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We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a
regime where partially disordered solute is a viable thermodynamic phase. Using a multicanon-
ical sampling protocol, we compute phase diagrams for the system, from which we determine
a parameter regime where the partially disordered phase is metastable almost everywhere in the
temperature–fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour,
which we examine via multidimensional free energy calculations. We consider the applicability of the
model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO3).
We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular
“seeding” method. We compare the resulting free energy barrier heights to those obtained via explicit
free energy calculations over a wide range of temperatures and fugacities, carefully considering the
propagation of statistical error. We find that the ability of the “seeding” method to reproduce accurate
free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of
a nucleation driving force ∆µ computed for bulk phases. We discuss possible reasons for this in terms
of underlying kinetic assumptions, and those of classical nucleation theory. C 2016 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4962216]

I. INTRODUCTION

Predicting the rate at which crystalline material precip-
itates from a supersaturated solution remains a significant
challenge to atomistic and molecular simulation due to
a large disparity between the physical time scales of
the process and the time scales which are accessible to
computational models.1–3 To date, very few studies have
computed quantitative absolute nucleation rates from such
simulations.4

A particularly challenging example where nucleation
kinetics remain well beyond the reach of atomistic simulation
is biomineralisation. Here nucleation and growth, mediated
by organic components, appears to progress via a multistage
process with a high degree polymorph control.5 This serves
as a natural example of self-assembly — a phenomenon
of great technological interest.6 The prototypical system
for study of biomineralisation and polymorph selection is
calcium carbonate (CaCO3), where some degree of controlled
assembly has been demonstrated in a laboratory.7–9 Recent in
situ transition electron microscopy (TEM) experiments10 have
provided a striking visualisation of crystallisation of calcite
— the most stable polymorph of CaCO3 at ambient conditions
— via vaterite — a metastable polymorph whose molecular
structure is characterised by a degree of structural disorder.11

Some important insights into parts of the CaCO3
nucleation pathway have been gained through molecular
dynamics (MD) simulations.12–14 However, the expense of

detailed atomistic models and the low solubility of CaCO3
prohibit modelling of the entire multi-stage process. More
quantitative studies of multi-stage processes15–17 are possible
using simple lattice models. In common with biomineral
nucleation, these show existence of amorphous precursors
to the assembly of anisotropic particles. To our knowledge,
however, pathways proceeding via partially disordered phases
or featuring the dissolution–regrowth mechanism10 have not
been previously captured.

Lattice models remain a useful tool in nucleation theory,
yielding insights into nonclassical phenomena,15–17 multistep
pathways,18,19 heterogeneous nucleation,20,21 and limitations
of calculation methodology.22,23

In the following contribution, we present a lattice model
of nucleation from solution, where the solute may form
disordered, ordered, or semi-ordered solids. We map the phase
diagram of the system and show that, in the limit of slow
growth, the transition from solvent rich to ordered crystalline
state proceeds via the two metastable solute phases. The
temperature dependence of the barrier to nucleation of these
three phases indicates the existence of a parameter regime
where heights of these barriers become comparable. However,
we also find that the barriers to solid state transformation
between the three solute phases, once nucleated, are too low
to allow our model to capture the dissolution and regrowth
pathway to crystallisation.

We then study the kinetics of nucleation in our model
using two distinct choices of microscopic dynamics over a
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broad range of parameters. We use the increasingly popular
“seeding” approach,4,24–26 which uses information extracted
from simulations to parametrise a classical nucleation theory
(CNT) expression for the nucleation rate. We consider
the propagation of statistical error and critically examine
the approximations made in this method. We show that
the reconstructed nucleation free energy barrier is limited
by the use of a CNT driving force parameter ∆µ calculated
for bulk phases rather than finite-size nuclei. As a result,
barriers can be inconsistent with those obtained via explicit
free energy calculation.

The definition of the lattice model is given in Sec. II.
In Sec. III we specify the details of the free energy calculations
presented in Sec. IV, where we examine the phase behaviour
and the possible nucleation pathways in the model. In Sec. V
we move on to the discussion of kinetics of nucleation under
the different choices of microscopic dynamics (Sec. V A),
developing an error estimation approach for the “seeding”
method in Sec. V B and discussing generation of appropriately
structured seeds in Sec. V C, before presenting the obtained
by the method results in Secs. V D and V E. Finally, in
Sec. VI we summarise and discuss the results presented in
Sections IV and V.

II. MODEL

Our model is an extension of that introduced by Duff
and Peters.16,27 We study a three component system of
anisotropic particles on a cubic lattice, where each particle
i is characterised by species si ∈ {1,2,3} and orientation
qi ∈ {1, . . . ,24}. We label species 1 as solvent and species
2 and 3 as solute. The nearest neighbouring particles (i, j)
interact isotropically with strength K(si, s j), while diagonally
neighbouring particles (k, l) interact anisotropically with
strength A(sk, sl), giving us the following lattice energy E:

E = −

(i, j)

K(si, s j) −

[k,l]

δ(qk,ql)A(sk, sl), (1)

where the first and second summations are performed,
respectively, over the unique nearest and diagonal neighbour
pairs, δ(., .) is the Kronecker delta function, and the lattice
structure is primitive cubic with 6 nearest and 12 diagonal
neighbours. We sample lattice configurations from the
semigrand (µVT) ensemble, i.e.,

3
s=1 Ns = N , where Ns is

the number of particles of species s and N = L3 is the number
of lattice sites, using the Metropolis algorithm with the moves:
(1) Transmutation si → s′i. (2) Reorientation qi → q′i. The two
Monte Carlo (MC) moves are attempted with equal probability
and accepted with probability,

min
�
1, f ss′ exp [−β∆E] 	, (2)

where f ss′ = exp[β(µs′ − µs)� is the ratio of fugacities of
species s′ and s, β = (kBT)−1 is the inverse temperature of
the system, and ∆E is the change in energy of the lattice
configuration due to the proposed move. In Secs. V and VI
of the article, we will refer to the MC move set defined here
as transmutation-reorientation kinetics. For convenience, we
define f to be the solute to solvent fugacity ratio f12.

FIG. 1. Visualisations of bulk forms of the three solute phases on a cubic
lattice of length L = 6, with solute species s = 2 and s = 3 drawn as cubes and
tetrahedrons, respectively. Due to the nature of isotropic interaction, solute
particles assemble into checkered structures. The shapes are colour coded
according to the corresponding orientation label q.

We study the phase behaviour of the system as a function
of temperature kBT and fugacity ratio f in the parameter
regime where µ2 = µ3 with the following interaction
strengths:

K =



1 0 0
0 0 1
0 1 0



, A =



0 0 0
0 c/(c + 1) 0
0 0 1/(c + 1)



. (3)

For c = 0.5, i.e., where anisotropic interactions of species 2 are
stronger than those of species 3, we observe, for kBT ≤ 1.5,
three distinct energetically stable solute rich states (Fig. 1)
and a solvent rich state for low values of f .

III. FREE ENERGY METHODS

We employ a multicanonical “flat histogram” method,
refined using the Wang-Landau recursion28 algorithm in
conjunction with a histogram reweighting procedure.29,30

Our implementation of the method relies on constructing
functions ηN1(N1) and ηE(E), which, when used as bias
energies in our Metropolis acceptance criteria, allow our
MC scheme to sample uniformly in N1 and E, where N1
is the total number of solvent particles in the system. It
can be shown that uniform sampling is achieved when
ηN1(N1) = lnP(N1) and ηE(E) = lnP(E), where P(N1) and
P(E) are the equilibrium probability distributions of quantities
N1 and E.

We proceed by segmenting the ranges of the two
quantities into overlapping intervals of equal width, ranging
between 40 and 80 bins. We use bin widths of 1 and 6 for
N1 and E, respectively. Within each interval, the sampling
scheme performs a biased Metropolis random walk while
simultaneously refining the bias function using increments
∆η ∈ {2−10,2−11, . . . ,2−26} and generating a histogram h of
the quantity of interest. Once the histogram achieves the
flatness criteria max(h) ≤ 1.1h̄ and min(h) ≥ 0.9h̄, where
h̄ is the mean value of the histogram across all bins, the
increment ∆η is reduced and the histogram is discarded.
After obtaining the estimates of ηN1(N1) and ηE(E), we
sample histograms of N1 and E with the, now fixed, bias. The
maximum likelihood estimates of lnP(N1) and lnP(E) are then
recovered via weighted histogram analysis (WHAM).31–33

The obtained distributions are reweighed with respect to
parameters f and β to produce approximate coordinates of
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the points where two or more states, e.g., solvent rich (N1 ≈ N)
and solute rich (N1 ≈ 0), are equally probable. We rerun the
scheme 20 times for each coexistence point to obtain error
bars.

To explore the nucleation pathways in our model, we
implement an equilibrium path sampling (EPS) algorithm,16,34

which produces an estimate of the equilibrium probability
distribution of a desired quantity without biasing the MC.
We first define an order parameter (n,υ, χ)which characterises
the size and degree of orientational order within the largest
cluster of solute particles on the lattice, where n is the cluster
size, and υ and χ are cluster orientational order parameters
defined as follows:

υ = max
�
p2P−1

2 ,p3P−1
3

	
, (4)

χ =



υ−1 min
�
p2P−1

2 ,p3P−1
3

	
if υ > 0,

0 otherwise,
(5)

where Pi and pi are, respectively, the total number and
the number of aligned diagonally neighbouring pairs of
particles of species i, present in the cluster. To avoid
singularities we only consider configurations where Pi ≥ 1.
We argue that, for a cluster of n > 20, the (υ, χ) coordinate is
sufficiently representative of the orientational ordering of the
cluster to classify it as amorphous (I), semi-ordered (II), or
crystalline (III).

We employ the standard “geometric” definition of
clustering, where a solute particle is considered to be part
of a cluster if it is a nearest neighbour of at least one other
solute particle. The quantity n is taken as the size of the
largest such cluster on the lattice. This definition is known
to be problematic at high temperatures above the surface
roughening transition;35 however, in this work we operate in
the low temperature regime where the roughening effects are
negligible.

We estimate the equilibrium joint probability distribution
P(n,υ, χ) for n ∈ [22,322] by, once again, segmenting the
range of the order parameter into overlapping windows
of 4 bins wide along each axis. We use a bin width of
1 along n, and 1/16 along υ and χ. In each window, the EPS
algorithm performs path MC,36 where the state of the Markov
chain is some path σ⃗ = (σ1, . . . ,στ), with σi ∈ {(s,q)}N
being a lattice configuration. In our implementation, a path
is generated from a seed lattice state by propagating it a
random number m ∈ {1, . . . , τ − 1} of sweeps forward and
τ − m − 1 sweeps backward, where a sweep is equivalent
to N Metropolis MC moves and, for our purposes, the
MC is time symmetric. We fix the path length τ = 7. The
generated path is accepted with probability 1 if at least one
of the comprising states falls within the range of (n,υ, χ), as
specified by the window, and rejected otherwise. To generate
a new path σ⃗′ from an already accepted path σ⃗, EPS selects
a random snapshot σk of the old path and uses it as a seed
for the new path. Upon seeding the path MC, we allow
a relaxation stage which terminates after accepting 5 × 104

new configurations (up to 7 configurations per path). This is
followed by a sampling stage, which aims to accept at least
105 new configurations.

All EPS calculations presented in this work were carried
out in cubic systems with linear dimension of L = 32 lattice
sites. For all conditions studied, this is sufficient to capture
nuclei at the final stage of the nucleation pathway without
self-interaction between periodic images. For computation
of phase diagrams via multicanonical sampling with Wang-
Landau recursion, the structural details of the mixed-phase
region are unimportant allowing use of smaller system sizes
L ∈ {4,8} for rapid convergence of bias energies.

IV. PHASE BEHAVIOUR AND NUCLEATION
PATHWAYS

With the help of the multicanonical sampling method,
as described in Sec. III, we verify that the solute-solvent,
I–II and II–III phase transitions in our model are first-order,
as is consistent with the current understanding of the Q ≥ 3
3D Potts models37–39 as well as previous studies of the Potts
Lattice Gas (PLG) model.16 We obtain phase diagrams (Fig. 2)
of our system for c ∈ {0.5,1}, showing that the stability of
the partially disordered solute phase is determined by the
relative strength of anisotropic interactions of solute species.
By considering the solute rich state of our model as an
interweave of two decoupled Q = 24 state Potts lattices with
12 nearest neighbours (due to diagonal interactions), we show
(Fig. 2(c)) that the coordinates β† of solute phase coexistence
points are in close agreement with the existing mean field
result,40

β−1
† (Q) = RNnbr

Q − 2
Q − 1

[2 ln(Q − 1)]−1, (6)

where R is the strength of anisotropic interaction between
aligned particles and Nnbr is the maximum number of
neighbours with which a solute particle can interact
anisotropically. In our case, Nnbr = 12 due to diagonal
interactions. While we observe finite widths of the stability
region of the partially disordered phase for c = 1 on small

FIG. 2. Phase diagrams for different anisotropic interaction strengths, where
f is the parameter controlling the solute saturation. Coexistence lines shown:
(i) II and III. (ii) I and II. (iii) Solute and solvent. In (a) and (b), the regions
of stability of the solvent rich state are marked by an asterisk (∗). Shown in
(c) is the comparison of mean field predictions (A) and (B) as given by (6),
and computational results for the coordinates of the solute phase coexistence
points. The equilibrium distributions of nuclei were sampled at parameter
values indicated by black crosses in (b). Lines (i) and (ii) were estimated via
the multicanonical approach described in Sec. III applied to the model on a
cubic lattice with a linear dimension L = 8. Lines (iii) were estimated using
the same approach but in a cubic system with L = 4. In (b), line (iii) is in good
agreement with the mean field approximation (7) shown by (C).
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lattices, we find that the proximity of the two solute phase
coexistence lines increases with system size. Hence, in
accordance with the mean field prediction, we expect the
partially ordered phase to be metastable everywhere but the
disorder–order coexistence line in the thermodynamic limit.

We derive an approximation to the solute–solvent
coexistence line for c = 1 by considering the lattice
adaptation41 of the Widom expressions42,43 for solute and
solvent chemical potentials in the semigrand ensemble.
Assuming that, at conditions of solute–solvent coexistence,
the free energy change due to insertion of one solvent particle
into a system with N solute particles is equal to that due to
insertion of one solute particle into a system with N solvent
particles, we arrive at the ideal gas like approximation for the
coordinates f∗(β) of solute–solvent coexistence points,

f∗(β) =




Q
�
Q − 1 + eβ/2�−1

6
, β ≤ β∗,

Q
�
Q − 1 + e6β�−1/2

, β ≥ β∗,
(7)

where
�
Q − 1 + eβ∗/2�12Q−10 = Q − 1 + e6β∗ determines the Q

dependent value β∗(Q) — the inverse temperature of the
order–disorder transition. The estimates of solute–solvent
coexistence points, obtained via the multicanonical sampling
of lnP(N1) in a cubic L = 4 system, appear in good agreement
with Eq. (7) (Fig. 2(b)). Additionally, we find that β∗(Q) is in
reasonable agreement with Eq. (6) for Q ≥ 24, converging to
β†(Q) as a power law for large Q.

We study the energetics of transition of our model
between solvent rich and solute rich states at conditions
where the system is most stable in the crystalline phase
(Fig. 2(b)). Using EPS along with nearest neighbour
interpolation based on Delaunay triangulation, we obtain
free energy surfaces F (n,υ, χ) = −kBT lnP(n,υ, χ) for
kBT ∈ {0.6,0.65,0.7} (respectively, 33%, 28%, and 22%
undercooling with respect to the order–disorder transition),
at a constant value of the fugacity ratio f = 2.25
(167%, 160%, and 155% supersaturation for the respective
temperatures). By examining the local minima (υ, χ)‡(n)
= min(υ, χ)F (n,υ, χ), we note that the preferred orientational
ordering of the solute nuclei varies with nucleus size.
Thus, we argue that thermodynamic transition pathways,
i.e., those limited to slow nuclei growth, starting in the
solvent rich phase and leading to the solute crystal, proceed
via amorphous and partially disordered precursors. Defining
the critical nucleus size n‡ as the maximum of free energy
F (n) = −kBT ln

 1
0

 1
0 dυdχP(n,υ, χ), we further show that

the preferred orientational ordering (υ, χ)‡(n‡) of the critical
nuclei is temperature dependent (Fig. 3).

We compute the conditional probability distributions
P(n|{υ},{ χ}) = 

{υ}

{χ} dυdχP(n,υ, χ) to obtain free ener-

gies FX(n) = −kBT lnP(n|{υ}X,{ χ}X) of nuclei of the three
solute phases, where X is the phase label [disordered
(I), partially ordered (II), or ordered (III)]. To do so,
we define three basins in the (υ, χ) plane: (1) {υ}I
= [0,0.5],{ χ}I = [0,1]. (2) {υ}II = (0.5,1],{ χ}II = [0,0.5].
(3) {υ}III = (0.5,1],{ χ}III = (0.5,1]. Plots of the three free
energy curves at different temperatures are shown in Fig. 4.
Here we argue that at lower temperatures (kBT ≤ 0.6), the free

FIG. 3. Free energy surfaces F ‡(υ, χ) for critical nuclei n‡ at three different
temperatures and constant fugacity ratio f = 2.25. Contour lines are drawn
at intervals of 1.0kBT and the coordinates (υ, χ)‡(n‡) of the local minima
F ‡(υ‡, χ‡)= 0 are indicated by the crosses. The plots demonstrate the tem-
perature dependence of preferred ordering (υ, χ)‡(n‡) of critical nuclei n‡.
The three regimes shown are as follows: (a) critical nuclei most stable when
ordered; (b) critical nuclei most stable when partially ordered; and (c) critical
nuclei most stable when disordered.

energy barrier to nucleation of the ordered phase is lowest. The
picture changes, however, at temperatures kBT ≥ 0.7, where
the ordered phase has the highest free energy barrier. Hence,
we anticipate a crossover regime at intermediate temperatures
0.6 < kBT < 0.7, where the heights of all three free energy
barriers are comparable. This hints at the existence of a
parameter regime where nuclei of all three solute phases can
nucleate on similar time scales, with nuclei of the most stable
phase growing at the expense of the others via dissolution
and reprecipitation. However, as illustrated by the sparsity
of contours between minima in Fig. 3, we find that barriers
to solid state transformation between the solute phases are
typically comparable to thermal energy at the critical nucleus
size, or absent entirely, in either case vanishing completely for
large n. This implies that the most probable route to reaching
the thermodynamically stable phase is via transformations
within the solute rich phase.

The vanishing of the barriers to solid state transformation
within the larger nuclei is not surprising, since we
study the model in a temperature regime far below the

FIG. 4. Numerically obtained free energy curves FX(n) (markers) for nuclei
of the three phases at f = 2.25, showing the corresponding CNT least squares
fits (lines). For reference, shown by the dashed lines are estimates of the free
energies F (n) obtained via a one-dimensional analogue of the EPS procedure
described in Sec. III. We find both variants of the EPS approach in excellent
agreement with respect to the estimates of F (n).
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thermodynamic and kinetic (for L ≥ 32 cubic systems)
metastability limits of bulk disordered and partially disordered
solute states. In addition, we are able to qualitatively reproduce
the temperature dependence of the preferred orientational
ordering within the small nuclei by studying the system
in the solute rich state on small (L < 10) cubic lattices with
reflecting boundary conditions, demonstrating that the relative
thermodynamic stability of the three solute phases is strongly
size dependent. Thus, the stability of disordered and partially
disordered structures in small nuclei can be interpreted as
analogous to a finite size effect.

The shapes of the three barriers in Fig. 4, with
the exception of faceting effects, are well fitted by the
classical nucleation theory (CNT) expression of the form
F(n) = F0 + An2/3 − Bn, where A and B are related to,
respectively, the surface and volume free energy densities of
the nucleus and F0 relaxes the fit by allowing the free energy
of the metastable solvent-rich phase to deviate from zero.16

The obtained least squares fits yield parameter values which
are consistent with the energetics of our model—the cost of
forming solute-solvent interface and the gain associated with
the growth of solute domain both increase with the degree of
solute ordering.

We observe a dramatic reduction in the quality of the
CNT fits if setting F0 = 0, i.e., fitting the commonly used
expression∆F(n) = F(n) − F(0), consistent with other reports
of poor quantitative performance of the functional form
∆F(n) = An2/3 − Bn in representing explicitly computed free
energy barriers.22,44,45 Fitting ∆F(n) to the overall nucleation
barriers F (n) in the range n ∈ [n‡ − 50,n‡ + 50], we find
the barrier heights adequately captured by the CNT fits,
suggesting that the standard CNT framework alone is sufficient
to formulate an effective description of the energetics of
nucleation in the present model, despite the evident multi-stage
character of the process. This poses an interesting test case
for the increasingly popular “seeding” method for nucleation
barrier and rate estimation, which aims to parametrise a CNT
based model of nucleation kinetics by extracting the necessary
quantities from trajectories of the nucleus size coordinate.
Below, we will assess the capability of the “seeding” method to
formulate an effective description of the multi-stage nucleation
process under different kinetic regimes, thus evaluating the
sensitivity of the method to variations in kinetic growth
pathways and violation of the Markov assumption on the
kinetics of the nucleus size coordinate.

V. SEEDING METHOD

In the framework of CNT, the nucleation rate J is given
by1,46

J = ρJ+† Z exp
�
−β∆F(n†)� , (8)

where ρ is the solute monomer density, J+† is the
rate of monomer attachment to the critical cluster, F(n)
= −kBT lnP(n) is the free energy of nucleus of size n, ∆F(n)
= F(n) − F(0), and Z =


−βF ′′(n†)/2π is the Zeldovich

factor proportional to the square root of the second n derivative
F ′′ of F(n) evaluated at n† — the size of the critical

nucleus, i.e., n† = argmaxn{F(n)}. We distinguish between
the empirical value n‡ of the critical nucleus, as used in
Sec. IV, and the value n† maximising the standard CNT
formula for F(n) since the two may not agree in general.

A closely related expression47 to (8) can be derived by
assuming the continuum approximation to time evolution
of nucleus size n(t) to obey the Langevin equation
in the overdamped limit: ṅ(t) = −βDn∇nF[n(t)] + ξn(t),
where ξn(t) is a random process satisfying ⟨ξn(t)⟩ = 0
and ⟨ξn(t)ξn(t ′)⟩ = 2Dnδ(t − t ′), with δ(t) being the Dirac
delta function, and Dn—the diffusivity of the nucleus size
coordinate at the top of the barrier ∆F(n) — is taken to be
equal to the monomer attachment rate J+† = Dn.

The “seeding” approach to nucleation rate calculations
builds on the above equations and has been reported to
yield accurate rate estimates from atomistic simulations when
applied to nucleation from the melt.48 Seeding, in this context,
amounts to preparing the initial state of the system to contain
a nucleus of size n0 and observing the time evolution n(t) with
the initial condition n(0) = n0. Taking the ensemble average
on both sides of the overdamped Langevin equation yields

⟨ṅ0⟩n0
= ⟨ṅ(0)⟩n0

= −βDn
dF
dn

����n0

, (9)

which, in principle, allows one to reconstruct the free energy
profile F(n) from the initial drift velocities ⟨ṅ0⟩n0

. In practice,
however, accurate estimation of drift velocities for the whole
range of the relevant n0 is often computationally expensive
and the free energy barrier ∆F(n†) is instead estimated by
fitting the n derivative of the CNT expression,

∆F(n) = −∆µn + γn2/3, (10)

where ∆µ can be defined as the difference per particle between
the free energies of solute and solvent rich states and γ is
the product of the nucleus shape factor and the free energy
per unit area of the nucleus surface, to a handful of estimates
of ⟨ṅ0⟩n0

in the vicinity of n†, where Dn is assumed to be
approximately independent of n. In both cases, the mean initial
drift velocities must be expressed in units of βDn, leading to
propagation of error in estimates of Dn to estimates of the
barrier height, which is exponentially amplified in the rate
calculation. We, therefore, pay particular attention to error
analysis in this work.

A. Microscopic kinetics

In principle, the outcome of the nucleation barrier recon-
struction method should be independent of the microscopic
kinetics, provided that the relevant statistical ensemble of
the system’s configurations is sampled appropriately and
the solute chemical potentials are correctly maintained. The
transmutation–reorientation (TR) MC move set, as defined
in Sec. II, provides kinetics which correctly maintain the
chemical potentials of all particle species at the expense of
incorrectly representing mass transport due to the unphysical
transmutation move. A more realistic representation of mass
transport can be provided by replacing the transmutation
move, in the TR move set, with nearest neighbour particle
exchange move, i.e., analogous to Kawasaki dynamics in the
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kinetic Ising model,49,50 while keeping the reorientation move
and the move attempt probabilities unchanged. We will refer
to this alternative move set as diffusion–reorientation (DR)
kinetics. Due to the conservation of particle counts under the
DR kinetics, solute depletion effects can occur during the
nucleation process; however, as detailed in Sec. V C, part of
the “seeding” approach is to ensure that these depletion effects
are negligible.

Apart from being a more realistic model of particle
transport, the DR kinetics differ from TR in two ways:
(1) The Markov assumption on n(t), as made by the “seeding”
method, is violated more strongly due to the stronger memory
effects in local particle density fluctuations.23,51 (2) The
rates of nuclei growth are much lower, due to the diffusion
limited character of the particle attachment process, allowing
substantially greater time scales for structural relaxation of
the growing nuclei between successive solute attachment
events. By applying the “seeding” approach under both sets of
kinetics, we are, therefore, able to assess the sensitivity of the
barrier reconstruction method to deviations of n(t) from the
assumed Langevin dynamics description as well as differences
in the observed nuclei growth pathways.

B. Fitting and error estimation procedures

In order to estimate the quantities ⟨ṅ0⟩n0
and Dn, one

typically samples M independent trajectories n j(t) : n j(0)
= n0 at some number W of uniformly spaced time points
ti = i∆t, i ∈ {1, . . . ,W} for a range of initial cluster sizes
n0. The estimator for the mean drift velocity ⟨ṅ0⟩n0

is given
simply by the gradient of the least squares fit to the time
series of the mean displacement ⟨∆n(n0, t)⟩ = ⟨n(t) − n0⟩.
In accordance with CNT, one expects that trajectories
n(t) : n(0) = n†, starting at the critical cluster size, will yield
⟨∆n(n†, t)⟩ = 0, allowing the diffusivity Dn to be estimated
via the halved gradient of the linear least squares fit
to the time series of the mean squared displacement. In
practice, however, deviations from the expected zero drift
behaviour are common, and average squared deviation from
the mean ⟨SDn(n0, t)⟩ = ⟨[n(t) − ⟨n(t)⟩]2⟩ is used instead.
Both ⟨∆n(n0, t)⟩ and ⟨SDn(n0, t)⟩ can be expected to satisfy
⟨∆n(n0,0)⟩ = 0 and ⟨SDn(n0,0)⟩ = 0, allowing the use of a
linear model g(t) ∝ t with zero vertical offset for extraction of
gradients. The mean drift velocity and diffusivity estimators
are then given by, respectively, vn(n0) and ζn(n†), which, if
writing out the averaging and least squares fitting operations
explicitly, can be written as

vn(n0) =
W

i=1 ti
M

j=1∆n j(n0, ti)
M

W
i=1 t2

i

, (11)

ζn(n0) =
W

i=1 ti
M

j=1 SD( j)
n (n0, ti)

2M
W

i=1 t2
i

, (12)

where∆n j(n0, t) and SD( j)
n (n0, t) are obtained from independent

trajectories n j(t) with n j(0) = x0.
Assuming the CNT form of the nucleus free energy, as

given by Eq. (10), we can extract the CNT critical nucleus

size n† and the height of the free energy barrier ∆F(n†),

n† =
(

2γ
3∆µ

)3

, ∆F(n†) = 1
2

n†∆µ, (13)

by estimating γ via a fit derived from Eq. (9),

− β−1D−1
n ⟨ṅ0⟩n0

=
2
3
γn−1/3

0 − ∆µ. (14)

For known ∆µ, the fitting procedure can be simplified by
rearranging Eq. (14) for γ. If Brownian motion is a good
approximation to n(t) and Eq. (10) holds, one should find that
γ†(n0) = γ, where

γ†(n0) = 3
2


∆µ −

⟨ṅ0⟩n0

βDn


n1/3

0 , (15)

hence the least squares estimator γLS of γ is given by an
average over the range n0 ∈ [a,b],

γLS = kγ


∆µ

b
n0=a

n1/3
0 −

kBT
ζ ∗n

b
n0=a

vn(n0)n1/3
0


, (16)

where kγ = 3/(2(b − a + 1)) and ζ ∗n = ζn(n†). For normally
distributed estimates vn(n0) of ⟨ṅ0⟩n0

with known parameters,
the parameters of the normal distribution of the sumb

n0=a
vn(n0)n1/3

0 can be deduced via the scaling and
addition properties of normal distributions. If estimates ζ ∗n
of Dn also follow a normal distribution, then the quantityb

n0=a
vn(n0)n1/3

0 /ζ ∗n follows the distribution of the quotient
of noncentral normal variates,52,53 for which the cumulative
distribution function (CDF) is known and can be computed
accurately by appropriately integrating the bivariate normal
probability density function.54 Thus, knowing the parameters
of the normal distributions of ζn(n†) and vn(n0), we can
compute the confidence interval on γLS as well as on ∆F(n†).

The above error estimation approach makes a number
of assumptions, in particular, that (1) estimators vn(n0) and
ζ ∗n are unbiased and normally distributed and (2) estimators
vn(n0) and ζ ∗n are independent. While (2) is straightforward
to guarantee by using independent sets of trajectories for
computation of vn(n0) and ζ ∗n, we find that (1) is not guaranteed
even if the dynamics of n(t) exactly follow the overdamped
limit of the Langevin equation. In the Appendix, we show
that ζ ∗n may not follow the normal distribution for small M
and can be a biased estimator of Dn if n(t) is a trajectory of
a 1D Brownian particle in a bistable potential. We, therefore,
recommend use of M ≥ 100 for estimation of Dn; however,
explicit verification of normality of ζ ∗n for large M may be
infeasible in many applications of the “seeding” method.

C. Seed generation

We employ the “seeding” method in our lattice model to
estimate the nucleation barrier heights in the range of kBT
∈ {0.6,0.65,0.7} and f ∈ {2,3, . . . ,7}. At each parameter
point, we sample M = 102 independent trajectories of the
largest cluster size n j(t) at time values ti = i∆t, i ∈ {1, . . . ,W}
with n j(0) = n0 ∈ [3,498], ∆t = 10 MCS and W = 102, where
a unit of time represents a single MC sweep (MCS) of the
whole lattice.
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The initial configurations for each independent trajectory
were generated by equilibrating a randomly grown compact
cluster of solute particles in pure solvent. The initial compact
clusters were generated iteratively by, starting with a single
solute particle on the lattice, placing a solute particle into a
randomly chosen neighbouring site of a randomly chosen
member particle of the cluster until the desired cluster
size is reached. The term “equilibration” here is used in
reference to a statistical ensemble of configurations where
the number of solute particles belonging to the constructed
cluster is conserved. To achieve correct sampling from the said
ensemble, we restricted the MC to the set of sites S, which
included solute sites belonging to the grown solute cluster
and solvent sites in the cluster’s nearest neighbourhood.
The equilibration procedure employed transmutation and
reorientation moves on solute sites in S as well as non-local
particle swap moves on pairs of solute and solvent sites in
S, with all move types having equal attempt probabilities.
Acceptance of a non-local particle swap move may lead to a
change in S, which we took into account in the calculation of
the move acceptance probability to assure detailed balance.
Moves leading to a change in the size of the grown cluster
were rejected with probability 1.

We find that after a burn-in period of 103n iterations
of the procedure, the nuclei attain compact shapes and the
corresponding distributions of internal orientational order
parameter are consistent with those obtained via the three-
dimensional EPS approach applied to the µVT ensemble. The
agreement between the two methods of sampling distributions
of cluster orientational order parameter is not surprising, since
the difference between the effects of pure solvent and saturated
solution on the structure of the nuclei is negligible due to
the short range nature of particle interactions and the low
counts of solute particles in the supersaturated solution. Upon
equilibration of the nucleus, we fill the lattice uniformly with
N ρ(kBT, f ) solute particles, where ρ(kBT, f ) is the fugacity
and temperature dependent solute concentration, which we
compute numerically as the mean fraction of solute particles
in the system in the metastable state.

Following seeding, the trajectories n j(t) were gener-
ated under composition conserving unconstrained DR
dynamics,49,50 i.e., equally probable reorientation and nearest
neighbour particle exchange moves, as well as the composition
nonconserving TR dynamics described in Sec. II. Since
DR dynamics samples system configurations from the NVT
ensemble, conserving the solute particle count, the resultant
evolution of nucleus size can be affected by depletion
or augmentation of solute—an unphysical effect in open
systems.4 To avoid this effect in our sample of trajectories
n j(t), we employ the larger cubic lattice sizes of L = 64. In
addition, we verify that the maximum change in nucleus size,
along all obtained trajectories for DR dynamics, is negligible
in comparison to the total number of the available solute
particles in the system.

D. Drift velocities and diffusivities

Typical realisations of ⟨∆n(n0, t)⟩ = ⟨n(t) − n0⟩ are shown
in Fig. 5, where we see that, consistent with the intuition

FIG. 5. Plots of mean displacements ⟨∆n(n0, t)⟩ against time t for DR
[(a) n∗= 82] and TR [(b) n∗= 78] dynamics at kBT = 0.7, f = 3. Error bars
represent the 95% confidence intervals based on 102 observations assuming
normal distribution. The three sets of points correspond to trajectories ini-
tialised with n0 given by (i) n∗−60, (ii) n∗, and (iii) n∗+102. Solid line
segments represent the linear fits with gradients vn(n0) used as estimates of
initial drift velocity ⟨ṅ0⟩n0

along the cluster size coordinate.

of Sec. V A, nuclei growth rates for TR kinetics are
approximately two orders of magnitude faster than those
for DR. We observe roughly linear behaviour of ⟨∆n(n0, t)⟩
on short time scales t ≤ 100MCS; however, based on 102

observations, we expect considerable relative error margins
on initial drift velocities measured under DR dynamics.
Estimates vn(n0) of initial drift velocities ⟨ṅ0⟩n0

along the
cluster size coordinate were calculated by fitting straight lines
with zero vertical offset (Eq. (11)) to time series ⟨∆n(n0, t)⟩
over the range t ≤ 100 MCS. Estimates ζn(n0) of cluster size
dependent diffusivity Dn along n were extracted from time
series ⟨SDn(n0, t)⟩ = ⟨[n(t) − ⟨n(t)⟩]2⟩, n(0) = n0 (Fig. 6(a)) in
a similar fashion [Eq. (12)].

In accordance with CNT, trajectories starting at the critical
cluster size n† are expected to yield vn(n†) ≈ 0. Computing the
value n†, however, requires knowledge of the value γLS, which,
in itself, requires the estimate ζ ∗n and, hence, the coordinate
of the barrier top. Thus, we estimate the coordinate of the
barrier top as n∗ = argmaxn

n
n0=3−vn(n0), which exploits the

proportionality of dF(n)/dn to the mean initial drift velocity
in Eq. (9). Again, it is important to stress that n∗ is an
empirical value of the critical cluster size, which may differ
from the fitted CNT value n†. We observe that within the
range n0 ∈ [n∗ − 20,n∗ + 20] of initial cluster sizes n0, the
gradient estimates ζn(n0) of the mean squared displacements

FIG. 6. Plots of ⟨SDn(n0, t)⟩ for n0= n
∗ (a) and diffusion coefficient esti-

mates ζn for n0 in the range n0 ∈ [n∗−20,n∗+20] (b) obtained under TR
(main panels) and DR (insets) kinetics at kBT = 0.7, f = 3. In (a), the solid
line segments represent linear fits used in estimation of cluster size diffusivity
ζn(n∗). In (b), solid lines represent linear fits used for detrending the data for
estimation of statistical uncertainty in ζn(n∗).
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vary slowly with n0, as shown in Fig. 6(b), which is consistent
with the intuition that diffusivity along the n coordinate is
approximately constant close to the top of the free energy
barrier.1 We therefore use the data for ζn(n0) in the range
n0 ∈ [n∗ − 20,n∗ + 20] to estimate the statistical uncertainty in
our measurement ζn(n∗) of the diffusivity Dn along the cluster
size coordinate.

E. Choice of ∆µ

In our model the degree of saturation of the solution is
dependent only on the difference between solute and solvent
chemical potentials. Thus we can set µ1 = 0 without loss of
generality, allowing the chemical potential µ2 = µ3 of solute
to fully determine the chemical composition of the system.
Therefore, the standard choice of the value of the CNT
parameter ∆µ, in our case, would be

∆µcoex(β, f ) = β−1[ln f − ln f∗(β)], (17)

with f∗(β) given by Eq. (7), corresponding to the
difference between the bulk solute chemical potentials
in states of metastable supersaturation and solute–solvent
coexistence.1,4,55 It is, however, understood that usage of the
bulk value ∆µ = ∆µcoex as the driving force to nucleation may
be unsuitable for the description of the microscopic particle
attachment process.56 An alternative value ∆µfit(β, f ) can be
obtained via a two parameter fit of Eq. (14), allowing the
appropriate value of ∆µ to be determined by the microscopic
dynamics of the system.

Due to the comparatively low computational cost of free
energy calculations in our model, we are able to compute
the nucleation barriers over the specified range of parameter
values explicitly with high accuracy by utilizing the one-
dimensional analogue of the EPS procedure, described in

FIG. 7. Fits of Eq. (10) (dashed lines) to EPS data (solid lines) for
(a) kBT = 0.6, (b) kBT = 0.65, and (c) kBT = 0.7. The six curves in (a), (b),
and (c) are sampled at the six values of f ∈ {2,3, . . .,7} with higher barriers
corresponding to lower values of f . The thicker portions of the solid lines
in (a), (b), and (c) indicate the ranges of data used in the corresponding two
parameter fits of Eq. (10). The corresponding fitted values ∆µEPS are plotted
in (d) as ∆µ−2

EPS against ∆µ−2
coex given by Eq. (17).

Sec. III, applied to cubic systems of length L = 32 sites.
To assure absence of finite size effects in the obtained barrier
estimates, we verify that the EPS data are reproducible in
smaller systems with L = 16. We obtain data which are
adequately described by Eq. (10) (Fig. 7), yielding the set of
values ∆µEPS(β, f ) via a two parameter fit of Eq. (10) to the
EPS estimates of ∆F(n) over a range of 100 values of n near
the top of the barrier (Fig. 7(d)).

We now consider the effect of the choice of ∆µ on
the capacity of the “seeding” method to reconstruct the
explicitly computed free energy barriers by carrying out the
fitting procedure [Eq. (16)] for each of the three possible
choices: ∆µcoex, ∆µfit, and ∆µEPS. We first obtain estimates
of ∆µfit via two parameter fits of Eq. (14) to the scaled
average initial drift velocities for DR and TR dynamics over
a range of n0 ∈ [n∗ − 20,n∗ + 20]. Close to the top of the
barrier, i.e., n ∈ [n∗ − 20,n∗ + 20], our data show reasonable
agreement with γ†(n) = const. [Eq. (15)] for ∆µ , ∆µcoex
(Figs. 8(b) and 8(c)), while the usage of the bulk value
∆µcoex often yields a clear n dependence of γ†(n) (Fig. 8(a)).
Despite the comparable quality of the three fits of Eq. (14)
(Fig. 8(d)), with occasionally exceptionally poor fits using

FIG. 8. Fits of CNT to scaled mean drift velocity data via Eq. (16) for
kBT = 0.6, f = 4. The shown data points were obtained under DR (circles)
and TR (squares) dynamics. Error bars represent the 95% confidence intervals
obtained via the CDF of noncentral normal quotients. In (a) (∆µ =∆µcoex),
(b) (∆µ =∆µfit), and (c) (∆µ =∆µEPS), we plot the data used for fitting of γLS
via Eq. (16), with dashed and solid lines corresponding to the fits to TR and
DR data, respectively, over the range of n0 ∈ [n∗−20,n∗+20]. In (d) and (e),
we show the corresponding fits to the estimates of −β−1D−1

n ⟨ṅ0⟩n0
[Eq. (14)]

for a wider range of n0, with data points outside the fitting range shown as
small markers with ζ∗n = ζn(n∗). The curves (A), (B), and (C), in (d) and (e),
correspond, respectively, to the three choices of ∆µ values: ∆µcoex, ∆µfit, and
∆µEPS. Finally in (f) (∆µ =∆µcoex), (g) (∆µ =∆µfit), and (h) (∆µ =∆µEPS),
we show the resultant shapes of the CNT free energy barriers in comparison
to the ∆F(n) obtained via EPS (solid line).
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∆µcoex (Fig. 8(e)), we find that barrier reconstruction via the
“seeding” approach is highly sensitive to the choice of ∆µ
(Figs. 8(f)–8(h)), only yielding a consistent agreement with
EPS for the two sets of dynamics if using ∆µ = ∆µEPS.

To illustrate the sensitivity of the “seeding” method
further, we plot all barrier height estimates in Fig. 9. For
f ≥ 3, the EPS barrier height estimates fall on a straight
line ∆F(n†) ∝ ∆µ−2

coex (Fig. 9(a)) as is consistent with CNT.1

Closer to coexistence ( f = 2) for kBT ∈ {0.65,0.7}, however,
the linear trend does not hold, which cannot be accounted for
by statistical errors or finite size effects in our free energy
calculations, and, therefore, may be due to the errors in the
mean field approximation to f∗(β) in Eq. (7). We find that
usage of the bulk values of ∆µ yields a systematic error
of at least a factor of 2 in the barrier height estimates due
to the “seeding” method (Fig. 9(b)). Although the approach
employing a two parameter fit of Eq. (14) can yield reasonable
agreement between EPS and the “seeding” method data, usage
of∆µ = ∆µfit leads to barrier estimates which vary greatly with
temperature, saturation, and the choice of the system’s kinetics
(Fig. 9(c)). Setting ∆µ = ∆µEPS, on the other hand, recovers
barrier height estimates which are in excellent agreement with
the explicit free energy calculations for f ≥ 3 independent

FIG. 9. Comparison of nucleation barrier height estimates obtained via EPS
and the “seeding” method. In (a) we plot the EPS estimates of barrier
heights against ∆µ−2

coex, yielding good agreement with the linear trend ∆F(n†)
∝∆µ−2

coex for f ≥ 3 at the three values of kBT . In (b)–(d), we show the barrier
height estimates obtained via the “seeding” method under DR (circles) and
TR (squares) dynamics, taking the ∆µ values as, respectively, ∆µcoex, ∆µfit,
and ∆µEPS, in relation to the linear fits for f ≥ 3 to the EPS data. Error bars
represent the 95% confidence intervals obtained via the CDF of noncentral
normal quotients.

of the system’s kinetics, yet deviate by, roughly, 43% for
kBT ∈ {0.6,0.65}, f = 2 (Fig. 9(c)). Thus, we argue that,
even for a well chosen ∆µ, the “seeding” method cannot
guarantee an accurate estimate of the nucleation barrier height
for low supersaturations in our model. In our case, particularly,
the 43% error in barrier height can lead to underestimation
of the nucleation rate by up to 10 orders of magnitude when
using Eq. (8).

The kinetic prefactor ρDnZ of Eq. (8) can readily be
obtained from our calculations, with estimates ζn(n∗) of
Dn being, as to be expected, the only significant kinetics
dependent contribution to the rate J for ∆µ = ∆µEPS. For the
explicitly computed nucleation barriers, the Zeldovich factor
can be estimated via a parabolic fit near n†, which allows us to
compare rate estimates due to EPS and the “seeding” method.
Taking into account the statistical errors in our estimates,
we arrive at the same observations analysing J as a function
of ∆µcoex as outlined above, obtaining reasonable agreement
with the CNT prediction ln J ∝ ∆µ−2

coex.

VI. CONCLUSIONS

We have introduced a novel multicomponent lattice
model, in which the slow growth limited solute crystallisation
pathway proceeds via the metastable disordered and partially
disordered solute phases. We have shown that the heights of
the barriers to nucleation of the metastable phases in relation
to that of the stable crystal vary with temperature, leading to a
parameter regime where the free energy barriers to nucleation
of all three phases are equal. Due to the low barriers to
solid state transformation between the three solute phases,
we argue that the present model cannot expect to favour
the dissolution–regrowth pathway relevant to homogeneous
nucleation of calcite from solution.10 Design of minimal
models to capture this process needs to incorporate large
energy barriers to direct transformation between solute-rich
phases. We hope to report on such models in a future
communication.

Turning our attention to nucleation kinetics and the
“seeding” method, given that the nucleation barrier height
is exponentiated in the CNT rate expression, the largest
contribution to error in rate estimates via the “seeding”
method lies in the barrier reconstruction. We have shown
how to estimate statistical uncertainties in this procedure,
and hence demonstrated statistically significant deviation of
nucleation barrier height estimates from those obtained via
explicit free energy calculations, subject to the definition of the
CNT parameter ∆µ. We found that the discrepancies between
the two barrier estimation methods vanish over a broad range
of parameter space, with the exception of conditions of lower
supersaturation, if using values of ∆µ informed by the shape
of the explicitly computed free energy barriers. At lower
supersaturations, however, the discrepancies between the two
methods remain significant, which cannot be explained by
the errors in our calculations. A possible source for these
discrepancies lies in our choice of reaction coordinate. It
is known that the choice of the reaction coordinate plays a
major role in quantitative treatment of nucleation.57 While we
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cannot completely rule out the possibility of having chosen
a suboptimal definition of n, results of the committor test58

suggest the quality of our definition is at worst comparable to
those used in off-lattice simulations.

Additional explanations for the failure of the “seeding”
method to correctly reconstruct F(n) at weak supersaturation
lie in the underlying assumptions of CNT. The functional form
of ∆F(n) remains a subject of debate.22,59 In this work we have
not made any assumptions regarding the shape of nuclei except
that surface area scales as n2/3. The single cluster assumption
underlying this statement is potentially problematic close to
n = 0 where the entropic benefit of multiple clusters may
offset the increased interfacial free energy. This trade-off is
system size dependent and not corrected for in our free energy
calculations.

The “seeding” method also relies on the assumption that
the dynamics of n(t) can be approximated by the over-damped
Langevin equation. This assumption enters into the calculation
of the barrier height as well as the kinetic prefactor. The
validity of the Markov assumption for n(t) is expected to
depend on the choice of microscopic kinetics. It is known that
TR dynamics yield only approximately Markovian n(t), while
the behaviour of n(t) under the more realistic mass transport of
DR dynamics completely violates the Markov assumption.23

Despite the apparent differences between the two sets of
kinetics, we observed a remarkable agreement between
the two corresponding free energy barrier reconstructions,
particularly at higher supersaturations, suggesting that the
Markov assumption does not play a great role here. The
agreement also suggests that the “seeding” method can recover
consistent barrier estimates in different regimes of nuclei
growth, provided that the structures of the initial seeds are
correctly prepared. In future communications, we will report
on direct calculations of nucleation rates via path sampling
methods, with the hope to examine more closely the role of the
Markov assumption in computing accurate nucleation rates.
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APPENDIX: SEEDING METHOD FOR BROWNIAN
MOTION

We now illustrate the “seeding” approach by computing
barrier crossing rates jx of a one-dimensional Brownian

particle in the bistable potential U(x) = x4 − 2x2. The
equivalent to the CNT rate expression [Eq. (8)] for this
system is the Kramers’60 rate,

jx ≈ βDx exp {−β∆U} |U ′′(−1)∥U ′′(0)|/(2π), (A1)

where Dx = kBT is the diffusivity of the Brownian particle,
∆U = U(0) −U(−1) is the potential barrier height, and
U ′′(x) = 12x2 − 4. Employing the BAOAB-limit method,61

we estimate the initial drifts ⟨ẋ0⟩x0
and Dx taking

x0 ∈ {−0.9,−0.8, . . . ,0.9} at kBT ∈ {0.15,0.175, . . . ,0.25}.
We employ the estimators vx(x0) and ζx(x0), computed in the
same fashion as shown by Eqs. (11) and (12), taking ∆t = 10−4

and W ∈ {5,10,100}.
Assuming that on short time scales the coordinate

x(t) evolves according to ẋ(t) ≈ −βDx∇xU(x0) + ξx(t), it is
straightforward to obtain the exact distributions of ∆x(x0, t)
and SDx(x0, t) as, respectively, normal —N [t∇xU(x0),2Dxt],
and gamma — Γ(0.5,4Dxt). While the estimator vx is clearly
normally distributed, the exact form of the distribution of ζx is
much more complex,62 however we find that for M ≥ 100
the normal distribution gives a reasonable approximation
(Fig. 10(a)). This is to be expected, since the probability
distribution of the sum

M
j=1 SD( j)

x (x0, t) is Γ(M/2,4MDxt),
which is well approximated by the normal distribution for
large M .

In light of the computational expense of obtaining large
numbers of trajectory sets, it might be tempting to estimate
the error in ζx by fitting least squares lines to individual
realisations of SD( j)

x (x0, t). While this approach will recover
the correct mean value, the distribution of estimates will
drastically deviate from normal (Fig. 10(b)) yielding a wide
and highly asymmetric confidence bound. In fact, for low
M the estimator ζx(x†), where x† = 0 is the coordinate of the
barrier top, does not correspond to the maximum likelihood
estimator of Dx.

We find that both ⟨∆x(x0, t)⟩ and ⟨SDx(x0, t)⟩ are well
fitted by the linear model over the chosen range of times and
temperatures (Fig. 11). While the estimates of drift velocities
match the gradient of the potential well (Fig. 12(a)), we
observe a parabolic deviation of the diffusion coefficient
estimates ζx from the known value Dx = kBT (Fig. 12(b)).
In particular, at the top of the barrier, we expect values

FIG. 10. Typical distributions of the estimator ζx at kBT = 0.15, W = 10
and varying M (markers), and the corresponding normal distribution fits
(solid lines). The deviation from normality is clear for low M ; however, it
is negligible at M = 100. The M = 1 estimator corresponds to fitting linear
trends to individual trajectories SD( j)

x (x0, t) and the resultant distribution is
highly asymmetric.
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FIG. 11. Mean displacements (a) and mean squared displacements (b) for
x(t) against time at kBT = 0.15, M =W = 102. Error bars represent the 95%
confidence intervals, the width of which is typically smaller than that of the
markers. The solid lines in (a) are drawn with the gradient given by ∇xU (x0).
In (b), the solid lines represent the linear least squares fits to the data.

of ζx between 1% and 4% higher than kBT . Factoring
in the error of barrier height and Dx estimates due to
increasingly high drift contributions to ⟨SDx(x0, t)⟩ away
from the barrier top, we observe good agreement of Eq. (A1)
with brute force estimates of inverse mean first passage
times63 (Fig. 12(c)). It is important to highlight that the
derivation of Eq. (A1) relies on harmonic approximations of
the potential U(x) near the top and bottom of the barrier.
These approximations, in our case, lead to small errors
(Fig. 12(c)) which are cancelled by the systematic errors
in estimates of the diffusion coefficient. A more accurate
value of jx can be obtained by numerically integrating
the Kramers’60 expression for the stationary current:
jx = DxP(−1)eβU (−1)/

 1
−1 dxeβU (x), out of the quasi-stationary

state P(x) near x = −1, of the appropriate Fokker–Planck
equation.

FIG. 12. Mean drift velocity (a), diffusion coefficient (b), and rate (c) esti-
mates for the Brownian dynamics in U (x)= x4−2x2. In (a), the mean drifts
are in excellent agreement with the gradient of the potential shown as a solid
line. In (b), the estimates of the diffusion coefficient vary parabolically in the
vicinity of the barrier top—the solid line shows a parabolic fit to the data to
guide the eye. In (c), the points represent brute force computed inverse mean
first passage time estimates, dashed lines show the range of rate estimates
obtained via the procedure analogous to the “seeding” method, while the
solid grey line gives the more accurate values of jx computed via numerical
integration of the Kramers’ stationary current equation. The dashed–dotted
line in (c) is the plot of Eq. (A1) taking βDx = 1.
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