

Original citation:
Law, Timothy R., Hancox, Jonny, Cheng, Tammy M. K., Chaleil, Raphael A. G., Wright, Steven
A., Bates, Paul A. and Jarvis, Stephen A. (2016) Optimisation of a molecular dynamics
simulation of chromosome condensation. In: 28th International Symposium on Computer
Architecture and High Performance Computing, LA, USA, 26 -28 Oct 2016.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/81503

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/81503
mailto:wrap@warwick.ac.uk

Optimisation of a Molecular Dynamics Simulation
of Chromosome Condensation

Timothy R. Law�, Jonny Hancoxy, Tammy M. K. Chengz , Raphaël A. G. Chaleilz ,
Steven A. Wright�, Paul A. Batesz and Stephen A. Jarvis�

�Department of Computer Science, University of Warwick, Coventry, UK
yHealth and Life Sciences Team, Intel Corporation, St. Clare House, London, UK

z Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
Email: timothy.law@warwick.ac.uk

Abstract—We present optimisations applied to a bespoke bio-
physical molecular dynamics simulation designed to investigate
chromosome condensation. Our pr imary focus is on domain-
specific algor ithmic improvements to determining shor t-range
interaction forces between par ticles, as cer tain qualities of the
simulation render traditional methods less effective. We im-
plement tuned versions of the code for both traditional CPU
architectures and the modern many-core architecture found in
the Intel Xeon Phi coprocessor and compare their effectiveness.
We achieve speed-ups star ting at a factor of 10 over the or iginal
code, facilitating more detailed and larger-scale exper iments.

I. INTRODUCTION

Genomes can be large—the DNA comprising the human
genome is approximately 2 m long when stretched out. In
order to fit inside the nucleus of each cell, the DNA is wrapped
around many bundles of proteins to form packaging units
called nucleosomes, collectively comprising a structure called
chromatin. Chromatin’s structure varies with the cell cycle;
when the time comes for the cell to divide, it moves from the
loose conformation of nucleosomes and DNA linkers (often
likened to “beads on a string”) to a more tightly compacted
version typically associated with chromosomes. This process
is known as chromosome condensation, and it is thought to be
affected by protein complexes known as condensins, although
exactly how it happens is currently not well understood.

Current research looks to leverage computational techniques
to answer this question. In this paper we discuss optimisations
applied to one such biophysical molecular dynamics simula-
tion, developed recently by Cheng et al. [1]. The simulation
is used to study the effects of different models of condensin
interaction on the condensation of conformations of nucleo-
somes and linker DNA determined via in vitro methods (see
Figure 1). In this paper we present optimisations that make it
feasible to run the lengthy simulations required.

The contributions presented in this paper are:
� Development of projection sorting, an improvement to

the computation of short-range interaction forces between
particles under certain organisational conditions;

� Analysis and implementation of the most effective thread
and vector parallelism strategies for both the above and
for other kernels in this simulation, leading to overall
speedups starting at 10� and increasing with dataset size;

� Investigation of the resulting performance on the In-
tel Xeon and Xeon Phi platforms, and discussion of
characteristics that make some kernels more suitable for
execution on the coprocessor.

Section II discusses related work and provides a brief
overview of the simulation and its component parts. In Sec-
tion III we discuss the computation of repulsion forces, our
algorithm for computing them, and important implementation
details. Similarly, Section IV deals with condensin binding site
interactions. Section V presents an analysis of the resulting
performance and the work concludes in Section VI.

II. BACKGROUND

A. Related work
Computational simulations are widely used in the life sciences,
spanning a variety of domains of investigation from protein
structures to cell pathways, with numerous software packages
available. Perhaps the most well known molecular dynamics
program applicable to biological research is NAMD [2],
which has been heavily optimised for a variety of highly
parallel systems over the last 20 years [3], [4], [5]. Other
well known molecular dynamics codes include LAMMPS [6],
DL POLY [7] and GROMACS [8].

As clock-speeds drop off, exploiting the increasing amounts
of available parallelism at the vector and on-chip levels
becomes more and more important. Modern many-core ar-
chitectures such as Intel’s Knights Corner (KNC) and the
upcoming Knights Landing, and Nvidia’s Kepler and Maxwell
GPU architectures, demand much more from implementations
in order to extract maximum performance. Significant work
has gone into optimising molecular dynamics applications for
such architectures [9], [10], [11].

Fig. 1: A visualisation of one of the datasets used—a confor-
mation of yeast DNA dotted with nucleosomes.

− −

The primary focus of this paper is optimisation of a pairwise
short-range force calculation, where interactions take place
between all pairs of particles within a cut-off radius, rc , of each
other. Owing to their computational expense and widespread
applicability, forces such as these have received significant
attention in the MD literature. Many modern MD codes,
including NAMD and LAMMPS, use a combination of cell
lists [12], [13] and Verlet lists [14].

Cell lists are constructed by discretising the simulation
space into cubic partitions and binning particles according
to the partition they reside in. This reduces the number of
distance checks that must be performed to only a small
neighbourhood of partitions. This was the approach used by
Cheng et al. [1].

The cell lists can further be used to cheaply construct a
Verlet list for each particle, containing all other particles within
distance rv = rc + krs , where rc is the cut-off radius for the
force, outside which its magnitude is zero, and rs is the skin
distance of the simulation, chosen such that no particle may
move further in a single timestep. The Verlet lists may then be
used to efficiently calculate forces for up to k timesteps, after
which the lists must be rebuilt. k should be chosen to strike
a balance between increasing the size of the Verlet lists, and
decreasing the frequency of the rebuilds.

Another class of optimisations involves reordering stored
particles such that those local to each other in three dimen-
sional simulation space are also local in the computer’s mem-
ory (a one dimensional space). Spatial locality is important
in contemporary computer architectures, whose performance
often depends on being able to work around memory latency
by means of reuse within multiple layers of cache, and the
ability to predict and prefetch data likely to be needed in the
near future. Yao et al. discuss sorting particles along an axis
of the simulation domain [15]. Anderson et al. demonstrate
a successful application of a more sophisticated approach,
whereby particles are ordered according to their distance along
a space-filling Hilbert curve [9]. The Hilbert curve is chosen
due to its locality preserving properties [16].

This simulation has the advantage that, due to the tension
forces enacted by DNA linkers between each nucleosome, two
nucleosomes that are next to each other in memory can never
stray far from each other; this is in contrast to liquid or gas
MD simulations. The string can however wrap around on itself
leading to interactions between distant nucleosomes.

B. Simulation
The simulation treats the nucleosomes as uniform particles
in a molecular dynamics simulation, with radius 5 nm. The
DNA linkers are modelled as ideal springs following Hooke’s
law, connecting each nucleosome to the next. Nucleosomes are
free to move according to Brownian motion, subject to certain
constraints:

� Tension forces exerted by DNA linkers (modelled as ideal
springs);

� Repulsion forces between nucleosomes that are intersect-
ing, or very close to each other;

� Angular tendencies between adjacent DNA linkers;
� Interactions between “condensin binding sites” spaced

along the string;
� Boundary conditions—nucleosomes may not exit a cylin-

drical or ellipsoidal bounding volume.
In the original implementation, the vast majority (�95%)

of the runtime is spent computing the repulsion forces that
prevent particles from overlapping. As such, the majority of
this paper (see Section III) focuses on improving the perfor-
mance of this kernel, both through algorithmic changes and
micro-optimisation. Of secondary importance is the condensin
interaction kernel (see Section IV), which consumed �2% of
the original simulation runtime. Increasing the dataset size
has a greater proportional impact on the performance of this
kernel, which therefore is of increasing importance as the code
scales.

III. REPULSION FORCE

Two nucleosomes cannot occupy the same area in space at the
same time. In order to enforce this in the simulation, a force is
included that repels pairs of nucleosomes whose centres come
very close to each other. 15 nm is the cut-off radius rc outside
which no repulsion forces apply between two nucleosomes,
and is equal to twice the nucleosome radius of 5 nm plus an
extra 5 nm to deter possible collisions on the next timestep.

The traditional combination of cell lists and Verlet lists
are not effective for this calculation, primarily because the
timestep ∆ t is large, and the particles move far enough at
each step that rebuilds are necessarily frequent and the lists
are large. We now present projection sorting as an alternative
method and contrast it with Verlet lists in Section III-C.

A. Projection sorting
Given the linear nature of the datasets and the small cut-off
radius, we present an alternative approach to cell lists and
Verlet lists, henceforth referred to as projection sorting. It is
easy to see that when two particles are separated by a distance
greater than rc along any single axis (or any unit vector v̂),
the Euclidean distance between them cannot possibly be less
than rc . This is formalised for two particle position vectors a
and b and an arbitrary v̂ in Equation 1. It follows that if one
were to order the particles by their scalar projection onto such
a vector, then for each particle there would exist a contiguous
block of particles extending either side within rc along v̂. Only
particles within this block could possibly be within rc in space
(subject to a full distance check). Outside of this block all
particles could be disregarded. In order for this approach to
be effective the span of the set of particles along v̂ should
greatly exceed that of the span along vectors orthogonal to v̂,
or many spurious checks must still be carried out.

Our algorithm using this fact is as follows:
1) Selecting v̂: An ideal choice for v̂ is along a line of

best fit through the set of particles, for example, the

v v8^;a;b 2 R3; j(a b) �̂ j � ∥a b∥ (1)

−

−
−

−

ordinary least squares or orthogonal distance regression
lines, but this is expensive to calculate. In our case, we
have a static, fairly tight, cylindrical/ellipsoidal bounding
volume which defines the primary axis along which the
string extends. We can reduce the overhead of computing
^ by using the major axis of this volume, which here
serves as a good approximation to a line of best fit.

2) Par ticle sor t: The particles are then sorted by their

sorting by projection in a related context [17]. Efficient
sorting is key to good performance with this method.

3) Force sweep: For each particle i, loop over all particles
j , where j is bounded by k lo and khi, the first particles
below and above i respectively for which the difference
between the scalar projections of j and i onto v̂ exceeds
rc . It is guaranteed by Equation 1 that no particle outside
this set will be within rc in space. The search space
can be further reduced to particles j , where i < j <
khi by using Newton’s Third Law (N3), at the expense
of additional synchronised writes on every inner loop
iteration.

B. Implementation
We now discuss the implementation of the two performance-
critical components of the projection sorting algorithm—the
force sweep and the global particle sort.

The Structure-of-Arrays (SoA) data layout (where each
particle facet is laid out independently and contiguously in
memory) is used throughout the code for position and force
arrays to facilitate vectorisation. As a result, the compiler
is able to auto-vectorise the simpler kernels (the entropic,
tension and angular forces, and the integration), with minimal
help in the form of #pr agma directives. Those that do not
auto-vectorise, including the projection sorting implementa-
tion, have been hand-vectorised using both AVX2 and KNC
intrinsics (depending on whether the code is being built for
CPU or the coprocessor respectively).

1) Force sweep: Due to the nature of vectorisation, all
instructions within a branch must be executed if any of the
lanes trigger the condition. This introduces inefficiency, as
the scalar version only executes the inner branch on a per-
particle basis as necessary. The actual inefficiency depends on
the proportion of particles that are within the cut-off distance.
For a SIMD width of W , up to W 1 of the force computations
carried out inside the branch could be unnecessary.

Inefficiency also comes from padding to a multiple of
the vector width at the end of each force sweep, and from
redundant computation due to alignment requirements at the
start of each force sweep. Each sweep must continue until all
beads in the vector fail the projection cut-off check, which
implies a maximum wastage of 2W 2. The worst case for
wastage due to alignment is W 1, so for a bidirectional
pair of sweeps, the maximum wastage is 6W 6. The longer
the sweep, the smaller a fraction of the total number of
particles processed this will account for, leading to better
vector efficiency. With real datasets, the sweeps are quite short

so the inefficiency can be significant. We explore the empirical
values for these inefficiencies in detail in Section III-C.

In addition to inefficiency arising from simply performing
unnecessary computation, it is also necessary to ensure that
the results of these computations are not stored. This requires
2 extra comparison operations on both the CPU and the
coprocessor, 3 extra blend operations on the CPU, and the
addition of masking to the final triplet of fused multiply-add
instructions used to accumulate forces on the coprocessor.

The force sweep is very cache friendly as all accesses are
contiguous. Hardware counter analysis for a representative
run reveals that 99.8% of loads issued hit L1 cache. This
minimises delays in getting data into the vector registers.

2) Sorting: The other computationally intensive component
of the projection sorting approach is the global particle sort.
Each thread uses a tuned in-place Quicksort to sort the
particles under its control. We can exploit the partially ordered
conformation at each step to accelerate the sort somewhat.
Pairs of sorted blocks are then merged iteratively using the
balanced asynchronous parallel merging algorithm described
by Francis and Mathieson [18]. This ensures that each thread
merges an even portion of the input sequences. For P threads,
log2 P layers of merging are required.

The sort operates on the data in SoA format, which is sub-
optimal as extraneous data is transferred and takes up cache
space, in an already bandwidth intensive operation. Each
particle consists of five pieces of information—the value of
its scalar projection, its (x ;y;z) coordinates in space, and its
index in the unsorted conformation. The cost of transposing
these five arrays to and from Array-of-Structures (AoS) format
(where particle facets are packed in memory) was determined
to be significantly more expensive than the overhead incurred
by leaving the data as SoA.

Using the SoA format enables the use of vectorised in-
register sorting techniques. Bitonic sorting networks [19] are
frequently applied here in the literature, as they fit well with
existing SIMD ISAs. We use the in-register sorting/merging
scheme described by Chhugani et al. [20], implemented with
SSE 4.2, AVX2 and KNC intrinsics. Although the size of
these networks scales poorly with the SIMD width W we
see reasonable speedups of 1.30�, 2.02� and 1.31� for the
SSE, AVX2 and KNC implementations respectively, when
applying them to sorting a single array. When scaling up to 5
arrays however, the code is much slower than the unvectorised
version, peaking at 0.31�. This is due in part to increased
register pressure—five times as many arrays requires five
times as many registers, and any overflow must be stored on
the program stack. However the bigger issue is instruction
pressure. The bitonic networks are implemented using shuffle
instructions, which for the most part can only be issued to
a single execution unit. Analysis using the Intel Architecture
Code Analyser (IACA) tool shows huge queues of shuffles
lining up against one port, which harms performance greatly
as there is no instruction-level parallelism. For this reason we
opt not to vectorise the projection sort.

v

^.vscalar projections onto Gonnet discusses particle

−

C. Projection sorting vs. Verlet lists
As discussed in Section II, Verlet lists are the de facto
standard approach to short-range n -body force computation.
In this section we investigate how the performance of the
projection sorting approach compares. Verlet list rebuilds and
force computation using Verlet lists were hand-vectorised as
described by Pennycook et al. [11].

To fairly compare the two, we need to choose values for
the skin distance rs and rebuild period k that maximise the
performance of the Verlet list approach while still computing
correct results. The values rs = 40 and k = 2 were determined
by tracking the maximum distance moved by any particle over
an experiment using the projection sorting method, and setting
rs to just greater than that, ensuring that the results are correct.
k was then chosen to maximise performance.

1) Distance check counts: A “distance check” is a calcu-
lation of the distance between a pair of particles, necessary
to determine whether we need to calculate the force between
them. The number of distance checks performed by an algo-
rithm is a good predictor of its performance [21]. Table I shows
the average number of distance checks performed using each
method, with N3 on and off, as well as the SIMD inefficiency
for AVX2 and KNC intrinsic implementations (i.e. the number
of distance checks that were unnecessary, and only performed
as a result of SIMD limitations).

Projection sorting performs fewer distance checks overall,
but is affected more by SIMD inefficiencies. As discussed
above, when N3 is not used projection sorting requires two
force sweeps. There is SIMD inefficiency at the end of both
of these sweeps, and also at the beginning of the sweep
due to alignment requirements. Verlet lists only require one
sweep regardless of N3, and have no alignment requirements
as they are allocated on a cache line boundary. As we scale
up to wider SIMD, we see the projection sorting technique
approaching the operation of Verlet lists in terms of the
number of distance checks performed. At current SIMD widths
however, projection sorting still requires the fewest checks in
all cases.

2) Verlet rebuild vs. sorting performance: A key part of the
Verlet list algorithm is the use of cell lists to accelerate the
list build phase. The simulation space is discretised into cubes
of side rv (the Verlet radius, rv = rc + krs) and particles are
binned accordingly. While this step is necessary (construction
of the Verlet lists takes time quadratic in the number of
particles otherwise) the cell lists consume a very large amount
of memory. Typically this is avoided by computing the cell
lists in a distributed fashion, but in our case we wish to run
on a single node, and must find an alternative approach.

As the conformation is concentrated in a small portion of
simulation space, we implement the construction using a lock-
free hash table, where cell lists are only allocated when a
particle actually needs to be added. Once an allocation has
occurred we do not free the memory until the end of the
simulation, to avoid the large overhead of continually freeing
and reallocating memory that is likely to be reused anyway.
Using atomic operations rather than mutexes ensures internal

consistency with minimal performance penalties. This method
is slower than simply allocating all bins at the start, but uses
orders of magnitude less memory, and as such is feasible for
larger datasets.

Figure 2a compares the costs of Verlet list rebuilds using this
scheme and the global particle sort required by the projection
sorting algorithm. The sort is clearly cheaper than the Verlet
list rebuild, even though it is performed 4 times as often.

3) Sweep performance: Finally, we compare the cost of
the force sweeps. Vectorisation is a major consideration, and
Table II shows the empirical values for the inefficiency arising
from wasted computation inside the force calculation branch.
As discussed in Section III-B, we see very high fractions

here due to the low rate of interactions
between particles (brought on by the small cut-off distance).
This impacts the overall SIMD speedup as the width increases.
Verlet lists have slightly lower inefficiencies as they preserve
the order of beads better than projection sorting.

Figure 2b shows the full sweep comparison. Interestingly,
the fastest option here is projection sorting with N3 disabled.
Even though N3 cuts the number of distance checks in half,
the additional cost of atomic operations on the force array
outweigh this benefit. The gap is especially pronounced on
Xeon Phi, as it is running 15� as many threads. Conversely,
N3 improves performance for Verlet lists.

In conclusion, projection sorting wins on all fronts in these
tests, exhibiting the lowest number of distance checks, the
cheapest periodic costs, and the fastest force sweeps. The
high value for rs is the primary reason that Verlet lists are
ineffective for this simulation, as this forces the rebuild period
lower, and increases the list sizes. Nonetheless it is clear that,
projection sorting can be an effective alternative. The primary
factors to consider when choosing an algorithm are (roughly
in order of importance):

� Geometry of the simulation (the set of particles having a
long axis favours projection sorting),

� Average movement of particles per timestep (lower allows
for a smaller rs),

� Projection sorting uses memory bandwidth more effec-
tively,

� Higher SIMD width favours Verlet lists.

IV. CONDENSIN FORCE

The other computationally intensive force calculation per-
tains to the interactions between “condensin binding sites”—
modelled as special nucleosomes occurring along the length
of the string at irregular intervals, with an average separa-
tion of 48 nucleosomes. These sites can interact when they
come close, and become stuck together for extended periods,
prompting the condensation of the string over time.

Sites whose centres come within 40 nm of each other expe-
rience attractive forces, up to a limited number of interactions
per site, per timestep (typically capped at 1 or 2). There
is also a stochastic component—for each interaction, and
each timestep there is a small configurable probability that
interacting sites will dissociate from each other. When this

approaching W
W

1

−

−

Ti
m

e
(s

)

−

−

Ti
m

e
(s

)

Algor ithm N3? Mean # checks Mean AVX2 ineff. (#/%) Mean KNC ineff. (#/%)

Projection sorting

Verlet lists

N 64.73 10.15 (13.55%) 22.03 (25.39%)
Y 32.41 6.00 (15.54%) 13.98 (30.13%)
N 91.74 1.42 (1.52%) 3.54 (3.72%)
Y 45.83 1.57 (3.31%) 3.60 (7.27%)

TABLE I: Mean number of distance checks performed per particle, and the number of unnecessary checks performed as a
result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained 128;000
nucleosomes, with rs = 40 and k = 2.

Algor ithm N3? Mean # calcs. Mean AVX2 ineff. (#/%) Mean KNC ineff. (#/%)

Projection sorting

Verlet lists

N 1.68 4.74 (73.83%) 10.51 (86.21%)
Y 0.84 2.38 (73.91%) 5.47 (86.69%)
N 1.68 3.53 (67.75%) 7.80 (82.28%)
Y 0.84 2.05 (70.93%) 4.69 (84.81%)

TABLE II: Mean number of full neighbour force calculations performed per particle, and the number of unnecessary calculations
performed as a result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained
128;000 nucleosomes, with rs = 40 and k = 2.

2

2

29

26

23

20

3

6
212 213 214 215 216 217 218 219

particles

(a)

2

2

29

26

23

20

3

6
212 213 214 215 216 217 218 219

particles

(b)

Fig. 2: Breakdown of performance differences between: (a) Verlet list rebuilds vs. projection sorts, and (b) force sweep based
on Verlet lists and force sweep based on projection sorting, over different dataset sizes. The CPU is running 16 threads and
the coprocessor 244. Only the “N3” lines are shown for projection sorting in (a), as this setting doesn’t affect the sort.

happens they enter a cooldown period of 3 timesteps during
which they cannot form any bonds, giving them time to move
apart.

There are two primary steps to computing the forces on
each site, referred to henceforth as the binning step and the
interaction step respectively:

1) List other sites within the 40 nm cut-off radius,
2) Determine whether to apply forces, dissociate, or ad-

vance cooldown period, depending on the number of
close pairs and their interaction history.

This is another short-range interaction of the type discussed
in Section III, although with different properties. The cut-
off radius is larger, 40 nm compared to 15 nm. The force
between a pair of sites is more expensive to calculate, but
the number of sites is an order of magnitude smaller than the
number of nucleosomes. For a given site, we must determine
all other close sites before we can compute any forces, rather
than accumulating them per interaction as in the repulsion
kernel. The cooldown mechanic also introduces additional
state between timesteps, which complicates matters. Projection

CPU PS N3 CPU PS no N3 CPU VL N3 CPU VL no N3
Coproc. PS N3 Coproc. PS no N3 Coproc. VL N3 Coproc. VL no N3

sorting can be used during the binning step, although careful
attention must be paid to correctly mapping from sorted
binding sites to the inter-timestep state.

A. Implementation
1) Storage: It is necessary to store the cooldown status

for every pair of binding sites—a flag indicating whether a
site’s interaction with another bead is currently in cooldown
mode, and the number of timesteps remaining before it is
free to interact again. While the two can be combined into
a single field (with 0 representing no cooldown mode, and
any other number representing the remaining count), the na ̈ve
storage requirement is still quadratic in the number of sites.
This becomes a problem with larger datasets.

As dissociation events are uncommon, the matrix of
cooldown state is very sparse. Taking advantage of this fact,
we implement the same technique used to reduce the storage
requirement for cell lists in Section III-C, and replace the
matrix with a lock-free hash table. For a large number of
binding sites, say 100;000, this approach requires over 2300�
less space, 4:1 MB instead of 9:3 GB.

2) Vectorisation: Meaningful vectorisation is infeasible for
both the binning and interaction steps. The binning step
requires access to the cooldown status of each bead. As these
are stored non-contiguously regardless of the storage strategy
used, we are faced with an expensive gather operation. In the
case of the hash table, current SIMD ISAs do not support
atomic gathers [22], necessitating performing the memory ac-
cesses and register insertions manually. More crucially though,
the average binding site sweep length is slightly under 2,
which negates any benefit due to the large overhead. For
the interaction step the algorithm dictates that each site is
processed individually based on the contents of a very short
list of neighbour sites.

V. RESULTS

We now discuss in more detail the experimental setup for
the runs performed, and present both the overall runtime
characteristics and comparisons between performance on the
CPU and coprocessor.

A. Experimental setup
All experiments use the projection sorting method without
N3, as discussed in Section III-C. Per kernel timing was
implemented using the r dt s c hardware counter in order to
achieve high accuracy with minimal overhead.

1) Datasets: The initial dataset described by
Cheng et al. [1] was derived from a budding yeast cell
and contains 2000 nucleosomes. As no larger real datasets
were available while this work was being undertaken, we
generated extended versions of the original using probabilistic
methods. We defined three normal distributions, each
parameterised using the mean and standard deviation of the
deltas between each nucleosome for the x , y and z axes
respectively. We then generated new conformations of length
N particles by sampling these distributions to perform an

Xeon E5-2630v3 Xeon Phi 7120P

Sockets�Cores�Threads 2�8�2 1�61�4
Clock (GHz) 2.40 1.24
L1f i,dg / L2 / L3 Cache (KB) 32 / 256 / 12288 32 / 512 / N/A
Memory (GB) 64 16
SIMD ISA AVX2 KNC

TABLE III: Machine configuration

N step random walk. Condensin binding sites were placed
randomly on average every 48 nucleosomes. After generation
we advanced the conformation by 100;000 timesteps to
reach a relatively stable state, free of artefacts caused by
the random walk process. Synthetic datasets were generated
for the following values of N : 4000, 8000, 16;000, 32;000,
64;000, 128;000, 256;000 and 512;000.

2) Machine specifications: The machine used for experi-
ments was fitted with dual Intel Xeon E5-2630 8-core CPUs
for a total of 16 cores. 64 GB of RAM was available. The
coprocessor was an Intel Xeon Phi 7120P, with 61 cores
and 16 GB of RAM. See Table III for details. All code was
compiled using the Intel C++ compiler, v15.0.4.

B. Overall performance
Relative to the original code, we see single-threaded speedups
starting at over 10� on the CPU for 2000 beads (see Figure 4
for a per-kernel breakdown), and increasing as the dataset size
goes up due to better algorithmic scaling. We would note
that this is not a fair comparison of algorithmic approaches
(previously presented in Section III-C), as the original cell
list implementation is not heavily optimised. The slowdown
to the entropic kernel is due to switching to a more robustly
thread-safe random number generator. We observe speedups
in all other kernels. This decreases the time taken to perform
a typical experimental run, consisting of 40 million timesteps,
from �90 hours to �9 hours on our hardware. When factoring
in the effects of parallelisation the improvement is much
greater.

Figure 3 shows a breakdown of each optimised kernel’s
performance over a range of dataset sizes for both the CPU
and coprocessor. On the CPU, the repulsion sweep is the most
expensive, followed closely by the condensin interactions and
the sort. The entropic, tension and attraction forces (grouped
under “other”) are comparatively cheap. The point where
the integration falls out of last-level cache (LLC) is clearly
visible between 128;000 and 256;000. The barrier costs are
fairly low throughout, but increase sharply for the largest
dataset, possibly due to non-uniform memory access (NUMA)
problems.

On the coprocessor, the sort is most expensive, primarily
as it is not vectorised at all (see discussion in Section III-B).
Vectorisation is more crucial to performance on the Xeon Phi
than on the CPU so this is expected. The repulsion sweep
is cheaper on the Xeon Phi, as it vectorises very well and
does not require any barriers. Interestingly, the condensin
interactions are also cheaper to compute, despite not being

−

−

−Ti
m

e
(s

)

−

−

−Ti
m

e
(s

)

Entr
op

ic

Line
ar

Con
de

ns
in

Rep
uls

ion

Int
eg

rat
ion

Ti
m

e
(s

)

2

2

2

26

23

20

3

6

9
212 213 214 215 216 217 218 219

particles

(a)

2

2

2

26

23

20

3

6

9
212 213 214 215 216 217 218 219

particles

(b)

Fig. 3: Breakdown of kernel times when running on the CPU and the coprocessor across a range of dataset sizes. (a) shows
the timings for 16 threads on the CPU, (b) shows 244 threads running on the coprocessor.

105

104

103

102

101

100

Fig. 4: Per-kernel comparison of single-threaded performance
between the original application and our optimised version
for the 2000 nucleosome yeast dataset. The “linear” kernel
refers to the combination of the tension and angular force
computation, which were merged for the optimised version. A
logarithmic y-axis is used to better demonstrate the difference
in terms of orders of magnitude—note the 10� improvement
to the repulsion kernel.

vectorised either, likely because each binding site is largely
independent leading to good scaling to a larger number of
threads. The integration also scales better with dataset size, as
the coprocessor has roughly 3� the memory bandwidth as the

CPU (153 GB=s per NUMA region as opposed to 48 GB=s,
as reported by the STREAM benchmark [23]).

The main issue we see on the coprocessor is significantly
higher barrier costs. On some level this is unavoidable, a
higher number of threads is going to mean slower blocking
operations and a greater sensitivity to load imbalance, and we
cannot remove any barriers as they are necessary to ensure
correctness. We can aim to reduce the number of barriers
via algorithmic changes however—the midpoint integration
scheme used is the main culprit here, requiring twice as many
barriers per timestep as would otherwise be needed.
C. Offload computation
We experimented with offloading computation to the coproces-
sor while running on the CPU. Suitable candidate kernels for
offloading should perform well on the coprocessor, be able to
run in parallel with other kernels (minimal data dependencies),
not require large amounts of data transfer on and off the
coprocessor each timestep, and take long enough that the
overhead of offload does not dominate. Of the kernels in this
simulation, the only one that satisfies most of these conditions
is the projection sorting force sweep. It performs better on
the coprocessor, and can be run in parallel with any of the
other force computation kernels. Despite this, the time saved
by running offloaded was roughly equalled by the overhead
of doing so, and we did not see any significant change in
performance.

VI. CONCLUSIONS

We present projection sorting, an alternative to the traditional
Verlet list algorithm for short-range interaction force computa-
tion, and show that it is more effective under certain conditions

Sort Condensin Repulsion
Integration Other Barrier

Original
Optimised

present in this molecular dynamics simulation of chromosome
condensation. We provide efficient parallel implementations of
this strategy for traditional and many-core architectures, along
with the rest of the code.

We achieve large speed-ups starting at 10�, and improving
with dataset size, over the original implementation, and com-
pare the performance of our optimised CPU and coprocessor
implementations. We find that some kernels are better suited to
the Xeon Phi coprocessor, in particular the projection sorting
force sweep, which consumes the majority of the runtime in
this simulation.

Our optimisations have been and continue to be used to
facilitate further experiments into chromosome condensation.
While the algorithms we discuss are specific to molecular
dynamics, the issues that arise through implementation are
more widely applicable, in particular our discussion of sorting,
a very common operation in a great many classes of code.

A. Further work
Future directions for this code include support for multi-
ple interacting chromatin strings with a controlled region
of overlap between their bounding boxes, which introduces
some challenging dynamic load balancing problems where the
strings come into contact with each other.

Reworking the simulation to use an alternative integration
scheme that does not require computing forces more than once
(such as Verlet integration [14]), would radically affect the
performance characteristics of the simulation.

Currently the code is shared memory parallel only, using
OpenMP. Extension to distributed memory parallelism would
require reworking of some algorithms (for example, efficient
distributed sorting is more complex than shared memory
sorting [24]), but is generally straightforward and would open
doors to greater performance on larger systems.

ACKNOWLEDGEMENTS

This work was supported by the Francis Crick Institute
which receives its core funding from Cancer Research UK
(FC001003), the UK Medical Research Council (FC001003),
and the Wellcome Trust (FC001003), and by the Engineering
and Physical Sciences Research Council and Intel Corporation
(CASE award 1365607).

REFERENCES

[1] T. M. K. Cheng, S. Heeger, R. A. G. Chaleil, N. Matthews, A. Stewart,
J. Wright, C. Lim, P. A. Bates, and F. Uhlmann, “A simple biophysical
model emulates budding yeast chromosome condensation.” eLife, vol. 4,
p. e05565, 2015.

[2] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular
dynamics with NAMD.” Journal of Computational Chemistry, vol. 26,
no. 16, pp. 1781–1802, Dec. 2005.

[3] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kalé,
“Overcoming scaling challenges in biomolecular simulations across
multiple platforms,” in Proceedings of the International Parallel and
Distributed Processing Symposium 2008. IEEE, 2008, pp. 1–12.

[4] W. Jiang, J. C. Phillips, L. Huang, M. Fajer, Y. Meng, J. C. Gumbart,
Y. Luo, K. Schulten, and B. Roux, “Generalized Scalable Multiple Copy
Algorithms for Molecular Dynamics Simulations in NAMD.” Computer
Physics Communications, vol. 185, no. 3, pp. 908–916, Mar. 2014.

[5] Y. Sun, G. Zheng, C. Mei, E. J. Bohm, J. C. Phillips, L. V. Kalé, and T. R.
Jones, “Optimizing fine-grained communication in a biomolecular sim-
ulation application on Cray XK6,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis 2012. IEEE, 2012, pp. 1–11.

[6] S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of Computational Physics, vol. 117, pp. 1–19, Mar.
1995.

[7] I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL POLY 3:
new dimensions in molecular dynamics simulations via massive paral-
lelism,” Journal of Materials Chemistry, vol. 16, no. 20, pp. 1911–1918,
May 2006.

[8] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess,
and E. Lindahl, “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers,” Soft-
wareX, vol. 1-2, pp. 19–25, Sep. 2015.

[9] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics pro-
cessing units,” Journal of Computational Physics, vol. 227, no. 10, pp.
5342–5359, May 2008.

[10] A. Harode, A. Gupta, B. Mathew, and N. Rai, “Optimization of
Molecular Dynamics application for Intel Xeon Phi coprocessor,” in
Proceedings of the International Conference on High Performance
Computing and Applications 2014. IEEE, 2014, pp. 1–6.

[11] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis,
“Exploring SIMD for Molecular Dynamics, Using Intel R Xeon R
Processors and Intel R Xeon PhiTM Coprocessors,” in Proceedings of the
International Symposium on Parallel and Distributed Processing 2013.
IEEE Computer Society, May 2013, pp. 1085–1097.

[12] R. W. Hockney, S. P. Goel, and J. W. Eastwood, “Quiet high-resolution
computer models of a plasma,” Journal of Computational Physics,
vol. 14, no. 2, pp. 148–158, Feb. 1974.

[13] B. Quentrec and C. Brot, “New method for searching for neighbors in
molecular dynamics computations,” Journal of Computational Physics,
vol. 13, no. 3, pp. 430–432, Nov. 1973.

[14] L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermody-
namical Properties of Lennard-Jones Molecules,” Physical Review, vol.
159, no. 1, pp. 98–103, Jul. 1967.

[15] Z. Yao, J. Wang, G. Liu, and M. Cheng, “Improved neighbor list
algorithm in molecular simulations using cell decomposition and data
sorting method,” Computer Physics Communications, vol. 161, no. 1-2,
pp. 27–35, Aug. 2004.

[16] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis
of the clustering properties of the Hilbert space-filling curve,” IEEE
Transactions on Knowledge and Data Engineering, vol. 13, no. 1, pp.
124–141, 2001.

[17] P. Gonnet, “A simple algorithm to accelerate the computation of non-
bonded interactions in cell-based molecular dynamics simulations.”
Journal of Computational Chemistry, vol. 28, no. 2, pp. 570–573, Jan.
2007.

[18] R. S. Francis and I. D. Mathieson, “A benchmark parallel sort for shared
memory multiprocessors,” IEEE Transactions on Computers, vol. 37,
no. 12, pp. 1619–1626, 1988.

[19] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the 1968 AFIPS Conference. ACM Press, 1968, pp. 307–314.

[20] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y. Chen,
A. Baransi, S. Kumar, and P. Dubey, “Efficient implementation of sorting
on multi-core SIMD CPU architecture,” in Proceedings of the VLDB
Endowment 2008. VLDB Endowment, Aug. 2008, pp. 1313–1324.

[21] U. Welling and G. Germano, “Efficiency of linked cell algorithms,”
Computer Physics Communications, vol. 182, no. 3, pp. 611–615, Mar.
2011.

[22] S. Kumar, D. Kim, M. Smelyanskiy, Y. Chen, J. Chhugani, C. J. Hughes,
C. Kim, V. W. Lee, and A. D. Nguyen, “Atomic Vector Operations
on Chip Multiprocessors,” in Proceedings of the 35th International
Symposium on Computer Architecture 2008. IEEE, 2008, pp. 441–
452.

[23] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers,” IEEE Computer Society Technical
Committee on Computer Architecture TCCA Newsletter, 1995.

[24] E. Solomonik and L. V. Kalé, “Highly scalable parallel sorting,” in
Proceedings of the International Parallel and Distributed Processing
Symposium 2010. IEEE, 2010, pp. 1–12.

