
The Library
Gland segmentation in colon histology images : the GlaS challenge contest
Tools
Rajpoot, Nasir M. and Sirinukunwattana, Korsuk (2017) Gland segmentation in colon histology images : the GlaS challenge contest. Medical Image Analysis, 35 . pp. 489-502. doi:10.1016/j.media.2016.08.008 ISSN 1361-8415.
![]() |
PDF
WRAP_main_2016_08_30.pdf - Published Version - Requires a PDF viewer. Download (18Mb) |
Official URL: http://dx.doi.org/10.1016/j.media.2016.08.008
Abstract
Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer. In clinical practice, the morphology of intestinal glands, including architectural appearance and glandular formation, is used by pathologists to inform prognosis and plan the treatment of individual patients. However, achieving good inter-observer as well as intra-observer reproducibility of cancer grading is still a major challenge in modern pathology. An automated approach which quantifies the morphology of glands is a solution to the problem.
This paper provides an overview to the Gland Segmentation in Colon Histology Images Challenge Contest (GlaS) held at MICCAI'2015. Details of the challenge, including organization, dataset and evaluation criteria, are presented, along with the method descriptions and evaluation results from the top performing methods.
Item Type: | Journal Article | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer) | ||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Computer Science | ||||||||||
Library of Congress Subject Headings (LCSH): | Colon (Anatomy) -- Cancer -- Diagnosis , Rectum -- Cancer -- Diagnosis , Colon (Anatomy) -- Cancer -- Treatment, Rectum -- Cancer -- Treatment, Histology | ||||||||||
Journal or Publication Title: | Medical Image Analysis | ||||||||||
Publisher: | Elsevier Science BV | ||||||||||
ISSN: | 1361-8415 | ||||||||||
Official Date: | January 2017 | ||||||||||
Dates: |
|
||||||||||
Volume: | 35 | ||||||||||
Page Range: | pp. 489-502 | ||||||||||
DOI: | 10.1016/j.media.2016.08.008 | ||||||||||
Status: | Peer Reviewed | ||||||||||
Publication Status: | Published | ||||||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||||||
Date of first compliant deposit: | 2 September 2016 | ||||||||||
Date of first compliant Open Access: | 2 September 2017 | ||||||||||
Funder: | Qatar National Research Fund (QNRF), University of Warwick. Department of Computer Science, Chinese University of Hong Kong (CUHK), Deutschland Bundesregierung, Vereinigung der Österreichischen Industrie, Fonds zur Förderung der Wissenschaftlichen Forschung (Austria) (FWF) | ||||||||||
Grant number: | NPRP5-1345-1-228 (QNRF), 412513 (CUHK), EXC 294 (Deutschland Bundesregierung), Excellence Grant 2014 (Vereinigung der Österreichischen Industrie), P28078-N33 (FWF) |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year