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 

Abstract— Among all SiC polytypes, only 3C-SiC has a cubic 

structure and can be hetero-epitaxial grown on large area Si 

substrate, thus providing an alternative choice for fabricating 

cheap wide bandgap power devices. Here we present a low 

resistivity (~3x10-5 Ω.cm2) Ohmic contact formed by directly 

depositing a Ti/Ni metal stack on n-type 3C-SiC without any extra 

annealing. For the first time, 3C-SiC lateral MOSFETs with 

as-deposited Ohmic contacts were fabricated, and it turned out 

not only the Ohmic contact is free from any interface voids, but 

also a higher field-effect mobility value (~80 cm2/V.s) was 

achieved compared with the annealed devices. 

 

Index Terms—3C-SiC, channel mobility, MOSFET, Ohmic 

contact, reliability 

I. INTRODUCTION 

IDE band gap (WBG) semiconductors are considered as 

the materials for next generation electronics, particularly 

in the harsh environment and power electronics area. It is 

generally known that forming Ohmic contact to WBG 

semiconductors require not only a highly doped surface region, 

but also a relative high temperature (around 1000 °C) 

post-metallisation annealing (PMA) step. The PMA step 

generates an intermediate semiconductor layer (silicide or 

carbide) with narrower bandgap to reduce the Schottky barrier 

height (SBH) as well as creating more free carriers at the 

contact interface [1]. This additional step increases the 

fabrication thermal budget and complicates the WBG 

semiconductor applications in technologies which are sensitive 

to heat treatments, such as high-k, organic semiconductors, 

semiconductor heterojunctions etc. In this letter, we 

demonstrate how 3C-SiC MOSFETs fabrication can benefit 

from the as-deposited Ohmic contacts, with reliability and 

electrical performance both improved compared with a 

conventional PMA process.  

The most studied metals for n-type 3C-SiC Ohmic contacts 

are Al [2-4], Ti [3-5] and Ni [2, 4, 6, 7], and the resultant ρc 
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values covered a huge range from 10
-7

 to 10
-1

 Ω.cm
2
. Room 

temperature Ti and Al contacts were reported on highly doped 

(3x10
20

 cm
-3

) n-type 3C-SiC back in 1995 [3], although with a 

considerable resistivity spread of over 6x10
-5

 Ω.cm
-2

. The 

literature shows that Al contacts generally have the lowest ρc 

value, which can be explained by the negligible SBH between 

Al and 3C-SiC (~0 eV) compared with Ti (0.4 eV) and Ni (0.55 

eV) [4]. However, both Al and Ti easily get oxidised in air and 

Al has a melting point below 600 °C. On the other hand, Ni has 

a slow oxidation rate at room temperature and very high 

melting point. Although reacting with SiC above 500 °C, the 

silicide products help to reduce the interface SBH, leading to a 

lower ρc value. As a result, Ni has been the mostly used contact 

metal for n-type SiC and is applied for the study here. 

II. DEVICE FABRICATION 

The material used in this work was a 10 μm thick 

unintentionally doped (<1x10
16 

cm
-3

) 3C-SiC film epitaxial 

grown on a 4-inch Si(100) substrate by NOVASiC. Nitrogen 

was implanted for creating high impurity concentration 

regions. A post-implantation annealing (PIA) at 1375 °C (Si 

melting point 1412 °C [8]) for 1 hour was carried out to activate 

the dopants, no surface capping layer was used. The samples 

were then all solvent cleaned, followed by a standard RCA 

cleaning procedure. Conventional transmission line method 

(TLM) structures with 1 μm mesa were patterned using 

photolithography and ICP etcher. 100 nm Ni was deposited as 

the contact metal in an e-beam evaporator at a low pressure of 

2x10
-7 

Torr with a thin Ti interlayer (20 nm) to improve the 

contact adhesion. Lateral n-channel MOSFETs were fabricated 

using a double implantation scheme, P base (~1x10
18

 cm
-3

, Al) 

for channel and N+ (~5x10
20

 cm
-3

, N) for source/drain. The 

same PIA process used before was applied to activate both 

dopants. Prior to gate oxidation, the MOSFET samples went 

through an extra piranha clean (H2SO4:H2O2=3:1). The gate 

oxide was thermally grown at 1300 °C (O2 1 L/min), after that 

source/drain contacts were fabricated with as-deposited Ti/Ni 

contacts. For comparison purposes, devices with a PMA step (1 

min at 1000 °C) were also fabricated. 500 nm Al was deposited 

on the channel region to form the gate contact. The final 

MOSFET has a channel length of 150 μm and width of 290 μm.  
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III. RESULTS AND DISCUSSIONS 

A. Non-annealed Ohmic contacts to 3C-SiC 

 

 
 

Ohmic behaviour was obtained for the as-deposited Ti/Ni 

contacts on the 5x10
20

 cm
-3

 implanted 3C-SiC films. The room 

temperature average ρc of ~3x10
-5

 Ω.cm
2
 is higher than the 

annealed one (~9x10
-6

 Ω.cm
2
), but still low enough for power 

device fabrications. Here the average is taken from 4 TLM 

structures fabricated on each sample with little spread (as 

shown later in Fig. 2b) and performed using standard 

cleanroom deposition technology, which is an improvement 

from [3]. The voids (labelled in Fig.1a) are silicon vacancies 

formed by severe silicon diffusion into nickel, known as 

Kirkendall effect [9]. Whereas they do not affect much the 

contact electrical performance [10], they were known to 

degrade the contact reliability [11]. From Fig. 1b and 1c, it can 

be seen that without the SiC-Ni reaction, the contact interface is 

much more abrupt and the interface voids are not present. Fig. 

1b shows that the 5x10
20 

cm
-3

 implantation significantly 

damaged the 3C-SiC top layer. This would only occur in the 

Ohmic contact region and should not be a concern for most 

device fabrications, yet it is worth trying lowering the 

implantation dose and see if the Ohmic behaviour can be 

preserved. The same fabrication procedure (without PMA) was 

carried out on a 5x10
19

 cm
-3

 implanted sample, and again 

Ohmic behaviour was obtained, whereas ρc now increased to 

~7x10
-4

 Ω.cm
2
. Further reducing the implantation level to 

~1x10
19

 cm
-3

 led to a rectifying contact, which became Ohmic 

after the PMA. 

Metallic contacts were known to be formed when metal was 

deposited onto a semiconductor surface with high density 

dislocations, which can then shunt the space-charge layer and 

make field emission the dominant mechanism [12, 13] 

regardless of the semiconductor doping levels. Considering the 

3C-SiC layer used in this study was grown on Si thus contains a 

large amount of defects, they may have helped towards a lower 

contact resistance. However, the ‘metal shunts’ requires the 

dissolution and recrystallization of semiconductor in metal, 

namely additional heat treatment [14]. We believe the 

as-deposited Ohmic contacts were obtained more likely by the 

formation of an impurity band caused by the excessive doping. 

In our previous study [15], the activation energy Ea of nitrogen 

for 1x10
19 

cm
-3

 implanted sample is approaching zero (15 

meV). It is reasonable to assume that Ea becomes zero for 

5x10
19 

cm
-3

 and 5x10
20 

cm
-3

 samples and they behave as 

degenerated semiconductors [16]. The increasing sheet 

resistance with temperature in Fig. 2a also favours this idea. 

 

 
 

All the Ohmic contacts show very low temperature 

dependence from 25 °C up to 225 °C as shown in Fig. 2b. 

As-deposited contacts on the 5x10
20 

cm
-3

 and 5x10
19 

cm
-3

 

implanted samples readily behave as temperature independent, 

which means the PMA (similarly “metal shunts”) did not play a 

big role in this. Also, the 1x10
19 

cm
-3

 doped sample has 

as-deposited rectifying behaviour, therefore not degenerated by 

the implantation process, whereas after PMA the ρc is also 

thermally stable, namely ruling out the degeneracy being the 

main cause. With the 3C-SiC electron effective mass of 

conductivity 0.32m0 [17], dielectric constant 9.72 [18] known, 

the characteristic energy E00/kT for the non-degenerated 1x10
19

 

cm
-3

 doped 3C-SiC/metal interface is calculated [19] to be ≈ 

1.3, which means the contact interface should be dominated by 

thermionic-field emission, and the ρc value should decrease 

considerably with increasing temperature. This is, however, 

conflicting with the Fig. 2b curves, which, if anything, appear 

more field-emission dominated. It was recently reported [20] 

that the metal/semiconductor interface band bending can be 

caused by dopant-induced dipole field between the interface 

and the dopant site. We then believe the thermal stable ρc is due 

to the Schottky barrier elimination caused by the interface band 

bending.  

B. 3C-SiC MOSFETs without Ohmic contact annealing 

Apart from the improved contact interface which will lead to 

higher reliability, as-deposited Ohmic contacts may also 

benefit device fabrications where annealing can degrade other 

key features such as MOS and Schottky contacts [3]. To 

confirm this, lateral MOSFETs were fabricated as described in 

section II. All devices have typical forward features with well 

observed gate effects shown in Fig. 3a. Device without a PMA 

step clearly demonstrates higher forward current under all gate 

biases. Since the annealed contacts have lower resistance, the 

resultant higher total on-resistance of PMA processed devices 

must come from the channel. 

 

 
Fig. 1. TEM cross section views of the fabricated contact interfaces, (a) 5x1020 

cm-3 after 1 min 1000 °C PMA, (b)  5x1020 cm-3 as-deposited, and (c) 5x1019 

cm-3  as-deposited 

 

  
Fig. 2. Temperature dependence of (a) sheet resitance and (b) contact 

resistivity extracted from the TLMs 
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The device transfer curve (Ids
0.5 

versus Vg) is shown in Fig. 

3b and the leakage current observed in device off state (Vg<-2 

V) should be caused by the stacking faults, which were 

identified as the main origin of leakage currents in 3C-SiC 

devices and can be greatly reduced by latest advanced growth 

techniques [21, 22]. The threshold voltages Vth extracted from 

Fig. 3b are ~-0.5V and ~2.5V for as-deposited and PMA 

processed devices, respectively. The commonly observed [21, 

23, 24] negative Vth of 3C-SiC MOS devices can be explained 

by the carbon-cluster interface traps model [25], which 

describes that due to the smaller band gap, only donor-like 

interface states (carbon clusters/dangling bonds) are present at 

the 3C-SiC/SiO2 interface. Consequently, as-grown dry 

oxidized 3C-SiC MOS interface is positively charged and 

demonstrates a negative Vth [26], which can be shifted to 

positive if wet gate oxidation/post-oxidation annealing is 

applied [27] since wet oxidation is known to induce negative 

charges near the SiC/SiO2 interface [28, 29]. Accordingly, the 

positive Vth shift of the PMA processed device observed in Fig. 

3b should be caused by an additional build-up of negative 

charges at/near the MOS interface rather than a reduction of the 

donor-like interface states, since otherwise it would have 

improved the device conduction performance. These facts 

agree well with the devices subthreshold features shown in Fig. 

4a. The subthreshold swing S estimated from drain current of 

10
-8

 to 10
-7

 A are ~1.7 V/dec and ~3.3 V/dec for as-deposited 

and PMA processed devices, respectively. This is much higher 

than the ideal value (~0.06 V/dec for a MOSFET) and is caused 

by the unoptimised device parameters (i.e. oxide thickness ~92 

nm and channel doping ~1x10
18

 cm
-3

), yet a comparison shows 

that an, almost 50% reduction of the subthreshold swing can be 

achieved by using as-deposited Ohmic contacts. The interface 

trap densities Dit can be estimated from S [30] with the oxide 

thickness 92 nm known. For the weak inversion region, Cb was 

assumed to be zero, which caused the overestimation of Dit, and 

the values are determined as ~6.6x10
12

 cm
-2

eV
-1

 for 

as-deposited devices and ~1.3x10
13

 cm
-2

eV
-1

 for PMA devices. 

The 10
13

 order Dit values were previously reported for dry 

oxidised 3C-SiC MOS capacitors [26, 31]. Here lateral MOS 

capacitors were also fabricated following the same gate 

oxidation process as MOSFETs and Dit is found to be below 

1x10
12

 cm
-2

eV
-1

 close to the conduction band as seen in Fig. 4b, 

determined by both high-low and conductance methods. This is 

one magnitude lower than the values [32, 33] for 4H-SiC 

without further post oxidation annealing. The lower Dit value 

for devices with as-deposited Ohmic contacts confirms the 

PMA step leads to additional interface traps (schematic 

diagram shown in Fig. 5a) as previously reported for Si MOS 

devices, which was mostly explained by the mechanical stress 

induced at the MOS interface by the rapid temperature change 

and thermal expansion coefficients difference [34-36]. The 

channel field-effect mobility are calculated from the MOSFET 

trans-conductance and shown in Fig. 5b. Clearly the extra PMA 

step results in a lower peak channel mobility value (~70 

cm
2
/V.s) than the as-deposited case (~80 cm

2
/V.s). 

 

 
 

 
 

In power MOSFET designs, p-body and source are shorted 

by sharing the contact. Alloyed Ni is commonly used for both 

in 4H-SiC power devices [37, 38], similarity we believe the 

as-deposited Ti/Ni bilayer proposed here can also be integrated. 

The low thermal budget of the process demonstrated in this 

work opens new doors to the application of SiC transistors with 

other low temperature technologies, including high k 

dielectrics atomic layer deposited (e.g. Al2O3 or HfO2) with 

relative low temperature of growth, ferroelectric polymers a 

classical example being polyvinylidene fluoride, organic 

semiconductors such as polythiophenes that can become 

conducting owing to their conjugated π-orbitals, fullerenes or 

carbon nanotubes, organic trihalide perovskites, and classic 

heterojunction or wafer bonded devices. 

 
Fig. 3. (a) Forward conducting curves and (b) transfer curves (Ids

0.5 vs Vgs) for 

as-deposited and PMA processed MOSFET devices 

 

 
Fig. 4. (a) Subthreshould characteristics (Vd=0.1 V) of MOSFETs fabricated 
with as-deposited and PMA ohmic contacts and (b) Dit of capacitors 

fabricated on n-type 3C-SiC epilayer with same gate oxidaiotn as MOSFET. 

 
Fig. 5. (a) Schematic diagram of the inteface traps distribution for various 

SiC polytypes and (b) field-effect mobility of farbricated MOSFETs. 



EDL-2016-06-0981.R1 

 

REFERENCES 

 
[1] Z. Wang, S. Tsukimoto, M. Saito, and Y. Ikuhara, "Introducing Ohmic 

Contacts into Silicon Carbide Technology," in Silicon Carbide - 

Materials, Processing and Applications in Electronic Devices, M. 
Mukherjee, Ed., InTech, pp. 283-308, 2011. DOI: 10.5772/20481 

[2] C. Jacob, P. Pirouz, H. I. Kuo, and M. Mehregany, "High Temperature 

Ohmic Contacts to 3C–Silicon Carbide Films," Solid-State Electronics, 
vol. 42, pp. 2329-2334, 1998. DOI: 10.1016/S0038-1101(98)00234-2 

[3] A. Moki, P. Shenoy, D. Alok, B. J. Baliga, K. Wongchotigul, and M. G. 

Spencer, "Low Resistivity As-deposited Ohmic Contacts to 3C-SiC," 
Journal of Electronic Materials, vol. 24, pp. 315-318, 1995. DOI: 

10.1007/BF02659693 
[4] M. Satoh, E. Taguchi, Y. Suzuki, and S. Nagata, "Evaluation of Specific 

Contact Resistance of Al, Ti, and Ni Contacts to N Ion Implanted 3C-SiC 

(100)," Materials Science Forum, vol. 556-557, pp. 705-708, 2007. DOI: 
10.4028/www.scientific.net/MSF.556-557.705 

[5] J. S. Shor, R. A. Weber, L. Provost, D. Goldstein, and A. D. Kurtz, "High 

Temperature Ohmic Contact Metallizations for N‐Type 3C‐SiC," Journal 
of the Electrochemical Society, vol. 141, pp. 579-581, 1994. DOI: 

10.1149/1.2054771 
[6] J. Wan, M. A. Capano, and M. R. Melloch, "Formation of Low Resistivity 

Ohmic Contacts to N-type 3C-SiC," Solid-State Electronics, vol. 46, pp. 

1227-1230, 2002. DOI: 10.1016/S0038-1101(02)00013-8 
[7] A. E. Bazin, J. F. Michaud, C. Autret-Lambert, F. Cayrel, T. Chassagne, 

M. Portail, M. Zielinski, E. Collard, D. Alquier, "Ti–Ni Ohmic Contacts 

on 3C–SiC Doped by Nitrogen or Phosphorus Implantation," Materials 
Science and Engineering: B, vol. 171, pp. 120-126, 2010. DOI: 

10.1016/j.mseb.2010.03.084 

[8] G. L. Pearson and R. G. Treuting, "Surface Melt Patterns on Silicon," 
Acta Crystallographica, vol. 11, pp. 397-399, 1958. DOI: 

10.1107/S0365110X58001080 

[9] T. Kirkendall, L. Thomassen, and C. Upthegrove, "Rates of Diffusion of 

Copper and Zinc in Alpha Brass," AIME TRANS, vol. 133, pp. 186-203, 

1939. 

[10] J. Biscarrat, X. Song, J. F. Michaud, F. Cayrel, M. Portail, M. Zielinski, T. 
Chassagne, E. Collard, D. Alquier, "Ti Thickness Influence for Ti/Ni 

Ohmic Contacts on N-type 3C-SiC," Materials Science Forum, vol. 711, 
pp. 179-183, 2012. DOI: 10.4028/www.scientific.net/MSF.711.179 

[11] T. Marinova, A. Kakanakova-Georgieva, V. Krastev, R. Kakanakov, M. 

Neshev, L. Kassamakova, O. Noblanc, C. Arnodo, S. Cassette, C. 
Brylinski, B. Pecz, G. Radnoczi, Gy. Vincze, "Nickel Based Ohmic 

Contacts on SiC," Materials Science and Engineering: B, vol. 46, pp. 

223-226, 1997. DOI: 10.1016/S0921-5107(96)01981-2 
[12] T. V. Blank, Y. A. Goldberg, and E. A. Posse, "Flow of The Current 

Along Metallic Shunts in Ohmic Contacts to Wide-Gap III–V 

Semiconductors," Semiconductors, vol. 43, pp. 1164-1169, 2009. DOI: 
10.1134/S1063782609090115 

[13] F. Iucolano, G. Greco, and F. Roccaforte, "Correlation between 

Microstructure and Temperature Dependent Electrical Behavior of 

Annealed Ti/Al/Ni/Au Ohmic Contacts to AlGaN/GaN heterostructures," 

Applied Physics Letters, vol. 103, p. 201604, 2013. DOI: 

10.1063/1.4828839 
[14] T. V. Blank and Y. A. Gol’dberg, "Mechanisms of Current Flow in 

Metal-Semiconductor Ohmic Contacts," Semiconductors, vol. 41, pp. 

1263-1292, 2007. DOI: 10.1134/S1063782607110012 
[15] F. Li, Y. Sharma, V. Shah, M. Jennings, A. Pérez-Tomás, M. Myronov, 

C. Fisher, D. Leadley, P. Mawby, "Electrical Activation of Nitrogen 

Heavily Implanted 3C-SiC(100)," Applied Surface Science, vol. 353, pp. 
958-963, 2015. DOI: 10.1016/j.apsusc.2015.06.169 

[16] M. Vivona, G. Greco, F. Giannazzo, R. Lo. Nigro, S. Rascunà, M. Saggio 

and F. Roccaforte, "Thermal Stability of The Current Transport 
Mechanisms in Ni-based Ohmic Contacts on N- and P-implanted 

4H-SiC," Semiconductor Science and Technology, vol. 29, p. 075018, 

2014. DOI: 10.1088/0268-1242/29/7/075018 
[17] Y. Goldberg, M. Levinshtein and S. Rumyantsev, “Silicon Carbide (SiC)” 

in Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, 

SiC, SiGe. John Wiley & Sons, pp. 93-149, 2001. 
[18] L. Patrick and W. J. Choyke, "Static Dielectric Constant of SiC," Physical 

Review B, vol. 2, pp. 2255-2256, 1970. DOI: 10.1103/PhysRevB.2.2255 

[19] A. Y. C. Yu, "Electron Tunnelling and Contact Resistance of 
Metal-Silicon Contact Barriers," Solid-State Electronics, vol. 13, pp. 

239-247, 1970. DOI: 10.1016/0038-1101(70)90056-0 

[20] Y. Jiao, A. Hellman, Y. Fang, S. Gao, and M. Käll, "Schottky Barrier 

Formation and Band Bending Revealed by First Principles Calculations," 

Scientific Reports, vol. 5, p. 11374, 2015. DOI: 10.1038/srep11374 

[21] H. Nagasawa, M. Abe, K. Yagi, T. Kawahara, and N. Hatta, "Fabrication 

of High Performance 3C-SiC Vertical MOSFETs by Reducing Planar 
Defects," Physica Status Solidi (b), vol. 245, pp. 1272-1280, 2008. SOI: 

10.1002/pssb.200844053 

[22] H. Nagasawa, T. Kawahara, K. Yagi, and N. Hatta, "Propagation of 
Stacking Faults in 3C-SiC," Materials Science Forum, vol. 679-680, pp. 

282-285, 2011. DOI: 10.4028/www.scientific.net/MSF.679-680.282 

[23] L. K. Kiong, Y. Ishida, T. Ohshima, K. Kojima, Y. Tanaka, T. Takahashi, 
H. Okumura, K. Arai, and T. Kamiya, "N-channel MOSFETs Fabricated 

on Homoepitaxy-Grown 3C-SiC Films," IEEE Electron Device Letters, 

vol. 24, pp. 466-468, 2003. DOI: 10.1109/LED.2003.815006 
[24] H. Uchida, A. Minami, T. Sakata, H. Nagasawa, and M. Kobayashi, 

"High Temperature Performance of 3C-SiC MOSFETs with High 

Channel Mobility," Materials Science Forum, vol. 717-720, pp. 
1109-1112, 2012. DOI: 10.4028/www.scientific.net/MSF.717-720.1109 

[25] V. V. Afanas' ev, F. Ciobanu, S. Dimitrijev, G. Pensl, and A. Stesmans, 

"SiC/SiO2 interface states: properties and models," Materials Science 
Forum, vol. 483-485, pp. 563-568, 2005. DOI: 

10.4028/www.scientific.net/MSF.483-485.563 

[26] R. Esteve, A. Schoner, S. A. Reshanov, C. M. Zetterling, and H. 
Nagasawa, "Comparative Study of Thermally Grown Oxides on N-type 

Free Standing 3C-SiC (001)," Journal of Applied Physics, vol. 106, pp. 

044513, 2009. DOI: 10.1063/1.3204642 
[27] M. Kobayashi, H. Uchida, A. Minami, T. Sakata, R. Esteve, and A. 

Schöner, "3C-SiC MOSFET with High Channel Mobility and CVD Gate 
Oxide," Materials Science Forum, vol. 679-680, pp. 645-648, 2011. DOI: 

10.4028/www.scientific.net/MSF.679-680.645 

[28] H. Yano, F. Katafuchi, T. Kimoto, and H. Matsunami, "Effects of Wet 
Oxidation/Anneal on Interface Properties of Thermally Oxidized 

SiO2/SiC MOS System and MOSFET's," IEEE Transactions on Electron 

Devices, vol. 46, pp. 504-510, 1999. DOI: 10.1109/16.748869 

[29] Y. Ebihara, K. Chokawa, S. Kato, K. Kamiya, and K. Shiraishi, "Intrinsic 

Origin of Negative Fixed Charge in Wet Oxidation for Silicon Carbide," 

Applied Physics Letters, vol. 100, p. 212110, 2012. DOI: 
10.1063/1.4722782 

[30] D. K. Schroder, "Oxide and Interface Trapped Charges, Oxide 

Thickness", in Semiconductor Material and Device Characterization, 3rd 
Edition, John Wiley & Sons, pp. 359-361, 2006. DOI: 

10.1002/0471749095 

[31] M. Bakowski, A. Schöner, P. Ericsson, H. Strömberg, H. Nagasawa, and 
M. Abe, "Development of 3C-SiC MOSFETs," Journal of 

Telecommunication and Information Technology, vol. 2, pp. 49-56, 2007. 

DOI: bwmeta1.element.baztech-article-BAT8-0008-0010 
[32] G. Y. Chung, J. R. Williams, C. C. Tin, K. McDonald, D. Farmer, R. K. 

Chanana, S.T. Pantelides, O.W. Holland, L.C. Feldman, "Interface State 

Density and Channel Mobility for 4H-SiC MOSFETs with Nitrogen 
Passivation," Applied Surface Science, vol. 184, pp. 399-403, 2001. DOI: 

10.1016/S0169-4332(01)00684-5 

[33] P. Zhao, Rusli, Y. Liu, C. C. Tin, W. G. Zhu, and J. Ahn, "Investigation of 
4H-SiC MOS Capacitors Annealed in Diluted N2O at Different 

Temperatures," Microelectronic Engineering, vol. 83, pp. 61-64, 2006. 

DOI: 10.1016/j.mee.2005.10.026 
[34] M. H. Jung, K. S. Kim, and W. J. Cho, "Characterization of the Back 

Interface in Strained-Silicon-on-Insulator Channel and Enhancement of 

Electrical Properties by Heat Treatment," IEEE Electron Device Letters, 
vol. 29, pp. 1356-1359, 2008. DOI: 10.1109/LED.2008.2006412 

[35] D. C. Murray, J. C. Carter, A. G. R. Evans and J. L. Altrip, "The Inferior 

Quality of RTA MOSFET Interfaces," Journal of Physics: Condensed 
Matter, vol. 1, pp. SB219-220, 1989. DOI: 10.1088/0953-8984/1/SB/050 

[36] W. Cho and S. Lee, "Gate Depletion in WSix /Polysilicon Gate Stack and 

Effects of Phosphorus Ion Implantation," Japanese Journal of Applied 
Physics, vol. 42, p. 2615, 2003. DOI: 10.1143/JJAP.42.2615 

[37] R. Huang, Y. Tao, S. Bai, G, Chen, L. Wang, A. Liu, N. Wei, Y. Li and Z. 

Zhao, "Design and Fabrication of a 3.3 kV 4H-SiC MOSFET," Journal of 
Semiconductors, vol. 36, p. 094002, 2015. DOI: 10.1088/1674-4926 

[38] C. F. Huang, C. L. Kan, T. L. Wu, M. C. Lee, Y. Z. Liu, K. Y. Lee, F. 

Zhao, "3510V 390mΩ.cm2 4H-SiC Lateral JFET on a Semi-Insulating 
Substrate," IEEE Electron Device Letters, vol. 30, pp. 957-959, 2009. 

DOI: 10.1109/LED.2009.2027722 

 
 

 


