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Abstract—We present optimisations applied to a bespoke bio- 
physical molecular dynamics simulation designed to investigate 
chromosome condensation. Our pr imary focus is on domain-
specific algor ithmic improvements to determining shor t-range
interaction forces between par ticles, as cer tain qualities of the
simulation render traditional methods less effective. We im-
plement tuned versions of the code for both traditional CPU
architectures and the modern many-core architecture found in
the Intel Xeon Phi coprocessor and compare their effectiveness.
We achieve speed-ups star ting at a factor of 10 over the or iginal
code, facilitating more detailed and larger-scale exper iments.

I. INTRODUCTION

Genomes can be large—the DNA comprising the human 
genome is approximately 2 m long when stretched out. In 
order to fit inside the nucleus of each cell, the DNA is wrapped 
around many bundles of proteins to form packaging units 
called nucleosomes, collectively comprising a structure called 
chromatin. Chromatin’s structure varies with the cell cycle; 
when the time comes for the cell to divide, it moves from the 
loose conformation of nucleosomes and DNA linkers (often 
likened to “beads on a string”) to a more tightly compacted 
version typically associated with chromosomes. This process 
is known as chromosome condensation, and it is thought to be 
affected by protein complexes known as condensins, although 
exactly how it happens is currently not well understood.

Current research looks to leverage computational techniques 
to answer this question. In this paper we discuss optimisations 
applied to one such biophysical molecular dynamics simula- 
tion, developed recently by Cheng et al. [1]. The simulation 
is used to study the effects of different models of condensin 
interaction on the condensation of conformations of nucleo- 
somes and linker DNA determined via in vitro methods (see 
Figure 1). In this paper we present optimisations that make it 
feasible to run the lengthy simulations required.

The contributions presented in this paper are:
� Development of projection sorting, an improvement to 

the computation of short-range interaction forces between
particles under certain organisational conditions;

� Analysis and implementation of the most effective thread 
and vector parallelism strategies for both the above and 
for other kernels in this simulation, leading to overall 
speedups starting at 10� and increasing with dataset size;

� Investigation of the resulting performance on the In- 
tel Xeon and Xeon Phi platforms, and discussion of 
characteristics that make some kernels more suitable for
execution on the coprocessor.

Section II discusses related work and provides a brief 
overview of the simulation and its component parts. In Sec-
tion III we discuss the computation of repulsion forces, our
algorithm for computing them, and important implementation 
details. Similarly, Section IV deals with condensin binding site 
interactions. Section V presents an analysis of the resulting 
performance and the work concludes in Section VI.

II. BACKGROUND

A. Related work
Computational simulations are widely used in the life sciences, 
spanning a variety of domains of investigation from protein 
structures to cell pathways, with numerous software packages 
available. Perhaps the most well known molecular dynamics 
program applicable to biological research is NAMD [2], 
which has been heavily optimised for a variety of highly 
parallel systems over the last 20 years [3], [4], [5]. Other 
well known molecular dynamics codes include LAMMPS [6], 
DL POLY [7] and GROMACS [8].

As clock-speeds drop off, exploiting the increasing amounts
of available parallelism at the vector and on-chip levels 
becomes more and more important. Modern many-core ar- 
chitectures such as Intel’s Knights Corner (KNC) and the 
upcoming Knights Landing, and Nvidia’s Kepler and Maxwell 
GPU architectures, demand much more from implementations 
in order to extract maximum performance. Significant work 
has gone into optimising molecular dynamics applications for 
such architectures [9], [10], [11].

Fig. 1: A visualisation of one of the datasets used—a confor- 
mation of yeast DNA dotted with nucleosomes.
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The primary focus of this paper is optimisation of a pairwise 
short-range force calculation, where interactions take place 
between all pairs of particles within a cut-off radius, rc , of each 
other. Owing to their computational expense and widespread 
applicability, forces such as these have received significant 
attention in the MD literature. Many modern MD codes, 
including NAMD and LAMMPS, use a combination of cell 
lists [12], [13] and Verlet lists [14].

Cell lists are constructed by discretising the simulation
space into cubic partitions and binning particles according 
to the partition they reside in. This reduces the number of 
distance checks that must be performed to only a small 
neighbourhood of partitions. This was the approach used by 
Cheng et al. [1].

The cell lists can further be used to cheaply construct a
Verlet list for each particle, containing all other particles within
distance rv = rc + krs , where rc is the cut-off radius for the 
force, outside which its magnitude is zero, and rs is the skin 
distance of the simulation, chosen such that no particle may 
move further in a single timestep. The Verlet lists may then be 
used to efficiently calculate forces for up to k timesteps, after 
which the lists must be rebuilt. k should be chosen to strike 
a balance between increasing the size of the Verlet lists, and 
decreasing the frequency of the rebuilds.

Another class of optimisations involves reordering stored
particles such that those local to each other in three dimen- 
sional simulation space are also local in the computer’s mem- 
ory (a one dimensional space). Spatial locality is important 
in contemporary computer architectures, whose performance 
often depends on being able to work around memory latency 
by means of reuse within multiple layers of cache, and the 
ability to predict and prefetch data likely to be needed in the 
near future. Yao et al. discuss sorting particles along an axis 
of the simulation domain [15]. Anderson et al. demonstrate 
a successful application of a more sophisticated approach, 
whereby particles are ordered according to their distance along 
a space-filling Hilbert curve [9]. The Hilbert curve is chosen 
due to its locality preserving properties [16].

This simulation has the advantage that, due to the tension
forces enacted by DNA linkers between each nucleosome, two 
nucleosomes that are next to each other in memory can never 
stray far from each other; this is in contrast to liquid or gas 
MD simulations. The string can however wrap around on itself 
leading to interactions between distant nucleosomes.

B. Simulation
The simulation treats the nucleosomes as uniform particles 
in a molecular dynamics simulation, with radius 5 nm. The 
DNA linkers are modelled as ideal springs following Hooke’s 
law, connecting each nucleosome to the next. Nucleosomes are 
free to move according to Brownian motion, subject to certain 
constraints:

� Tension forces exerted by DNA linkers (modelled as ideal
springs);

� Repulsion forces between nucleosomes that are intersect-
ing, or very close to each other;

� Angular tendencies between adjacent DNA linkers;
� Interactions between “condensin binding sites” spaced

along the string;
� Boundary conditions—nucleosomes may not exit a cylin-

drical or ellipsoidal bounding volume.
In the original implementation, the vast majority (�95%) 

of the runtime is spent computing the repulsion forces that 
prevent particles from overlapping. As such, the majority of 
this paper (see Section III) focuses on improving the perfor- 
mance of this kernel, both through algorithmic changes and 
micro-optimisation. Of secondary importance is the condensin 
interaction kernel (see Section IV), which consumed �2% of 
the original simulation runtime. Increasing the dataset size 
has a greater proportional impact on the performance of this 
kernel, which therefore is of increasing importance as the code 
scales.

III. REPULSION FORCE

Two nucleosomes cannot occupy the same area in space at the 
same time. In order to enforce this in the simulation, a force is 
included that repels pairs of nucleosomes whose centres come 
very close to each other. 15 nm is the cut-off radius rc outside 
which no repulsion forces apply between two nucleosomes, 
and is equal to twice the nucleosome radius of 5 nm plus an 
extra 5 nm to deter possible collisions on the next timestep.

The traditional combination of cell lists and Verlet lists 
are not effective for this calculation, primarily because the 
timestep ∆ t is large, and the particles move far enough at 
each step that rebuilds are necessarily frequent and the lists 
are large. We now present projection sorting as an alternative 
method and contrast it with Verlet lists in Section III-C.

A. Projection sorting
Given the linear nature of the datasets and the small cut-off 
radius, we present an alternative approach to cell lists and 
Verlet lists, henceforth referred to as projection sorting. It is
easy to see that when two particles are separated by a distance 
greater than rc along any single axis (or any unit vector v̂),
the Euclidean distance between them cannot possibly be less 
than rc . This is formalised for two particle position vectors a 
and b and an arbitrary v̂ in Equation 1. It follows that if one 
were to order the particles by their scalar projection onto such 
a vector, then for each particle there would exist a contiguous 
block of particles extending either side within rc along v̂. Only 
particles within this block could possibly be within rc in space 
(subject to a full distance check). Outside of this block all 
particles could be disregarded. In order for this approach to 
be effective the span of the set of particles along v̂ should 
greatly exceed that of the span along vectors orthogonal to v̂, 
or many spurious checks must still be carried out.

Our algorithm using this fact is as follows:
1) Selecting v̂: An ideal choice for v̂ is along a line of

best fit through the set of particles, for example, the

v v8^;a;b 2 R3; j(a b) �̂ j � ∥a b∥ (1)
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ordinary least squares or orthogonal distance regression 
lines, but this is expensive to calculate. In our case, we 
have a static, fairly tight, cylindrical/ellipsoidal bounding 
volume which defines the primary axis along which the
string extends. We can reduce the overhead of computing 
^ by using the major axis of this volume, which here
serves as a good approximation to a line of best fit.

2) Par ticle sor t: The particles are then sorted by their

sorting by projection in a related context [17]. Efficient 
sorting is key to good performance with this method.

3) Force sweep: For each particle i, loop over all particles
j , where j is bounded by k lo and khi, the first particles 
below and above i respectively for which the difference 
between the scalar projections of j and i onto v̂ exceeds 
rc . It is guaranteed by Equation 1 that no particle outside 
this set will be within rc in space. The search space 
can be further reduced to particles j , where i < j < 
khi by using Newton’s Third Law (N3), at the expense 
of additional synchronised writes on every inner loop 
iteration.

B. Implementation
We now discuss the implementation of the two performance-
critical components of the projection sorting algorithm—the 
force sweep and the global particle sort.

The Structure-of-Arrays (SoA) data layout (where each
particle facet is laid out independently and contiguously in 
memory) is used throughout the code for position and force 
arrays to facilitate vectorisation. As a result, the compiler 
is able to auto-vectorise the simpler kernels (the entropic, 
tension and angular forces, and the integration), with minimal 
help in the form of #pr agma directives. Those that do not 
auto-vectorise, including the projection sorting implementa- 
tion, have been hand-vectorised using both AVX2 and KNC 
intrinsics (depending on whether the code is being built for 
CPU or the coprocessor respectively).

1) Force sweep: Due to the nature of vectorisation, all
instructions within a branch must be executed if any of the 
lanes trigger the condition. This introduces inefficiency, as 
the scalar version only executes the inner branch on a per- 
particle basis as necessary. The actual inefficiency depends on 
the proportion of particles that are within the cut-off distance.
For a SIMD width of W , up to W 1 of the force computations
carried out inside the branch could be unnecessary.

Inefficiency also comes from padding to a multiple of 
the vector width at the end of each force sweep, and from 
redundant computation due to alignment requirements at the 
start of each force sweep. Each sweep must continue until all 
beads in the vector fail the projection cut-off check, which
implies a maximum wastage of 2W 2. The worst case for
wastage due to alignment is W 1, so for a bidirectional
pair of sweeps, the maximum wastage is 6W 6. The longer
the sweep, the smaller a fraction of the total number of 
particles processed this will account for, leading to better 
vector efficiency. With real datasets, the sweeps are quite short

so the inefficiency can be significant. We explore the empirical 
values for these inefficiencies in detail in Section III-C.

In addition to inefficiency arising from simply performing 
unnecessary computation, it is also necessary to ensure that 
the results of these computations are not stored. This requires
2 extra comparison operations on both the CPU and the
coprocessor, 3 extra blend operations on the CPU, and the 
addition of masking to the final triplet of fused multiply-add 
instructions used to accumulate forces on the coprocessor.

The force sweep is very cache friendly as all accesses are 
contiguous. Hardware counter analysis for a representative 
run reveals that 99.8% of loads issued hit L1 cache. This 
minimises delays in getting data into the vector registers.

2) Sorting: The other computationally intensive component 
of the projection sorting approach is the global particle sort. 
Each thread uses a tuned in-place Quicksort to sort the 
particles under its control. We can exploit the partially ordered 
conformation at each step to accelerate the sort somewhat. 
Pairs of sorted blocks are then merged iteratively using the
balanced asynchronous parallel merging algorithm described
by Francis and Mathieson [18]. This ensures that each thread 
merges an even portion of the input sequences. For P threads, 
log2 P layers of merging are required.

The sort operates on the data in SoA format, which is sub-
optimal as extraneous data is transferred and takes up cache 
space, in an already bandwidth intensive operation. Each 
particle consists of five pieces of information—the value of 
its scalar projection, its (x ;y;z ) coordinates in space, and its 
index in the unsorted conformation. The cost of transposing 
these five arrays to and from Array-of-Structures (AoS) format 
(where particle facets are packed in memory) was determined 
to be significantly more expensive than the overhead incurred 
by leaving the data as SoA.

Using the SoA format enables the use of vectorised in- 
register sorting techniques. Bitonic sorting networks [19] are 
frequently applied here in the literature, as they fit well with 
existing SIMD ISAs. We use the in-register sorting/merging 
scheme described by Chhugani et al. [20], implemented with 
SSE 4.2, AVX2 and KNC intrinsics. Although the size of 
these networks scales poorly with the SIMD width W we 
see reasonable speedups of 1.30�, 2.02� and 1.31� for the 
SSE, AVX2 and KNC implementations respectively, when 
applying them to sorting a single array. When scaling up to 5 
arrays however, the code is much slower than the unvectorised 
version, peaking at 0.31�. This is due in part to increased
register pressure—five times as many arrays requires five
times as many registers, and any overflow must be stored on 
the program stack. However the bigger issue is instruction 
pressure. The bitonic networks are implemented using shuffle 
instructions, which for the most part can only be issued to 
a single execution unit. Analysis using the Intel Architecture 
Code Analyser (IACA) tool shows huge queues of shuffles 
lining up against one port, which harms performance greatly 
as there is no instruction-level parallelism. For this reason we 
opt not to vectorise the projection sort.

v
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C. Projection sorting vs. Verlet lists
As discussed in Section II, Verlet lists are the de facto 
standard approach to short-range n -body force computation. 
In this section we investigate how the performance of the 
projection sorting approach compares. Verlet list rebuilds and 
force computation using Verlet lists were hand-vectorised as 
described by Pennycook et al. [11].

To fairly compare the two, we need to choose values for
the skin distance rs and rebuild period k that maximise the 
performance of the Verlet list approach while still computing 
correct results. The values rs = 40 and k = 2 were determined 
by tracking the maximum distance moved by any particle over 
an experiment using the projection sorting method, and setting 
rs to just greater than that, ensuring that the results are correct. 
k was then chosen to maximise performance.

1) Distance check counts: A “distance check” is a calcu-
lation of the distance between a pair of particles, necessary 
to determine whether we need to calculate the force between 
them. The number of distance checks performed by an algo- 
rithm is a good predictor of its performance [21]. Table I shows 
the average number of distance checks performed using each 
method, with N3 on and off, as well as the SIMD inefficiency 
for AVX2 and KNC intrinsic implementations (i.e. the number 
of distance checks that were unnecessary, and only performed 
as a result of SIMD limitations).

Projection sorting performs fewer distance checks overall,
but is affected more by SIMD inefficiencies. As discussed
above, when N3 is not used projection sorting requires two 
force sweeps. There is SIMD inefficiency at the end of both 
of these sweeps, and also at the beginning of the sweep 
due to alignment requirements. Verlet lists only require one 
sweep regardless of N3, and have no alignment requirements 
as they are allocated on a cache line boundary. As we scale 
up to wider SIMD, we see the projection sorting technique 
approaching the operation of Verlet lists in terms of the 
number of distance checks performed. At current SIMD widths 
however, projection sorting still requires the fewest checks in 
all cases.

2) Verlet rebuild vs. sorting performance: A key part of the
Verlet list algorithm is the use of cell lists to accelerate the 
list build phase. The simulation space is discretised into cubes 
of side rv (the Verlet radius, rv = rc + krs ) and particles are 
binned accordingly. While this step is necessary (construction 
of the Verlet lists takes time quadratic in the number of 
particles otherwise) the cell lists consume a very large amount 
of memory. Typically this is avoided by computing the cell 
lists in a distributed fashion, but in our case we wish to run 
on a single node, and must find an alternative approach.

As the conformation is concentrated in a small portion of
simulation space, we implement the construction using a lock- 
free hash table, where cell lists are only allocated when a 
particle actually needs to be added. Once an allocation has 
occurred we do not free the memory until the end of the 
simulation, to avoid the large overhead of continually freeing 
and reallocating memory that is likely to be reused anyway. 
Using atomic operations rather than mutexes ensures internal

consistency with minimal performance penalties. This method 
is slower than simply allocating all bins at the start, but uses 
orders of magnitude less memory, and as such is feasible for 
larger datasets.

Figure 2a compares the costs of Verlet list rebuilds using this
scheme and the global particle sort required by the projection 
sorting algorithm. The sort is clearly cheaper than the Verlet 
list rebuild, even though it is performed 4 times as often.

3) Sweep performance: Finally, we compare the cost of
the force sweeps. Vectorisation is a major consideration, and 
Table II shows the empirical values for the inefficiency arising 
from wasted computation inside the force calculation branch. 
As discussed in Section III-B, we see very high fractions 

here due to the low rate of interactions
between particles (brought on by the small cut-off distance).
This impacts the overall SIMD speedup as the width increases. 
Verlet lists have slightly lower inefficiencies as they preserve 
the order of beads better than projection sorting.

Figure 2b shows the full sweep comparison. Interestingly,
the fastest option here is projection sorting with N3 disabled. 
Even though N3 cuts the number of distance checks in half, 
the additional cost of atomic operations on the force array 
outweigh this benefit. The gap is especially pronounced on 
Xeon Phi, as it is running 15� as many threads. Conversely, 
N3 improves performance for Verlet lists.

In conclusion, projection sorting wins on all fronts in these
tests, exhibiting the lowest number of distance checks, the 
cheapest periodic costs, and the fastest force sweeps. The 
high value for rs is the primary reason that Verlet lists are 
ineffective for this simulation, as this forces the rebuild period 
lower, and increases the list sizes. Nonetheless it is clear that, 
projection sorting can be an effective alternative. The primary 
factors to consider when choosing an algorithm are (roughly 
in order of importance):

� Geometry of the simulation (the set of particles having a
long axis favours projection sorting),

� Average movement of particles per timestep (lower allows
for a smaller rs ),

� Projection sorting uses memory bandwidth more effec-
tively,

� Higher SIMD width favours Verlet lists.

IV. CONDENSIN FORCE

The other computationally intensive force calculation per- 
tains to the interactions between “condensin binding sites”— 
modelled as special nucleosomes occurring along the length 
of the string at irregular intervals, with an average separa- 
tion of 48 nucleosomes. These sites can interact when they 
come close, and become stuck together for extended periods, 
prompting the condensation of the string over time.

Sites whose centres come within 40 nm of each other expe-
rience attractive forces, up to a limited number of interactions 
per site, per timestep (typically capped at 1 or 2). There 
is also a stochastic component—for each interaction, and 
each timestep there is a small configurable probability that 
interacting sites will dissociate from each other. When this
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Algor ithm N3? Mean # checks Mean AVX2 ineff. (#/% ) Mean KNC ineff. (#/% )

Projection sorting 

Verlet lists

N 64.73 10.15 (13.55%) 22.03 (25.39%)
Y 32.41 6.00 (15.54%) 13.98 (30.13%)
N 91.74 1.42 (1.52%) 3.54 (3.72%)
Y 45.83 1.57 (3.31%) 3.60 (7.27%)

TABLE I: Mean number of distance checks performed per particle, and the number of unnecessary checks performed as a 
result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained 128;000 
nucleosomes, with rs = 40 and k = 2.

Algor ithm N3? Mean # calcs. Mean AVX2 ineff. (#/% ) Mean KNC ineff. (#/% )

Projection sorting 

Verlet lists

N 1.68 4.74 (73.83%) 10.51 (86.21%)
Y 0.84 2.38 (73.91%) 5.47 (86.69%)
N 1.68 3.53 (67.75%) 7.80 (82.28%)
Y 0.84 2.05 (70.93%) 4.69 (84.81%)

TABLE II: Mean number of full neighbour force calculations performed per particle, and the number of unnecessary calculations
performed as a result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained 
128;000 nucleosomes, with rs = 40 and k = 2.
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Fig. 2: Breakdown of performance differences between: (a) Verlet list rebuilds vs. projection sorts, and (b) force sweep based 
on Verlet lists and force sweep based on projection sorting, over different dataset sizes. The CPU is running 16 threads and 
the coprocessor 244. Only the “N3” lines are shown for projection sorting in (a), as this setting doesn’t affect the sort.

happens they enter a cooldown period of 3 timesteps during 
which they cannot form any bonds, giving them time to move 
apart.

There are two primary steps to computing the forces on 
each site, referred to henceforth as the binning step and the 
interaction step respectively:

1) List other sites within the 40 nm cut-off radius,
2) Determine whether to apply forces, dissociate, or ad- 

vance cooldown period, depending on the number of 
close pairs and their interaction history.

This is another short-range interaction of the type discussed 
in Section III, although with different properties. The cut- 
off radius is larger, 40 nm compared to 15 nm. The force 
between a pair of sites is more expensive to calculate, but 
the number of sites is an order of magnitude smaller than the 
number of nucleosomes. For a given site, we must determine 
all other close sites before we can compute any forces, rather 
than accumulating them per interaction as in the repulsion 
kernel. The cooldown mechanic also introduces additional
state between timesteps, which complicates matters. Projection

CPU PS N3 CPU PS no N3 CPU VL N3 CPU VL no N3
Coproc. PS N3 Coproc. PS no N3 Coproc. VL N3 Coproc. VL no N3



sorting can be used during the binning step, although careful 
attention must be paid to correctly mapping from sorted 
binding sites to the inter-timestep state.

A. Implementation
1) Storage: It is necessary to store the cooldown status 

for every pair of binding sites—a flag indicating whether a 
site’s interaction with another bead is currently in cooldown 
mode, and the number of timesteps remaining before it is 
free to interact again. While the two can be combined into 
a single field (with 0 representing no cooldown mode, and 
any other number representing the remaining count), the na ̈ve 
storage requirement is still quadratic in the number of sites. 
This becomes a problem with larger datasets.

As dissociation events are uncommon, the matrix of
cooldown state is very sparse. Taking advantage of this fact, 
we implement the same technique used to reduce the storage 
requirement for cell lists in Section III-C, and replace the 
matrix with a lock-free hash table. For a large number of 
binding sites, say 100;000, this approach requires over 2300� 
less space, 4:1 MB instead of 9:3 GB.

2) Vectorisation: Meaningful vectorisation is infeasible for 
both the binning and interaction steps. The binning step 
requires access to the cooldown status of each bead. As these 
are stored non-contiguously regardless of the storage strategy 
used, we are faced with an expensive gather operation. In the 
case of the hash table, current SIMD ISAs do not support 
atomic gathers [22], necessitating performing the memory ac- 
cesses and register insertions manually. More crucially though, 
the average binding site sweep length is slightly under 2, 
which negates any benefit due to the large overhead. For 
the interaction step the algorithm dictates that each site is 
processed individually based on the contents of a very short 
list of neighbour sites.

V. RESULTS

We now discuss in more detail the experimental setup for
the runs performed, and present both the overall runtime 
characteristics and comparisons between performance on the 
CPU and coprocessor.

A. Experimental setup
All experiments use the projection sorting method without 
N3, as discussed in Section III-C. Per kernel timing was 
implemented using the r dt s c hardware counter in order to 
achieve high accuracy with minimal overhead.

1) Datasets: The initial dataset described by
Cheng et al. [1] was derived from a budding yeast cell 
and contains 2000 nucleosomes. As no larger real datasets 
were available while this work was being undertaken, we 
generated extended versions of the original using probabilistic 
methods. We defined three normal distributions, each 
parameterised using the mean and standard deviation of the 
deltas between each nucleosome for the x , y and z axes 
respectively. We then generated new conformations of length 
N particles by sampling these distributions to perform an

Xeon E5-2630v3 Xeon Phi 7120P

Sockets�Cores�Threads 2�8�2 1�61�4
Clock (GHz) 2.40 1.24
L1f i,dg / L2 / L3 Cache (KB) 32 / 256 / 12288 32 / 512 / N/A
Memory (GB) 64 16
SIMD ISA AVX2 KNC

TABLE III: Machine configuration

N step random walk. Condensin binding sites were placed 
randomly on average every 48 nucleosomes. After generation 
we advanced the conformation by 100;000 timesteps to 
reach a relatively stable state, free of artefacts caused by 
the random walk process. Synthetic datasets were generated 
for the following values of N : 4000, 8000, 16;000, 32;000, 
64;000, 128;000, 256;000 and 512;000.

2) Machine specifications: The machine used for experi-
ments was fitted with dual Intel Xeon E5-2630 8-core CPUs 
for a total of 16 cores. 64 GB of RAM was available. The 
coprocessor was an Intel Xeon Phi 7120P, with 61 cores 
and 16 GB of RAM. See Table III for details. All code was 
compiled using the Intel C++ compiler, v15.0.4.

B. Overall performance
Relative to the original code, we see single-threaded speedups 
starting at over 10� on the CPU for 2000 beads (see Figure 4 
for a per-kernel breakdown), and increasing as the dataset size 
goes up due to better algorithmic scaling. We would note 
that this is not a fair comparison of algorithmic approaches 
(previously presented in Section III-C), as the original cell 
list implementation is not heavily optimised. The slowdown 
to the entropic kernel is due to switching to a more robustly 
thread-safe random number generator. We observe speedups 
in all other kernels. This decreases the time taken to perform 
a typical experimental run, consisting of 40 million timesteps, 
from �90 hours to �9 hours on our hardware. When factoring 
in the effects of parallelisation the improvement is much 
greater.

Figure 3 shows a breakdown of each optimised kernel’s
performance over a range of dataset sizes for both the CPU 
and coprocessor. On the CPU, the repulsion sweep is the most 
expensive, followed closely by the condensin interactions and
the sort. The entropic, tension and attraction forces (grouped
under “other”) are comparatively cheap. The point where 
the integration falls out of last-level cache (LLC) is clearly 
visible between 128;000 and 256;000. The barrier costs are 
fairly low throughout, but increase sharply for the largest 
dataset, possibly due to non-uniform memory access (NUMA) 
problems.

On the coprocessor, the sort is most expensive, primarily
as it is not vectorised at all (see discussion in Section III-B). 
Vectorisation is more crucial to performance on the Xeon Phi 
than on the CPU so this is expected. The repulsion sweep 
is cheaper on the Xeon Phi, as it vectorises very well and 
does not require any barriers. Interestingly, the condensin 
interactions are also cheaper to compute, despite not being
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Fig. 3: Breakdown of kernel times when running on the CPU and the coprocessor across a range of dataset sizes. (a) shows 
the timings for 16 threads on the CPU, (b) shows 244 threads running on the coprocessor.
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Fig. 4: Per-kernel comparison of single-threaded performance 
between the original application and our optimised version 
for the 2000 nucleosome yeast dataset. The “linear” kernel 
refers to the combination of the tension and angular force 
computation, which were merged for the optimised version. A 
logarithmic y-axis is used to better demonstrate the difference 
in terms of orders of magnitude—note the 10� improvement 
to the repulsion kernel.

vectorised either, likely because each binding site is largely 
independent leading to good scaling to a larger number of 
threads. The integration also scales better with dataset size, as 
the coprocessor has roughly 3� the memory bandwidth as the

CPU (153 GB=s per NUMA region as opposed to 48 GB=s, 
as reported by the STREAM benchmark [23]).

The main issue we see on the coprocessor is significantly
higher barrier costs. On some level this is unavoidable, a 
higher number of threads is going to mean slower blocking 
operations and a greater sensitivity to load imbalance, and we 
cannot remove any barriers as they are necessary to ensure 
correctness. We can aim to reduce the number of barriers 
via algorithmic changes however—the midpoint integration 
scheme used is the main culprit here, requiring twice as many 
barriers per timestep as would otherwise be needed.
C. Offload computation
We experimented with offloading computation to the coproces- 
sor while running on the CPU. Suitable candidate kernels for 
offloading should perform well on the coprocessor, be able to 
run in parallel with other kernels (minimal data dependencies), 
not require large amounts of data transfer on and off the 
coprocessor each timestep, and take long enough that the 
overhead of offload does not dominate. Of the kernels in this
simulation, the only one that satisfies most of these conditions
is the projection sorting force sweep. It performs better on 
the coprocessor, and can be run in parallel with any of the 
other force computation kernels. Despite this, the time saved 
by running offloaded was roughly equalled by the overhead 
of doing so, and we did not see any significant change in 
performance.

VI. CONCLUSIONS

We present projection sorting, an alternative to the traditional
Verlet list algorithm for short-range interaction force computa-
tion, and show that it is more effective under certain conditions

Sort Condensin Repulsion
Integration Other Barrier

Original 
Optimised



present in this molecular dynamics simulation of chromosome 
condensation. We provide efficient parallel implementations of 
this strategy for traditional and many-core architectures, along 
with the rest of the code.

We achieve large speed-ups starting at 10�, and improving
with dataset size, over the original implementation, and com- 
pare the performance of our optimised CPU and coprocessor 
implementations. We find that some kernels are better suited to 
the Xeon Phi coprocessor, in particular the projection sorting 
force sweep, which consumes the majority of the runtime in 
this simulation.

Our optimisations have been and continue to be used to
facilitate further experiments into chromosome condensation.
While the algorithms we discuss are specific to molecular 
dynamics, the issues that arise through implementation are 
more widely applicable, in particular our discussion of sorting, 
a very common operation in a great many classes of code.

A. Further work
Future directions for this code include support for multi- 
ple interacting chromatin strings with a controlled region 
of overlap between their bounding boxes, which introduces 
some challenging dynamic load balancing problems where the 
strings come into contact with each other.

Reworking the simulation to use an alternative integration
scheme that does not require computing forces more than once 
(such as Verlet integration [14]), would radically affect the 
performance characteristics of the simulation.

Currently the code is shared memory parallel only, using
OpenMP. Extension to distributed memory parallelism would 
require reworking of some algorithms (for example, efficient 
distributed sorting is more complex than shared memory 
sorting [24]), but is generally straightforward and would open 
doors to greater performance on larger systems.
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