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Abstract
Many of the most important potential applications of Synthetic Biology will require the ability

to design and implement high performance feedback control systems that can accurately

regulate the dynamics of multiple molecular species within the cell. Here, we argue that the

use of design strategies based on combining ultrasensitive response dynamics with nega-

tive feedback represents a natural approach to this problem that fully exploits the strongly

nonlinear nature of cellular information processing. We propose that such feedback mecha-

nisms can explain the adaptive responses observed in one of the most widely studied bio-

molecular feedback systems—the yeast osmoregulatory response network. Based on our

analysis of such system, we identify strong links with a well-known branch of mathematical

systems theory from the field of Control Engineering, known as Sliding Mode Control.

These insights allow us to develop design guidelines that can inform the construction of

feedback controllers for synthetic biological systems.

Introduction
The development of appropriate design frameworks for the construction of synthetic feedback
controllers is an important open problem in Synthetic Biology that has recently begun to
attract significant attention from the Control Engineering research community [1–3]. A key
requirement for any such framework is that it is consistent with the nature of biological infor-
mation processing, in order that any resulting designs can be readily implemented via biomo-
lecular circuitry. This represents a significant challenge, since (mainly for historical reasons)
many of the implicit assumptions underlying control theory are based on consideration of
dynamical properties that arise in the context of physical, rather than biological, systems. For
example, the assumption that the dynamics of both the system to be controlled and the feed-
back controller can be well approximated by linear models is widely made in many branches of
feedback control theory. This assumption is often valid for many physical systems (from
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motors to aircraft to power networks) because these systems have been purposefully designed
by engineers to provide predominantly linear response dynamics, since this significantly sim-
plifies their analysis and control.

This contrasts strongly with the situation in many biological contexts, where evolution
often results in systems that display strongly nonlinear dynamics. A prime example of such
nonlinear dynamics is represented by the phenomenon of ultrasensitivity, in which the gain of
the system (ratio of output signal to input signal) changes from very low, to very high, and then
back to very low as the magnitude of the input signal increases. The resulting sigmoidal shape
of the system’s response (Fig 1) is a widely observed characteristic of many different biological
systems [4, 5], and can be achieved via a variety of different molecular mechanisms, including
dimerization of transcription factors [6], use of scaffolding proteins in MAPK systems [7], and
branching in bacterial phosphorylation/de-phosphorylation cycles [8]. In addition to their
nonlinear dynamics, all processes in nature are noisy. The functional roles of noise are many
and diverse [9, 10]: on the one hand, noise can be an undesired property of the process, due to
entropy-increasing effects that limit the fidelity and robustness of signaling pathways and,
then, it is crucial to control and attenuate it; on the other hand, noise can be a surprising bene-
ficial effect by increasing functional heterogeneity and thus diversity (accelerating, for instance,
the pace of evolution) and, then, it becomes important to exploit and amplify it. In the last two
decades the effects of feedback (ubiquitous in biology) on noise have been well investigated:
two seminal works suggested negative feedback as a mechanism for attenuating the effect of
noise [11, 12]. Further theoretical and experimental research has revealed a more intricate rela-
tion between negative feedback and noise, indicating that noise can be attenuated or amplified
depending on the feedback strength [13–15].

Fig 1. Steady-state input-output characteristics. Relationships for linear, Michaelian and ultrasensitive
systems.

doi:10.1371/journal.pone.0161605.g001
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Interestingly, signalling systems implementing phosphorylation-dephosphorylation cycles
in concert with negative feedback loops have been shown to exhibit adaptive characteristics, i.e.
an initial response to a persistent external stimulus eventually returns to its pre-stimulus level
[16–20]. This adaptive capability (referred to as “disturbance rejection” in control theory) is a
key requirement for many feedback control systems, since it allows the system to robustly
maintain specified levels of performance despite the inevitable presence of environmental fluc-
tuations and disturbances.

In the following, we show that a control model that combines ultrasensitive responses
with negative feedback, resulting in a control model we call ultrasensitive negative feedback
(UNF), provides a plausible explanation for the adaptive responses observed in one of the
most widely studied biomolecular feedback systems—the yeast osmoregulatory response
network [21–27]. Indeed, the yeast osmoregulation system implements the archetypical
mitogen-activated protein kinase (MAPK) pathway, as well as a two-component signaling
system, both of which control downstream gene expression. Both the two-component and
MAPK cascades have been shown theoretically and experimentally to embed ultrasensitive
dynamics [4, 5, 28–31], while gene expression dynamics are usually implemented as a Hill
function (e.g. see [27]). Moreover, the presence of ultrasensitivity has also been suggested for
the Fps1 glycerol channels determining the glycerol export rate [25, 27]. Thus, the presence
of ultrasensitivity in the yeast osmoregulation system is broadly accepted. Therefore, these
findings point to the possibility of UNF based mechanisms that allow yeast to achieve adap-
tive responses. Subsequent analysis of such controller models reveals strong links with a par-
ticular class of nonlinear feedback controllers, known as Sliding Mode controllers, whose
performance and robustness properties are well known to engineers [32–34]. Based on these
insights, we develop design guidelines that could be exploited by Synthetic Biologists to
inform the design of synthetic feedback control circuits for a wide variety of potential
applications.

Methods

Osmoregulation as a feedback control system
The osmoregulation system can be naturally abstracted as a feedback control system comprised
of two separate mechanisms that act to adjust glycerol production in order to keep the cell’s
turgor pressure and volume constant in the face of environmental changes (Fig 2): 1) the regu-
lation of the membrane protein Fps1 determining the glycerol export rate (the Fps1 channel,
blue box of Fig 2B); 2) the activation of the high osmolarity glycerol (HOG) mitogen-activated
protein kinase (MAPK) signalling and the corresponding Hog1-dependent mechanisms that
promote glycerol production (the series of the Hog1 activation system and the Hog1 mediated
branch, red boxes of Fig 2B). Our model therefore consists of three main compartments: 1) a
biophysical module describing how the cell volume and the turgor pressure are affected by
varying extra–cellular osmolarity; 2) a control system comprised of two parallel mechanisms
that determines the glycerol levels; 3) a glycerol module that determines the intra- and extra-
cellular glycerol concentration and the corresponding biophysical properties of the system.
The mathematical representations employed for each of these modules are described in the fol-
lowing sections.

The biophysical module. The biophysical model is based on the work presented in [22].
The system is modelled by considering the dependencies between cell volume V, the turgor
pressure Pt, the intra–cellular osmotic pressure Pi and the extra–cellular osmotic pressure Pe.
At any given time t, Pi(t), Pe(t) and Pt(t) determine the flow of water across the cell membrane,
which is proportional to (Pi(t) − Pe(t) − Pt(t)). Assuming that the cell volume is only affected
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by the inflow and outflow of water, then the change in volume can be expressed as

dV
dt

¼ kp1ðPiðtÞ � PeðtÞ � PtðtÞÞ ; ð1Þ

with kp1 denoting a hydraulic water permeability constant. At equilibrium (equil.), i.e. constant
volume and no net flow of water over the membrane, Eq (1) reduces to

Pi ¼ Pe þ Pt : ðequil:Þ

The only osmolyte considered explicitly in the model is glycerol (Gly); hence, ions and other
small molecules that change upon osmotic shock [35] are not considered. This assumption is
motivated by experimental results from [36], where the authors found that glycerol counter-
balances approximately 80% of applied NaCl in S. cerevisiae. Therefore, the intra-cellular

Fig 2. Representations of the yeast osmosensing system. (A) Schematic depiction of the osmosensing response. After an
osmotic stress, the external osmotic pressure increases and water diffuses out of the cell, causing the turgor pressure and
volume to decrease. Two parallel control paths are activated to regain volume and turgor pressure by adjusting the glycerol
production: the activation of the Hog1 protein and all the corresponding mechanisms that promote glycerol production; the
Fps1 channel, which regulates the outflow of glycerol and is immediately closed after the shock. (B) Engineering block
diagram representation of a control model for the osmoregulation system.

doi:10.1371/journal.pone.0161605.g002
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osmotic pressure, according to van’t Hoff’s law, is expressed as

PiðtÞ ¼
sþ GlyðtÞ
VðtÞ � Vb

; ð2Þ

with s being the concentration of the sum of osmolytes (assumed constant) other than glycerol
present in the cell, and Vb being the non-osmotic volume of the cell, subsuming non-polar cel-
lular components, such as membranes. According to Eq (2), the intra–cellular osmotic pressure
increases with the glycerol concentration, which can be used to control the turgor pressure of
the cell.

The extra-cellular osmotic pressure is only modified by the input signal, u(t), for example
the applied salt stress, and is then independent of changes in other variables. Hence

PeðtÞ ¼ Peequil
þ uðtÞ ; ð3Þ

where Peequil is the extra-cellular osmotic pressure at equilibrium (at t = 0, Peequil = Pe(0) =
Pi(0) − Pt(0)).

The turgor pressure is linearly dependent on the volume according to [37], in the following
manner:

PtðtÞ ¼ �
VðtÞ
Vð0Þ � 1

� �
þ Ptð0Þ : ð4Þ

Here, V(0) is the initial volume, Pt(0) is the initial turgor pressure, and � is the volumetric elas-
tic modulus. By expressing the volume at which Pt = 0 with the notation VPt = 0, Eq (4) can be
rewritten as

PtðtÞ ¼
Ptð0Þ

VðtÞ � VPt¼0

Vð0Þ � VPt¼0
; VðtÞ > VPt¼0 ;

0 ; otherwise :

8><
>: ð5Þ

The controller modules. There are two branches of control in the model: the first repre-
sents the closure of Fps1 glycerol transporter channels as a reaction to osmotic shock, causing
accumulation of glycerol and an increase in the intra-cellular osmotic pressure Pi [38]; the sec-
ond the activation of the Hog1 protein and the corresponding Hog1-dependent mechanisms
that promote glycerol production (such as the transcriptional activation of genes that encode
enzymes involved in glycerol production and potential protein-protein interactions initiated by
Hog1 in the cytoplasm or nucleus that lead to glycerol accumulation) [21, 24, 25].

The input signal, the error e(t), arriving at the two control branches, defined by

eðtÞ ¼ Ptð0Þ � PtðtÞ ð6Þ

is the difference between the initial and current turgor pressure.
The output of the Fps1 branch, uFps1(t), which corresponds to the response of the trans-

porter channels, is given by

uFps1ðtÞ ¼ kFps1 � sgnðeðtÞÞkFps1 �
jeðtÞjnFps1

bFps1jeðtÞjnFps1 þ KFps1

; ð7Þ

where βFps1 = 1 − expkeFps1(1 − nFps1), KFps1 = Pt(0)exp
keFps1(1 − nFps1), keFps1 is a constant and nFps1 is

the exponent of the Hill function that determines the dynamics of the Fps1 controller. The
function uFps1 returns real values in the interval [0, kFps1], where 0 corresponds to completely

Ultrasensitive Negative Feedback Control

PLOS ONE | DOI:10.1371/journal.pone.0161605 August 18, 2016 5 / 22



closed and where kFps1 is the glycerol permeability coefficient in a completely open Fps1 chan-
nel. Note that we use the sign and absolute value of the error to allow the controller to work in
a symmetrical way for positive and negative values of the error.

To describe the dynamics of the Hog1 activation we use the following first order linear sys-
tem, as done in [24]:

_uHOGðtÞ ¼ bHOGeðtÞ � aHOGuHOGðtÞ ð8Þ

Here bHOG and aHOG are constants, and uHOG represents the activation of Hog1. We constrain
bHOG and aHOG to assume similar values, to achieve linear dynamics between the error and the
Hog1 activity as proposed by [24] based on which components of the system display adaptive
dynamics.

To model the Hog1 mediated feedback control branch, using an UNF controller, we imple-
ment a Hill-type function so that the output of this controller is given by

vHOGðtÞ ¼
kHOG

uHOGðtÞnHOG
bHOGuHOGðtÞnHOG þ KHOG

; uHOGðtÞ > 0 ;

0 ; otherwise ;

8><
>: ð9Þ

where kHOG is the gain of the controller, βHOG = 1 − expkeHOG(1 − nHOG), KHOG = expkeHOG(1 − nHOG)

and keHOG and nHOG are constants. Note that the Hog1 mediated controller only works for posi-
tive values of the input and is switched off for negative values.

Eqs (7) and (9) allow the controllers to evolve from proportional (nFps1 = nHOG = 1) to
ultrasensitive dynamics (nFps1, nHOG > 1). Indeed, for nFps1 = nHOG = 1, the parameters
βFps1 = 1 − expkeFps1(1 − nFps1) and βHOG = 1 − expkeHOG(1 − nHOG) become 0, KFps1 =
Pt(0)exp

keFps1(1 − nFps1) = Pt(0) and KHOG = expkeHOG(1 − nHOG) = 1, and thus we end up with the fol-
lowing proportional (PNF) controllers:

uFps1ðtÞ ¼
kFps1

Ptð0Þ � eðtÞ
Ptð0Þ

; eðtÞ � 0 ;

kFps1
Ptð0Þ þ eðtÞ

Ptð0Þ
; eðtÞ < 0 ;

8>>>><
>>>>:

ð10Þ

vHOGðtÞ ¼
kHOG � uHOGðtÞ ; uHOGðtÞ > 0 ;

0 ; otherwise :

(
ð11Þ

Finally, we consider the case where the Hog1 pathway implements an integrator as pro-
posed in [24], where the authors hypothesised that, to achieve perfect adaptation, the system
implements an integral feedback via a non-transcriptional pathway that requires the Hog1
activity. Then, the output of this channel is described by the following equation:

vHOGðtÞ ¼ kHOG �
Z t

t�Tm

uHOGðtÞdt ; ð12Þ

where kHOG is the gain of the channel and Tm is the time window of the integral. In the case of
infinite integration time (Tm =1), the controller implements an ideal integrator (INF). INF
takes into account the complete history of the process and produces an output value propor-
tional to the integral of the error (over a potentially infinite integration period). If Tm is finite,
the controller implements a finite integrator (FINF), which is able to store only a limited history
of the error.

Ultrasensitive Negative Feedback Control
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The glycerol module. The exchange of internal and external glycerol, uDiff, over the Fps1
channel is modelled using Fick’s first law of diffusion as

uDiff ðtÞ ¼ uFps1ðtÞ
GlyðtÞ

VðtÞ � Vb

� GlyeðtÞ
Ve

� �
; ð13Þ

with Ve being the extra-cellular volume, Gly being the intra-cellular glycerol and Glye being the
glycerol in the extra-cellular compartment. The extra-cellular glycerol, depending only on the
diffusion over the Fps1 channel, is described by

dGlye
dt

¼ uDiff ðtÞ : ð14Þ

Intra-cellular glycerol production, which is used to control the turgor pressure of the cell by
changing the intra-cellular osmotic pressure (see Eq (2)), is expressed by combining the output
of the two controllers described above:

dGly
dt

¼ vHOGðtÞ � uDiff ðtÞ : ð15Þ

Our model contains 20 parameters as reported in S1 Table. However, four of these are
dependent parameters which do not need to be constrained.

Optimization of the parameters for different control schemes against
experimental datasets
For each control scheme we use global optimization algorithms to optimize the model parame-
ters to fit the available experimental data presented in [24], in particular the volume and the
Hog1 responses to step shocks of 0.2, 0.4 and 0.6 M of NaCl. S2 Table reports the optimal
model parameters obtained for each combination of dataset and control scheme. Optimisation
problems were formulated by the square sum of the errors between the simulated responses
(volume and Hog1) produced by the model to different osmotic stresses and the experimental
data as follows:

min
p

J ¼
X

j

X
i

ðVjðtiÞ � V̂ jðti; pÞÞ2 þ ðuHOGjðtiÞ � ûHOGjðti; pÞÞ2; ð16Þ

where p is the set of model parameters, Vj(ti) and uHOGj(ti) are the experimental volume and
Hog1 measurements, respectively, at time ti for the j-th experiment (step shock with different

amplitude) and V̂ jðtiÞ and ûHOGjðti; pÞ are the volume and Hog1 responses of the model, respec-

tively, at time ti for the j-th experiment.
Note that in our model we do not consider any growth mechanism; therefore, when the vol-

ume is completely recovered, i.e. Vj(ti)> 1, the data points are assumed equal to 1 for our com-
putations, as in [27]. For each control scheme, we optimize the control parameters and the
main biophysical parameters (which are VPt ¼ 0, defining the volume at which the turgor pres-
sure is zero, and kp1, the water permeability coefficient). All the other parameters, which
showed little effect when varied, are fixed as reported in S1 Table.

For the optimization, we use a hybrid Genetic Algorithm (GA) [39], that combines the most
well-known type of evolutionary algorithm with a local gradient-based algorithm [40, 41] to
ensure the computation of globally optimal solutions. Indeed, most optimization problems
encountered in biology involve non-convex search spaces and thus any local optimization algo-
rithm, which uses gradient information of the cost function to find the search direction for
determining the optimum, may only provide a local, rather than a global solution, depending
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on where in the search space the optimization starts. GA, in contrast, uses a heuristic search
technique that mimics the process of natural selection and then requires only the calculation of
the cost function. Therefore, due its stochastic nature, GA can be expected to have a much bet-
ter chance of converging to a global optimum than a local optimization algorithm, and a hybrid
GA makes the solution more robust. For the computation, we use the function ga from the
MATLAB Global Optimization Toolbox [42] and fmincon from the MATLAB Optimization
Toolbox [43], as the local algorithm. We repeat the hybrid GA algorithm five times and select
the parameter set that gives the optimal value of the cost function J.

Availability of models and computer code
MATLAB code containing the files for generating the results presented in the main text and
Supporting Information is provided as an additional S1 File.

Results

Amodel based on UNF control explains experimental data on yeast
osmoregulation
We focus on yeast osmoregulation as a model system to investigate the possible mechanisms
for adaptive response dynamics. Several experimental studies have provided detailed data on
the dynamics of the yeast osmoshock response, and have elucidated the molecular pathways
involved [21, 24, 27]. In brief, yeast perceives a change in external osmolyte conditions (e.g. salt
shock) as a drop in cell volume and turgor pressure, sensed through its membrane bound
osmosensor, SLN1 (see Fig 2A).

SLN1 is part of a two-component signalling cascade that leads to activation of a mitogen-
activated protein kinase (MAPK) cascade, which leads to the phosphorylation of the transcrip-
tion factor Hog1 [21]. Phosphorylated Hog1 translocates to the nucleus and activates the
expression of genes encoding enzymes involved in glycerol production. In addition, a drop in
turgor pressure leads to the closing of the membrane bound glycerol channel Fps1. The result-
ing accumulation of glycerol inside the cell reinstates the turgor pressure and cell volume, and
thus underpins the observed adaptive dynamics in cell volume. We model the described osmo-
regulatory network as a feedback control system, where the SLN1 receptor is seen as computing
the difference (i.e. error) between the current and an ideal turgor pressure (where the latter cor-
responds to the steady state cell volume), while the Fps1 channel and the Hog1 pathway lead-
ing to glycerol activation are seen as feedback controllers that process the error and feed their
response back to the system (see Fig 2B and Methods). The system to be controlled is consid-
ered to involve the cellular glycerol levels and their effect on turgor pressure and volume (see
Methods). This model architecture allows us to investigate the effect of implementing different
types of response dynamics for the two feedback controllers on the model’s ability to match the
available experimental data on responses to osmotic shocks. Within the yeast osmoregulation
system, the presence of ultrasensitivity has been either demonstrated or suggested in several
parts of the system, e.g. the SLN1 two-component system preceding the MAPK cascade [44],
the MAPK cascade terminating at Hog1 [5], the Fps1 glycerol channels [25, 27] and the mecha-
nisms mediated by Hog1 that promote glycerol accumulation, such as the transcriptional acti-
vation of genes encoding enzymes involved in glycerol production and potential protein-
protein interactions initiated by Hog1 in the cytoplasm or nucleus that lead to glycerol accu-
mulation [24, 25]. To capture these observations, we develop a model that implements an UNF

controller for both the Fps1 and Hog1 mediated feedback systems, named UNF-UNF (Methods,
Eqs (7) and (9)). Optimising the parameters of this model within biologically feasible ranges
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produces an excellent fit to datasets on yeast responses to stepwise osmotic shocks of various
sizes (Fig 3 and Methods).

For the purposes of comparison, two canonical linear controllers, proportional negative
feedback (PNF) and integral negative feedback (INF), are also implemented in the model and

Fig 3. Best fit to osmoshocks for theUNF-UNF model. Best fit to the experimental dataset for the cell
volume (A) and the Hog1 (B) responses to three step osmoshocks of different magnitude; the experimental
data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red diamonds, and blue squares,
respectively. The corresponding coloured solid lines represent the optimised model responses.

doi:10.1371/journal.pone.0161605.g003
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optimised against the same datasets (see Methods and S1 Appendix for the main properties of
these controllers using a generic control scheme). Table 1 reports all the possible control
schemes here exploited for explaining the experimental data.

The PNF controller is commonly used in control engineering and simply amplifies the error
by a certain linear gain factor. Thus, PNF control in itself is not expected to result in adaptive
response dynamics, unless the process it controls (in this case, the biophysical model of glycerol
accumulation and its effect on volume) implement an INF, required for achieving adaptation as
shown through analytical results from control theory [45–48]. In particular, to see if PNF control
alone can explain the observed data, we develop a model (named PNF-PNF), which assumes that
both the Hog1 and Fps1 mediated feedback controllers implement a PNF control (Methods, Eqs
(10) and (11)). By optimizing the model parameters so as to get the best possible fit to the exper-
imental data (see Methods), we find that this model provides a very poor fit, as shown in S1 Fig.
In particular, the large steady-state errors produced by this model, and the lack of adaptation,
clearly indicate that the controlled process itself does not contain an integrator. Stated biologi-
cally, the dynamics of glycerol accumulation itself and its connection to turgor pressure and vol-
ume cannot, on their own, explain the observed data. Then, we investigate the performance of a
model implementing an INF controller. Based on the hypothesis that the observed adaptive
dynamics must require an INF controller, a previous study placed this type of controller on the
Hog1 mediated feedback route [24]. This conclusion was based on the fact that the elements in
a control system placed before an INF controller must show adaptive dynamics, whilst those
placed after such a controller will not. In the case of the yeast osmoregulation system, glycerol
levels in the yeast osmoregulation do not adapt, while Hog1 levels do, and thus leading to the
proposal that the integral controller resides in the Hog1 mediated feedback path [24]. Therefore,
we develop a model (named PNF-INF) implementing a PNF controller for the Fps1 channel and
an INF controller for the Hog1 mediated branch. We find that the PNF-INF can achieve a good fit
to all experimental data, when optimized (see S2 Fig). However, not all responses to different
osmoshock strengths are equally well captured with such a model. We find that achieving a bet-
ter fit to high levels of osmoshock reduced the fit to low levels and vice versa. In particular, a
good fit to low (high) levels of osmoshock requires the integral control gain to be optimized to
high (low) values (see S3 Fig). Increasing the gain of the integrator to achieve a faster response
and improve the fitting to the experimental data for low levels of osmoshock (such as the stress
input of 0.2 M of NaCl), however, results in a worse fitting to data for higher levels of
osmoshock and overshoot in the volume response, which is not observed experimentally (see
panel A in S3 Fig). When we consider an integral controller with a more biologically plausible
finite integration window, Tm (i.e. shorter memory, termed FINF), the difference between simu-
lated and experimental data for such a model (named PNF-FINF) becomes greater than that
achieved by PNF-INF and, in particular, the fit to adaptation levels is much worse (see S4 Fig).
We also develop a model implementingUNF controller for the Fps1 feedback channel and an

Table 1. Different control schemes exploited for reproducing experimentally observed responses of
yeast to different levels of osmoshock.

Control Models Fps1 channel Hog1 mediated branch

PNF-PNF Proportional negative feedback (PNF) Proportional negative feedback (PNF)

PNF-INF Proportional negative feedback (PNF) Integral negative feedback (INF)

PNF-F INF Proportional negative feedback (PNF) Finite integral negative feedback (FINF)

UNF-INF Ultrasensitive negative feedback (UNF) Integral negative feedback (INF)

UNF-F INF Ultrasensitive negative feedback (UNF) Finite integral negative feedback (FINF)

UNF-UNF Ultrasensitive negative feedback (UNF) Ultrasensitive negative feedback (UNF)

doi:10.1371/journal.pone.0161605.t001
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INF or FINF controller for the Hog1 mediated feedback branch, named UNF-INF andUNF-FINF,
respectively (see S5 and S6 Figs). In all cases, however, theUNF-UNFmodel is seen to exhibit a
significantly better match to the available experimental data. S2 Table reports the J values calcu-
lated using Eq (16), showing the corresponding model scores: a lower value of J indicates a better
fit to the data, andUNF-UNF gets the lowest value. However, the loss function does not take into
account the different number of parameters for each model without thereby penalizing models
with a larger number of parameters (as UNF-UNF). Therefore, we also compute other standard
scores as Akaike information criterion (AIC) [49], Bayesian information criterion (BIC) [50]
and Akaike’s final prediction-error criterion (FPE) [51]. In general BIC tends to penalize com-
plex models more heavily, on the other hand AIC and FPE tend to choose models which are too
complex as the number of data goes to infinity. For all the scores (whose values are reported in
S2 Table), theUNF-UNFmodel achieves the lowest values, further confirming that it is the model
that is best capable of reproducing the multiple experimental datasets.

Note that our model, in line with all previous models [21–27], is based on the assumption of
deterministic dynamics. Indeed, experimental studies have indicated that the noise levels in the
system are low due to the abundance of Hog1 [24, 52–54], and then a deterministic model is well-
suited for describing the osmoregulation system dynamics. However, we also investigate the
effects of noise on controller performance for theUNF-UNFmodel, by adding normally distributed
noise to the outputs of the two controllers (see S7 Fig): the results are in line with those obtained
without noise (see Fig 3), the responses for the different inputs are robust to the effects of noise as
the deviation between the simulated and experimental data is limited, and we can state that the
deterministic solution of the UNF-UNFmodel represents the mean of stochastic simulations.

UNF control provides a metabolically efficient means of achieving
adaptation
To better understand the basis of the different degrees to which the PNF, INF and UNF control
schemes are able to fit the data, we analyze the temporal outputs of different models (Fig 4). As
expected, each control scheme responds to the osmoshock by decreasing the Fps1 controller
activity (corresponding to a closing of the Fps1 channel) and increasing the glycerol production
mediated by the Hog1 controller (Fig 4A–4C). As glycerol accumulates and volume recovers,
the error starts to decrease (Fig 4D) resulting in a decrease in the glycerol production mediated
by the Hog1 controller (Fig 4B) and the re-opening of the Fps1 channel (Fig 4A). This eventu-
ally leads to the system reaching a new dynamical steady state. We find that a crucial aspect of
each control scheme’s ability to capture the adaptation dynamics is the interplay between
error-mediated changes in the glycerol production and export (i.e. Hog1 vs. Fps1 controller
dynamics). When both the controllers incorporate linear dynamics (e.g. for the PNF-PNF and
PNF-INF models, where the Fps1 channel implements PNF and the Hog1 mediated branch
implements PNF or INF as proposed in [24], respectively), the Fps1 channel opens before the
volume is completely recovered (Fig 4A, blue and green lines), triggering the leakage of glycerol
out of the cell prematurely. Thus, higher Hog1 mediated glycerol production is required to
increase the glycerol level and recover the cell volume. When both controllers implement UNF,
however, the strongly nonlinear controllers respond rapidly to the stress by immediately
increasing the glycerol production (Fig 4B, red line) and the Fps1 channel remains partially
closed until the error becomes less than a certain threshold.

UNF controllers implement a quasi sliding mode control scheme
To better understand the ability of ultrasensitive negative feedback to produce adaptive dynam-
ics, and to develop some general guidelines for the design of synthetic controllers based on this
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approach, we analyse the performance of such a controller using a generic closed-loop feedback
control model (see Fig 5). In this simplified system, the controller is employed to maintain a
given process at a particular set-point when it is subject to a step disturbance (Fig 5A). The
input of the controller is the error signal, e, defined as the difference between the desired out-
put, r (called the reference signal), and the actual output of the system, y. Based on the error

Fig 4. Temporal dynamics of the controllers for the different models. The output of the Fps1 channel (A), the glycerol production (B), the glycerol
concentration (C), and the error (D) are shown for the different control schemes (PNF-PNF, PNF-INF, UNF-UNF as indicated in the legend), assuming an
osmotic stress of 0.4 M of NaCl.

doi:10.1371/journal.pone.0161605.g004
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signal, the controller manipulates the input to the process, u, to reduce the effect of the distur-
bance, ud, on the output y and therefore obtain the desired response. We also analyze the per-
formance of individual PNF, INF, FINF using the generic closed-loop feedback control model
and derive analytical expressions for the controller output (see S1 Appendix and S8 Fig). Inline
with control theory, we show that for the PNF controller, achieving an error value close to zero
requires a very large gain resulting in very high output signals from the controller even for a
very small disturbance (see panel A in S8 Fig). For the INF controller, the output of the process
is equal to the reference signal at steady state given any step disturbance, i.e. the error is zero at
steady state and the system achieves perfect adaptation (see panel B in S8 Fig). However, the
time to reach the steady state varies with controller parameters, and making the integration

Fig 5. Performance of the generic closed-loop feedback system. (A) Block diagram representation of the generic control systemmodel. (B)
Steady state error for the generic closed-loop system, while varying the parameter a of the process, with the process parameter b, reference
signal r and step disturbance amplitude aud

held constant (b = r = 1, aud
= 0.2). Intersections of the magenta line with the black dashed straight lines

give steady state error values for the UNF controller (K = 0.01, n = 2 and kp = 1). Intersections of the green lines with the black dashed straight lines
give steady state error values for the PNF controller (dashed-dotted line for kp = 1; dotted line for kp = 50). (C) Steady state error for the closed-loop
system, while varying the amplitude aud

of the step disturbance, ud, with different values of kp (red and magenta lines for kp = 1; orange line for kp =
2) and K (red line for K = 0.1; magenta and orange lines for K = 0.01) for theUNF controller (n is fixed at 2).

doi:10.1371/journal.pone.0161605.g005
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time window finite (FINF) can destroy the ability of the integral controller to recover the origi-
nal steady state value (see panels C–E in S8 Fig)).

An ultrasensitive controller (UNF), where the error is processed through a system with ultra-
sensitive (sigmoidal dose-response) dynamics, before being fed into the process, can be mod-
elled using a simple Hill-type function, so that the input from the controller back to the process
can be represented by

uðtÞ ¼ sgnðeðtÞÞkp �
jeðtÞjn

jeðtÞjn þ Kn
: ð17Þ

Note that we use the sign and absolute value of the error to allow the controller to work in a
symmetrical way for positive and negative values of the error.

For such a controller, an analytical expression for the system output cannot be derived. How-
ever, it is possible to show that theUNF controller can achieve a steady state error value very
close to zero. Indeed the steady state error can be visulaized by plotting both sides of Eq (A25)
in S1 Appendix as shown in Fig 5B and 5C: the intersections of the straight line a(r − e − aud)

with sgnðeÞbkp � jejn
jejnþKn, for different values of K and kp, by varying aud (Fig 5C), correspond to

the steady-states of the system. For the purposes of comparison, Fig 5B also shows the corre-
sponding steady-states obtained with a proportional controller—these are given by the intersec-
tion of the straight lines a(r − e − aud) (dashed black line) and bkp e (dash-dot green line). Note
that for any value of n, given a small value of K and without increasing the gain kp, the ultrasen-
sitive controller can achieve a steady-state error value very close to zero, therefore, high values
of n and kp are not needed. In contrast, achieving similarly low levels of error with a propor-
tional controller (dashed green line) would require increasing the gain towards infinity (a
requirement that is never practically feasible). Moreover, UNF provides a more tunable system,
where both the maximal response and the point of high sensitivity can be adjusted by changing
independent parameters (Fig 5C).

We now show how the ultrasensitive controller defined by Eq (17) implements an approxi-
mation of a well-known class of controllers, based on sliding mode control (SMC), a nonlinear
technique for robust control system design [32–34]. Note first that as K goes to zero, Eq (17)
assumes the following formula (see also Fig 6D):

uðtÞ ¼ kpsgnðeðtÞÞ : ð18Þ

This kind of switching controller takes only two values, kp and −kp, and has a discontinuity on
the straight line e = 0. The equation of the line, σ = e = r − y = 0, is known in sliding mode con-
trol theory as the sliding manifold, where σ is the sliding variable. The typical dynamics in slid-
ing mode control consist of a reaching phase, during which trajectories starting away from the
sliding manifold σ = 0 move towards it and reach it in finite time, followed by a sliding phase,
during which the dynamics will be confined to the manifold σ = 0. By setting opportunely the
gain kp (for details see S1 Appendix), the control signal u, defined by Eq (18), will therefore
bring the error to zero in finite time and then maintain the condition σ = 0 for all future time.

Fig 6A shows the performance of the closed loop system with a sliding mode controller
described by Eq (18) for different values of kp. We assume that the system output is initially
equal to the desired constant output, r = y(0) = y0 = v0 = 1 (L = 0 in inequality (A33) in S1
Appendix). Then the control gain is only designed to compensate for the bounded disturbance
ud, which is assumed to be a step disturbance applied at time t = 1 with amplitude aud = 0.2. So
setting kp > aud (see relation (A33) in S1 Appendix) (the parameter a = 1) is sufficient to reduce
completely the effect of the disturbance ud on the output y and to obtain the desired response
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Fig 6. Performance of the generic closed-loop feedback system using SMC,UNF, and its approximation by the piecewise function upw. (A-C)
Response dynamics obtained using: (A-B) SMC, a sliding mode controller (u(t) = kpsgn(e)) for different values of the gain kp and y(0) = y0; (C) UNF, its
approximation by the piecewise function upw and the ideal SMC, with kp = 0.25, n = 2 and different values of K. The parameters a, b and the constant
reference signal r are set equal to 1. The system output is initially equal to the desired constant reference value y(0) = y0 = r (A and C), whereas y(0) = y0 = 0
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(red dashed-dotted plot in Fig 6A). By contrast, if kp < aud, the system is not able to attenuate
the effects of the disturbance (blue plot in Fig 6A).

Fig 6B shows the performance when the output (y(0) = y0 = 0) is not initially equal to the
desired value (r = 1) and a step disturbance is applied at time t = 1 with amplitude aud = −0.2.
Then the control gain of the sliding mode controller is designed not only to compensate for the
disturbance, but also to force the system to move toward the sliding manifold (σ = e = 0) (in
this case L> 1 in inequality (A33) in S1 Appendix). As shown in Fig 6B, if inequality (A33) in
S1 Appendix is satisfied, then the system is able to move towards the sliding manifold σ = e = 0
and maintain it for all future time.

Fig 6A and 6B show that the output response exhibits a zigzag motion of small amplitude
and high frequency in the sliding mode, a phenomenon known as chattering. For an ideal
SMC, the switching frequency goes to infinity and the amplitude of the zigzag motion goes to
zero—note, however, that such an infinitely fast switching frequency is not achievable in bio-
logical reality. In addition, theoretical issues like the existence and uniqueness of solutions and
validity of the Lyapunov analysis (see S1 Appendix) have to be considered due to the discontin-
uous nonlinearity sgn(e) in the ideal SMC (see Eq (18)).

In engineering practice, therefore, these issues are usually avoided by using continuous/
smooth approximations of the discontinuous SMC. Interestingly, the UNF controller consid-
ered here is an example of such a smooth control function, which can be used to approximate
the nonlinearity sgn(e). In this case, there is no ideal sliding mode in the closed-loop system of
Fig 5A, since the sliding variable cannot be driven to zero in a finite time. However, for small
values of K, the closed-loop response of the system with an UNF controller is close to that
achieved by an ideal SMC (Fig 6C). Moreover, Eq (17) can be approximated by the following
saturation nonlinearity with high slope

satðm � eÞ ¼
m � e ; jej � 1=m;

sgnðm � eÞ ; jej > 1=m;

(
ð19Þ

wherem is the slope for the linear regime. Fig 6D shows the sigmoidal input-output relation-
ship for the UNF controller with K = 0.01, n = 2 and kp = 1, together with its saturation function
approximation and the discontinuous nonlinearity sgn(e). More generally, the UNF controller
can be approximated by a piecewise linear function [55] and, when K becomes small, the piece-
wise linear function is well-approximated by the corresponding saturation function (see Eqs
(A37)–(A39) in S1 Appendix).

Fig 6C shows the output response of the closed-loop system for the UNF controller with
n = 2 and different values of K, together with the response obtained using its approximated sat-
uration function (defined by Eq (A39) in S1 Appendix) for the same set of K values, and the
response given by the ideal SMC. As shown in the figure, only the ideal SMC is able to
completely eliminate the effect of the disturbance. However, the results for the UNF and its
approximated controller are very similar and the effect of the disturbance on the output
becomes negligible by decreasing the K value of the UNF (i.e increasing the slopem = 1/(2K) of
the saturation function).

Indeed, as shown in [33], the saturation control function of Eq (19) will force the trajectory
of the closed-loop system to reach in finite time the set |e|< 1/m, called the boundary layer,

(B). A step disturbance, ud, with amplitude aud
= 0.2 (A and C), aud

= −0.2 (B), is applied at time t = 1. (D) Input-output (I-O) relationships for the UNF controller
(solid magenta plot), its approximation by the saturation function sat(m � e) withm = n/(4K) (dashed blue plot), and the ideal SMC (i.e. the discontinuous
nonlinearity sgn(e)—dashed-dotted green plot). When n = 2, then the saturation function sat(e/(2K)) is equal to the piecewise function upw that approximates
UNF (see Eqs (A38)–(A39) in S1 Appendix).

doi:10.1371/journal.pone.0161605.g006
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and remain inside it thereafter. Therefore, the ideal discontinuous SMC is replaced by a
smooth/continuous controller, such that the error is not confined to the manifold e = 0, but lies
inside the boundary layer |e|< 1/m. In the case of the UNF controller, a good estimate of the
boundary layer is given by

jej < ð4KÞ=n : ð20Þ

Since the boundary layer specifies the maximum value of the error signal, relation Eq (20)
can be used as design guidelines to relate controller parameters (that need to be chosen by the
designer) to closed-loop performance. In the limit K! 0 (m!1), the dynamics of the UNF

controller approach those of the ideal SMC. Thus, the UNF controller of Eq (17) is an example
of a quasi sliding mode controller, for which a large set of supporting theoretical results and
computer-aided design tools exist in the engineering literature [34].

Discussion
As Synthetic Biologists strive to design and build ever more complex systems, it is imperative
to make progress in linking feedback control theory with the mechanistic realities underlying
cellular information processing. Ultrasensitivity and negative feedback are ubiquitous features
of biomolecular circuitry—when combined they offer the potential for achieving precise, fast
and robust control over biomolecular dynamics—and there is increasing evidence that such
ultrasensitive negative feedback is a core control strategy employed by natural biological con-
trol systems. Indeed, ultrasensitivity is observed to emerge via many different mechanisms
including covalent modification, dimerization and branching architectures [4, 6, 8]. The yeast
osmoregulation system implements the archetypical MAPK pathway, as well as a two-compo-
nent signalling system, both of which control downstream gene expression, and have been
shown theoretically and experimentally to embed ultrasensitive dynamics [4, 5, 28–31], while
gene expression dynamics are usually implemented as a Hill function (e.g. see [27]). Moreover,
the presence of ultrasensitivity has also been suggested for the Fps1 glycerol channels [25, 27].
Given such prevelance of ultrasensitivity in the osmosensing system, the findings presented
here suggest that UNF could be an appropriate paradigm for understanding cellular adaptive
response dynamics. In the E. coli chemotaxis system, which also displays adaptive responses,
ultrasensitivity is observed at the level of receptors and in the interaction of the signalling pro-
teins with the motility apparatus [56, 57]. It is thus also possible that ultrasensitivity is imple-
mented within the chemotaxis signalling pathways [8] and might have underpinned an
evolutionary step in generating adaptive response dynamics [18, 58].

Moreover, we show that the UNF controller can approximate a sliding mode controller,
whose strong robustness and performance properties are well understood amongst control the-
orists [32–34]. It has so far not been appreciated that ultrasensitivity, when combined with neg-
ative feedback, can implement a quasi sliding mode controller in order to generate adaptive
responses. Here, we explore this connection in detail and derive a direct relationship between
the key property of the quasi sliding-mode controller (the boundary layer specifying the maxi-
mum values of the error signal), and the biologically inspired parameters of the UNF controller
(n and K) (see relation Eq (20)). Then, if the yeast osmoregulation system employs an UNF con-
troller, our study shows that adaptation precision would depend on the parameters n and K.
Thus, we could experimentally evaluate the presence/absence of an UNF controller by measur-
ing changes in adaptation precision with regard to changes in parameters n and K describing
the sensitivity and threshold of the ultrasensitive response. Biologically, the values of these
parameters would depend on the kinetic rates and structure of the biochemical reactions
implementing ultrasensitivity in the yeast osmoregulation system, as discussed above. In
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particular, it has been shown both theoretically and experimentally that the level of sensitivity
(i.e. parameter n) and the level of signal threshold (i.e. parameter K) in MAPK signalling sys-
tems can be controlled by the concentration and kinetic properties of kinases and phosphatases
[4], and the level of scaffolding proteins [59, 60]. Similarly, it is shown that two-component sig-
nalling cascades are able to implement ultrasensitivity, in a manner where both sensitivity and
threshold level can be tuned by the concentration of the proteins involved [31, 44, 61]. Thus,
experimentally altering the structure and protein concentrations of the MAPK and two-com-
ponent signalling cascades in the yeast osmoregulation system would be expected to lead to
alterations in the adaptation precision of the cell volume and Hog1 levels following an
osmoshock if the system implements an UNF controller.

In synthetic biology, where the aim is de novo engineering of system dynamics, then the
UNF controller provides a simple way for implementing adaptive response dynamics. The engi-
neering of an UNF controller can make use of several mechanisms for implementing ultrasensi-
tivity, including those observed from dimerization of transcription factors [6], use of
scaffolding proteins in MAPK systems [7], and branching in bacterial phosphorylation systems
[8]. In the case of the ubiquitous phosphorylation-dephosphorylation cycles, several biochemi-
cal implementations have already been identified theoretically as implementing adaptive
response dynamics [16, 18–20]. Therefore, by recognizing the important role of ultrasensitivity
and negative feedback control in generating adaptive response dynamics in biological systems,
and making connections between these biological realities and a branch of nonlinear control
theory known as sliding mode control, we are able to generate analytical insights and quantita-
tive design guidelines that provide a useful foundation for progressing the design and construc-
tion of robust synthetic feedback control systems.

Supporting Information
S1 File. A zipped folder containing the MATLAB code for generating the results presented
in the main text and Supporting Information.
(ZIP)

S1 Appendix. Performance analysis of PNF, INF, FINF and UNF controllers using a generic
closed-loop feedback system.
(PDF)

S1 Fig. Best fit to osmoshocks for the PNF-PNF model. Best fit to the experimental dataset for
the cell volume (A) and the Hog1 (B) responses to three step osmoshocks of different magni-
tude; the experimental data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red
diamonds, and blue squares, respectively. The corresponding coloured solid lines represent the
optimised model responses.
(EPS)

S2 Fig. Best fit to osmoshocks for the PNF-INF model. Best fit to the experimental dataset for
the cell volume (A) and the Hog1 (B) responses to three step osmoshocks of different magni-
tude; the experimental data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red
diamonds, and blue squares, respectively. The corresponding coloured solid lines represent the
optimised model responses.
(EPS)

S3 Fig. Performance evaluation for the PNF-INF controller by varying the value of the opti-
mized integral control gain, kHOG. (A) Volume and Hog1 responses to increasing the opti-
mized value of kHOG. (B) Volume and Hog1 responses to decreasing the optimized value of
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kHOG. In each panel the upper plots show the volume responses; the lower plots show the Hog1
responses to step osmoshocks of 0.2 (first column), 0.4 (second column) and 0.6 M (third col-
umn) of NaCl. In each plot the red circles represent the experimental data.
(EPS)

S4 Fig. Best fit to osmoshocks for the PNF-FINF model. (A-F) Best fit to the experimental
dataset, the cell volume (A, C, E) and the Hog1 (B, D, F) responses to three step osmoshocks of
different magnitude, with different values of the integration time window, Tm (Tm = 5 min
(A, B); Tm = 10 min (C, D); Tm = 20 min (E, F)). The experimental data for 0.2, 0.4 and 0.6 M
of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The corre-
spondingly colored solid lines represent the optimized model responses.
(EPS)

S5 Fig. Best fit to osmoshocks for the UNF-INF model. Best fit to the experimental dataset for
the cell volume (A) and the Hog1 (B) responses to three step osmoshocks of different magni-
tude; the experimental data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red
diamonds, and blue squares, respectively. The corresponding coloured solid lines represent the
optimised model responses.
(EPS)

S6 Fig. Best fit to osmoshocks for the UNF-FINF model. (A-F) Best fit to the experimental
dataset, the cell volume (A, C, E) and the Hog1 (B, D, F) responses to three step osmoshocks of
different magnitude, with different values of the integration time window, Tm (Tm = 5 min
(A, B); Tm = 10 min (C, D); Tm = 20 min (E, F)). The experimental data for 0.2, 0.4 and 0.6 M
of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The corre-
spondingly colored solid lines represent the optimized model responses.
(EPS)

S7 Fig. Responses to different step osmoshocks by adding normally distributed noise to the
controller outputs for the UNF-UNF model. (A) Volume and (B) Hog1 responses to three step
osmoshocks of different magnitude. Black plots: simulated responses to a step osmoshock of
0.2 M of NaCl (grey circles—experimental data); red plots: simulated responses to a step of 0.4
M of NaCl (grey diamonds—experimental data); blue plots: simulated responses to a step of
0.6 M of NaCl (grey squares—experimental data). 1000 independent simulations are per-
formed.
(EPS)

S8 Fig. Performance of the generic closed-loop feedback system for PNF, INF and FINF con-
trollers. Response dynamics obtained using: (A) PNF for different values of the gain kp; (B) INF
for different values of the gain ki; (C-E) FINF with the time window Tm = τ and different values
of the gain ki (C); Tm = 5τ and different values of ki (D); ki = 1 and different values of Tm (E).
The system output is initially equal to the desired constant reference value y(0) = y0 = r = 1. A
step disturbance, ud, with amplitude aud = 0.2 is applied at time t = 1.
(EPS)

S1 Table. Model parameters for the osmoregulation system.
(PDF)

S2 Table. Optimization of the model parameters for the different control schemes against
multiple experimental datasets.
(PDF)

Ultrasensitive Negative Feedback Control

PLOS ONE | DOI:10.1371/journal.pone.0161605 August 18, 2016 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161605.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161605.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161605.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161605.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161605.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161605.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161605.s012


Author Contributions

Conceptualization: FM OSS DGB.

Data curation: FM.

Formal analysis: FM.

Funding acquisition: OEA OSS DGB.

Investigation: FM.

Methodology: FM.

Project administration: OSS.

Software: FM.

Supervision: OSS DGB.

Validation: FM.

Visualization: FM.

Writing - original draft: FM OEA OSS DGB.

Writing - review & editing: FM OEA OSS DGB.

References
1. Del Vecchio D. A control theoretic framework for modular analysis and design of biomolecular net-

works. Annual Reviews in Control. 2013; 37:333–345. doi: 10.1016/j.arcontrol.2013.09.011

2. Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan GBV, Papachristodoulou A, et al. Tuning the
dials of Synthetic Biology. Microbiology. 2013; 159(Pt 7):1236–1253. doi: 10.1099/mic.0.067975-0
PMID: 23704788

3. Oyarzún DA, Stan GBV. Synthetic gene circuits for metabolic control: design trade-offs and constraints.
J R Soc Interface. 2012; doi: 10.1098/rsif.2012.0671 PMID: 23054953

4. Goldbeter A, Koshland DE. An amplified sensitivity arising from covalent modification in biological sys-
tems. PNAS. 1981; 78(11):6840–6844. doi: 10.1073/pnas.78.11.6840 PMID: 6947258

5. Huang CY, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS. 1996; 93
(19):10078–10083. doi: 10.1073/pnas.93.19.10078 PMID: 8816754

6. Buchler NE, Cross FR. Protein Sequestration Generates a Flexible Ultrasensitive Response in a
Genetic Network. Mol Syst Biol. 2009; 5:272. doi: 10.1038/msb.2009.30 PMID: 19455136

7. O’Shaughnessy EC, Palani S, Collins JJ, Sarkar CA. Tunable signal processing in synthetic MAP
kinase cascades. Cell. 2011; 144(1):119–131. doi: 10.1016/j.cell.2010.12.014 PMID: 21215374

8. Amin M, Porter SL, Soyer OS. Split histidine kinases enable ultrasensitivity and bistability in two-com-
ponent signaling networks. PLoS Comput Biol. 2013; 9(3):e1002949. doi: 10.1371/journal.pcbi.
1002949 PMID: 23505358

9. Rao CV, Wolf DM, Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature. 2002;
420(6912):231–237. doi: 10.1038/nature01258 PMID: 12432408

10. Tsimring LS. Noise in biology. Rep Prog Phys. 2014; 77(2):026601. doi: 10.1088/0034-4885/77/2/
026601 PMID: 24444693

11. Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. Nature. 2000; 405
(6786):590–593. doi: 10.1038/35014651 PMID: 10850721

12. Thattai M, van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A.
2001; 98(15):8614–8619. doi: 10.1073/pnas.151588598 PMID: 11438714

13. Singh A, Hespanha JP. Optimal feedback strength for noise suppression in autoregulatory gene net-
works. Biophys J. 2009; 96(10):4013–4023. doi: 10.1016/j.bpj.2009.02.064 PMID: 19450473

14. Bruggeman FJ, Blüthgen N, Westerhoff HV. Noise management by molecular networks. PLoS Comput
Biol. 2009; 5(9):e1000506. doi: 10.1371/journal.pcbi.1000506 PMID: 19763166

Ultrasensitive Negative Feedback Control

PLOS ONE | DOI:10.1371/journal.pone.0161605 August 18, 2016 20 / 22

http://dx.doi.org/10.1016/j.arcontrol.2013.09.011
http://dx.doi.org/10.1099/mic.0.067975-0
http://www.ncbi.nlm.nih.gov/pubmed/23704788
http://dx.doi.org/10.1098/rsif.2012.0671
http://www.ncbi.nlm.nih.gov/pubmed/23054953
http://dx.doi.org/10.1073/pnas.78.11.6840
http://www.ncbi.nlm.nih.gov/pubmed/6947258
http://dx.doi.org/10.1073/pnas.93.19.10078
http://www.ncbi.nlm.nih.gov/pubmed/8816754
http://dx.doi.org/10.1038/msb.2009.30
http://www.ncbi.nlm.nih.gov/pubmed/19455136
http://dx.doi.org/10.1016/j.cell.2010.12.014
http://www.ncbi.nlm.nih.gov/pubmed/21215374
http://dx.doi.org/10.1371/journal.pcbi.1002949
http://dx.doi.org/10.1371/journal.pcbi.1002949
http://www.ncbi.nlm.nih.gov/pubmed/23505358
http://dx.doi.org/10.1038/nature01258
http://www.ncbi.nlm.nih.gov/pubmed/12432408
http://dx.doi.org/10.1088/0034-4885/77/2/026601
http://dx.doi.org/10.1088/0034-4885/77/2/026601
http://www.ncbi.nlm.nih.gov/pubmed/24444693
http://dx.doi.org/10.1038/35014651
http://www.ncbi.nlm.nih.gov/pubmed/10850721
http://dx.doi.org/10.1073/pnas.151588598
http://www.ncbi.nlm.nih.gov/pubmed/11438714
http://dx.doi.org/10.1016/j.bpj.2009.02.064
http://www.ncbi.nlm.nih.gov/pubmed/19450473
http://dx.doi.org/10.1371/journal.pcbi.1000506
http://www.ncbi.nlm.nih.gov/pubmed/19763166


15. Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L. Noise in transcription negative
feedback loops: simulation and experimental analysis. Mol Syst Biol. 2006; 2:41. doi: 10.1038/
msb4100081 PMID: 16883354

16. Behar M, Hao N, Dohlman HG, Elston TC. Mathematical and computational analysis of adaptation via
feedback inhibition in signal transduction pathways. Biophys J. 2007; 93(3):806–821. doi: 10.1529/
biophysj.107.107516 PMID: 17513354

17. Gomez-Uribe C, Verghese GC, Mirny LA. Operating regimes of signaling cycles: statics, dynamics, and
noise filtering. PLoS Comput Biol. 2007; 3(12):e246. doi: 10.1371/journal.pcbi.0030246

18. Csikasz-Nagy A, Soyer OS. Adaptive dynamics with a single two-state protein. J R Soc Interface. 2008;
5 Suppl 1:S41–S47. doi: 10.1098/rsif.2008.0099.focus PMID: 18445552

19. Drengstig T, Jolma IW, Ni XY, Thorsen K, Xu XM, Ruoff P. A basic set of homeostatic controller motifs.
Biophys J. 2012; 103(9):2000–2010. doi: 10.1016/j.bpj.2012.09.033 PMID: 23199928

20. Ang J, McMillen DR. Physical constraints on biological integral control design for homeostasis and sen-
sory adaptation. Biophys J. 2013; 104(2):505–515. doi: 10.1016/j.bpj.2012.12.015 PMID: 23442873

21. Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S. Integrative model of the response of
yeast to osmotic shock. Nat Biotechnol. 2005; 23(8):975–982. doi: 10.1038/nbt1114 PMID: 16025103

22. Gennemark P, Nordlander B, Hohmann S, Wedelin D. A simple mathematical model of adaptation to
high osmolarity in yeast. In Silico Biol. 2006; 6(3):193–214. PMID: 16922683

23. Mettetal JT, Muzzey D, Gómez-Uribe C, van Oudenaarden A. The frequency dependence of osmo-
adaptation in Saccharomyces cerevisiae. Science. 2008; 319(5862):482–484. doi: 10.1126/science.
1151582 PMID: 18218902

24. Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A. A systems-level analysis of perfect
adaptation in yeast osmoregulation. Cell. 2009; 138(1):160–171. doi: 10.1016/j.cell.2009.04.047 PMID:
19596242

25. Zi Z, Liebermeister W, Klipp E. A quantitative study of the Hog1 MAPK response to fluctuating osmotic
stress in Saccharomyces cerevisiae. PLoS One. 2010; 5(3):e9522. doi: 10.1371/journal.pone.0009522
PMID: 20209100

26. Schaber J, Adrover MA, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, et al. Biophysical properties
of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J. 2010;
39(11):1547–1556. doi: 10.1007/s00249-010-0612-0 PMID: 20563574

27. Schaber J, Baltanas R, Bush A, Klipp E, Colman-Lerner A. Modelling reveals novel roles of two parallel
signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol. 2012; 8:622. doi: 10.1038/msb.
2012.53 PMID: 23149687

28. Goldbeter A, Koshland D Jr. Ultrasensitivity in biochemical systems controlled by covalent modification.
Interplay between zero-order and multistep effects. J Biol Chem. 1984; 259(23):14441–14447. PMID:
6501300

29. Blüthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, Kholodenko BN. Effects of seques-
tration on signal transduction cascades. FEBS J. 2006; 273(5):895–906. doi: 10.1111/j.1742-4658.
2006.05105.x PMID: 16478465

30. Ventura AC, Sepulchre JA, Merajver SD. A hidden feedback in signaling cascades is revealed. PLoS
Comput Biol. 2008; 4(3):e1000041. doi: 10.1371/journal.pcbi.1000041 PMID: 18369431

31. Tiwari A, Ray JCJ, Narula J, Igoshin OA. Bistable responses in bacterial genetic networks: designs and
dynamical consequences. Math Biosci. 2011; 231(1):76–89. doi: 10.1016/j.mbs.2011.03.004 PMID:
21385588

32. Utkin VI. Sliding Modes in Control and Optimization. Springer-Verlag, 1992; 1992.

33. Khalil HK. Nonlinear Systems. Prentice-Hall; 2002.

34. Shtessel Y, Edwards C, Fridman L, Levant A. Sliding Mode Control and Observation. Springer; 2013.

35. Sunder S, Singh AJ, Gill S, Singh B. Regulation of intracellular level of Na+, K+ and glycerol in Saccha-
romyces cerevisiae under osmotic stress. Mol Cell Biochem. 1996; 158(2):121–124. doi: 10.1007/
BF00225837 PMID: 8817473

36. Reed RH, Chudek JA, Foster R, Gadd GM. Osmotic significance of glycerol accumulation in exponen-
tially growing yeasts. Appl Environ Microbiol. 1987; 53(9):2119–2123. PMID: 3314706

37. Levin RL, UshiyamaM, Cravalho EG. Water permeability of yeast cells at sub-zero temperatures. J
Membr Biol. 1979; 46(2):91–124. doi: 10.1007/BF01961376 PMID: 376852

38. Tamas MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, et al. Fps1p controls the accu-
mulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol. 1999; 31
(4):1087–1104. doi: 10.1046/j.1365-2958.1999.01248.x PMID: 10096077

39. Lobo FG, Goldberg DE. Decision making in a hybrid genetic algorithm. IlliGAL Report No 96009. 1996;.

Ultrasensitive Negative Feedback Control

PLOS ONE | DOI:10.1371/journal.pone.0161605 August 18, 2016 21 / 22

http://dx.doi.org/10.1038/msb4100081
http://dx.doi.org/10.1038/msb4100081
http://www.ncbi.nlm.nih.gov/pubmed/16883354
http://dx.doi.org/10.1529/biophysj.107.107516
http://dx.doi.org/10.1529/biophysj.107.107516
http://www.ncbi.nlm.nih.gov/pubmed/17513354
http://dx.doi.org/10.1371/journal.pcbi.0030246
http://dx.doi.org/10.1098/rsif.2008.0099.focus
http://www.ncbi.nlm.nih.gov/pubmed/18445552
http://dx.doi.org/10.1016/j.bpj.2012.09.033
http://www.ncbi.nlm.nih.gov/pubmed/23199928
http://dx.doi.org/10.1016/j.bpj.2012.12.015
http://www.ncbi.nlm.nih.gov/pubmed/23442873
http://dx.doi.org/10.1038/nbt1114
http://www.ncbi.nlm.nih.gov/pubmed/16025103
http://www.ncbi.nlm.nih.gov/pubmed/16922683
http://dx.doi.org/10.1126/science.1151582
http://dx.doi.org/10.1126/science.1151582
http://www.ncbi.nlm.nih.gov/pubmed/18218902
http://dx.doi.org/10.1016/j.cell.2009.04.047
http://www.ncbi.nlm.nih.gov/pubmed/19596242
http://dx.doi.org/10.1371/journal.pone.0009522
http://www.ncbi.nlm.nih.gov/pubmed/20209100
http://dx.doi.org/10.1007/s00249-010-0612-0
http://www.ncbi.nlm.nih.gov/pubmed/20563574
http://dx.doi.org/10.1038/msb.2012.53
http://dx.doi.org/10.1038/msb.2012.53
http://www.ncbi.nlm.nih.gov/pubmed/23149687
http://www.ncbi.nlm.nih.gov/pubmed/6501300
http://dx.doi.org/10.1111/j.1742-4658.2006.05105.x
http://dx.doi.org/10.1111/j.1742-4658.2006.05105.x
http://www.ncbi.nlm.nih.gov/pubmed/16478465
http://dx.doi.org/10.1371/journal.pcbi.1000041
http://www.ncbi.nlm.nih.gov/pubmed/18369431
http://dx.doi.org/10.1016/j.mbs.2011.03.004
http://www.ncbi.nlm.nih.gov/pubmed/21385588
http://dx.doi.org/10.1007/BF00225837
http://dx.doi.org/10.1007/BF00225837
http://www.ncbi.nlm.nih.gov/pubmed/8817473
http://www.ncbi.nlm.nih.gov/pubmed/3314706
http://dx.doi.org/10.1007/BF01961376
http://www.ncbi.nlm.nih.gov/pubmed/376852
http://dx.doi.org/10.1046/j.1365-2958.1999.01248.x
http://www.ncbi.nlm.nih.gov/pubmed/10096077


40. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston: Addison-
Wesley; 1989.

41. Fleming PJ, Purshouse RC. Evolutionary algorithms in control systems engineering: a survey. Control
Engineering Practice. 2002; 10:1223–1241. doi: 10.1016/S0967-0661(02)00081-3

42. MATLAB. Global Optimization Toolbox User’s Guide; 2004. The Mathworks, Inc.

43. MATLAB. Optimization Toolbox User’s Guide; 1990. The Mathworks, Inc.

44. Amin M, Kothamachu VB, Feliu E, Scharf BE, Porter SL, Soyer OS. Phosphate sink containing two-
component signaling systems as tunable threshold devices. PLoS Comput Biol. 2014; 10:e1003890.
doi: 10.1371/journal.pcbi.1003890 PMID: 25357192

45. Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Wiley; 1996.

46. Cosentino C, Bates DG. Feedback Control in Systems Biology. CRC Press (Taylor & Francis); 2011.

47. Dorf RC. Modern Control Systems. Prentice-Hall; 2000.

48. Franklin GF, Powell JD, Emani-Naeini A. Feedback control of dynamic systems. Addison-Wesley;
1994.

49. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control.
1974; 19:716–723. doi: 10.1109/TAC.1974.1100705

50. Schwarz GE. Estimating the dimension of a model. Annals of Statistics. 1978; 6(2):461–464. doi: 10.
1214/aos/1176344136

51. Ljung L. System Identification: Theory for the User. Prentice Hall; 1999.

52. Ghaemmaghami S, HuhWK, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of pro-
tein expression in yeast. Nature. 2003; 425(6959):737–741. doi: 10.1038/nature02046 PMID:
14562106

53. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, et al. Single-cell proteo-
mic analysis of S. cerevisiae reveals the architecture of biological noise. Nature. 2006; 441(7095):840–
846. doi: 10.1038/nature04785 PMID: 16699522

54. de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fr ohlich F, et al. Comprehensive mass-
spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008; 455
(7217):1251–1254. doi: 10.1038/nature07341 PMID: 18820680

55. Shin YJ, Bleris L. Linear control theory for gene network modeling. PLoS One. 2010; 5(9):e12785. doi:
10.1371/journal.pone.0012785 PMID: 20862288

56. Cluzel P, Surette M, Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling pro-
teins in single cells. Science. 2000; 287(5458):1652–1655. doi: 10.1126/science.287.5458.1652 PMID:
10698740

57. Sourjik V, Berg HC. Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci U S A. 2002; 99
(1):123–127. doi: 10.1073/pnas.011589998 PMID: 11742065

58. Fan S, Endres RG. A minimal model for metabolism-dependent chemotaxis in Rhodobacter sphaer-
oides. Interface Focus. 2014; 4(6):20140002. doi: 10.1098/rsfs.2014.0002 PMID: 25485076

59. Bashor CJ, Helman NC, Yan S, LimWA. Using engineered scaffold interactions to reshapeMAP kinase
pathway signaling dynamics. Science. 2008; 319(5869):1539–1543. doi: 10.1126/science.1151153
PMID: 18339942

60. Peisajovich SG, Garbarino JE, Wei P, LimWA. Rapid diversification of cell signaling phenotypes by
modular domain recombination. Science. 2010; 328(5976):368–372. doi: 10.1126/science.1182376
PMID: 20395511

61. Kothamachu VB, Feliu E, Wiuf C, Cardelli L, Soyer OS. Phosphorelays provide tunable signal process-
ing capabilities for the cell. PLoS Comput Biol. 2013; 9:e1003322. doi: 10.1371/journal.pcbi.1003322
PMID: 24244132

Ultrasensitive Negative Feedback Control

PLOS ONE | DOI:10.1371/journal.pone.0161605 August 18, 2016 22 / 22

http://dx.doi.org/10.1016/S0967-0661(02)00081-3
http://dx.doi.org/10.1371/journal.pcbi.1003890
http://www.ncbi.nlm.nih.gov/pubmed/25357192
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1038/nature02046
http://www.ncbi.nlm.nih.gov/pubmed/14562106
http://dx.doi.org/10.1038/nature04785
http://www.ncbi.nlm.nih.gov/pubmed/16699522
http://dx.doi.org/10.1038/nature07341
http://www.ncbi.nlm.nih.gov/pubmed/18820680
http://dx.doi.org/10.1371/journal.pone.0012785
http://www.ncbi.nlm.nih.gov/pubmed/20862288
http://dx.doi.org/10.1126/science.287.5458.1652
http://www.ncbi.nlm.nih.gov/pubmed/10698740
http://dx.doi.org/10.1073/pnas.011589998
http://www.ncbi.nlm.nih.gov/pubmed/11742065
http://dx.doi.org/10.1098/rsfs.2014.0002
http://www.ncbi.nlm.nih.gov/pubmed/25485076
http://dx.doi.org/10.1126/science.1151153
http://www.ncbi.nlm.nih.gov/pubmed/18339942
http://dx.doi.org/10.1126/science.1182376
http://www.ncbi.nlm.nih.gov/pubmed/20395511
http://dx.doi.org/10.1371/journal.pcbi.1003322
http://www.ncbi.nlm.nih.gov/pubmed/24244132

