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1 INTRODUCTION

M. Pollicott1 and P. Vytnova2

1 Mathematical Institute, University of Warwick, Coventry, CV4 7AL, UK
2 School of Mathematical Sciences, Queen Mary University of London, Mile End Road,

London E1 4NS, UK
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Abstract. Given an expanding map of the interval we can associate an absolutely

continuous measure. Given an Anosov transformation on a two torus we can associate

a Sinai–Ruelle–Bowen measure. In this note we consider first and second derivatives of the

change in the average of a reference function. We present an explicit convergent series for

these derivatives. In particular, this gives a relatively simple method of computation.

Submitted to: Nonlinearity

1. Introduction

Linear response can often be used to describe how physically relevant quantities respond

to external stimuli. We recall the following informal description of Ruelle [14]: “Linear

response theory deals with the way a physical system reacts to a small change in the applied

forces or the control parameters. The system starts in an equilibrium or a steady state ρ, and

is subjected to a small perturbation x, which may depend on time. In first approximation,

the change ∆ρ of ρ is assumed to be linear in the perturbation x”. A more mathematical

formulation is the following. Let f : M →M be a smooth discrete time dynamical system (on

a compact Riemann manifold M) admitting a unique SRB measure µ. Assume that λ 7→ fλ
is a smooth path through f = f0 and that there exists a large enough set Λ, containing 0 as

an accumulation point, so that fλ admits an SRB measure µλ for each λ ∈ Λ. One asks how

smooth the map λ 7→ µλ at 0, in particular whether it is differentiable (see [2]).

Ruelle presented explicit formulae for the first derivative (using the susceptibility

function) in [15]. For example, if we associate a vector field X so that fλ = f0+λX ◦f+o(λ)

then one can hope to write

∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

=
∞∑
n=0

∫
〈X, grad(g ◦ fn0 )〉dµ. (1.1) {susf:eq}

However, to make sense of this expression one needs, for example, that the right hand side

of (1.1) converges in a suitable sense.

An approach suggested by Ruelle, was to consider the susceptibility function

Ψ(z) =
∞∑
n=0

zn
∫
〈X, grad(g ◦ fn0 )〉dµ, (1.2)
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1.1 Maps of the circle 1 INTRODUCTION

which reduces to (1.1) when z = 1.

In an incomplete manuscript of Sondergaard and Cvitanović, the authors propose the

idea of studying this problem using a different approach involving a complex function defined

using periodic orbits [8]. We want to develop further these ideas in the context of Cω

expanding maps and Anosov diffeomorphisms, a key point being the use of a somewhat

different complex function. (A related problem was posed by Baladi in §5 in her survey [2],

where she asked about the relationship of periodic points and linear response.) In particular,

we present an alternative convergent series for the Right Hand Side of (1.1), which has the

merit of being easily computed.

The problem of computing the first derivative of the integral was studied by Bahsoun

and Galatolo [10]. Their proof takes a functional analytic approach by rewriting the

Fréchet derivative of the measure using transfer operators. Using approximation of the

transfer operator by finite (although very large) rank operators, they obtain estimates on

the derivative to any prescribed level of accuracy. This method has the distinct advantage

that it applies to expanding maps of finite differentiability (for example, C3). By contrast,

we require the stronger hypothesis that the map is real analytic, but then our proof involves

deriving an alternative expression for the derivative in (1.1) as a series each of whose terms are

defined in terms of weights on periodic points for the map. We require the strong analyticity

hypothesis in order to ensure that this series converges and, moreover, sufficiently rapidly to

give very good numerical approximations. In particular, this approach provides both good

and effective estimates on the error, see Subsection 4.2. The advantage of this approach is

numerical stability due to simplicity of the calculations involved. In particular, the algorithm

presented in Section 4.1 can be realised on any pocket-sized calculator.

We consider the problem in the settings of expanding maps of the circle and Anosov

diffeomorphisms of the torus. Our results are as follows.

1.1. Expanding maps of the circle

The simplest possible setting in which to study these problems is expanding maps of the

circle.

Let us take a family of Cω expanding maps Tλ : T1 → T1, λ ∈ (−ε, ε), on the unit circle

K = R/Z. We denote by

dµλ = ρλ(x)dx

the associated absolutely continuous invariant measure, with density ρ ∈ Cω(T1) [7]. Given

a Cω function g : T1 → C we can consider the average
∫
gdµλ, which has an analytic

dependence on λ ∈ (−ε, ε), and find an expression in terms of periodic orbits for the

derivatives.

A =
∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

and B =
∂2

∂λ2

(∫
gdµλ

) ∣∣∣
λ=0

(1.3) {ABdef:eq}
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1.2 Anosov diffeomorphisms 1 INTRODUCTION

In particular, this would lead to a series expansion∫
gdµλ =

∫
gdµ0 + λA+ λ2

B

2
+ o(λ2). (1.4) {avdif:eq}

The following theorem is our main result on expanding maps and gives both the desired

expression for the coefficients in (1.3) in terms of periodic points and convergence estimates

which will be useful later for computations.
{main1:thm}

Theorem 1.1. Let Tλ be a family of Cω expanding maps of the circle, let µλ be the absolutely

continuous invariant probability measure and let g be a Cω test function. Then

(i) The first and the second coefficients A and B may be written as explicit convergent series

A =
∞∑
n=0

An and B =
∞∑
n=0

Bn;

(ii) The kth term of the series is defined in terms of periodic points of period ≤ k;

(iii) The partial sums Sn(A) =
n∑
k=1

Ak and Sn(B) =
n∑
k=1

Bk of the first n terms in each series

converge faster than any exponential to A and B, respectively, i.e., An ≤ α exp(−βn2)

and |Bn| ≤ α exp(−βn2) for some α, β > 0.

For clarity of exposition, we have formulated the result for expanding maps of the circle,

but an extension to expanding maps in higher dimensions also holds.

Contributions to the study of this and related problems have been made by Ruelle [15]

and [16], Baladi and Smania [3], [4], [5]; Dolgopyat [9], Liverani and Butterley [6].

The connection with periodic points is not unfamiliar, we recall

Lemma 1.2. The average of a test function is related to periodic orbits by the formula∫
gdµλ = lim

n→+∞

∑
Tnλ xλ=xλ

g(x) · |T ′λ(xλ)|−1∑
Tnλ xλ=xλ

|T ′λ(xλ)|−1
.

The rate of convergence in this lemma is typically only exponential, which is the same

as the growth rate of the number of the periodic points needed to compute the terms.

However, our goal is to give an explicit convergent power series in λ, where the

coefficients can be efficiently computed in terms of periodic points, as in Theorem 1.1.

1.2. Anosov diffeomorphisms

We recall that a diffeomorphism f : M →M on a compact manifold is Anosov if

(i) there exists a continuous (in the manifold) Df -invariant splitting TM = Es ⊕ Eu and

constants C > 0 and 0 < λ < 1 such that ‖Dfn|Es‖ ≤ Cλn and ‖Df−n|Eu‖ ≤ Cλn for

n ≥ 0.

(ii) f is transitive, i.e. there exists a dense orbit.
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1.2 Anosov diffeomorphisms 1 INTRODUCTION

Let us consider a family of Cω Anosov diffeomorphisms fλ : M → M , λ ∈ (−ε, ε). Let µλ
be the associated Sinai–Ruelle–Bowen measures.

Given a Cω function g : M → R we can consider the average
∫
gdµλ, which has an

analytic dependence on λ ∈ (−ε, ε) and find an expression for its derivatives in terms of

periodic orbits.

A =
∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

and B =
∂2

∂λ2

(∫
gdµλ

)∣∣∣
λ=0

In particular, this would lead to a series expansion, similar to (1.4)∫
gdµλ =

∫
gdµ0 + λA+ λ2

B

2
+ o(λ2). (1.5) {ava:dif}

The following theorem is our main result on Anosov diffeomorphisms and gives both the

desired expression for the coefficients in (1.5) in terms of periodic points and convergence

estimates which will be useful later for computations. Let us restrict to the case of Anosov

diffeomorphisms of the two torus T2.
{main2:thm}

Theorem 1.3. Let Tλ be a Cω family of Anosov diffeomorphisms of T2, let µλ be the SRB

measures and let g be a Cω test function. Then

(i) The first and the second coefficients A and B may be written as explicit convergent series

A =
∞∑
n=0

An and B =
∞∑
n=0

Bn;

(ii) The k’th term of the series is defined in terms of periodic points of period ≤ k;

(iii) The partial sums Sn(A)
def
=

n∑
k=1

Ak and Sn(B)
def
=

n∑
k=1

Bk of the first k terms in each series

converge faster than any exponential to A and B, respectively. In particular, there exist

constants α, β > 0, which can be explicitely estimated, such that |An| ≤ α exp(−βn2)

and |Bn| ≤ α exp(−βn2).

For clarity of exposition, we have formulated the result for Anosov diffeomorphisms of

T2 , but an extension to higher dimensional Anosov diffeomorphisms also holds.

We present the explicit formulae for the Sn(A) and Sn(B) in a later section.

The connection with periodic points is again well known:

Lemma 1.4. The average of a test function is related to periodic orbits by the formula∫
gdµλ = lim

n→+∞

∑
Tnλ xλ=xλ

g(x) · | det(DTλ|Eu)(xλ)|−1∑
Tnλ xλ=xλ

| det(DTλ|Eu)(xλ)|−1

The rate of convergence in this lemma is typically only exponential, which is the same as

the growth of number of the periodic points needed to compute the terms. Thus Theorem 1.3

provides a faster and more efficient means of approximation.
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1.3 Examples 1 INTRODUCTION

1.3. Examples
{numeric:sec}

To illustrate the efficiency of the approach to numerical computation we can consider several

simple examples. We say that an estimate AN is accurate to k-decimal places we mean that

the sequence of approximations AN have the property that consecutive approximations AN
and AN+1 agree to k-places. Moreover, our approach does give explcit bounds, but they are

not as sharp as the numerics suggest would be possible.

1.3.1. Expanding maps of the circle

Example 1.5. Let T0 : [0, 1]→ [0, 1] be the doubling map defined by

T0(x) =

{
2x if 0 ≤ x ≤ 1

2

2x− 1 if 1
2
< x ≤ 1.

x

T0(x)

1

0 11
2

x

Tλ(x)

1

0 11
2

n Sn(A) Sn(B)

7 −0.00189764 7.847249099

8 2.503 · 10−5 7.655670510

9 −1.73 · 10−7 7.658058404

10 6.24 · 10−10 7.658050630

11 −1.15 · 10−12 7.658050565

12 1.42 · 10−13 7.658050566

Figure 1. (a) The doubling map T0; (b) The small perturbation Tλ; (c) Approximations

to the first derivative and to the second derivatives. {conv:tab}

Let Tλ : [0, 1]→ [0, 1] (− 1
2π
< λ < 1

2π
) be the map defined by

Tλ(x) =

{
2x+ λ sin(2πx) if 0 ≤ x ≤ 1

2

2x− 1 + λ sin(2πx) if 1
2
< x ≤ 1.

Let g(x) = cos(2πx). In this case the value A = 0 can be obtained as a part of

general statement, outlined in the Appendix 4.3 p. 17, and this leads to a useful check on

the numerics. In particular, using only ≈ 2000 periodic points with period ≤ 10 we see from

Table 1 (a) accuracy to 9 decimal places. Similarly, we have a method for finding numerical

approximations Bk to B = ∂2

∂λ2

∫
gdµTλ |λ=0 using periodic orbits of period ≤ k. For instance,

using only ≈ 8000 periodic points with period ≤ 12 we get accuracy to 9 decimal places.

1.3.2. Anosov diffeomorphisms

Example 1.6. We can consider the Arnol’d CAT map T0 : T2 → T2 given by

T0(x, y) = (2x+ y, x+ y) mod 1;
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2 APPROACH OF THERMODYNAMICS

n Sn(A)

4 8.103482255823

5 3.191273209097

6 −5.060637127313

7 −1.072969824595

8 0.002785871255

9 0.002790864776

10 0.002790864709

Figure 2. The case of Anosov diffeomorphisms. (1) Original domain (2) the image under

T0. (3) The image under Tλ. (4) Approximations to the first derivative ∂
∂λ

∫
gdµλ. {convan:tab}

and define a small perturbation

Tλ(x, y) = (2x+ y + λ cos(2πx), x+ y) mod 1.

The number of periodic points of T0 grows exponentially like
(
3+
√
5

2

)n
, and they are

equidistributed. We need to choose test function changing rapidly in order to reduce

computational error. For example, one can consider g(x, y) = sin(19 sin(2πx)+41 cos(2πy)).

We obtain A = 0.00279 . . . with ≈ 6000 periodic points of period 9 with accuracy to 10 decimal

places.

2. Approach of thermodynamics

We will present the argument in a simple case of expanding maps and explain afterwards

the changes needed in the case of invertible Anosov diffeomorphisms.

In this section we introduce determinants, which are complex functions whose zeros

can be expressed in terms of a suitable thermodynamical pressure function. We will also

recall that the integral of the test function which we study can be expressed in terms of a

suitable derivative of this pressure. We are interested in the derivative of this integral as

given in (1.1). So by the Implicit Function Theorem we will see that this can be expressed

in terms of the derivatives of the determinant. This is the key to our approach.

2.1. Expanding maps of the circle

We will begin by reviewing thermodynamic formalism for expanding maps of the circle.

This then allows us to describe the zeros of the complex determinant function we need to

introduce. Finally, we explain how the determinant function can be used to study the linear

response problem for expanding maps of the circle.
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2.1 Expanding maps of the circle 2 APPROACH OF THERMODYNAMICS

2.1.1. Thermodynamic formalism Let T : T1 → T1 be an expanding map on the unit circle.

We can consider the Cω function F : T1 → R defined by

F (x) = − log |T ′(x)|.

Definition 2.1. Let h(m) be the entropy of the measure m. We define the pressure function

P : C(T1,R)→ R by

P (F ) := sup
m

{
h(m) +

∫
Fdm

}
where the supremum is over all T -invariant probability measures. Let µF be the Gibbs

measure associated to F , i.e.,

P (F ) = h(µF ) +

∫
FdµF

Let us consider an analytic family Fλ : T1 → T1 of expanding maps on the circle with

parameter λ ∈ (ε, ε) and denote µλ := µFλ .

The following result is well known [17].
{difP:lem}

Lemma 2.2. Let g : T1 7→ R be a real analytic function. Then the function t 7→ P (Fλ + tg)

is analytic and we can write

∂P (Fλ + tg)

∂t

∣∣∣
t=0

=

∫
gdµλ

2.1.2. Determinant for the expanding maps We now introduce a complex-valued function

of three variables, associated to the family Fλ : T1 → T1 and a test function g : T1 → C

Definition 2.3. The determinant d : C× R× (−ε, ε)→ C, is a formally defined function

d(z, u, λ) = exp

− ∞∑
n=1

zn

n

∑
Tnλ xλ=xλ

exp(−ugn(xλ))

|(T nλ )′(xλ)| − 1

 (2.1) {det:eq}

where the second summation is over periodic points xλ for Tλ of period n and we write

gn(xλ) =
n−1∑
k=0

g(T kλxλ).

It is relatively classical to show the following.
{ancov:lem}

Lemma 2.4. For z ∈ C, λ ∈ (−ε, ε) and u ∈ R we have that:

(i) d(z, u, λ) converges to an analytic function for |z| < exp(−P (Fλ − ug));

(ii) d(z, u, λ) has an analytic extension in z ∈ C to the entire complex plane C;

(iii) z 7→ d(z, u, λ) has a simple zero at z(u, λ) = exp(−P (Fλ − ug)).

7



2.1 Expanding maps of the circle 2 APPROACH OF THERMODYNAMICS

These results can be easily deducted from the paper of Ruelle [18] and his book [17],

but we briefly recall the idea of the argument.

Let us treat the circle T1 as the unit interval [0, 1]. Let [0, 1] ⊂ U ⊂ C be its complex

neighbourhood. We let B be the Banach space of bounded analytic functions f : U → C
with the supremum norm ‖ · ‖∞. {trop:def}
Definition 2.5. To a family of maps Fλ ∈ B and a test function g ∈ B we associate the

transfer operator Lu,λ : B → B:

(Lu,λ)f(x) =
∑
k

exp
(
(Fλ − ug)(Tkx)

)
f(Tkx)

where Tk : U → U are Cω contractions with Tk(U) ⊂ U , and Tλ ◦ Tk is the identity map.

Providing that Fλ : U → C and u : U → C are analytic, the operators Lu,λ are nuclear.

In particular, the determinant

det(I − zLu,λ) = exp

(
−
∞∑
n=1

zn

n
trace(Lnu,λ)

)
is an entire function in z. The previous statements come easily from results of Ruelle [18],

after Grothendieck [11]: {acoefs:lem}
Lemma 2.6 (Grothendieck–Ruelle). We can expand the determinant in a power series

det(I − Lu,λ) = 1 +
∞∑
n=1

an(u, λ)zn, where the coefficients an satisfy: there exists α > 0

and 0 < θ < 1 such that |an(u, λ)| ≤ αθn
2
.

In particular, we see the following {z0:cor}
Corollary 2.7. Let z = z(u, λ) be the real zero for d(z, u, λ), i.e. d(z(u, λ), u, λ) = 0. Then

z(0, λ) = 1 for all λ ∈ (−ε, ε).

Proof. By Rohlin’s equality we have that P (Fλ) = 0 for all λ ∈ (−ε, ε).

Using Lemma 2.2 we can observe

∂

∂λ
z(u, λ) =

∂

∂λ
exp(−P (Fλ − ug)) = −z(u, λ)

∂

∂λ
P (Fλ − ug)

2.1.3. Analytic dependence of the average on measure Implicit to our analysis is that the

function λ 7→
∫
gdµλ is analytic in λ, from which we can then turn to the problem of

solving the derivatives. This is part of a general result whereby we consider analyticity

of the determinant d(z, u, λ), defined by (2.1). We may introduce an analytic function

η : C× (−ε, ε)→ C by

η(z, λ) :=
∂ log d(z, u, λ)

∂u

∣∣∣
u=0

=
1

d(z, u, λ)

∂d(z, u, λ)

∂u

∣∣∣
u=0

=
∞∑
n=1

zn
∑

Tnλ xλ=xλ

gn(x)

n

1

|(T nλ )′(xλ)|
(2.2)
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2.2 Anosov diffeomorphisms 2 APPROACH OF THERMODYNAMICS

Lemma 2.8. The function η(z, λ) has a simple pole at s = 1 with residue
∫
gdµλ.

For each individual periodic point T nλ (xλ) = xλ we have a Cω function (−ε, ε) 3 λ 7→ xλ.

Moreover, we can find a common neighbourhood (−ε, ε) ⊂ U such that (−ε, ε) 3 λ 7→ xλ
has an analytic extension to U .

Lemma 2.9. In a neighbourhood 1 ∈ V ⊂ C we have that V 3 z 7→ η(z, λ)−1 is analytic.

Moreover, U 3 λ 7→ η(z, λ)−1 ∈ Cω(V,C) is also analytic.

Recall Corollary 2.7. We can use the residue theorem to deduce that

U 3 λ 7→ 1

η(z, λ)
7→
∫
gdµλ

is analytic.

2.2. Anosov diffeomorphisms

Let T : T2 → T2 be an Anosov diffeomorphism of the torus, i.e. we assume that there

exists a DT -invariant splitting T2 = Es ⊕ Eu, and C, ρ > 0 such that
∥∥DT n|Es∥∥≤ Cρn and∥∥DT−1|Eu∥∥ ≤ Cρn. We also assume that the map T has a dense orbit.

We will begin by reviewing thermodynamic formalism for Anosov maps of the torus.

This then allows us to describe the zeros of the complex determinant function we need to

introduce. We also include a brief description of the Banach space and operators (due to

Rugh) that we use.

2.2.1. Thermodynamic formalism We can consider the Hölder function ϕu : T2 → R defined

by

ϕu(x) = − log | det(DxT |Eu)|

and the Cω function ϕ : T2 → R given by

ϕ(x) = − log | det(I −DT )|

Definition 2.10. We define the pressure function P : C(T2,R)→ R by

P (T ) := sup
m

{
h(m) +

∫
TdmT

}
where the supremum is over all T -invariant probability measures. Let µT be the Gibbs measure

associated to T , i.e., the unique T -invariant probability measure such that

P (T ) = h(µT ) +

∫
TdµT .

Let Tλ : T2 → T2 be a family of Anosov diffeomorphisms. Let ϕuλ and ϕsλ be the

associated functions. The following result is well known [17].

9



2.2 Anosov diffeomorphisms 2 APPROACH OF THERMODYNAMICS

{difP2:lem}
Lemma 2.11. Let w : T2 7→ R be a real analytic function. The function t 7→ P (−ϕλ + tw)

is analytic and we can write

∂P (ϕλ + tw)

∂t

∣∣∣
t=0

=

∫
wdµλ,

where µλ is the SRB measure and P (ϕuλ) = 0.

2.2.2. Determinant for Anosov diffeomorphisms We recall the result of Rugh from [19].

For a real analytic Anosov diffeomorphism T : T2 → T2 and a positive real analytic function

g : T2 → R+ given by g(z) = exp(w(z)) we can associate the function

d(z)
def
= exp

(
−
∞∑
n=1

zn

n

∑
Tnx=x

∏n−1
k=0 g(T kx)

det(DT n(x)− I)

)
.

which converges for |z| < exp(P (−φu + w)). In particular, we observe that

lim
n→+∞

exp
(n−1∑
k=0

φu(T kx)
)

det(DT n(x)− I)
= 1. (7.1)

We have the following interpretation.

Proposition 2.12 (Rugh). The function d(z) has an analytic extension to C with a simple

zero at z = exp(P (−φu + w)).

However, examining the proof we see that there is an additional analytic dependence.

We therefore define

d(z, s, λ) := exp

− ∞∑
n=1

zn

n

∑
Tnλ xλ=xλ

exp
(
s
∑n−1

k=0 w(T kλx)
)

det(DT nλ (x)− I)

 . (2.3) {det2:eq}

Lemma 2.13 (Ruelle–Grothendieck–Rugh). The function d : C × R × (−ε, ε) → C, given

by (2.3) is analytic. Furthermore, we can write

d(z, s, λ) = 1 +
∞∑
n=1

an(s, λ)zn

where there exists 0 < θ < 1 such that such that |an(s, λ)| = O(θn
2
).

Thus the truncations

d(N)(z, s, λ) = 1 +
N∑
n=1

an(s, λ)zn

are efficient approximations to d(z, s, λ) and lead to approximations to
∫
wdµλ via the

implicit function theorem. As in the case of the expanding maps, one additional ingredient is

the expansion xλ = x0 +λx(1) + · · · and replacing the family of fixed points xλ by x0 +λx(1),

after solving for x(1).

10



2.2 Anosov diffeomorphisms 2 APPROACH OF THERMODYNAMICS

Example 2.14. We can consider the Arnol’d CAT map T0 : T2 → T2 defined by T0(x, y) =

(2x + y, x + y) (mod 1). We can then define Tλ(x, y) = (2x + y + λ sin(2πx), x + y). The

periodic points for T0 correspond to ( x1x2 ) = (An − I)−1 ( nm ) where n,m ∈ Z, and A = ( 2 1
1 1 ).

2.2.3. The Banach spaces and transfer operators of Rugh For completeness, we briefly recall

the approach by Rugh.

The spaces constructed by Rugh in his paper [19] were the forerunners of the modern

theory of Anisotropic Banach spaces. For our purposes, the most important feature is that

it retains the property of being a nuclear space.

One associates to the Anosov map a Markov partition P = {P1, · · · , Pk}. Each piece

of the partition can be written in the form [Ui, Si] where Ui ⊂ W u(zi) and Si ⊂ W u(zi), for

some zi ∈ Pi, and we write [x, y] = W s(x, ε)∩W s(y, ε) for sufficiently small ε > 0, depending

only on T . Following the original work of Adler and Weiss [1], and Sinai [20], we can model

T : T2 → T2 by a subshift of finite type σ : ΣA → ΣA with transition matrix A.

On each piece Pi of the partition one can consider the natural coordinates associated

to the stable and unstable manifolds (i.e., we can identify points in Pi with Ui × Si using

the above. As is well known, these coordinates are typically only C1. In order to recover

analytic coordinates we need to use an approach introduced by Rugh.

Assume that z0 ∈ Pi0 , Tz1 ∈ Pi1 . In particular, writing z0 = (x0, y0) and z1 = (x1, y1)

we see that for each

(i) y0 ∈ Ui0 the map x0(·, y0) : Si1 → Si0 is an analytic contraction.

(ii) x1 ∈ Si1 the map y1(x1, ·) : Ui0 → Ui1 is an analytic expansion.

Here contraction and expansion are understood in terms of the modulus of derivative being

smaller, or larger, than 1 respectively.

By virtue of real analyticity, we can fix small neighbourhoods Si0 ⊃ Si0 and Ui1 ⊃ Ui1
with smooth boundaries corresponding to complexifications of these pieces of unstable and

stable maps such that:

(i) for any y0 ∈ Ui0 the map x0(·, y0) : Si0 → Si1 is an analytic contraction and, in particular,

x0(Si0 , y) ⊂ Si1 .
(ii) for any x1 ∈ Si1 the maps y1(x1, ·) : Ui1 → Ui0 is an analytic expansion and, in particular,

y1(x1,Ui1) ⊂ Ui0 .
(iii) We can solve yj(ξ0, φs(ξ0, η1)) = η1 to get a family of contractions φs(ξ0, ·) : Ui1 → Ui0

(indexed by ξ0).

(iv) We define a family of contractions φu(·, η1) : Si0 → Si1 by φu(ξ0, η1) = y1(φs(ξ0, η1))

(indexed by η1).

We can consider the space of functions B := ⊕iCω(Si× (Ĉ−Ui)) consisting of bounded

analytic functions f :
∐

i Ui → C with the supremum norm. We can then define a transfer

11



3 DETERMINANT AND TEST FUNCTION

operator L : B → B by

Lf(x1, y1) = −
∑

A(i0,i1)=1

1

4π2

∫
∂Si

∫
∂Ui

f(x0, y0) ·G(x1, y0)

(x0 − ϕu(x0, y1))(y1 − ϕs(x0, y1))
dx0dy0

where A is the transition matrix, (x0, y0) ∈ Si0 × (Ĉ − Ui0) (x1, y1) ∈ Sj × (Ĉ − Uj),
and G(x0, y1) = ∂2φs(x0, y1) is a weight function associated with the change of variables

(cf. Rugh [13]).

3. Determinant and test function

The coefficients A and B, defined by (1.3), can be written in terms of the determinant. They

give linear and quadratic approximations to the derivative of the average (1.4). We keep the

notation introduced in the previous section.

The first coefficient A may be written in a relatively easy closed form. {difD:lem}
Lemma 3.1 (Linear approximation).

A =
∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

= −

(
∂2d(1,u,λ)
∂u∂λ

|u=0,λ=0

∂d(z,0,0)
∂z
|z=1

)
+

 ∂2d(z,0,λ)
∂z∂λ

|z=1,λ=0

(
∂d(1,u,0)

∂u
|u=0

)
(
∂d(z,0,0)

∂z
|z=1

)2
 .

Proof. By the implicit function theorem applied to d(z(u, λ), u, λ) = 0 we can write

−
∂d(z(0,λ),u,λ)

∂u

∣∣
u=0

∂d(z,0,λ)
∂z

∣∣
z=z(0,λ)

=
∂z(u, λ)

∂u

∣∣∣
u=0

= z(0, λ)
∂P (Fλ − ug)

∂u

∣∣∣
u=0

=
∂P (Fλ − ug)

∂u

∣∣∣
u=0

, (3.1) {difD1:eq}

using the corollary 2.7 to see that z(0, λ) = 1, and by Lemma 2.2

∂P (Fλ − ug)

∂u

∣∣∣
u=0

= −
∫
gdµλ. (3.2) {difD2:eq}

We thus see from the two identities (3.1) and (3.2) that∫
gdµλ = −

∂d(z(0,λ),u,λ)
∂u

∣∣
u=0

∂d(z,0,λ)
∂z

∣∣
z=z(0,λ)

.

Differentiating with respect to λ and taking into account that ∂z(0,λ)
∂λ

∣∣
λ=0

= 0, we get the

result.

The expression for the second coefficient B = ∂2

∂λ2

∫
gdµλ

∣∣
λ=0

involves third-order

derivatives of the determinant. {B:lem}
Lemma 3.2 (Quadratic approximation).

B =
(∂d
∂z

)−1( ∂3d

∂u∂2λ
− ∂3d

∂u∂λ2
− ∂3d

∂z∂λ2
·
∫
gdµ0−2

∂2d

∂z∂λ
·A− ∂

2d

∂z2
·A ·

∫
gdµ0

)∣∣∣
u=0,λ=0,z=1

,

where A = ∂
∂λ

∫
gdµλ

∣∣
λ=0

.

12



3.1 Differentiating determinant 4 NUMERICAL RESULTS

Proof. To estimate the value B we differentiate the determinant twice, and calculate
∂2

∂λ2

(
∂
∂u
d(z(u, λ), u, λ))|u=0

)
|λ=0 using the identities z(0, λ) ≡ 0 and ∂z(0,λ

∂λ

∣∣
λ=0

= 0.

It is clear therefore that in order to estimate the coefficients A and B, it is sufficient to

be able to compute efficiently derivatives of the determinant. Below we provide theoretical

background and outline computational method.

3.1. Derivatives of d(z, u, λ)

Since the determinant is an analytic function, we can expand it in a power series.

d(z, u, λ) = 1 +
∞∑
n=1

an(u, λ)zn. (3.3) {dets:eq}

Comparing the terms in the expansion for d(z, u, λ) given by (2.1) we get the following.
{anest:lem}

Lemma 3.3. Let g : T1 → R be real analytic, and let Tλ : T1 → T1 be a family of the

expanding maps of the circle. Then each an(u, λ) depends only on periodic points of period

n, i.e.,

an(u, λ) =
∑

n1+···+nr=n

1

r!

r∏
j=1

 1

nj

∑
Tnjxλ=xλ

exp(−ugnj(x))

(T
nj
λ )′(xλ)− 1


Moreover, in the case of the doubling map on the circle, we can take any 1

2
< θ < 1 and

then α can be explicitly estimated in the upper bound |an| ≤ αθn
2
.

{anap:lem}
Lemma 3.4. The derivatives of the determinant (2.1) can be approximated by the sums of

derivatives of coefficients an. Moreover, an upper bound for the approximation error can be

explicitly calculated.

4. Numerical results

We begin with an outline of the algorithm we use for computing the first and second

derivatives of the integrals. We then illustrate this, firstly, for expanding maps of the circle

and then, secondly, for Anosov diffeomorphisms of the torus.

4.1. Outline of the algorithm
{ss:algorithm}

Our expression for the first derivative of the integral from Lemma 3.1 together with

Lemma 3.4 provides the basis for an efficient algorithm for estimating the numerical value

of the derivative (1.1).

To present the algorithm used, we will need the following simple technical result. {recc:lem}
Lemma 4.1. In notation introduced above, consider the values

bn(u, λ)
def
=

∑
Tnλ (xλ)=xλ

exp(−ugn(xλ))

|(T nλ )′(xλ)| − 1
, 1 ≤ n ≤ N (4.1) {bdef:eq}

13



4.1 Outline of the algorithm 4 NUMERICAL RESULTS

Then the coefficients of the series (3.3) satsify the reccurent relation

an(u, λ) = − 1

n

n−1∑
j=0

aj(u, λ)bn−j(u, λ) (4.2) {mainrec:eq}

where a0 = 1.

Proof. We recall the determinant identity, that follows from (2.1) and (2.3)

exp

− ∞∑
n=1

zn

n

∑
Tnλ xλ=xλ

exp(−ugn(xλ))

|(T nλ )′(xλ)| − 1

 = 1 +
∞∑
n=1

znan(u, λ);

With notation introduced, it can be rewritten as

exp
(
−
∞∑
n=1

zn

n
bn

)
= 1 +

∞∑
n=1

znan(u, λ);

The Lemma follows by induction in n. Differentiating n times both sides of the latter

equation in z and evaluating the result at z = 0 we obtain the required relation.

Our algorithm is the following.

Step 1 Fix N . We can compute the periodic points of the map T0 (for example, using iterations

of the inverse transformation) up to period N and associate the values bn(u, λ) defined

by (4.1) as well as partial derivatives ∂bn
∂u

, ∂bn
∂λ

and ∂2bn
∂u∂λ

. (We would like to stress out

that in order to avoid round-off errors, we calculate the derivatives analytically for each

combination of perturbation and test function g.)

Step 2 We can derive the expressions for an (1 ≤ n ≤ N) in terms of bn (1 ≤ n ≤ N) using

reccurent relation (4.2).

Step 3 We can define approximations

dN(z, u, λ) =
N∑
n=1

znan(u, λ)

to dN(z, u, λ). The derivatives of d(z, uλ) that appear in the formula in (3.1) can be

approximated by the derivatives of dN(z, u, λ) which take an explicit form:

∂2dN(z, u, λ)

∂u∂λ
=

N∑
n=1

zn
∂2an(u, λ)

∂u∂λ

∂dN(z, u, λ)

∂λ∂z
=

N∑
n=1

nzn−1
∂an(u, λ)

∂λ

∂dN(z, u, λ)

∂u
=

N∑
n=1

zn
∂an(u, λ)

∂u

14
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∂dN(z, u, λ)

∂z
=

N∑
n=1

nzn−1an(u, λ)

Step 4 We obtain partial derivatives of an involved in the formulae above using reccurent

relation (4.2), using derivatives of bn obtained in Step 1.

Step 5 We define subsequent approximations

AN := −

(
∂2dN (z,u,λ)

∂u∂λ
∂dN (z,u,λ)

∂z

)
+

(
∂dN (z,u,λ)

∂λ∂z
∂dN (z,u,λ)

∂u
∂dN (z,u,λ)

∂z

)2

In particular, we need only sum expressions involving the derivatives of the coefficients

an(u, λ) constructed in Step 4. It follows from Lemma 3.1 that

AN −→
∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

as N →∞.

In the next subsection we provide an estimate on the rate of convergence.

4.2. Convergence estimates
{ss:convest}

The rate at which AN converges to A us controlled by the size of the discarded tail (from N

to infinity) of the series.

To illustrate the approach, consider the case of real analytic expanding map Tλ : [0, 1]→
[0, 1] with λ ∈ (−ε, ε). We denote the inverse branches by Tλ,j : [0, 1] → [0, 1], with

j = 1, · · · , k. Let us assume that each Tλ,j has an analytic extension to a neighbourhood

B(x, r) ⊃ [0, 1] for λ ∈ V , a bounded complex neighbourhood of x such that

∪jTλ,jB(x, r) ⊂ B(x, θ
1
2 r)

for some 0 < θ
1
2 < 1. Let us assume that u ∈ U , a bounded complex neighbourhood of x. We

can then bound an using the approach in the proof of Lemma 2.6 given in [18] (see also [12])

|an(u, λ)| ≤ ‖Lu,λ‖n∞nn/2θ
n
2 , n ≥ 0,

where we use the supremum norm ‖Lu,λ‖∞ for the operator Lu,λ acting on bounded analytic

functions on B(x, θ
1
2 r) with respect to the supremum norm.

The additional analytic dependence on λ and u is important to us in order to use

Cauchy’s theorem to bound the derivatives of an(u, λ). In particular, we can write

∂an(u, λ)

∂u

∣∣∣
u=0

=
1

2πi

∫
|ξ−1|=ρ0

an(ξ, λ)dξ

(ξ − 1)2

for any ρ0 > 0 such that B(0, ρ0) ⊂ U . Similarly,

∂an(u, λ)

∂λ

∣∣∣
λ=0

=
1

2πi

∫
|ξ|=ρ1

an(u, ξ)dξ

(ξ − 1)2

15
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for any ρ1 > 0 such that B(0, ρ1) ⊂ V . Finally, we can also write

∂2an(u, λ)

∂u∂λ

∣∣∣
u=0,λ=0

= − 1

(2π)2

∫
|ξ−1|=ρ0

∫
|η|=ρ1

an(ξ, η)dξdη

(ξ − 1)2η2
.

In particular, we have ∣∣∣∂an(u, λ)

∂u

∣∣∣
u=0

∣∣∣≤ 1

ρ20
‖Lu,λ‖nnn/2θ

n
2

∣∣∣∂an(u, λ)

∂λ

∣∣∣
λ=0

∣∣∣≤ 1

ρ21
‖Lu,λ‖nnn/2θ

n
2

∣∣∣∂2an(u, λ)

∂u∂λ

∣∣∣
u=0,λ=0

∣∣∣ ≤ 1

ρ0ρ1
‖Lu,λ‖nnn/2θ

n
2

Bounds on error in approximation for the doubling map. We would like to give explicite

estimates in the cases we studied in Examples 4.3 and 4.4. Assume that Tλ(x) =

2x+ λ cos(2πx) (mod 1) and g(x) = sin(2πx).

We want to consider the case of a small λ 6= 0. Let T̂1,λ, T̂2,λ : C → C be defined

by T̂1,λ(x) = 2x + λ cos(2πx) and T̂1,λ(x) = 2x + λ cos(2πx) + 1. We can choose r > 1
2

and then consider the images ∩jT̂j,λ
(
B
(
1
2
, r
))

. We also require that Tj,λ are bijections from

B
(
1
2
, r
)

onto the image. We would then like to choose R > r and |λ| sufficiently small that

∩jT̂j,λ
(
B
(
1
2
, r
))
⊃ B

(
1
2
, R
)
. In particular, we can choose any

R < 2r − 1

2
− |λ| · ‖ cos(2πx)‖∞

where the supremum is over the disk B
(
1
2
, r
)
. We can trivially bound this by ‖ cos(2πx)‖∞ ≤

exp(2πr). We can then choose any

θ
1
2 =

r

R
≥ 2r

4r − 1− 2λ exp(2πr)

For example, if we choose R = 2, r = 3
2
, and λ < exp(2πr)

(
2− 1

2r

)
, then we can choose

any θ > 9
16

.

We next want to bound the norm of the operator Lλ,u acting on bounded analytic

functions on B
(
1
2
, 2
)

with respect to the supremum norm. In addition let us choose

|u| ≤ ρ1 = 1
100

. Directly from Definition 2.5 we deduce an upper bound

‖Lλ,u‖ ≤ 2‖(Tλ)−1‖∞ exp
(√e5

100

)
≤ 200

200−
√
e5

exp
(√e5

100

)
,

since for z ∈ B
(
1
2
, 2
)

we have bounds | sin(2πz)| <
√
e5 and | cos(2πz)| <

√
e5.

Finally, using the above estimates we can explicitly bound the tail of the series for the

derivatives, i.e., the difference between the derivatives for d(z, λ, u) and dN(z, λ, u), which

leads to a bound on the difference of the value A and its approximation AN .
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4.3. Some rigorous values
{ap2}

In the case of expanding maps of the circle, there is a nice criteria for estimating a linear

approximation to the average
∫
gdµ, which is of independent interest.

{Aexpr:thm}
Theorem 4.2. Assume that Tλ and g are chosen so that there exist a constant C0 and a

polynomial P0 such that for any n

1

|(T n0 )′| − 1
·
∣∣∣ ∑
Tnλ (xλ)=xλ

∂

∂λ
(T nλ )′(xλ)

∣∣∣
λ=0

∣∣∣ ≤ P0(n) (4.3) {hyp1:eq}

∣∣∣ 1
n

∑
Tn0 (x)=x

gn(x)
∣∣∣ ≤ C0 (4.4) {hyp2:eq}

then
∂

∂λ

∫
gdµλ

∣∣∣
λ=0

= lim
n→∞

1

n

∂2

∂u∂λ
bn(u, λ)

∣∣∣
u=0,λ=0

; (4.5)

where bn(u, λ) are sums over periodic orbits given by (4.1), providing the latter limit exists.

The hypothesis of Theorem 4.2 are satisfied; in particular, in the examples we will

consider below. The second condition (4.4) holds true for any test function g with zero

average
∫
gdµ = 0.

Proof. The argument is very straightforward. The conditions (4.3) and (4.4), imposed on

the diffeomorphism and the test function, allows one to show, relying on the analyticity of

the determinant, that ∂d(1,u,0)
∂u

∣∣
u=0

= 0 and

∂2

∂u∂λ
d(1, u, λ)

∣∣∣
u=0,λ=0

=
∂

∂z
d(z, u, λ)

∣∣∣
z=1,u=0,λ=0

· lim
n→∞

1

n

∂2

∂u∂λ
bn(u, λ)

∣∣∣
u=0,λ=0

.

Theorem follows from Lemma 3.1.

4.4. Expanding maps of the circle

Using the method described above, one can calculate partial derivatives of the first 16

coefficients a1, . . . , a16 very rapidly.
{ex:4.3}

Example 4.3 (Tλ(x) = 2x + λ cos(2πx) and g(x) = sin(2πx)). The left graph in Figure 3

shows a plot of sums over periodic orbits, bn and its derivatives against n in logarithmic

scale. We observe that log(bn) = ln(1 + 1
2n−1) ≈ 1

2n−1 converges to 0, as it should, and

each of partial derivatives are asymptotic to exp(−αn) for some constant α > 0. The right

graph in Figure 3 shows a plot of the Taylor series coefficients an and their derivatives

in the logarithmic scale. We observe that the coefficients and their derivatives converge to

zero superexponentially an ≈ exp(−αn2) for some α > 0. The numerical values for partial
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Figure 3. Representative plots. On the left hand side we see the plot of sums |bn| (dark

blue) and partial derivatives
∣∣∂bn
∂u

∣∣ (blue),
∣∣∂bn
∂λ

∣∣ (light blue),
∣∣ ∂2bn
∂u∂λ

∣∣ (green),
∣∣∂2bn
∂λ2

∣∣ (yellow),

and
∣∣ ∂3bn
∂u∂2λ

∣∣ (red) in logarithmic scale. On the right, the corresponding derivatives of an are

shown. All derivatives are evaluated at λ = 0, u = 0. {sin2cos2:fig}

sums Sn(A) and Sn(B), approximating the coefficients A and B, respectively, were given in

Table 1. In this example we obtain

∂

∂λ

∫
gdµλ

∣∣∣
λ=0

= 0; and
∂2

∂2λ

∫
gdµλ

∣∣∣
λ=0

= 7.6505 . . .

{ex:4.4}
Example 4.4 (Tλ(x) = 2x + λ cos(4πx) and g(x) = sin(4πx)). Increasing the frequency

of perturbation and test function, we observe that for the second order partial derivative

log
∣∣ ∂2bn
∂u∂λ

∣∣
u=0,λ=0

6→ 0, and, consequently, we get ∂
∂λ

∫
gdµλ

∣∣
λ=0

= 1.570796326 . . .; which

corresponds to the value π
2

from Theorem 4.2 up to an error 10−12.

These estimates took only 7 seconds on a modern Desktop computer.

Example 4.5 (Tλ(x) = 2x + λ cos(2πx) and g(x) = cos(2πx)). In this example we

consider synchronised perturbation and test function. As a result, we observe that one of

the derivatives ∂an
∂λ

∣∣
λ=0,u=0

vanishes, but log
∣∣ ∂2bn
∂u∂λ

∣∣
u=0,λ=0

6→ 0, and we obtain ∂
∂λ

∫
gdµλ

∣∣
λ=0

=

1.570796326 . . .; which corresponds to the value π
2

from Theorem 4.2 up to an error 10−14.

4.5. Anosov diffeomorphisms of the torus

It is well known that for an Anosov diffeomorphism A the total number of periodic points

of period n is equal to det(An − I), therefore we see that bn(0, 0) ≡ 1 for all n, and

d(z, 0, 0) = 1 − z, i.e. a0(0, 0) = 1, a1(0, 0) = −1, and an(0, 0) = 0 for all n 6= 1, 2. Using

a similar method with obvious adjustments, we calculate partial derivatives of the first 10

coefficients a1, . . . , a10 of the Taylor series expansion of the determinant (2.3), evaluated at

λ = 0, u = 0. The Figure 4 shows the plots of sums over the orbits bn and the coefficients an
in logarithmic scale. We see a very rapid convergence.
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Figure 4. Representative plots. On the left hand side we see the plot of partial derivatives∣∣∂bn
∂u

∣∣ (blue),
∣∣∂bn
∂λ

∣∣ (light blue), and
∣∣ ∂2bn
∂u∂λ

∣∣ (green) in the logarithmic scale. On the right,

the corresponding derivatives of an are shown. All derivatives are evaluated at λ = 0, u = 0. {anosov:fig}

5. Generalizations

Finally, we formulate generalizations of Theorem 1.1 and Theorem 1.3 which can be proved

with the same basic method.

We begin by considering the generalization of Theorem 1.1 to expanding maps on d-

dimensional compact manifolds.

Theorem 5.1. Let Tt be a Cω family of expanding maps on a d-dimensional compact

manifold, let µTt be the absolutely continuous invariant probability measure and let g be

a Cω test function. Then

(i) The first and the second coefficients A and B may be written as explicit convergent series

A =
∞∑
n=0

An and B =
∞∑
n=0

Bn;

(ii) The kth term of the series is defined in terms of periodic points of period ≤ k;

(iii) The partial sums Sn(A) =
n∑
k=1

Ak and Sn(B) =
n∑
k=1

Bk of the first k terms in each series

converge faster than any exponential to A and B, respectively, i.e., |An| ≤ αe−βn
1+1/d

and |Bn| ≤ Ce−Bn
1+1/d

for some α, β > 0.

Finally, we have generalization of Theorem 1.3 to Anosov diffeomorphisms on d-

dimensional compact manifolds.

Theorem 5.2. Let Tt be a Cω family of Anosov diffeomorphisms, let µft be the SRB measures

and let g be a Cω test function. Then

(i) There are expressions for A =
∞∑
n=0

An and B =
∞∑
n=0

Bn in terms of explicit convergent

series;
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(ii) The kth term of the series is defined in terms of periodic points of period ≤ k;

(iii) The partial sums Ak and Bk of the first k terms in each series converge faster than any

exponential to A and B, respectively.

Remark 5.3. The method we have described might also be be applied to Cω expanding

semi-flows and Anosov flows, by using Markov sections.
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