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Abstract

Biomedical imaging techniques play an important role in visualisation of e.g., bi-

ological structures, tissues, diseases and medical conditions in cellular level. The

techniques bring us enormous image datasets for studying biological processes, clin-

ical diagnosis and medical analysis. Thanks to recent advances in computer technol-

ogy and hardware, automatic analysis of biomedical images becomes more feasible

and popular. Although computer scientists have made a great effort in developing

advanced imaging processing algorithms, many problems regarding object analysis

still remain unsolved due to the diversity of biomedical imaging.

In this thesis, we focus on developing object analysis solutions for two entirely

different biomedical image types: fluorescence microscopy sequences and endome-

trial histology images. In fluorescence microscopy, our task is to track massive

fluorescent spots with similar appearances and complicated motion pattern in noisy

environments over hundreds of frames. In endometrial histology, we are challenged

by detecting different types of cells with similar appearance and in terms of colour

and morphology. The proposed solutions utilise several novel locality sensitive mod-

els which can extract spatial or/and temporal relational features of the objects, i.e.,

local neighbouring objects exhibiting certain structures or patterns, for overcom-

ing the difficulties of object analysis in fluorescence microscopy and endometrial

histology.
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Chapter 1

Introduction

Biomedical imaging offers a new approach to study and understand biological pro-

cesses, as well as to measure and diagnose medical illnesses and conditions, by

visually revealing internal behaviours, structures and properties of biological sub-

stances, organs and tissues. However, biomedical imaging can produce extensive

datasets in which one single image also contain enormous information, e.g., moni-

toring the interaction of massive sub-cellular structures from long image sequences,

and analysing abnormalities of enormous cells and tissue regions from thousands of

digital pathology images. Therefore, manual processing and analysing of biomedical

images is normally infeasible, as that would result in laboriousness, unrepeatabil-

ity and inefficiency. Moreover, bias and inaccuracy are often caused by subjective

assessment in manual work. Today the computer-aided techniques start playing a

more and more important role in the large-scale processing and analysis of biomed-

ical images.

In general, biomedical image has a wide diversity of types due to different

experiment purposes, biopsies, imaging equipments, or even imaging parameters,

which leads to the impossibility of developing generic solution for processing and

analysing all types of biomedical images. Nonetheless, some of the common tasks in

processing biomedical images usually involve object analysis, i.e., detection, segmen-

1



tation or tracking of certain objects, e.g., protein spots, cells or glands, depending on

the nature of images. Biomedical image processing is not trivial due to the complex-

ities of the objects and image quality, in most cases, conventional image processing

methods, e.g., Otsu thresholding, watershed segmentation, regional maxima, and

mathematical morphology, are often incorporated with more advanced techniques,

e.g., statistical inference, computer vision, pattern recognition, and machine learn-

ing.

For instance, a protein spot is first detected by local maxima (a spot is treated

as a set of connected neighbouring pixels which exhibits the maxima intensity in

a local region) in fluorescence microscopy image sequence, and it is then tracked

across the frames in two steps: (1) predicting its position by statistical inference

method on the next frame, and (2) updating its new position by associating it to a

corresponding spot which has the shortest distance to its predicted position on the

next frame. However, it is challenge to accurately associate spots between adjacent

frames based on comparing spot features such as position, shape or intensities,

because the spots are normally textureless and all in circular shape, and also such

spot features are highly inconsistent even over a short sequence of frames due to

imaging equality.

Another example of the application area is when the clinical diagnosis of a

medical condition is made on counting stromal cells in a tissue region. It is diffi-

cult to distinguish between stromal cell and epithelial cells because they have very

similar features in terms of texture and stain colour between them, and also the

features such as size and morphological shape are highly inconsistent between the

same type of cells. However, one can observe that stromal cells are distant to glands

and normally exhibits an inconsistent orientation pattern in a local neighbourhood.

In contrast, epithelial cells are packed along the lumen edge and are arranged in

parallel. The example of stromal and epithelial will be shown in the later chap-

ters. Therefore, the classification of epithelial cells can be achieved by examining
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cell orientation consistency in local neighbourhood. It is obvious that modelling

temporal and spatial relationships between the objects in local neighbourhood can

offers more crucial advantages, comparing with exclusively employing their inher-

ent features (e.g., shape, texture and colour) for object analysis. We express such

relational features by numerically (or statically) computing the similarities or dif-

ferences between the objects (e.g., fluorescent spots or cells) in a temporal or/and

spatial local neighbourhood, such attempt is so called as locality sensitive modelling

approach.

In this thesis, we propose several image analysis algorithms by utilising the

fact that local neighbouring objects exhibiting certain structures or patterns, to

obtain their relational features computed by locality sensitive modelling approach,

for overcoming several difficulties of object analysis in two different projects. The

first one regards to track the movement of a motor protein in fluorescence images

for understating their roles in intracellular processes. The second one aims at de-

veloping a computer-aided system which can automatically counts cells in digital

endometrial biopsy images for assisting diagnosis of recurrent miscarriages due to

the over-presence of natural killer cells.

1.1 Object Analysis in Fluorescence Bioimages: Myosin

VI Protein Movement on Actin Filaments

Green Fluorescent Protein (GFP) [2] [3] was first isolated from the jellyfish Aequorea

victoria in the early 1960s. It can emit bright green fluorescence when exposed to

light in the blue to ultraviolet range, which causes it to be used as genetically en-

coded probes. Jellyfish-derived GFP and its homologs extracted from diverse marine

animals have since been widely engineered into many mutants with enhanced char-

acteristics and availability in entire visible spectrum over the past few decades. The

discovery of GFPs and their usages [4] [5] [6] in the latest microscopy technologies
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have resulted in many possibilities for direct visualising of cellular structures and

a large number of intracellular activities such as protein interaction and traffick

in living cells, which provide scientists substantial biological information regarding

to the physical properties of fluorescent proteins, i.e., extinction coefficients, quan-

tum yields and photobleaching rates, for answering many biological questions in

sub-cellular level.

Myosins consist of a family of Adenosine triphosphate (ATP) dependent mo-

tor proteins in eukaryotes, that convert chemical energy in the form of ATP to

mechanical energy to generate force and movement for Actin-based motility. They

are well known for their involvements in muscle contraction [7] [8] and role in a

wide range of cell motility processes [9]. Myosin VI protein is a processive motor

[10] that attaches to the surface of a suitable substrate, called Actin filament, and

uses it as a rail to carry out the movement. This particular protein shows a very

interesting phenomenon that it travels towards the minus end of an Actin filament,

in an opposite direction as compared to other proteins in the Myosin family [11].

Investigating the movements of Myosin VI proteins on Actin filaments may assist

in answering many questions regarding their functions and motor properties in a

variety of intracellular processes such as vesicular membrane traffic, cell migration

and mitosis [12]. Nonetheless, manually tracking and recording the movements of

thousands of fluorescent protein spots over several hundreds of image frames is not

a feasible option, as it suffers from unrepeatability, inefficiency, and inaccuracy due

to subjective assessment. Therefore, a computer-aided multi-target tracking system

is eagerly requested by cell biologists for analysing the spatio-temporal movement

of Myosin VI proteins.

A conventional tracking framework for fluorescent spots is comprised of sev-

eral steps. First, the image sequences are usually very noisy due to background

fluorescence and electronic noise of microscopy. Since the image quality has an

significant impact on spot detection accuracy, a preprocessing step that involves
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reduction/removal of background noise and enhancement of the visual appearances

of fluorescent spots, is necessary for improving the signal-to-noise ratio (SNR) of

images, which can be accomplished by many denoising techniques [13]. Second, flu-

orescent spots are detected from each image frame for the later tracking step, the

detection is usually based on the assumption of that visual appearance of fluorescent

spot exhibits as a regional maxima in a small local image region in terms of intensity

or a response of an imaging system to a point source that described by diffraction-

limited point spread function (PSF) [14]. The last step is to track fluorescent spots

across all image frames. The spot tracking is essentially a data association process

that iteratively associates target in one frame with their correspondences appeared

in an adjacent (previous or next) frame, which eventually establishes the target

trajectories over a fragment of consecutive frames. Data association methods are

generally categorised into local and global association. The strategy of local data

association is to individually associate an established target track up to one frame

with a most probable target among all potential targets within the local neighbour-

hood (also called acceptance gate) around the location of current track in successive

frames. Nearest Neighbour filtering [15], Multiple Hypothesis Tracker [16] [17] [18]

and Joint Probabilistic Data Association filter [19] [20] [21] [22] are well known

local data association based tracking methods. On the contrary, global data asso-

ciation, e.g., [23] and Linear Assignment Problem based methods [24] [25] [26] [27]

simultaneously associate all the targets in one frame with their correspondences in

an adjacent frame, by finding a globally minimum matching cost (e.g., Euclidean

distance between two spots).

Spot tracks generated by data association suffer from inaccuracy due to noisy

background and spot measurement/detection errors. Bayesian filtering based meth-

ods, e.g., Kalman filter [28], Extended Kalman filter [29], Unscented Kalman filter

[30] and Particle filter [31], are often employed as estimators which recursively pre-

dict spot states (e.g., location, velocity or acceleration) based on the previous spot
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states and the new spot measurements to smooth and improve spot tracks pro-

duced by data association methods. Kalman filter is only appropriate when the

targets have linear motion models. Non-linear Bayesian filters such as Extended

Kalman filter, Unscented Kalman filter and Particle filter are designated to handle

the non-linearity of some spot motions (e.g., Brownian motion). Extended Kalman

filter attempts to linearise the non-linear motion model but suffers from divergence

caused by poor linearisation. Unscented Kalman filter and Particle filter use a set of

Monte Carlo sampled points/particles (potential spot states) to represent a poste-

rior probability distribution of the spot states. However, they are computationally

intensive in dense and clutter environments such as hundreds of fluorescent pro-

teins. Interactive Multiple Model (IMM) filtering [32], on the other hand, provides

a computationally effective alternative for approximating non-linear spot motions

by running multiple Kalman filters in parallel, where each Kalman filter features a

distinct motion model respectively.

1.2 Object Analysis in Histology Images: Automatic

Analysis of Endometrial Biopsy Images for the Di-

agnosis of Recurrent Miscarriages

Digital pathology offers several advantages over the age-old tissue slide analysis

under the microscope by converting tissue slides into high-resolution microscopic

image of the whole slide. One of these advantages is the seamless transfer and

manipulation of digitised images via computer algorithms [33]. Indeed, histology

image analysis has been tipped to hold the key to providing the much needed added

value to digital pathology [34].

Uterine Natural Killer (UNK) cells are immune cells found in the human

female uterus lining. In general, these cells make up no more than 5% of all cells in

the womb lining. Recently, the authors of [35] showed that there are abnormally high
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numbers of UNK cells in the uterus of women who suffer from recurrent miscarriages,

a condition that affects one in every 100 women of reproductive age in the UK.

High UNK cell density in the lining of the womb was associated with glucocorticoid

deficiency [36] and a small randomised controlled trial suggested that women with

high numbers of UNK cells are more likely to have a live birth if given glucocorticoids

in lieu of placebo [37]. This means that UNK testing has clinical significance as it

could direct clinicians towards the effective treatment. A diagnose protocol for

the recurrent miscarriages due to the over-presence of UNK cells devised in [35]

calculates the ratio of UNK cells to stromal cells in digital images of endometrial

tissue slides.

Manual counting of thousands of cells from a large digital endometrial histol-

ogy image dataset on a regular basis is cost ineffective, potentially inaccurate due to

subjective assessment, and involves the hassle of manually removing epithelium from

tissue regions. The automatic cell counting system involves several image processing

steps, i.e., detecting all types of cells, segmenting brown stain regions and epithe-

lium for cell classification, and classifying stromal, epithelial and UK cells, which is

continuously performed on the HPF images from the same whole slide image until

a number (5,000 at minimum in our experiments) of stromal cells are cumulatively

counted. Next, the ratio of UNK cells to stromal cells is calculated and converted

into a percentage for the diagnosis.

UNK cells are those cells covered by brown stain regions, which are illustrated

in Figures 1.1(a) and (b), brown stain regions can be used for classifying UNK cells.

Counting stromal and UNK cells is the primary task here and the analysis of cell

morphology in endometrial biopsies (i.e., colour texture, morphological shape, or

mitosis) is beyond the scope of the diagnose protocol, therefore segmentation of

stromal and UNK cells is not necessary to accomplish the cell counting. Nonetheless,

it is compulsory to segment brown stain region for classify UNK cells from the counts.

It is worth noting that separately detecting stromal and epithelial cells is
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difficult due to their exhibiting similar stain colour and texture in a variety of mor-

phological shapes, as shown in Figures 1.1(a) and (b). However, epithelial cells are

packed at the boundaries of tissue regions and lumen, therefore this prior knowl-

edge can help us to locate potential epithelial cells from the detected cells. More

importantly, it is observed that epithelial cells in local neighbourhood have distinct

distribution/arrangement and orientation congruency along some particular direc-

tions, compared with that of local neighbouring stromal cells. This observation gives

us a clue for distinguishing between epithelial and stromal cells, although these two

types of cells are exhibiting the same intrinsic features.

1.3 Aims of the Thesis

The objects in microscopy sequences and endometrial histology images often exhibit

inconsistent features compared with the other objects of the same type or similar fea-

tures to the objects of other types. Existing object analysis algorithms in biomedical

image have weaknesses and unsatisfactory performance for analysing these objects,

because these methods are limited in modelling intrinsic characteristics of the ob-

jects. In this thesis, we aim to expand the capabilities of object analysis in both

TIRFM sequences of Myosin VI proteins and Endometrial Histology Images, by a

locality sensitive modelling approach derived from the concept of that the prominent

features of an object may embody in a temporal or spatial correlation between it

and others in a local neighbourhood.

1.3.1 Detection and Tracking of Myosin VI Protein Spots in TIRFM

Sequences

Existing spot tracking algorithms are proprietary for the specific types of fluorescent

spots and microscopy sequences. Consequently, they are not adept in detecting and

tracking Myosin VI spots in TIRFM sequences due to the particular visual appear-
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(a)

(b)

Figure 1.1: (a) and (b) are two example images captured for identified regions in
the HPFs of whole slide images at 40× magnification.
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ances and non-linear motions of the spots and noisy backgrounds such as fluorescent

artefacts and subcellular objects. Moreover, these algorithms are computational ex-

pensive and inaccurate when they are faced with intensive number of spots with

frequent overlapping, disappearing, reappearing, and abrupt changes of directions

and velocities. Our aim is to develop a low computational cost multi-target track-

ing framework to cope with the complex characteristics of Myosin VI spots and

overcomes the difficulties in their detection and tracking in TIRFM sequence.

1.3.2 Cell Detecion and Epithelium Segmentation in Endometrial

Histology Images

The computer-aided diagnostic system for recurrent miscarriages due to over-presence

of UNK cells is developed in two stages. The first stage aims to detect cells, clas-

sify between stromal and UNK cells, and localise luminal epithelium in order to

excluded epithelial cells. It is important to note that the image data in the first

stage was captured near the boundary of tissue regions and gland are not included

according to the diagnosis protocol of the first stage. Hence, the scope in this stage

is to remove only the cells which are located within a range of 200µm to luminal

epithelium from the cell counts.

To the best of our knowledge, there is no existing method proposed for

segmenting both luminal and glandular epithelium in endometrial histology im-

age. Alternatively, the epithelium can be indirectly obtained by extracting it from

segmented glandular structures. Existing gland segmentation methods are mainly

based on the assumption that a glandular structure is in the form of lumen sur-

rounded by a layer of epithelial cells. And they tend to detect, segment or classify

lumen and epithelial cells by employing their locations, colour and texture. In en-

dometrial histology, there are insignificant distinctive features, in terms of colour,

texture and morphology, between epithelial and stromal cells, and also between lu-

men and background regions. Moreover, epithelium may consist of more than one

10



layers of epithelial cells, and stromal cells are also packed at the boundaries of glands

and tissue regions in some cases. Consequently, these methods fail to segment ep-

ithelium correctly. In the second stage, the ultimate goal is to develop a universal

solution for segmenting both luminal and glandular epithelium in order to excluded

epithelial cells..

1.4 Main Contributions

The novelty of our framework for tracking Myosin VI proteins in TIRFM is manifold

and listed as follows:

• First, it uses a Bayesian estimation filter with two motion models to accurately

approximate the non-linear movements of Myosin VI proteins.

• Second, it integrates a global data association into the Bayesian estimation

filtering process for solving measurement-to-target and estimation-to-target

assignment problems.

• Third, it overcomes the limitation of bijective mapping of global data associ-

ation by incorporating a locality sensitive model with imaginary spots in the

spot association process.

Several novel methods are contributed for detecting and classify different types of the

cells, and also for segmenting both luminal and glandular epithelium in endometrial

histology images:

• A cell detection method based on local phase symmetry is enhanced by a

novel locality sensitive model for improving cell dtetcion accuracy, and a novel

adaptive background removal method is proposed to segment brown stain

regions (when stain UNK cell using DAB) which are used identify UNK cells.

• We identify individual tissue region by using a clustering algorithm on the

detected cell and propose a novel approach to identify the cells packed at the
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boundaries of tissue regions as epithelial cells. A curve fitting method is then

used on the identified epithelial cells to mark luminal epithelium.

• We propose a generic solution for segmenting both luminal and glandular ep-

ithelium. It is observed that epithelial cells are arranged in a locally and neatly

oriented manner therefore neighbouring epithelial cells exhibit certain patterns

of orientation congruence. Based on the observation, we propose a variety of

novel cell orientation congruence descriptors for epithelium segmentation. The

common idea of the proposed descriptors is to describe cell orientation con-

gruence within a local cell neighbourhood using locality sensitive modelling

approach.

1.5 Thesis Layout

This thesis is divided into 6 chapters. An introduction of biomedical imaging was

given in Chapter 1, followed by a brief discussion of challenges and solutions for

computerised objects analysis in biomedical imaging. The following chapters 2, 3,

4 and 5 present the solutions based on locality sensitive modelling. Each chapter

also briefly reviews the related work and evaluates the proposed solution against the

state-of-the-art methods.

Chapter 2 presents the pre-processing methods for removing background

noise and enhancing spot appearance to improve spot detection accuracy, and also

a method for detecting Myosin protein spots. Next, a multi-target spot tracking

framework for is presented in Chapter 3.

Chapter 4 presents a complete cell detection solution for the endometrial

histology images containing only luminal epithelium. The solution consists of a cell

detection method, a DAB stain segmentation method for classifying UNK cells, and

a luminal epithelium localisation methods for excluding irrelevant cells from the

cell counts. In Chapter 5, we propose a variety of novel cell orientation congruence
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descriptors to classify epithelial cells, which can be integrated with superpixel to

attain a generic approach for segmenting both luminal and glandular epithelium.

Chapter 6 concludes the thesis, summarises contributions, advantages and

limitations of the work, and discusses several future directions for extending the

proposed methods.
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Chapter 2

Detection of Myosin VI Protein

Spots in Fluorescence

Microscopy Sequences

The major steps for tracking spot in fluorescence microscopy sequences has been

introduced in Chapter 1, which involves 3 main stages: pre-processing, spot detec-

tion, and spot tracking. Figure 2.1 shows a workflow of the proposed multi-target

tracking framework for Myosin VI protein spots in fluorescence sequence and the

intermediate results of each stage. In this chapter, we focus on presenting the pre-

processing and spot detection stages, the spot tracking stage will be introduced in

Chapter 3.

The reminder of this chapter is organised as follows. Section 2.1 introduces

all details necessary to recreate the experiments of detecting and tracking Myosin VI

protein spot in fluorescence microscopy sequences. In Section 2.2, we briefly discuss

several popular algorithms for detecting fluorescence spots. A pre-processing method

for fluorescence microscopy sequences is introduced in Section 2.3 and an algorithm

for detecting Myosin VI spots is presented in Section 2.4. We also present a method
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Figure 2.1: The block diagram of the proposed multi-target tracking framework for
Myosin VI spots in TIRFM sequence.

of generating synthetic fluorescence sequences for evaluating the proposed detection

and tracking algorithms in Section 2.5. In Section 2.6, we evaluate the proposed

detection algorithm on both real and synthetic fluorescence microscopy sequences.

The work is summarized in Section 2.7.

2.1 Methodology

To study in-vitro properties of Myosin VI proteins, our collaborators artificially in-

troduce plasmid into transfected mammalian cells to produce the engineered Myosin

VI protein with a fluorescent tag. Once the proteins start being produced by the

cells, our collaborators harvest the cell to extract and purify the proteins which are

used to do the in-vitro motility stepping assays to analyse the properties of a single

molecule [38] [39]. Myosin VI proteins on Rhodamine-Phalloidin stabilised Actin

filaments are dyed by enhanced GFP [40] and their spatial-temporal movements are

captured using Total Internal Reflection Fluorescence Microscopy (TIRFM) [41] [42]

into in-vitro digital image sequences. TIRFM technique is equipped with the abili-
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ties of limiting Myosin VI protein excitation in a narrow spectrum region and elim-

inating background fluorescence. These particular advantages significantly improve

signal-to-noise ratios and the spatial resolution of fluorescent proteins to enhance

their visual presences in in-vitro image sequences, thereby easing object analysis

in fluorescence bioimage such as detection and tracking of Myosin VI proteins to a

certain extent [42].

The fluorescence microscopy assay for Myosin VI proteins were performed

using an Axioskop 40 Microscope (Zeiss, Germany) shown in Figure 2.2(a), fluores-

cence microscope with a PlanNeofluar 100×1.45 numerical aperture objective fitted

with a custom laser excitation system consisting of a frequency doubled neodymium:

that entered the fluorescence light path using a custom-built adaptor. Fluores-

cence emitted from the rhodamine-phalloidin-labeled actin filaments or the eGFP

labelled Myosin VI complexes was collected by the same objective lens. Filter cubes,

mounted in the microscopes epifluorescence filter wheel, separated the eGFP fluo-

rescence (Excite 488nm Laser, dichroic: Di02-R488; Emission filter: FF02-520/28,

Semrock, Rochester, NY, USA) from the rhodamine fluorescence (yttrium aluminum

garnet laser (λ = 532nm, 20 milliwatts), dichroic: Di02-R561; Emission filter: FF01-

609/54 Semrock), the fluorescence was imaged onto a charge coupled device camera.

More details on microscopy workstation can be found in [43]. The issues of static

errors due to ambient vibrations was dealt with in [44]. They analysed static eGFP

spots which were immobilized to a glass coverslip and showed that mobile single

fluorophores could be detected reliably.

Furthermore, the setup used in our experiments is similar to the one used in

[44] where a shutter-less camera was used to acquire the images. Image sequences

of video were captured using a frame grabber card and recorded onto a computer

hard disc in Tagged Image File Format (TIFF). The time interval between two

adjacent frames of the TIRFM sequences is 0.048s. The resolution of a frame is

53.12µm×49.28µm (332×308 pixels, 6.25 pixel/µm). Imaging process of Myosin VI
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proteins using two-channel TIRFM is shown in Figure 2.2(b). Myosin VI proteins

and Actin Filaments are imaged in the Green and Red channel respectively. A

sample frame from a two-channel TIRFM sequence is shown in Figure 2.3(a). The

Green and Red channels separated from the sample frame are shown in Figures

2.3(b) and (c), respectively. In addition, Figure 2.3(d) shows a sample frame from

an one-channel TIRFM sequence of Myosin VI proteins.

2.2 Related Work

It is a great challenge of obtaining accurate and complete detection of subcellu-

lar structures in fluorescence microscopy images [45]. The quality of fluorescence

microscopy image is typically poor due to many limitations in the image acqui-

sition process. It is especially the case for imaging living cell, where the images

normally have a very low SNR, this is because that the illumination is reduced

to the minimum in order to prevent photo-damage and photo-bleaching [46] [47].

In addition, although optical microscopy technique has been greatly improved over

the last decade [48], the resolution of the best microscope available today is only

approximately 100 nanometers, which is still comparatively coarse to the sizes of

subcellular structures (generally only several nanometers in diameter). This causes

that a subcellular structure labelled with GFPs exhibits as a bright spot which has

diffraction-limited appearance and only occupy a few pixels in the images. More-

over, the appearances of subcellular structures are similar to that of e.g., fluorescent

artefacts, other irrelevant background structures, or even the background noise due

to electronics. Therefore it is very difficult even for expert biologists to precisely

recognise subcellular structures in fluorescence microscopy images.

Spot detection methods are generally divided into two groups: unsuper-

vised and supervised. Unsupervised methods implicitly or explicitly model the ap-

pearances of spots and images. The parameters of the appearance model must be
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(a)

(b)

Figure 2.2: (a) A Zeiss Axioskop 40 Microscope; (b) Imaging process of Myosin VI
proteins using two-channel TIRFM.
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(a) (b)

(c) (d)

Figure 2.3: (a) is one sample frame from a two-channel TIRFM sequence of Myosin
VI proteins, (b) and (c) are the Green and Red channels of (a) respectively, and (d)
is a sample frame from a single-channel TIRFM sequence of Myosin VI proteins.
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tuned either manually or semi-automatically to proper values based on the assump-

tion/observation of specific images in order to achieve the best performance. Thus,

the performance of unsupervised methods depends on the nature of specific images.

Most of unsupervised methods can be employed in both pre-processing (e.g., image

denoise and spot enhancement) and detecting spot, e.g., wavelet-based multi-scale

detectors [49] [50] [51], local background subtraction [52], linear filtering [53] [54]

[55], and morphological filtering [56] [57] [58] [59]. The proposed spot detection

method is a mixture of several methods listed above.

Supervised methods [60] attempt to “learn” the appearances of spots and

irrelevant objects from small image patches containing their intensity profiles and

use a classifier, e.g., Adaboost [61] [62] to distinguish between spots and background

objects based on “the learned appearances”. Supervised methods are more power-

ful than unsupervised methods when sufficient and accurate“learning materials” are

provided [63]. Unfortunately, supervised methods are not suitable in our case since

limited number of image dataset were provided to the experiments. A comprehen-

sive comparison between a number of state-of-the-art unsupervised and supervised

methods is presented in [63].

2.3 Pre-processing

The pre-processing stage is aimed at facilitating the later spot detection stage by

improving the quality (SNR) of image frames via denoising the noisy background

and enhancing the visual appearances of spots in TIRFM sequence. We first denoise

the TIRFM sequences by using the translational invariant 3D wavelet transform

proposed in [64] on the entire sequence. This wavelet based approach is effective

in removing the noisy background and aberrant “spot-like” noise while significantly

reducing the Gibbs phenomenon that is commonly observed when using wavelet

shrinkage for image sequence denoising. Next, we use the Kalman filter [28] and the
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Difference of Gaussian (DoG) filter on a frame-by-frame basis in order to enhance the

visibility of any potential spot. Here, the Kalman filter adjusts the pixel intensities

of frame t based on the pixel intensities of frame t − 1, where t denotes the frame

index in time. The DoG filter is utilised to sharpen spot appearances, as well as

remove undesirable artefacts and noises. The intermediate result of each step of the

pre-precessing stage performed on real TIRFM frame is shown in Figure 2.4.

2.4 Spot Detection

The spot detection stage consists of two steps: 1) object detection and 2) spot

classification.

2.4.1 Object Detection

In the first step, we apply the H-dome transform [65] on each frame. This particular

image transformation can detect all regional maxima (bright objects) that resemble

“dome-like” structures, e.g., the diffraction-limited spots due to the GFP bound to

the Myosin VI protein molecules in our cases.

2.4.2 Spot Classification

In the second step, we propose a spot detection method inspired by the work in-

troduced in [63] to distinguish between potential diffraction-limited spots and other

“dome-like” structures. We first normalise the H-dome transformed image IH into

a 2D probability distribution map Mp as follow,

Mp(x, y) =
IH(x, y)

max(IH)
(2.1)

where IH(x, y) and Mp(x, y) denote the intensity and probability values at pixel

(x, y) of IH and Mp, respectively, and max(IH) is the maximum intensity value of

IH .
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(a) (b)

(c)

Figure 2.4: The intermediate result of each step in the pre-precessing stage per-
formed on real TIRFM frame. (a) Original frame. (b) Denoised frame after transla-
tional invariant 3D wavelet transform and Kalman filtering. (c) DoG filtered frame.
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Second, we draw a large number of sample points from the IH using the

probability map Mp. Since the probability values of “dome-like” structures are much

higher than that of the background, sample point clusters are usually found in those

pixel regions depicting “dome-like” structures. The sample point are clustered using

the Mean-shift algorithm [66].

Finally, we fit a 2D Gaussian model to each detected cluster Rdome, using an

Expectation Maximization (EM) algorithm. The EM algorithm finds the maximum

likelihood estimates of the parameters of the fitted 2D Gaussian model, i.e., mean

position µdome, covariance matrix Σdome, and standard deviations σx and σy in the

x and y directions. We observe that a “dome-like” structure depicts a diffraction-

limited spot as long as the estimated 2D Gaussian model for the corresponding

cluster satisfies the following criteria: 1) µ is found close to the centroid of Rdome;

2) σx ≤ 1 and σy ≤ 1; 3) the off-diagonal values in Σdome are close to zero; and

4) min(σ2
x, σ

2
y)/max(σ2

x, σ
2
y) ≥ 0.6, in other words, Rdome should resemble a more

circular shape rather than an elliptical shape. In addition, the size of Rdome should

be within a threshold according to the magnification used to acquire the TIRFM

sequences. For our TIRFM dataset, this size should be no larger than 5 × 5 pixel.

Figure 2.5 shows the intermediate result of each step in the spot detection stage on

real TIRFM frame.

The diffraction-limited spots detected using the proposed detection algorithm

may still contain those noisy spots caused by, e.g., electronic or auto-fluorescence

noise. The true diffraction-limited spots usually retain their intensity level over

time until they photo-bleach in a single step fashion or dissociate. In contrast, the

noisy spots due to electronic noise usually persist for up to 2-3 frames only, while

the intensity values of the noisy spots due to cellular auto-fluorescence noise, which

comprise multiple dim fluorophores in most of the cases, decay exponentially with

time. Therefore, we can also remove some noisy spots based on the above prior

within the tracking stage in a straightforward manner.

23



(a) (b)

(c)

Figure 2.5: The intermediate result of each step in the pre-precessing stage on real
TIRFM frame. (a) H-dome transformed frame. (b) Samples drawn from dome-
like structures are depicted in green. (c) Final detection results: all “dome-like”
structures are depicted in red and only true spots are circled in green.
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2.5 Generation of Synthetic TIRFM Sequences

We generate one-channel (gray-scale) synthetic TIRFM sequences of Myosin VI

spots moving along Actin filaments in 3 steps: 1) modelling synthetic Myosin VI

spots, 2) generating synthetic Actin filaments, and 3) adding artificial noises to the

background.

2.5.1 Modelling of Synthetic Spots

We assume that the visual appearances of Myosin VI spots exhibit as 2D Gaussian

distribution. The intensity value S(x, y) of the synthetic spot at pixel (x, y) is

computed as,

S(x, y) = f · e−(X′+Y ′) (2.2)

where

X ′ =
(x− xo) cos θs − (y − yo) sin θs

σ′2x
,

Y ′ =
(x− xo) sin θs + (y − yo) cos θs

σ′2y

where xo and yo denote a randomly generated centroid position of the synthetic

spot, and σ′x and σ′y control the spread in the x and y directions, respectively, f

is the intensity factor which adjusts the brightness of the synthetic spot, and θs

controls the orientation of the synthetic spot.

2.5.2 Modelling of Actin Filaments

Actin filaments, in general, resemble curvilinear structures [67], whose shapes are

hard to approximate. To this end, we model synthetic Actin filaments as a collection

of curve segments and approximate each segment using the cubic Bezier curve [68].

The synthetic Actin filaments are also used as motion trajectories which control the

animation of synthetic spots over the sequences.

A n orders Bezier curve is a curve that goes from a start point P0 to an end
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point Pn and its shape is controlled by a set of control points P1 through Pn−1.

The position at t time step of a cubic (3 orders) Bezier curve B3(t) is define as,

B3(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3,

0 ≤ t ≤ 1

(2.3)

The length of each generated cubic Bezier curve is very short (only a very

few pixels). One synthetic Actin filament is approximated by connecting a set of

m cubic Bezier curves. The end point of the first curve must be same as the start

point of the second curve and so on. In addition, the start point of the first curve

must not be same as the end point of the last curve since we assume that real Actin

filament is never closed.

2.5.3 Addition of Artificial Nosie

We add 3 types of artificial noise into the synthetic TIRFM frames: 1) auto-

fluorescence noise, i.e., the synthetic spots with exponentially decayed brightness

over time, 2) fluorescent artefacts, i.e., the synthetic spots with oversized or very

elongated shapes, and 3) electronic noise in the background, i.e., Poisson noise. Fig-

ure 2.6 show two examples of synthetic TIRFM frames with different backgrounds.

2.6 Evaluation of the Proposed Spot Detection Algo-

rithm

We use Precision and Recall values to quantify the accuracy of our spot detection

algorithm and the values are defined as follows,

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2.4)
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(a)

(b)

Figure 2.6: (a) A synthetic frame with type A background. (b) A synthetic frame
with type B background. Both synthetic frames depict spots of different sizes.
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where a True Positive (TP) is a detected spot that can be found in the ground

truth (i.e., manually detected spots), a False Positive (FP) is a detected spot that

cannot be found in the ground truth, and a False Negative (FN) is a spot that is

not detected by the algorithm but that can be found in the ground truth.

2.6.1 Evaluation on Synthetic TIRFM Images

We generate synthetic TIRFM images with a resolution of 320× 320 pixel with one

of two types of backgrounds: type A has an uniformly distributed image snrintensity

level, while type B contains large cluttered objects that often appear in real TIRFM

frames and usually represent large subcellular structures.

In our real TIRFM sequences, spots are usually of different sizes with round

or elongated shapes. For the synthetic data, with both type A and B backgrounds,

we model round and elongated spots with two sizes; small and large. These elon-

gated spots are generated using different standard deviation values in the x and y

directions, within the range [0.8−1.2] for small spots, and within the range [1.4−2.2]

for large spots. Round spots are generated by setting the standard deviation to 1.0

in the x and y directions for small spots, and to 1.8 for large spots. Both Figure 2.6

(a) and (b) show different sizes and roundness of the synthetic spots. We generate

over 250 randomly-positioned spots for each synthetic frame. Figure 2.6 (a) and (b)

shows two synthetic frames with type A and B backgrounds, respectively.

In this work, the synthetic data is distorted by one of three levels of Poisson

noise; low, medium or high. Poisson noise is generated by rescaling the intensity

values of the frames to different ranges, and the intensity value of each pixel in the

rescaled frame is interpreted as the mean of a Poisson distribution that is used to

generate a new random intensity value for the corresponding pixel. After rescaling,

the frames are rescaled back to the original range of intensities. Low-level Poisson

noise (SNR≈49dB) is generated by rescaling the pixel intensities to the range [1, 60],

medium-level noise (SNR≈42dB) is generated using the range [1, 30] and high-level
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noise (SNR≈33dB) is generated using the range [1, 15].

Table 2.1 reports the accuracy of our spot detection algorithm on synthetic

TIRFM frames distorted by three levels of Poisson noise. These results show that

the proposed algorithm can detect the majority of large spots in the frames distorted

by high-level noise. In the frames distorted by low-level noise, our algorithm reports

very few FPs and FNs. We also observe that the proposed algorithm performs

slightly better when detecting round spots than when detecting the elongated spots.

The proposed algorithm, however, fails to distinguish small spots in those frames

distorted by high-level noise. In these cases, a large number of FNs are reported

and more than half of the detected spots are FPs, which are produced by the noise.

In the frames with type B background, more FNs and FPs are reported due to the

cluttered background.

2.6.2 Evaluation on Real TIRFM Images

Our test data set comprises each three frames of five different real TIRFM sequences

acquired using a single channel, for a total of fifteen frames, and each frame has a

resolution of 320 × 320 pixel. The ground truth was manually labelled by one of

our collaborator and re-validated by two collogues. The experimental results are

reported in Table 2.2. It can be observed that the proposed algorithm also attains

high precision and recall values on TIRFM Images. The proposed algorithm is

implemented in Matlab on a workstation with Intel i5 processor and 8GB RAM, we

also report its average processing time on one single frame in Table 2.2.

2.7 Summary

In this chapter, we discussed the difficulties of spot detection in fluorescence mi-

croscopy and introduce several related classic methods. We also presented a novel

algorithm for detecting Myosin VI spot in TIRFM frames and a novel method for
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Table 2.1: Results of the proposed spot detection algorithm on synthetic TIRFM
frames distorted with three different levels of Poisson noise.

Background
Round spots Elongated spots

Size Precision Recall Size Precision Recall

Low-level noise

A
Small 0.923 0.997 Small 0.917 0.991

Large 1.000 1.000 Large 0.997 1.000

B
Small 0.918 0.989 Small 0.921 0.986

Large 0.996 1.000 Large 0.992 1.000

Medium-level noise

A
Small 0.837 0.963 Small 0.822 0.945

Large 0.952 0.967 Large 0.945 0.956

B
Small 0.843 0.959 Small 0.834 0.941

Large 0.953 0.961 Large 0.935 0.947

High-level noise

A
Small 0.405 0.928 Small 0.380 0.921

Large 0.861 0.938 Large 0.854 0.943

B
Small 0.394 0.926 Small 0.386 0.923

Large 0.846 0.932 Large 0.817 0.939
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Table 2.2: Results and runtime of the proposed spot detection algorithm on 5 dif-
ferent real TIRFM sequences of 100 frames.

Sequences Spots/frame Runtime(sec/frame) Precision Recall

1 55.2 1.67 0.891 0.896

2 67.4 1.87 0.873 0.865

3 89.7 1.92 0.865 0.871

4 98.1 2.14 0.837 0.853

5 123.9 2.48 0.824 0.824

Average 86.9 2.02 0.858 0.862

generating synthetic one-channel TIRFM sequences with animated synthetic fluo-

rescent spots. We evaluated the proposed spot detection algorithm on both real

and synthetic one-channel TIRFM frames. The experimental results show that the

proposed spot detection algorithm is cable of obtaining accurate measure of Myosin

VI spot, which is crucial to the following spot tracking stage.
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Chapter 3

Tracking of Myosin VI Protein

Spots on Actin Filaments

In this chapter, we introduce an accurate and efficient multi-target spot tracking

framework which can be employed to better study the biophysics of Myosin VI

protein molecules (spots) in TIRFM sequences. The framework employs the IMM

filtering with an extended Hungarian algorithm based data association method. The

IMM filtering uses two Kalman filters with distinct motion models to accurately ap-

proximate the non-linear dynamics of Myosin VI spots in noisy and dense TIRFM

sequences. The data association method is used to deal with measurement-to-target

and estimation-to-target assignments problems. Specifically, we use the Hungarian

algorithm due to its low computational complexity compared to other data associ-

ation methods, e.g., MHT and JDPA, when dealing with noisy and dense data. In

order to overcome the limitation of bijective mapping in LAP-based methods, which

requires equal number of targets in two adjacent frames, we introduce a locality sen-

sitive model with a number of imaginary spots to equalize the spot numbers of two

adjacent frames. This work focuses on developing and evaluating an efficient spot

tracking framework for Myosin VI spots in TIRFM sequences and therefore, a de-

tailed study of the dynamics of Myosin VI proteins is beyond the scope of this work.
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The proposed framework is evaluated on both real and synthetic TIRFM sequences

of Myosin VI spots, and the experimental result shows that the framework is fully

capable of tracking various molecular motors with properly tuned parameters and

motion models.

The remainder of this chapter is organized as follows. Section 3.1 introduces

several popular methods for tracking particles/spots in florescence sequences. Two

synergistic components of the proposed framework are described in Sections 3.2 and

3.3, respectively, which are an extended Hungarian algorithm and an IMM filter

with two distinct motion models, and the framework workflow comprised of these

two components is explained in 3.4. Section 3.5 proposes a post-processing step to

eliminate error tracks. Section 3.6 presents validation of the proposed framework

against three publicly available tracking methods on both synthetic and real TIRFM

sequence. Section 3.7 summaries the work presented in this chapter.

3.1 Related Work

Several data association approaches that can be employed to deal with multi-target

tracking problems have already been introduced in Chapter 1, e.g., LAP, MHT,

and JDPA. These approaches estimate a target’s track over a number of frames by

matching a candidate target to a track based on the candidate target’s similarity

to matched targets in the previous frames. Specifically, LAP based methods apply

a bijective mapping between two sets of targets in two adjacent frames. The map-

ping is made by minimizing a sum of costs (dissimilarities) of all possible target

pairs arranged in a cost matrix. LAP has been successfully used in feature point

tracking methods for analysis of particle trajectories as recorded by video imaging

in cell biology [6]. MHT [69] [24] and JDPA [70] [71] based methods estimate how

likely it is to match each discovered track to a specific target. MHT performs this

estimation over the entire frame sequence, while JDPA separately constructs all pos-
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sible assignments between pairs of adjacent frames. Although JDPA is much less

computationally expensive than MHT, it does not take into account the target’s

motion pattern over time, thus it performs poorly in dense situations where targets

constantly overlap, disappear, and change directions and speeds.

Bayesian estimation based target tracking methods are Kalman filtering and

its extensions, Particle filtering, and IMM filtering. Kalman filtering uses a series

of noisy measurements observed over time to estimate the state of a target, e.g.,

direction, position, and speed. In [72], Kalman filtering is applied with the Mean-

shift algorithm to track cell nuclei in Time-Lapse Microscopy. Kalman filtering,

however, assumes a single motion pattern for each target, so it performs poorly

with non-linear dynamics, such as those of protein molecules. Particle filtering uses

Monte Carlo simulations of sample data from targets’ states and measurement up-

dates to accurately approximate their behaviours, even in the case of non-linear

dynamics. In [53], [55] and [73], advanced Particle filters are proposed for tracking

multiple targets in fluorescence microscopy sequences. Particle filtering, however,

has a much higher computational cost than that of Kalman filtering. IMM filter-

ing, on the other hand, provides a computationally effective alternative to Particle

filtering by associating multiple Kalman filters to one target, where each Kalman

filter features a distinct motion model. The posterior state of the target is then a

mixture of the different posterior states estimated by each Kalman filter. In [74] and

[50], the authors proposed an IMM filter-based method employing several models

corresponding to different movement types of moving fluorescent spots. Tracks are

constructed thereafter by using a local data association to associate the track with

one of the measurements, which has the maximum likelihood estimated by its IMM

filter, within the validation gate. One obvious limitation is that data association

(track construction) cannot proceed once no measurement is found in the validation

gate, in other words, the track is terminated even if the spot is temporally missing

due to the incapabilities of spot detection methods or imaging techniques.
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Bayesian estimation based approaches, in general, can significantly improve

the tracking accuracy but cannot be employed independently [55]. In a mature

Bayesian estimation based tracking framework, both the prediction stage in Bayesian

estimation and the track construction stage require data association process to

deal the measurement-to-target and estimation-to-target assignments, especially in

multiple-target tracking. The measurement-to-target assignment problem refers to

the coupling of a target in the current frame with its corresponding measurement

in the next frame, while the estimation-to-target assignment problem refers to the

association of the estimation of a target in the current frame with a candidate tar-

get in the next frame [75]. Therefore, Bayesian estimation are often integrated with

data association, e.g., MHT [69] [24] and JDPA [76] [55] [71].

3.2 Extended Hungarian Algorithm

An IMM filtering based multi-target tracking process generally faces two assignment

problems: 1) assigning spots in a frame with their measurements spots in one of

successive frames, and 2) associating pairs of spots in two adjacent frames. The

Hungarian algorithm can help to solve these two assignment problems. However,

the Hungarian algorithm requires equal number of spots in two adjacent frames,

which is normally not the case in TIRFM sequences where spots tend to appear and

disappear constantly. To overcome this issue, we extend the Hungarian algorithm

by using a locality sensitive model to equalise the number of spots in two adjacent

frames. Specifically, the model adaptively adds two types of imaginary spots to

the frames: virtual and dummy spots. These imaginary spots also help to resolve

discontinuity problems of spot trajectories, which are commonly encountered when

spots constantly disappear and reappear along the sequence or when they overlap

with other spots. A dummy spot is generated in frame t if a true spot in frame

t−1 cannot be associated to a measurement (true spot) in frame t within a distance
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δ from its position, where δ denotes the maximum distance that a spot can move

between adjacent frames. Dummy spots are used in subsequent frames, if needed,

to continue a track. The virtual spot, on the other hand, is generated in frame t− 1

if a true spot in frame t cannot be associated with any true spot within δ in frame

t − 1. These concepts are illustrated in Figure 3.1. For example, Tracks A and B

in Figure 3.1 represent the case of a true spot splitting into two true spots. Both of

the two resulting spots in frame t can be matched to the splitting true spot in frame

t − 1 within δ. Since only one of them can be associated with the splitting true

spot, the other one must be associated with a virtual spot and so, a virtual spot is

generated in frame t− 1. Tracks E and F , on other hand, represent an example of

two spots merging. In this case, the two true spots in frame t − 1 merge in frame

t. Although both of them can be matched to the merged true spot in frame t + 1

within δ, only one of them can be associated with this merged spot. The other true

spot must, therefore, be associated with a dummy spot and so, a dummy spot is

generated in frame t and is used in frame t+ 1 to continue track F .

After integrating the locality model with imaginary into the Hungarian al-

gorithm as described above, the cost matrix Mcost of two adjacent frames that have

unequal number of spots can be constructed. The cost matrix comprises columns

that represent the spots in frame t− 1 and rows that represent the spots in frame t.

Each element in Mcost represents the cost coefficient (dissimilarity) between a spot

in frame t− 1 and a spot in frame t. The cost coefficient between imaginary spots

is predefined. Specifically, the cost coefficient between a dummy spot and a virtual

spot is set to ∞, which guarantees that assignment between them cannot happen

under any circumstances. The cost coefficient between a dummy/virtual spot and

a true spot is set to be 0, since it is not possible to determine which true spot must

be associated with a dummy/virtual spot at the stage of constructing cost matrix

Mcost. For a pair of true spots, e.g., spots i and j, 3 types of their features are used

to calculate the cost coefficient costij : the average intensity, Ii and Ij ; the area, Ai

36



Figure 3.1: An example of the locality sensitive model with imaginary spots. Black
solid circles denote true spots, clear circles in a dotted line denote virtual spots, and
clear circles in a solid line denote dummy spots.
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and Aj; and the centroid, Ci and Cj. The cost coefficient costij is calculated as

follows,

costi,j = eI + eA + eC

I = −
(

α

||Ii− Ij||

)
, A = −

(
β

||Ai−Aj||

)
, C = −

(
γ

||Ci− Cj||

) (3.1)

where α, β and γ are the parameters that adjust the weight of each feature. Their

values can be derived from the weights given to intensity, position and size in the

manual spot tracking.

Using the cost matrix Mcost as defined above, we can compute a bijective

mapping between spots in Mcost by finding, among all possible mappings, those

pairs of spots that result in the minimum total cost.

3.3 IMM Filter with Two Motion Models

The IMM filter used in the proposed tracking framework uses two motion models

for each Kalman filter [28]; M1: nearly constant velocity with a small acceleration

[77] and M2: Gauss-Markov mobility [78]. These two motion models are selected

due to their capability to approximate the non-linear dynamics of Myosin VI spots.

We assume that the movement of a Myosin spot on Actin filament is a composite of

unbound, freely diffusing and weakly bound states, that is diffusive motion trapped

by affinity for a fixed structure (Actin filament). This sort of caged spot moves with

a constant velocity along on their rails but can sometimes also exhibit a random

motion just like a spot with pure diffusive motion within a very short time period.

The state evolution equation of the nearly constant velocity model is defined as
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follow,

St = M · St−1 + qt

M =



1 ∆T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1



Σ =



∆T 3

3
∆T 2

2 0 0

∆T 2

2 ∆T 0 0

0 0 T 3

3
∆T 2

2

0 0 ∆T 2

2 ∆T



(3.2)

where St = [xt, yt, ẋt, ẏt]
T is the state (coordinate and velocity) vector at time step

t; xt and yt are the coordinates; ẋt and ẏt are the velocities in x and y directions,

respectively; M is the state transition matrix; Σ is the covariance matrix of noise qt

at time step t, and ∆T is the time interval between two adjacent frames.

The Gauss-Markov mobility model provides different levels of randomness

to the direction and speed of Myosin VI spot. This model compensates for the

lack of direction and speed changes in the first model. In addition, it avoids sudden

direction and speed changes by updating the current direction and speed state based

on previous states. The updating equation of the Gauss-Markov mobility model is

defined as follow,

st = αst−1 + (1− α)s̄+
√

1− α2sxt−1

θt = αθt−1 + (1− α)θ̄ +
√

1− α2θxt−1

(3.3)

where st and θt are the speed and the direction of a spot at time t, s̄ and θ̄ are

the constant mean speed and mean direction respectively, and sxt−1 and θxt−1 are

random variables that take real values within the range (0, 1).
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The level of randomness is controlled by α, where 0 ≤ α ≤ 1; α = 0 generates

totally random values which exhibit Brownian motion, whereas α = 1 results in

linear motion. The position state vector (xt, yt) of a spot is updated as follows,

xt = xt−1 + st−1 cos θt−1

yt = yt−1 + st−1 sin θt−1

(3.4)

For each of the two motion models, a model transition matrix is used to

represent the probabilities of switching from itself to the other. In this work, we

use a quasi-Bayesian algorithm which uses an on-line minimum Mean Squared Error

(MSE) estimation to adaptively tune the elements in the model transition matrix

[79] [80].

3.4 Workflow of the Proposed Multi-target Spot Track-

ing Framework

This section details workflow of the proposed tracking framework, which is depicted

in Figure 3.2. In step 1, the tracking algorithm processes a pair of adjacent frames:

frames t − 1 and frame t. First, imaginary spots are added into the two frames

and the cost matrix Mcost is constructed. Next, the extended Hungarian algorithm

computes the bijective mapping between spots in Mcost to assign a measurement

in frame t − 1 to each spot in frame t. In step 2, the states (i.e., position and

speed), the state covariance, and the measurement of each spot in frame t − 1 are

used to predict their new states and state covariances in frame t using the proposed

IMM filter. In step 3, the tracking algorithm associates all types of spots in the

two adjacent frames to establish, continue or terminate track segments. First, the

predicted states of spot are used to update the corresponding states in frame t− 1.

Previously added imaginary spots are then removed and new imaginary spots are

added based on the updated spots. Next, the tracking algorithm constructs a new
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cost matrix Mcost between the updated spots in frame t− 1 and the spots in frame

t. The extended Hungarian algorithm is used again to associate the updated spots

in frame t − 1 with the spots in frame t, which continues the established track

segments. Finally, tracks are updated and the tracking algorithm process the next

pair of adjacent frames; frame t and frame t + 1. As part of the track updating

procedure in this step, it is important to note the following two observations: 1)

track segments with more than one true spot are terminated if they are continually

associated with more than five dummy spots. That is, in this work, the framework

stops tracking a spot if it disappears for five consecutive frames. This number of

consecutive frames is selected as the cut-off based on practical observation in the

manual tracking. We observe that the majority (around 87%) of tracks are not

continued if the corresponding spot disappears for five consecutive frames. 2) In

order to remove noisy spots due to electronic noise, a terminated track segment is

permanently eliminated if no more than three true spots are associated with this

track segment. Also, a track segment with only one true spot is terminated if it

is continually associated with three dummy spots (recall that noisy spots due to

electronic noise usually persist for up to 2-3 frames).

3.5 Elimination of Error Tracks

In order to remove due error tracks (mostly caused by auto-Fluorescence noise being

detected as spots), an exponential function and a constant function are fitted to the

intensity values of the spots in those track segments associated with more than 10

true spots. The exponential function fexp(i) and the constant function fcon(i) are

defined as follow:

fexp(i) = N0e
−λi, 0 ≤ i ≤ Nspot − 1

fcon(i) = at+ b, 0 ≤ i ≤ Nspot − 1

(3.5)
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Step 1: Measurement
Association

Process of a pair of adjacent
frames: the current frame t-1 and

the next frame t

Step 2: IMM Filtering

Computation of predicted states and state
covariances of spots in the current frame t-
1 using their associated measurement,
states and state covariance in the next

frame t

Update of states of spots in the
current frame t-1

Step 3: Spot Association

Addition of imaginary spots and
construction of cost matrix Mcost

Hungarian algorithm: bijective
mapping using cost matrix Mcost

Association between spots in the
current frame t-1 and

measurements in the next frame
t

Removal of previously added
imaginary spots.

Addition of new imaginary spots
and construction of cost matrix

Mcost

Hungarian algorithm: bijective
mapping using cost matrix Mcost

Kalman filtering using
Motion Model 1

Kalman filtering using
Motion Model 2

Predicted state and
state covariances

Predicted state and
state covariances

Likelihood of
measurement of each
filter in the next frame t

Probability of each
model in the next frame

t

Combined states and
state covariances in the

next frame t

Association between spots in the
current frame t-1 and spots in the

next frame t

Update the tracks and process
the next pair of adjacent frames:
the current frame t and the next

frame t+1

Figure 3.2: Workflow of the proposed multi-target spot tracking framework for
Myosin VI spots in TIRFM sequence.
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where i is the spot index, Nspot is the total number of spots associated with the

track segment, and N0, λ, a, b are the parameters estimated using least squared

fitting.

As the intensity of a noisy spot due to cellular auto-fluorescence noise decays

exponentially with time, if the MSE of the fitted exponential curve is less than the

MSE of the fitted constant curve, the track segment is more likely to be a noise and

is permanently eliminated. For those track segments with less than ten true spots,

if the intensity of the last associated spot is lower than half of the intensity of the

first associated spot, the track segment is also considered as a noise and it is also

permanently eliminated.

3.6 Evaluation of the Proposed Spot Tracking Frame-

work

The complete tracking framework is implemented in Matlab and evaluated on both

synthetic and real TIRFM sequences. For this evaluation, our test data set comprises

two synthetic sequences and three real TIRFM sequences, with 500 frames each. One

of the real TIRFM sequences is acquired using two colour channels, while the rest

are acquired using single channel.

In the synthetic sequences, each frame has a resolution of 320×320 pixels and

is distorted by medium-level Poisson noise. We add three types of synthetic spots: 1)

diffraction-limited spots due to bound GFP-Myosin molecules, which slightly change

size and intensity (almost constantly), randomly disappear a few times for less than 4

frames throughout the sequence, and move along Actin filaments generated using the

Bezier curve approach; 2) noisy spots due to electronic noise, which do not persist

for more than 3 frames and randomly disappear 1-2 times for less than 2 frames

throughout the sequence; and 3) noisy spots due to cellular auto-fluorescence noise,

which randomly move and disappear a few times for less than 4 frames throughout
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the sequence, and whose intensity values decay exponentially with time, according

to 3.5 with λ = 0.75 and N0 (initial intensity value) in the range [150,220].

The real two-channel TIRFM sequence (see Figure 2.3 in Chapter 2) depicts

Actin filaments in the red channel and Myosin VI proteins in the green channel. For

this particular two-channel sequence, we are only interested in tracking the detected

spots on the Actin filament, since Myosin VI proteins are known to attach on, and

move along Actin filaments. To this end, we use the red channel to segment the

Actin filaments first. We then remove all detected spots in the green channel that

are not located within the spatial extent of the segmented Actin filaments. The

framework can then exclusively tracks the detected spots on the Actin filaments.

For the real one-channel TIRFM sequences, all detected spots are tracked since no

prior information about the position and shape of Actin filaments is available.

We compare the proposed spot tracking framework, with the Hungarian al-

gorithm based tracking method (without using IMM filtering and a locality sensi-

tive model), and with three publicly available multi-target spot tracking methods;

namely, ParticleTracker (MOSAIC) - an ImageJ plugin that employs a feature point

tracking algorithm [81]; GMimPro - a C++ software that employs an Automatic

Single Particle Tracking (ASPT) algorithm [44], and u-track 2.0 - a Matlab package

that is based on a LAP method and Bayesian filtering with two motion models [24].

The Optimal Sub-Pattern Assignment (OSPA) error metric is used to quan-

titatively evaluate the performance of all evaluated tracking methods (Ristic et al.,

2011). The OSPA error metric integrates information about tracking accuracy and

number of missed and false tracks into a single value. This error metric is computed

between two sets of tracks, one of which is the ground truth and the other one is

estimated by the tracking method. Specifically, the OSPA error metric computes

the cardinality error and the location error. The cardinality error is a measure of

penalty assigned to missed or false tracks, e.g., a gap within a track, incorrect spot

assignments in a track, a beforehand suspended track or a track jointed by two
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tracks. A smaller cardinality error represents less missed or false tracks. On the

other hand, the location error is a measure of penalty assigned to position differences

between two tracks at each time step. A small location error value means that the

average of Euclidean distances between two tracks at each time step is short. In

our case, the OSPA error is the summation of the cardinality and location errors;

an OPSA error value of zero indicates an exactly precise tracking while a higher

OSPA error value corresponds to a worse performance of the spot tracking. Table

3.1 shows the OSPA errors produced by the different tracking methods on the test

synthetic and real TIRFM sequences. Figure 3.3 shows the 3D plot of the tracks

produced by the proposed framework and u-track (which is the one with the lowest

OSPA error values among the three publicly available methods) for 300 frames of

a real one-channel TIRFM sequence. It ican be observed that the proposed spot

tracking framework produce more consistent and smooth trajectories of spot than

u-track.

Cardinality errors in Table 3.1 show that imaginary spots employed by the

extended Hungarian algorithm significantly enhance the tracking performance (i.e.,

they reduce the cardinality error) by filling gaps in tracks, e.g., spots disappearing or

overlapping. Note that the OSPA errors of the proposed framework are smaller than

that of the Hungarian algorithm with no IMM filtering, especially in dense sequences.

This proves that modelling the complex dynamics of Myosin VI proteins by using

the motion models of the proposed framework improves the tracking accuracy.

Overall, OSPA error values in Table 3.1 show that the performance of the

proposed spot tracking framework is comparable to that of other publicly available

methods. For the two-channel real TIRFM sequence, the proposed spot tracking

framework and other publicly available methods show good accuracy for tracking

those spots on the Actin filaments since the majority of noisy spots are usually not

located on the Actin filaments. However, for the real one-channel sequences, the

OSPA error values of Mosiac and GMimPro are worse than those of the proposed
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(a)

(b)

Figure 3.3: 3D plot of the tracks produced by (a) the proposed spot tracking frame-
work and (b) u-track for 300 frames of a real one-channel TIRFM sequence. Results
show a region of the frames from [1-100] in both the x and y directions. Each
individual track is depicted in a different colour.
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Table 3.1: OSPA errors for the proposed spot tracking framework and other methods
on synthetic and real TIRFM sequences. The two best results are shown in bold
font.

Errors Hungarian Proposed Mosaic [81] GMimPro [44] u-track [24]

Real two-channel TIRFM sequence (31.2 spots per frame)

Cardinality 1.81 0.94 1.11 1.03 1.26

Location 2.31 1.10 1.32 2.14 1.23

OSPA 4.12 2.04 2.43 3.17 2.59

Real one-channel TIRFM sequence (53.3 spots per frame)

Cardinality 4.37 1.21 3.13 3.12 2.76

Location 5.45 2.42 3.45 4.12 3.92

OSPA 9.82 3.63 6.58 7.24 6.68

Real one-channel TIRFM sequence (124.6 spots per frame)

Cardinality 5.15 2.14 3.14 4.77 4.39

Location 7.23 3.57 5.72 4.58 4.23

OSPA 12.38 5.71 8.86 10.35 8.62

Synthetic one-channel sequence (73.6 spots per frame)

Cardinality 5.27 4.12 5.45 6.81 5.24

Location 6.62 5.43 8.03 9.42 8.15

OSPA 12.89 9.55 13.48 16.33 13.39

Synthetic one-channel sequence ( 313.5 spots per frame)

Cardinality 12.67 5.21 7.15 8.13 7.08

Location 16.31 7.33 10.72 10.43 9.31

OSPA 28.98 12.54 17.87 18.56 16.39
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spot tracking framework. This is mainly due to two reasons. First, the proposed spot

tracking framework is capable of removing noisy spots in the pre-processing stage

and during the tracking stage, which significantly reduces the number of erroneous

tracks. Less noisy spots usually results in less incorrect spot associations especially

when dealing with spots merging/splitting. Second, although Mosaic uses a LAP-

based method that is similar to the extended Hungarian algorithm, it does not

benefit from modelling the motion patterns of spots. GMimPro uses a Nearest-

Neighbour (NN) based method to perform tracking. In general, NN based methods

attain a high accuracy for single-target tracking. Their performance is, however,

poor when dealing with multiple targets that constantly overlap. Therefore, both

Mosiac and GMimPro result in lower localisation accuracies and more incorrect spot

associations, which leads to higher location errors than those of the proposed spot

tracking framework.

Note that OSPA errors of Mosaic and GMimPro are high in extremely dense

TIRFM sequences, e.g., the last synthetic sequence in Table 3.1, which has more

than 300 spots per frame. These large errors are mainly the result of the large

number of false positive detections produced by these two methods; and the fact

that LAP (Mosaic) and NN (GMimPro) based methods are very likely to produce

a large number of erroneous tracks without the support of Bayesian estimation

filtering, especially when dealing with overlapping targets in dense data.

It is important to mention that u-track is also a LAP based method with

Bayesian estimation filtering, but it uses two different motion models from ours: a

Brownian and a direct motion model. However, the results show that the location

error values attained by u-track are higher than those attained by the proposed

spot tracking framework, particularly for extremely dense data. In addition, our

extended Hungarian algorithm produces less false tracks than the LAP method

employed by u-track, therefore the proposed spot tracking framework yields much

less cardinality errors. In conclusion, the motion models and the data association
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method developed in the proposed spot tracking framework has an advantage of

more accurately approximating the biophysics of Myosin VI protein particles.

Mean Square Displacement (MSD) is generally used to analyse the biophysics

of particles for determining their motion mode over a period of time. MSD can be

employed as a powerful tool to quantify tracking methods e.g. it is used in [82] to

quantify the tracking results. We used the MSD algorithm in [83] to quantify ac-

curacies of the proposed spot tracking framework and three other publicly available

methods against the ground truth, which computes the weighted average over all

MSD curves of particle trajectories, weights are taken to be the number of averaged

delay (time interval) in individual curves. MSD experimental sequence is a set of

250 consecutive frames (approximately 12s, a time interval of 0.048s) selected from

a real TIRFM sequence, in which 1, 073 tracks are manually marked in total as

the ground truth. Figures 3.4 to 3.8 show the weighted averaged MSD curves of

the manually marked tracks and a montage of tracks generated by the proposed

spot tracking framework and 3 other methods on the MSD experimental sequence,

respectively.

The MSD curve of purely diffusive motion i.e., Brownian motion, normally

appears as a straight line started from the origin with a positive slope along the

x-axis. The weighted standard deviations are also gradually increased over time.

The average MSD curve of ground truth is almost a rapidly ascending straight line

before 0.8s, as well as the weighted standard deviations, which exactly shows that

the motion of Myosin spot is diffusive at a very short time scale. The curve saturates

and progresses smoothly as a straight line again until at around 6.5s, then it fleetly

goes down and forms a spike again at around 11s, which tells that the motion

becomes hindered by some mechanism after 6.5s. An extremely high peak of the

weighted standard deviations is found at around 6.5s but drops significantly until

7.5s, which shows that all spots turn to have small displacements during 6.5-7.5s.

We also observe both the average MSD curve and its weighted standard deviation

49



Figure 3.4: Weighted Average Mean Square Displacement (MSD) curves of the
manually marked tracks (Ground Truth).
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Figure 3.5: Weighted Average Mean Square Displacement (MSD) curves of a mon-
tage of tracks generated by the proposed spot tracking framework.
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Figure 3.6: Weighted Average Mean Square Displacement (MSD) curves of a mon-
tage of tracks generated by Mosaic.
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Figure 3.7: Weighted Average Mean Square Displacement (MSD) curves of a mon-
tage of tracks generated by GMimPro.
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Figure 3.8: Weighted Average Mean Square Displacement (MSD) curves of a mon-
tage of tracks generated by u-track.
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region have a small peak at around 11s.

Mosaic generated 974 tracks and quite few of them are short and discontinu-

ous. The averaged MSD curve of these tracks saturates just within 0.4s for the first

time, which is much faster than Ground Truth. Then, similar to Ground Truth,

the curve keep increasing smoothly but has lower values, and also saturates for the

second time at around 6s. But the third peak of the curve is found at around 9.5s

which is a bit earlier than the Ground Truth. It is also obvious that the weighted

standard deviation region of the curve has totally different shape. It has four peaks

and the lowest one is at around 6.5s, at where Ground Truth has the highest one

amongst the two peaks. GMimPro produced over 1,011 tracks which is very close to

the Ground Truth. However, the average MSD curve GMimPro has a totally differ-

ent shape. The curve saturates even faster the curve of Mosaic. Also, the first peak

reaches near 0.02µm2 which is twice higher than 0.009µm2 of the Ground Truth.

Notice that no peak is found at around 6s and the weighted standard deviation re-

gion are very narrower from 1.7s to 6.8s but becomes thicker afterwards, which is in

an opposite way compared to the Ground truth. The average MSD curves of Mosaic

and GMimPro show that they cannot accurately depict the true motion patterns of

Myosin VI spots.

On the other hand, the proposed spot tracking framework and u-track both

show more promising MSD curves, perhaps due to the Bayesian filtering with appro-

priate motion models. The number of tracks produced by u-track is 1,245, which is a

bit higher than the Ground Truth. The MSD curve of u-track appears quite similar

to that of Ground Truth before 6.5s, but shows higher MSD and weighted standard

deviation values all the time. After 6.5s, the MSD curve of u-truck does not fall

down as the Ground Truth. Also, the peak at around 11s is much higher than that

of Ground Truth. More importantly, the MSD curve of u-track drops dramatically

at 11s to a low value at 12s. Furthermore, the weighted standard deviation region

of the MSD curve of u-track is wider, and shows no peak but a valley at around 6s.
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It is also obvious that the weighted standard deviation region of u-track is a much

wider than that of Ground Truth after around 7.7s.

The number of tracks generated by the proposed spot tracking framework is

slightly higher than that of Ground Truth, i.e., 1127 tracks. Overall, the MSD curve

and its weighted standard deviation region of the proposed spot tracking framework

resembles those of Ground Truth, expect the curve falls slowly after 6.5s without

making an obvious peak. In addition, the proposed spot tracking framework has

slightly lower MSD and weighted standard deviation values than that of Ground

Truth. In the MSD curve of the proposed spot tracking framework, the weighted

standard deviation region becomes much wider after 3.4s and it also form a peak

at around 6.5s, which is similar to but not as abrupt as that of Ground Truth.

Besides, the proposed spot tracking framework also shows a wider weighted standard

deviation region from 7.7s up to 10.5s, but the region is more close to that of Ground

Truth than that of u-track.

To conclude, the proposed spot tracking framework shows the most similar

approximation of the averaged MSD curve of Ground Truth. In other words, the

framework can more accurately reveal the motion patterns of Myosin VI proteins on

Actin filaments. It is noticeable that all weighted average MSD curves can reduce

within a short period of time, and commonly show valleys and peaks, which are

most likely caused by stuck and noisy spots. Figure 3.9 shows that the individual

MSD curve of manually marked tracks of five different spots, i.e., stuck spots or

noisy spots caused by static noise/camera electronics.

3.7 Summary

In this chapter, we proposed a novel spot tracking framework for Myosin VI proteins

on Actin filaments in TIRFM sequences. Two motion models are incorporated in

the IMM filtering, which enables the filter to accurately approximate the non-linear
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Figure 3.9: Individual MSD curves of the tracks of five different spots, red curve
presents the MSD of a stuck spots track, orange curve presents the MSD of a noisy
spots track due to static noise or the camera electronics, the rest curves present the
MSD of Myosin spots.
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motion of Myosin VI spots. The conventional Hungarian algorithm, which is limited

in bijective mapping problem, is reinforced by a locality sensitive model with two

types of imaginary spots, can now successively deal with the measurement-to-target

and estimation-to-target assignment problems in the IMM filtering. The improved

Hungarian algorithm can be used for Bayesian estimation based tracking as a much

less computational expensive alternative to replace MHT and JPDA. The exper-

imental results show that the proposed spot tracking framework can offer several

significant advantages compared with the three well-known publicly accessible spot

tracking methods for TIRFM sequence of Myosin VI; and the accuracy of our frame-

work, in terms of both OPSA error metric and MSD, is higher than that of the other

methods.
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Chapter 4

Cell Detection and Luminal

Epithelium Localisation in

Endometrial Histology Images

Cell detection is the very first step in order to calculate the ratio of UNK cells

to stromal cells in endometrial histology images. In the first stage of developing

the automatic recurrent miscarriages diagnostic system, we were requested by our

collaborator such that the diagnostic process is compounded by the fact that cell

counting must be performed within image regions near the edges of luminal ep-

ithelium, but the cells located within 200µm to the edges should not be counted.

Therefore, localising the edges of luminal epithelium plays an important role in ob-

taining meaningful image regions and removing irrelevance cells from the detection

for accurate cell counting.

In this chapter, we present a complete solution for detecting stromal and

UNK cells and also for localising the edge of luminal epithelium. We improve a local

phase symmetry based method for detecting stromal cells, and propose an adaptive

background removal method for segmenting brown stain regions (which are used
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for identifying UNK cells). We also propose a novel method for localising luminal

epithelium, it fits a B-Spline curve on the epithelial cells (which are identified using

an alpha shapes method) to mark the edges of luminal epithelium. We evaluate the

proposed detection and localisation methods against a state-of-the-art commercial

software. The experimental results show that the proposed methods attain higher

accuracy and less computational expensive than the commercial software, which is

fully capable of providing precise cell counts, and therefore can be deployed in a

mid-range computer on a daily basis.

This chapters is organized as follows. Section 2.1 introduce the details of

generating endometrial histology image datasets. Section 4.2 discusses several con-

ventional cell detection methods fo different biomedical images. Sections 4.3 present

the methods for detecting stromal and UNK cells, respectively. and 4.4 present a

method for localising luminal epithelium edges. Section 4.5 evaluates the proposed

solution. Section 4.5 summaries the achievements in this chapter.

4.1 Methodology

Endometrial biopsies for UNK testing were collected in a clinic at University Hospi-

tals Coventry and Warwickshire (UHCW) NHS Trust from patients suffering from

recurrent pregnancy loss or recurrent IVF treatment failure. Written informed con-

sent was obtained prior to tissue collection. The biopsies were taken in the mid-

luteal phase and obtained using an Endocell Disposable Endometrial Cell Sampler

(Wallach, USA) as shown in Figure 4.1 (a)). The tissue was fixed in 10 forma-

lin and embedded in paraffin wax. Sections (3µm) were labelled with anti-CD56

monoclonal antibody as per standard protocols in the pathology laboratory at the

hospital. The biopsy slides were stained with Haematoxylin (for cell nuclei) and Di-

aminobenzidine (DAB) (for UNK cell nuclei labelled with anti-CD56). Cell nulcei

were stained purple/blue with Haematoxylin and UNK cells were also covered by
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brown stain regions when using DAB staining. The whole slide images of stained

tissue sections were scanned using Mirax Midi (Zeiss, Germany, shown in Figure

4.1 (b)) at 0.25µm/pixel and were assessed using Panoramic Viewer [84] to iden-

tify regions for analysis. Images were captured for identified regions in the high

power fields (HPFs) of the whole slide images at 40× magnification and saved in

the JPEG format. Figure 4.1 (c) shows a local region of a whole slide image viewed

in Panoramic Viewer at 5× magnification. The number of cells in each HPF image

was counted manually using the cell-counter function in ImageJ and cross-validated

by two experts (pathologists from UHCW). This was used to calculate the ratio

of UNK cells to stromal cells and converted into a percentage for the diagnosis of

recurrent miscarriage due to over-presence of UNK cells.

4.2 Related Work

A variety of methods have been proposed to address cell detection problems in

histology images. The detection are usually obtained from segmented cell. One

class of the conventional and relatively simpler cell segmentation methods are based

on intensity analysis: e.g., thresholding [85] and clustering [86] [87].These methods

are only feasible when a high intensity contrast between the cells and background is

presented. However, these methods often fail at segmentation overlapping cells, this

is because that their intensity levels at the overlapped regions are highly similar.

The other types of segmentation methods involves, e.g., watershed transform [88]

[89] [90] and morphological filtering [91] [65] [92] [93], they usually provide implicit

detection result and are more often used as a pre-processing step in the pipeline.

Another popular cell detection solution is based on active contours, which

iteratively expand the contour base on sort of energy functions from seed points,

until reaching the cell boundaries to accomplish the segmentation. Several active

contour models have been proposed in [94] [95] [96] [86] [87] to cope with different
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(a) (b)

(c)

Figure 4.1: (a) Process of taking biopsies using a Endocell; (b) Mirax Midi (Zeiss,
Germany) whole slide scanner; (c) A local region of a whole slide image viewed in
Panoramic Viewer at 5× magnification
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scenarios. The accuracy of active contour based method is heavily depended on the

seed points and energy functions, which often cause over-segmentation and under-

segmentation on overlapping cells or those cells with unique positions, colours or

shapes compared. In addition, actor contours are computationally expensive so that

their performance can be dramatically slow on the images containing thousands of

cells.

Above methods can be categorized as unsupervised learning, which are tai-

lored by utilising some subjective assumptions or prior knowledges regarding the

image contents, e.g., the cells appear in blob shapes or they have distinct stain

colour compared with to other background objects. Another more complicated and

advanced methods are based on supervised learning. These methods are often em-

ployed to classify different types of cells or tissues [97], but it can also be applied

for cell detection. Supervised learning based methods learn the features of cells in a

training stage which requires inputs of cells as negative samples and of background

as positive samples and classify images region as either cells or background based

on the learned features by using classifiers e.g., SVM [98] [97] and Random Forests

[99] [100]. Therefore, sufficient samples, feature description and correctly chosen

classifier are crucial for these methods.

4.3 Counting of Stromal and UNK Cells

We first separate the input image into two underlying stain channels, Haematoxylin

and DAB (CD56), using a colour deconvolution method proposed in [101]. The

Haematoxylin channel is used to detect stromal cells and the DAB channel is used

to segment brown stain regions for identifying UNK cells. The workflow of stromal

and UNK cell detection is shown in Figure 4.2.

63



Figure 4.2: Workflow for detecting stromal cells and segmenting UNK cell nucleus
(DAB stained brown) regions. Red dots indicate stromal cells and red circles mark
the UNK cell nucleus regions.
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4.3.1 Detection of Stromal Cell Nuclei

Stromal cell nuclei are detected using an improved version of the Local Isotropic

Phase Symmetry Measure (LIPSyM) method [102]. The symmetry measure based

on phase information was first introduced in [103], [104] and [105] have attempted

to quantify symmetry based on the work presented in [103]. LIPSyM utilises the

symmetry measure proposed in [103] to highlight points of interest (centers of cell

nuclei in our case), which is based on the assumption that cell nuclei exhibit isotropic

local symmetry, i.e., in all directions; and therefore, which are considered as elliptical

blobs where the pixels near to the blob centre represent peaks of local isotropic phase

symmetry.

The first step in LIPSyM is to discrete-time Fourier transform [106] the

Haematoxylin channel image, followed by convolving the transformed image with a

Gabor filter [107] at scale s and orientation o. The Gabor filters have a Gaussian

transfer function when viewed on the logarithmic frequency scale, which is used to

model simple cells in the visual cortex of mammalian brains [108] [109] [110]. The

discrete-time Fourier transformed image IfH is then filtered by a bank of log-Gabor

filters as,

Vs,o = IfH ? Gs,o (4.1)

where Vs,o denotes the convolution output of IfH and the log-Gabor Gs,o at a scale

s and an orientation o.

The median local response As of the log-Gabor filter Gs,o in terms of ampli-

tude all orientations at a scale s, is defined as,

As(x, y) = Median{o=1,2,...,no}(|Vs,o(x, y)|) (4.2)

where no denotes the total number of orientations, (x, y) denote the 2D coordinates

of a pixel in Vs,o.
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The median local response Es of the log-Gabor filter Gs,o in terms of energy

for all orientations at a scale s, is defined as,

Es(x, y) = Median{o=1,2,...,no}(|Real{Vs,o(x, y)}| − |Img{Vs,o(x, y)}|) (4.3)

where Real{·} and Img{·} denote the real and imaginary components of the log-

Gabor filter response at pixel (x, y), respectively.

At a point showing high symmetry, the absolute value of real component of

log-Gabor filter response will be large and the absolute value of imaginary com-

ponent of log-Gabor filter response will be small. It is natural to quantify the

symmetry measurement by subtracting the absolute value of imaginary component

of log-Gabor filter response from the absolute value of imaginary component of log-

Gabor filter response. This corresponds to the local response of log-Gabor filter in

term of energy. To form the symmetry measurement over all scales, the sum of the

median local response of log-Gabor filter in terms of energy for all orientations at

each scale is normalised by the sum of the median local response of log-Gabor filter

for all orientation in terms of amplitude at each scale. Thus, the local isotropic

phase symmetry η(x, y) at the pixel position (x,y) can be computed as,

ηx,y =
Σns
s=1Es(x, y)

Σns
s=1As(x, y)

(4.4)

where ns denotes the total number of scales. The peak ηx, y in a small local regions

denote the center of a cell nucleus which are found using the h-maxima transform

[111].

4.3.2 Resolving Redundant Detections of Stromal Cells

In practice, LIPSyM often finds multiple peaks for overlapping nuclei and for those

with elongated shapes, resulting in redundant detections. LIPSyM attempts to con-

struct the peaks s as a graph and using maximal cliques to partition the graph
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into smaller subgraphs in order to merge redundant detections, the main problems

are that graph clique on thousands of peaks are extremely computation intensive

(it takes averagely 20 minutes on one image for our dataset), and adjacent peaks

representing neighbouring nuclei are merged as one detection. The improved LIP-

SyM solves the problems by using a probe (locality sensitive model) which searches

for the boundaries between a nucleus and its neighbours in a boundary map, and

merges them if there is no boundary can be detected. The boundary map Bmap is a

binary image that depict nucleus boundaries, which is segmented by using a series

of intensity thresholding and edge enhancement techniques on the Haematoxylin

channel IH as follows:

1. An anisotropic diffusion filter [107] is applied on IH to create image Iad. This

particular filter smoothens the interior of nuclei without significantly blurring

their boundaries.

2. The gradient of Iad is then computed to create a gradient image Ig.

3. Then Ig is filtered by the Difference of Gaussian (DoG) filters [112] [113] to

enhance the nucleus edges as,

Idog = Ig ? G(σ1,w) − Ig ? G(σ2,w) (4.5)

where Idog denote a DoG filtered image, the symbol ? denotes the convolution

operation, G(σ1,w) and G(σ2,w) are 2D Gaussian filters with standard deviation

σ1 and σ2, respectively, which are calculated within a squared window of size

w = 7× 7 pixel. The ratio of σ1 and σ2 is set to be 1: 6 [114].

4. Otsu thresholding [115] is applied on to obtain a binary image B.

5. Finally, small connected components, e.g., intensity peaks near the nucleus

centres, are removed from B to obtain Bmap.
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It is important to note that the nucleus boundaries segmented by the above

method are not always continuous or closed. Therefore, we use a probe to detect the

nucleus boundary between two LIPSyM detections within an elliptical area, which

is a type of locality sensitive modelling. It is designed to ensure that when there

is no boundary can be segmented in some regions, but they does exists in fact, the

boundary can be still correctly sensed. The model of the elliptical locality sensitive

modelling is shown in Figure 4.3. The redundant LIPSyM detections is then merged

as follows:

1. For a detection Di that is not yet merged with any another detection, we

find neighbouring detections in a predefined radius of 20 pixels, which roughly

corresponds to the size of large and elongated nuclei.

2. Detection Di is stored in a merging list and an elliptical probe between Di

and its jth neighbouring detection, Dj
i is constructed.

3. The probe searches for a boundary in Bmap within the elliptical area. If no

boundary is found, Dj
i is stored in the merging list and the algorithm proceeds

to process Di and Dj+1
i ; if any boundary is found, the algorithm simply moves

to process Di and Dj+1
i .

4. All detections in the merging list are marked as merged and the centroid of

their positions is calculated as the position of the new detection. The algorithm

then proceeds to process Di+1. A visual comparison of the original LIPSyM

and the improved LIPSyM against the ground truth is shown in Figure 4.4. In

fact, the automatic detection show more accurate results than manual marking

of the experts.

4.3.3 Detection of UNK Cell Nuclei

Detection of UNK cell nuclei first requires segmenting those DAB stained brown

regions which may contain a high density of UNK cell nuclei. We propose an adaptive
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Figure 4.3: The model of the elliptical locality sensitive modelling. Red dots are
LIPSyM detections, red solid lines denote the boundaries of nuclei, and the black
ellipse marks the scope of the locality sensitive model, and two dashed straight lines
are the minor and major axes of the probe, respectively.
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(a) (b)

Figure 4.4: The detection results of (a) LIPSyM and (b) the improved LIPSyM.
Green dots depict ground truth labelled by the experts for stromal cell nuclei, while
red dots depict stromal cell nuclei detected by the algorithms. The differences
between (a) and (b) are highlighted using black arrows.

background removal method to significantly ease the segmentation process. The

proposed method uses the h-maxima transform on the DAB channel to suppress

two types of high intensity regions, while keeping the lower intensity regions, which

correspond to the UNK cell nucleus regions. The high intensity regions are the

bright background and DAB stained brown regions, which are local minima lower

than a height h. The output image of the h-maxima transform contains only the

UNK cell nucleus regions over a very bright background. The h-maxima is transform

performed as,

IhDAB = RδIDAB (IDAB − h) (4.6)

where RδIDAB (·) denotes the morphological dilation operation using radius δ on the

DAB channel IDAB, h is the height parameter and IhDAB denotes the resulting

h-maxima transformed image. We calculate the value of parameter h as,

h = hIDAB − hUNK (4.7)

70



where hUNK is the highest intensity of the UNK cell nucleus regions and hIDAB is

the highest intensity of IDAB.

Although hUNK may vary for different images, the proposed method can

adaptively find hUNK . It first computes the histogram of IDAB and cluster the

intensities into 3 bins (the bright background, the DAB stained background, and

the UNK cell nucleus regions) using the k-mean (k = 3 in this case) clustering

algorithm [116]. Next, hUNK is setted to the upper bound of the lowest intensity

bin which corresponds to the UNK cell nucleus regions. At last, The segmentation

of UNK cell nucleus (DAB stained brown) regions is performed as follows:

1. Otsu thresholding is applied on IhDAB to generate the binary imageBUNKpotential

that marks all potential UNK cell nucleus regions.

2. Morphological opening and closing operations [117] [118] are performed on

BUNKpotential to remove small objects and merge broken cell nucleus regions,

respectively. An 8-connectivity disk structuring element of size 5 × 5 pixel is

used.

3. All regions of size smaller than the size of the smallest true UNK nucleus

regions, i.e., 100 pixels in our case, are removed from the result of step 2 to

obtain the final segmentation mask BUNK for the UNK cell nuclei. The UNK

cell nuclei detection result using the above method is shown in Figure 4.2.

For each detection, a locality sensitive model with the neighbourhood of 10×10 pixel

is created around the detection. If any pixel within the locality sensitive model is

a segmented as part of UNK cell nucleus regions, the detection is identified as an

UNK cell nucleus.
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Figure 4.5: A sample image of luminal epithelium.

4.4 Localisation of the Luminal Epithelium Edge

Luminal epithelium edge is made up of layers of densely arranged epithelial cell nu-

clei, which forms the boundaries of tissue regions, an example of luminal epithelium

is shown in Figure 4.5. Therefore, the epithelial cell nuclei can be used to localise

the luminal epithelium edge. In this section, we propose a novel approach which

is capable of identifying the LIPSyM detections corresponding to epithelial cell nu-

clei and utilising them to localise luminal epithelial edge. The proposed localisation

method consists of three steps: 1) tissue region identification, 2) epithelial cell nuclei

identification, and 3) luminal epithelium edge localisation.

4.4.1 Tissue Region Identification

We first identify the individual tissue regions where these edges are located. Then,

the density-based spatial clustering of applications with noise (DBSCAN) algorithm

[119] [56] is applied on a set of LIPSyM detections such that each resulting cluster

represents a dense tissue region. Therefore, the proposed localisation method can
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be performed separately on each tissue region to localise the corresponding luminal

epithelium edge.

DBSCAN finds a number of clusters for a set of detections based on their

density distribution; the number of clusters is automatically determined by the al-

gorithm. DBSCAN starts from an arbitrary unprocessed detection D, it initialises

a cluster from the detection D if a minimum number of its M neighbours within a

search radius ε centred at the detection D can be retrieved. Otherwise, the detec-

tion D is labelled as an outlier. The algorithm expands the cluster by processing

detections and adding their corresponding M -sized neighbourhoods until there is

no more detections for which an M -sized neighbourhood can be found within the

radius ε. Next, the algorithm moves to a new arbitrary unprocessed detection to

repeat the above process to initialise either a new cluster or an outlier.

The accuracy of DBSCAN depends on two related parameters: the neigh-

bourhood size M and the radius ε. We have found empirically that a value of M

between 5 and 10 serves well for our application while a value of 50 for the radius ε

corresponds to the average distance between two nuclei. In the experiment, we fix

M = 7 and determine the radius ε as follows:

1. We define a Euclidean distance set Dist as follow,

Dist = {distmax1 , distmax2 , distmaxi , ..., distmaxN } (4.8)

where distmaxi denotes the Euclidean distance between the ith detection Di

and the farthest neighbour of its M nearest neighbours, in terms of Euclidean

distance, and N denotes the total number of detections in the set.

2. We divide the set Dist into two clusters using the k-mean clustering algorithm

and calculate the mean of each cluster. The minimum mean is used as the

value of the radius ε.
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Figure 4.6: A 2D surface (the black edges between two points) constructed for a
point cloud using the alpha shapes algorithm. Retrieved from [1].

4.4.2 Epithelial Cell Nuclei Identification

The luminal epithelium edge can be localised using the epithelial cell nuclei. We

identify the epithelial cell nuclei from a cluster of improved LIPSyM detections.

This cluster is treated as a point cloud in which each point represents an improved

LIPSyM detection. The alpha shapes algorithm [120] is used to construct an outer

2D surface for this point cloud by connecting pairs of points that can be touched

by the boundary of an empty disk with a radius α. Figure 4.6 shows a sample 2D

surface constructed for a point cloud by the alpha shapes algorithm [1].

In general, the quality of the 2D surface constructed using the point cloud

is very sensitive to the radius α. A large radius α results in a coarse surface since

fewer number of points are connected, while a small radius often results in numerous

incorrect surface fragments on the inside of the point cloud. An appropriate radius
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α for a cluster of N LIPSyM detections is calculated as,

α ≥
ΣN
i=1||D

(x,y)
i −D(x,y)

iNN ||
2N

(4.9)

where D
(x,y)
i denotes the 2D coordinates of the ith detection Di in the cluster and

D
(x,y)
iNN denotes the 2D coordinates of the nearest neighbour of Di in terms of Eu-

clidean distance.

The points used for constructing the 2D surface from a point cloud using the

alpha shapes comprise a set of boundary points. This set normally contains three

types of LIPSyM detection, namely 1) epithelial cell nucleus, 2) stromal cell nucleus

located very close to or on the image borders, and 3) stromal cell nucleus located far

from the image borders. By removing Type-2 detections from the boundary point

set, we can roughly consider the rest of the set as those detections corresponding to

the epithelial cell nuclei. For those cases where the boundary point set also contains

Type-3 detections, we use DBSCAN to remove them since they are normally located

far from Type-1 detections in terms of Euclidean distance.

In some cases, the calculated radius α is large, which results in a portion of

the detections corresponding to epithelial cell nuclei not being used for constructing

the 2D surface. In these cases, we use a k-Nearest Neighbour (k-NN) search to

retrieve some of the missing detections corresponding to epithelial cell nuclei, since

the nearest neighbours of the obtained detections corresponding to epithelial cell

nuclei are very likely to be the detections corresponding to epithelial cell nuclei

either. In practice, we have empirically found that k = 5 is a suitable value for our

application.

4.4.3 Luminal Epithelium Edge Localisation

Given a set of detections on epithelial cell nuclei, we can easily fit a curve on them to

localise the luminal epithelium edge using a cubic B-Spline method. Since a single
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Figure 4.7: Workflow of the proposed luminal epithelium localisation method and
the intermediate results of each step.

cubic B-Spline curve describing the exact luminal epithelium is in general hard

to localise, the detection set is broken into segments and a small cubic B-Spline

curve is fitted separately on each segment using a third-degree polynomial with

optimal coefficients [121], and all curves are finally connected together to from the

localisation. The workflow of the proposed localisation method and the intermediate

results of each step are shown in Figure 4.7. The final result of luminal epithelium

edge localisation applied on a sample image is shown in Figure 4.8.
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Figure 4.8: Final results of the stromal cell detection, UNK cell nucleus region
segmentation, and luminal epithelium edge localisation on a sample image. Green
circles indicate stromal cell nuclei; red areas are UNK cell nucleus regions; the
black curve localises the luminal epithelium edge, and the magenta curve marks a
distance (200µm) from the luminal epithelium edge, any cell nucleus located within
this distance should not be counted.
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4.5 Experimental Results

4.5.1 Evaluation of the Proposed Detection Methods

We evaluate the improved LIPSyM, the original LIPSyM, the proposed UNK cell

nucleus detection method and a commercial software, VIS developed by Visiopharm

[122], on 20 expert hand-marked images. VIS is a cloud application that can be

used to segment various types of cell nucleus, glandular structure and epithelium in

digital pathology images. The VIS system requires a training process using nucleus

and background regions from the sample images. It was configured and trained by

its owner company on 50 expert hand-marked images provided by our collaborators.

We quantify the detection accuracies of above methods and VIS in Precision

and Recall values, and F1 score which are calculated as follows,

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 · Precision ·Recall
Precision+Recall

(4.10)

where TP denotes a detection that can be matched to a hand-marked nucleus within

a matching radius of 10 pixels (for stromal cell) and 30 pixels (for UNK cell); FP

denotes a detections that cannot be matched to a hand-marked nucleus within the

match radius; and FN denotes a cell nucleus which are not detected by the algo-

rithm.Table 4.1 shows the averages of Precision and Recall values and F1 score of

the evaluated methods.

Figure 4.9 show the cell nucleus segmentation results of VIS on a local region

of an input image. It is observed that most of the cell nuclei are segmented as

connected regions. VIS claims that the number of cells is estimated based on dividing

the total area (in pixel) of all segmented cell nucleus regions by an estimated average

size (in pixel) of one individual cell nucleus. Consequently, VIS reports an estimated
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Table 4.1: Quantitative comparison of the evaluated methods, which shows the
averages of Precision and Recall values and F1.

Methods Precision Recall F1 Score

Improved
LIPSyM

(stromal cell nuclei)
0.86 0.83 0.84

Original
LIPSyM

(stromal cell nuclei)
0.79 0.83 0.81

VIS
(stromal cell nuclei)

0.77 0.59 0.67

Proposed
(UNK cell nuclei)

0.89 0.91 0.90

VIS
(UNK cell nuclei)

0.65 0.93 0.77

cell counts rather than the exact cell population. In addition, the number of UNK

cell can be hardly counted without knowing the exact number of the cells which are

located within the DAB stained brown regions.

The original LIPSyM attains low Precision values due to a large number of

redundant detections (FPs) produced in elongated stromal cell nuclei and overlap-

ping nuclei (see Figure 4.10 (a)). As expected, the improved LIPSyM can signif-

icantly reduce the redundant detections (FPs) produced by the original LIPSyM

using the elliptical probe (see Figure 4.10 (b)). In contrast, VIS often produces a

number of incorrect detections (FPs) on non-stromal regions stained blue/purple,

and therefore attaining low Precision values (see black circles in Figure 4.9 (b) and

the ground truth in Figures 4.10 (a) and (b)). Moreover, VIS produces an unac-

ceptable Recall value due to massive FNs in under-segmented areas. The under

segmentation problem of VIS frequently happens in the dense nucleus clusters, i.e.,

multiple close or overlapped stromal cell nuclei are segmented as one single con-

nected region (see Figure 4.9 (b)), which results in a number of stromal cell nuclei
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(a) (b)

Figure 4.9: (a) A cropped local region of an input image and (b) the stromal cell
nuclei and UNK cell nucleus regions segmented by VIS. In (b), stromal cell nuclei
segmented by VIS are shown in green and we mark the incorrectly segmented stromal
regions by VIS in black circles.

are miss segmented/detected.

The experimental result shows that both Precision and Recall values of our

method are higher than VIS. The Recall value is, however, slightly lower due to

a number of FNs caused by the under segmentation of UNK cell nucleus regions.

Figure 4.11 (a) shows the Ground Truth of UNK cell nuclei and the segmentation

result produced by the proposed method. On the other hand, VIS attains higher a

Recall value, however, its Precision value is much lower than that of the proposed

method due to the over segmentation of UNK cell nucleus regions and a number of

incorrect segmentation on non-UNK cell nucleus regions stained brown (artefacts).

Figure 4.11 (b) shows the segmentation results of VIS. The result produced by

the proposed methods are validated by two expert pathologists from the UHCW

hospital, and they have confirmed that the result is satisfactory to clinical practice.
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(a) (b)

Figure 4.10: (a) Detection result of the original LIPSyM and (b) that of the improved
LIPSyM for the same cropped region shown in 4.9. Red dots depict stromal cell
nuclei detected by the algorithm and green dots depict manually marked stromal
cell nuclei. The differences between (a) and (b) are highlighted using black arrows.

4.5.2 Evaluation of the Proposed Localisation Method

We use 10 hand-marked images in the evaluation of the proposed localisation method.

We are unable to numerically quantify the localisation results produced by VIS, since

it does not provide a functionality to output their results of luminal epithelium edge

segmentation, however the results of the proposed method and VIS are visually

comparable (see Figure 4.12).

We align the curve Ĉ approximated by the proposed localisation method

and a hand-marked (Ground Truth) curve CGT along the x axis (horizontally). To

numerically quantify the accuracy of the proposed localisation method, Root Mean

Square Error (RMSE) of the Euclidean distance in between the pixel locations of

curves Ĉ and CGT in the y axis (vertically) calculated as follows,

RSME =

√√√√ 1

N

N∑
i=1

(ŷ − y)2 (4.11)
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(a)

(b)

Figure 4.11: (a) Another cropped local region of the same input image showing in
green Ground Truth of UNK cell nuclei, and in red the UNK cell nucleus regions
detected by the proposed method. (b) The UNK cell nucleus regions (in blue) and
the stromal cell nucleus regions (in green) segmented by VIS in the cropped local
region of (a); note the over-segmentation of UNK cells.
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where ŷi is the y coordinate of the ith pixel of curve Ĉ, yi is the y coordinate of the

ith pixel of curve CGT and N is the total number of pixels in the curve CGT .

For the proposed localisation method, the curve describing the location of

the luminal epithelium edge is approximated using 20 smaller B-Spline curves. The

average RMSE of curve Ĉ for the 10 ground truth images is 23.17 pixels (10.77µm)

which can also be thought of as the average Euclidean distance between the pixel

locations of curves Ĉ and CGT . The visual results produced by the proposed lo-

calisation method and VIS on three sample images are shown from Figures 4.12 to

4.14.

VIS uses a segmentation based approach to mark luminal epithelium edges.

Figure 4.12 shows an example of a good segmentation result produced by VIS,

however, it fails to correctly segment luminal epithelium edges in a dense nuclei

environment, e.g., in Figure 4.13 (b), where many nuclei in the interior area of

the tissue region are being segmented as luminal epithelium edge. In contrast, the

proposed localisation method still performs well in such cases (see Figure 4.13 (a)).

Moreover, VIS sometimes is unable to segment a whole luminal epithelium edge, e.g.,

the left part of the luminal epithelium edge in Figure 4.14 (b), while the proposed

localisation method is able to detect complete luminal epithelium edge (see Figure

4.14 (a).

It is also worth noting here that the proposed localisation method is much

faster, in terms of running time, compared with VIS. The proposed localisation

method (currently written in MATLAB) takes on average a few minutes (on an

Intel i5 processer with 8G RAM) to process an image of the resolution of 1, 000 ×

1, 500 pixels, while VIS takes at least 6 minutes even using cloud computing. The

computational speed of the proposed localisation algorithms can be significantly

improved by optimising the code in C/C++ and running on a high-end computer.
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(a)

(b)

Figure 4.12: (a) shows the luminal epithelium localisation produced by the proposed
method and (b) shows the luminal epithelium segmentation produced by VIS on
same input images. In (a), Ground Truth of the luminal epithelium edges is depicted
in green, and the luminal epithelium edge detected by the proposed method is
depicted in red. In (b), the luminal epithelium segmentation produced by VIS is
marked by a black bounding box.
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(a)

(b)

Figure 4.13: (a) shows the luminal epithelium localisation produced by the proposed
method and (b) shows the luminal epithelium segmentation produced by VIS on
same input images. In (a), Ground Truth of the luminal epithelium edges is depicted
in green, and the luminal epithelium edge detected by the proposed method is
depicted in red. In (b), the luminal epithelium segmentation produced by VIS is
marked by a black bounding box.
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(a)

(b)

Figure 4.14: (a) shows the luminal epithelium localisation produced by the proposed
method and (b) shows the luminal epithelium segmentation produced by VIS on
same input images. In (a), Ground Truth of the luminal epithelium edges is depicted
in green, and the luminal epithelium edge detected by the proposed method is
depicted in red. In (b), the luminal epithelium segmentation produced by VIS is
marked by a black bounding box.

86



4.6 Summary

In this chapter, we proposed a complete solution to effectively detect stromal and

UNK cell nuclei and localising luminal epithelium edge in endometrial histology im-

ages. A locality sensitive model is integrated into a cell detection method called

LIPSyM, which greatly improved its performance in our cases. In addition, a novel

background removal method was proposed for segmenting DAB stained brown re-

gions (indicated the UNK cell nucleus regions). We also proposed a novel luminal

epithelium localisation method, which can localise the luminal epithelium edges by

fitting cubic B-spline curves on the epithelial cell nucleus detections identified using

an alpha-shape based method. The experimental results show that the proposed

solution attains a high accuracy (F1 score: 0.84) on processing the high resolution

(1, 000 × 1, 500 pixel) local regions from the HPFs of whole slide endometrial his-

tology images. The results produced by the proposed solution were validated and

approved by the collaborators.
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Chapter 5

Segmentation of Epithelium in

Endometrial Tissue

Segmentation of epithelium in histology images is a challenging task due to the ap-

pearance of epithelial cell often being similar to that of stromal cell, particularly in

the endometrial tissue. In the second stage of the work regarding to counting UNK

cell ratio, we are challenged by segmenting both luminal and glandular epithelium

in the endometrial histology image datasets. In this chapter, we utilise the fact

that neighbouring epithelial cells exhibit certain orientation patterns, in terms of

their orientations, to propose a variety of novel cell orientation congruence descrip-

tors which and attempt to statistically and quantitatively compute the orientation

patterns, to simultaneously segment both luminal and glandular epithelium.

An overview of the proposed epithelial segmentation method is demonstrated

in Figure 5.1. First, a pre-processing step first detects cells and segments lu-

men/background regions to locate the superpixels corresponding to potential ep-

ithelium. Next, the proposed descriptors for each cell located within the epithelial

superpixels is computed. Then, the cells are labelled as either epithelial cells or

stromal cells by using a Random Forest classification algorithm together with the

proposed descriptors. Finally, the epithelial superpixels containing the classified
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epithelial cells are connected to yield the epithelium segmentation.

Image acquisition and the dataset are already described in previous chap-

ter. The reminder of this chapter is organised as follows. In Section 5.1, we

discuss several state-of-the-art segmentation/classification methods for glandular

structure/epithelium. Section 5.2 introduce the pre-processing steps, i.e., cell de-

tection and lumen segmentation, pixel and cell orientation estimation, which are

prerequisite for computing the proposed descriptors and epithelial cell classification.

Section 5.3 present that how to compute the proposed descriptors in details, and

how to use the epithelial cells classified by the proposed descriptors together with

superpixels to achieve the epithelium segmentation. In Section 5.4, we evaluate

the proposed epithelium segmentation method different cell orientation congruence

against 5 state-of-the-art gland segmentation methods. Section 5.4.4 highlights the

benefits and advantages of the proposed epithelium segmentation method compares

with other related works done in this area, and extends the observations and contri-

butions to other areas of application, e.g., cancer research. In addition, this section

also discusses the issues such as full automation in pathology, practical, ethical and

legal problems of adopting the automation using the proposed image analysis meth-

ods in pathology and clinical diagnosis. Finally, we conclude the work of this chapter

in Section 5.5.

5.1 Related Work

To the best of our knowledge, there is rarely an existing method proposed in general

for segmenting epithelium. However, the glandular epithelium can be extracted

from the corresponding glandular structures in most cases, thus the state-of-the-art

gland segmentation methods can be used to segment the glandular epithelium in

endometrial histology. In this section, we then review several state-of-the-art gland

segmentation methods to discuss their current gaps in segmenting the glandular
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Figure 5.1: A block digram of the proposed method with intermediate result of each step.
Red dots depict detected cells, black bars represent cell orientation, lumen segmentation
is shown in transparent yellow, red grid marks superpixels, potential epithelial superpixels
are shown in transparent red, green dots depict epithelial cells classified by the proposed
descriptors, and epithelial segmentation is shown in green.
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structures in endometiral histology.

Many of the state-of-the-art gland segmentation methods are generally de-

veloped for the histology images of cancers, and commonly proposed based on util-

ising two types of obvious feature/information regrading to the biological objects:

1) texture/shape/colour of cell nucleus, cytoplasm, lumen and background, and 2)

information regarding to the structure of gland. Although glands often exhibit a

varsity of largely varied irregular shapes, lumen is always the region in the centre

of a gland, which can be considered as the most common component of different

glands. Therefore, most of the previous work focused on detecting lumen to begin

with tackling the gland segmentation problems. The previous methods assume that

lumen can be identified using their colour [123] [124] or texture [125] [126]. Once

the lumen areas are detected, it can be considered as the seed regions, so that the

segmentation methods based on, such as region growing [127], active contour [128],

level-set [129], etc., can be adopted to segment out the glandular structures.

For instance, Naik et al. [123] proposed a solution of automated detection

and segmentation for nuclear and glandular structures in prostate and breast cancer

histology. The information regarding to the histological structures is critical for

classification and grading of prostate and breast cancer. The solution is developed

using both colour and structural features of object of interest, which integrates im-

age information from three different scenes: 1) low-level information regarding to

colour values of pixels, 2) high-level information regarding to relationships between

pixels of objects of interest, and 3) domain-specific information regarding to rela-

tionships between histological structures. First, low-level information is utilised by

a Bayesian classifier to generate a likelihood maps in where the value of each pixel

represents a probability of that the pixel belongs to glandular structures or other ob-

jects. Second, high-level information generated in such ways: a level-set algorithm

is used to initialise and evolve active contours in the likelihood maps to identify

the boundaries of glandular structures. Finally, structural constraints regrading to
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glandular structures are obtained via domain-specific knowledge, i.e. three main

components constitute glandular structures: lumen, cytoplasm, and nuclei, which

are arranged in a specific fashion (lumen is surrounded by cytoplasm, which is then

surrounded by a ring of nuclei), and then they are used together with high-level

information to verify whether the detected objects do indeed belong to the glandu-

lar structures.The major problem of this solution in endometrial histology is that

the Bayesian classifier cannot accurately classify between lumen and background

due to their colour similarity, which will cause the level-set algorithm initialise con-

tours using wrong seed regions. In addition, the level-set contours have difficulty in

approximating the epithelial boundaries with complex shape and texture.

Nguyen et al. [124] proposed a gland segmentation and classification scheme

applied to histology image of prostate tissue. First, nucleus, cytoplasm and lumen

objects are labelled using colour space analysis. Next, it utilises the information

regarding to the constitution of the glandular components, to associate each lumen

object with the corresponding nucleus objects, to create a gland segment. However,

the scheme uses colour feature for detecting and classifying object of interest, which

is only workable in the cases of that glandular components have a distinct colour

difference compared with the other objects, and unfortunately inapplicable for our

cases.

Farjam et al. [126] proposed an image analysis approach for determining ma-

lignancy of prostate pathological samples, which is important for treatment planning

of prostate cancer. A texture-based technique is used to segment the prostate glands

in the image: they first proposed a Variance filter to compute the textural features

of cell, lumen and background regions; then used the K-means clustering algorithm

[130] on the feature spaces to identify the different regions; finally, the glandular

structures can be obtained after removing all non-glandular components from the

identified regions. This method can be also used to segment lumen or background

regions in endometrial histology, and consequently the segmentation result assists
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in locating the glandular structures. However, it is not able to differentiate between

the different cell types in endometrial histology. It is due to that, in terms of the

textural feature computed using the Variance filter, the same type of cell regions

show no texture consistency, but epithelial cell region may exhibits the similar tex-

tures as that of stromal cell region, and also there is no obvious difference between

lumen and background regions.

Demir et al. [131] reported a new approach for gland segmentation in his-

tology images of colon tissue. This approach decomposes the input image into a

set of primitive objects (nucleus and lumen objects), and then makes use of their

organizational properties, instead of the pixel information such as their colour or

texture, to identify what kind of glandular component the primitive objects belong

to, respectively. Then the epithelial cell object surrounding a lumen can be used

to create the boundary of a glandular structure. One common major limitation

of the methods using structural information regarding to glands is that the com-

prehensive prior knowledge of the glandular structures are essentially demanded in

these methods, but it is quite impossible to be obtained in the cases of endometrial

histology.

Sirinukunwattana et al. [132] presented a stochastic polygons model for

segmenting glandular structures in histology images of colon tissue. The proposed

model uses a set of nuclei near the identified lumen regions as the polygon vertices,

and then attends to fit a polygon using the vertices to approximate the boundary of

a glandular structures. The main issue of this approach is the costs of geometrically

increased computational complexity with the increment of polygon vertices (nuclei),

this is especially fatal for endometrial histology since the boundaries of many glands

are formed by a significant number of epithelial cells. In addition, large background

regions can be identified as lumen region, which causes the stromal cell nuclei near

those region are treated as pylon vertices.

Fu et al. [133] devised an algorithm of detecting glandular structures in mi-
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croscopic images of human colon tissue. The algorithm first converts the local image

of a single gland from the polar coordinate system to the Cartesian coordinate sys-

tem, resulting in an enclosed glandular boundary being transformed into a stretched

curve. The curves in the transformed image, representing glandular boundaries, are

then inferred through a conditional random field model. Finally, a visual feature

based support vector regressor is used to verify if an inferred cure belong to a true

glandular structures. The experimental results showed that the algorithm performed

well on the histology images of adenomas and moderately differentiated adenocar-

cinomas. The main challenge for this methods in endometrial histology is that the

epithelium are often not closed boundary, especially the luminal epithelium.

In endometrial histology, both luminal and glandular epithelium are charac-

terized with strong inhomogeneity, e.g., they are normally shown as discontinued

crust and are formed by multiple layers of epithelial cells. Lee et al. [134] proposed

a Cell Orientation Entropy (COrE) method which attempts to first qualitatively

model cell/nucleus orientations by performing PCA on the cells/nuclei boundaries

segmented using active contour, and then it quantifies the cell disorders by calcu-

lating the second order statistics for cell orientation from a co-occurrence matrix.

This method can be potentially used for distinguishing differences between the ori-

entations of neighbouring epithelial and stromal cells/nuclei.

The high similarities, in terms of colour and morphology, between epithe-

lial cells and stromal cells, and also between lumen and background regions, are

obviously observed in endometrial histology. Consequently, the existing methods

discussed above can hardly detect/segment/classify epithelial cells, which conse-

quently causes the subsequent gland segmentation step to produce false results. We

observe that epithelial cells are normally arranged in a locally and neatly oriented

manner. Therefore, we propose a variety of novel descriptors, which is used to

numerically expressing the orientation congruence of a local cell neighbourhood to

classify between epithelial and stromal cells. The proposed epithelium segmentation
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method are designated to overcome the limitations of the existing methods. For in-

stance, the proposed methods are not restricted in segmenting glandular epithelium

from glands with enclosed boundaries, but also capable of accurately segmenting

disconnected (broken or open) epithelium from tissue boundary and background

regions. More importantly, that the proposed method is capable of simultaneously

segmenting both luminal and glandular epithelium.

5.2 Pre-processing

Given an input image, it is first separated into the two underlying stain channels,

Haematoxylin and DAB (CD56), using a colour deconvolution method proposed in

[135]. The Haematoxylin channel is used for cell detection, lumen segmentation,

and superpixel decomposition. It is important to mention that localising cell nuclei

is prerequisite to the computation of cell orientation congruence descriptors, but

cell segmentation is not necessary for the computation. We localise the cell nuclei

in Haematoxylin channel by using the extended version of Local Isotropic Phase

Symmetry Measure (LIPSyM) method, which has been proposed in Chapter 4. We

then segment lumen and background in the input image using a Variance filter

proposed in [126]. It is based on the observation that lumen or background are

large homogeneous regions with small textural variance, whereas the textures of

dense cell clusters are strongly inhomogeneous.

We denote the pixel sets that are segmented as lumen or background as Seglb,

they will be used together with superpixels to locate potential epithelial regions.

We decompose the input image into superpixels using the Simple Linear Iterative

Clustering (SLIC) algorithm proposed in [136]. A superpixel is a set of pixels, which

compose a small homogeneous region depicting either lumen, background or cell in

our cases. The superpixels are classified into two categories: lumen and cell. We

define a superpixel S as a lumen superpixel Sl if |Seglb ∩ S| ≥ 1
2 |S|, which depicts a
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lumen region; otherwise it is defined as a cell superpixel Sc, which depicts either an

epithelial or a stromal cell region.

The cell regions near lumen/background boundaries can be potentially la-

belled as epithelial cell regions. We define a cell superpixel Sc as a 1st level potential

epithelial superpixel S1
e if it is immediately adjacent to any lumen superpixel Sl.

The epithelium in our cases is normally formed by multiple layers of epithelial cells.

Therefore, we also include the cell superpixels which are not directly adjacent but

close to lumen regions as potential epithelial superpixels as follows: a cell superpixel

Sc is defined as a 2nd level potential epithelial superpixel S2
e , if it is not yet defined

as a 1st level potential epithelial superpixel and also immediately connects to any 1st

level potential epithelial superpixel S1
e . We then merge all 1st and 2nd level potential

epithelial superpixels together to yield the potential epithelium region segmentation.

5.2.1 Estimation of Pixel and Cell Orientations

In this step, the Haematoxylin channel is normalised to zero mean and unit variance.

The normalisation is to enhance the image contrast and reduce the variations in the

pixel values of cell and background regions from different images, which facilitates

the subsequent image processing steps. The normalization process is defined as,

N(i, j) =
I(i, j)−M

V
(5.1)

where I(i, j) denotes the gray-level value at pixel I(i, j) of the input image, M is

the estimated mean pixel value of the input image and V is the estimated standard

derivation of the pixel values of the input image, and N(i, j) denotes the gray-level

value at pixel (i, j) of the normalised image.

We first calculate the gradient images Gx and Gy of the normalised image in

both x and y directions, and estimate the pixel orientation of the input image using
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Gx and Gy as follows,

Gxy(i, j) = (Gx ∗Gy ? f)(i, j)

Gxx(i, j) = (G2
x ? f)(i, j)

Gyy(i, j) = (G2
y ? f)(i, j)

Op(i, j) =
π

2
− arctan

(
Gxy(i, j)

Gxx(i, j)−Gyy(i, j)

)
(5.2)

where f is a 2D Gaussian filter of window size w and standard deviation σ, ∗ denotes

the image multiplication operation, ? denotes the image convolution operation, and

Op(i, j) denotes the pixel-level orientation at pixel (i, j) of the input image.

We next define a circular pixel neighbourhood N (c) of the cell c defined as,

N (c) =
{
p ∈Maskh|dist(c, p) ≤ r

}
(5.3)

where p is a pixel from the input image, Maskh is a binary mask image segmented

from the Haematoxylin channel using Otsu Thresholding [115], dist(c, p) is Eu-

clidean distance between p and the centre of c, and r is a scalar in pixel value which

defines the radius of N (c). In our cases, r is set to 7 pixels, which was empirically

tuned to roughly cover a cell nucleus. Figure 5.2 shows an example of the circular

pixel neighbourhood.

We then define the pixel orientation histogram H(c) of N (c) as,

H(c) =
{
h1, h2, ..., h7

}
(5.4)

where the orientations of the pixels in N (c) are clustered into 7 bins. The count hk

of the pixel orientations in the kth bin is calculated as follows,

hk =

|N (c)|∑
p=1

1(Ocp, k), k = 1, 2, ..., 7 (5.5)
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Figure 5.2: Black circle marks the circular pixel neighbourhood, cell nucleus seg-
mentation is shown in green, red bars depict the estimated pixel orientations, black
dot depicts a detected cell, and black bar depicts the estimated cell orientation.
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where

1(Ocp, k) =


1, if (k−1)π

8 ≤ Ocp <
(k+1)π

8

0, otherwise

In the above equations, 1(Ocp, k) is an indicator function that indicates which bin

the orientation Ocp of a pixel p in N (c) belongs to. The cell orientation Oc of the

cell c is estimated as follows based on the largest bin of H(c),

Oc =
1

hmax

|N (c)|∑
p=1

Ocp · 1(Ocp,max) (5.6)

where

l = arg max
(
H(c)

)
hmax = max

(
H(c)

)
1(Ocp,max) =


1, if (max− 1)π8 ≤ O

c
p < (max+ 1)π8

0, otherwise

In the above equations, hmax is the largest bin in H(c), max is the index of a bin in

H(c), and 1(Ocp,max) is an indicator function that indicates whether the orientation

Ocp of a pixel p in N (c) belongs to the largest bin hmax of H(c). An example of cell

orientation estimation is shown in Figure 5.2.

5.3 The Proposed Descriptors

5.3.1 Computation of the Cell Orientation Congruence (COrCo)

Descriptor

To compute the COrCo descriptor for a cell c, we first introduce a locality sensitive

model (an example is shown in Figure 5.3), which defines a circular cell neighbour-
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hood N ′(c) for a cell c as follows,

N ′(c) =
{
nc|dist(c, nc) ≤ d

}
(5.7)

where nc is a neighbouring cell, dist(c, nc) denote Euclidean distance between the

centre of c and that of nc, and d is the radius of N ′(c).

The circular cell neighbourhoodN ′(c) is divided into a set of 16 half-overlapping

angular sections with the same angular width of π
4 . The division of angular sections

starts clockwise from the y-axis (which is aligned with the orientation of the cell c).

The division is illustrated in Figure 5.3.

We then calculate the cell orientation congruence CONi of the ith angular

section of N ′(c) as follows,

CONi =

|N ′(c)|∑
nc=1

Ωnc · cos(Φnc) · 1(∆nc, i), i = 1, 2, ..., 16 (5.8)
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where

Ωnc =
ωnc

|N ′(c)|∑
nc=1

ωnc

, ωnc = e
−D2

nc
2σ2

Φnc =


π − |Oc −Onc|, if |Oc −Onc| ≥ π

2 ,

|Oc −Onc|, otherwise

1(∆nc, i) =



1, if (i−1)π
8 ≤ ∆nc <

(i+1)π
8 , i 6= 16

1, if (i−1)π
8 ≤ ∆nc <

iπ
8 , i = 16

1, if 0 ≤ ∆nc <
π
8 , i = 16

0, otherwise

∆nc =


2π − |Θnc −Oc|, if Θnc −Oc ≤ 0,

Θnc −Oc, otherwise

Θnc =


2π − |θnc| , if θnc < 0,

θnc, otherwise

θnc = arccos
( vnc · vx
||vnc · vx||

)
In the above equations, nc denotes a neighbouring cell in N ′(c), Ωnc is the weight

given to nc, which is calculated based on its Euclidean distance Dnc to the center

of c using a standard deviation σ, Φnc is the orientation difference of nc compared

with c, 1(∆nc, i) is an indicator function that indicates whether nc is located in the

ith angular section of N ′(c), vnc is a vector from the centre of c to that of nc, vx is

an unit vector along the x-axis, and θnc is the angle between vnc and vx. Figure 5.3

illustrates that how to localise a nc for an angular section of the COrCo descriptor

and compute the cell orientation congruence of this angular section.

We express the COrCo descriptor of the cell c as a feature vector COrCo(c)
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consisting of the cell orientation congruences of 16 angular sections as,

COrCo(c) =
〈
CON1, CON2, ..., CON16

〉
(5.9)

For example, the above COrCo descriptor calculated for the synthetic epithelial

cell shown in 5.3 is likely to output relatively large values in the first and middle

elements, which represents an unique orientation congruence pattern of the cell

neighbourhood.

We also define a “ring-like” cell neighbourhood (an example is shown in gray

colour in Figure 5.3) of the cell c as,

Ri(c) =
{
nc|dinner ≤ dist(c, nc) ≤ douter

}
(5.10)

where nc is a neighbouring cell in Ri(c), dinner and douter are inner and outer radii

respectively, and dist(c, nc) is the Euclidean distance between the centres of c and

nc.

Given a set of COrCo descriptors computed using different sizes of “ring-like”

cell neighbourhoods of the cell c, the multi-ring version of the COrCo descriptor of

the cell c, which we term here as the Multi-Ring Cell Orientation Congruence (MR-

COrCo) descriptor, is given as a feature vector MRCOrCo(c), which concatenates

the set of COrCo descriptors,

MRCOrCo(c) =
〈
COrCo(c)1, COrCo(c)2, ..., COrCo(c)nrings

〉
(5.11)

where nrings denotes the number of rings and COrCo(c)i is calculated using Ri(c)

as defined above in (5.10) instead of N ′c as in (5.7). The MR-COrCo descriptor can

more comprehensively describe the cell orientation congruence pattern by using a

diversity of “ring-like” cell neighbourhoods rather than .
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Figure 5.3: The illustration of a locality sensitive model used in the COrCo de-
scriptor. Purple shapes depict cells, black dot depicts the position of the cell, black
circles mark the cell neighbourhoods in the descriptor, black dashed lines divide
the angular sections of the cell neighbourhoods (the gray regions), red dashed lines
are coordinate axes, black line depicts the cell orientation and black arrow depict a
vector.
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5.3.2 Computation of the Local Binary Cell Orientation Congru-

ence (LBCOrCo) Descriptor

The LBCOrCo descriptor, an the other hand, attempts to describe the cell orien-

tation congruence, in the form of local binary pattern. Similar to computing the

COrCo descriptor for a cell c, we start computing the LBCOrCo descriptor by first

introducing a locality model shown in Figure 5.4(c) which defines a circular cell

neighbourhood N ′′(c) for the cell c using (5.7). N ′′(c) is also divided into a set of 16

half-overlapping angular sections with equal radians. However, the difference here

is that the division of N ′′(c) starts clockwise from the x′-axis, which is illustrated in

Figure 5.4(c). We then define a vector CON ′(c) which specifies the cell orientation

congruence of each angular section of N ′′(c) as,

CON ′(c) =
〈
CON ′1, CON

′
2, ..., CON

′
16

〉
(5.12)

where CON ′i is the congruence factor of the ith angular section of N ′′(c) and is

calculated as follows,

CON ′i =

|N ′′(c)|∑
nc=1

Ω′nc · Φ′nc · 1(Θ′nc, i), i = 1, 2, ..., 16 (5.13)
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where

Ω′nc =
ωnc

|N ′′(c)|∑
nc=1

ωnc · 1(Θ′nc, n)

, n = 1, 2, ..., 16

ωnc = e
−D2

nc
2σ2

Φ′nc =


π − |Onc − φnc|, if |Onc − φnc| ≥ π

2 ,

|Onc − φnc|, otherwise

φnc =


Θ′nc − π, if Θ′nc ≥ π,

Θ′nc, otherwise

1(Θ′nc, i) =



1, if (i−1)π
8 ≤ Θ′nc <

(i+1)π
8 , i 6= 16

1, if (i−1)π
8 ≤ Θ′nc <

iπ
8 , i = 16

1, if 0 ≤ Θ′nc <
π
8 , i = 16

0, otherwise

Θ′nc =


2π − |θnc| , if θnc < 0,

θnc, otherwise

θ′nc = arccos
( vnc · vx′
||vnc · vx′ ||

)
In the above equations, nc denotes a arbitrary neighbouring cell in N ′′(c), Ω′nc is

the weight given to nc, which is calculated based on its Euclidean distance Dnc to

the centre of c using a standard deviation σ (It is important to note that only the

neighbouring cells located with the nth angular section of N ′′(c) used in calculating

the weight for computing CON ′i . To differentiate it from the weight in Equation

(5.8), it is denoted as Ω′nc using a prime symbol.), Φnc is the orientation verticality

of nc in the nth angular section of N ′′(c), 1(Θ′nc, i) is an indicator function that

indicate whether the neighbouring cell nc is located in the nth angular section of

N ′′(c), vnc is a vector from the centre of c to that of nc, v′x is an unit vector along

the x-axis, and θnc is the included angle between vnc to v′x. A locality sensitive
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model used in the LBCOrCo descriptor is illustrated in Figure 5.4.

Next, we define a priority vector P (c) to specify the importance of each

angular section in N ′′(c) as,

P (c) :=
〈
P1, P2, ..., P16

〉
(5.14)

In fact, the cell orientation congruence factor from an angular section which

contains high number of neighbouring cells is more representative than the others.

More importantly, re-ordering the congruence vector according to the priorities of

angular sections will make the LBCOrCo descriptor rotation-invariant. Therefore,

we calculate the priority Pi of the ith angular section of N ′′(c) as follows,

Pi =

|N ′′(c)|∑
nc=1

Ω′′nc · 1(Θ′nc, i), n = 1, 2, ..., 16

Ω′′nc =
ωnc

|NCnc|∑
nc=1

ωnc

, ωnc = e
−D2

nc
2σ2

(5.15)

where Ω′′nc is calculated the same as the weight in (5.8) and 1(Θ′nc, i) is defined in

Equation 5.3.2. Next, we sort CON ′(c) in descending order using P (c) as,

CON ′′(c) := sort
(
CON ′(c), ord

descend
(P (c))

)
(5.16)

where CON ′′(c) is a new feature vector which represents the cell orientation con-

gruence of the cell neighbourhood N ′′(c) and is defined as,

CON ′′(c) = {CON ′′1 , CON ′′2 , ..., CON ′′16

}
(5.17)

Finally, the LBCOrCo descriptor for the cell c is computed, in the form of a decimal

106



Figure 5.4: The illustration of a locality sensitive model in the LBCOrCo descriptor,
black dot depicts the position of the cell, purple shapes depict cells, black circles
mark the cell neighbourhoods in the descriptor, black dashed lines divide the angular
sections of the cell neighbourhood (gray regions), red dashed lines are coordinate
axes, black line depicts the cell orientation and black arrow depict a vector.

107



number LBCOrCo(c), as follows,

LBCOrCo(c) =

16∑
n=1

2(16−i) · 1(CON ′′n), i = 1, 2, ..., 16

1(CON ′′i ) =


1, if CON ′′i >

π
4 ,

0, otherwise

(5.18)

where 1(CON ′′i ) is an indicator function which examines whether the cell orientation

congruence factor of the ith angular section is larger than π
4 .

Given a set of LBCOrCo descriptors of the cell c, which is computed us-

ing different size of “ring-like” cell neighbourhood, its multi-ring version of the

LBCOrCo descriptor , which we term here as the Multi-Ring Cell Orientation Con-

gruence (MR-LBCOrCo) descriptor, is given as a feature vector MRLBCOrCo(c)

by concatenating all its LBCOrCo descriptors as,

MRLBCOrCo =
〈
LBCOrCo(c)1, LBCOrCo(c)2, ..., LBCOrCo(c)nrings

〉
(5.19)

where nrings denotes the number of rings. The MR-COrCo descriptor is also pro-

posed to more comprehensively describe the cell orientation congruence pattern of

a cell neighbourhood.

5.3.3 Epithelium Segmentation by Labelling Potential Epithelium

Superpixels

In this step, we first compute the proposed descriptors for the cells located within

potential epithelial superpixels. Second, we employ the Random Forests classi-

fier together with the proposed descriptors to identify the epithelial cells. Next, a

potential epithelial superpixel which contains any non-epithelial cell or an empty

potential epithelial superpixel (containing no cells) is initially categorized as a non-

epithelial superpixel, otherwise it is marked as an epithelial superpixel. However,
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the non-epithelial superpixels containing epithelial cells can be mistakenly classified,

thus we at last initialise a refinement process to reclassify the mistakenly classified

non-epithelial superpixels as below,

1. Let us denote a non-epithelial superpixel as Sne and a potential epithelial

superpixel as Spe. Given a Sne, we defined a Spe which immediately connects

to Sne as its level 1 neighbour which is denoted as S1
i . A set of S1

i is denoted

as
{
S1
i

}
;

2. We define a Spe as a level 2 neighbourhood of Spe if it immediately connects to

any S1
i and Spe /∈

{
S1
j

}
, which is denoted as S2

j . The set of level 2 neighbours

is denoted as
{
S2
j

}
;

3. The cell are identified as epithelial cells by the random forests classifier with

the proposed descriptors are defined as true epithelial cells, otherwise they are

defined as false epithelial cells. The numbers of true and false epithelial cells

within Sne and its neighbours
{
S1
i

}
and

{
S2
j

}
are counted and denoted as

Ntrue and Nfalse. respectively. Sne is remarked as an epithelial superpixel if

Ntrue ≥ Nfalse, otherwise it remains as a non-epithelial superpixel.

A binary image can be achieved by connecting the epithelial superpixels all together

after the refinement process, and the final epithelium is segmented by removing the

small isolated connected components from the binary image, i.e., any region smaller

than 500 pixels, which is empirically determined according to the observations on

the hand-marked images.

5.4 Evaluation of the Proposed Descriptors

We devise three experiments for evaluating the epithelium segmentation accuracies

when using the proposed descriptors. The first experiment examines the segmenta-

tion accuracy of all the proposed descriptors, i.e., COrCo, MR-COrCo, LBCOrCo,
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MR-LBCOrCo on a randomly selected subset of the image dataset. The second ex-

periment compares the top-two of the proposed descriptors with 5 state-of-the-art

segmentation methods, i.e.,[126], [123], [124], [132], and [134]. Since most of the

state-of-the-art segmentation methods are designated to segment glandular struc-

tures (glandular epithelium) rather than luminal epithelium, the experiment aims to

evaluate the performance of the proposed descriptors against the other methods on

segmenting glandular epithelium. Our image dataset contains 150 hand-marked im-

ages which are cross-validated by two experts from UHCW. We manually selected a

subset (50 images) from the image dataset to guarantee that each image contains at

least one glandular structure, and crop a sub-image from each of these images, which

contain only glandular structure. The sub-image are used in the second experiment.

In the third experiment, to highlight the advantages of the proposed descriptors,

we also evaluate all the methods on the complete image dataset for both glandular

and luminal epithelium segmentation, the images may contain both luminal and

glandular epithelium or one of them.

We measure the segmentation accuracy using a modified version of the Dice-

score proposed in [132]. The Dice-score is used to numerically quantify the similarity

between a segmented region and its corresponding Ground Truth in both pixel-level

and epithelium-level. The closer to 1 the Dice score of a region segmentation, the

more accurate is it. The pixel-level Dice score is calculated as,

Dicepix(Seg,Grt) = 2

(
|Seg ∩Grt|
|Seg|+ |Grt|

)
(5.20)

where Dicepix is the pixel-level Dice score, Seg is a set of pixels segmented as an

epithelium and Grt is a set of pixels annotated as Ground Truth region. We consider

all segmented epithelium in one image as a whole object in calculating the pixel-level

Dice score.

To measure the weighted accuracy of the segmentation of each individual
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epithelium, we calculate the epithelium-level Dice score based on the pixel-level

Dice score as follows,

Diceepi(Seg,Grt) =

1

2

(
NS∑
i=1

wi ·Dicepix(Segi, Grti) +
NG∑
i=1

ẇi ·Dicepix( ˙Grti, ˙Segi)

)

wi =
1

2

(
|Segi|
|Seg|

+
|Grti|
|Grt|

)

ẇi =
1

2

(
˙|Grti|
|Grt|

+
˙|Segi|
|Seg|

)
(5.21)

where Diceobj is the object-level Dice score, Segi is a set of pixels segmented as the

ith epithelium region, Grti is a set of pixels annotated as the ith Ground Truth

region which maximally overlaps with Segi among all Ground Truth regions, NS

is the total number of the segmented epithelium regions, ˙Grti is a set of pixels

segmented as the ith Ground Truth region, ˙Segi is a set of pixels segmented as the

ith epithelium region which maximally overlaps with Segi among all the segmented

epithelium regions, and NG is the total number of Ground Truth regions.

5.4.1 Comparison of the Proposed Descriptors on Epithelium Seg-

mentation

The radius (in pixels) of the cell neighbourhood is a sensitive and key parameter of

all the proposed descriptors, which is empirically tuned according to the observation

on the image dataset. This experiment examines the performances of the proposed

descriptors with different cell neighbourhood radii for both luminal and glandular

epithelium segmentation on 50 images form the image dataset.

The idea of the propose descriptors is to take the advantage of orientation

congruence of neighbouring cells so that the neighbourhood radii must guarantee

that the descriptors can locate some cells. We set up the radius starting from 60

pixels (which enable the proposed descriptors to capture a couple of cells in the

very beginning), and increasing by every 30 pixels, to 180 pixels at maximum. We
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Figure 5.5: Epithelium segmentation accuracy of the proposed descriptors.
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Figure 5.6: Comparison of computational speeds between different proposed de-
scriptors.
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use 3 “ring-like” neighbourhoods for each of the multi-ring versions of the proposed

descriptors.

Figure 5.5 shows the segmentation accuracy of various proposed descriptors

using different cell neighbourhood radii. The results show that all the proposed

descriptors perform poorly in the case of using a maximum cell neighbourhood

radius 30 pixels. The proposed descriptors using multi-ring cell neighbourhood have

much lower accuracy compared with the descriptors using single neighbourhood in

this case. It is due to that small radius having difficulty in locating enough cells

to compute the orientation congruence, especially, very few of cells can be found

within a ring width 20 pixels in the multi-ring versions.

The accuracy, however, is significantly improved by increased radius, but de-

creases slightly when the radii becomes larger than 120 pixels. The MR-LBCOrCo

and MR-COrCo descriptors are the top-two in terms of the average Dice score, but

the MR-LBCOrCo descriptor has the lowest accuracy when the smallest radius 60

is employed for all the descriptors. In conclusion, the multi-ring cell neighbourhood

can improve the accuracy when an appropriate value of the starting radius is used.

Although the MR-LBCOrCo descriptor using a radius 120 pixels outputs the most

accurate segmentation, it is also very sensitive to the cell neighbourhood radius set-

ting, i.e., inappropriately tuned radii may cause significant performance reduction,

which is shown in Figure 5.5.

We also examine the computational efficiencies of the proposed descriptors,

50 images are used in the examination and each image contains 975.4 detected cells

on average. The average computational speeds per image of the proposed descriptors

are given in Figure 5.6. The computational costs of these descriptors increase along

with expanding the neighbourhood radius, for LBCOrCo and MR-LBCOrCo, the

increase is dramatic. The COrCo descriptor is the fastest descriptor and LBCOrCo

is slowest. The cost of the MR-COrCo descriptor is roughly 3 times of the COrCo

descriptor. This is due to the fact that 3 ring-like neighbourhoods are used for the
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MR-COrCo descriptor in the experiment, which can be considered as 3 times repeat

computations of the COrCo descriptor. This similar increment of the computational

cost is also observed from the LBCOrCo and MR-LBCOrCo descriptors. Overall,

the MR-LBCOrCo descriptor shows the best result and an acceptable computational

complexity for our dataset.

5.4.2 Evaluation of the Top-Two Proposed Descriptors for Glan-

dular Epithelium Segmentation

In this experiment, the top-two of the proposed descriptors are evaluated against 5

state-of-the-art methods: [126], [123], [124], [132], and [134], on 50 sub-images which

contain only glandular structures. The algorithms in [126] [123], [124], and [132]

were proposed for segmenting the complete glandular structure, and they generally

connect a set of epithelial cells to generate a close boundary to mark the glandular

structures. To make the comparison fair for the task of the epithelium segmentation,

in their results we morphologically dilate the boundaries of glandular epithelium

by an average thickness 30 pixel, and also remove the lumen regions from their

segmented glandular structures. The experimental results are reported in Table

5.1, which show that the MR-COrCo and MR-LBCOrCo descriptors yields more

accurate segmentation than the 5 state-of-the-art methods.

In fact, the thickness of both luminal and glandular epithelium can differ

greatly between different glandular structures, and even within an individual glan-

dular structure. Therefore, the proposed descriptors can achieve better accuracy

than the state-of-the-art methods, since they try to construct a boundary line to

mark the glandular structures by using a single layer of epithelial cells. An exam-

ple of the glandular epithelium with greatly varied thickness is shown in Figure 5.7

(a), and the segmentation of lumen and potential epithelium regions are shown in

Figures 5.8 (a) and (b), respectively, the classification of the cells located within

potential epithelium regions using the MR-COrCo and MR-LBCOrCo descriptors
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Table 5.1: The segmentation accuracies of the compared methods on the sub-images
containing only glandular epithelium. Dice scores are reported by the averages ±
standard deviations and the best results are in bold.

Methods
Dice Scores

Pixel-Level Epithelium-Level

Farjam et al. [126] 0.76± 0.04 0.74± 0.05

Nguyen et al. [123] 0.61± 0.08 0.59± 0.08

Naik et al. [124] 0.72± 0.04 0.71± 0.05

TGPM [132] 0.75± 0.03 0.74± 0.03

COrE [134] 0.65± 0.08 0.62± 0.09

MR-COrCo 0.79 ± 0.03 0.78 ± 0.03

MR-LBCOrCo 0.83 ± 0.02 0.82 ± 0.03

are shown in 5.9 (a) and (b), respectively. The final epithelium segmentation results

shown in Figures 5.10 (a) and (b), respectively, which demonstrate that the accu-

rate segmentation of the glandular epithelium with greatly varied thickness can be

achieved using the MR-COrCo and MR-LBCOrCo descriptors.

Another common problem of all the methods is that they often mistakenly

segment the large blank (background) areas as lumen regions. Both Figures 5.7 (a)

and 5.11 (a) show two examples of the images containing large blank (background)

area. In the middle of Figure 5.7 (a), we observe that an elongated blank back-

ground region is surrounded by both a group of stromal cells on the left side and an

epithelium regions on the right side. In Figure 5.11 (a), a large blank background

region is observed at the centre of the image, and is enclosed by a circles of stromal

cells. Figures 5.8 (a) and 5.12 (a) show the lumen segmentation of Figures 5.7 (a)

and 5.11 (a), the cells surrounding the segmented lumen are first marked as the
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(a)

(b)

Figure 5.7: (a) is a cropped local region from an input image and (b) shows the
hand-marked Ground Truth in (a) using green lines.
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(a)

(b)

Figure 5.8: Lumen segmentation of Figure 5.7(a) is shown in transparent yellow and
potential epithelium region is shown in transparent red in (b).
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(a)

(b)

Figure 5.9: (a) and (b) show the classification results of Figure 5.7(a) using the
MR-COrCo and MR-LBCOrCo descriptors, respectively. Black bars depict cell
orientations, red dots depict the cells classified as non-epithelial cells, and green
dots depict the cells classified as epithelial cells.
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(a)

(b)

Figure 5.10: (a) and (b) show the segmenatation results of Figure 5.7(a) using
the MR-COrCo and MR-LBCOrCo descriptors, respectively. Black bars depict cell
orientations. The differences between (a) and (b) are highlighted using black arrows.
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potential epithelium regions, which are shown in Figures 5.8 (b) and 5.12 (b). Fig-

ures 5.9 (a) and 5.13 (a) then show that the classification of the cells located within

potential epithelium regions using the MR-COrCo and MR-LBCOrCo descriptors,

respectively. In Figures 5.10 (a) and (b), it is observed that most of stromal cell

regions have been removed from the segmentation result, although a few of cells

are mistakenly classified as epithelial cell (as shown in Figures 5.9 (a) and (b)),

most of potential epithelium regions can still be removed by the algorithm because

a majority of cells within these potential epithelium regions are classified as stromal

cells.

On the other hand, the state-of-the-art methods generally also segment the

large blank regions shown in Figures 5.7 (a) and 5.11 (a) as lumen regions. They

attempt to construct a boundary which marks these blank regions to report them

as glandular structures. Moreover, the algorithms in [124] uses a colour-based pixel

clustering method to distinguish between stromal and epithelial cell. This leads to

that both stromal cells and epithelial cells are classified as the same type. The active

contour based cell segmentation algorithm in [134] has difficulty in segmenting dense

cell cluster, which often merge multiple individual cell as one single cell. Hence,

their PCA based cell orientation estimation method consequently fails to output

the correct classification. The methods in [124] and [134] also show their bottleneck

in segmenting relatively sparsely distributed cells or densely grouped cells, which

significantly affect the epithelium segmentation results. Consequently, both [124]

and [134] attain low accuracy and report large standard deviations of the Dice

score.

A small “Hive-like” epithelial structure marked in green circle at the bottom

of Ground Truth image (shown in Figure 5.11 (b)). None of the proposed descriptors

and the state-of-the-art methods is able to detect this particular structure, it is due

to that there is no lumen region can be recognised by any of the methods to locate the

“Hive-like” structure. Another common drawback of the proposed descriptors is that
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(a)

(b)

Figure 5.11: (a) is a cropped local region from an input image and (b) shows the
hand-marked Ground Truth in (a) using green lines.
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(a)

(b)

Figure 5.12: Lumen segmentation of Figure 5.11 (a) is shown in transparent yellow
in (a) and potential epithelium region is shown in transparent red in (b).
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(a)

(b)

Figure 5.13: (a) and (b) show the classification results of Figure 5.11 (a) using
the MR-COrCo and MR-LBCOrCo descriptors, respectively. Black bars depict cell
orientations, red dots depict the cells classified as non-epithelial cells, and green dots
depict the cells classified as epithelial cells.

124



(a)

(b)

Figure 5.14: (a) and (b) show the segmenatation results of Figure 5.11 (a) using
the MR-COrCo and MR-LBCOrCo descriptors, respectively. Black bars depict cell
orientations
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computing cell orientation congruence on the small and circular cells from the‘Hive-

like” epithelial structure is not entirely reliable. Moreover, their cell orientation

congruence are very similar to the stromal cells. Hence, the ‘Hive-like” epithelial

structures is the main challenge which prevents the proposed method to generate

highly accurate segmentation results. However, the“Hive-like” epithelial structures

exhibit an very unique textural appearance compared with other epithelial regions or

stromal cell regions. For example, the cells from the“Hive-like” epithelial structures

exhibit as evenly spaced circular spots, whereas the cells from other epithelium or

stromal cells are normally elongated and either homogeneously spread or densely

grouped. Therefore, it is possible to develop a machine learning based method

which utilises this unique textural feature to classify the image regions of “Hive-

like” epithelial structures.

5.4.3 Evaluation of the Top-Two Proposed Descriptors for Simul-

taneous Segmentation of Glandular and Luminal Epithelium

Table 5.2 indicates that the state-of-the-art methods perform with lower accuracies

compared with the proposed method in this experiment. Both the MR-COrCo and

MR-LBCOrCo descriptors slightly drop their accuracies by 0.02 to 0.03, respectively,

which shows that they are also able to accurately segment luminal epithelium. The

MR-COrCo and MR-LBCOrCo descriptors show a slightly reduced accuracy. It is

due to that the cell regions at luminal epithelium Boundary are a mixture of stromal

and epithelial cells, which leads to inaccurate cell orientation congruence estimation

for these regions.

On the other hand, [126], [123], [124], and [132] produce lower accuracy than

in the above experiment, because the lumen segmentation algorithms used in these

methods often segment the background regions as lumen, which consequently cause

the stromal cells at the boundaries of these background regions are mistakenly clas-

sified as epithelial cells. In fact, the Ground Truth image in Figure 5.15 (b) shows
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Table 5.2: The glandular and luminal epithelium segmentation accuracies of the
compared methods on the complete image dataset. Dice scores are reported by the
averages ± standard deviations and the best results are in bold.

Methods
Dice Scores

Pixel-Level Epithelium-Level

Farjam et al. [126] 0.67± 0.05 0.66± 0.06

Nguyen et al. [123] 0.58± 0.09 0.56± 0.10

Naik et al. [124] 0.66± 0.05 0.65± 0.05

TGPM [132] 0.70± 0.04 0.68± 0.05

COrE [134] 0.58± 0.11 0.54± 0.12

MR-COrCo 0.76 ± 0.05 0.76 ± 0.05

MR-LBCOrCo 0.82 ± 0.03 0.80 ± 0.04

that only the cells at the top-left are from luminal epithelium and the cells from the

bottom-right, despite the fact that they are located along the same tissue boundary.

The state-of-the-art methods generally segment the large empty background region

shown in Figure 5.15 (a) as lumen, and then attempt to generate a enclosed curve on

the cells packed at the boundary of the background region to mark a glandular struc-

ture. Although the background region is also classified as lumen by the proposed

method (as shown in Figure 5.16 (a)), the it is used for locating potential epithelial

regions rather than directly reporting an existence of a glandular structure. Figures

5.17 (a) and 5.17 (b) show the cell classification results using the MR-COrCo and

MR-LBCOrCo descriptors, respectively.

The MR-COrCo descriptor has difficulty in correctly classifying the cell lo-

cated at the bottom-right of Figure 5.15 (a), which consequently cause that a few

stromal cell regions located at the bottom-right of Figure 5.15 (a) are also included
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(a)

(b)

Figure 5.15: (a) is a cropped local region from an input image and (b) shows the
hand-marked Ground Truth in (a) using green lines.
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(a)

(b)

Figure 5.16: Lumen segmentation of Figure 5.15(a) is shown in transparent yellow
in (a) and potential epithelium region is shown in transparent red in (b).
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(a)

(b)

Figure 5.17: (a) and (b) show the classification results of Figure 5.15(a) using the
MR-COrCo and MR-LBCOrCo descriptors, respectively. Black bars depict cell
orientations, red dots depict the cells classified as non-epithelial cells, and green
dots depict the cells classified as epithelial cells.
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(a)

(b)

Figure 5.18: (a) and (b) show the segmentation results of Figure 5.15(a) using
the MR-COrCo and MR-LBCOrCo descriptors, respectively. Black bars depict cell
orientations
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in the segmentation, which is shown in 5.18 (a). In the epithelium segmentation

result (shown in 5.18 (b)) using the MR-LBCOrCo descriptor, we observe that most

of the stromal cell regions, which are previously classified as potential epithelial, are

finally remove from the segmentation.

In summary, the experimental results show that the MR-COrCo and MR-

LBCOrCo descriptor performance well in the segmentation of glandular epithelium,

and the MR-LBCOrCo descriptor can also accurately segment luminal epithelium ,

but the MR-COrCo descriptor starts showing slight difficulty in correctly represent-

ing cell orientation congruence of the cells from luminal epithelium. The state-of-

the-art methods assume that glandular epithelium has an enclosed boundary, but

luminal epithelium is normally curves/lines and not part of a glandular structure, as

shown in Figure 5.15 (a). Therefore, all the state-of-the-art methods performance

poorly on segmenting luminal epithelium.

5.4.4 Discussion

To the best of our knowledge, the proposed COC descriptor based approach is

the first one for detecting epithelial cell and segmenting epithelium in endometrial

tissue. Epithelium segmentation approaches are based on existing gland segmen-

tation methods, which generally first attempt to segment glandular structure as

enclosed objects and then extract from it the glandular epithelium. The exist-

ing state-of-the-art gland segmentation methods generally solve the problem by

using colour/textural features of different cell region or/and structural informa-

tion of glandular structures and other objects/backgrounds. However, epithelial

cell region and stromal cell region in endometrial tissue have strong similarity in

terms of colour/textural features. Therefore, these methods are commonly faced

with the difficulty of differentiating between stromal and epithelial cells when the

colour/textural features of the cells are employed in the cell classification. More-

over, both of glands and epithelium in endometrial tissue show a variety of irregular
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structures/appearances.

The variance filter in [126] is proposed to generate different textural fea-

tures for lumen regions and cell clusters so that different image regions can be

clustered/segmented based their textural features. his method shows a strong avail-

ability of segmenting lumen, cell and background regions from the image, it is not

capable of differentiating between different cell regions due to their same textural

features generated by the variance filter. Although epithelial cells are packed at

the boundaries of lumen or tissue regions, both glandular and luminal epithelium in

endometrial tissue are constructed by one or more layers of epithelial cells with dif-

ferent sizes and morphologies, which are characterized by inconsistent thickness and

morphology. In addition, stromal cells are also sometimes packed at the boundaries

of tissue regions. Therefore, epithelium can be hardly differentiated based on their

location information after the segmentation by the variance filter. The proposed

solution computes a novel local orientation congruence of cell region and it is suc-

cessfully used to differentiate between different cell regions located at the boundaries

of lumen or tissue in endometrial pathology images.

A Bayesian classifier proposed in [123] first locates potential luminal areas

and then initialised a level set curve on the boundaries of potential luminal areas to

finalise the segmentation of glandular structures. This method often identify large

cytoplasm areas between stromal cells as luminal areas due to their strong similar-

ity in terms of colour/texture. Therefore, the level set curves are also initialised on

the boundaries of large cytoplasm areas, which causes that these non-luminal areas

are mistakenly segmented as glandular structures and stromal cells packed at the

boundaries of the large cytoplasm areas are extracted and mistakenly identified as

epithelial cells. In addition, the boundaries of glandular structures in endometrial

tissue are made of epithelial cell clusters which have a variety of complex morpholo-

gies and inconsistent textures, thus the level set based methods cannot accurately

approximate the boundaries of glandular structures in endometrial tissue. Con-
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sequently, the following epithelium extraction may obtain incomplete epithelium

or non-epithelial regions based on the approximated boundaries of the glandular

structures. Our proposed method attempts to utilise the classified epithelial cells to

achieve the epithelium segmentation, which avoids a dependency on the inaccurately

approximated boundaries of glandular structures.

Colour space analysis is used in [124] to label glandular components, i.e.,

epithelial cell nuclei, cytoplasm and lumen. The labelled glandular components are

used to constitute glandular structure to achieve the segmentation. The problem of

this method is similar to of the Bayesian classifier in [123], colour feature can neither

differentiate between epithelial and stromal cell nuclei, nor between lumen and large

cytoplasm/background. In comparison, the proposed cell orientation congruence

feature shows better performance on classifying epithelial cells. It is also worthy

mentioning that our proposed epithelial cell classification method can be integrated

with the gland segmentation methods based on organisational information of the

glandular structures, which may solve the segmentation problem for these images

which look similar to endometrial pathology images.

The gland segmentation method proposed in [131] decomposed an endome-

trial pathology image into set of circular objects, which either depict nuclei or lu-

men/cytoplasm regions. Glands are segmented making use of the organizational

properties of the circular objects, which are quantified with the definition of object-

graphs constructed by these objects. This approach employs the structural informa-

tion, instead of using the pixel-based information alone for the gland segmentation.

It overcomes the problem of incorrect gland segmentation due to that cells, cyto-

plasm, or/and lumen regions in endometrial tissue, are often misclassified by [126],

[123] and [124]. However, only one organizational model is used in [131] for glands

and it is pre-defined. But the glands in endometrial tissue have a variety of different

structures so that their structural information cannot be comprehensively described

by singular and pre-defined organizational model. Therefore, the method proposed
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in [131] occasionally miss initialise segmentation at some of the glands. In addition,

the organization of the circular object depicting large cytoplasm or background

regions and their nearby circular objects depicting nuclei may also exhibit like a

glandular structure, which causes this method also attempt to initialise gland seg-

mentation at these large cytoplasm/background regions. In contrast, our proposed

approach employs the local cell orientation information to classify the epithelial

cells, which potentially avoids the above cell classification problem in [131].

Random Polygons Model (RPM) proposed in [132] is also an unique gland

segmentation method in terms of methodology. The RPM approximates the bound-

ary of glandular structure by fitting polygon made of a random number of vertices

which represents the location of epithelial cell nuclei. One evident advantage of the

RPM is that neither morphological information nor textural feature of the epithelial

cells are employed in term of the methodology, i.e., it can cope with morphological

and textural irregularity of the boundaries of glandular structures in endometrial

tissue, compared with the level set curve in [123]. However, the disadvantage of

RPM is also obvious, i.e., polygon fitting is relatively high computational complex-

ity and the cost increases dramatically for the polygons (glandular structures) with

more number of vertices (epithelial cells). The computational cost of the RPM is

especially an issue for glandular structure in endometrial tissue due their epithe-

lial boundaries are normally made of a significant number of cells, it takes several

minutes to approximate the epithelial boundary made of one individual glandular

structure with hundreds of epithelial cells. In contrast, the proposed COC descrip-

tors are much less computational complexity, which is shown in the experiment

section.

In conclusion, it is difficult to accurately obtain epithelium based on the

boundaries of segmented glandular structures for the above gland segmentation

methods. It is due to that the epithelium are occasionally discontinued crust formed

by a number of layers of epithelial cells, which are therefore characterized by strong
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inhomogeneity, e.g., inconsistent morphology and thickness. Our proposed epithe-

lium segmentation method attempts to classify the epithelial cells and then finalises

the epithelium segmentation by the superpixel regions containing the classified ep-

ithelial cells. More importantly, the above methods are restricted in segmenting

glandular epithelium only from the segmented glands, whereas removal of luminal

epithelium is also necessary for the cell counting in endometrial tissue. In compar-

ison, the cell orientation congruence based approach is capable of simultaneously

segmenting both types of epithelium in general.

The methodology of Cell Orientation Entropy (COrE) in [134] are similar

to that of our proposed method, which also aims to qualitatively model the cell

orientation and then employ it as a feature for the cell classification. A major dif-

ference between COrE and the COC descriptors is that COrE performs Principle

Component Analysis (PCA) on nucleus boundaries to compute cell orientations.

It is difficult to achieve accurate boundary of individual epithelial cell nucleus in

endometrial tissue since the nuclei are densely grouped together and normally over-

lapped. The active contour is used in COrE to generate the nucleus boundaries,

which faces with the problems of accurately positioning initial contour (detecting

nucleus position) and high computational cost. The COC descriptors estimate the

cell orientation of a detected cell on a set of sampled pixels from its nucleus regions,

which does not require cell/nucleus segmentation and are therefore accurate and

also much less computational complexity.

The COC descriptors also can be extend to cancer diagnosis and grading,

provide an important and reliable cell orientation measurement for the classifica-

tion of disoriented cancerous cells. For example, prostate cancer is fundamentally a

disease regarding to glandular disorganization. In the healthy prostate glands, the

neighbouring epithelial cells align themselves with a coherent directionality toward

to the lumen centre. However, the cancerous prostate gland has a disordered or-

ganization, which causes that the surrounding epithelial cells display a disoriented
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arrangement. Therefore, the breakdown in cancerous epithelial cell orientation is

directly related to the grade of prostate cancer [137]. The COC descriptors can be

used to yield a characterization of the cell disorientation in prostate glands for both

identification of the tumour regions and measuring the degree of prostate cancer

aggressiveness.

The methods proposed in Chapter 4 and 5 comprise are specially designated

for the endometrial pathology images which are cropped by our collaborators from

the marginal regions (edges) of endometrial tissue in whole slide images. Therefore,

although these methods comprise an automatic cell counting solution for endometrial

pathology images, it is strongly advisable for users to manually select the input

images in practice., rather than automatically cropping random image regions from

the whole slide images or even use the entire whole slide image as the input image.

It is also important to deal with legal and ethical issues of applying the pro-

posed automatic pathology image analysis solution in clinic diagnosis.The patients

must be informed that the diagnosis will be partially relied on the assistance of

an automatic pathology image analysis system, and they can ask a comparison be-

tween the results respectively produced by the automatic system and the pathology

experts. More importantly, although the pathology experts can explain to the pa-

tients that the automatic system is more accurate and efficient than manual image

analysis, the patients still have the right to decide whether the automatic system

can be involved in the diagnosis. Moreover, the automatic system and its developers

should not bear any legal liability if the patients are given false diagnostic result

while employing the automatic system to assist the diagnosis. This is because that

the automatic system are only used to produce the information required by the di-

agnosis, and the final diagnostic decision are made by the pathology experts rather

than the automatic system.
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5.5 Summary

In this chapter, We presented a variety of cell orientation congruence descriptors

for solving the problem of simultaneously segmenting both luminal and glandular

epithelium in endometrial histology images. The proposed descriptors is designated

to discriminate between epithelial and stromal cells based on the observation of that

the epithelial cells in the normal endometrium are packed such that their orientation

is more or less similar to their neighbouring cells along certain directions, whereas

neighbouring stromal cells are packed in entirely different pattern. We proposed

two novel locality sensitive models for the descriptors for the computation of the

cell orientation pattern of local cell neighbourhood. We examined the performance

of the proposed descriptors and concluded that the MR-COrCo and MR-LBCOrCo

descriptors yielded the best results with relatively low computational cost. In addi-

tion, the MR-COrCo and MR-LBCOrCo descriptors were compared with 5 state-of-

the-art methods in two different experiments. The experimental results show that

the MR-LBCOrCo descriptors attains a superior epithelium segmentation accuracy,

particularly on simultaneously segmenting both luminal and glandular epithelium.
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Chapter 6

Conclusions and Future

Directions

In recent years, biomedical imaging has been widely applied as a primary analy-

sis tool for cell biology, pathology research and clinical diagnosis, thanks to the

rapid improvements in digital imaging facilities and computational power. Biomed-

ical imaging techniques brings the scientists gigantic image data regarding to the

biomedical information, e.g.,s molecular events in living or cell conditions in tis-

sue biopsy on a daily basis. In the meanwhile, computer science community has

proposed a large number of powerful image processing algorithms to cope with the

problems raised in the automatic analysis of digital biomedical images. The work

was motivated by several unsolved unique challenges in the automatic tracking of

Myosin VI spots in TIRFM sequences and the cell counting in endometrial histol-

ogy images. In this thesis, we presented several image anasyis algorithms based on

novel locality sensitive modelling, which can serve as fundamental building units to

develop the computer-aided automatic systems for quantitatively processing large

scale datasets of TIRFM sequences and endometrial histology. This chapter con-

cludes the achievements presented in this thesis, and also discusses several possible

future research directions.
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6.1 Chapter Summaries

In Chapter 1, we introduced the importance of biomedical imaging as it is a pow-

erful visualisation toolbox for studying cell biology, pathology research and clinical

diagnosis, and mentioned the solutions for automatic biomedical image analysing

are pressing demands from the researchers. We also discussed the common tasks in

biomedical image processing, e.g., detection, tracking and segmentation of biologi-

cal structures. We also discussed some particular challenges of object analysis, and

indicated that temporal and spatial relationships between neighbouring objects in

local regions can be modelled as a sort of relational features using locality sensitive

modelling, which offers a crucial clue to confront these challenges. We also briefly

summarised the main contributions of the work in Chapter 1.

Chapter 2 introduced the basic workflow of the proposed multi-target track-

ing framework for Myosin VI spots in TIRFM sequences, which consists of 3 stages:

(1) pre-processing, (2) spot detection, and (3) spot tracking. In Chapter 2, we fo-

cused on presenting the stages (1) and (2), and the algorithms regrading to the stage

(3) was presented in Chapter 3. We first briefly reviewed several pre-processing tech-

niques, e.g., image enhancement and image denoising method, and discussed several

popular methods of detecting spots in fluorescence microscopy. We then proposed

a pre-processing stage including a 3D wavelet based image denoising method to re-

duce the background noise, and a Kalman filter followed a Difference of Gaussian

(DoG) filter to enhance the visibility of fluorescent spots. In the spot detection

stage, bright objects that resemble dome-like structures were first detected by H-

dome transform and then classified as either noises or fluorescent spots using a spot

appearance modelling approach. We also presented a method of generating syn-

thetic TIRFM sequences of Myosin VI proteins moving along Actin filaments: the

appearances (intensities) of spots were modelled using a 2D Gaussian models, Actin

filaments was generated as a strip of connected curve segments approximated using
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cubic B-Spline curve fitting. We evaluated the proposed spot detection method on

both real and synthetic TIRFM sequences and the experimental results shown that

the proposed method attained high precision and recall values, which can provide

accurate spot locations for the spot tracking.

Chapter 3 first reviewed several state-of-art methods for tracking fluorescent

spots in microscopy sequences and then presented a multi-target spot tracking frame-

work for analysing the dynamics of Myosin VI proteins in TIRFM sequences. Two

synergistic components were proposed in the algorithm: an extended Hungarian al-

gorithm and an IMM filter with two motion models. The Hungarian algorithm was

extended by a locality sensitive model, which helped to solve the data association

(measurement-to-target and estimation-to-target assignment) problems, commonly

encountered when tracking multiple targets, and an IMM filter which was installed

with two motion models to approximate the non-linear dynamics of Myosin VI pro-

teins. The locality sensitive model was introduced together with imaginary spots in

the Hungarian algorithm, which forced the spots to be associated within a spatio-

temporal local neighbourhood to prevent possible assignment between two distant

spots even under the global association manner of the Hungarian Algorithm. The

imaginary spots not only overcame the limitation of bijective mapping of the Hun-

garian algorithm, but also helped the proposed spot tracking method to preserve

spot trajectories when no corresponding spot matching/measurement on next frame

due to spot overlapping or temporal disappearing.

We quantitatively evaluated the prospered spot tracking framework against

three publicly available state-of-the-art methods using an OSPA error metric on real

one-channel and two-channel TIRFM sequences, and also the synthetically generated

one-channel TIRFM sequences. The experimental results shown that the accuracy

of the proposed spot tracking framework is higher than that of the state-of-the-art

methods on both synthetic and real TIRFM sequences of Myosin VI protein. We

discovered that an hypothesis can be made on the movements of Myosin VI proteins
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on Actin filament, i.e., their motion is a composite of unbound, freely diffusing and

weakly bound diffusive motion trapped by a fixed structure (Actin filament), base

on the MSD of expert manually marked ground truth. MSD is commonly used in

analysing the biophysics of particles to determine motion modes of the fluorescent

spots over a period of time. Therefore, we employed a MSD based evaluation method

to quantify the similarities between hand-marked tracks and those produced by all

the evaluated methods. The results shown that the spot tracks captured by the

proposed tracking framework exhibited the similar motion pattern as the Ground

Truth. We finally concluded that the can more accurately capture the movements

of Myosin VI proteins on Actin filament than the other three methods, which can

therefore help the researchers to better understand the role of Myosin VI proteins

in intracellular transportation.

In Chapter 4, we first discussed several popular techniques of cell detection

in histology images. Then we proposed a complete solution to effectively detect

stromal and UNK cells in H&DAB stained endometrial histology images, including

a localisation method which marks luminal epithelium to removing irrelevant cell

detections. The cells in endometrial histology can be considered as symmetric ellip-

tical blobs where a peak of isotropic symmetry is shown near to the blob centre. We

improved a feature detection method called LIPSyM which is based on detecting

isotropic symmetry peaks to detect the cell nuclei in endometrial histology images.

LIPSyM often detects multiple peaks resulting in redundant detections at the over-

lapping or elongated cells, therefore we presented a locality sensitive model acted as

a probe to search redundant detections. UNK cells are those covered by the DAB

stained brown areas, we proposed a h-maxima transform to suppress high intensity

areas on the DAB channel, while keeping the lower intensity areas corresponding to

the DAB stained brown areas (UNK cell nucleus regions). We also presented an al-

pha shapes method which was used to classify those cell detection corresponding to

epithelial cells, and also a localisation method which approximates cubic B-Spline
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curve on the classified epithelial cell detection to mark luminal epithelium. We

evaluated the proposed cell detection, luminal epithelium localisation methods, and

the cell counting module designed for the endometrial histology of a commercial

cloud application, called VIS which is developed by Visiopharm, on high resolution

(around 1000×1500 pixel) image regions captured from the HPFs of whole slide

images. The evaluation result proven that the proposed methods attained accurate

cell detection and luminal epithelium localisation than VIS. The localisation method

is also an essential and preliminary approach or automatic cropping image region

near tissue edges from the whole slide images, since the cell counting is preferably

perform on the regions near tissue edges.

In Chapter 5, we briefly reviewed several state-of-art methods for segment-

ing glandular structures in digital histology images, which can be also used for seg-

menting glandular epithelium in endometrial histology images. Next, we proposed a

variety of scale-rotational invariant descriptors which can discriminate between ep-

ithelial and stromal cells for simultaneously segmenting both luminal and glandular

epithelium in endometrial histology images. The descriptors were proposed based on

the observation of that the neighbouring epithelial cells in normal endometrium are

densely packed in parallel (their orientations are more or less similar) at the bound-

aries of glandular structures and tissue regions, whereas stromal cells are loosely

distributed and exhibit inconsistent orientations in a local region. We proposed

two different locality sensitive models for the descriptors to compute the orientation

congruence of neighbouring cells. One of the models was used in the COrCo and

MR-COrCo descriptors, which has the strength of expressing an average of the ori-

entation difference between cells and each of their neighbours, and the other used in

the LBCOrCo and MR-LBCOrCo descriptors is adept in emphasising the similarity

between the average orientation of the neighbouring cells packed along the different

directional regions. We evaluated the top-two of the proposed descriptors against

five state-of-the-art segmentation methods in two different experiment, the experi-
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mental results shown that the proposed descriptors attained higher accuracy than

other state-of-the-art methods, especially MR-LBCOrCo descriptor performed su-

periorly in segmenting luminal epithelium in where other methods commonly failed.

6.2 Future Directions

The algorithms proposed in this thesis still remains in the experimental stage, but

it ultimately aims at serving as the core modules of the automatic image analysis

systems, which can be used in practice and on a daily basis. Although the ex-

periments showed that the proposed algorithms yielded satisfactory results, several

limitations were observed and must be overcame before deploying them in practice.

We will discuss the current limitations and several possible direction to improve the

proposed algorithms in the following.

For the real two-channel TIRFM sequences, we observed that Myosin VI

spots on the Actin filaments tend to move smoothly with an average velocity of

2.6µm/s (0.8 pixel/frame). Therefore, one of the primary task in the future work,

is to take into account of the velocity difference between real Myosin VI and noisy

spots, to remove the spots with abnormal velocities from the tracking. This work

can be very useful for preventing a spot on an Actin filament matching with a noisy

spot with much lower/higher velocity that moves close to, but not on, the same

Actin filament. In this work, we had a quite few resources regarding to the TIRFM

sequences of Myosin VI proteins on Actin filaments, which caused the comprehensive

observation and understanding of the motion pattern of Myosin VI protein on Actin

filaments very difficult. Consequently, the motion models used in IMM filter and the

parameters tuned in the proposed locality sensitive model were suboptimal, therefore

examining more motion models on a large dataset is also one of the primary task in

the future work.

In endometrial histology, although the improved LIPSyM can remove most
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redundant cell detection, it is an unsupervised method relying on the symmetric

feature, which showed a strong weakness on detecting the cells with faint, blurred,

broken or less symmetric shapes/appearances. The supervised methods, e.g., Con-

volutional Neural Networks (CNNs)[138] [139], have recently became the most pop-

ular and powerful approach for detecting and classifying the objects with a variety

of complex shapes/appearances. Several CNNs based cell detection methods [140]

[141] [142] showed that CNNs performed excellently for many different types of dig-

ital pathology images. CNNs were inspired by the biological processes of human

brain [143], which normally consist of multilayer perceptrons (neurons) which are

responsible for detecting the cells located in the corresponding small image portions

[144]. However, CNNs report redundant detections when a cell appears multiple

times in different small image portions, thus the proposed locality sensitive model

used for improving LIPSyM can also be used to remove the redundant detections

reported by CNNs.

The proposed descriptors can fail when stromal cells exhibit similar orienta-

tion congruence as epithelial cells. A more reliable solution is to classify between

stromal and epithelial cell regions using the cell orientation congruences together

with the textural features. This solution is feasible due to that the epithelial cells

are densely packed with similar orientation to each other as a strip along the lu-

men/tissue boundaries, whereas it is hard to conclude certain arrangement and

feature patterns for stromal cell clusters, since the stromal cells are more loosely

distributed with random orientations. The proposed descriptors can hardly obtain

the segmentation of the ”Hive-like” epithelial structures, which has already been

addressed in Chapter 5. Therefore, another important task in the future work is

to develop a solution for segmenting the“Hive-like” epithelial structures using ma-

chine learning techniques, e.g., CNNs, which show many particular advantages due

to the characteristics of bionics, on capturing and learning the complex structural

and textural appearances of the “Hive-like” epithelial structure.
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We intend to further validate the proposed descriptors on variety of large

datasets of cancer and non-cancer histology images. We also attempt to extend the

present work in those cancer diagnosis relied on epithelial cell analysis (abnormal

cells are likely to be disoriented in cancer tissues). In addition, an optional work in

the future is to efficiently parallelise the computation of the proposed descriptors.
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manuel Laplantine. Tnf and il-1 exhibit distinct ubiquitin requirements for

inducing nemo–ikk supramolecular structures. The Journal of cell biology, 204

(2):231–245, 2014.

157



[84] 3DHISTECH Ltd. Pannoramic viewer, 2016. URL http://www.3dhistech.

com/pannoramic_viewer.

[85] Guanglei Xiong, Xiaobo Zhou, and Liang Ji. Automated segmentation of

drosophila rnai fluorescence cellular images using deformable models. Cir-

cuits and Systems I: Regular Papers, IEEE Transactions on, 53(11):2415–

2424, 2006.

[86] Adel Hafiane, Filiz Bunyak, and Kannappan Palaniappan. Clustering initiated

multiphase active contours and robust separation of nuclei groups for tissue

segmentation. In Pattern Recognition, 2008. ICPR 2008. 19th International

Conference on, pages 1–4. IEEE, 2008.

[87] Adel Hafiane, Filiz Bunyak, and Kannappan Palaniappan. Fuzzy clustering

and active contours for histopathology image segmentation and nuclei detec-

tion. In Advanced Concepts for Intelligent Vision Systems, pages 903–914.

Springer, 2008.

[88] Norberto Malpica, Carlos Ortiz de Solorzano, Juan José Vaquero, Andrés

Santos, Isabel Vallcorba, José Miguel Garcia-Sagredo, and Francisco del Pozo.

Applying watershed algorithms to the segmentation of clustered nuclei. 1997.

[89] J MISWAN Sharif, MF Miswan, MA Ngadi, Md Sah Hj Salam, and Muham-

mad Mahadi Bin Abdul Jamil. Red blood cell segmentation using masking

and watershed algorithm: A preliminary study. In Biomedical Engineering

(ICoBE), 2012 International Conference on, pages 258–262. IEEE, 2012.

[90] Kan Jiang, Qing Min Liao, and Sheng Yang Dai. A novel white blood cell

segmentation scheme using scale-space filtering and watershed clustering. In

Machine Learning and Cybernetics, 2003 International Conference on, vol-

ume 5, pages 2820–2825. IEEE, 2003.

158



[91] Leyza Baldo Dorini, Rodrigo Minetto, and Neucimar Jeronimo Leite. White

blood cell segmentation using morphological operators and scale-space analy-

sis. In Computer Graphics and Image Processing, 2007. SIBGRAPI 2007. XX

Brazilian Symposium on, pages 294–304. IEEE, 2007.

[92] Dwi Anoraganingrum. Cell segmentation with median filter and mathematical

morphology operation. In Image Analysis and Processing, 1999. Proceedings.

International Conference on, pages 1043–1046. IEEE, 1999.

[93] Cecilia Di Ruberto, Andrew Dempster, Shahid Khan, and Bill Jarra. Analysis

of infected blood cell images using morphological operators. Image and vision

computing, 20(2):133–146, 2002.

[94] Frederic Leymarie and Martin D Levine. Tracking deformable objects in the

plane using an active contour model. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 15(6):617–634, 1993.

[95] Pascal Bamford and Brian Lovell. Unsupervised cell nucleus segmentation

with active contours. Signal Processing, 71(2):203–213, 1998.

[96] Min Hu, Xijian Ping, and Yihong Ding. A new active contour model and its

application on cell segmentation. In Control, Automation, Robotics and Vision

Conference, 2004. ICARCV 2004 8th, volume 2, pages 1104–1107. IEEE, 2004.

[97] Kashif Rajpoot and Nasir Rajpoot. Svm optimization for hyperspectral colon

tissue cell classification. In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2004, pages 829–837. Springer, 2004.

[98] Johan AK Suykens and Joos Vandewalle. Least squares support vector ma-

chine classifiers. Neural processing letters, 9(3):293–300, 1999.

[99] Andy Liaw and Matthew Wiener. Classification and regression by randomfor-

est. R News, 2(3):18–22, 2002.

159



[100] Tao Shi, David Seligson, Arie S Belldegrun, Aarno Palotie, and Steve Horvath.

Tumor classification by tissue microarray profiling: random forest clustering

applied to renal cell carcinoma. Modern Pathology, 18(4):547–557, 2005.

[101] Arnout C Ruifrok and Dennis A Johnston. Quantification of histochemical

staining by color deconvolution. Analytical and Quantitative Cytology and

Histology/the International Academy of Cytology [and] American Society of

Cytology, 23(4):291–299, 2001.

[102] Manohar Kuse, Yi-Fang Wang, Vinay Kalasannavar, Michael Khan, and Nasir

Rajpoot. Local isotropic phase symmetry measure for detection of beta cells

and lymphocytes. Journal of pathology informatics, 2, 2011.

[103] Pete Kovesi. Symmetry and asymmetry from local phase. In Tenth Australian

Joint Conference on Artificial Intelligence, volume 190. Citeseer, 1997.

[104] Gareth Loy and Alexander Zelinsky. Fast radial symmetry for detecting points

of interest. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

25(8):959–973, 2003.

[105] Zhitao Xiao, Zhengxin Hou, Changyun Miao, and Jianming Wang. Using

phase information for symmetry detection. Pattern Recognition Letters, 26

(13):1985–1994, 2005.

[106] Alan V Oppenheim, Ronald W Schafer, and John R Buck. Discrete-time

signal processing, volume 2. Prentice-hall Englewood Cliffs, 1989.

[107] Pietro Perona and Jitendra Malik. Scale-space and edge detection using

anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 12(7):629–639, 1990.
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