =
{
f̂ (ξ ; t) 0 � t � T

0 otherwise.

Then

�̂2u(ξ ; t) =
∫
R

G(ξ, t − s)F(ξ, s) ds,

and we can use Young’s inequality for convolutions to give

‖�̂2u(ξ, ·)‖L2(0,T ) � ‖�̂2u(ξ, ·)‖L2(R) � ‖F(ξ, ·)‖L2(R) = ‖ f̂ (ξ, ·)‖L2(0,T ),

since ‖G(ξ, ·)‖L1 = 1. Therefore

‖u‖L2(0,T ;Ḣ2) = ‖�̂2u‖L2((0,T )×Rd ) � ‖ f̂ ‖L2((0,T )×Rd ) = ‖ f ‖L2(0,T ;L2).

Combined with (2.6) this yields ‖u‖L2(0,T ;Ḣ2) � C2‖ f ‖L2(0,T ;L2), and hence
(via the results of [1]) we obtain

‖u‖Lr (0,T ;Ḣ2) � Cr‖ f ‖Lr (0,T ;L2).

Letting Cr be the constant for the choice T = 1, it can easily be seen that this
constant is also valid for T � 1 by extending f to be zero on the interval (T, 1].

We now apply this estimate to u = v and u = �sv: we obtain

‖v‖Lr (0,T ;Ḣ2) � Cr‖ f ‖Lr (0,T ;L2)

and

‖v‖Lr (0,T ;Ḣ s+2) = ‖�sv‖Lr (0,T ;Ḣ2) � Cr‖�s f ‖Lr (0,T ;L2) = Cr‖ f ‖Lr (0,T ;Ḣ s ),

from which (2.5) follows. �	
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We will apply this result in combination with the regularity results for the heat
equation fromLemma2.1 in the following form for solutions of the Stokes equation,
allowing for non-zero initial data.Note that in order to obtain an L1-in-time estimate
on ‖u‖Hs+1 we require Lr integrability of f with r > 1, and the initial data to be
in Hs−1+ε. [Considering the equations in Besov spaces as in [5] allows for r = 1
and ε = 0 (and s = d/2 rather than s > d/2 in the final results)].

Corollary 2.4. If f ∈ Lr (0, T ; Hs−1), 1 < r < ∞, s > 1, and

∂t u − �u + ∇ p = f, ∇ · u = 0, u(0) = u0 ∈ Hs−1+ε,

where u0 is divergence free, then for T � 1
∫ T

0
‖u‖Hs+1 � CεT

ε/2‖u0‖Hs−1+ε + CrT
1− 1

r ‖ f ‖Lr (0,T ;Hs−1). (2.7)

Proof. First we consider the solution v of

∂tv − �v + ∇π = 0, ∇ · v = 0, v(0) = u0.

Since u0 is divergence free, if we apply the Leray projectorP (orthogonal projection
onto elements of L2 whose weak divergence is zero) we obtain

∂tv − �v = 0, v(0) = u0,

since P commutes with derivatives on the whole space. It follows that v is in fact the
solution of the heat equation with initial data u0. We can therefore use Lemma 2.1
to ensure that

v ∈ L∞(0, T ; Hs−1+ε) ∩ L2(0, T ; Hs+ε) ∩ Lq(0, T ; Hs+ε+1)

for any q < 1, with all these norms depending only on the norm of the initial data
in Hs−1+ε. It follows by interpolation that v ∈ L1(0, T ; Hs+1) with

∫ T

0
‖v‖Hs+1 �

∫ T

0
‖v‖1−ε

Hs+1+ε‖v‖ε
Hs+ε

�
(∫ T

0
‖v‖2(1−ε)/(2−ε)

Hs+1+ε

)(2−ε)/2 (∫ T

0
‖v‖2Hs+ε

)ε/2

,

using Hölder’s inequality with exponents (2/(2 − ε), 2/ε). Noting that

2(1 − ε)

2 − ε
= 1 − ε

2 − ε
< 1

we can use Lemma 2.1 to obtain
∫ T

0
‖v‖Hs+1 � CεT

ε/2‖u0‖Hs−1+ε . (2.8)

The difference w = u − v satisfies

∂tw − �w + ∇θ = f, ∇ · w = 0, w(0) = 0.
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Again we can apply the Leray projector P, which is bounded from Hs−1 into Hs−1,
to obtain

∂tw − �w = P f, w(0) = 0.

By the maximal regularity results for the heat equation from Proposition 2.3, we
know that for any r > 1 we have

∫ T

0
‖w‖Hs+1 � T 1/r ′ ‖w‖Lr (0,T ;Hs+1)

� CrT
1/r ′ ‖P f ‖Lr (0,T ;Hs−1)

� CrT
1/r ′ ‖ f ‖Lr (0,T ;Hs−1), (2.9)

where (r, r ′) are conjugate. The inequality in (2.7) now follows by combining (2.8)
and (2.9). �	

3. Proof of Local Existence

The main part of the proof consists of a priori estimates, which we prove for-
mally. To make the proof rigorous requires some approximation procedure such as
that employed in [6], to which we refer for the details. Where the limiting process
involved would turns equalities into inequalities, we write inequalities even in these
formal estimates.

Theorem 3.1. Let d = 2, 3. Take s > d/2 and 0 < ε < 1. Suppose that the initial
conditions satisfy B0 ∈ Hs(Rd) and u0 ∈ Hs−1+ε(Rd). Then there exists T∗ > 0
such that the non-resistive MHD system (1.1) has a solution (u, B) with

u ∈ L∞(0, T∗; Hs−1+ε(Rd)) ∩ L2(0, T∗; Hs+ε(Rd)) ∩ L1(0, T∗; Hs+1(Rd))

and

B ∈ L∞(0, T∗; Hs(Rd)).

Note that the case ε = 1 was covered in a previous paper [6] and is specifically
excluded here.

Proof. Throughout the proof various constants will depend on s, but we do not
track this dependency.

We first obtain a basic energy estimate in L2. We take the L2 inner product of
the u equation with u and of the B equation with B to obtain

1

2

d

dt
‖u‖2 + ‖∇u‖2 = 〈(B · ∇)B, u〉 and

1

2

d

dt
‖B‖2 = 〈(B · ∇)u, B〉.
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Since 〈(B · ∇)u, B〉 = −〈(B · ∇)u, B〉 we can add the two equations to yield

1

2

d

dt

(
‖u‖2 + ‖B‖2

)
+ ‖∇u‖2 � 0,

and so

‖u(t)‖2 + ‖B(t)‖2 + 2
∫ t

0
‖∇u(s)‖2 ds � ‖u0‖2 + ‖B0‖2 =: M0. (3.1)

It is also helpful to have two other estimates for later use; observing that

|〈(B · ∇)u, B〉| � c‖B‖‖∇u‖‖B‖L∞

and using the embedding Hs ⊂ L∞ (valid since s > d/2) and Young’s inequality
we obtain

d

dt
‖u‖2 + ‖∇u‖2 � c‖B‖2‖B‖2Hs � c‖B‖4Hs ; (3.2)

and similarly, since |〈(B · ∇)u, B〉| � ‖B‖2‖∇u‖L∞ ,

1

2

d

dt
‖B‖2 � c‖∇u‖Hs‖B‖2. (3.3)

In order to estimate the norm of B in Hs we act on the B equation with �s and
take the inner product with �s B in L2. This yields

1

2

d

dt
‖�s B‖2 �

∣∣〈�s[(B · ∇)u],�s B〉∣∣ + ∣∣〈�s[(u · ∇)B],�s B〉∣∣
� c‖∇u‖Hs‖B‖2Hs , (3.4)

using the fact that Hs is an algebra since s > d/2, along with the estimate proved
in [6], that

∣∣〈�s[(u · ∇)B],�s B〉∣∣ � c‖∇u‖Hs‖B‖2Hs ,

valid when s > d/2. Combined with (3.3) this yields

1

2

d

dt
‖B‖2Hs � c‖∇u‖Hs‖B‖2Hs . (3.5)

The estimates for the u equation are more delicate. First we obtain estimates
on u in the space L1(0, T ; Hs+1), using the maximal regularity estimates from
Proposition 2.3 and Corollary 2.4. We consider the equation for u as the forced
Stokes equation

∂t u − �u + ∇ p = f := −(u · ∇)u + (B · ∇)B, ∇ · u = 0, u(0) = u0,

and so estimate (2.7) from Corollary 2.4 yields

∫ T

0
‖u‖Hs+1 � CεT

ε/2‖u0‖Hs−1+ε + CrT
1− 1

r ‖ f ‖Lr (0,T ;Hs−1). (3.6)
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Since

‖ f ‖Hs−1 = ‖∇ · (B ⊗ B) − ∇ · (u ⊗ u)‖Hs−1

� ‖B ⊗ B‖Hs + ‖u ⊗ u‖Hs

� c‖B‖2Hs + c‖u‖2Hs

� c‖B‖2Hs + c‖u‖2ε/(s+ε)‖u‖2s/(s+ε)

Hs+ε

� ‖B‖2Hs + cMε/(s+ε)
0 ‖u‖2s/(s+ε)

Hs+ε ,

using (3.1), if we choose r = (s + ε)/s > 1 then from (3.6) we have∫ T

0
‖u‖Hs+1 � CεT

ε/2‖u0‖Hs−1+ε

+ CεT
ε/(s+ε)

(∫ T

0
‖B‖2(s+ε)/s

Hs + cMε/s
0 ‖u‖2Hs+ε dτ

)s/(s+ε)

.

(3.7)

We now estimate the norm of u in Hs−1+ε and Hs+ε. If we act with �s−1+ε

on the u equation and take the inner product with �s−1+εu, then

1

2

d

dt
‖�s−1+εu‖2 + ‖�s+εu‖2

� −
〈
�s−1+ε[(u · ∇)u],�s−1+εu

〉
+

〈
�s−1+ε[(B · ∇)B],�s−1+εu

〉
.

(3.8)

For the first term on the right-hand side, we write∣∣∣
〈
�s−1+ε[(u · ∇)u],�s−1+εu

〉∣∣∣ =
∣∣∣
〈
�s−1[(u · ∇)u],�s−1+2εu

〉∣∣∣
=

∣∣∣
〈
�s−1[∇ · (u ⊗ u)],�s−1+2εu

〉∣∣∣
� c‖u‖2Hs‖u‖Hs−1+2ε

� c
(
‖u‖ε

Hs−1+ε‖u‖1−ε
Hs+ε

)2 ‖u‖1−ε

Hs−1+ε‖u‖ε
Hs+ε

� c‖u‖1+ε

Hs−1+ε‖u‖2−ε
Hs+ε

� c‖u‖2(1+ε)/ε

Hs−1+ε + 1

4
‖u‖2Hs+ε ,

where we have used Sobolev interpolation, Young’s inequality, and the fact that Hs

is an algebra (as s > d/2). The second term is handled similarly:∣∣∣〈�s−1+ε[(B · ∇)B],�s−1+εu〉
∣∣∣ =

∣∣∣
〈
�s−1[(B · ∇)B],�s−1+2εu

〉∣∣∣
=

∣∣∣
〈
�s−1[∇ · (B ⊗ B)],�s−1+2εu

〉∣∣∣
� c‖B‖2Hs‖u‖Hs−1+2ε

� c‖B‖2Hs‖u‖1−ε

Hs−1+ε‖u‖ε
Hs+ε

� c‖B‖2(1+ε)
Hs + c‖u‖2(1+ε)/ε

Hs−1+ε + 1

4
‖u‖2Hs+ε ,
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using the three-term Young’s inequality with exponents
(
1 + ε,

2(1+ε)
ε(1−ε)

, 2
ε

)
. Com-

bining these yields1

1

2

d

dt
‖�s−1+εu‖2 + ‖�s+εu‖2 � c‖B‖2(1+ε)

Hs + c‖u‖2(1+ε)/ε

Hs−1+ε + 1

2
‖u‖2Hs+ε .

1

If we add (3.2) and an additional term +‖u‖2 to both sides then we obtain

1

2

d

dt
‖u‖2Hs−1+ε + ‖u‖2Hs+ε

� c‖u‖2(1+ε)/ε

Hs−1+ε + c‖B‖2(1+ε)
Hs + c‖B‖4Hs + 1

2
‖u‖2Hs+ε + ‖u‖2,

and so

d

dt
‖u‖2Hs−1+ε + ‖u‖2Hs+ε � c1‖u‖2(1+ε)/ε

Hs−1+ε + c2‖B‖2(1+ε)
Hs + c3‖B‖4Hs + 2‖u‖2.

(3.9)
We now have three ingredients: the differential inequality (3.9) for u; the B

equation (3.5)

1

2

d

dt
‖B‖2Hs � c4‖∇u‖Hs‖B‖2Hs ,

which implies that

‖B(t)‖2Hs � ‖B0‖2Hs exp

(
2c4

∫ t

0
‖∇u‖Hs dτ

)
; (3.10)

and the maximal regularity estimate
∫ T

0
‖u‖Hs+1 � CεT

ε/2‖u0‖Hs−1+ε

+ CεT
ε/(s+ε)

(∫ T

0
‖B‖2(s+ε)/s

Hs + c5M
ε/s
0 ‖u‖2Hs+ε dτ

)s/(s+ε)

.

(3.11)

We will now choose T ∗ such that ‖B(t)‖Hs � 2‖B0‖Hs for all t ∈ [0, T∗]. Set
M1 := ‖u0‖Hs−1+ε ,

and M2 := 22(1+ε)c2‖B0‖2(1+ε)
Hs + 24c3‖B0‖4Hs + 2M0,

and choose T ∗ sufficiently small that

0 <

(
1 − c1T (M2

1 + T M2)
1/ε

ε

)−ε

< 2 for all 0 < T < T∗ (3.12)

1 Note that the exponent 2(1 + ε)/ε on the Hs−1+ε norm of u is far from optimal, and
can be reduced to some γ for 2 < γ � 4 by using Lemma 1.1(i) from [4]. However, the
proof here is significantly simpler, and still yields a short-time existence result (albeit with
a possibly shorter existence time).
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and

CεT
ε/2M1 + CεT

ε/(s+ε)
(
22(s+ε)/sT ‖B0‖2(s+ε)/s

Hs

+ c5M
ε/s
0

[
c1T [2(M2

1 + T M2)](1+ε)/ε + T M2

] )s/(s+ε)

<
log 4

2c4
(3.13)

for all 0 < T < T∗.
To show that ‖B(t)‖Hs � 2‖B0‖Hs for t ∈ [0, T∗], we make the assumption

that t �→ ‖B(t)‖Hs is a continuous function that takes the value ‖B0‖Hs at time
t = 0. While we have not shown this as part of our formal calculations, it would
be true for any member of the family of smooth approximations considered in [6],
and the estimates we now obtain would hold uniformly (for this family) for all
t ∈ [0, T ∗] for the time T ∗ defined by (3.12) and (3.13).

Set

T = sup
{
T0 ∈ [0, T ∗] : ‖B(t)‖Hs � 2‖B0‖Hs for all t ∈ [0, T0]

}

and suppose that T < T ∗. Then from (3.1), (3.2) and (3.9) we obtain

d

dt
‖u‖2Hs−1+ε + ‖u‖2Hs+ε � c1‖u‖2(1+ε)/ε

Hs−1+ε + 22(1+ε)c2‖B0‖2(1+ε)
Hs

+ 24c3‖B0‖4Hs + 2M0

� c1‖u‖2(1+ε)/ε

Hs−1+ε + M2 (3.14)

for all t ∈ [0, T ]. Using standard ODE comparison techniques (see, for example,
Theorem 6 in [2], where we take p = (1 + ε)/ε) we obtain the bound

‖u(t)‖2Hs−1+ε � (M2
1 + T M2)

(
1 − c1T (M2

1 + T M2)
1/ε

ε

)−ε

� 2(M2
1 + T M2) (3.15)

for all t ∈ [0, T ], by (3.12).
Now, substituting (3.15) into (3.14) and integrating between times 0 and T

yields ∫ T

0
‖u(t)‖2Hs+ε dt � c1T [2(M2

1 + T M2)](1+ε)/ε + T M2. (3.16)

Substituting (3.16) and ‖B(t)‖Hs � 2‖B0‖Hs into (3.11), we obtain∫ T

0
‖u(t)‖Hs+1 dτ � CεT

ε/2M1 + CεT
ε/(s+ε)

(
22(s+ε)/sT ‖B0‖2(s+ε)/s

Hs

+ c5M
ε/s
0

[
c1T [2(M2

1 + T M2)](1+ε)/ε + T M2

] )s/(s+ε)

<
log 4

2c4
, (3.17)

using (3.13).
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Substituting this into (3.10) ensures that ‖B(t)‖Hs < 2‖B0‖Hs for all t ∈
[0, T ], contradicting the maximality of T . It follows that T = T ∗ and hence

‖B(t)‖Hs � 2‖B0‖Hs for all t ∈ [0, T ∗].
The result now follows from (3.15), (3.16), and (3.17). �	

4. Conclusion

In the scale of Sobolev spaces we suspect that the result that we have proved here is
optimal. Bourgain and Li [3] showed that the Euler equations on R

d are ill posed in
H1+d/2 for n = 2, 3, and we have shown via an explicit example that for the heat
equation we cannot gain the time integrability of two additional derivatives that is
required in our local existence argument. It would be interesting to find a simpler
model problem in which it is possible to demonstrate the failure of local existence
for B0 ∈ Hs and u0 ∈ Hs−1.
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