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Abstract 

Presented in this thesis are the results from two distinct investigations on the 
behaviour of lightweight framing systems for buildings. One investigation 
concerns the characterisation of cold-formed steel sections of novel shape 
for the design of columns in modular construction, and this is reported in the 
first part of thesis. The second new investigation is for a theoretical analysis 
to determine the elastic critical buckling load for shear-flexible frames of fibre 
reinforced polymer sections. This work is detailed in the second part to the 
thesis. 

Modular 2000 Ltd. fabricated the column specimens that were characterized 
for the research on lightweight steel modular construction. To determine the 
reSistance of nine different column types a series of nominal concentric 
strength tests were conducted on specimens of 2.7 m length having a new E­
section shape. The novelty to the shape is that it has no flat elements and is 
continuously curved in plan. Open E-sections are of S350 structural grade 
steel, are nominally 100x43 mm in plan, and have wall thicknesses of either 
1.5 or 2 mm. Various bracket and enclosure combinations were the variables 
in the nine column types tested. These were connected to the E-sections by 
MIG plug-welding. Except for the 100x40x1.5 mm C-enclosure of S350, the 
other attachment components were of steel grade CR4, at 1.5 mm thickness. 
There were five column types with E-sections of 2.0 mm thickness and four 
with 1.5 mm thickness. Reported are the salient results from 54 strength 
tests, where the mode of failure was global buckling about the minor-axis of 
the E-column. To also determine the local buckling strength, and the effective 
area, a small series of stud column tests were performed on 200 mm long 
specimens of the 1.5 mm open E-section only. 

To support the understanding gained from the series of full-sized physical 
tests on E-columns, a programme of theoretical work is presented which is 
used to determine the design strengths of the column types and to predict the 
elastic and inelastic critical loads of a curved panel. Theory is also used to 
find a plasticity reduction factor for the E-section, which is required to 
"establish the effective area for local buckling. 

BS 5950-5: 1998 gives a code of practice for the design of cold-formed thin­
gauge sections. This current guidance is specific to steel sections comprising 
Simple shaped members that are of flat elements bounded either by free 
edges or by bends. The new results from the combined theoretical and 
eXperimental studies to characterise E-columns are evaluated and used to 
make recommendations on how SS 5950-5: 1998, and, in particular, Section 
6 for members in compression, can be used with E-sections to design 
modular units. 

In the second part of the thesis the author shows how a static analysis for 
plane frames of shear-flexible members, written by a previous Warwick 
University PhD student, can be modified to calculate the elastic critical 
buckling load for overall instability. The modified sframe programme provides 



a practical analysis tool that, importantly, includes non-linearity by way of 
second-order P-L1 effects with shear-flexible functions and semi-rigid joint 
action. In conventional frame analysis shear-flexibility is ignored when . 
members are of isotropic material (steel), and by way of a preliminary 
parametric study the author shows why the influence of shear deformation on 
reducing the buckling load of shear-flexible frames should not be neglected 
when the material is of fibre reinforced polymer. By studying the change in 
critical load in simple frame problems it is found that there is an interaction 
between shear-flexibility and the torsional stiffness given to the beam-to­
column joints. Moreover, the study on the instability of shear-flexible frames 
provides evidence to suggest that the relative stiffness values for joint 
classification boundaries are likely to be lower than those for steel frames by 
Eurocode 3 (BS EN 1993-1: 2005). This is an important finding for when a 
structural Eurocode or other code of practice is drafted for lightweight framed 
structures of fibre-reinforced polymer materials. 

Although the work presented in this thesis is from two distinct investigations 
the deliverables are important to the sustainable development of lightweight 
framing systems for buildings. 
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Chapter 1 Introduction 

This thesis presents the results from two distinct investigations on the 

behaviour of lightweight framing systems for buildings. The first of the 

investigations concerns the characterisation of a cold-formed steel section of 

novel shape for the design of columns in modern methods of construction, 

and this is reported in Chapter 2 to 8 of thesis. The second investigation Is for 

a theoretical analysis to determine the elastic critical buckling load for shear­

fleXible frames of fibre-reinforced polymer sections. This work is detailed in 

Chapter 9 to 12 in the thesis. The author will now present an introduction to 

the two distinct investigations in order of their reporting 

1.1 MOdern methods of construction 

For a number of political, social and economic reasons there is much interest 

within the construction sector to find efficient ways to deliver quickly, and at 

low cost, well-designed buildings. For housing, schools, hotels and student 

accommodation there is a potential to find energy-efficient solutions using 

Modern Methods of Construction (MMC). MMC is a term used to embrace a 

range of technologies and processes involving various forms of supply-chain 

speCifications. Often the production process is carried out off-site, in a 

specially designed factory. And as the Energy saving trust's publication 

CE139 (2005) shows, the MMC product library will include: panel building 

systems, modular building systems, hybrid construction and other sub­

assembles or components. The panel system comprises walls, floors and 

roofs in the form of flat pre-engineered panels that are transported to the site 

and assembled to the desirable structural form. The modular system is in the 

1 



form of ready-made rooms that can be fitted together to make, for example, a 

whole house. Between 80 to 95% of such modular buildings can be executed 

in the factory and then delivered to the site for final assembly. Hybrid 

systems combine panellised and modular methods of construction. Finally, 

the sub-assembled method, although predominantly traditional, utilises 

factory fabricated sub-assemblies or components. 

In Chapter 2 to 8 the author will present research on the behaviour of 

columns, with a novel sectional shape, to the development of lightweight 

steel framing for panel and modular building systems. Such solutions provide 

a number of advantages over the more familiar traditional construction 

methods, in terms of environmental, economic, constructional and health and 

safety impacts. In the preface to a 1964 book, published for the Architect and 

Building News, it states that: "system building is bringing the construction 

industry into the machine age and will enable all of us to live in clean and 

healthy surroundings, pleasing to our aesthetic feeling, at a cost which will be 

within everybody's pocket". Eatherley and Perera (2003) list the following 

seven factors for these advantages: 

• Prefabrication can result in significant environmental benefits by 

reducing waste and minimising pollution by carrying out the work 

under controlled conditions. 

• The use of light gauge steel panels tends to minimise transportation 

costs (both financial and environmental) and difficulties of site access. 

2 



• Fully fitted three-dimensional construction reduces the on-site 

construction time, and secures the quality of relatively high-value 

components. 

• High levels of insulation result in low energy consumption. 

• Low weight of construction results in economics in foundation and 

load-transfer structures. 

• The structure can be dismantled and a high proportion reused at the 

end of its life; making this approach more sustainable. 

Statistics from the United Kingdom government in 2003 indicate that there 

will be a need over the next 20 years for 3.8 million additional households in 

England (Eatherley and Perera 2003). The construction industry has a vital 

role to play in meeting this expected demand, and doing so in a sustainable 

manner. The Parliamentary Office of Science and Technology declared, in 

Postnote (2003), that a majority of new UK homes are still being constructed 

of traditional 'brick block' masonry. Within the last few years we have 

witnessed an increased exploitation of MMC in housing. Many UK 

companies, in this business sector, are now choosing to go the modular 

construction route, because of the greater control they can exert over quality, 

speed and reliability, which are all seen as financially related benefits. A 

range of factors, including the demand for faster construction and a lack of 

skills shortages, is driving this change. 

USA and Japan are amongst the leading countries that now widely used 

MMC. The Steel Construction Institute has reported (SCI P272 1999) that the 

3 



Japanese house building market is dominated by modular construction, with 

over 150k new units per annum. A typical spacious Japanese house of 

modular construction is shown Figure 1.1. Good examples of the move from 

conventional to modular construction are also found with hotels and fast-food 

restaurants. Shown in Figure 1.2 is one such example for which the on-site 

construction time may well have been reduced by 60% from that required by 

a traditional approach. 

Chapters 2 to 8 report the research that shall be used to prepare guidance 

for the deSign of E-section stud columns in modular construction. Chapter 2 

provides a brief introduction to modular construction systems and their 

application. Chapter 3 presents a review of the relevant literature on previous 

research to understand the behaviour of cold-formed thin-walled columns. 

Chapter 4 describes the theoretical approach, based on an energy method, 

that the author used to obtain predictions to the inelastic critical load, and the 

development of a new plasticity reduction factor for a curved section that 

represents the E-section. A description of the research methodology used to 

conduct the full-sized series of physical column tests is given in Chapter 5. 

By an investigation presented in Chapter 6 on stub columns (i.e. of 200 mm 

length), the effective area for the 1.5 mm thick E-section is obtained. Results 

from a comprehensive series of 2.7 m long column tests under nominal 

concentric load are presented and evaluated in Chapter 7. Findings and 

conclusions from this work, and future recommendations and some final 

remarks on the E-section are given in Chapter 8. 

4 



1.2 Shear flexible frame analysis 

Figure 1.3 shows a typical steel frame arrangement that consists of a series 

of steel components for columns, beams, and other members that are 

connected together by standard jOint details, which are essential to the 

stability of the building as a whole. Its structure serves to carry and transmit 

dead and live loads safely to the foundation, and to perform satisfactorily 

over the deSign working life, that is > 25 years. Traditionally, components are 

manufactured from steel, reinforced concrete or timber. Engineers have been 

in search of alternative structural materials that can be shown to be cost 

effective and corrosive resistant. Advanced FRPs are a class of composite 

material with proven efficiency and economy for new build applications. It is 

noted that the mechanical properties of FRPs make them ideal for 

widespread exploitation in the construction sector. Glass and carbon fibres 

are up to six times stronger than structural grades of steel, one-fifth the 

weight, and are non-corrosive and non-magnetic (Anon 1989, Anon 1995, 

Anon 1999). Their high strength and light-weight, and the fact that FRPs are 

now readily available in the form similar to traditional standard steel sections, 

make them an attractive alternative and economical solution where these 

properties are required. 

The combinations of components, and their arrangement, determine the 

mechanisms by which the loading is transmitted and cause the frame to 

deform. In framed structures, it is significant that, irrespective of the 

?ehaviour of the individual members, the overall structure acts as an integral 

unit, where the stiffer and stronger members and joints assist the more 
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flexible and weaker ones. The overall response of the structure to the loading 

is therefore determined by an interaction between all its components. 

Ultimate failure of the frame will occur when the applied load condition 

generates an internal stress field that exceeds the structure's resistance. If 

the component material is steel then design practice can rely on the ultimate 

failure mode to be the result of loss of stability by plastic hinge formation. If, 

however, the components have linear elastic properties to material rupture 

then ultimate frame failure can be by general elastic instability. This will be 

the Situation if the member sections are of Fibre Reinforced Polymer (FRP) 

material. Such sections, mimicking the traditional steel 1- and H-shapes, are 

produced by the pultrusion process and are available off-the-shelf, from 

pultruders such as Strongwell, Fiberline CompOSites A/S and Creative 

Pultrusion Inc. A second effect, which this change in material has on frame 

behaviour, is to make it necessary to include the effect of shear deformation, 

which for the same member geometry is dependent on the moduli ratio EIG. 

Such shear deformation is neglected in the analysis of metal frames because 

its presence has little influence on how the frame deforms and its eventual 

mode of failure. This is not the situation when the material is of FRP as EIG Is 

much higher than 2.6, and with carbon fibre reinforcement can be as high as 

80. The higher this ratio is, the more does shear flexibility influence both 

member and frame response to the loading. 

In Chapter 9 to 12 the author present a plane frame analysis that can be 

Used to predict static response (Zheng 1998) and elastic critical loads of 

frames of FRP sections. It is the latter analysis capability that is the author's 
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new contribution. To cope with members of FRP material the generalised 

column-beam element is shear-flexible. The analysis accounts for second­

order P-,d effects by the inclusion of shear-flexible stability functions, and 

semi-rigid action by the inclusion of the non-linear moment-rotation 

characteristics of the joints. These options will allow plane frames to be 

analysed for their jOint actions, deformations and their elastic critical buckling 

loads. 

For the purposes of analysis and design of steel frames they have 

traditionally been regarded as belonging to one of the two categories of pin­

jOinted (simple construction) or rigid-jointed (continuous construction). In 

order to provide guidance on the most appropriate type of analysis to use 

Eurocode 3 (ECS, 1993) has introduced the frame classification, as 

described by Galambos (1998). 

Frames may be classified as braced (simple or moment resisting) if their side 

Sway resistance is stiffened by a bracing system, while the unbraced frame 

(moment resisting) system resists the lateral forces by means of rigid or 

semi-rigid beam-to-column connections. A frame may be classified as non­

sway, whether or not it is braced, if its side sway is such that the secondary 

moments due to non-verticality of columns can be neglected. According to 

Eurocode 3 (ECS, 1993) any other frame shall be treated as a sway frame 

and the effects of the horizontal displacements of its nodes taken into 

account in its design. 

7 



The author's work, has been to further the sframe code (Zheng 1998) so that, 

when the analysis is run, it will determine the elastic critical load for shear­

flexible frames of fibre reinforced polymer sections. In Chapter 9, a brief 

introduction to fibre reinforced polymer materials and their application is 

given. Chapter 10 describes the theoretical approach used to obtaining 

elastic critical load of frame with semi-rigid joints, using nonlinearities due to 

P-Oelta effect, and shear flexible stability functions. Verification of the sframe 

analysis is made in Chapter 11 by a preliminary parametric study. 

Conclusions on this new contribution to shear flexible fame analysis, and 

some remarks and recommendations for further work are given in Chapter 

12. 
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Figure 1.1. Modular construction for a large family house in Japan (from 

SCI publication P272). 

Figure 1.2. Modular construction for a fast food restaurant (from SCI 

publication P272). 
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Figure 1.3. Example of a framed structure using steelwork (from RM 
Construction, website). 
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Chapter 2 Review of Modular Construction 

2.1 Introduction 

Modular construction is a term used for the factory production of pre­

engineered building units, which are then delivered to site and assembled as 

large volumetric components or substantial elements to building structures. 

The modular units may form complete rooms, parts of rooms, or separate 

serviced units, such as toilets or lifts. There are two main types of modular 

construction, as shown in Figure 2.1, for mobile offices and modular 

buildings. With both types of buildings, construction takes place in a factory­

controlled environment using the same materials utilized for traditional 

construction. Unlike traditional building approaches the modular alternative 

can provide us with design constraints. Since the building will be transported 

by road, there are, for example, some dimensions constraints (se I News 

2005). Each module typically ranges in size from 2 m to 3.6 m wide and from 

5.4 m to 9 m long. Modules for residential buildings have a recommended 

internal wall height of 2.4 m and for educational buildings and offices the 

preferred internal wall height increases to 2.7 m. 

Similar to traditionally made buildings, modular buildings can be occupied for 

many different purposes. They can range from portable classrooms to 

research lab facilities to a medical clinic. There are a variety of finishes you 

can choose for your modular building exterior. They include wood, steel, 

brick, aggregate and aluminium. You can also customize your exterior with 

Windows, multiple doors, and various roof treatments. Numerous options 

exist for finishing the interior as well. 
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The motivation for using modular construction lies in the business-related 

benefits that make this form of construction more attractive to the client than 

alternative forms of conventional site-built construction. Frustrations with 

contractors, bad weather, scheduling delays, supplier problems, work 

stoppages. These are just some of the reasons why clients will turn to the 

modular construction solution. Modular construction offers numerous 

advantages over what has typically been defined as "conventional" or site­

built construction methods. According to SCI P272 (1999) the client's 

preference for choosing a MMC is most strongly influenced by: 

• Speed of construction on-site, since rapid construction leads to 

business-related benefits to the client, due to early completion and 

early return on capital investment. 

• Avoidance of disruption and loss of operation of adjacent buildings, 

such as hotels, hospitals and nursing homes. 

• Buildings or components with a high degree of services; these require 

careful site installation, and pre-compliance trials, which are better 

carried out off site and off the critical construction path. 

• A large number of regular or repetitive units; factory production can 

facilitate transportation and can achieve economy of scale in 

production. 

• A short 'weather window', or other site constraints to the construction 

operation. 

• Lack of suitable skills at site; this might be the case at a remote site. 
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• Client requirements for an exceptionally high degree of quality control; 

this can best be achieved by off-site manufacture and pre-installation 

checks. 

• A requirement for a single-point procurement route; this can be 

achieved through a design, manufacture and build service, which the 

modular industry provides. 

• Construction operations can be controlled more precisely when 

modular units are used, and this is good for security or other related 

issues on site. 

2.1.1 MOdular elements 

Each module consists of lightweight steel elements for columns, floor joists, 

wall studs and edge beams. The collection of discrete modular units usually 

forms a self-supporting structure in its own right or for tall buildings, may rely 

on an independent structural framework (SCI P272 1999). In order to 

maximise structural efficiency, load paths are made as direct as possible by 

avoiding transfer structures and by ensuring that wall studs and floor joists 

are aligned at every junction. The principal vertical loads are carried to the 

ground by cross walls. 

2.2 Thin-walled cold-formed sections 

Wang et al. (2001) observe that, because of a number of favourable factors, 

COld-formed thin-walled steel sections (width-to-thickness ratios greater than 

20) are used extensively in the execution of buildings, automobiles, aircrafts, 

and ships. Included in these factors is: a high strength-to-weight ratio, an 
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ease of mass production, a simple maintenance regime, a good aesthetic 

appearance, and a high corrosion resistance (Hancock et al. 2001). To meet 

the various end-user requirements, cold-rolled sheet products are designed 

to provide specific attributes such as high formability and strength. Cold­

formed thin-walled open-sections may be considered as one of the most 

appropriate technological solutions adopted for economical use of the high­

strength raw materials. This is because they promote a minimum use of 

natural resources to form structural systems that can sustain the design 

loads. Sections are currently used in the construction sector for primary 

structural members in the modular construction systems for residential and 

commercial building structures. 

Cold-formed steel products have been classified by AISI (2005) into the three 

categories of members, panels and prefabricated assemblies. Typical 

structural members, for studs, joists and "bracing" angles are shown in Figure 

2.2. Panel and deck units, not only constitute the useful "surfaces" for floors, 

roofs and walls, but are used to resist the in-plane and out-plane loads. The 

third category of prefabricated assemblies is for roof trusses, panelised walls 

and floors. 

2.3 Manufacturing of cold-rolled sections 

Cold-rolled thin-walled elements are generally made from steel sheet, strip, 

or bars in roll-forming machines or by press brake operations. A rolling 

machine for lightweight steel sections is shown in Figure 2.3. The first step in 

the manufacture of cold-rolled sheet products involves cold reducing the coils 
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of hot-rolled product to the required gauge thickness in the range from 0.14 

mm to 3.2 mm. This cold-reduction operation induces very high strains (work 

hardening) into the sheet that not only makes the sheet thinner, but also 

makes the steel much harder, less ductile, and more difficult to form. 

However, the work-hardened sheet can be made very soft and formable by 

annealing, which occurs by heating the material to high temperatures up to 

850°C (Meyzaud and Parniere 1977). In fact, the combination of cold 

reduction and annealing leads to a refinement in the steel itself that provides 

very desirable and unique forming properties for subsequent use by the 

fabricator of the cold-rolled sections. 

2.4 Novel e-section 

Straight-sided thin-walled sections, such as the range shown in Figure 2.2, 

are currently dominant in the market place for lightweight steel framing. 

Among the manufacturers of thin-walled sections are Corus International Ltd, 

Ispat International Ltd and Phoenix Metal Product Ltd. BS 5950-5:1998 

provides a code of practice for the design of building structures from cold­

formed sections having straight sides. A possible disadvantage of using 

these conventional profiles is. that not all of their cross-sectional area is 

effective after local buckling occurs (Rhodes and Harvey (1976), Seah et. al. 

(1993), and Khong (1994)). That is their effective area, as defined in Clause 

4.7 in BS 5950-5:1998, can be less than the area of the cross-section. 

Another disadvantage is that tolerances can make sections, such as lipped 

C-sections, lose their geometric symmetry. These factors, for example, will 

reduce the design capacity of columns to concentric loading. Despite their 
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disadvantages straight-sided sections are successfully used as they can be 

readily jOined together in a variety of ways to form frames and many of the 

existing modular systems use them. Prominent in the marketplace are 

system from Framing Solutions Plc., Yorkon Limited, and Portakabin Limited. 

The trend to optimize member geometry by embracing modern 

manufacturing technology can be a way of introducing high performance 

cross-sectional shapes into the construction industry. This approach has led 

to a new section shape with continuous curvature in the plane of the cross­

section. In this thesis this cross-sectional form is referred to as the e-section. 

Figure 2.4 shows the novel e-section for stud columns, as invented by Mr 

John Window of Modula 2000 Ltd. (Patent No. W02004051 024). The 

purpose of this new section, of nominal size 100x43 mm2 in plane, is to 

increase member strength compared to the straight-sided equivalents, 

without adding to overall weight. In fact the e-section can, if so desired, be 

used to replace straight-sided thin-walled sections in any modular 

construction system. Modula 2000 Ltd fabricated a prototype modular unit 

USing the e-section is shown in Figure 2.5. The method of connection 

between the components is by plug welds using MIG brazing method. 

Walls are manufactured in single storey heights. Each are fabricated of 100 

mm deep e-section studs that are at the standard 600 mm spacing. The ends 

of the studs are set into unlipped tracks and the components are MIG welded 

tOgether in the factory. Steel thickness of the e-section is either 1.5 mm or 2 

mm, depending on the number of storeys to the building. The light gauge 
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steel sections are inevitably classed as slender and so stability is an 

important consideration in their structural design, and so this aspect is the 

theme of the first of the distinct investigations reported in this thesis. 
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(a) 

(b) 

Figure 2.1. Main types of modular construction, (a) Mobile offices (from 

Portakabin website), (b) Building system (Charter School, from NRB 

website). 
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Figure 2.3. Cold rolling process for thin walled steel sections. 
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Figure 2.4. Cross-section of E-section with 1.5 mm wall thickness. 
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Figure 2.5. Prototype modular unit fabricated by Modula 2000 Ltd. 
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Chapter 3 Strength of Cold-form Thin-walled Columns 

3.1 Introduction 

Cold-formed steel members are produced by press-braking or bending flat 

sheet of hot- or cold-rolled steel strips at ambient temperature, to form any 

desirable shape of structural element, which fulfils their intended application 

reqUirements. By way of considerable developments in manufacturing 

technology, we now have more complex shapes of cold-formed thin-walled 

members that can be utilized in the construction industry. The most 

commonly available thin-walled members for building applications as shown 

in Figure 2.2, are of open non-symmetrical section, such as C-section, Z­

section and slightly different forms like top-hat or modified I-sections. These 

steel sections acquired the thin-walled classification because their thickness 

is much less than the other dimensions. Cold-formed steel sections have 

gained popularity due to the advantages they give over their hot-rolled 

section counterparts. As Lawson et al. (2002) states the advantages of cold 

forming are sections that are light, easy to shape and resist corrosion. 

lightness and ease to shape are two of the reasons that initiated the new 

bUilding approach known as Modern Methods of Construction (MMC). 

Structural units are now prefabricated in a factory as modules, delivered and 

assembled on site, to form part or even complete structure, for residential 

and commercial buildings. In such buildings thin-walled members have been 

utilized as primary elements in a form of stud columns, roof trusses and floor 

jOists, to carry compression, tension and bending actions. The achievement 
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of optimum shape, reduced weight and aesthetic appearance has led to 

increasingly more complicated and slender shapes being produced and when 

used as compression members they are more likely to fail by stability rather 

than by steel yielding. It is well known that thin-walled members under 

compression will tend to fail due to one of three competing buckling modes 

local, global (flexural or flexural-torsional) and distortional or their interaction 

(Hancock et al. 1994, Cheng and Schafer 2003, Teter and Kolakowski 2004). 

To be able to design against these stability modes of failure or their potential 

interaction contributes to the complications in the design procedures for such 

members. 

Many researchers have extensively studied stability problems of thin-walled 

members. Bleich (1952) presents a summary of the literature on buckling 

resistances of metal structures. Another of the seminal books on this topic is 

"The Theory of Elastic Stability" by Timoshenko (1961). In this book 

Timoshenko provides the fundamental theory to the buckling of bars, rings, 

Curved bars, thin plates and shells. For a summary on the stability of flat plate 

problems one can refer to the key source by Bulson (1970). Chen and Atsuta 

(1976) presents the principles and methods for analYSis of beam-column, 

which forms the basis for structural design of frames and shows how these 

theories, may be used in the solution of practical design problems. Trahair 

(1993) provides detailed summaries for the understanding of flexural· 

torSional buckling and for an up-to-date treatment of modern methods of 

analysing flexural-torsional buckling, which can be used by both designers 

and researchers. Recently, Wang et al. (2005) published an excellent 
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summary on the closed-form solution to the buckling of columns, beams, 

arches, rings, plates and shells. In spite of all these investigations, there is 

still a lack on literature in the area of the instability of curved plate elements 

that needs further research. 

The most commonly used thin-walled members are of the cross-sectional 

shapes shown in Figure 2.2 that consist of relatively slender flat-plate 

elements (flanges, webs, lips). Under concentric compression action, instead 

of failure through material yielding their resistance is often governed by 

instability. These flat-sided sections have been extensively investigated and 

design rules are available for such structural members in the main codes of 

practice. These include BS 5950-5: 1998 and Eurocode 3: 1993 Part 1.3. 

Hancock (2003) reviewed the major research developments for cold-formed 

steel structures. He mentions that research on the behaviour of compression 

members has concentrated on sections of three shapes, which are channels, 

angles and perforated sections. These members all comprise of elements of 

straight sides. The new E-section shown in Figure 2.4 has a shape with a 

distinct continuous curve profile. It is the compression behaviour of this 

section shape that has been studied for the new research presented herein. 

In practice a column carrying capacity may be influenced by many factors, 

Such as boundary conditions, geometrical imperfections, local buckling and 

flexural torsional buckling (Chen 1980, Bjorhovde and Birkemoe 1979, and 

Young and Rasmussen 2000). When a thin-walled member buckles locally, 

the stiffness properties of the cross-section may changed, but the member 
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might still posses some post-buckling capacity, since the translation and/or 

rotation of the entire cross section is not involved. If the same member fails in 

the global buckling mode, the entire cross section of the member is displaced 

and this may lead to overall loss of stability. The form of the global buckling 

mode mainly depends on the shape of the cross-section itself. For the case 

of doubly symmetrical sections, the flexural buckling in the direction of 

minimum cross-section stiffness is dominant. While, single symmetric cross 

section a mixed flexural-torsional buckling is relevant. The rest of this chapter 

presents a review on the factors that are known to affect the column's load­

carrying capacity. 

3.2 Flexural buckling 

Columns under concentric compression may fail by loss of stability before 

reaching material yielding. Commonly there are two different analysis 

approaches for tackling the stability problem Chen and Atsuta (1976). These 

are the load-deflection approach, in which the problem is approached from 

the standpoint of deflection and an eigen-value approach, in which an 

attempt is made to determine the stability load in a direct manner without 

calculating the member's deflection. For the eigen-value approach it is 

aSSumed that the member is an ideal one, without geometric or material 

imperfections, and is loaded in such an ideal manner that only the 

deformation taking place at loading below the critical buckling value is that of 

aXial shortening. The initial theoretical research into elastic buckling is 

dedicated to Euler, who by using eigen-value approach obtained the first 

analytical method of prediction for the strength of slender columns. In 1744 
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he found the smallest critical load, for concentrically loaded column with 

pinned ends condition and linear elastic material behaviour, to be given by 

(3.1) 

In Equation (3.1) E is the elastic modulus, I is the second moment of area of 

the cross-section and L is the column length. Euler mode of failure is 

associated with slender members. Whereas, short and compact members 

under compression may fail due to yielding of the material. The short column 

capacity is then given by Pes = Aeff Py ' in which Aeff is the effective cross-

sectional area and Py is the mean axial stress. The physical model for the 

ideal column before failing at the Euler critical buckling load is illustrated in 

Figure 3.1 a. In such a situation deformation due to compression is that of 

axial shortening. The load lateral displacement curve is coincident with load 

axis until it reaches the critical point, when bifurcation kicks in and the curve 

diverts from the load axis. This response is illustrated in Figure 3.1 c. At this 

POint, the load is known as the Euler critical buckling load and the member 

loses its stability. However, columns used in practice will inherently have 

some imperfections that include initial out-of-straightness, load eccentricity 

and residual stresses. Reality therefore requires the researcher to study the 

influence of each of these aspects on the resistance of real columns, in order 

to include in design procedures the reduction to strength that imperfections 

cause. 
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3.2.1 Boundary condition 

Figures 3.2(a) to (c) represent the deformed configurations of a member 

under compresSion with respectively pinned, semi-rigid and rigid boundary 

conditions. 

The elastic critical load obtained by Euler is for simply supported ends. In 

general column design carrying capacity is determine as a function of this 

critical load and the expression accounting for different boundary conditions 

can more generally expressed by PE = 1[2 E~ . Now the effective length LE 
LE 

shown in Figure 3.2b and 3.2c, is been used in Equation (3.1), rather than 

the actual length of the member, that is given in Figure 3.2a. The effective 

length defined as the distance between points of contra-flexure (Le. the point 

of zero curvature), is LE = kL in which k is the effective length factors. It has 

value of 0.5 for the perfectly fixed ends and 1.0 for the perfectly pinned ends. 

For practical jOints the end restraints are neither fully fixed nor fully pinned. 

This semi-rigid situation is shown in Figure 3.2b. Chen (1980) presents a 

review of column design approaches and a description of the effect of end 

restraint that might be included in column design. He highlights the need for 

research with end-restrained columns as one of parameters that has not 

received sufficient attention in the past. Chapuis & Galambos. (1982) 

determined numerically the effective length factor for crooked columns. Ding 

et al. (2003) presents a method for estimating the effective length factors for 

SOlid round steel leg members of lattice towers with cross bracing. 
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3.2.2 Initial Imperfection 

The assumption of a perfect member is unrealistic. Real columns suffer from 

imperfections in terms of geometry and material properties. Horne and 

Merchant (1965) have considered a pin-ended strut with initial lack of 

straightness defined by mid-height deflection X Ot as a sinusoidal deflection 

shape as shown in Figure 3.3a. 

Figure 3.3b shows that due to the presence of Xo the load deflection curve of 

the column follows a new path with gradual increase in lateral deflection, x, 

with increasing P. Home and Merchant (1965) shows theoretically that the 

influence of the applied axial load on x is to magnify, by a factor of 11(1- PIPE), 

deflection XO' It is evident from the form of the magnification factor that when 

P approaches PE the mid-height deflection x approach infinity. It is clear that 

the geometric imperfection makes the member's Euler load unobtainable. 

Horne and Merchant (1965) also show that for the column with initial 

geometric imperfection deflection XO , the applied load is resisted by a 

combination of axial and flexural rigidities and given by 

(3.2) 

In Equation (3.2) Ys is the yield stress, Py is the mean axial stress at the load 

for first yield Py , PE is the mean axial stress at PE and 17 is the Perry coefficient 

factor used to take into account the effect of initial geometric imperfection on 

column resistance. Equation (3.2) is the Perry-Robertson formula and is used 

as the baSis for the design of steel columns in current SS codes. Sjorhovde 

and Sirkemoe (1979), Little (1982) and Chernenko and Kennedy (1991) are 
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researchers "among others" whom have investigated column resistance 

when the member has out-of-straightness. 

3.3 Local buckling 

Flat plates under compression may be susceptible to cross-sectional 

instability at critical stresses, but they behave in a different manner than 

columns at the moment of bifurcation. Plates at bifurcation exhibit a stable 

equilibrium with a substantial amount of post-bucking strength (Bulson 1970). 

Local buckling is commonly encountered in the component plate of thin­

walled members and characterised by the relatively short wavelength mode 

of failure BS 5950-5:1998. In 1891 Bryan presented an analysis for the 

elastic critical stress of a rectangular plate, simply supported along all edges, 

and subjected to a uniform longitudinal compressive stress. Equation (3.3), 

taken from Bulson (1970), is the solution for the critical buckling stress. 

(3.3) 

in Equation (3.3) t is the plate thickness, b is the plate width, v is the 

POisson's ratio and Kmin is a buckling coefficient determined by solving the 

characteristic equation defining the stability of a flat plate and represents the 

influence of the boundary conditions and the plate geometry. 

The Bryan equation is for the case of a perfectly linear elastic plate, which 

buckles at an elastic critical stress. The onset of local buckling of a flat plate 

does not guarantee ultimate failure since post-buckling stability with an 

increase in strength is usually expected. Since the out-of-plane deformation 
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at buckling does not coincide with ultimate failure, a thin plate can be 

economically designed on the basis of its post-buckling strength. In the 

determination of design rules for local buckling failure, both the critical stress 

and the post-buckling strength are important parameters. 

3.3.1 Post buckling 

As supported plates do not collapse when the elastic buckling strength is 

reached they experience a considerable amount of post-buckling resistance 

due to stretching of the middle plane. The axial stress distribution is uniform 

over the area of the plate prior to elastic buckling occur. After buckling, the 

stresses at the middle part approach the critical stress O"cr' the stiffness of 

the plate reduces away from the edges and a non-uniform stress distribution 

is developed. The redistribution of stress continues until the stress 0", at the 

edge reaches the yield stress Ys at onset of ultimate plate failure. The post­

buckling stress distribution across the width, h, is shown in Figure 3.4. 

The well-known effective-width approach is based on the stress distribution 

associated with that in Figure 3.4. Graves-Smith (1967) showed that ultimate 

failure Occurs once the stress at the edge areas of the compressed width of 

the plate becomes equal to the material yield strength. 

3.3.2 Effective area approach 

Van Karman introduced the concept of the effective width given by notation 

berf (Bulson 1970). He proposed that the two strips in Figure 3.5b could be 
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considered as rectangular plates each of width beff and when their stress 
2 

equal fs' ultimate failure occurs. Many others have developed further this 

concept, among which is the important work of Winter and Uribe (1967) and 

his contribution will be discussed later. The effective-width approach 

assumes that, instead of the actual non-uniform stress distribution, the total 

load is carried by a fictitious effective width, subjected to a uniformly 

distributed stress equal to the maximum stress O't that occurs at the 

unloaded plate edges. This is shown in Figure 3.5. 

The effective width is selected so that the area under the curve of the actual 

non-uniform stress distribution is equal to the sum of the two parts of the 

equivalent rectangular area with a total width beff. Mathematically this is given 

by (Figure 3.4 and 3.5) 

2 

f O't (X)cU = beff O'e (3.4) 
1 

It may also be considered that the effective width represents a particular 

plate that buckles when the compressive stress reaches the yield point of 

steel. This resulted in the van Karman formula for baft, which is developed 

from test data 

(3.5) 

Based on his extensive investigation on cold-formed steel sections Winter 

(1967) indicates that Equation (3.5) is equally applicable to the plate element 

in which the maximum stress is below the yield point fa' In addition, it has 

been verified that Equation (3.5) is suitable for plates with different boundary 
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conditions. 8y introducing an empirical correction factor, to account for an 

accumulation of imperfections, this led to the modified Winter's formula of 

b: = ~:: (1-0'22~:: J (3.6) 

It is this equation, or comparable ones, that present a practical description of 

the actual post-buckling strength of individual flat plates. Furthermore, it 

presents the basis for the local buckling behaviour of cross section as used in 

the design clause in section 4 of 8S 5950-5:1998. 

3.4 Inelastic buckling 

The interaction between plastic behaviour and instability is important for 

stocky plates, or plates where the residual stresses represent a significant 

factor in their design. The 8ryan Equation (3.3) for elastic buckling stress 

includes the value of the elastic modulus, E, but does not involve the limits of 

elastic behaviour. Consequently, the plate material may yield before the 

theoretical elastic critical stress predicted, by Equation (3.3), is reached in 

practice. In this case the plate might buckle and collapse at a lower value of 

stress than the theoretical prediction. This is known as inelastic or plastic 

buckling and shall be referred to be the former in this thesis. Considere, 

Engesser and van Karman, were the first three researchers to realise the 

possibility of replacing the elastic Young's modulus in Euler's formula with a 

reduced modulus for the inelastic zone of strut buckling (8leich 1952), To 

predict inelastic buckling of a plate element 81eich assumed anisotropic 

behaviour of the plate. When the edge stress cr, exceeded the proportional 

limit Ys, the reduced modulus is assumed to be effective for strips of plate In 
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the z-direction (coincident with applied load direction), whereas, the elastic 

modulus remained valid for perpendicular strips in the x-direction. To simplify 

the concept it was assumed that twisting moments acting on these strips 

were governed by JJ. This term was then introduced into the conventional 

isotropic differential equation for flat plate element 

(3.7) 

With E is the reduced modulus and (1 z is normal compressive stress applied 

to ends of the plate. 

Alternatively, Ros and Eichinger (1932) assumed that the plate remains 

isotropic even when the stress exceeded the proportional limit, with the 

reduced modulus applying in all directions (Bulson 1970). This gave 

D- -+ +- --(1t-E [a4v 2a4v a4v] a2v 
E az 4 aZ 2dX 2 dX4 - z dZ 2 (3.8) 

Neither of these approaches was particularly satisfactory, although the 

former gave closer agreement with physical test results, so attempts were 

made to introduce the laws of plastic theory into the plate-buckling analysis 

(Bulson 1970). lIyushin (1947), among others used the total strain theory to 

define the actual stress-strain relationships. Stowell (1948) modified the plate 

buckling theory by IIyushin, using the total strain theory, which states that the 

relationship between direct stress and direct strain takes the form (1 = EsE in 

which Es is the secant modulus for material which is being loaded (Bulson 
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1970). Stowell's governing differential equation for inelastic plate buckling 

has the form 

(3.9) 

where D' = ~,t3) • and E, is the tangent modulus. The solution of Equation 
121-y 

(3.9) for a rectangular plate simply supported along all edges and subjected 

to a uniform longitudinal compressive stress, (J'z' gave the inelastic critical 

stress, u to be er 

(3.10) 

Where rp ( = ~ ) is the plate aspect ratio. 

To simplify the prediction of the theoretical inelastic critical stress, (J'eT' a 

Plasticity reduction factor is introduced. This plasticity reduction factor (1] ) is 

define as the ratio of minimum inelastic buckling stress to the minimum 

elastic buckling stress, and for the simply supported flat plate case it is given 

by (Bulson 1970) 

17 = ~(.!. +.!. .!. + 3Et ) (1- y2) 
E 2 2 4 4Es 0.75 

(3.11 ) 

In Chapter 4 the author will establish an equivalent formula for the case when 

the plate is curved so that a plasticity reduction factor can be applied to £-

Section to predict its inelastic critical stress and the effective area. 
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3.5 Flexural torsional buckling 

Flexural-torsional buckling is a primary consideration in design as it might be 

a mode of failure that governs the compressive load-carrying capacity. In this 

mode of buckling a member suddenly deforms by deflecting laterally and 

twisting out-of-the plane of the load direction (Bradford and Pi 2005). This 

form of buckling may occur in a thin-walled member of open cross section, 

which has low lateral bending and torsional stiffness compared with its 

stiffness in the plane of loading, such as those sections shown in Figure 2.2. 

Shown in Figure 3.6 is a general asymmetriC cross-section (in which the 

centroid of the cross-section does not coincide with the shear centre). The 

element is of length L, thickness t and has compressive load P. The principal 

Centroidal axes of the cross-section are given by y and x respectively, the 

Coordinates of the shear centre (S) by (yo. xo), and its displacements by w (in z­

direction), v (in y-direction), and u (in x-direction). Under the applied 

compressive load the column may buckle through a combination of bending 

and torsion. In the deformed configuration, the shear centre moves from (S) 

to (S') and the centroid from (C) to (C'). The cross-section translates and 

rotates about the new position of the shear centre (S'). By denoting the 

rotation of the cross-section by (>, then the final position of the centroid (C") 

is as shown in Figure 3.6. 

At the critical load the stable equilibrium of the straight column is at its limit 

and there exists a slightly deflected configuration of the column, which can 

also satisfy equilibrium condition (see Figure 3.1 b). For this configuration, 
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under the assumption of small deflection, the differential equations of the 

elastic curve of the deflected and rotated column are. 

(3.12) 

(3.13) 

GJ E1.- EC d
3

rjJ = p. Y . du -p.x . dv + P' I . drjJ 
dz w dz 3 0 dz 0 dz A 0 dz 

(3.14) 

In these three equations EIx and Ely are the flexural rigidities about the minor 

and major axes respectively, GJ is the tosional rigidity, ECw is warping rigidity, 

and 10 is the polar moment of area about the shear centre (S). 

The three simultaneous differential Equations (3.12) to (3.14) for buckling by 

flexural and torsion can be used to determine the critical loads. By using the 

sine wave function for the first mode shape one can obtained, for a non-trivial 

solution the following instability determinant equation (Timoshenko 1961). 

P-P. Ey 0 PYo 
0 P-PEx -Pxo =0 (3.15) 

PYo -Px 0 
~(p-p. 
A T 

PBx and PEy in Equation (3.15) are the Euler critical loads about the x and y 

axes, respectively, and PT is the critical load for torsional buckling given by 

36 



PT =- GJ+-EC A ( 1[2 J 
10 L W 

(3.16) 

Solving Equation (3.15) for the case of asymmetric sections, with the y-axis is 

an axis of symmetry, we have a quadratic equation whose roots give the 

critical load P to be either er 

or 

(3.17) 

The smaller of the two values of the critical load is of the practical interest. 

When the second of expressions, for torsional flexural mode governs by 

giving the lowest critical load, this means we shall observe twisting of the 

column's cross-section during buckling. 

In part 5 of SS 5950 the effect on column design of torsional flexural buckling 

is dealt with in Section 6. Clause 6.3.2 state that the design of members 

Which have at least one axis of symmetry and which are subjected to 

torSional flexural buckling, may be in accordance with Clause 6.2 provided 

that a facto red slenderness ratio, a LE , is used in place of the actual 
r 

slenderness ratio. Values of the effective length multiplier for torsional 

flexural buckling, ~ are determined as follows 

For PE S PTF , the factor a = 1 
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For PE > P"" the factor a = ~ PE , 
PTF 

PE = ~2 E~ I and PTF is the torsional flexural buckling load given by its 
4. 

expression in Equation (3.17). 

For the work presented in this thesis factors influencing a study on instability 

failure have been reviewed in this Chapter. These effects may be taken into 

account by means of effective geometrical properties concept such as 

effective area and effective length. 
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Figure 3.1. Euler's assumed column deformation. 
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Figure 3.2. Effective length for different end restraints. 
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buckling regime. 
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Figure 3.5. Effective width concept for a flat plate. 
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Figure 3.6. Deformations of a general asymmetric cross-section under 

axial compression. 

41 



Chapter 4 Inelastic Stability of a Curved Plates 

4.1 Introduction 

The exact mode of column failure is highly dependent upon the way in which 

the cross-sectional area is distributed with respect to its centroid. Relatively 

short columns are more likely to fail by the material crushing, whereas 

. relatively slender columns are more prone to failure with a buckling mode. 

Construction engineers and designers have always been concerned with the 

implementation of optimum structures to reduce the cost and provide 

efficient, safe and reliable facilities for improving the life style. The 

optimization objective of the structural elements is based upon enhancing 

some of its characteristics, such as developing a reliable configuration, like 

the e-section that fulfils a specific function. However, in examining the 

behaviour of such thin-walled sections the presence of a relatively thin wall in 

Comparison to the length and width of the plate elements makes evident the 

Complex interaction of various phenomena of deformation and instability such 

as local, torsional and overall buckling modes. 

In Section 4.2 a brief summary of previously conducted work on the stability 

problem of flat plates in the elastic and inelastic regions and of curved plate 

in the elastic region is highlighted. This information is prerequisite for the 

author developing an approach to predict the inelastic critical local buckling 

load for a curve plate element, and applying it to establish the stub column 

failure load of the e-section. 
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4.2 Inelastic stability of curved plate element 

Stability in elastic and inelastic ranges of deformation of columns and flat 

plates has been the subject of extensive studies by several researchers. Key 

primary texts are those by Timosheko (1961), Bleich (1952) and Bulson 

(1970). Further theoretical modelling of inelastic local buckling was proposed 

by Kato (1965), Graves-Smith (1967), Azhari and Bradford (1993), Bradford 

and Azhari (1994), and Moller et al. (1997). The stability problem of a curved 

plate under axial compression has received little attention, especially beyond 

the elastic regime. For buckling in the elastic region, relevant information may 

be found in Redshaw (1938), Batdorf et al. (1947), Gerard and Becker (1957) 

and Parks and Vu (1989), and in the inelastic range there are the papers by 

Levy (1943) and Wang and Rakotonrainibe (1978). Redshaw developed an 

expression on the basis of the classical energy method, to predict the elastic 

local critical buckling stress of curved plate under axial compression. Its 

general form is 

(4.1 ) 

this has the same form as Equation (3.3) except b is now the circumferential 

length of plate. 

He developed the following expressions for K min depending on the boundary 

Condition of the plate's longitudinal sides, and on which no compressive 

stress is applied. The other two edges with uniform compression are 

assumed to be simply supported. 
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For simply supported longitudinal sides with y = 0 and y = b he gives 

Km. =4+(~n~-v2t),. for ~ S1.47. and (v= 0.25. light metal alloy) (4.2a) 

If the two longitudinal sides are clamped the minimum critical stress 

coefficient is given by 

( 
16 768 (d)2 ) 

K min = 2 3" + 1[4 t + 1 (4.2b) 

For the longitudinal side y = 0 simply supported and side at y = b free 

Redshaw obtained 

(4.2c) 

And finally for the longitudinal side y = 0 clamped and side at y = b he gives 

[
1] 1 162 d 2 2 135 

Kmin =- 2(-+768(-) ) +-(6-7V) 
1[2 13 t 91 

(4.2d) 

Where distance d in Equations (4.2a) to (4.2d) is defined refer to Figure 4.1 at 

start of analysis. Redshaw highlighted the dependency of the coefficient 

K min of the curved plate on the curvature of the plates and the ratio Umb, 

which is the length of plate divided by the product of the circumferential 

length and the number of half waves in the axial direction. Redshaw (1938) 

also mentions that the experimental data presented by Cox and Clenshaw for 

the two cases given by Equations (4.2a) and (4.2b) give K min values that are 

lower than the corresponding theoretical values by 40 to 50%. He attributed 

this discrepancy to imperfections and the actual nature of the edge boundary 

conditions being different to these assumed in the analytical treatment. 
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Strut buckling was the first structural problem to be studied in the inelastic 

range. Engesser (Bleich 1952) proposed the replacement of the tangent 

modulus (reduced modulus) for the Young's modulus of elastic in Euler's 

formula. Alternatively, Considere (Bleich 1952) introduced the use of the 

effective modulus, which has a value that lies between the tangent modulus 

and the Young's modulus. The effective modulus concept was further refined 

by von Karman based on his unloading concept at the onset of buckling, and 

this led to what is generaJly known as the double modulus. Shanley (1947) 

conducted tests on columns and managed to show that the unloading on one 

side of the column, as postulated by von Karman, does not occur at buckling 

and that the correct reduced modulus for determining the critical buckling 

stress is actually the tangent modulus. 

For inelastic buckling of a plate element as briefly presented in Section 3.4. 

Bleich handled the problem by assuming the reduced modulus was effective 

for strips of plate in the applied load-direction, whereas the elastic modulus 

remained valid for strips in the direction perpendicular to the applied load. 

Alternatively, Ros and Eichinger (1932) assumed that the plate remains 

isotropic even when the stress exceeded the proportional limit, with the 

reduced modulus applying in all direction. But according to Bulson (1970), 

neither of these two approaches is particularly satisfactory, although the 

Bleich work gave closer agreement with physical test results. Attempts have 

therefore been made by researchers to improve the theoretical treatment 

introducing the laws of plastic theory into the inelastic plate-buckling analysis. 

lIyushin (1947) based his solution for the plastic stability problem on von 
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Karman's concept be that, on onset of the plastic deformation, "unloading 

takes place on the convex side of the bent plate as this side behaves 

elastically whereas concave side behaves plastically". Similarly as in the 

column case, Stowell (1948) modified the inelastic plate buckling theory by 

lIyushin, using Shanley's contribution that "no strain reversal occurs in any 

part of the plate beyond the elastic limit". Stowell took Poisson's ratio equal to 

0.5, thereby following the method by IIyushin. The effect of any error due to 

this value of v is partially eliminated by this technique of using the concept of 

plasticity reduction factor to obtain the inelastic critical buckling stress. The 

plasticity reduction factor is calculated by dividing the inelastic critical stress 

by the critical stress computed on the assumption of perfect elastiCity, but 

with v = 0.5 instead of v = 0.3. Then the inelastic critical stress is computed 

from multiplying the plasticity reduction factor by the elastic critical buckling 

stress. 

In Sections 4.2.1 to 4.2.5 the inelastic stability problem of a curved plate 

compressed in axial direction by a uniformly distributed load in the plane of 

the plate is investigated. The contribution is based on the original work by 

Redshaw for curved plates in the elastic region. Furthermore, stability 

theories for plastic buckling by IIyushin and Stowell are followed to develop 

an energy expression. The Principle of Minimum Potential Energy is then 

implemented to obtain a set of algebraic equations, which are solved using 

nUmerical techniques for inelastic critical buckling stress then implemented to 

develop the new plasticity reduction factor expression that can be used with 

CUrved plates. 
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4.2.1 Displacement field 

In developing the relationship between the applied load and the member's 

deformation the description of deformed configuration first needs to be 

established by displacement expressions. In considering the deformed 

configuration of the curved plate Kirchhoff assumptions are implemented to 

describe the nature of the displacement field through the thickness of the 

plate. The straight elements, which are normal to the middle surface of 

generic cross-section, remain straight and normal to the deformed surface. 

The wall thickness is small in comparison with the radii of curvature. For the 

new theoretical treatment the in-extensional assumption is relaxed Redshaw 

(1938). 

The geometry of a profile with constant thickness and generic curved cross­

section is shown in Figure 4.1. An orthogonal curvilinear coordinates system 

(x,y,z) is adopted with x-axis along the line of curvature, y-axis normal to the 

middle surface and z-axis in axial direction. The corresponding displacement 

components are u(x,y,z), v(x,y,z), and w(x,y,z), respectively and given by 

w(x,y,z)= wo(x,z)- y. ~: (4.3a) 

u(x,y,z)=uJx,z)+ y. ~; 

v{x, y, z) = Wo (x, z) 

4.2.2 Internal forces 

(4.3b) 

(4.3c) 

Before we can use the energy method to obtain an expression giving the 

Critical load, the basic concept behind the energy expressions is established. 
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The inelastic buckling of a curved plate element requires the knowledge of 

stress-strain relation beyond the elastic range. In this study lIyushin and 

StoweIJ stability theories of plastiC buckling are adopted. In the case of two­

dimensional state of stress, the intensities of stress and strain according to 

the Von Mises fundamental hypothesis of the theory of plasticity are given by. 

(4.4) 

(4.5) 

In Equation (4.4) 0', is stress intensity that produces the strain intensity ell in 

Equation (4.5). 0'" and O't are normal stresses and l' xt is the shear stress. 

ex and e: are the normal strains and rxt is the shear strain. 

According to plasticity theory the intensity of stress 0', is, for any given 

material, a uniquely defined function of the intensity of strain e" and the 

corresponding stress-strain relations are 

(4.6) 

(4.7) 

(4.8) 

In Equations (4.6) to (4.8) E is the secant modulus that is defined by 0', , Sx 
S e 

I 

and S l are equivalent stresses in the x-axis and z-axis directions 

respectively. According to StoweIJ (1948) the Poisson's ratio in the plastic 

48 



region can be assumed to be 0.5. On substituting v = 0.5 in the Equations 

(4.6) to (4.8), and solving for the stresses the following expressions are 

obtained 

(4.9) 

(4.10) 

(4.11 ) 

At onset of buckling, the slight distortion of the plate gives rise to variation in 

the strain components. This variation arises partly from the variation of the 

middle surface strains (membrane stresses) and partly from strains due to 

bending of the plate. These variations are given by 

(4.12) 

(4.13) 

(4.14) 

where El is the middle surface strain in the z-direction, E2 is the middle 

surface strain in the circumferential direction, and E3 is the middle surface 

shear strain. Although an x, y and z coordinate system is used to introduce 

the theoretical treatment it is more convenient to adopt the polar coordinate 

system for curved sections. This enables circumferential continuity to be 

ensured easily. The transformation is made by introducing the 

expression X = Re, where R is radius and e is angle of rotation (see Figure 

4.1). principal strain components are now related to the displacements by 

Way of 
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v au 
E2 =-+-

R ae 

au 1 aw 
E3=R-+--

az R ae 

(4.15) 

(4.16) 

(4.17) 

In Equations (4.12) to (4.14) 8XII 8X2 and 8X3 are the changes of curvature 

and in term of displacements w, u and v they are given by: 

(4.18) 

(4.19) 

(4.20) 

The corresponding variations of the equivalent stresses can now be obtained 

by using Equation (4.6) (with S l = EsEl ) to derive 

{4.21} 

The Work done by the internal forces when the plate passes from the initial 

undeformed to the loaded deformed configuration is given by 

(4.22) 

Then after substitution for the strain variations given by Equations (4.12) to 

(4.14) in Equation (4.22) the variation of strain intensity is given by 

&1 =:::tEl +0'%E2 +2'Z'xtEJ - Y(O'Z8Xl +0'.{8X2 +2'Z'xt0X3) 

0'/ 
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At neutral surface of the cUNed plate element the variation of strain intensity 

is zero (Le. &1 = 0), and hence the y-distance to the neutral surface (Yo) is 

given by 

(4.24) 

By substituting the strain intensity variation &/ into the variation of equivalent 

stress S Z I and introducing the neutral surface coordinate Yo we have that 

Similarly, the following expressions can be obtained for the other two 

stresses variations 85 and or 
x Xl 

Where Et = dUi is the tangent modulus. 
del 

On each of the four sides (at z = 0, z = L, y = 0 and y = b) of the element the 

surface traction can be replaced by resultant normal forces applied at the 

mid-plane of the sides and resultant bending moments acting about the 

relevant axis. Since the cUNed plate is thin, the sides of the element of width 

&can be considered as a rectangle. Figure 4.2 defines the resultant force 

and moment intensities on the sides of the element. Hence, the variations of 

the resultant forces and resultant moments are. 
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t 

2 

ONZ = j80"zdY (4.28) 
t 

2 

t 

2 

ONX = j80'xdY (4.29) 
t 

2 

t 

2 

ON xz = j 81' Xl: dy (4.30) 
t 

2 

t 

2 

OM 1. = j80'1.ydy (4.31 ) 
I 

2 

t 

2 

OM x = j80'xydy (4.32) 
t 

2 

I 

2 

OM Xl: = j 81'xl ydy (4.33) 
t 

2 

By substituting forO'l from Equation (4.9), and for ~zand ~x from Equations 

(4.25) and (4.26) in Equation (4.28) we can obtain 

t 

ON _ 4 2 

1. -3' j(£'z +O.5£'Jdy 
I , 

(4.34) 

2 

The integrals to the equivalent stress variations as 1.' as x and £' Xl: in the 

plastic region have been taken over the entire thickness of the plate, with the 
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assumption that no part of the plate is being unloaded (Le. the cross-section 

is fully yielded). On carrying out the integration the force term is developed to 

be 

Similarly, for the remaining two stresses variations we can establish the 

expressions 

ONx = 2 E t{[l- 3'Z';t (1- Et )]e _~(aZ'Z'XZ El + O'x"xz E2)(I-~)} (4.37) 
Z 3 s "..2 E 3 2 a 2 a 2 E 

v I s I I s 

Similarly by substituting for at from Equation (4.9), and for &'zand &'x from 

Equations (4.25) and (4.26) into Equation (4.31) we find 

, 
4 2 

OM t = 3" J(~z +O.5&'x)ydy 
t 
2 

(4.38) 

FOllowing the procedure for developing Equations (4.35) to (4.37) we 

established that 
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Similarly, it can be shown that 

in which D' = Est
3 

• 

9 

4.2.3 Strain energy 

(4.39) 

(4.40) 

In the extensional method the strain energy of a deformed element is 

composed of the strain energy due to bending and the extension of the 

middle surface. The total work done due to variation in moments is 

(4.42) 

SUbstituting for the moments their expressions from Equations (4.39) to 

(4.41) the energy integral of the entire element due to bending during the 
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transition from the primary configuration to deformed one may be 

represented by (Stowell 1948). 

Where 

The membrane strain energy due to the additional stretching of the middle 

surface is 

(4.43) 

When substituting for the forces their expressions given by Equations (4.35) 

to (4.37) the energy integral of the entire element due to membrane forces 

during the transition from the unstressed configuration to the deformed one is 

Where 

bl =c 
}' 

Therefore the total change in the strain energy of a curved plate element is 
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~ EJ JJ[bI8~ +b28182 -b38183 +b48; -bS8283 +h68;}LA + 

!D' JJ[C18Z 12 - c28Z18Z3 ~ C3 (8Z; + 8z18zJldA 
2 -c48Z28Z3 +cS8Z2 J 

(4.44) 

In order to apply the Principle of Minimum Potential Energy we need to have 

an expression for the loss in potential energy V of external loads due to the 

deformation of the plate's middle plane. V is equal to the negative product of 

the external forces and the displacement in the direction of the applied force, 

and may be expressed by (Redshaw 1938) 

(4.45) 

The work done by applied force on the panel is 

(4.46) 

The total potential energy of the internal and the external forces acting on the 

Curved plate element is then obtained by adding the strain energy due to 

deformation to the work done by the forces applied at the boundary of the 

plate, as follows 

n=u+V (4.47) 

Using the strains and change in curvatures from Equations (4.15) to (4.20), 

equation (4.47) will yield the governing potential energy Integral, that is 
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(4.48) 

4.2.4 Rayleigh-Ritz method 

The Rayleigh-Ritz method was introduced by Ritz in 1908 as a generalization 

of a technique described by Rayleigh in 1877. The procedure is based on the 

Principle of Minimum Potential Energy: which states that, an elastic structure 

is in equilibrium if there is no change in the total potential energy of the 

structure when its displacement field is changed arbitrarily by small amount. 

At the critical load the total potential is a/ways a minimum, which given by 

(4.49) 

4.2.5 Application to curved plate subjected to edge forces 

In the case of a curved plate subjected to a uniformly compressive axial 

force, the Rayleigh-Ritz method may be applied to obtain an approximate 

value of the critical buckling load. The critical point in the application of the 

method is the choice of the possible admissible deformation. By assuming a 
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form for the buckled deformation, the obtained critical buckling load is the 

upper limit, since the actual deformation corresponds to that for the least 

resistance of the imperfect plate. However, providing the boundary conditions 

are satisfied and the assumed the deformation shape is physically 

admisSible, the solution obtained is sufficiently accurate for most engineering 

purposes (Redshaw 1938). 

To model the buckling response of a short length of a curved plate we now 

consider in the present study a simply supported plate on two circumferential 

sides at x = 0 and x = L, with one longitudinal side free and the other side 

clamped. The problem to be analysed is shown in Figure 4.3. Adopted herein 

are displacement expressions to those chosen by Redshaw to solve the 

elastic buckling problem of a curved plate. They are 

(4.50) 

(4.51) 

(4.52) 

'th m1lR WI k = - for the generators subdivide into m half-waves. Function 
L ' 

f(e) = 6(J282 - 4(J83 + 84 represents approximately the form of the deflection 

across the panel. (J is the angle subtended from the free edge to the second 

longitudinal side where the displacement boundary conditions are for the fully 

clamped situation, This is the model illustrated in Figure 4.3. A, Band C in 

Equations (4.50) to (4.52) are arbitrary constants. Then for a critical value of 
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the total potential energy n its first derivative with respect to these constants 

should zero. 

By substituting the assumed displacement functions above into Equations 

(4.50) to (4.52) and then into Equation (4.48) the strain energy can be 

expressed as follows 

I{ -A~(6fd -~tJ+(j)Si{~)J 
+~(-A~(6fd-~tJ+(j)Si{~~).(~(6fd-~tJ+(j)Si{~)+i(l1f(}-l1pIJ+4fJ)cot~)) 

-l)(-A~((yjJd-~tJ+(j)Si{~~)'(-z1((yjJ(}-~tJ+(j)Si{~)+~(l1f(}-l1plJ+4fJ)cof~)) 

U=~E! f +1{~(6fd-~tJ+(j)Si{~)+~(l1f(}-l1pIJ+4fJ)cof~~J 
~~(~(6f(}-~tJ+(j)si{~)+i(l1f(}-l1pIJ+4fJ)cot~)} 

(-z1(6f(}-~tJ+(j)si{~)+~(l1f(}-l1pIJ+4fJ)cof~~) 

+b{-B~(6fd-~tJ+(j)si{~~+~(l1f(}-l1/JIJ+4fJ)cof~)J 

+c~ (&Id -'¥"+I1H~)J 
-s(-c~(6fd-~tJ+(j)si{~1}(c;(11f(}-11p1J+4fJ)cof~)+B;(6fd-~tJ+(j)Si{~)) 

(c; (11f(}-11pe+4fJ)cot~1+B; (6f(}-~tJ+(j)Si{~)J 
1 +s 
211 f -( c~ (6fd-~tJ+(j)Si{~~}( ~(6f(}-~tJ+(j)si{~1+c ~(11p-2~~111)Si{~)) 

-c{c ~((yjJd-~tJ+(j)Si{~)+C ~(11p-2~8tl11)Si{~)) 

(c; (l1f(}-l1p1J +4fJ)cot~)+B; (6fd-~tJ+(j)Si{~~) 

+c{c ~ (6fd -~tJ+(j)Si{~~+C ~ (11p-2~~111)Si{~)J 
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The author performed hand calculation to establish the integration over the 

length L of the plate problem and the following expression is obtained 

Then by performing the integration over the circumferential direction of the 

element the strain energy expression is 

Collecting like terms the final strain energy expression is 
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By substituting the assumed displacement functions Equations (4.50) to 

(4.52) into Equation (4.48), the work done by the compressive forces at onset 

of the buckling may be expressed as follows 

- A ~ (6~202 -4!P8' +0' )Sin( ~)+ 

V = O",t f ~( -B ~ (6~202 -4!P8' + 0' )Sin(~) r dzRdO 

+ ~ ( C ~ (6~202 -4!P8' +0' )co{~ ))' 
By performing the integration over the length of the element, the following 

expression is obtained 

V = O",tR { ~: (6~202 - 4!P8' + OS r B' + ~: (6~202 - 4!P8' + 0' r C2 ro , 
Then by further performing the integration over circumferential length b of the 

element, the following expression for the work done by the compressive 

forces is obtained 

v =!.2.±. O'ttLk
2

ifJ9 (B2 +c2 ) 

45 4R 

The total potential energy is given by 

n=u+v 
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For n to have a minimum or maximum value for variations in the arbitrary 

constants A, Band C requires that 

(4.53) 

The condition of Equation (4.53) gives a system of linear and homogeneous 

equations in the unknown arbitrary constants A, Band C. they are 

an 
aA = 

(
2 Est k 2 Lb ;1,9 + 924 Est Lb ;l,7)A 

3R l'f' 104 3R 6'f' 

_(EJ k2Lb;l,9 + 462 Est Lb ;l,7)B =0 
3R 3'f' 104 3R 5'f' 

_ Est kLb ;l,9c 
3R 2'f' 
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=0 

(4.54) 

(4.55) 



an 
ac = 

_ Est kLb /1,9 A 
3R 2'f' 

+(Est kLb /1,9 _ 77 D' kLc /1,7 _ D' kLc /l,9)B 
3R 5'f' 104 4R3 4'f' 4R3 4'f' 

2 Est Lb /1,9 +2 D' eLc /1,9 + 924 D' k 2Lc /1,7 
3R 4'f' 4R3 1'f' 1044R3 3'f' 

+ -2~k2Le rp9 +2 D' Le rp9 + 2592 D' Lc rps C 
4R3 3 4R3 S ,104 4R3 5 

+ 154 D' Le rp7 _ 2 O"ztLk
2rp9 

1044R3 5 4R 

=0 (4.56) 

By elimination of the arbitrary constants A, Band C from Equations (4.54) to 

(4.56) the following determinant in terms of bjand Cj is obtained 
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kb ",2 _ 58 D' kc 
S'f' 104 E tR 2 4 

s 

3 D' k ",2 

- 4 E tR 2 c4 'f' 
s 

kb ",2 _ 58 D' kc 
S'f' 104 E tR 2 4 

s 

3 D' k rp2 - c 
4 E tR 2 4 

s 

=0 

2b ",2 + 3 D' k4c ",2 
4'f' 2 E tR2 l'f' 

s 

693 D' k 2 + c 
104 E tR2 3 

s 

3 D' k'2 2 
- c'" 2 E tR 2 3'f' 

s 

3 D' +_ C ",2 
2 E tR2 s'f' 

s 

{4.57} 

In the case of 2-dimensional curved plate compressed solely in the z­

direction the traction boundary conditions (z = 0, and z = L) are given by 
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Therefore from Equation (4.4) the stress intensity is 

Consequently, the plasticity coefficients hi and Ci reduce to 

Substitute the value of the plasticity coefficients hi and Ci in Equation (4.57) 

yields 

o 

o 

924 + k 2tjJ2 
104 

+ 3 D' k2tjJ2 
2 EiR2 

_~ O'x k2tjJ2 
2 Es 

o 

o =0 

(4.58) 
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By expanding the determinant from Equation (4.58) yields 

Rearranging for O'z gives 

(4.59) 

By noting that the arc length b = Rf/J and that from Redshaw (1938) the bulge 

distance for a curved panel of constant radius R is d = b
2 

approximately, 
8R 

then on substitution we have 

(]' ,,2t2 
-L-

E, - 9b
2 

1296 ( L )2 77 768(d)2( L )2 + - + +- - -
104,,4 mb 2(m1lR)2 1&4 t mb 

1041& --
L 

(
mb)2 462 f/J 2 rp2 
L C, + 104,..' - ,..' + ,..,( m:)' 

(4.60) 

On comparing Equation (4.60) to Equation (4.1), with v = 0.5 for the inelastic 

condition it is seen that the terms in the bracket is for Kmin. Now let the 

bracket expression be set to K, so that we have 
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K= 
1296 ( L )2 77 768 (d)2( L )2 

+ 104lr4 mb + 2(m1tR)2 + lr4 t mb 
104lr -

L 

(4.61) 

Substitute for ~ by Q and by neglecting the terms, which have relatively 
mb 

small values and which when summed are insignificant the following 

expression for K is obtained 

K - Q-2 462 1296 Q2 768(d)2 Q2 
- Cl + + +- -

104lr2 104lr4 lr4 t 
(4.62) 

For (J't in Equation (4.60) to be a minimum K must be a minimum, and this 

condition is given by 

dK 
-=0 dQ 

Therefore we have that 

[
1] 1 ! 162 d 2 2 462 

K min =- 2Cl(-+768(-) J +-
lr 2 13 t 104 

From which the inelastic critical buckling stress, (J'cr' is given by 

~T = Est
2 [2C~(162 + 768(!!..)2J~ + 462] 

9b 2 1 13· t 104 

or 

(J'CT = Es (!...)2[2C~(162 + 768(d)2)t + 462] 12(I-v2 ) b 1 13 t 104 
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When compared with the elastic solution in Equation (4.67) it is seen that the 

main changes is secant modulus instead of Young's modulus and plasticity 

coefficients C1. 

4.3 Development of the plasticity reduction factor for curved plate 

element 

The development of an expression for plasticity reduction factor, which is 

defined below, is based on a bifurcation in the equilibrium equation, and the 

assumption that instability of the thin-walled section takes place entirely in 

the plastic regime. Its formulation will assume also that Poisson's ratio is 0.5, 

due the incompressibility condition. The plasticity reduction factor is the 

number by which the critical buckling stress computed for the elastic case 

must be multiplied to give the critical stress for the plastic case. It can 

expressed by 

(4.66) 

in which O'er is the elastic critical stress of the same curved plate under axial 

Compression. For the elastic case Redshaw (1938) obtained the following 

expression for the critical buckling stress 

(4.67) 
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Redshaw states that Equation (4.67) is valid providing the limiting value of 

d 1[2 [ 1 ]~ the ratio - ~ - ( 2)' For the elastic case he assumed v = 0.3 so 
t 4 31-v 

~ ~ 1.5 whereas for the plastic case d ~ 1.64 by assumption that v= 0.5. 
t t 

In calculating the plasticity reduction factor the author applies Stowell 

technique, with the critical stress computed on the assumption of perfect 

elasticity and with v = 0.5 instead of v = 0.3. This gives from Equation (4.67) 

the solution 

(J' = Et
2 [2(162 + 768(1.64)2)t + (135).2.5] 

er 9b 2 13 91 

(4.68) 

After substituting into Equation (4.66) the inelastic critical stress from 

Equation (4.65) and the elastic equivalent from Equation (4.68) the plasticity 

reduction factor is given by 

17 =.....:.- 0.04+0.96 -+--- Er ( 1 3 Et) 
E 4 4 Ea 

(4.69) 

This new factor will be used in Section 6.3.2 to establish the prediction of 

inelastic critical load for £-section. 
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Figure 4.1. Curved plate geometry and displacements components. 

Figure 4.2. Curved plate moment and force Intensitles. 
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Figure 4.3. Curved plate under axial compression force. 
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Chapter 5 Experimental Method for Characterisation of Stub 

and Stud E-columns 

5.1 Introduction 

As described in Chapter 3 open cross-section, thin-walled, cold-formed 

column members have at least three competing modes of buckling failure 

local, distortional and overall. Although the local and overall flexural modes 

will be examined by way of physical testing, the main objective of the 

research is to develop a consistently accurate and practical method of 

determining the ultimate carrying capacity of E-section stud columns, which 

fail by a mode of overall flexural buckling. 

The buckling and post-buckling of columns with standard cold-formed shapes 

has been studied extensively, and key papers reporting experimental 

investigations are by Azhari, and Bradford (1993), Rasmussen and Trahair 

(1994), Popovic et al. (1999), Cheng et al. (2003). Furthermore, design 

guidance for such shapes are available in national standard codes of 

practice. However, the provisions contained in part 5 of BS 5950:1998 cannot 

be directly applied to predict the resistance of e-shaped columns. The 

clauses are based on the members comprising flat plate elements, with 

certain geometric arrangements. Clauses in Section 10 of the same code of 

practice do allow for the characterisation of any cross-sectioned thin-walled 

steel component by physical testing. The author will present results from 

series of full-sized tests in accordance with this section of the British 

Standard. A total of 62 tests were conducted on E-columns having the two 
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wall thicknesses of 1.5 and 2 mm. All E-sections had the major- and minor­

axis dimensions of 100 mm and 43 mm, as shown in Figure 5.1. Tensile 

COupon testing was conducted on 6 specimens cut from an E-section to 

characterise the steel's properties. Stub column tests were conducted on 8 

specimens of length 200 mm. six of the short columns were tested without 

strain gauges and two had strains gauges mounted around the perimeter at 

mid-height, to investigate the change in strain profile under local failure 

behaviour. Stud column tests were conducted on 54 long columns specimens 

at the single column length of 2.7 m, which corresponds to the typical column 

height in a modular 'picture' frame (see Figure 2.5). 

5.2 Tensile coupon tests 

Six tensile coupon specimens were prepared in the School of Engineering. 

The measured specimen dimensions are 1.5 mm thickness by 5 mm width by 

50 mm length. SpeCimens were cut so that their longitudinal axis was parallel 

to the direction of the final rolling. The specimens were not flatten and so 

possessed the curvature of the E-section. The tensile coupon testing is to 

determine the yield stress, fa' tensile strength U., initial Young's modulus (E) 

and the percentage elongation eu • 

Testing was carried out under normal ambient room conditions. Load was 

applied under stroke control at a constant rate of 3 mm/min, using a 100 kN 

Testometric testing machine. The machine is a computer-controlled universal 

materials-testing machine using Testometric's software running under the 

Windows operating system. Test setups are fully configurable and simply 
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controlled by using the standard PC serial interface to generate load-stroke 

plots. The 100 kN load cell is calibrated annually by Central Calibration 

Services. 

5.3 Stub column tests 

5.3.1 Introduction 

Although thin-walled columns can be susceptible to local buckling at 

relatively low stress, they do possess post-local-buckling strength, and this 

property has been thoroughly investigated by Hancock (2003), Schafer 

(2002), and loannidis et al. (1999). The post-buckling strength of a 

concentrically loaded column depends mainly on the slenderness ratio (i.e. 

the width-to-thickness ratio) of the individual plate elements that form the 

section's shape. If the slenderness ratio of an element is larger than the 

corresponding critical slenderness ratio, it will buckle locally prior to yielding, 

and thus becomes only partially effective. The post-local-buckling strength 

may be considered by adopting the effective-width concept as introduced by 

van Karman et al. (1932) and given by Equation (3.5). On the other hand if 

the element is stocky the local buckling may occur at relatively high mean 

stress levels and the failure is referred to as crippling failure (Singer et a/ 

1998). 

5.3.2 Preparation of specimens 

The eight stub column specimens of 200 mm length were prepared from 1.5 

mm thick E-section at the Market Harborough works of Modula 2000 Ltd., and 

were delivered, to the Structures Laboratories in the School of Engineering. 
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Figure 5.2 shows two of the specimens. The specimens are labelled as 81-

88, with 8 for the stub length situation. 

Two of eight specimens 87 and 88 were tested with strain gauges located at 

different positions, as shown in Figure 5.3. All specimens have been carefully 

inspected for imperfections and flatness of the end surfaces and it is believed 

to be within the tolerances of erection criterion (Il1000). 

5.3.3 Test procedure 

Tests were carried out using 40-ton Amsler universal testing machine, with 

the flat-ended specimens bearing directly on the rigid loading plates. The 

type of loading test is a strength test to determine the load-carrying capacity. 

A photo of the full test rig with specimen 87 is shown in Figure 5.4. In each 

test, two displacement transducers were used for measuring the relative axial 

shortening displacement between the rigid base and crosshead and, the mid­

height lateral deflections for flexure about the minor axes. A 150 kN (15 

tonnes) load cell is used to measure the compressive force. The load cell is 

placed on a rigid steel base plate of the Amsler machine. The base and top 

arrangements of the test rig are shown in Figure 5.4. Except for the axial 

movement of the crosshead there are no other free degrees-of-freedom in 

the strength test. 

Using two steel spreader plates at top and bottom of the specimen ensures 

, the uniform distribution of the applied load. Each of the spreader plates is 

marked to enable it to either mate with the bearing surface of the load cell at 
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the bottom or with the crosshead of the Amsler testing machine at the top. To 

position a stub column relative to the spreader plate's centre line offsets at a 

predetermined distance from the centreline are drawn onto the spreader 

plates so that the centroid of the 1.5 mm thick £-section (see Figure 5.1) is 

aligned with the centroid of the load cell and testing machine. 

5.3.4 Instrumentation 

The 15 tonnes load cell was calibrated by Mr Colin Banks (Civil Engineering 

Technician). To measure displacements, two 25 mm HS25 strain-gauge 

displacement transducers, supplied by Welwyn Strain Measurement, are 

used. These can be seen in Figure 5.4. These two transducers are 

connected to a Solartron 3531 D Orion data logger (serial No. 100582, 

certificate of calibration to the original manufacture's specification) and were 

calibrated by Mr Banks, using dimensioned gauges from a Mitutoyo MFG 

Gage block set. The block set has calibration certification to Grade 11. 10 mm 

long strain gauges of post-yield type YL-10 (Tokyo Sokki Kenkujo Co. Ltd.) 

are placed positioned around specimen to measure the longitudinal direct 

strains under compression. The sixteen gauges are located as shown in 

Figure 5.3. It can be seen that gauges Nos 1 t010 are at the mid-length of the 

specimen and 1 to 8, which were positioned at 1.5 mm apart are there to 

measure the strain profile in one half of the single-symmetric £-section. 

Gauges Nos 9 and 10 are mounted symmetrically about the minor-axis with 4 

and 1 and are there to establish how different the strain distribution might be 

in the two halves. Stain gauges are connected to the Orion data logger. 
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5.3.5 Loading and measurements 

The rate of load application is such that the specimen's behaviour could be 

considered to be quasi-static. The tests are performed under load control. 

The load is applied in increments of 5 kN and the test terminated when the 

column fails. Once the maximum load is attained the specimen is unloaded. 

Measurements of the compression load, two displacement and strain-gauge 

readings are taken in real time using a Solartron 3531 D Orion data logger. 

The load is taken to the nearest 0.05 kN, the displacement to the nearest 

0.01 mm and strain to ±5 J..l£. Readings are taken after sufficient time, after 

each load increment, to allow the test specimen to reach what the author 

considered to be stationary equilibrium. After each increment, the test 

specimen is carefully examined for signs of excessive deformation, rupture, 

yielding, local or overall buckling. 

5.4 Stud column testing 

5.4.1 Introduction 

Physical tests are to be conducted, in accordance with Section 10 of BS 

5950: 1998, on stud columns to determine the axial load capacities of £­

shaped sections, taking into account the influence of restraints afforded by in­

service boundary conditions. Presented in this thesis are component test 

results for 54 stud columns having the two wall thicknesses of 1.5 and 2 mm. 

All £-sections had the major- and minor-axis dimensions of 100 mm and 43 

mm. Testing was conducted at the single unbraced column length of 2.7 m, 

which corresponds to the typical column height in a modular 'picture' frame. 
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5.4.2 Preparation of specimens 

The 54 stud-column specimens were prepared at the Market Harborough 

works of Modula 2000 Ltd., and were delivered, to the Structures 

Laboratories in the School of Engineering. Specimens were prepared to the 

engineering drawings given in Figures 5.6 (a) to (e). 

Figure 5.1 shows the cross-section of the 1 00x43x1.5 mm E-section without 

stiffener brackets and when the wall thickness is 1.5 mm. Figure 5.7 shows 

such a plain E-section with reusable end plates for concentric loading. Modula 

2000 Ltd. provided these specific reusable end-plate fixtures that simulate 

the "real panel" displacement boundary conditions. These plates are 150 mm 

square and 12 mm thick. The 54 specimens involve nine column types in 

batches of six specimens. The six specimens are numbered from 1 to 6. 

Figures 5.6(a) to (e) show the nine column-type differences. The six types 

with labels WU104 to WU109 (where pair of labels are given, for example 

WU104 + WU105, the first is for the E-section of 1.5 mm wall thickness and 

the second is for the higher thickness of 2.0 mm) have three different 

intermediate bracing stiffener/bracket arrangements, for the two E-section 

wall thicknesses. All six types have at the top and the bottom, a 300 mm long 

stiffener bracket. Details are given in Figures 5.6(a) to (c). 

This series of 54 tests also involved three column types (WU110 to WU112) 

where the open E-section is fully enclosed. Details of the three column types 

with a closed cross-section are shown in Figures 5.6(d) and (e). For types 

WU110 and WU111 the E-section is enclosed with curved close fitting plates 
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(labelled stiffener brackets in Figure 5.6(d)} of CR4 grade steel, having 110 

mm arc length and 1.5 mm thickness. In type WU112 the continuous 

enclosure (Figure 5.6(e)) is by a 1 00x40x1.5 mm3 C-section of S350 grade 

steel. 

The stiffener and bracing brackets, curved enclosure plates and the C­

section are connected to the £-section using 6x15 mm2 MIG plug welds, 

which are spaced every 255 mm. However, when a stiffener is butted against 

a stiffener or bracket the centre-to-centre spacing of the plug welds is lower 

at 50 mm. 

Using CAD software Peter Dann Ltd. have calculated the nominal sectional 

properties for the five column cross-sections, ignoring the discontinuous 

brackets and stiffeners in columns WU104 to WU109. Table 5.1 presents the 

column height (L), and the sectional properties of the cross-sectional area 

(A), the second moment of area about the major axis (Ix), the second moment 

of area about the minor-axis (Iy) , the minor axis radius of gyration (ry). In the 

last column the slenderness ratio (A) is given, for an effective length LE = 

1.0L. Table 5.2 presents mechanical properties to the CR4 and S350 grade 

of steel from Table 31 of EN 10147: 2000. 

To check the magnitude of the initial geometrical imperfection due to minor­

axis out-of-straightness, measurements of geometry were conducted on 

Specimens chosen randomly. This was done by laying a specimen down on a 

flat steel table and taking, at 100 mm intervals along the specimen'S 2.7 m 
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length, relative height measurements using a dial gauge reading to 0.01 mm. 

The measured camber is found to be negligible, ranging from 0.0 to a 

maximum of 0.6 mm, or U4500. Note that a practical erection criterion for 

structural steelwork is that a column is allowed a 'lack of straightness' 

tolerance of U1000. The stud £-columns of types WU104 to WU112 therefore 

surpass this erection criterion and for practical proposes they can be 

considered to be straight members. 

Table 5.1. Geometric properties of stud column £-sections. 

Stud Length, Thickness, t Area, A Ix Iy Radius of Slendem 

column L(mm) (mm) (mm2) 104 (mm4) 104 (mm4) gyration -ess ratio 

type (ry = VIIA) (..t = Ur) 

(1 ) (2) (3) (4) (5) (6) (7) (8) 

WU104 2700 2.00 436 61.3 9.61 14.9 182 

WU10S 2700 1.50 330 39.2 7.47 15.1 179 

WU110 2700 2.00 627 73.4 15.8 15.9 170 

WU111 2700 1.50 520 61.2 13.2 15.9 170 

WU112 2700 2.00 717 97.7 18.6 16.1 168 

Table 5.2. Nominal steel mechanical properties. 

Steel grade Modulus of elasticity Yield strength Y, Ultimate tensile Us Ultimate elongation 

EN 10147: 2000 E (kN/mm2) (N/mm2) strength (N/mm2) (mm) 

(1 ) (2) (3) (4) (5) 

CR4 174 205 326 36 

S350 205 350 420 .. 

5.4.3 Test procedure 

The test procedure is in accordance with Section 10 "Loading Tests' in SS 

5950:1998 part 5. The type of loading test is a component test to determine 

the load-carrying capacity (see Clause 10.7). Herein the failure criterion for 
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the test is based on the specimen having a minor-axis or major-axis mid­

height (maximum) lateral displacement of 9 mm (i.e. column heighV300). For 

the column types tested the limiting deflection is always that due to minor­

axis flexure. 

A sketch of the full test rig is shown in Figure 5.8(a). In each test, three 

displacements are measured. These are the axial shortening (in z-direction) 

and, at mid-height, the lateral deflections for column flexure about the major 

and minor axes (in the x- and y-directions, respectively). In Figure 5.8(a) the 

positive directions for the three orthogonal displacements are defined. The 

photograph in Figure 5.8(b) shows a specimen with the two orthogonal 

displacement transducers placed at mid-height. With respect to Figure 5.8(a), 

the image in Figure 5.8(b) is taken on the other side of the column. The 

author uses a 120 kN (12 tonnes) load cell. The base plate for locating the 

load cell is placed on the concrete strong floor without any bedding material 

to ·pack-out' gaps. The base and top arrangements to the test rig are shown 

in Figures 5.7, 5.10 and 5.11. Except for the axial movement of the jack there 

are no other free degrees-of-freedom in the strength test. 

To transfer load into a column Figures 5.10 and 5.11 show that there are two 

steel spreader plates at top and bottom connected to the reusable end plates 

shown in Figure 5.7. The four mating plates have squared sides of 150 mm 

and a thickness of 15 mm. Close to the corners there are four 18 mm 

diameter holes, for connecting bolts of M12 size. A spreader plate has a 

recess that allows it to either mate with the bearing surface of the load cell at 
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the bottom or with the hydraulic jack at the top. To position a specimen 

relative to the spreader plates there are the two reusable end plates, which 

have similar dimensions and corner holes. These are shown in Figure 5.7. 

Welded to the end plates are two circular tubes of 35 mm diameter and 65 

mm height. They are positioned at equidistance from the plate's centre and 

are fabricated to slot directly into the £-section. On assembling a spreader 

plate and end plate there is slack available in this loading fixture, via the four 

corner bolt holes (see Figure 5.10), to facilitate the adjustment of the 

specimen's vertical positioning that will align the load path for concentric 

loading. To connect the lower loading fixture to the load cell there is a hole of 

8 mm diameter in the spreader plate that mates with a central boss on the 

load cell. Depending on the column type, this hole is offset at a 

predetermined distance from the top plate's centre line so that the centroid of 

the non-symmetry £-column is aligned with the centroid of the load cell. 

Using a plumb line the centre of the load cell and centre of the jack's piston 

are aligned and the bolts on the test rig are tightened to securely fix them in 

POSition. A specimen is then slotted over the tubes of the load transfer 

fixtures and by careful positioning of the column; the line-of-action of the 

compression load can be located through the nominal centroid axis of the £­

column specimen. 

5.4.4 Instrumentation 

The 12 tonne load cell was calibrated by Mr Colin Banks (Civil Engineering 

Technician) using a 100 kN Testometric testing machine (UKAS certificate of 
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calibration No. 05960 issued by Central Calibration). To measure the 

column's displacements, as shown in Figure 5.8(a), three 25 mm HS25 

strain-gauge displacement transducers, supplied by Welwyn Strain 

Measurement, are used. These can be seen in Figures 5.8(b) and 5.11. One 

gauge measured the axial shortening displacement, and the other two 

measured the mid-height minor-axis lateral deflections. 

Four strain gauges are mounted within the upper quarter length of the 

column for obtaining the point of zero CUNature and hence the actual column 

effective length for stud columns. Two specimens of type WU1 04 were tested 

with strain-gauge type FLA-6 (Tokyo Sokki Kenkujo Co. Ltd.), while the 

remaining 50 specimens were without. 

The three transducers and the four strain gauges are connected to the Orion 

data logger. 

5.4.5 Loading sequence 

The rate of load application is such that the specimen's behaviour could be 

considered to be quasi-static. The tests are performed under stroke control. 

Initially, load is applied in increments of 5 kN. When the minor axis lateral 

deflection is obseNed to be tending towards 9 mm the control of the 

increasing load is established by controlling the next increment of the higher 

lateral deflection. Once the maximum load is attained the specimen is 

unloaded. 
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5.4.6 Measurements 

Measurements of the compression load, the three displacements and the 

four strain-gauge readings are taken in real time using the Orion data logger. 

The load is taken to the nearest 0.05 kN and the displacement to the nearest 

0.01 mm. Readings are taken after sufficient time, after each load increment, 

to allow the test specimen to reach, what the author considered to be 

stationary equilibrium. 

After each increment, the test specimen is carefully examined for signs of 

excessive deformation, rupture, yielding, local or overall buckling. 
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Figure 5.1. Cross-section of £-column with the major axis (x-x) the 

horizontal plane through the centre of the cross-section. 

Figure 5.2. Stub column specimens. 
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Figure 5.3. Strain gauges locations on specimens 57 and 58. 

Figure 5.4. Local buckling test arrangement with specimen 57. 
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(a) (b) 

Figure 5.5. Photographs for strain-gauge locations on specimen S7 (a) 

front view, (b) back view. 
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Figure 5.6. e-column's stiffener locations, (a) WU1 04&1 05, (b) 

WU106&107, (c) WU108&109, (d) WU110&111, (e) WU112 (drawings 

from Peter Cann Ltd). 
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Figure 5.7. WU series E-column with end fixtures (drawing from Peter 

Dann Lld). 

Cross-head orlest rig - .-

Hydraulic jack 
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Strong Door 

(a) (b) 

Figure S.B.Test rig, (a) Schematic of test rig, (b) Test rig with 2.7 m stud 

column ready for testing. 
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Figure 5.9. Displacement transducers at mid-length to measure lateral 

deflection in the major x- and minor z-direction. 

Figure 5.10. Base fixture and 120 kN load cell. 
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Figure 5.11. Top fixture, load jack and axial displacement 

transducer. 

Figure 5.12. Hydraulic Jacks and data logger. 
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Chapter 6 Stub Column Study with 1.5 mm thick E-section 

6.1 Introduction 

A number of axial compression tests were carried out on short Ilstub" 

columns of the 1.5 mm thick E-section to determine its load distribution and 

resistance at failure. To characterise the steel material a small series of 

tensile coupon tests were performed to determine the actual mechanical 

properties, after the E-section had been shaped by the cold-forming process. 

The results of the tensile coupon tests are used to determine the yield stress, 

I:, the 0.2% proof stress, 0'0.2' the ultimate tensile strength, U., the initial 

Young's modulus (E), the secant modulus (E5), and the tangent modulus (Et). 

These mechanical properties were required by the author to obtain, using the 

stub-column test results and theory in Chapter 4, the E-section's plasticity 

reduction factor. This new plasticity reduction factor is needed to get a value 

for the theoretical inelastic critical buckling load multiplying it by the value of 

the theoretical elastic critical buckling load. To validate the theoretical 

findings experimental values for the inelastic critical stress are used. From 

the failure stress established by way of the experiments the effective area of 

the thinnest E-section is determined. This effective area is to be used in the 

design procedure, development from Section 6 of 855950-5:1998, for stud 

columns of 2.7 m height. 

6.2 Results of the tensile coupon tests 

In general the capacity of coupons in tension is limited by tensile yield 

strength, I:' or ultimate strength, U •. To investigate the buckling resistance of 
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the stub columns it is necessary to know the strengths and moduli of 

elasticity of the cold-formed steel. This will ensure that representative 

material property values can be used in Section 6.3.2, which will present the 

theoretical derivations for the inelastic critical buckling stress. A total of 6 

speCimens were tested under axial tension using the test set-up and test 

procedure detailed in Section 5.2 

A typical stress v strain relationship is plotted in Figure 6.1. It was obtained 

from loading a coupon of only 5 mm width because it is cut from a E-section 

with continuous curvature. In the figure the solid line curve is the average 

curve from the results of six specimens. As can be seen from the average 

curve the cold-formed steel may be assumed to behave in a perfect linear 

elastic behaviour, up to the point of first yield, at a stress of 355 N/mm2
• 

Before this first yield point the material's response to direct stress can be 

determined using elastic theory. This is not valid once the specimen yields 

and the steel undergoes plastic deformation and strain hardening. When the 

yielding of a material shows an absence of a sharply defined yield point, 

there is the need for design to define an equivalent yield pOint. The generally 

accepted approach is to adopt the stress at 0.2% plastic strain, I.e. the 0.2% 

proof stress. From the average curve in Figure 6.1 the value of 0"0.2' Is 

determined to be 490 N/mm2
• As is well known, the Young's modulus is 

obtained from the stress v strain relationship by estimating an initial gradient 

to the elastic portion of the stress-strain curve. From the average specimen 

curve in Figure 6.1 the estimated average value of the Young's modulus is 
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204 GPa (or kN/mm2) (with Standard Deviation (SO) of 16.1) and (Coefficient 

of Variation (CoV) of 7.9%). 

For the author's theoretical study to follow in Section 6.3.2, the material 

behaviour, beyond the elastic range, can be represented by the model 

derived by Ramberg and Osgood (1943). Their model gives the following 

expression to the shape of the stress-strain curve in the strain-hardening 

region. 

e = E:. + e (.!!.-.) n 
E p U 

p 

(6.1 ) 

In Equation (6.1) the variablesEpand up are the proof strain and proof stress, 

typically the stress taken at 0.2% strain, and constant n defines the shape of 

the curve at its knee, with a value of 25 being typical for a cold-formed 

structural grade steel (Bradford 1994). After substitution in Equation (6.1) for 

Ep= 0.002 and n = 25, the Ramberg and Osgood expression becomes 

e = E:. + O.002( U )25 
E Up 

(6.2) 

In Table 6.1 the nominal and experimental average values of the mechanical 

properties are presented in columns 1 to 7. To show the difference between 

nominal and measured values columns 8 to 10 give property ratios. The 

closer to 1 these ratios the close the two values are. The nominal values are 

taken from Table 31 of EN 10147: 2000 and are those recommended to be 

used in design, if the actual characteristic values for the steel are unknown. 

The data in the table show that there is a very good agreement between the 

nominal and coupon values for the yield strength and the modulus of 
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elasticity. In the case of the ultimate tensile strength the coupon value is 

about 30% higher, and this, following Vu (1973), may be attributed to a 

strength enhancement from the cOld-forming process. 

The experimental results in Table 6.1 were used in Equation (6.2) to create 

the semi-empirical stress-strain curve given in Figure 6.1 by the dashed line. 

The two curves in the figure show that the Ramberg and Osgood expression 

can be used to describe the steel's response to tensile stress, in a very 

reasonable manner. By assuming the same outcome if the stress is 

compressive we can use Equation (6.2) to establish the prediction of the 

tangent modulus. 

Table 6.1 Mechanical properties to the steel In the E-section of 1.5 mm 

thick 

Nominal values taken from Average experimental values 
Property ratios 

EN 10147: 2000 from coupon tests 

1 2 3 4 5 6 7 8 9 10 

~nom Us.nom Enom ~ 0'0.2 U. E ~ ~ E -
N/mm2 N/mm2 kN/mm2 N/mm2 N/mm2 N/mm2 kN/mm2 f..nom U •. nom Enom 

350 420 205 355 490 546 204 1.01 1.3 0.99 

In order to evaluate the plasticity reduction factor, for the E-section, it Is 

necessary to have values to the other two moduli of elasticity. The tangent 

modulus, Eh which is the slope of the tangent to the stress-strain curve at any 

value of stress (Giroud 1994), is obtained on differentiating the Ramberg and 

Osgood expression. So from Equation (6.2) we obtain 
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(6.3) 

The secant modulus, which is the gradient of the straight line between a point 

under consideration and the origin, is simply obtained from 

a 
E =­

S e (6.4) 

where in Equation (6.4) a and e are the stress and strain at any point along 

the stress-strain curve (see Figure 6.1). 

Table 6.2 presents these moduli at different stress levels on using Equations 

(6.1), (6.3) and (6.4). The four stress levels are given in column 1 of the 

table. Up to the first yield point level, at 355 N/mm2, the secant and tangent 

modulus can be assumed to be equivalent to the Young's Modulus of 

elasticity, whose value is in column 2. Beyond this stress level the secant 

and tangent modulus values in columns 3 and 4 in Table 6.2 can be seen to 

reduce, increasingly so as the stress approaches U •. 

Table 6.2: Moduli of steel determined at different stress levels 

1 2 3 4 

(j E Es Et 

(N/mm2) (kN/mm2) (kN/mm2) (kN/mm2) 

355 (Ys) 204 204 204 

418 ----.- 200 140 

447 ----_. 187 61.9 

470 (Us) -_ .. _- 157 23.6 

490 ._.--- 111 9.35 
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6.3 Analysis of stub column testing 

Thin-walled members under compression are liable to encounter geometrical 

instability as they may develop a failure mode either by local elastic buckling 

or by a local plastic mechanism. Both of these local modes must be 

considered when determining the member's behaviour (Mahendran 1997). 

There are different scenarios that can be used in estimating the ultimate 

resistance of stub columns. Murray (1984) used the method of intersection of 

elastic and rigid plastic curves to estimate the ultimate load. His rigid-plastic 

curve was based on the observed local plastic mechanism, whilst the elastic 

curve was developed from simple elastic analysis .. The method favoured by 

Parks and Vu (1989) uses the tangent modulus approach to theoretically 

predict the inelastic buckling of a curved plate element, which is curved only 

in the plane normal to the direction of axial compression. For the purpose of 

determining the ultimate load capacity of the E-section short column the 

effective modulus approach is adopted by the author. A total of 8 specimens 

were tested under axial compression using the test set-up and test procedure 

detailed in Section 5.3. 

Figure 6.2 shows an axial shortening versus compression load curve for a 

1.5 mm thick E-section stub column of height 200 mm. By examining the 

response of the 8 specimens tested it can be observed that they failed at 

mean uniform stress level of 344 N/mm2
• This corresponds to a load of 113.5 

kN, and is where the experimental curve in Figure 6.2 begins to depart from 

the elastic curve, given by (8 = 0'; . L). This point on the curve may be 
E 

considered as the point where the steel first reaches yield. By referring to 
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Figure 6.1 for the coupon testing, the yield stress of the actual steel is 355 

N/mm2
• It is therefore found that there is a good agreement with the average 

stub-column value at onset of yielding. 

Departure from an elastic behaviour increases with increased loading, until 

the column's resistance reaches a maximum load of 147 kN (with Standard 

Deviation (SO) of 2.8) and (Coefficient of Variation (CoV) of 1.9%). This 

ultimate state is equivalent to an average stress of 447 N/mm2
, which is 

assumed to be constant over the 330 mm2 cross-sectional area of the e­

section. Compared to the Us of 546 N/mm from coupon testing, the stub­

columns have an ultimate failure strength that is 22% lower. This may be 

interpreted as the stub columns experiencing failure by inelastic instability, 

rather than by material crushing. Elastic theory is able to predict the stress 

level, up to the point of first yield, and can be used to define the load at which 

the yield initiates. And as can be observed from the mean curve in Figure 6.2 

the stub columns possess 30% extra post-yield strength. 

Typical readings from a longitudinal strain gauge No 8 of specimen S7 with 

load are given as diamond symbols in Figure 6.3. This reflects the similar 

stub-column behaviour, during a strength test, as shown in Figure' 6.2 for the 

axial shortening response. 

Figures 6.4(a) to 6.4(h) show a post-test photograph for each of the 8 stub 

columns. It is evident from these photos that a" specimens experience failure 

by localised buckling phenomena. A localised buckling mode is known to be 

100 



a first interaction mode, which may occur prior to the overall buckling of the 

member. Once a localised buckling pattern occurs, the short column's post­

buckling behaviour is characterised by large local out-of-the-plane 

displacements with the steel deforming in the inelastic range. This response 

of the thin-walled £-section produces plastic folding, and the member 

ultimately fails by a plastic mechanism. Such behaviour can be seen in the 

severely deformed configurations of the 8 stub columns in Figures 6.4(a) to 

6.4(h). This post-buckling deformation has been found by Ungureanu and 

Dubina (2004) to be specific to cold-formed steel stub columns. 

Figure 6.5 shows the variation in strain profiles around the outer side of 

specimen S7, at mid-height, and at the compressive stress levels of 170, 

344, 418 and 447 N/mm2
• Due to the symmetry in the £-section about the 

major axis, only half of it is considered in creating the plot in Figure 6.5. The 

location of the eight strain gauges is shown in Figure 6.6. As can be seen in 

the figure, the strain profile will show a fairly constant compressive stress 

over the cross-sectional area, while this stress does not exceed 344 N/mm2. 

But when the load increases the average compressive stress to 418 N/mm2 

there is a noticeable change in shape of the strain prOfile, indicating the 

initiation of local inelastic buckling. This change from the uniform profile 

continues to gradually increase and reaches a maximum at a stress level of 

447 N/mm2. This state indicates the specimen has now lost complete 

stability, and it can be assumed that this stress is that for the resistance of 

the stub column. 
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A flat thin-walled plate element under edge compression buckles in such way 

that there can be only one half-wave in the perpendicular direction and 

several half-waves in the direction of compression (Timoshenko and Gere 

1961). Figure 6.5 clearly shows the strain profile for the £-section having a 

buckling shape of two-and-half half-wavelengths. Based on this observed 

failure mechanism regime we can for this analysis consider the £-section to 

consist of two outer flanges and central web as shown in Figure 6.7. The 

author observes from the strain profiles in Figure 6.5 that, in the direction 

perpendicular to the applied load, each of the "flanges" buckles in one half­

wavelength and the "web" into three half-wavelengths. 

6.3.1 Plasticity reduction factor, fJ I for curved element 

When instability in the section initiates at a compressive stress above the 

elastic range we know that elastic "theory can no longer be used to predict the 

critical buckling load. Stowell (1948) proposed a method for handling this 

situation by retaining the formula derived for the elastic situation and finding 

an effective, or reduced modulus of elasticity that gave the correct prediction 

for the inelastic situation when inserted into these formulae. The author In 

Section 4.3 adopts this approach for developing the new expression of 

plasticity reduction factor, 1] J Equation (4.69), that can be linked directly to 

the flange element in the curved £-section. 

By using the steel's mechanical properties listed in Table 6.2 1] is computed 

for the £-section of 1.5 mm wall thickness. Figure 6.8 presents the 

characteristic for 1] as a function of compressive stress. It is noted that, 
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when the critical stress is equal or lower than the yield stress (Ya = 355 

N/mm2) , the value of 77 is 1.0, and the failure is governed by the elastic 

critical buckling stress that can be obtained from applying elastic theory. As 

long as the critical stress exceeds the yield value, the plasticity reduction 

factor is found to decrease, approaching zero limit as the critical stress tends 

towards the ultimate strength for the steel. This later state may be interpreted 

as the material strength governing failure when the critical stress approaches 

Us' Between the bounds of the elastic stability and "crushing" strength 

failures the inelastic stability failure lies. 

6.3.2 Prediction of Inelastic critical load for £-section 

Inelastic critical buckling load for the £-section stub column is predicted using 

the element-by-element method of Parks and Vu (1989). In their approach 

the failure of any element of the member signifies failure of the whole 

member. Based on the assumption in Section 6.3 that the £-section consists 

of two flanges and a web elements, and according to the Parks and Vu 

hypothesis, then only the inelastic critical buckling stress for the flange 

element shown in Figure 6.9 needs to be considered. 

The analytical prediction for the local buckling resistance of curved plate 

elements under compressive action is a complex task. Redshaw (1938) 

developed the following expression for curved plates with constant radius of 

curvature, based on the classical energy approach, which is used to predict 

the elastic critical buckling stress (fer 
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(6.S) 

In Equation (6.S) the geometrical variables t, band R define the shape of 

curved plate element (see Figure 6.9) and v is Poisson's ratio. 

Sechler and Dunn (1942) showed that Equation (6.5) could be expressed in 

terms of a flat plate and a cylindrical shell buckling stresses as 

(6.6) 

where (U; t is buckling stress ratio of a simply supported cU/ved element 

subjected to uniform compression, (u; lis buckling stress ratio of a cylinder 

with the same Rlt ratio as curved element, and ((ler) is buckling stress ratiO. 
. E f . 

of a simply supported flat plate with same tlb ratio as the curved element. 

later Parks and Yu (1989) modified Equation (6.6) assuming v to be 0.3, and 

replacing the theoretical value of buckling stress ratio of the cylinder 

((ler) = O.6.!. with a reduced empirical relationship ((ler) = O.2S.!., based 
E eRE c R 

on the results of the stiffened curved element tests. The Parks and Vu 

expression is 

(6.7) 
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A further modification can be made to Equation (6.7) to account for the work 

of Seide and Weingarten (1961) (Calladine 1983) that recommends we 

should replace R in the expression of buckling stress ratio of the cylinder 

(
(fer J = 0.6":' by R a radius of curvature of the deformed cross-section at 
E e R 

the point where the compressive stress is greatest as a criterion of local 

buckling for curved arc of steadily increasing curvature. This lead to 

(6.8) 

Equation (6.8) is used by the author to cope with the complexity of the shape 

of the E-section. For a section with a wall thickness t of 1.5 mm, the mid-plane 

radius R is 20.75 mm, and the length of the flange b = Rt/J is 43 mm. This 

modelling case is illustrated in Figure 6.9. Based on the assumed local 

buckling failure pattern shown in Figure 6.6 the angle t/J to the flange element 

is taken to be 1200 and R is 50 mm (the distance from the centriod to the 

outer side of the flange) now from Equation (6.8), the elastic critical stress of 

the assumed flange is predicted to be (fer = 890 N/mm2, 

By using the moduli of elasticity from Table 6.2, which corresponds to the 

ultimate failure load of the stub column 447 N/mm2 and Equation (4.69), the 

plasticity reduction factor, 7], is calculated to be 0.62. Consequently, the 

theoretical inelastic critical stress given by (fer = 7] (fer is predicted to be 552 

N/mm2
• In Section 6.3 we found that, for the stub columns tested, the mean 

stress level at inelastic buckling failure is 418 N/mm2, As a result of this, the 

ratio of the tested-to-theoretical stresses for the inelastic buckling Is 0.76. 
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The ultimate failure load for the stub e-column is then obtained by multiplying 

the theoretical (fer by the section's effective area, Aeff. 

A summary of the stub column's inelastic critical buckling stress results is 

given in Table 6.3, together with the ratio of the experimentally determined 

value (fe~axp and the theoretically determined value (fer' The correlation 

between theory and practice is considered to be acceptable. 

Table 6.3. Summary of Inelastic critical buckling stresses from 

experiments and theory. 

1 2 3 

(feaxp 
(feaxp 

(fer ~ 
er 

(fer 

418 552 0.76 

6.3.3 Effective area, Aeff 

It is well established that, in some cases, flat plates under compression 

stress, will develop additional load-carrying capacity. This is commonly 

known as the post-buckling strength and is found to be a function of the 

plate's slenderness. For "slender" flat plates the ultimate stress may well be 

several times the critical buckling stress. When buckling occurs there is a 

redistribution of the stress field across the width of the plate. This 

redistribution is the basis for the effective width concept presented In Section 
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3.3. This leads to the thin-walled plate having an effective area, Aeff, which is 

given by tbeff. 

Based on the unified theory of plastic buckling by Stowell (1948), 

Hopperstad, Lagseth and Tryland (1999) developed, for the inelastic buckling 

situation, a simple theory for the effective width. They assumed that once 

inelastic buckling had occurred, a continuous reduction in beff would take 

place in the plate. The ultimate load is reached when the decrease in beff is 

found to be more rapid than the increase in the flow stress (jeff due to strain 

hardening, over the effective area. During this process the part of the flat 

plate associated with Aeff remains stable (Le., undeformed out-of-the-plane), 

and carries the entire compressive load. For this situation the effective width 

can be expressed by 

b., _ ~_ "" -- 11-
b uei! 

for (6.9) 

where Eer is the limit of the plastic strain. By substituting into Equation (6.9) 

. the plasticity reduction factor 17 given by Equation (4.69), the elastic critical 

stress given by Equation (6.8), and the proof stress, (jO.2 I of 490 N/mm2 for 

the effective stress (jeff the ratio of the effective width (beff) to the total width 

(b) is calculated to be 1. On taking in Equation (6.9) the experimental stress 

of 418 N/mm2 to be (jeff the befflb ratio is found to be greater than 1. These 

determined effective width ratios suggest to the author that the e-section, 

even with its lowest practical wall thickness of 1.5 mm, can be classified as a 

"stocky" section, with respect to failure by local buckling. Moreover, the study 

has shown that the full cross-sectional area of the section may be considered 
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to be effective in the elastic design calculations in accordance to Section 6 of 

8S5950-5:1998, since local instability failure has been found to occur in the 

inelastic range. It is therefore proposed that the expression for the effective 

area of the e-sections is 

Aeff =A. (6.10) 

In Equation (6.10) A is for the cross-sectional area as given in Table 5.1 of 

the current (e-section) of size 100x43 mm. 
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Figure 6.1. Tensile stress v strain curve for E-section steel, from coupon 
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Figure 6.2. Mean axial shortening versus compression stress from 8 

stub columns of the 1.5 mm E-section at a height of 200 mm. 
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Figure 6.3. Axial strain from gauge No. 8 versus compression stress 

from stub column S7 of the 1.5 mm e-section at a height of 200 mm. 

(a) Specimen, S1 (b) Specimen, S2 (c) Specimen, S3 
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(d) Specimen, S4 (e) Specimen, S5 (f) Specimen, S6 

(g) Specimen, S7 (h) Specimen, S8 

Figure 6.4. Post-test deformations of stub specimens S1 to S8. 
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Figure 6.6. Locations of strain gauges Nos. 1 to 8 at the mid-height for 

stub column specimens S7 and S8. 
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Figure 6.S. Calculated plasticity reduction factor i1 with compresslve 

stress for the 1.5 mm e-section. 
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Figure 6.9. Assumed flange length for £-section with wall thickness of 

1.Smm. 

114 



Chapter 7 Stud Column Test Results and their Evaluation 

7.1 Introduction 

As described in Section 1.3 the construction industry uses cold-formed thin­

walled open-section elements as main or secondary structural members in 

steel ·structures. Apart from the advantages of their application, such as 

lightweight and easy to execute, they possess the major disadvantage of 

having low stiffness against torsion deformation. To improve the structural 

performance of C-shaped sections they can be stiffened, as shown in Figure 

2.2, by the addition of lip stiffeners (Teter and Kolakowski 2004). In this 

investigation, section stiffening is achieved by a change in the cross-sectional 

shape, which improves the basic £-section resistance to axial compression. 

In Section 2.4 the novel £-section for stud-column members is detailed. Such 

members are of S350 structural grade steel with the wall thicknesses of 1.5 

and 2 mm. As Figure 2.4 shows the section has a major- and minor-axis 

dimension of 100 mm and 43 mm, respectively. The open £-section is 

stiffened by the addition of bracket stiffeners. Figures 5.6(a) to 5.6 (d) show 

the various stiffener brackets and enclosure combinations of CR4 steel of 1.5 

mm thickness that are used to make the nine different columns types (with 

labels WU104 to WU112). The exception to using the CR4 grade of steel is 

the 1 00x40x1.5 C-section of grade S350 steel, which is used to fully enclose 

the £-section in column type WU112. 

Details of the test procedure used in each component test are given in 

Chapter 5. In what follows an evaluation and analysis of the test results Is 
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given in the context of providing technical information for the 

recommendation of design guidance for 2.7 m stud columns of E-sections. 

The new experimental results are compared to buckling resistances under 

axial load, predicted in accordance with Clause 6.2.3 in 885950-5: 1998. This 

is used to show that, providing E-columns continue to be made with tight 

tolerances, their design capacity, based on a mid-height lateral displacement 

of 9 mm (length/300), is often 20 to 40% higher than that predicted by Clause 

6.2.3, assuming failure by flexural buckling with an effective length of 0.85. In 

all 54 tests the observed mode of failure was minor-axis flexure, leading to 

buckling failure, this can be seen in Figure 7.1. After the test load had been 

removed a visual inspection was carried out on each of the columns. It was 

observed that the specimens had not experienced any permanent lateral 

deformation or twisting deformations, showing that the behaviour to 

maximum load had been elastic and reversible. 

7.2 Test results for stud columns 

Typical continuous load-displacement curves from the 54 tests are plotted In 

Figures 7.2 to 7.10. The load is axial compression and the displacement is 

the minor-axis lateral deflection at the column's mid-height. There is one plot 

for each of the nine different E-column types, identified by type labels WU104 

to WU112. These plots are for the average value of the six specimens for 

each column type. The full set of 54 load-displacement plots is given in 

Appendix A. Presented in Figures 7.12 to 7.15 are comparisons of the load­

displacement characteristics given by the nine types of E-column. All plots 
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have the same scale on their lateral displacement axis (± 15 mm), but the 

load scale, in kN, changes. The load scale's upper limit depended on the 

resistance of the column type tested. As a failure criterion, a 9 mm 

(Iengthl300) displacement limit is given by the dashed vertical lines in Figures 

7.2 to 7.10 for both the positive and negative directions of mid-height lateral 

deflection. The characteristics shape of the load displacement plots in figures 

7.2 to 7.10 show that as soon as the axial load is increased the lateral 

deflection will start to create so-called elastic-plastic curve. The theoretical 

Euler critical buckling load cannot be estimated directly from the test data 

because of the presence of initial imperfections. The influence of geometrical 

imperfection is described in Section 3.2.2. 

Table 7.1 summarizes the salient strength test results. In the table, the first 

and second column entries give the column type and the specimen number, 

as defined in .Section 5.4.2. Column entries three to five give the results of 

the strength load (Pstr) (for a 9 mm minor-axis lateral deflection), the mean 

strength load p str.mn and its Standard Deviation (SO) and Coefficient of 

Variation (CoV) %. 
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Table 7.1. Fifty-four concentric full length £-column test results. 

Strength test load results (kN) 

E-column Spec. pslr.mn SO Mean strength 

type No. Strength load P sIr (CoV %) load, Pelr•mn 

(1) (2) (3) (4) (5) 

1 52.00 
WU104 

2 55.00 

3 53.00 1.33 
53.8 

Figure 4 55.50 (2.5) 

5.6(a) 5 53.00 

6 54.00 

1 44.00 
WU105 

2 48.60 

3 45.00 2.30 
44.7 

Figure 4 45.50 (5.1) 

5.6(a) 5 43.00 

6 42.00 

1 56.50 
WU106 

2 55.00 

3 53.80 1.68 
55.0 

Figure 4 55.50 (3.0) 

5.6(b) 5 57.00 

6 52.50 

WU107 1 43.50 

Figure 
2 42.50 

3 42.30 0.94 
5.6(b) 42.6 

4 41.50 (2.2) 

5 44.00 

6 42.00 

1 53.00 
WU108 

2 54.00 

3 54.00 0.75 
53.66 

Figure 4 52.50 (1.4) 

5.6(c) 5 54.50 

6 54.00 
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Table 7.1. Fifty-four concentric full length £-column test results. 

Strength test load results (kN) 

e-column Spec. Palr.mn SO Mean strength 

type No. Strength load Pair (CoV %) load, Palr.mn 

(1) (2) (3) (4) (5) 

1 45.00 

WU109 
2 45.50 

3 43.00 0.93 
44.3 

Figure 4 44.50 (2.1) 

5.6(c) 5 44.50 

6 43.00 

1 80.00 

WU110 
2 79.00 

3 80.00 1.55 
79.0 

Figure 4 80.00 (2.0) 

5.6(d) 5 79.00 

6 76.00 

1 58.50 

WU111 
2 59.00 

3 56.50 1.07 
57.4 

Figure 4 56.50 (1.9) 

5.6(d) 5 48.00 

6 57.00 

WU112 1 103.0 

Figure 2 97.00 

3 100.0 2.23 
5.6(e) 100 

4 99.00 (2.2) 

5 101.0 

6 90.00 

After completing the component test with specimen WU111-5, it was 

observed that a strength load of 48.0 kN (given in bold font in Table 7.1) Is 
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26% lower than the lowest of the previous four tests. This prompted an 

inspection of the test rig to identify the problem. It was discovered that the 

end moment had been sufficient to cause a permanent deformation in the 

threaded stud connecting the jack to the base plate (see Figure 5.10). This 

single lower strength value brings into question the measured resistances of 

specimens Nos. 1 to 4 of WU111 column type. The damaged base plate was 

replaced with one fabricated to be fit for purpose, and so the resistance of the 

sixth WU111 specimen was unaffected by the test-rig problem. As this 

specimen gave a similar resistance to Nos. 1 to 4 the author has not rejected 

the four strength results that were obtained prior to knowing that a base plate 

in the test rig (Figure 5.8) was damaged. 

7.2.1 Effective length of e-columns 

In obtaining the solution to the ordinary differential equation that governs 

column behaviour different end boundary conditions have to be considered. 

The expression for elastic critical buckling load (PE) by Euler is for the 

situation of simply supported ends. His expression can be made more 

general by introducing the effective length (LE) concept, so that PE = 1(2 E~ I 

Le 

and LE is used rather than the actual column length, L. LE ;s defined as the 

distance between the pOints of contra-flexure, giving LE = kL, with k the 

effective length factor, that is 0.5 for the perfectly fixed-ended and 1.0 for 

perfectly pin-ended cases. In practice, the end conditions are neither fully 

fixed nor fully pinned. Normally there is a certain degree of rotational restraint 

at the ends (Jones et al. 1983). For this semi-rigid condition the effective 

length factor k shall lie between its upper and lower bound values and this is 
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why Table 9 of SS 5950-5: 1998 gives k = 0.85 for compression members 

effectively held in position at both ends and restrained in direction at one or 

both ends. 

To predict the actual LE for the £-columns, the experimentally determined 

distribution for the flexural stress is analysed. At any section along the 

specimen there is a combination of a mean axial compressive stress u e = p 
A 

and maximum compressive bending stress U f = My f , which corresponds to 
I 

moment M = Po, where 0 is the mid-height deflection. This gives a total 

compressive stress of at = a r + a c ' Hence the flexural stress is a r = at -.!, . 
A 

and at the point of zero curvature its value is zero. To establish where along 

the length of the column this, readings are taken from strain gauges at 

several different distances from the top of WU 105 specimen. This process is 

shown in Figure 7.11 (a) at a P of 44 kN, and using the theoretical treatment 

just given the flexural stresses values at these locations are calculated and 

plotted in Figure 7.11 (b). From the curve in this figure, the point of contra­

flexure is estimated to be at 0.257 m, from an end support. This distance 

gives us an effective length of 0.81L, where L is 2.7m. This experimentally-

derived value of LE is assumed by the author to be the actual LE when 

predicting later in this chapter the load capacity (resistance) of all the nine £-

column types. 
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7.2.2 Effect on buckling resistance of Intermediate stiffening 

Figure 7.12 was constructed to show plots of mean load (from six specimens) 

against lateral deflection for the three column types WU104, WU10S and WU 

10S, having a E-section of 2 mm wall thickness. The difference between 

these three stud columns is that WU104 has no intermediate bracing 

stiffeners (see Figure 5.S(a)), WU10S has two bracing stiffeners of length 300 

mm, at ±SOO mm from the mid-height position (see Figure 5.S(c)), while 

WU10S has a single bracing stiffener of length 300 mm at the mid-height 

position (see Figure 5.S(e)). 

From Table 7.1 the mean strength loads (Pstr.mn) for the three column types 

are 53.S kN (with Standard Oeviation (SO) of 1.33 kN), 55.0 kN (SO of 1.SS 

kN) and 53.7 kN (SO of 0.75 kN), respectively. There is small variation in 

mean strength loads (Pstr.mn) , with the maximum Coefficient of Variation 

(CoV) of 2.5%, and CoY for the three means of 1.3%. 

Figure 7.13 shows the mean load-displacement curves for the column types 

WU10S (Figure 7.5(a)), WU107 (Figure 7.5(b)), and WU109 (Figure 7.5(c) 

that are equivalent to types WU104, WU10S, and WU10S, respectively, 

except that the wall thickness is 0.5 mm lower, at 1.5 mm. As Table 7.1 

presents, these smaller cross-sectional area specimens gave, respectively, 

mean strength loads (Pstr.mn) of 44.7 kN (SO of 2.3 kN), 42.S kN (SO of 0.94 

kN) and 44.3 kN (SO of 0.93 kN). Again there is a small difference in three 

mean values, as given by a CoV of only 2.S%. 
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By using the t and F statistical tests it should be feasible to show that the 

each of the two groups of three specimens can be said to belong to a single 

population. In other words, it is the author's belief that the e-column minor .. 

axis buckling resistance is independent of the presence and number of 

intermediate bracing stiffeners. 

7.2.3 Influence on buckling resistance of the wall thickness 

In Figure 7.14 typical load-displacement plots for column types WU104 (wall 

thickness is 2 mm) and WU1 05 (1.5 mm) are presented. The only difference 

between these two column types is the wall thickness. An increase in this 

thickness of 0.5 mm results in a strength load increase of about 20%. This is 

lower than the 29% increase that is theoretically predicted, solely on 

assuming Euler buckling and the increase in the second moment of area 

about the minor-axis (Iy). Sectional properties are given in column six of 

Table 5.1. 

7.2.4 Influence on buckling resistance of the cross-section 

configuration 

Figure 7.15 presents typical load-displacement curves for the column types 

WU104, WU105, WU110, WU111, and WU112. The first two of these five 

columns have two stiffeners of length 300 mm at the ends of speCimen. Over 

a length of 2.1 m the e-section is, therefore, fully open. The last three column 

types all have the e-sections that are fully enclosed along the 2.7 m length. 

The curves in the figure show that the general characteristic shape of the 
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load-displacement response from the five column types is similar. On 

evaluating the resistances of paired columns, that have the same E-section 

thickness with fully enclosed or fully opened E-sections, it is found to increase 

by 46% for WU11 0 over WU1 04, and by 28% for WU111 over WU1 05. 

The significant difference in the percentage increases between the two­

paired equivalents might be attributed to the experimental problem that 

occurred when testing the batch of six WU111 specimens. This problem, and 

how it was removed has been discussed previously in Section 7.2. 

For WU 112 columns, when a C-section of 1.5 mm thick is used to fully 

enclose the open-section, the strength load is found to be 85% higher than if 

the 2 mm thick E-section has top and bottom stiffener brackets and 

intermediate stiffener brackets too. This increase is similar to the calculated 

increase in minor-axis second moment of area of 93%. These sectional 

properties for WU1 04 and WU112 column types are given in Table 5.1. 

7.2.5 The overall effective load eccentricity In the series of E-column 

tests 

It will be instructive to show theoretically how the test results differ from the 

theoretical bifurcation response, because the presence of Inherent 

imperfections in the test arrangement leads to an overall effective load 

eccentricity (Mottram, Brown and Anderson 2003). Simple and approximate 

analytical treatment of the problem can be achieved by considering the 

response of the two simple beam-column problems shown in Figures 7.16(a) 
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and 7.16(b). In both situations the member is assumed to be straight (Le. 

there is no out-of-straightness) when the axial compression load P is zero. 

For the eccentrically loaded situation shown in Figure 7.16(a) the Euler-

Bernoulli behaviour for small deflections, gives the differential equation 

Ely" + P . (y + e) = 0 (7.1) 

In Equation (7.1), I can be either Ix or Iy, depending on the action of moment 

Pe. By solving this equation, it can be shown that the increase in mid-height 

lateral displacement (5e with axial compression P, is given by (Mottram et al. 

2003) 

(7.2) 

Where e is the load eccentricity (taken to be the same at both ends), and PE 

is the critical Euler buckling load for a pinned-pinned column (= 1(2 ;1 , with 
L 

effective length LE = L). Equation (7.2) shows that, as soon as the axial 

compression increases, the lateral deflection will start to grow. This is what is 

found during the column tests, and is seen in the load-displacement curves 

plotted in Figures 7.2 to 7.10. 

However, in the series of column tests under evaluation, the ends of the 

specimens are not pinned, as the displacement boundary conditions are 

closer to the clamped-clamped situation. We have already established that 

the end conditions are for an effective length of about 0.B1L. 
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Figure 7.16{b) shows the situation when the same member has no axial load 

and end moments Mo (= MA9A= MBeB) which are equal to Pe and acting in the 

opposite sense to the end moments, of magnitude, Pe in Figure 7.16{a). For 

the fixed-fixed end condition, Fertis (1996) determined an expression for the 

mid-height displacement for the situation in Figure 7.16 (b). It is 

iS
MA9A 

= _M_o (1- cos _2_"_X_) 
Per L 

(7.3) 

Where in Equation (7.3), Per is the critical Euler critical buckling load given by 

4,,22
E1 

for the fixed end condition (i.e., with LE = O.5L). After substitution in 
L 

this equation for Pe, as the fixed end moment Mo, and combining Equations 

(7.2) and (7.3), an estimate for the total mid-height displacement of a beam-

column element with clamped-clamped ends (BA = -~ = 0) and a load 

eccentricity e is given by 

is - is = e(sec(" ~J -1-~(1- cos 2" x)J e MA9A 2P. P L 
E er 

(7.4) 

By using Equation (7.4) to fit the load-displacement plots we can obtain an 

estimate to the overall effective load eccentricity e. 

In Table 7.2, the fourth column gives the strength ratio of Pstr,mrlPer using the 

buckling loads given in columns two and three, and the measured mid-height 

lateral deflection when the strength test was terminated. This shows that the 

mean experimental buckling load is between 0.39 and 0.55 of the upper 

bound column resistance, had the column ends been fully-fixed, which they 

were not. Using the simple and approximate theoretical treatment Equation 

(7.4) an estimate of this eccentricity (e) for five e-type columns is given in the 
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sixth column of Table 7.2. This approximate procedure indicates that e lies 

somewhere in the range from 2.0 to 2.5 mm, and that the overall effective 

load eccentricity appears to be independent of having the e-section fully-

opened or fully-enclosed. It is observed that the presence of the inherent 

imperfections in testing has introduced an overall load eccentricity when the 

column load is supposed to be concentric. Although small, at maximum 

1/1080th of column length, its influence on the flexural response, about the 

minor-axis, will reduce the measured buckling resistance from the Euler 

value by an amount that cannot be readily quantified. 

Table 7.2. Column failure loads and overall effective load eccentricities. 

e.-column Critical Mean Minor-axis Overall load 

type Euler strength pslr,mJPe lateral eccentricity from 

buckling load, Palr,mn (3)/(2) displacement Equation (7.4) 

load, per
1 (mm) (mm) 

(1) (2) (3) (4) (5) (6) 

WU104 106 53.8 0.50 8.9 2.4 

WU105 82.0 44.7 0.55 8.9 2.5 

WU110 175 79.0 0.45 10.3 2.3 

WU111 146 57.4 0.39 8.2 2.0 

WU112 206 100 0.49 8.4 2.4 

Notes: 1. Per is critical Euler buckling load for a fixed-fixed column, and is given by 4n-
2 ;1 . 

4. 

7.2.6 e-column design strengths 

Columns of light gauge steel can failure either by crushing (a plastiC strength 

mode) or by buckling (an elastic or inelastic stability mode). The structural 
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design of steel cold-formed members is strongly dependent on their stability 

and the torsional behaviour. Thin-walled open cross-sectional members 

under compression load are susceptible to different instability modes of 

failure, such as local, global or the modal interaction of local and global. In 

obtaining expressions that give the ultimate load of such column member 

there are many factors that influence its carrying capacity. These factors 

involve local bucking effects, boundary conditions, imperfections and flexural· 

torsional buckling. 

The intervention of the local plate-buckling mode has been considered in 

Section 6.3.3, by using the traditional effective-width approach, which permits 

the reduction of the ultimate load by means of an experimentally calibrated 

approximate formulation, such as the effective area. In the case of e­

columns, of thickness 1.5 mm and higher, the cross-sectional area has been 

shown in Section 6.3.3 to be fully effective, so long as the predicted local 

buckling is above the elastic range (i.e. when the section experiences 

inelastic local buckling). The actual effective length of a stud column has 

been predicted in Section 6.2.1 to be O.81L. Section 7.2.5 has used the test 

results to establish the overall effective load eccentricities (e) that are given in 

the sixth column of Table 7.2. By visual inspection of the deformation in the 

strength tests the author considers the torsional flexural deformation to be 

negligible for the e-columns having a length of 2.7 m. What the author did 

observe were the columns failing in pure flexural buckling about the minor 

axis. It can be seen in Figure 7.1 that under severe lateral deformation, the 

column does not experience any twisting deformation. 
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For sections that are symmetrical about a single axis and which are 

subjected to torsional-flexural instability, the buckling resistance P:, 
according to Clause 6.2.3 of 8S5950-5: 1998 is given by 

{7.5} 

In which Me is the moment capacity of the section determined in accordance 

with Clause 5.2.2, and es is the distance between the geometric neutral axis 

of the gross cross-section and that of the effective cross-section. This 

distance can be assumed to be zero, as the gross cross-section is 

considered to be fully effective within the elastic range. Now Equation (7.5) 

reduces to P: = Pc' with ~ the buckling resistance under axial load, 

determined in accordance with Clause 6.2.3, from 

and 

~= ~s +(1+17)PE • 

2 

(7.6) 

{7.7} 

In Equations (7.6) and (7.7) Pes is the short strut capacity, given by ~s = Y,A I 

on the basis of full section yielding, PE is the Euler critical buckling load 

1[2EI 4. 4. 
(= 2 Y ), and 17 is the Perry coefficient for - S 20 I 1] = 0 I and for - > 20 I 

4. r r 

1] = o.oo{ ~E -20). 
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In the other hand the design capacity of the tested specimens, in accordance 

with Clause 10.8.3.1, is given by the expression 

d . . K * [mean test result] eSlgn capacity = t 
Rs 

(7.8) 

in which Rs is the relative strength coefficient, determined in accordance to 

Clause 10.4, and assume to be 1.2. Kt is a statistical coefficient that should 

not be> 1.0. 

Table 7.3 summarizes the columns strength results. In the table, the first 

column entries give the column type, as defined in Section 5.4.2. Column 

entries two and three give the results of the mean strength load psu.mn, and 

the design capacity, Pd.cap, load using the test results and Equation (7.8) of 

Clause 10.8.3.1. The next two columns give the theoretical values for the 

1(2El 
critical Euler buckling load (PE = 2 Y ), and the design buckling resistance 

LE 

load pc.nom, using nominal measured properties and Equation (7.6) of Clause 

6.2.3. For the theoretical Euler load calculations (column entry 4 in the table) 

the effective length LE is 0.81L. This value is same as that determined from 

testing and can be assumed to be representative of the rotational stiffness 

due to the spot welded end-connections to the e-columns In modular and 

panel construction (see Figure 2.5). The sectional properties used to 

determine the theoretical buckling loads are given in Table 5.1 and the steel 

properties are given in Table 5.2. The last column in Table 7.3 presents the 

ratio of the design capacity determined from the strength testing (Clause 
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1 0.S.3.1) to the design load derived using Clause 6.2.3 and the measured 

properties. 

Table 7.3. £-column strength test and theoretical results. 

e- Strength test load results (kN) Theoretical strength load (kN) Load 

column Mean strength Design capacity Euler critical Buckling ratio 

type load, Palr.mn Clause, Pd.C8P. buckling load, resistance, (3)/(5) 

10.8.3.1 PE, P c.nom, Clause 

6.2.3 

(1) (2) (3) (4) (5) (6) 

WU104 53.8 44.8 36.9 34.1 1.3 

WU 105 44.7 36.3 28.7 26.4 1.38 

WU 106 55.0 45.9 36.9 34.1 1.35 

WU107 42.6 35.5 28.7 26.4 1.35 

WU 108 53.7 44.7 36.9 34.1 1.31 

WU 109 44.3 36.9 28.7 26.4 1.4 

WU 110 79.0 65.8 60.6 55.5 1.19 

WU 111 57.4 47.8 50.6 46.3 1.03 

WU 112 100 83.3 71.4 65.3 1.28 

Using the procedure in Clause 10.S.3.1 and Equation (7.S), the design 

capacities from the strength testing are determined to be 44.S, 45.9 and 44.7 

kN for column types WU104, WU106 and WU10S, respectively. By using the 

calculation procedure in Clause 6.2.3 and Equations. (7.5) to (7.7), the 

design buckling resistance (Pc) for these three column types Is 34.1 kN. As 

the load ratio in column six of Table 7.3 shows there Is, up to, a 35% 

increase in the load capacity if the design load, for the £-column with 2 mm 

wall thickness, is determined from the physical test results. 
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Again using the procedure in Clause 10.8.3.1, the design capacities from the 

strength testing are 36.3, 35.5 and 36.9 kN for column types WU1 OS, WU1 07 

and WU109, respectively. By following Clause 6.2.3 the value of Pc is 26.4 

kN. As the load ratios for these column types in Table 3 show there is about 

a 40% increase in the design load capacity when the data from testing are 

used rather than the universal design procedure of Clause 6.2.3. This 

increase in capacity, for the 1.5 mm E-section, is slightly higher than for the 

group of three column types with the 2 mm wall thickness. 

We shall now consider the strengths of the three column types WU11 0 to 

WU112, where the open E-section is fully enclosed, either with a close-fitting 

1.5 mm shaped plate sections (WU110 and WU111) or with a C-section, 

whose flanges surround and contact the E-section. Column types WU11 0 and 

WU111 have plate enclosures that are shown in Figure 5.6(d) as stiffener 

brackets. The difference between these two types is that the E-section wall 

thickness is 2 mm in WU11 0 and 1.5 mm in WU111. The six WU11 0 columns 

gave a mean strength load (Pstr,mn) of 79 kN. Using Clause 10.8.3.1 and 

Equation (7.8), the design load capacity from this physical testing Is 65.8 kN, 

while Clause 6.2.3 gives a calculated design buckling strength of 55.5 kN. 

For this column type there is a 19% increase in the design resistance if the 

test data are used. The smaller sized columns of type WU111 gave a Pstr,mn, 

neglecting specimen No. 5, of 57.4 kN and a design load by Clause 10.8.3.1 

of 47.8 kN. From Clause 6.2.3 the design buckling resistance is determined 

to be 46.3 kN. The increase in using the test data to establish the design load 
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for this column type is now only 3%. This is much lower than for the other 

column types, and might have been due to a load fixture problem with the 

test rig, as explained in Section 7.2. 

Figure 5.6(e) is for column type WU112, which has a 2 mm thick E-section 

fully enclosed by a 100x40x1.5 mm C-section. The batch of six specimens 

gave a mean strength load of 100 kN. The design load capacity from these 

results is 83.3 kN and the value of Pc is calculated from Equations. (7.5) to 

(7.7) to be 65.3 kN. These values give a 28% increase in the design load 

capacity, if the test results are used to establish this design value. 

Presented in Table 7.4 is a summary of the E-column strength results 

obtained by different methods, and their ratios. In the table column one gives 

the E-column types. Entries in columns two to five give, for the five column 

types, Pstr.mn, Pd.cap, the buckling resistance load pc.exp, using the test results 

and Clause 6.2.3 and Pc.nom. Columns entries six to eight present the ratios of 

the design capacities, obtained using the three approaches provided by way 

of the clauses in 8S5950:5:1998, to the experimental mean strength load 

(Pstr.mn). 
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Table 7.4. Column resistances based on the series of e-column tests. 

Mean Design Buckling Buckling 

£-column strength capacity, resistance resistance 

type load, Clause Clause 6.2.3 Clause Pd.caJ pc ... r! Pc.raJ 

p ..... m" 10.8.3.1 Pc ... p 6.2.3 p ..... m" p.lr•mn P ..... m" 

(kN) Pd.cap (kN) Pc.nom 

(kN) (kN) 

(1 ) (2) (3) (4) (5) (6) (7) (8) 

WU104 53.8 44.8 38.3 34.1 0.83 0.71 0.63 

WU105 44.7 36.3 29.7 26.4 0.81 0.66 0.59 

WU110 79.0 65.5 62.5 55.5 0.83 0.79 0.70 

WU111 57.4 47.8 52.2 46.3 0.83 0.91 0.81 

WU112 100 83.1 73.6 65.3 0.83 0.74 0.65 

When Clause 10.8.3.1 is used to obtain the design loads, as given in the third 

column in Table 7.4, they are about 83% of the mean value obtained 

experimentally. In the case of adopting the universal design procedure in 

Clause 6.2.3, and using the experimentally estimated values to e-column 

properties, the predicted strengths, in the fourth column of Table 7.4, range 

from 66% to 91 % of p str.mn• When the same procedure in Clause 6.2.3 is 

followed, but now using nominal values for the properties, the predicted 

strengths, in the fifth column of Table 7.4, range from 59% to 81% of pstr.mn• 

These tabulated results show that there is about a 12% increase in the 

predicted design strengths of the e-columns when measured properties are 

used with Clause 6.2.3. 
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Table 7.5. Perry coefficient based on the series of e-column tests. 

e-column Effective Effective Slenderness Perry coefficient in 

type length length Le ratio 8S5950:5-1998 

factor (k) (mm) (Ay = Le1ry) 

(1 ) (2) (3) (4) (5) 

WU104 0.81 2187 147 0.254 

WU105 0.81 2187 145 0.250 

The presence of the overall effective load eccentricity is also reflected in a 

high value for the Perry coefficient, 1], as its value is zero for perfect case 

which appears in Equation (7.7). Its values for the two fully-opened e­

columns are given in column five of Table 7.5 that obtained using Equation 

(7.6) and test values of ~. These coefficients are obtained using Clause 

6.2.3 and the experimentally determined effective length (LE) given in column 

three of Table 7.5. The appropriate effective length factor (k), in column two, 

is the experimentally-derived value of 0.81, which is from Section 7.2.1. 
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Figure 7.1. Typical specimen deformation at maximum test load. 
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Figure 7.2. Load-displacement curve for column of type WU104. 
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Figure 7.3. Load-displacement curve for column of type WU105. 
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Figure 7.15. Influence on load-displacement response and buckling 

resistance of having e-section fully-opened in column types WU104 and 

WU105 and fully-enclosed in column types WU11 0 to WUl12. 

143 



(a) 

P--.... o a.--p 
A B 

(b) 

1 
~MAaA 

Figure 7.16. Central deflection, (a) ~ of a beam-column member due to 

load eccentricity, (b) L\MA9A of a beam-column member, without axial 

compression, due to equal end-moments. 
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Chapter 8 Conclusions and Recommendations for Further 

Work on the e-column Study 

8.1 Conclusions on the e-column study 

A detailed investigation on the stability behaviour of e-columns of 2.7 m 

length for modular construction has been presented in this part of the thesis. 

On evaluating the new information given in Chapters 6 and 7, the following 

findings and conclusions can be made: 

(a) In order to predict, the critical load for local buckling of e-columns the 

author has developed a new plasticity reduction factor for the complex 

curved cross-sectional shape. This new factor enables the prediction of 

the critical local buckling load of e-stub that occurs in the inelastic regime. 

(b) Using coupon test results the actual stress against strain relationship for 

the steel in the e-sections was established, and need to determine for the 

inelastic local buckling analysis the initial Young's modulus, the secant 

modulus, and the tangent modulus. 

(c) Stub column failure loads from physical testing confirmed the theoretical 

work showing that the critical buckling load for the local mode does 

occurs in the plastic region. From this finding with the e-section of lowest 

wall thickness (i.e. 1.5 mm) it can be said that there is no reduction in the 

column strength due to local instability, since it cannot happen in the 

elastic range. It can therefore be concluded that when designing e­

columns of 2.7 m length the engineer can consider the gross area of the 
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section to be the effective area. This is often not the case when if steel 

section has the conventional shapes shown in 855950-5: 1998. These 

generally comprise an assembly of flat plates and the finding show why 

the curve e-shape is a more optimal use of thin-gauge steel. 

(d) 8y inspecting the strain profile at failure in the stub e-column, the inelastic 

buckling shape is observed to be in the form of two-and-half half­

wavelengths. From this information the author proposes that the failed e­

section under compression can be considered to consist of two outer 

flanges and central web elements. 8ased on this assumption the critical 

local buckling load of the flange component was theoretically predicted 

and this is considered to be the failure load of the 1.5 mm thick stub e­

column. 

(e) Conventional single symmetry open-section members of flat-plate 

elements are recognised to have a relatively low resistance to torsion. 

855950-5: 1998 accounts for this fact by including a reduction term in the 

expressions to calculate column strength. 5ince the author did not 

observe the loaded e-columns experiencing any twisting deformation, it is 

concluded that torsional-flexural instability can be ignored in the design of 

e-columns of 2.7 m height. Designers therefore need not have to account 

for the movement of the effective neutral axis in accordance to clause 

6.2.4 in 855950-5: 1998. 
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(f) For simplicity in design calculations the column's connections are 

modelled as either pinned or fixed. In reality, the end conditions do 

provide a degree of rotational restraint. For the test fixtures used in the 

series of strength test the effective length factor was estimated to be 0.81, 

by applying the technique of obtaining the pOint of contra-flexure. It is 

believed that this value is able to represent the actual effective length in 

practice (see Figure 2.5 for how a modular unit might be constructed). 

This, and finding (g) means that the column design capacities determined 

from testing can be used in design practice. 

(g) The E-column specimens were found to have an out-of-straightness 

imperfection ranging from 0.0 to 0.6 mm over the 2.7 m length. Given that 

the maximum is only U4500 compared to the U1000 for design criterion 

in 8S5950-1 we can conclude that E-members can be considered to be 

straight. 8y using a simple structural analysis the overall load eccentricity 

in the test programme was estimated to be between 2.0 and 2.5 mm, and 

this appears to be independent of having the E-section open or enclosed. 

The presence of an overall load eccentricity caused the test strength 

loads to be lower than had the resultant force acted through the centroid 

of the section. Since a load eccentricity is very probable in practice the 

test results reported in this thesis will inherently allow for this strength 

reduction. 

(h) 8y using the 54 new strength test results it has been shown that the 

column design capacities are higher than those predicted using Clause 

6.2.3 in 8S5950-5: 1998 for the Euler buckling mode of failure and an 
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effective length of 0.81. This will remain valid providing E-sections 

continues to be made with tight tolerances. 

(i) To develop modular frames of minimum weight and fabrication cost will 

require E-sections of a variety of cross-sectional sizes. Nine different 

types of E-columns have been investigated so far. The results for the five 

sections of 2.0 mm wall thickness and for the four sections of 1.5 mm 

thickness have shown that: 

• there is no significant strength increase by having intermediate bracing 

stiffeners. 

• by increasing the wall thickness from 1.5 mm to 2 mm column strength 

increases by 20%, and this corresponds to the change in minor-axis 

second moment of area. 

• by enclosing the open E-sections of 2 mm and 1.5 mm wall 

thicknesses, the resistances increases by 46% and 28%, respectively. 

• by further increasing column stiffness by way of including a continuous 

stiffener of C-section, the buckling resistance is increased by 85%. 

(j) Finally, this study on E-columns for modular construction has shown 

that column design by Clause 6.2.3 is going to be acceptable as long 

as the deliverables of the author's research are taken into account. 
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8.2 Recommendations for further work 

The findings in this part of the thesis show that the E-section shape for cold­

formed sections will, for the same weight of steel, increase the torsional 

stiffness and the resistance to concentric compressive load. It can be 

anticipated that the rapid and continuing advances in materials science and 

production technologies will give us additional performance improvements 

and reduced costs through the optimization process. Regardless of the 

current advantages that can be achieved by using E-sections in Modern 

Methods of Construction further investigations are needed. They should 

include studies on the successful integration of E-section columns with other 

building components, such as beams, joints and bracing system. A key 

aspect to future research must be the development of a comprehensive 

understanding of constructionability needs, specifications and design rules 

that facilitate fabrication, erection and future maintenance. 

The author recommends the following six topics for further work: 

• Although in Chapter 4 a new theoretical treatment for the Inelastic 

critical buckling load of curved-plate element is presented, and used to 

determine loads for E-sections, its validation still requires a carefully 

conducted series of physical tests that satisfy the theoretical specified 

boundary conditions. 

• Based on a measured stress distribution profile at the mid-height 

plane of a stub E-column the buckling form at failure was assumed. 

The author then assumed that the classification of the 1.5 mm thick E­

section made it consist of two-flanges and one-web components. More 
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physical tests are required to justify this classification of how the £­

section behaves under compressive load. 

• In practice the shear force to be transferred from beams to columns 

are eccentric (i.e. applied at an offset to the supporting column). It is 

essential, to represent what happens in practice, for there to be a 

characterisation of £-co/umns under eccentric loading. 

• Evidence from the stud column tests shows that the end fixity in the 

test arrangement is neither pinned nor fixed (i.e. some degree of 

connection stiffness exists that is insufficient to develop full continuity 

8S5950-5: 1998). To confirm this finding a study on the end fixity 

factor in modular units is required. This is also needed in order to 

avoid any adverse affects to other components in the structural 

system. 

• To develop strut curves the characterisation of concentrically loaded £­

columns is required over the full range of lengths. 

• Thin-walled steel sections have been utilized as primary members in 

the form of stud column, roof trusses and floor joists to carry 

compression, tension and bending forces. For £-sections to have a 

universal application as members in MMC it is going to be necessary 

to investigate their structural performance for their utilisation as beam 

and truss members. 
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Chapter 9 Analysis of Frames of Fibre Reinforced Polymer 

Sections 

9.1 Introduction 

A FRP composite is a combination of a polymer resin (or plastic) based 

matrix and a reinforcing system in the form of high-strength fibres. The resin 

is often a polyester, vinyl ester or epoxy and the fibres can be of glass, 

aramid, or carbon. The resin protects the fibres, maintains their alignment, 

and distributes the loads evenly among them. There are a number of 

processing methods to make products such as reinforcing rods, 

strengthening strips or plates, and structural shapes and systems for the 

construction sector (Hollaway and Head 2001). 

According to Ludovico (2002) the automotive industry first introduced FRPs 

into vehicle bodies in the early 1950s. Because these materials have 

desirable characteristics research went into improving the materials and their 

manufacturing processes. This effort in the 1950s and 1960s led to the 

development of new manufacturing methods, such as pultrusion, resin 

transfer moulding, and filament winding. Their development can be seen to 

have helped to advance composite technology into new markets. 

The aerospace industry first began to use FRPs in pressure vessels, 

containers, and other non-structural aircraft components. By the 1990s the 
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aircraft sector were starting to use FRPs in primary load-bearing structures. 

The application FRPs in the construction sector can be seen to have been 

slower and only gathered pace in the 1980s, after the first road bridges were 

strengthened using carbon FRP plates (Hollaway and Head 2001). Today we 

observe that major new application areas for FRPs are for infrastructure, 

industrial facilities, and offshore exploration and production. Figure 9.1 (a) 

show the West Mill Bridge in Oxfordshire, which has a Pultruded FRP deck 

(ASSET) produced by Fiberline Composites NS of Denmark. The handrails, 

and the girders on which the ASSET deck is supported are also of pultruded 

shapes. Figure 9.1 (b) shows the Dubai international Airport Terminal Interior 

upgrading, which involved the fabrication and installation of wall fac;;:ades 

fabricated of hand lay-up FRP material. 

9.2 Pultruded structural shapes and systems 

Of particular interest in the field of civil engineering are Pultruded FRP 

shapes and systems in which the polymer-based matrix is reinforced by 

fibres, often glass, by a process called pultrusion. Standard pultruded shapes 

are used as primary load-bearing members in trusses and braced framed 

structures, with bolting being the preferred method of connection (Turvey 

2002). Figure 9.2 shows some standard and non-standard PFRP products. 

Combining such standard and non-standard shapes we produce an efficient 

form of construction systems. 

9.3 The pultrusion process 

The pultrusion process is shown schematically in Figure 9.3. FRPs are 

typically organized in a laminate structure, such that each lamina (or ply) can 
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contain an arrangement of unidirectional fibres or woven fibre fabrics 

embedded within a thin layer of light polymer matrix material. In the 

pultrusion process the "virgin" fibre reinforcement is pulled through a resin 

impregnation bath to coat it with the matrix. Typically the fibres are E-glass 

type. It should be noted that the matrix comprises a polymer resin, filler (e.g. 

clay) and other additives (such as colourant, fire retardant, die releasing 

agent). This uncured composite material is then pulled through perform 

plates to begin to form the fibre and matrix structure, and finally through a 

heated die (150°C) to cure the matrix. A cured solid product of the desired 

shape exits the die at a rate of about 1 to 3 metres per minute. The name of 

the process comes from it having a set of pullers that pull the pultrudate 

through the machine. The final stage is to cut the shape into predetermined 

lengths, which is often set at 6 m. As has already been mentioned standard 

shapes are stocked by the major pultruders, and, to aid design engineers, 

these manufacturers provide their own design manuals. The available 

guidance for design includes manuals from Fiberline CompOSites AlS (Anon 

1995), Strongwell (Anon 1989), and Creative Pultrusions (Anon 1999) 

Pultruded Fibre Reinforced Plastic (PFRP) composites are used as structural 

members in civil engineering construction as lighter, more durable 

alternatives to steel and concrete elements (Bank and Mosallam 1991). The 

tensile and compressive strengths of the PFRP material are > 200 MPa 

along a section's length and about half this stress in the perpendicular 

directions. Under short-term loading the material can be taken to be linear 

elastic to failure. Structural failure of members and frames will be 
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characterised by excessive deflection or by an instability mode. Yielding, 

which is associated with material rupture is an uncommon failure mode for 

stressed PFRP members (Mottram et al. 2003). 

For standard pultruded sections of 1- and H-shapes the full-section 

longitudinal modulus in flexure is about 20-24 GPa (E) (Anon 1989) and the 

full-section in-plane shear modulus is about 4 GPa (G) (Mottram 2004). 

9.4 Uses of FRPs In civil engineering 

There are three broad divisions into which applications of FRP in civil 

engineering can be classified and these are for new build, repair and 

rehabilitation applications, and architectural applications. New build such as 

bridges and buildings executed of PFRP shapes and systems have . 

demonstrated exceptional durability, and effective resistance to effects of 

environmental exposure (Keller 2003, Bank 2006). 

The biggest usage of FRPs in the construction sector is for retrofitting and 

strengthening of existing structures, which on assessment by structural 

engineers are found in need of such maintenance. As Hollaway and Head 

(2001) present there are a number of advantages to adhesively bonding 

FRPs to deteriorated or under-strengthened structures that makes these 

materials the first choice. Another retrofitting approach that is used by several 

companies is to wrap damaged bridge piers to improve their structural 

integrity. 
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9.5 Merits and drawback 

Along with FRPs' high relative strength properties, the most relevant merits 

for their use in construction are lightweight, excellent durability and corrosion 

resistance. Other merits for new build and retrofitting and repair are: a longer 

life cycles, a reduced maintenance cost, an increased site productivity and 

efficiencies in initial project and whole-life cost. Other features that provide 

reasons for their choices are: ease of installation, electromagnetic neutrality, 

excellent fatigue behaviour, and potential fire resistance. Furthermore, their 

high strength-to-weight ratio is of significant benefit for a member in 

supporting higher live loads since dead weight does not contribute 

significantly to the loading. 

However, like all structural materials, FRP has drawbacks that create some 

hesitancy for structural engineers to use them widely. The factors that can 

limit their exploitation are the high cost of the FRP itself, its brittle behaviour, 

its susceptibility to deformation under long-term loads, photo-degradation 

(from exposure to light), temperature and moisture effects, lack of design 

codes, and most importantly, lack of awareness and historical precedent. A 

number of these drawbacks are receding with time as the technology and 

know-how matures and we continue to get positive feedback from assessing 

prototype structures that have been in use for more than decade (Hollaway 

and Head 2001, Keller 2003). 

9.6 Frame analysis 

The design of framed structures requires sizing and determination of the 

internal equilibrium forces in their components, and to justify that the 
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structure is economical and safe in terms of strength and stability under the 

specified design loads. The first step in designing structures is the analysis to 

calculate deflections and the member and joints actions. The common types 

of frame analysis for buildings are first-order elastic, second-order elastic, 

first-order inelastic and second-order inelastic. The basic distinctions 

between these methods of analysis are whether equilibrium is satisfied on 

the undeformed or deformed geometry of the structure, and whether member 

plastification is considered. Design standards for steel structures generally 

treat frame stability through strength and stability criteria for beam-columns 

(Galambos 1998). 

Many methods can be followed to obtain a determination of the elastic critical 

load of framed structures (Chan and Chui 2000, Chen and Lui 1991, 

Galambos 1998, Ghali and Neville 1997). These include the differential 

equation method that give exact values of critical loads, and energy methods 

that provide an approximate solution by way of matrix stiffness and the finite 

element method. 

Of these, the stiffness method is an efficient way to solve models for frame 

structures. It is a powerful analytical method and has been applied in 

numerous engineering fields, such as solid mechanics and fluid mechanics 

(Ghali and Neville 1997). The stages in the stiffness method for buckling 

analysis can be given as follows: 

• The frame is subdivided at nodal points into a series of discrete line­

elements (for the structural members). 
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• For each of these "beam-column" elements the terms in the element 

stiffness matrix are calculated using member and material properties. 

• The element stiffness matrices are assembled to form the governing 

global stiffness matrix, when multiplied by the vector for nodal 

displacements will give the nodal forces. 

• The displacement boundary conditions are applying to obtain the 

reduced matrix, which is then inverted. 

• This new matrix is multiplying by the vector of forces associated with 

the unknown degrees of freedom to determine the unknown 

displacements at the nodes. 

• Back substitution for these nodal displacements into the governing 

equations enables the analYSis to calculate element stresses and 

strains, and restraint actions for the reaction forces. 

9.7 In-house frame analysis software called sframe 

in 1998 Zheng received a PhD from the University of Warwick for research 

on PFRP frames. As part of his research he formulated and wrote a plane­

frame analysis tool with the specific aim of analysing the behaviour of shear­

flexible frames. His software, called sframe, was written in the C language for 

the Unix operating system environment. Zheng's coding was developed with 

the intention of incorporating modelling features that are relevant to the 

practical applications of Pultruded and other FRP shapes in frameworks. It 

therefore included shear-flexible elements, second-order shear-deformable 

effects and semi-rigid joint action. The version of sframe by Zheng could only 

calculate the frame deformation and member forces. It is to be noted that 
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Zheng developed his own shear flexible stability function for the second-order 

P-li effects and that his supervisor Dr Mottram later found that their 

expression were wrong. 

The author's work, to be reported in Chapters 10 to 12, has been to further 

the sframe code so that it can be used also to determine the elastic critical 

load for overall frame stability. This information can then be used to predict 

the effective length factors for the column members. Nonlinearities due to 

elastic force-displacement laws are taken into account using the correct 

shear flexible stability functions that are given in AI-Sarraf (1986). It was 

intended to provide an improved sframe code that gives an easy-to-use tool 

for tackling the difficult problem of incremental nonlinear structural analysis of 

shear-flexible frames. The main emphasis has been placed on the needs of 

engineering practice. 
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Figure 9.1. Application of FRPs in civil engineering. (a) West Mill Bridge 

in Oxfordshire, UK (b) Wall fa~ade fabricated from FRP at Dubai 

International airport. 

Figure 9.2. Standard and non-standard PFRP sections (from Strongwell, 

web site). 
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Figure 9.3. Schematic diagram showing the salient stages in the 
pultrusion process. 
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Chapter 10 Elastic Critical Load of Framed Structures 

10.1 Introduction 

In a linear or first-order analysis the material is modelled as linear-elastic and 

the governing equations are developed with respect to the undeformed 

geometry of the structure (Galambos 1998). The overall deformations have to 

be relatively small such that the resulting elastic displacements do not affect 

the assumed geometry of the structure. Consequently, the destabilization 

effect of any axial compressive force in the members is ignored and so this 

type of analysis cannot predict the structure's critical buckling load. In order 

to obtain more realistic analysis for the design of multi-storey structures it is 

necessary to consider the influence of geometrical effects on internal forces, 

caused by displacements and deflections of construction and its members. In 

a second-order analysis the material is still linear-elastic, but the change in 

geometry of the structure, for example due to side-sway !1 (as shown in 

Figure 10.1), is accounted for. Now when developing the governing force 

equilibrium equations reference is made to the current deformed 

configuration of the structure. The destabilizing effect of axial compression in 

members is accounted for, thereby, enabling the non-linear analysis to 

calculate the elastic critical buckling load. 

For investigation of the second-order effect Figure 10.1 shows a simple 

frame for sway and no-sway examples. For the frame in Figure 10.1 (a) a 

first-order analYSis under gravity loads will yield bending moments in the 

beam equal to those for a simple span condition with zero moments in the 
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column. Equilibrium of the deflected shape requires large moments in the 

beam and non-zero moments in the column. These additional moments are 

due primarily to the P-A effect, where A is the lateral drift of the frame and P 

is the total axial load. For the frame in Figure 10.1 (b), where side-sway is 

prevented, second-order moments are created in the beam and column 

arising from lateral deflection 8 along the column. The additional moment in 

the column is equal to the column axial load P times the deflection 8, hence 

the name P-8 effect Galambos (1998). 

The research reported in this part of the thesis addresses the topic of the 

theoretical analysis for the instability loading of framed structures (such as 

one shown in Figure 10.2) made of FRP components, and, in particular, 

frames with members manufactured by the pultrusion process. The 

mechanical properties of FRPs as presented in Section 9.3 can be greatly 

different from those for conventional construction materials, and their relative 

values are not that well known to the practicing engineer and infrastructure 

systems planner. This suggest that there is a need to develop new design 

tools, in the form of guidelines and criteria, which are consistent with the 

characteristics of this new category of structural material. Despite the current 

similarity in construction of PFRP frames (Anon 1989, Anon 1995, Anon 

1999) with conventional steelwork (Owens et al. 1994) there has been limited 

computational modelling to analyse PFRP frame behaviour. 

Many researchers have studied the components of PFRP frame as isolated 

elements (beams, columns and connections). For information on the 
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behaviour of PFRP beam members one can refer to the papers by Brooks 

and Turvey (1995), Turvey (1997) and Davalos and Qiao (1999). Regarding 

papers on research for the behaviour of PFRP column members, one should 

mention those by Zureick and Scott (1997), Lane and Mottram (2002) and 

Mottram (2004). On the important topic of joints between PFRP members 

and their structural properties the reader is directed to the research described 

in Bank et al (1990), Mottram and Zheng (1999), and Turvey and Cooper 

(2000). But little work has been done so far on the behaviour of the entire 

PFRP frame structure as a whole. Mosallam (1990) conducted analytical and 

experimental investigations for both the time-independent and time­

dependent response of a full-scale frame structure constructed entirely from 

PFRP sections. Mosallam concluded that the semi-rigid action of beam-to­

column connection is a controlling factor regarding the overall behaviour of 

PFRP frame structures, and needs to be considered. Zheng (1998), not only 

characterised a number of beam-to-column jOint arrangements, he also 

developed an analytical method to predict the static response of linear elastic 

plane frames. Moreover, he formulated new but incorrect shear-flexible 

stability functions to take account of the second-order P-f:" effects when the 

members are shear flexible. Flowing analysed PFRP frames to determine 

deformation and internal forces it was a logical step to want to develop the 

theoretical treatment to enable the elastic critical buckling load for overall 

frame instability to be established. 

This chapter outlines the theoretical development of the approach that the 

author has introduced into the sframe coding so that it now predicts the 
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overall elastic critical buckling load for FRP plane framed structures. The 

analysis takes into account the following physical attributes of FRP frames: 

• Shear-flexible element 

• Semi-rigid joint action 

• Shear-flexible stability functions. 

Each of these attributes will be discussed further, with a presentation of how 

they are mathematically modelled in Sections 10.2 and 10.3. 

10.2 The stability concept of structures 

The stability of a structural member under compression action can be studied 

by using the same theory to investigate the stability of the equilibrium 

configuration of a rigid body system (Timoshenko and Gere 1963). Stability 

can be regarded as an equilibrium curve for the structural system; in this 

curve any point representing equilibrium values of load and deflection in a 

coordinate system. The equilibrium of any point on the curve is stable if, at 

that point, either the total potential energy of the system is locally a minimum 

or the system is liable to return to its current equilibrium state, when slightly 

disturbed. If the total potential energy is not a minimum at that pOint the 

system might either be in a condition of neutral equilibrium or instability. The 

value of the loading at the limit of stable equilibrium is referred to as critical 

buckling load. After the critical load has been achieved any equilibrium 

configuration of the system will be unstable, and as the structure deforms 

non-proportionally its stiffness reduces with change in geometry without the 

need for a further load increase. Instability may be considered as a 

deteriorating stiffness phenomenon of the structure Chan and Chui (2000). 
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Instability of frames can occur in the overall system or in some of its 

members where compression stresses exist. Before computational methods 

were in common use, the British Code of practices (BS 449-2: and BS 5950-

1: 2000) tackled the stability of steel columns by an approximation to the 

value of the effective length factor. Tabulated values ranging between 0.5 

and 2.0 depend upon whether the column ends are effectively held in 

position and restrained in direction. By reviewing the effective-length concept, 

Wood (1974) concluded that one of the uncertainties lies in being able to 

specify the effective lengths of continuous columns. Then he emphasised 

that to design for the limit-state of collapse it is essential to consider the 

overall frame instability since the effective lengths that are based on local 

restraints are not accurate enough for this situation. 

With the universal availability of computing software and hardware during the 

1980s the analysis of overall frame structures to determine their elastic 

critical buckling loads was recognized as being a more reliable approach to 

design steelwork against instability (Dowling et al. 1988). 

It is within the context of the issues presented in Section 10.1 and the 

historical development of the analysis methods used to design steel frames 

that a computational tool for the instability analysis of plane frames of FRP 

members is desirable. The following Sub-sections in this Section explain the 

modelling approach in the static analysis code sframe that was written by 

Zheng (1998) and how the author modified it to calculate the theoretical 

loading for failure by bifurcation buckling. 
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10.2.1 Element shear deformation 

For the structural analysis in this thesis the matrix stiffness method is 

adopted. The slope-deflection equations, which relate slope and sway at the 

ends of a member to the moments and shears at the ends, play an important 

role in the method's development. For the beam-column element Figure 10.3 

shows the nodal forces and nodal displacements that are used in the slope­

deflection equations. 

The mechanical properties of advanced polymeric composites (Hollaway and 

Head 2001) depend on many variables, such as manufacturing process and 

the fibre/matrix combination and arrangement. As discussed in Chapter 1, 

members of FRP can have a moduli ratio (E/G) that is many times higher 

than for the same member of an isotropic material (Bank and Bednarczyk 

1988, Mottram and Aberle 2002). This fact informs us that the deformation of 

an element of FRP will need to include the effect of the shearing force action. 

The consequence is that, shear deformation will be analysed and as we shall 

see in Chapter 11 its presence reduces the critical buckling load. 

Conservative design of FRP frames against overall buckling failure therefore 

requires the effect of shear deformation to be included, both for member 

deformation and for its influence on second-order effect via the stability 

functions. 

Lets consider the element in Figure 10.3, where the two end moments M1 

and M2 are different. The constant shear force along the element of length I 

is therefore given by V = -(M 1 + M 2 )/1 . This shear force produces additional 
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deformation (Mottram and Aberle 2002) to that caused by the action of the 

bending moment distribution. This deformation is in the form of an 

anticlockwise rotation (in the opposite sense to the rotation due to the action 

of a positive moment) that has a constant value along the element's length. 

And this rotation gives a slope of magnitude equal to the shear strain at the 

centroid of the cross-section, and which can be expressed by (Timoshenko 

and Gere 1972) 

(10.1 ) 

in which, Ys is the deflection due shear, V is the shear force, A is the cross-

sectional area and G is the shear modulus of the member. P is the shear 

correction factor, whose presence allows for the non-uniform shear stress 

over the section (Timoshenko and Gere 1972). 

For the general beam-column element shown in Figure 10.4 the development 

of the set of slope-deflection equations for the case of the shear-flexible 

member are presented in Zheng {1998}, and can be written in matrix form as 
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I 1 
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0 
1 1 
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I 
2{v + If/) l(v + 1fI) 2(v + If/) l(v+lf/) 
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2 1 1 U2 

V,"e 1 1 2 1 -e 
2 0 0 V2 

Me l(v + 1fI) 2{v + 1fI) (v+~) 2(v + If/) ee 
2 2 

0 
1 e; -lfIEl) 

0 
1 

e; + IfIEl) 
2{v + If/) l{v + If/) 2{v + If/) l{v + 1fI) 

Z2 fJ 
where v = -- and If/ = -, E is the member's longitudinal modulus of 

12EI GA 

elasticity and I is the second moment of area. ut and u; are the member 

end axial forces, V. e and V2' are the member end shear forces, M: and M; 

are the member end-moments, lilt and li; are the member end axial 

displacements, vt and v; are the member's end sways, and ~' and 0; are 

the member's end rotations. 

In the linear analysis method the equations of equilibrium in Equation (10.2) 

are based on the undeformed frame geometry that exists before load 

application. In compact format Equation (10.2) for the element, e, can be 

rewritten as 

(10.3) 

where [kIe) is the element stiffness matrix, {&}e) is the vector for the 

element's nodal displacements. 
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10.2.2 Shear-stiff stability functions for isotropic elements 

Two methods often employed to capture second-order behaviour in the 

element stiffness relationships are referred to as the stability-function and 

geometric approaches (Galambos 1998). It is relevant to understanding 

shear-flexible stability functions to introduce the functions for elements that 

are shear stiff (that is ratio EIG tending to zero). In the linear analysis method 

of Section 10.2.1 all members in the framework are consider as beam 

elements that are subjected to flexure only. The effect of axial force on 

changing beam-column element's stiffness is ignored. In 1956 Livesley 

developed set of shear-stiff stability functions in order to account for the 

second-order effect (P-A) when members are of isotropic material (the aim of 

his work was to develop a computer calculation method for the analysis of 

steel frames). 

For the general shear-stiff beam-column element shown in Figure 10.4, the 

6x6 elastic element stiffness matrix presented by Livesley in 1956 is 

EA 
0 0 

EA 
0 0 

I I 

0 12EI t/J 
13 S 

_ 6EI f/J 
12 2 

0 _12EI t/J 
13 S 

_ 6EI f/J 
12 2 

0 _ 6EI f/J 4EI f/J 0 6EI (J 2EI t/J. 
[k],e) = [2 2 [ 3 [2 2 I 4 

(10.4) 
EA EA -- 0 0 0 0 
I I 

0 _12EI t/J 
13 S 

6EI (J 
12 2 

0 12EI t/J 
13 S 

6EI (J 
12 2 

0 _ 6EI (J 
12 2 

2EI t/J. 
1 4 

0 6EI (J 
12 2 

4EI f/J 
1 3 
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where the fP/3 (i = 1 to 5) are the Livesley shear-stiff stability functions. Now 

we find that the element stiffness matrix [k"Je) is function of axial force, that is 

[k"{p}Je). It is to be noted that Equation (10.4) is in a format ready to be coded 

for analysis by the matrix stiffness method. 

10.2.3 Shear-flexible stability functions for FRP elements 

FRP members, such as standard pultruded shapes, for framed structures are 

recognized to be shear deformable, and accounting for the influence of 

shearing on the element's response is therefore desirable. To facilitate the 

prediction of the elastic critical buckling load of frames with shear-flexible 

members AI-Sarraf (1986) modified shear-stiff stiffness factor sand shear-

stiff carry-over factor c. His work considered the shear-deformation effect by 

introducing a shear-flexible parameter 11, which is defined by 

(10.5) 

with r the radius of gyration (r = -v.1IA) and Vr the slenderness ratio for the 

element. The other variables have been defined and it can be observed that 

11 is dependent of geometrical and material properties. 

In order to modify the stiffness matrix in Zheng's sframe code, which had his, 

incorrectly derived, shear-flexible stability functions, the author formulated 

shear-flexible fPi functions, based on AI-Sarraf's shear-flexible stiffness factor 

s and shear-flexible carry-over factor c. In this sub-section, a brief 
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description of the development of the new shear-flexible rA functions is 

presented. 

The basic differential equation for the shear-flexible element, according to 

Timoshenko and Gere (1972), is 

d 2 y M P dV -=--+--
dx 2 El AG dx 

(10.6) 

In Equation (10.6) y is the vertical deflection and x is the distance along the 

element from its left-hand end. Lets now consider the beam-column element 

shown in Figure 10.5 where the relative end sway A is zero. The bending 

moment Mx and corresponding shear force Vx at a distance x from end 1 are 

M =(I-~)M -~M +Py 
x I 1 I 2 

(10.7) 

V =_(M\ +M2)+pdY 
x I dx 

(10.8) 

By substituting the Equations (10.7) and (10.8) into Equation (10.6), and 

replacing axial force P by pPE, the beam-column curvature expression yields 

d
2
y PPE 1 [ (x) (x)] (-2 +-y=- Ml --1 +M2 - , 

dx El El I I 
(10.9) 

Parameter ,= I-pp and PE is the critical Euler buckling load for the element 

with an effective length factor of 1.0. The general solution to Equation (10.9) 

is 

. r:;;x r:;;x M\ (x 1) M2 (x) y=c Sln1&vP-+c COS1&vP-+- -- +--
1 I 2 I PPE I PPE I 

(10.10) 

Where Cl and C2 are constants of integration and parameter p = ~ . 
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The relationship between the end-moments and end-rotations (structurally 

relevant) can be written as 

(10.11) 

(10.12) 

in which s is the shear-flexible stiffness factor and c is the shear-flexible 

carry-over factor. 

By substitution for the end-moments Ml and M2 in Equation (10.10), and 

applying the boundary conditions, the solution for sand c yields 

expressions 

s = a(l- 2(li cot 2a) 
tana-(i.i 

and 

_ 2(li - sin 2a 
c = ---=------

sin 2a - 2(i.i cos 2a 

(10.13) 

(10.14) 

where a = O.SJZ' JP. Because sand c are dependent on the shear-flexibility 

parameter J.l their values are dependent on the geometric and material 

properties of the element. 

A set of non-linear shear-flexible equations for the general beam-column 

member, shown in Figure 10.4, can now be develop in a similar manner as in 

the pure rotation case in Figure 10.5, and they are. 

MI2 = k(SB1 +scB2 -s(l+c)1) 
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(10.16) 



v = ~(S(I+C)Bl +s(l+c)B2 -2A ~) (10.17) 

Parameter A in Equation (10.17) is defined as s(l+c)- 0.5,(15. 

In terms of ~ the shear-flexible stiffness factors are given by 

(10.18) 

and 

(10.19) 

~ = acota and is the author's first shear-flexible tP; function. In order to 

construct the stiffness matrix (as in Equation (10.2)) for the shear-flexible 

beam-column element another four shear-flexible phi functions (tPl (i = 2 to 

5)) were formulated by the author, and their expressions are: 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

The workings to the derivation of the tP; functions are to be found in Appendix 

B. It will be observed that the shear-flexible phi functions have the same 

format as the shear-stiff phi functions. 

The modified 6x6 elastic element stiffness matrix of the general shear-flexible " 

beam-column is now given by 
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EA 
0 0 

EA 
0 0 - --

[ [ 

0 12EI ~ 6EI-
0 _12EI ~ 6EI-

[3 5 -yrfJz 13 5 -yrfJz 

0 
6EI- 4EI-

0 
6EI- . 2EI-

[k],e) = 
-yrfJ2 -1- rfJ3 yrfJ2 -1- rfJ4 

(10.24) 
EA 

0 0 
EA 

0 0 
1 1 

0 _12EI ~ 6EI-
0 12EI ~ 6EI-

13 5 yrfJ2 13 5 yrfJ2 

0 
6EI-

-yrfJ2 
2EI-
-1- rfJ4 0 

6EI-
yrfJz 

4EI-
-1- rfJ3 

And this is the element stiffness matrix that is in the sframe code. The form of 

the element stiffness matrix in Equation (10.24) is ready for coding and with 

standard matrix stiffness analysis procedures it is straightforward to establish 

the overall stiffness matrix for any plane frame. 

10.2.4 Verification of developed <pj functions 

The influence of the shear-flexible parameter J.L on the shear-flexible 

<PI function is shown graphically in Figure 10.6. <PI is plotted for different 

values of J.L against the non-dimensional elastic critical Euler buckling load 

ratio p. At P = 0 (i.e. a zero axial force), the value of <PI function is unity and 

the terms in Equation (10.24) for the element stiffness matrix restore their 

linear form. As p increases from zero, and is positive for compressive axial 

force, the value of the <PI function decreases gradually from one to zero, the 

later value is for onset of instability. If the axial force is tensile there is a 

stiffening effect given by a negative P, and so the value of <PI is> 1.0. 
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It is worthwhile to observe the effect of f.i on the critical buckling load for an 

element with simply supported ends and subjected to only axial compression 

(there are no end moments (Le. M1 = M2 = 0)). Let us consider the curve for 

the shear-stiff case (f.i is zero) given in Figure 10.6 by the upper solid line. It 

gives p = 1 for the onset of instability and so the critical load is the Euler 

value (1(2 ~I). When the member is shear-flexible and f.i is equal 0.1, the 
I 

curve for l/ll in Figure 10.6 is given by the bottom solid line. Now the onset of 

instability will occur when p = 0.85. This informs us that for the shear-flexible 

situation the elastic critical buckling load is lower than the shear-stiff Euler 

value. 

10.3 Semi-rigid Joint action in frame analysis 

Connections are the components that form the frame's jOints to connect the 

members together and through which forces and moments are transmitted. 

Depending on the member arrangements there is a variety of joint 

configurations, such as single-sided or double-sided, and beam splices etc. 

Figure 10.7 shows the connection detailing for four jOint configurations 

between beam and column members that could be use with pultruded 

structural shapes. The main method of connecting the components to 

fabricate the jOint is by bolting. To further enhance the initial rotational 

stiffness in PFRP joints adhesive bonding can be used (Mottram 1996). A 

number of researchers have used full-sized physical tests to determine the 

moment rotation characteristics of PFRP joint configurations and these 

studies have been reviewed by Turvey and Cooper (2004). 
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It is current practice when designing steel framed structures to assume that 

jOints are either ideally pinned or ideally rigid (BS 5950-1: 2000). The rigid­

case assumption implies that the jOint possesses a very high rotational 

stiffness in comparison with the flexural stiffness of the connected members, 

and is capable of transmitting the moments without any relative rotational 

deformation between the connected members. This is illustrated in Figure 

10.8(a). In the case of the pinned assumption the joint's rotational stiffness is 

taken to be very small such that they cannot be a transfer of moments 

between the connected members. The deformation of the beam members is 

shown in Figure 10.8(b). The actual joint behaviour will, of course, fall 

between these two bounds to given us semi-rigid joint action. At a given 

stage of loading, if the joint has rotation e and the semi:rigid connection gives 

a rotation represented by rp, as illustrated in Figure 10.8(c) (Anderson et al. 

1993). For a realistic, and perhaps more economical, frame design it would 

be advantageous in the analysis to include the true moment-rotation 

response of the jOints, as shown in Figure 10.9, which is neither parallel to 

the moment-axis (Le. rigid connection) nor the rotation-axis (Le. pinned 

connection) but lies in between (Le. semi-rigid connection). 

To rely on conventional steel practice and to design pultruded frames as 

braced, with simple connections, might not produce the optimum solution 

(Bass and Mottram 1994, Mosallam 1994, Mottram 1996, Turvey and Cooper 

1996, and Mottram and Zheng 1996). This became the additional stiffness to 

the frame from semi-rigid action will either reduce the member sizes or 

increase the capacity of load for the limit states. It is therefore necessary 
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when determining the overall instability of framed structures to include the M-
\ 

f/J characteristics of the joints. 

The application of computer simulation has permitted more refined and 

accurate representation of the joint behaviour to be included in the analysis. 

Zheng (1998) used the hybrid element concept shown in Figure 10.10 to 

model semi-rigid jOint action in his programme sframe. To minimize the need 

for computing resources, the semi-rigid joint is treated as a spring, which has 

no physical length, and attached to the beam-column element while the other 

side represents the node to the element, which appears in the frame model. 

It is assumed that only its rotational degree of freedom is relevant in the 

numerical analysis, and by employing this assumption the number of terms in 

the element's stiffness matrix remains unchanged. To take account of semi-

rigid action in sframe the analysis proceeds by modifying the loading side of 

the governing matrix equation. To follow next is a brief description of the 

mathematical treatment to include the semi-rigid action in the frame analysis. 

The end rotation of a member with a semi-rigid action is partly due to the 

rotation of the jOint e and partly due to rotation of the connection f/J. 

Consequently, the deformation and stresses of this member which can be 

treated as the results of two systems of loads acting on it. These are due to 

the actual loads applied and the extra loads due the to semi-rigid rotations 

~ ~ and ~~ as nodes 1 and 2. 
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Using {F Y to represent the forces vector for the member and {8} to 

represent the joint displacement vector, the relationship between member 

end-forces and displacement is written as Zheng (1998). 

(10.25) 

where 

0 
U e -e _ 6~I ("itl! +"izl! ) 1 U1 

v,e -I! I 
1 VI 
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It can be seen that the right hand side of Equation (10.25) consists of two 

parts. Its first part represents the relationship of the end forces to the 

displacement of a member in a plane frame that has rigid jOints at both ends. 

The second part to Equation (10.25) gives the influence on forces of the 

relative joint rotation from the semi-rigid action. 

10.4 Analysis for the elastic critical buckling load of frames 

As has been discussed previously, FRP members are characterized by their 

high strength-to-modulus and high longitudinal-to-shear modulus ratios. This 

means members and structures are most susceptible to failure by a buckling 

instability. The author therefore modified the coding to the static version 

(Zheng 1998) of sframe so that the analysis tool would also determine the 

elastic critical buckling load for the modelled frame problem. 
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Stability of an elastic framed structure may be explained by considering its 

change of stiffness with increasing load. The overall stiffness matrix for the 

stable frame has the property of positive definiteness, whereas, at its stability 

limit, its "stiffness" vanishes. Consequently, the stability of the frame can be 

"measured" by the value to the determinant of the overall stiffness matrix. It 

can be noted that, by involving the shear-flexible stability functions (tPl ) in the 

analYSiS, allowance is made of the destabilising effect from the presence of 

axial compression in the shear-flexible members. 

For nodal force equilibrium, the internal forces, F, should balance the applied 

loads, P. The matrix relationship between nodal forces and displacements, S, 

in the overall system is defined by 

(10.26) 

This system of equations is then solved analytically to obtain the nodal 

displacements corresponding to equilibrium with a set of external forces. 

For the non-linear analysis Equation (10.26) can be rewritten as 

{p}= [K{P}]{o} , (10.27) 

K(P) implies that the overall stiffness matrix K is a function of the current 

values in the load vector P. If the nodal forces are known, the terms of K(P) 

can be calculated via the tPl functions, and Equation (10.27) solved for nodal 

displacements (deflections and rotations), by way of 

{o}= [K{p}]-l {p} (10.28) 
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For a given set of loads there is, as from the linear static analysis, a unique 

set of nodal displacements. This will always be the true as long as the frame 

remains in stable equilibrium. If the loading causes the structure to be in a 

state of neutral equilibrium, where many deformation configurations are 

possible, there is no uniqueness for the relationship between loads and 

frame deformation. Although Equation (10.27) now exists, Equation (10.28) 

does not, and this is only possible if the overall stiffness matrix K(P) is 

singular (Coates et al. 1994). The singularity of K(P) is equivalent to the 

structure's overall stiffness being zero. 

A test for the singularity of K(P) will be a check for stability, since if it is 

calculated not to be zero and remains positive definite the structure can be 

said to be in a stable state. The frame will be on the boundary of instability 

when the matrix is singular. The system will become unstable when it has no 

overall stiffness and no additional load is required to Induce a buckling mode 

shape. Mathematically a null load vector gives this situation and so joint 

equilibrium is defined by 

[K]{5} = {a} (10.29) 

For the non-trivial solution to Equation (10.29) the displacement vector 5 

cannot have all entries equal to zero, the determinant K must be zero. Thus 

for the condition of instability of the structure the following should be hold 

IKI=O (10.30) 
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The elastic response of the structure is governed by Equation (10.4), or more 

precisely, by Equation (10.27). The use of K(AP) implies that K is a function 

of the applied load AP, where A is the critical load factor that multiplies the 

initial loads in vector P to give their magnitudes when instability occurs. To 

determine the value of A the mathematical problem is Iinearized by carrying 

out a double iterative process. The outer iterative loop has A increasing in a 

step-by-step manner and the singularity of K(AP) is checked. At each of the 

outer-loop load levels there is an inner iterative loop using the Newton­

Raphson's technique, prior to the singularity check, to find the correct values 

to the axial forces in the members. This non-linear solution procedure is 

repeatedly until the analysis gives a consistent set of nodal displacements 

that satisfy the equilibrium of the nodes (or members) in their current 

deformed positions. The number of iterations required depends on how near 

the structure is to instability and how good is the modeller's initial estimate to 

the loading values that will cause instability. 

The singularity of a matrix can be checked by a number of algorithms. The 

one chosen by the author is to examine the value of the determinant of the 

overall stiffness matrix to find out what loading causes it to be zero. Coates e/ 

at. (1994) inform us that the mathematical situation for a singularity cannot be 

exactly obtained, and so in practice it is not be feasible to calculate the value 

of A, that gives the "exact" singularity state. Instability, using the sframe 

analysis, is therefore flagged only when the sign of the determinant becomes 

negative, as this corresponds to a state of unstable equilibrium. By imposing 

a tolerance on the incremental change to A, a more accurate value to the 
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critical A. is obtained by linear interpolation between values that fall either side 

of the required critical value. 

10.5 Summary for the sframe analysis tool 

The author, using the approach described in Section 10.4, has modified the 

sframe coding by Zheng (1998) so that it can be used to predict the elastic 

critical buckling load of shear-flexible plane frames. In Section 10.1 the 

development of, the shear-flexible beam-column element for member 

representation has been presented. As explained in Sections 10.2 and 10.3 

this analysis tool is able to account for non-linear response through second­

order p-~ effects and shear-flexible stability functions. To give the analysis 

tool further capability Section 10.3 introduces how it accounts for the non­

linear moment-rotation behaviour due to semi-rigid joint action that is found in 

practice (Turvey and Cooper 2004). It is to be noted that sframe does not 

include any material non-linearity since the FRP materials that would be used 

in frame construction will be linear elastic to material yield (Le. when there Is 

rupture). 

A specific data file has to be prepared in order to run the complied C sframe 

source (sframe.c). Details on how to prepare a data file and the execution of 

the analysis tool are to be found in Appendix C. 

In the next chapter the srfame analysis tool will be used to show the influence 

of shear-flexibility, with and without semi-rigid joint action, on changing the 

buckling loads to small number of example frame problems. The study to be 
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presented is preliminary in nature and can be used to identify what will be 

required for a comprehensive numerical analysis to fully understand the 

instability of plane frames with shear-flexible members. 
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Figure 10.1. Second-order P-~ and P-O moments, (a) Sway permitted, (b) 

Sway restrained (Galambos 1998). 
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Figure 10.2. Frame deformation shapes, (a) side-sway frame, (b) no-

side-sway frame. 
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Figure 10.3. Force and nodal displacements for shear-flexible beam-

column element. 
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Figure 10.5. Beam-column element subjected to end rotations and no 

sway. 
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Figure 10.6. Influence of the shear-flexible parameter Jl on the shear-

flexible f/JI function. 
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Figure 10.7. Typical connections details for joints In pultruded FRP 

frames (Mottram 1994). 

187 



(a) 

Rigid joint 

. . . .. <eo .. .. .. . .. . ... . 

." ' ... \ 
Actual deformation 

(b) (c) 

Figure 10.8. Joints classification, (a) rigid joint, (b) pinned joint, (c) 

semi-rigid joint. 
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pultruded FRP frames. 
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Figure 10.10. The hybrid element comprising beam-column element 

with end rotational springs to simulate semi-rigid joint action. 
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Chapter 11 Parametric Study Using sframe to Determine the 

Elastic Critical Buckling Loads of Shear-flexible Frames 

11.1 Introduction 

A preliminary evaluation of the sframe analysis tool to determine the elastic 

critical buckling load of shear-rigid and shear-flexible plane frames will be 

demonstrated by several example problems. The numerical results from 

sframe will, when they are available, be compared with results from other 

researchers, who solved the same simple problems using different analytical 

methods. By way of numerical examples this chapter presents the influence 

of shear-flexibility on the critical loading of frames with pultruded or other 

FRP members. Design of frameworks for Ultimate Limit State requires not 

only checks on the resistances of joints and the members but also checks for 

the overall stability of the structure. It must be understood that, in presenting 

the numerical results, it is assumed that overall buckling is the first mode of 

ultimate failure and that all over possible modes have been suppressed. This 

important assumption on the validity of what is to follow is one aspect for 

which further work is necessary. 

The development of a plane frame analysis that can be used to predict 

elastic critical buckling loads was presented in Chapter 10. To cope with 

members of FRP material the beam-column element modelled in the sframe 

code is shear-flexible. As discussed in the previous chapter, the analysis 

accounts for second-order P-!!" effects by the inclusion of shear-flexible 

189 



stability phi functions, and semi-rigid action by the inclusion of the non-linear 

moment-rotation characteristics of the joints. 

The results presented in Sections 11.2 to 11.5 will be the elastic critical 

buckling loads using four problem configurations. The geometry for these 

simple frames is conveniently based on a standard PFRP section size, which 

is used for beam and column members in real frames (Anon 1995, Turvey 

2002). It is to be noted that, for the first time, this study evaluates the 

combined influence of semi-rigid joint action and material shear-flexibility on 

the critical buckling load of elastic framed structures. 

11.2 Portal frames with shear-rigid members and rigid JOints 

To validate the computational approach presented in Section 10.4 the author 

uses established results for the elastic critical loads to two portal frame 

problems with isotropic 'shear-rigid' members. Figures 11.1 (a) and (b) 

presents two simple portal frames of height 400 cm and width 400 cm. The 

members are given the geometric properties of a 20.3x20.3xO.953 cm3 wide 

flange pultruded off-the-shelf shape (Anon 1989 and Anon 1999). Flexure is 

for bending about a member's major axis. For this wide-flange section the 

nominal major second moment of area, I, is 4130 cm4 and the nominal cross­

sectional area, A, is 56.3 cm2
• In the modelling E is taken to be 20 GPa. The 

actual values of the members' properties are not so important as the critical 

load results are reported in a suitable non-dimensional form. 
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The four nodes and joints in both frames are numbered 1 to 4. Joints at 

nodes 2 and 3 are rigid, while joints 1 and 4 at the base can be fixed (FS) or 

pinned (PS). A single element is used for a member between two joints and 

its structural response is represented in sframe by Equations. (10.5) and 

(10.30). 

Shown in Figure 11.1 (a) is the portal frame loaded to excite the sway 

situation, while in Figure 11.1 (b) it is for the no-sway situation. In the sway 

case the frame is subjected to two vertical point loads (P) at nodes 2 and 3, 

as well as a very small sway-excitation horizontal load, H, (0.001 kN) at node 

2. For the no-sway case the difference is to have the excitation 'load' as very 

small opposing moments, M, (0.001 kNm) applied at nodes 2 and 3. 

The mode shapes to the lowest elastic buckling load are given for the two 

frames by the dashed lines in Figures 11.1 (a) and 11.1 (b). It is assumed that 

the frame cannot deform out of the plane and so buckling about the 

members' minor-axes is fully restrained. 

Presented in Table 11.1 are elastic critical buckling loads for the first overall 

buckling mode of the sway and no-sway cases, with a fixed base (FS) or a 

pinned base (PS). Column one in the table defines the portal frame problem, 

and the reference source to the other analytical result is given in column 2. 

Columns three and four give the results from the two theoretical approaches, 

with the sframe results in the fourth column. The elastic critical buckling loads 

are given using the non-dimensional parameter per. per is defined by Per/PE, 
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with Per the elastic critical load and PE the elastic Euler buckling load of the 

isotropic column member with an effective-length factor of 1.0. For the PFRP 

column member defined above the value of PE for global buckling about the 

major axis is 509 kN. 

Table 11.1. Comparison of elastic critical buckling loads for simple 

portal frame examples with shear-rigid members. 

Portal Frame Author Author sframe Difference 

problem Per Per % 

Sway with PS Timoshenko and 0.184 0.184 -0.10 

Figure 3.1 (a) Gere (1963) 

Sway with FS Chajes (1974) 0.744 0.745 0.10 

Figure 3.1 (a) 

No sway with PS Horne and 1.285 1.283 -0.15 

Figure 3.1 (b) Merchant (1965) 

No sway with FS Coates et al. 2.550 2.548 -0.10 

Figure 3.1 (b) (1994) 
. . . . 

Notes: PB IS for pinned JOints at the base and FB IS for fIxed JOints at the base • 

In the last column the percentage difference between the two analytical 

results for the four frame problems is given. Since the maximum difference Is 

only 0.15% it can be concluded that there is an excellent agreement between 

the two calculated Pers for each of the four shear-stiff frame problems. 

11.3 Shear-flexible members and rigid joints 

It is feasible for frame members of FRP reinforced with advanced carbon 

fibres to possess elastic constants to make the ratio EIG have a value of 80 

(Mottram and Aberle 2002). The higher this ratio is, the higher will be the 

192 



influence of shearing on the response of members and the framework itself. 

This modulus ratio for steel is only 2.6 and this low value explains why we 

can model the members in isotropic frames to be shear-rigid (Mottram and 

Aberle 2002, Horne and Merchant 1965). Members of standard Pultruded 

FRP shapes can have a EIG ratio in the range 5 to 10, and because the ratio 

is at least double that for steel the effect of the shear-flexibility on frame 

response needs to be known. 

AI-Sarraf (1979 and 1986) theoretically investigated the stability of the sway 

mode (see dashed curve for mode shape) for the two-storey single-bay frame 

problem shown in Figure 11.2. The heights of the storeys are equal and the 

four columns have the same length as the two beams. The loading to this 

frame for per was predicted when the second moment of area (1) and length 

(I) of all the members are constant. For convenience the six members have 

the same geometrical and mechanical properties as used in the portal frame 

examples in Section 11.2. For the frame with shear-rigid members AI-Sarraf 

(1979) predicted lower and upper bounds to give the critical load In the range 

0.5122 < Per < 0.5377. These bounds differ by only 4.9%. Later, AI-Sarraf 

(1986) extended his investigation to analyse the shear-flexible situation, 

using shear-flexible stability factors given in his paper, and by Equations. 

(10.14) and (10.15). To illustrate the influence of shear-flexibility on the 

elastic critical buckling load (now given by the non-dimensional critical load 

parameter Persh = PershIPE), the sframe generated curve is presented In Figure 

11.3. The buckling load is defined by two point vertical loads of magnitude 

).p, located at nodes 3 and 4. To 'excite' the sway-mode a very small 
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horizontal load, H, (0.01 kN) is applied at node 3. The principal variable is the 

moduli ratio EIG ranging from 2.5 to 80. In Figure 11.3 the abscissa is given 

by the non-dimensional shear-flexibility parameter p (= fJPE = fJ~2 El 
GA LGA 

(Equation (10.6», is used. For this and the frame problem in Section 11.4 the 

shear correction factor fJ is 3.07. fJ can be taken to be the ratio of AlAv, 

where Av is the shear area. A is 5630 mm2 and Av is depth of H-shape times 

the web thickness (nominal values give 203.3x9.53 = 1936 mm2
). fJ is 

5630/1936 = 2.91. If, however, Av is taken as height of web times the web 

thickness then it is, lower, at 1745 mm2
• Now fJ is 5630/1745 = 3.2. Then the 

mean is about 3.07 and so the fJ in the study is acceptable. 

From the plot in Figure 11.3 it is clear that as the shear-flexibility parameter p 

increases (Le., EIG increases from 2.5 to 80), the elastic critical load pcrsh 

reduces from 0.504 to 0.325. For this specific frame problem we observe that 

the elastic critical load can decrease by 35% when the members become 

very shear-flexible. For PFRP members with an EIG ratio lying in the range 5 

and 10, instability will occur at an elastic critical load that is < 95% of the 

shear-rigid frame value. Although not a significant reduction, the analysis 

shows that the buckling load is reduced by the presence of shear 

deformation, and so design using the conventional shear-rigid analysis would 

lead to an unsafe outcome. The importance of including shear-flexibility when 

determining the buckling loads of framed structures of FRP has therefore 

been demonstrated by evaluating the results of this simple example. 
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11.4 Shear-rigid members and semi-rigid JOint action 

The real moment-rotation characteristics of beam-to-column and column-to­

base joints play an important role in the overall response (Zheng 1998), and 

failure of frames. Here we will consider joints in a simple portal-frame 

problem with a constant rotational stiffness. It is noted, however, that the 

sframe analysis tool (see Section 10.3) can equally cope with non-linear 

moment-rotation characteristics (Zheng 1998, Mottram and Zheng 1999). Let 

the linear rotational joint stiffness be Sj and the flexural stiffness of the 

connected beam member be EIIl. It is to be noted that this measure of 

member stiffness is for the shear-rigid situation. To classify steel jOints, 

Annex J in Eurocode 3 (SS EN 1993-1: 200S) states that the jOint is rigid if 

the relative stiffness (SjI)I(EI) is > 8 for a braced frame and ~ 25 for an 

unbraced frame. Joints are said to possess a rotational stiffness for the 

pinned condition when (SjI)I(EI) < 0.5. If (Sjl)I(EI) lies between these two 

boundaries the joint will contribute semi-rigid action to the shear-rigid frame's 

deformation. 

Figure 11.4 shows an unbraced portal frame for the sway mode of failure, 

which for the sframe analysis has semi-rigid beam-to-column joints at nodes 

2 and 3. The column-to-base joints at column ends 1 and 4 remain fixed (i.e. 

Sj = oo). As in the previous frame problems E is taken to be 20 GPa, and since 

the members are shear-rigid the ratio EIG is mathematically zero. Figure 11.5 

plots Per against (Sjl)I(EI) to show the influence of the semi-rigid action on the 

frame's elastic critical buckling load. As (SjI)I(EI) increases from 0.29 (pinned 

jOints) to 25 (rigid joints), so per increases from 0.302 to 0.671. Over the full 
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range of joint stiffnesses this example shows a 122% increase in the critical 

load. Now, if (Sjl)I(EJ) increases from 25 to 00 (for the unbraced frame), there 

is only another 10% increase in Per. This simple example emphases the 

findings used to prepare Annex J of Eurocode 3 that there is no practical 

benefit when the frame is shear-rigid on having the parameter (SjI)I(EI) > 25. 

11.5 Shear-flexible members and semi-rigid joint action 

Using the same sway frame problem in Section 11.4 three plots in Figure 

11.6 show the variation of the elastic critical load (given by Pcrsh) with joint 

stiffness, for members having moduli ratio EIG = 6, 20 or 80 (Le. J1 = 0.083, 

0.278 or 1.111). To simplify the discussion the relative stiffness ((SjI)/(EI}) for 

joint classification will also be used when the members are shear-flexible. For 

the pinned-joint condition, given by (SjI)I(EI) < 0.5, the relative change in pcrsh 

is about 4% as EIG changes from 6 to 80. This is not significant. Whereas, for 

the rigid-joint condition, given by (SjI)I(EI) = 25, the equivalent change in the 

members' shear-flexibility has a greater influence on pcrsh, resulting in a 50% 

decrease. This can be linked to the finding by Turvey (1999) that the 

influence of shear-flexibility on the member's response is higher when the 

ends are fixed. There is also evidence in Figure 11.6 to suggest that the 

relative stiffness (Sjl)/(EI) will, at the joint classification boundaries, be lower 

as the members' shear-flexibility increases and this is an important finding for 

when a structural Eurocode is drafted for the deSigned of framed structures 

of FRP shapes. 
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Figure 11.1. Portal frames, (a) Sway loading case, (b) No-sway loading 

case. 
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Figure 11.3. /Jcrsh with j.J. for the AI-Sarraf (1979) single-bay two-storey 

frame problem. 
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Figure 11.5. Elastic critical buckling load parameter per with changing 

(Sjl)/(EI) for a simple frame problem with shear-rigid members. 
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(Sjl)I(El) and moduli ratio EIG for a simple portal-frame problem. 
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Chapter 12 Conclusions and Recommendations for Further 

Work on the sframe Analysis 

12.1 Conclusions on the sframe analysis 

In this part of the thesis the author has shown how a static analysis for plane 

frames of shear-flexible members, written by a previous Warwick University 

PhD student (Zheng 1998), can be modified to calculate the elastic critical 

buckling load for overall instability. The modified sframe programme provides 

a practical analysis tool that, importantly, includes non-linearity by way of 

second-order P-ll effects with shear-flexible functions and semi-rigid joint 

action. Since a review on shear-flexible stability functions by Mottram and 

AberJe (2002) found that there were mistakes in the expressions for Zheng's 

functions, the author has successfully coded into sframe new functions that 

are theoretically correct. To make this modification the author has formulated 

shear-flexibility phi functions (<Pi (i = 1 to 5» based on AI-Sarraf's (1986) 

shear-flexible stiffness factor s and shear-flexible carry-over factor c. Unlike 

the shear-stiff equivalent functions from Livesley (1956), it is seen that the 

shear-flexible phi functions are dependent of the members' geometric and 

material properties. 

A preliminary parametric study using sframe to analyse simple plane-frame 

instability problems has been presented. The problems chosen have enabled 

an initial investigation to be made on how the elastic critical buckling load 
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changes due to the interaction of member shear-flexibility and semi-rigid joint 

action. 

From the parametric study presented in Chapter 11 the following conclusions 

are made: 

(a) It is shown that sframe can accurately predict the instability load, by 

way of a group of four shear-stiff portal-frame problems that have 

solutions to their critical loads by a different theoretical approach. 

(b) By analysing a frame of two storeys and single-bay, it is shown that 

when the members' shear-flexibility is very high the critical load will be 

35% lower than when the same members are shear-rigid. If for the 

same frame problem the members are of Pultruded FRP material, the 

buckling load is found to be 5% below the shear-rigid upper bound 

value. 

(c) Although not a significant reduction, the study shows that the buckling 

load of Pultruded FRP frames is reduced by shear deformation, and 

so it is concluded that by using a conventional shear-rigid analysis in 

design, would not lead to the conservative outcome assumed by the 

designer. 

(d) By using the Eurocode 3 Joint classification scheme the joint's 

torsional stiffness in sframe was changed from pinned to rigid for the 

beam-to-column joints in a portal-frame problem. The critical-load 

calculations from this preliminary study show that the reduction in 

buckling load increases as the Joint stiffness increases from the 

pinned to the rigid condition. 
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(e) The semi-rigid action results provide us with useful information 

regarding jOint classification. Annex J of Eurocode 3 classifies a 

beam-to-column joint as rigid when the relative stiffness of the 

connection to the connected shear-rigid beam is ~ 25. It is shown by a 

sframe analysis that there is no practical benefit to be gained in terms 

of a shear-stiff frame's resistance, to detailing a connection for a joint 

that is stiffer than the Eurocode lower bound for the rigid 

classification. Furthermore, there is evidence from the preliminary 

study, including semi-rigid jOint action, to suggest that the relative 

stiffness values, at the joint classification boundaries, will be lower 

when the shear-flexibility of the frame's members increases. This is 

an important finding for when a structural Eurocode is drafted for 

frames of FRP materials. 

(f) The importance of including shear-flexibility when determining the 

overall buckling loads of frame structures of FRP has therefore been 

demonstrated by evaluating the results of the preliminary parametric 

study using the sframe analysis tool. It is the author's 

recommendation that deSigners must be aware of the influence of 

shear-flexibility when they are analysing the overall stability of FRP 

structures of frame construction. 

12.2 Recommendations for further work 

Despite the sframe analysis tool being able to solve shear-flexible instability 

problems there is a need for further work. Specifically, the following 

recommendations for new work can be given: 
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• Equation (10.28) governs the elastic behaviour of the structure. In this 

equation the overall stiffness matrix K{ (AP)} is a function of the load 

vector {AP}, where {P} is the initial estimate to the applied loading that 

causes overall instability. The critical buckling load is then predicted by 

obtaining the scalar value to A that is for the lowest buckling load. In 

sframe the value of load factor A is increased manually in a step-by­

step manner, and at each load increment the singularity of K{(AP)} is 

checked by a trial-and-error procedure. To improve the computation, a 

minor modification to sframe would be to have the load factor A 

increased automatically. This modification will speed up the analysis 

process and avoid numerical errors associated with the existing trial­

and-error approach to find the critical A. 

• Currently, each new problem requires the user of sframe to generate a 

separate input data file. For the analysis tool to be user-friendly the 

code needs modifying to have an easy-to-use interface, in order to 

construct the data file through a few mouse clicks. 

• The current output data file from sframe is in the form of a simple text 

format report. This may be improved by including graphically member 

detail reports with force/stress/deflection diagrams, etc. 

• It is also essential for the sframe code to be modified to determine the 

load values for the development of other possible modes of failure, 

such as local and global member instabilities, as these might occur at 

a loading below that for the first overall buckling mode, which is the 

only failure load that is predicted by the current version of sframe. 
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• Mottram and Aberle (2002) have suggested that when the shear­

flexibility parameter Il is > 0.025 a frame analysis should include the 

effect of the members' shear deformation. To confirm this as the 

limiting value further frame problems, covering the range of practical 

member arrangements and loading situations, should be analysed 

using the sframe analysis tool. 
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Appendix A Load-displacement plots 

This appendix contains the full set of 54 load-displacement plots for the 

flexural buckling tests conducted on E-column specimens of 2.7 m length. 

The plots in Figures A 1 to A54 are given in order of column types WU1 04 to 

WU112. For each of the nine column types there are six specimen plots. In 

the plots there are two load-displacement curves for the minor axis and axial 

shortening deflections. All plots have the same scale on their lateral 

displacement axis (± 15 mm), but the load scale, in kN, changes. The upper 

limit on load depends on the resistance of the column type. A 9 mm 

(lenght/300) displacement is given for a failure criterion, by the dashed 

vertical lines for both the positive and negative directions of mid-height lateral 

displacement. 



I-+-minor-axis lateral ....-axial I 
80 -----------------------------------------------------------------------------------

70 -~ 60 -"C 
~ 50 

§ 40 
'0 
(/) 

~ 30 
Co 

~ 20 
o 

10 

o ~~~~~~~~~~~~~~~~~~ 
-15 -10 -5 o 5 10 15 

Displacement (mm) 

Figure A1. Load-displacement curves for WU104 specimen 1. 
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Figure A2. Load-displacement curves for WU1 04 specimen 2 
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Figure A3. Load-displacement curves for WU1 04 specimen 3. 
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Figure A4. Load-displacement curves for WU1 04 specimen 4. 
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Figure A6. Load-displacement curves for WU104 specimen 6. 
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Figure A 13, Load-displacement curves for WU1 06 specimen 1. 
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Figure A 14. Load-displacement curves for WU106 specimen 2. 
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Figure A15. Load-displacement curves for WU106 specimen 3. 
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Figure A 18. Load-displacement curves for WU1 06 specimen 6. 
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Figure A22. Load-displacement curves for WU1 07 specimen 4. 
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Figure A26. Load-displacement curves for WU1 08 specimen 2. 
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Figure A42. Load-displacement curves for WUll 0 specimen 6. 
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Figure A44. Load-displacement curves for WU111 specimen 2. 
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Figure A47. Load-displacement curves for WU111 specimen 5. 
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Figure A48. Load-displacement curves for WU111 specimen 6. 
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Figure A49. Load-displacement curves for WU112 specimen 1. 
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Figure A50. Load-displacement curves for WU112 specimen 2. 
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Figure A52. Load-displacement curves for WU112 specimen 4. 
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Appendix 8 Modified stability functions 

In this appendix the development of shear flexible stability functions, which 

use in the stiffness matrix method of analysis of Chapters 10 to 12 is 

provided. 

B.1 i and c in term of fPl function 

Equations. (10.13) and (10.14) for the shear-flexible stiffness factor sand 

the shear-flexible carry-over factor care AI-Sarraf (1986) 

_ a(l- 2,Ba cot2a) 
S = ---.....--'-----'-

tan a - ,Ba 
(81) 

_ 2,Ba - sin 2a 
c=-~----

sin 2a - 2,Ba cos 2a 
(82) 

where a = 0.51t'# ,,B is the shear correction factor, and p non-dimensional 

critical load parameter given by p = p in which p = ~ and J.L = ,BPE ., 
l-pp PE GA 

First we shall rewrite s in term of the rpl function, which isa cot a . 8y 

multiplying and dividing Equation (81) by cot a we have 

_ a(l- 2,Ba cot2a) cota s= ._-
tan a -d/3 cot a 

8y substitution for (a cot a) in Equation (83) by ~ gives 

_ ~(1-2,Bacot2a) 
S = ';"':"";'--=---=---'-

1- /3rpl 

= (~ -2,Ba~ cot2a) 
1-/3(A 

(83) 

(84) 

(85) 



· . _ I-tan2 a 
8y substitution for cot 2a = in Equation (85) we have 

2tana 

fjJ _2dP~(I-tan2 aJ 
_ 1 1 2tana 
s=------~=---~ 

1- Pepl 

8utting cot a = ~ into Equation (86) yields 
tan a 

~ -2parp [cota .(1- 1 )] 
1 1 2 cot 2 a 

- 1-Pepl 

= ~ _p~2 +pa2 
1- Pepl 

(86) 

(87) 

(88) 

(89) 

(810) 

Secondly we shall rewrite c in term of the ~ function. 8y dividing all the 

terms in Equation (82) by sin 2a we have 

2pa _ sin2a 
sin2a sin2a = -==:.---:?-.;;.;;.;...;;;;=-::-:~ 

sin2a _ 2pacos2a 
sin2a sin2a 

Substitution for sin2a = 2sina cos a in Equation (811) lead to 

2pa ----!...---- -1 
= 2sinacosa 

1-2pacot2a 

(811) 

(812) 



Which can be rearranged as follows 

_ pacsc2 a-I 
C = -.!----,-----,-

1_2pa(l-tan
2 aJ 

2tana 

(0- 2 - -) 1 \}la csc a - cot a ---= 
_ cot a 

- 1-2pa. cot a (1- 1 ) 
2 cot2 a 

[pa{cot2 a +1)-cota]~ 
cot a 

=-----~----~~~ 

I-P~(I- 1 _) 
cot2a 

pa {cot2 a + 1)-1 
_ cota 
- - pa 

1- Pf!Jl +--= 
cot a 

pacota + pa -1 
cot a 

=-----~~-

I-P~ + pa 
cot a 

Substitution for ~ = a cot a and simplifying we get 

_ p~2+pa2_~ 
- f!J1 - Pf!J/ + pa 2 

By multiplying Equation (B 18) by 1-P"it and rearranging we will get 

(B13) 

(B14) 

(B15) 

(B16) 

(B17) 

(B18) 

(B19) 

(B20) 

(B21) 



B.2 Developing of the other four shear flexible stability fPj functions 

By using a similar expression to that presented by Meagher (1999) for the 

shear stiff case, the shear flexible ~ is given by 

;; _ s(l+c) 
'f'2 -

6 
(B22) 

Substituting for sand c the expressions given by Equations (B10) and (B21) 

respectively we obtain 

(B23) 

(B24) 

(B25) 

(B26) 

By using a similar expression to that presented by Meagher (1999) for the 

shear stiff case, the shear flexible ~ is given by 

(B27) 

Substituting s we obtain 

(828) 

(B29) 



(830) 

(831) 

As previously for "i2 and ~ we use the shear stiff case given Meagher (1999) 

to write the shear flexible "i4 as 

Substitution for sand c, followed by rearranging 

1 (- -) = - 3fPz-t/J,. 
2 

":i _ 3rjJ2 - rjJ1 
'1'4 -

2 

Finally, the fifth shear flexible ~ function is given by 

8y substituting for sand c it can be shown that this function is 

(832) 

(833) 

(834) 

(835) 

(836) 

(837) 

(838) 

(839) 



(840) 

(841) 

(842) 

(843) 

The five "i functions are used in the element stiffness matrix in Equation 

(10.24) and their values are calculated from ~ = acota. According to 

Livesly (1956) the solution for ~ function is given by 

(844) 

in which j5 as defined before and aj's are 

al = 1.57973627 

az = 0.15858587 

a3 = 0.02748899 

a4 = 0.00547590 

as = 0.00115281 

a6 = 0.00024908 

a7 = 0.00005452 



Appendix C Guide for using sframe program to analysis 

plane frames of shear flexible members 

The modified version of the program sframe described in Chapter 10 uses 

the matrix stiffness method to analysis and predicts the elastic critical load for 

a plane frame structure. The steps required for running the program are 

detailed in this Appendix. 

C.1 How to use the sframe program 

The first step to use sframe program is to compile the source code file 

sframe.c to have the executable file, which we shall name sframe. This is 

accomplished through the Unix command 

cc -0 sframe sframe.c -Im 

After compiling the executable version will be generated and saved in the file 

named sframe, which appears in the compilation command line before the 

source code file name (Le. before sframe.c). The second step is to construct 

a data file, with suitable file name and having extension .dat (e.g. 

Example 1.dan using any text editor program. Then the following Unix 

command is to be used for performing the analysis task, with multi options: 

sframe -s -n -q -I{f} -d{na} example 1.da1 

The options on execution command line are: 

-s to include the effect of semi-rigid connections. 

-n to include the shear flexible stability functions that allow for P-A analysis 

-q to include the shear flexibility the members 

-I{f} for load factor, it multiplies the applied loads by a number f (e.g. 2, 3, ... ) 



-d{na} is for displaying the n iterative results, in which n is an integer number 

and a is to display results of all iterations. The default for these options, is for 

the rigid frame analysis with load factor is unit, and so the command line 

would be. 

By using the execution command given above, the results will be displayed 

on the terminal screen. For storing the results in an output file e.g. with name 

example1.out, the following Unix command should be used. 

sframe example1.dat> example1.out 

Note that any combination of the five run options can be chosen. 

C.2 Preparation of the data file 

The data file consists of six main parts and these are 

• Basic frame specification data. 

• Element properties. 

• Displacement boundary conditions. 

• Applied Loads. 

• Tolerances for moment and maximum number of iteration. 

• Semi-rigid connection M - rp. 

C.2.1 Basic frame specification data for AI-Sarraf (1979) frame example 

For the AI-Sarraf (1979) frame example given in Section 11.3 and shown in 

Figure C1 the formatted of the data file is presented in Tables C1 to C6. It 

should be noted that the tables' headers are for facilitating the construction of 

the data file and not part of its format. In Figure C1 the single bay two storey 



frame problem is given with dimensions, jOint load, and element and jOint 

numbering. This information will appear in the data file to be described. 

The basic frame specification data gives general information on the frame 

structure. It includes the number of elements, of jOints, of restraints, of loads 

at jOints and of load between jOints as presented in Table C.1. 

Table C.1 Basic Frame Specification for AI-Sarraf (1979) example 

No. of Elements No. of Joints 
No. of No. of Loads at No. of Loads 

Restraints Joints Between Joints 
6 6 6 3 0 

C.2.2 Element properties 

Table C.2 gives information for member length, inclination of element, area of 

cross-section, second moment of area about axis of flexure, elastic modulus, 

shear modulus and shear coefficient. To identify the element the node 

numbers at left and right hand ends are given. 

Table C.2 Element Properties 

Element Joint Type Length of Inclination Area of 2'''' Shear Joints No. Moment Elastic Shear 
End End End End Element, of Element, Section, of Area, Modulus Modulus Coefficia 

1 2 1 2 
mm degrea Mm2 

mm4 nt 

1 2 0 0 400 90 56.31 4128 2000 0 0 
2 3 0 0 400 90 56.31 4128 2000 0 0 
3 4 0 0 400 0 56.31 4128 2000 0 0 
4 5 0 0 400 270 56.31 4128 2000 0 0 
5 6 0 0 400 270 56.31 4128 2000 0 0 
2 5 0 0 400 0 56.31 4128 2000 0 0 

Each line of the data is for one element. If the element end is a pinned joint, 

then a number 1 should be assigned at corresponding cell for jOint type 

columns, otherwise O. 



C.2.3 Boundary Conditions 

For each jOint, there are three displacement components corresponding to 

the three degree of freedoms. All joints are numbered for displacements in 

the X, Y and e directions (see Figure C1) in the frame's global coordinate 

system. Numbers in Table C3 correspond to the restraints at each joint. For 

example, if a frame is fully restrained at joints 1 and 6 the 1, 2 and 3 would is 

entered for joint 1 and 16, 17 and 18 for joint 6. This mathematically given by 

3n - 2, 3n -1 and 3n, where n is the number assigned to the element. 

Table C.3 Boundary Conditions 

Joint No. 1 6 

Restraint 
X I y I e X I y I e 
1 I 2 I 3 16 I 17 I 18 

C.2.4 Applied Load 

The loads data specification is of two parts, loads at jOints and loads between 

jOints. For load applied at the joints, the code for the type of load is 1 for 

distributed load, 2 for vertical concentrated load and 3 for horizontal 

concentrated load. Whereas when the load is applied between jOints, then 

the type of load, 1 is assigned for a distributed load, 2 for a concentrated 

vertical load and 3 for a concentrated horizontal load. Table C.4 gives the 

load data acting on members 



Table C.4 Applied Load 

1 2 
Load at Joints Load Between Joints 

Load 
Displacement Code 

Load Distance 
No. of Type of load 

Value X y e value from end1 element Dis. I V I H 
1 2 3 applied 1 I 2 l 3 

0.01 7 

-5.34 8 

-5.34 11 

C.2.5 Tolerances of Moment and Maximum Number of Iteration 

The tolerance in moment at each end of the element is the accuracy of the 

computation when analysis takes account for P-L1 effect and/or the semi-rigid 

connections. After each iteration process the calculated moments are 

compared with previous iteration results. If the difference is smaller than the 

tolerance value, the analysis will terminate, otherwise the iteration process 

continues. The maximum number of iterations is used to limit the program 

running time when convergence is not achieved. For AI-Sarraf frame 

example the tolerance and maximum number of iterations are listed in Table 

c.s. 

Table C.5 Tolerances of Moment and Maximum Number of Iteration 

Tolerances of moment, kN/m Maximum number of iteration 
0.001 300 

C.2.6 Semi-Rigid Connection 

The semi-rigid connection data starts with a caption line, followed by the 

number of different semi-rigid connection types, and their moment-rotation 



curves data. The caption line is a signal to the program that the informations 

following are for semi-rigid connections. Table C.6 presented the format of 

information's need to be provided for semi-rigid analysis option. 

Table C.S Semi-Rigid Connection 

Caption line 
Number of semi-rigid Moment rotation Connection type at 

connection type curve data each member end 
Sem i-rigid yes 

The caption line goes at beginning of the semi-rigid connection data entry 

and it simply states that the following data are for the semi-rigid connections. 

Number of semi-rigid connection type either 1 or 2 as the program allows two 

types of semi-rigid connection, which are beam-to-column type 1, and 

column-to-base connections type 2. 

Moment-rotation curve provides the actual connection behavior as physically 

conducted. In the sframe program these information are handled in piecewise 

linear discretise manner. For each type of the semi-rigid connection, its M-r/J 

curve is defined by moment and rotation values at different points along the 

curve. The units of moment should be in consistent set of the units used for 

the element properties and the load, and the rotation r/J should be in radian. 

Connection type at each member end is to account for the connection type 

for each element ends. For semi-rigid type either 1 or 2, but for fixed or 

pinned end, the connection type is 0 in Table C6. 
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Figure C1: AI-Sarraf (1979) frame example 
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