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Abstract

We present a novel theory of the employment relationship. A manager can

invest in attention technology to recognize good worker performance. The

technology may break and is costly to replace. We show that as time passes

without recognition, the worker’s belief about the manager’s technology

worsens and his effort declines. The manager responds by investing, but

this investment is insufficient to stop the decline in effort and eventually

becomes decreasing. The relationship therefore continues deteriorating,

and a return to high performance becomes increasingly unlikely. These

deteriorating dynamics do not arise when recognition is of bad performance

or independent of effort.
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What motivates employees to work hard? A large literature in economics

has been devoted to this question, focusing for the most part on the optimal

design of (explicit or implicit) incentive contracts and on how workers respond

to different forms of compensation.1 In this paper, we provide a novel theory of

the employment relationship: workers’ effort depends not only on compensation,

but also on their beliefs about whether management is paying attention to their

behavior. Only when paying attention can management recognize (good or bad)

worker behavior. Because attention is costly and not directly observable, the

moral hazard problem that arises inside the firm is two-sided: workers must be

incentivized to exert effort; managers must be incentivized to invest in attention.

The idea that workers care about whether they are being “watched” is related

to the widely studied Hawthorne effect, namely the improvement in workers’ per-

formance possibly caused by the “feeling that they are being accorded some at-

tention” (Oxford English Dictionary). Interpretations of the original Hawthorne

experiments and why workers’ behavior may change with their awareness of being

observed vary.2 Our focus is on workers who care about managerial attention be-

cause this attention can produce some form of recognition of their performance.

Workers value recognition for either psychological or financial reasons, or both.

More broadly, our theory is in line with the psychology literature that examines

the determinants of worker productivity. This literature finds that employee job

satisfaction and workers’ perceptions about management matter for both produc-

tivity and profits (Judge et al. 2001; Ostroff 1992; Harter, Schmidt and Hayes

2002). In particular, whether workers believe that they are given “recognition

or praise for doing good work” affects their engagement and performance (Har-

ter et al., 2002, p. 269), and these beliefs can have a significant impact on an

organization’s bottom line (Harter et al., 2010).3

We model managerial attention as a technology that recognizes worker per-

formance. For example, consider a chief operating officer (COO) and a division

1For an excellent survey, see Prendergast (1999).
2The Hawthorne effect originated in a set of experiments conducted in a Western Electric

factory in the 1920s, where workers’ productivity was shown to increase each time a change in
lighting was made. For a recent reassessment, see Levitt and List (2011).

3Saunderson (2004) finds that managers in the public sector know and believe in the im-
portance of employee recognition, yet many fail to have effective recognition programs.

1



head or director in a firm. These parties meet regularly to discuss how the di-

rector is handling business, yet the relevant cost of monitoring for the COO is

not attending the meetings but rather learning and thinking about the tradeoffs,

challenges, constraints, and opportunities in the director’s division. The acquired

understanding allows the COO to recognize good ideas and decisions by the di-

rector for some time. Eventually, however, the COO’s attention is needed in

other areas and she may lose grasp of the division’s issues—something the direc-

tor cannot directly observe. We capture these ideas by introducing an attention

technology, an intangible asset that is subject to depreciation and in which a

manager can invest. At any point in time, the manager can recognize a worker’s

performance only if she has a high attention technology in place.4

Can managers be induced to invest in attention technology? How is workers’

effort affected by their perceptions of managerial attention? We provide a model

where these two variables are interlinked and explore their dynamic interaction.

We show that relationship dynamics depend on the monitoring structure. When

recognition is of good performance, dynamics are deteriorating: absent recogni-

tion, worker effort and eventually managerial investment decrease, and a return

to high productivity becomes less likely over time. These dynamics contrast with

those that arise when recognition is of bad performance or independent of effort.

Our model is cast in continuous time. At each moment, a myopic agent

privately chooses effort which generates output for a principal. Output is unob-

servable; instead, the parties observe a verifiable signal—“recognition”—whose

instantaneous arrival rate depends on the principal’s attention technology and

the agent’s effort. If the principal’s technology is high, the arrival rate is propor-

tional to effort; if the technology is low, recognition cannot arrive. Recognition

yields the agent a fixed reward, which may be purely psychological or also en-

tail a monetary bonus. The principal’s attention technology follows a stochastic

process akin to those used for productive assets in the industrial organization lit-

erature (e.g., Besanko and Doraszelski, 2004): a high technology can “break” at

4Another illustrative example of managerial attention is in continuous process improvement,
pioneered by Toyota and imitated by scores of manufacturing firms (Gibbons and Henderson,
2013): workers exert effort to identify performance-enhancing changes to production, and while
these innovations always benefit the firm, workers can be recognized only if an effective system
of management practices is in place to monitor how they engage with the productive process.
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any point and become low, and the principal can invest at some cost to instantly

“fix” it. The agent observes neither the principal’s investment nor her atten-

tion technology, which we thus call the principal’s type. Naturally, the agent’s

incentive to exert effort depends on his belief that the principal’s type is high.

There are several important features of managerial attention that our model

tries to capture. First, workers cannot perfectly assess the quality of the atten-

tion technology. A manager’s ability to identify and document the contributions

made by workers depends on many different and interrelated aspects of manage-

ment, which are themselves difficult to observe.5 Second, the signals produced by

the attention technology are (at least in part) verifiable, typically because they

describe the details of contributions made by workers in a specific context famil-

iar to them. As the COO in the example above, a manager cannot learn those

details unless a high technology is in place; hence, she cannot simply “fake”

recognition at random times. Third, as noted, attention is an asset, although

our analysis imposes no restrictions on how likely the technology is to break at

any point.6 Lastly, unlike with productive assets, the manager does not care

about the attention technology directly; attention is valuable only insofar as it

incentivizes the agent to exert effort.

We focus on continuous equilibria, where the agent’s belief about the prin-

cipal’s type is continuous in the absence of observable events. This belief is a

function of recognition (or lack thereof) and the agent’s belief about the princi-

pal’s investment. Because recognition reveals that the principal’s type is high,

the belief jumps up to one when the agent is recognized. Without investment,

the agent’s belief, and thus his effort, would then decrease continuously as time

passes without recognition, due to Bayesian updating and the possibility that

the attention technology breaks down. But a principal whose technology breaks

could invest to fix it, with certainty or with a high probability, and if the agent

5One reason for this is that management practices display synergies with other practices and
attributes of the firm, as stressed by Milgrom and Roberts (1990, 1995), Ichniowski, Shaw and
Prennushi (1997), Bartling, Fehr and Schmidt (2012), and Brynjolfsson and Milgrom (2013).

6Our analysis is valid even when the depreciation rate is arbitrarily high and the investment
cost arbitrarily low, so that attention approaches an instantaneous monitoring cost. Our view of
attention as an asset is in line with Bloom, Sadun and Van Reenen (2012), where management
is a form of technology, as well as with the new approach to growth discussed in Corrado and
Hulten (2010), where expenditures on intangibles are treated as capital.
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expected that to be the case, his belief about the principal’s type would stop de-

creasing. We show however that this does not occur in equilibrium: the principal

invests in attention technology as the agent’s belief declines, but this investment

is insufficient and in fact becomes decreasing when the agent gets pessimistic

enough. Relationship dynamics as a result feature continuous deterioration: ab-

sent recognition, effort and eventually investment go down, and the chances of

obtaining recognition and reverting to high performance decline.

We contrast the dynamics of this model in which the principal can recognize

good performance with those that arise when she can also recognize bad perfor-

mance. Suppose that if a high attention technology is in place, a verifiable bad

signal arrives at a rate that is decreasing in the agent’s effort. The agent incurs a

(psychological or monetary) penalty when a bad signal arrives. We show that if

recognition is primarily of bad performance, or symmetric and thus independent

of effort, the model is essentially static: the agent’s belief and effort, as well as

the principal’s investment, remain constant absent recognition once the principal

starts investing. The relationship therefore does not fall into deterioration.

Our results show that the presence in an organization of the two-sided moral

hazard problem we study has important implications for the dynamics of the

employment relationship. When a manager must invest in attention to recognize

a worker’s behavior, the worker’s belief about attention affects both his incentives

to work and the manager’s incentives to invest, with non-obvious consequences

that depend on how recognition relates to worker effort. Our findings illuminate

a distinction that had not been identified: the literature on firm reputation

(reviewed below) assumes that learning is exogenous, hiding the implications of

different forms of endogenous learning.

Related literature. This paper fits into the literature on firm reputation; see

Cripps (2006) and Bar-Isaac and Tadelis (2008) for surveys. Most closely related

are Board and Meyer-ter-Vehn (2013, 2014) and Dilmé (2014), where a firm can

invest in product quality and consumers learn about quality through Poisson

signals.7 We apply the theory of reputation to study dynamics inside the firm:

7Board and Meyer-ter-Vehn (2013) compare good news and bad news learning about firm
quality (see also Abreu, Milgrom and Pearce, 1991). We note that learning is always good news

4



rather than analyzing how a firm’s reputation for quality affects sales, we ex-

amine how a firm’s reputation for attention affects worker productivity. More

importantly, we depart from the literature by endogenizing the learning process:

whereas in these models of firm reputation consumers observe exogenous signals

of firm quality, in our model the rate at which information arrives depends on

the agent’s action. Marinovic, Skrzypacz and Varas (2015) study firm reputation

when information is endogenously generated by the firm via voluntary certifi-

cation. We instead focus on the dynamics generated by the complementarity

between the principal’s and agent’s actions.8

Our work is also related to an extensive literature on monitoring, which stud-

ies the problem of monitoring or auditing an agent when the monitor cannot

commit to a strategy. Early contributions such as Graetz, Reinganum and Wilde

(1986), Khalil (1997), and Strausz (1997) analyze static settings. More recently,

Dilmé and Garrett (2014) study a dynamic model where in each period an in-

spector can either wait or inspect a short-lived potential offender, incurring a

cost for changing her action. While our focus is on recognition of good behavior,

monitoring in this literature is of bad behavior, as in the case that we study in

Section 3.

Often motivated by the persistent performance differences across seemingly

similar firms that Gibbons and Henderson (2013) document, a series of recent pa-

pers emphasize path dependence in equilibrium dynamics. For example, Callan-

der and Matouschek (2014) study a search model in which managers learn about

the quality of managerial practices by trial and error, and show that if practices

are complementary, quality is persistent over time. Chassang (2010) finds that

efficient equilibria can be path dependent in a repeated game in which a party

learns to predict her partner’s cost of cooperating over time. Li and Matouschek

(2012) show that bad shocks can have persistent effects in a relational contracts

model in which a principal’s cost of making payments to an agent is privately

observed. Our paper is related in that it also generates persistent relationship

about the principal’s type in our model; we distinguish between good and bad signals about
the (uninformed) agent’s performance.

8Unlike in our model, moral hazard is only one-sided in Board and Meyer-ter-Vehn (2013,
2014), Dilmé (2014), and Marinovic et al. (2015). This is also the case in Ely and Välimäki
(2003) where information depends on both players’ actions.
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dynamics. Unlike these articles, however, we consider a model of reputation, in

which workers’ beliefs about management’s attention play a central role.

Finally, by studying managerial attention, our paper relates to Geanakop-

los and Milgrom (1991) and other work on organizations under cognitive limits,

although we address different issues.9 This literature is concerned with the coor-

dination of agents without conflicting interests, while we consider how an atten-

tion technology interacts with incentive provision.10 The role of attention is also

stressed in empirical work on the time use of managers and firm productivity,

including Bandiera et al. (2011) and Bandiera, Prat and Sadun (2013).

1 The model

Setup. Consider a principal and an agent. Time t ∈ [0,∞) is continuous

and infinite. At each time t, the agent privately chooses effort at ∈ [0, 1] at

instantaneous cost c(at) = 1
2
a2
t . The principal receives an output flow equal to

at. This output however is unobservable; instead, the parties observe a verifiable

signal which we call recognition.

Recognition arrives via a (non-homogeneous) Poisson process with parameter

µθtat, where µ > 0 and θt ∈ {L,H} is the state of the principal’s attention

technology at time t, with L = 0 and H = 1. The agent receives a reward b > 0

each time he is recognized. For most of our analysis, we take this reward to be

a purely psychological benefit, so it is exogenously fixed and entails no costs for

the principal. This is in line with our motivation and allows us to focus on the

problem of attention costs rather than the problem that the principal may want

to save on agent compensation. Section 4 considers the case in which the reward

is a monetary bonus chosen and paid by the principal.

The evolution of θt is determined by an exogenous Poisson process and en-

dogenous investment. Specifically, at any time t, a high attention technology

becomes low (“the technology breaks”) with instantaneous probability γ > 0,

9See Garicano and Prat (2013) for a survey of this literature.
10Dur (2009) and Dur, Non and Roelfsema (2010) study workers who reciprocate managerial

attention with effort. Gil and Mondria (2011) consider a multitasking setting where allocating
more attention to a task increases the precision of its performance measures.
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and the principal can invest at any point by paying a lump sum cost F > 0 to

instantly transform a low technology into a high one (“fix the technology”).11

The simple form of depreciation is assumed for tractability. The assumption

that the principal can instantly fix the technology is not only convenient but also

appealing: it removes additional frictions and thus yields a simple benchmark

for our model, as we show below.

The agent observes neither the principal’s investment nor her attention tech-

nology, which we thus call the principal’s type.

A “heuristic timing” of the game within each instant is as follows: first, the

principal decides whether to fix the technology (if low) and the agent chooses ef-

fort; next, recognition arrives or not and the agent receives a reward accordingly;

finally, the attention technology (if high) breaks or not.

A remark on terminology: the principal’s attention technology is a “monitor-

ing technology.” However, “monitoring” is typically used in the literature (see our

review in the Introduction) as referring to monitoring that is of bad rather than

good performance, and a flow rather than an asset. We use the term “attention”

to make clear the distinction with our assumptions.

Strategies and payoffs. Let hAt− be the agent’s private history up to (but

not including) time t, consisting of the history of effort choices and recognition

(public signal) arrival times up to t. A (pure) strategy for the agent specifies, for

each hAt−, a choice of effort at t, at. This strategy, a = {at}t≥0, is progressively

measurable with respect to the filtration induced by the histories hAt−. The

principal’s private history is denoted hPt− and consists of the history of type

realizations (equivalently, θ0, investment decisions, and depreciation shocks) and

recognition arrival times up to t. A strategy for the principal specifies, for each

time t at which the technology breaks (i.e. the type switches from high to low)

11We model attention as a capital asset in dynamic industrial organization models. In Be-
sanko and Doraszelski (2004), for example, an asset is subject to two forces in each period:
endogenous investment raises its value and exogenous depreciation lowers it. We consider
a continuous-time two-value version of this process. In the reputation models of Board and
Meyer-ter-Vehn (2013, 2014) and Dilmé (2014), firm quality also takes one of two values. Board
and Meyer-ter-Vehn assume that the firm can increase quality only if a shock occurs when it
invests; in our setting, the principal’s instantaneous probability of investment corresponds to
the transition probability from a low to a high technology. Dilmé assumes that the firm fully
controls quality, so there are no exogenous shocks to quality in his model.
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and history up to time t, hPt−, a cumulative distribution Q(z, t) over the time

z ≥ t to invest in fixing it. This strategy, Q = {Q(z, t)}z≥t,t≥0, is progressively

measurable with respect to the filtration induced by the histories hPt−. Note that

the investment plan chosen by the principal at any time t at which the technology

breaks will be sequentially optimal. In particular, since nothing happens until

the principal invests—as the type remains low in the absence of investment and

no recognition can occur while the type is low—the principal will want to follow

the prescribed distribution.

The agent’s belief that the principal’s type is high at (the beginning of) time

t is xt ≡ EQ̃,x0 [θt|hAt−] ∈ [0, 1], where Q̃ = {Q̃(z, t)}z≥t,t≥0 is the agent’s belief

about the principal’s investment strategy and x0 ∈ (0, 1] is the exogenous and

commonly known prior belief.12 That is, the agent’s belief about the principal’s

type depends on the history of effort and recognition arrival times through the

conjectured investment strategy Q̃ and prior x0. Since xt is then a function of

hAt− only and we assume the agent’s effort strategy to be progressively measur-

able, x = {xt}t≥0 is also progressively measurable.

Both parties are risk neutral. For tractability and to focus on the dynamic

incentives of the principal, we assume that the agent is myopic; Section 4 consid-

ers the case of a forward-looking agent. Given belief xt and effort at, the agent’s

(instantaneous) expected payoff at time t ≥ 0 is

Ut = µxtatb−
1

2
a2
t .

The first-order condition for the optimal choice of effort, given belief xt, is

at = µxtb. (1)

To rule out corner solutions, we assume:

Assumption 1. µb ≤ 1.

Hence, condition (1) always pins down the agent’s optimal level of effort.

12Q̃ could be a non-trivial probability distribution over Q. In this case, Q̃ is a Borel probabil-
ity measure over the set of cumulative distribution functions Q(z, t). As we need to define Borel
sets over this set, we endow it with the weak∗-topology. See Aliprantis and Border (2007).
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The principal discounts future payoffs at rate r > 0. Denote by (Tj)
∞
j=1 the

(stochastic) instants at which the principal’s attention technology breaks. Let

P (z, Tj, Tj+1) ≡ Q(z,Tj)

Q(Tj+1,Tj)
be the cumulative distribution over the time to invest

in fixing the technology that the principal chooses at time Tj given that the

technology breaks again at Tj+1, which implies that the principal must have

invested in between these times (only a high technology can break). Then given

a = {at}t≥0 and Q = {Q(z, t)}z≥t,t≥0, the principal’s expected payoff at time 0 is

π0 = EQ,θ0
[∫ ∞

0

e−rtatdt−
∞∑
j=1

∫ Tj+1

Tj

e−rzFdP (z, Tj, Tj+1)

]
.

Equilibrium. Each time there is recognition, the agent learns that the prin-

cipal’s type is high, so his belief is reset to xt = 1. The agent receives no

information about the principal’s type until recognition again occurs. We there-

fore restrict attention to equilibria in strategies that depend only on what has

happened since the last recognition (see, e.g., Board and Meyer-ter-Vehn, 2014).

With a slight abuse of notation, we drop the time index in our analysis and write

all variables as a function of the time that has passed since recognition, denoted

by s.

Analogous to the definitions above, a strategy for the agent is a = {as}s≥0

(progressively measurable with respect to the filtration induced by the histo-

ries hAs−) and a strategy for the principal is Q = {Q(z, s)}z≥s,s≥0 (progressively

measurable with respect to the filtration induced by the histories hPs−). An

equilibrium is a quadruple (a,Q, Q̃, x) such that: (i) given x, a maximizes the

agent’s (instantaneous) expected payoff; (ii) given a, Q maximizes the principal’s

expected payoff; (iii) Q̃ is correct; and (iv) given a and Q̃, x is updated by Bayes’

rule. A continuous equilibrium is an equilibrium in which xs is continuous for all

s ≥ 0.13 That is, in a continuous equilibrium, the agent’s belief as a function of

time t is continuous in the absence of publicly observable events. In any contin-

uous equilibrium, Q(z, s) must be continuous, and we will further assume in this

case that it is absolutely continuous, so it admits a density function. We then

13Board and Meyer-ter-Vehn (2013) use a similar notion in their model of reputation.
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take the principal’s strategy in a continuous equilibrium to simply specify an

instantaneous probability of investment as a function of the time since recogni-

tion and the principal’s current type (note that past type realizations are payoff

irrelevant for the principal given her current type). More precisely, in a contin-

uous equilibrium, the principal’s strategy specifies an instantaneous investment

probability qs for each time s ≥ 0 conditional on a low type at s, θs = L (and

zero investment if θs = H). The agent’s belief about qs is denoted q̃s.

Observable attention benchmark. Before turning to the equilibrium analy-

sis, consider a benchmark in which the principal’s attention technology is observ-

able by the agent. It follows from (1) that the agent’s effort at any time t ≥ 0

is at = µb if θt = H and at = 0 if θt = L. Take now any time t at which the

technology breaks. For any δ > 0, the principal prefers to fix the technology at

time t and then again at t+ δ if it breaks by then, rather than waiting and fixing

the technology at time t+ δ, if and only if∫ δ

0

e−(γ+r)τµbdτ − F −
(
1− e−γδ

)
e−rδF ≥ −e−rδF.

Integrating and simplifying this expression yields that the principal fixes her at-

tention technology whenever it breaks if and only if µb ≥ (γ+r)F , that is, if and

only if the resulting increase in output is larger than the instantaneous rental

cost of capital, given by the risk of breakdown plus the interest rate. It is imme-

diate that this condition is also necessary for the principal to invest in attention

technology when the technology is unobservable by the agent. Throughout our

analysis, we thus assume that parameters are such that this condition is satisfied:

Assumption 2. µb ≥ (γ + r)F .

2 Relationship dynamics

Unlike in the observable attention benchmark described above, in equilibrium the

principal cannot fix her attention technology each time it breaks when attention is

unobservable: if the principal always invests, the agent’s belief that the principal’s

10



type is high is xs = 1 at all s ≥ 0, but then the agent always exerts effort as = µb

and the principal has no incentives to invest at cost F .

We construct a continuous equilibrium in which the principal does not invest

if the time that has passed since recognition is s < s, for an endogenous threshold

time s ∈ (0,∞), and she mixes between investing and not investing if s ≥ s. We

show that any continuous equilibrium with positive investment must take this

form, and one such equilibrium exists if the cost of investment F is small enough.

Consider first the agent’s belief about the principal’s type, xs. At s = 0 this

belief is x0 = 1, since recognition fully reveals that the type is high. Then, given

no recognition, the change in xs is given by three sources: (i) the possibility

that a high attention technology breaks, with instantaneous probability γ; (ii)

learning about the technology in the absence of recognition, according to Bayes’

rule; and (iii) the agent’s belief about the principal’s investment, which must be

correct in equilibrium (i.e. q̃s = qs). If qs is continuous on a given open interval,

then locally in that interval the evolution of xs is governed by

ẋs = −γxs − xs(1− xs)µas + (1− xs)qs. (2)

This law of motion is similar to that in Board and Meyer-ter-Vehn (2013), with

an important difference: our Bayesian learning term, xs(1− xs)µas, depends on

the agent’s action as, while it is only a function of xs in their paper (see their

equation 2.2). In our setting the learning process is endogenous and depends

on the agent’s behavior; as shown in Section 3, this difference has important

implications for the dynamics of the relationship.

In the equilibrium we are constructing, the principal does not invest before the

threshold time s is reached. Hence, for s < s, the law of motion for xs becomes

ẋs = −γxs − x2
s(1− xs)µ2b, (3)

where we have substituted as = µxsb. Solving this differential equation with

initial condition x0 = 1 uniquely pins down the agent’s belief and effort at s < s.

Naturally, xs and as are strictly decreasing over this time period: since the

principal is not investing, the agent becomes more pessimistic that her type is

11



high as time passes without recognition, both because of Bayesian updating and

because the probability that the principal’s technology has broken goes up.

Consider next the principal’s incentives to invest. Let πHs be the principal’s

expected payoff at s when her type is θs = H and πLs when her type is θs = L.

The principal is willing to invest at s only if πLs ≤ πHs −F . Since, by construction,

at any point in this equilibrium the principal either does not want to invest or

is indifferent between investing and not, πLs ≥ πHs − F for all s ≥ 0 and we can

write the expected payoffs for the two principal types as

πLs =

∫ ∞
s

e−r(τ−s)aτdτ , (4)

πHs =

∫ ∞
s

e−(γ+r)(τ−s)−
∫ τ
s µazdz

(
aτ + γπLτ + µaτπ

H
0

)
dτ . (5)

The low type’s expected payoff at any point is simply the output given by

the agent’s effort. To interpret the high type’s expected payoff, note that the

instantaneous probability that her technology breaks at any time is γ, and the

instantaneous probability that recognition occurs given a high type at time z is

µaz. Thus, between times s and τ , the probability that no breakdown occurs is

e−γ(τ−s), and the probability that no recognition occurs, given no breakdown, is

e−
∫ τ
s µazdz. So long as neither breakdown nor recognition occurs, the high type

receives the output flow. If the technology breaks at time τ , her continuation

payoff is πLτ , whereas if recognition occurs, her continuation payoff is πH0 .

To convey the economic intuitions more clearly, let Ψs ≡ πH0 − πHs denote

the principal’s value of recognition at time s and Λs ≡ πHs − πLs her value of

investing at s. At each time s ≥ s in the equilibrium, the principal follows a

mixed strategy, so she must be indifferent between investing and not investing:

Λs = F. (6)

It follows that Λ̇s = 0 for all s ≥ s, which combined with (4)-(6) yields

Ψsµas = (γ + r)F. (7)

The left-hand side is the principal’s instantaneous benefit of investment at time

12



s, given by the value of recognition times the instantaneous probability of recog-

nition conditional on a high type. Equation (7) says that, for the principal to be

indifferent at each time s ≥ s, her instantaneous benefit of investment must be

equal to the instantaneous rental cost of capital at all such times. The instanta-

neous benefit of investment must therefore be constant for s ≥ s, which implies

that the agent’s effort must be decreasing (increasing) at any such time at which

the value of recognition is increasing (decreasing). Our main result shows that

the value of recognition is in fact strictly increasing, and hence effort strictly

decreasing, at all times s ≥ s in the equilibrium; moreover, effort becomes low

enough that the principal’s investment must become strictly decreasing as well.

Proposition 1. Fix any set of parameters (γ, µ, b, r). There exist F > 0 and

F ∈ (0, F ) such that a continuous equilibrium with positive investment exists if

and only if the cost of investment is F ≤ F , and all continuous equilibria have

positive investment if F ≤ F . In any continuous equilibrium with positive invest-

ment, the principal does not invest if the time that has passed since recognition

is s < s, for a threshold time s ∈ (0,∞); at s ≥ s, the principal invests with a

continuous instantaneous probability qs ∈ (0,∞) which is strictly decreasing for

s > s large enough. The agent’s belief xs and effort as, and thus the uncondi-

tional instantaneous probability of recognition µxsas, are continuous and strictly

decreasing for all s ≥ 0. If r ≤ γ, the value of s, and thus the continuous

equilibrium with positive investment, are unique.

Proof. See Appendix A. Q.E.D.

Figure 1 illustrates the equilibrium. When the agent’s belief is relatively high,

the principal’s benefit from being revealed to be a high-attention type is small.

Following recognition, there is thus a period of time during which the principal

does not invest. As time passes and the agent’s belief and effort go down, the

principal’s value of recognition increases, until at time s the principal finds it

optimal to start investing. The principal’s investment however is insufficient to

stop the decline in effort, and at some point it also begins to decline. Hence,

as time goes by without recognition, both the agent’s effort and the principal’s

investment decrease, and so does the probability of obtaining recognition.

13
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Figure 1: Equilibrium dynamics. Parameters are γ = 1, F = 0.09, µ = 1,
b = 0.7, and r = 0.01. Recs is the unconditional instantaneous probability of
recognition, given by µxsas. The vertical line indicates the threshold time s.
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As mentioned, the intuition for why the agent’s effort decreases prior to s

is immediate. But why must effort continue going down at s ≥ s while the

principal invests? Recall from (7) that the principal’s indifference condition yields

Ψs = (γ+r)F
µas

. Moreover, by definition, Ψ̇s = Λ̇s − π̇Ls , and thus for s ≥ s,

Ψ̇s = −π̇Ls = as− rπLs ; that is, the value of recognition increases (decreases) at s

if current effort is above (below) the long-run future average. We can then show

that Ψ̇s and ȧs cannot change signs at a time s > s. For a stark intuition, suppose

effort were decreasing up to s′ and increasing from then on, for s′ > s. Then

both the value of recognition Ψs and the conditional probability of recognition

µas would be lower at s′ than right before this time. But since the principal

is indifferent at s′, she would have strict incentives to invest right before, a

contradiction. Hence, effort as must be a monotonic function over s ≥ s, and in

fact an analogous argument shows that it cannot be a strictly increasing function.

It follows that the agent’s effort is either constant or strictly decreasing for

all s ≥ s. We prove that it must indeed be strictly decreasing in equilibrium

by showing that not only the agent’s belief is continuous but also the change in

the belief must be continuous. Specifically, the equilibrium must satisfy smooth

pasting: ẋs is continuous at s. Since ẋs < 0 for s < s, this implies that ẋs, and

thus ȧs, are strictly negative in a right neighborhood of s, and therefore for all

s ≥ s. The logic for smooth pasting is similar to that above, namely it is needed

to provide the principal the right amount of incentives to invest at each point.

Suppose for the purpose of contradiction that ẋs and thus ȧs were to jump at

s. Clearly, they can only jump up (recall qs = 0 at s < s), and since Ψ̇s is

continuous,14 the change in the principal’s instantaneous benefit of investment,

µ
(
Ψ̇sas+Ψsȧs

)
, would then also jump up at s. However, since µ

(
Ψ̇sas+Ψsȧs

)
= 0

from s on by condition (7), this would imply µ
(
Ψ̇sas + Ψsȧs

)
< 0 for s < s close

enough to s, and therefore (using (7) again) Ψsµas > (γ + r)F for such times.

The contradiction is then immediate: the principal would have strict incentives

to invest in attention technology before reaching the threshold time s.15

14Note that Ψ̇s = Λ̇s−π̇Ls , where π̇Ls = −as+rπLs and Λ̇s = (γ+r)Λs−µasΨs are continuous.
15More formally: observe that, as noted in fn. 14, Λ̇s = (γ+r)Λs−µasΨs, and the equilibrium

requires Λs < F for s < s and Λs = F for s ≥ s. But then Ψsµas > (γ + r)F for s < s close
to s implies Λ̇s < 0 at such times, a contradiction.
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A principal who delays investment is therefore punished with continuous dete-

rioration of the relationship. The agent becomes more pessimistic and his effort

declines over time, so that even if the principal then decides to invest, it is harder

to obtain recognition and return to high performance. In fact, we can show that

in the limit for an infinitely patient principal, the equilibrium gives rise to a

trap as the moral hazard problem becomes more severe. Consider the limit as

the discount rate r goes to zero and let the principal’s cost of investment be

F < F so that the equilibrium of Proposition 1 exists. Appendix B shows that

as F approaches F , lims→∞ xs and lims→∞ as vanish: the probability of obtain-

ing recognition and reverting to high performance goes to zero as time passes

without recognition.16

Proposition 1 also shows that the equilibrium investment path is hump-shaped.

The logic is elaborate because the principal uses a mixed strategy, but to see the

main idea, take the aforementioned case in which the agent’s belief and effort

go to zero absent recognition. At one extreme, it is clear that the principal will

not invest when the agent’s belief is close to one, as the value of recognition

is then close to zero. At the other extreme, it is also clear that as the agent’s

belief approaches zero, the principal’s investment must go to zero: as shown

by (2), if xs = 0, ẋs is determined by (the agent’s correct belief over) qs, so

xs, and hence as, would increase in equilibrium if qs > 0. More generally, we

show that punishing the principal for not investing requires effort to become low

enough over time that investment must eventually become decreasing for effort

to continue declining.

Finally, about uniqueness: two arguments are used to show that any contin-

uous equilibrium with positive investment must be as characterized in Proposi-

tion 1. First, we show that any such equilibrium where, at each time s ≥ 0,

the principal either is indifferent or does not have incentives to invest, must take

this form. Second, we show that a continuous equilibrium where the principal

has strict incentives to invest over some time interval does not exist. Intuitively,

in any such equilibrium, the principal should strictly want to invest at s = 0;

16Put differently, for any δ > 0 and ε > 0, there exist r > 0, F < F , and a time since
recognition s > 0 such that the probability of obtaining recognition in (s, s+ δ) is strictly less
than ε.
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otherwise, if she has strict incentives to invest at s′ > 0 but not before, xs must

either increase continuously toward one as s approaches s′ or jump to one at s′,

neither of which can occur. However, since Ψ0 = 0, the principal will not want

to invest at s = 0. As for the result that any continuous equilibrium must be as

described in Proposition 1 if F is small enough, this follows from the fact that a

no-investment equilibrium does not exist in that case: without investment, effort

decreases as time passes without recognition, but then for F sufficiently small

the principal eventually has strict incentives to invest to obtain recognition.17

3 Recognition of good and bad performance

We have considered a principal who can recognize good performance by the agent.

What happens if she can also recognize bad performance? Recognition is more

likely to be of good performance in jobs based on innovation, where the verifiable

event is the presence of something positive like a breakthrough. Recognition of

bad performance, on the other hand, may arise in jobs where employees perform

well-defined tasks, like maintenance or quality control, and the verifiable event

is the presence of something negative like a fault.

Take the model of Section 1 but assume now that there are two types of

(verifiable) signals: good-performance signals and bad-performance signals. A

good signal arrives via a Poisson process with parameter µθtat, whereas a bad

signal arrives via a Poisson process with parameter νθt(1 − at), where µ, ν ≥ 0.

The agent receives a reward b > 0 when a good signal arrives and incurs a penalty

b < 0 when a bad signal arrives. Analogous to (1) and Assumption 1, for any

t ≥ 0, the agent’s effort is at = xt(µb− νb), where we assume µb− νb ≤ 1.

The benchmark case where the principal’s attention technology is observable

is qualitatively the same as that in Section 1. In this setting with good- and bad-

performance signals, the principal invests in attention if and only if µb − νb ≥
(γ + r)F ; analogous to Assumption 2, we assume that this condition holds.

Now suppose that the principal’s attention technology is unobservable by the

17Note that the agent’s belief xs and effort as are strictly positive for all finite s. An
equilibrium with no effort and no investment cannot be sustained unless the agent’s prior
belief that the principal’s type is high is assumed to be zero.
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agent. Each time recognition—of either good or bad performance—occurs, the

agent learns that the principal’s type is high and thus his belief is reset to one.

As in Section 2, we consider equilibria in strategies that depend only on what

has happened since recognition last occurred. Let s be the time since recogni-

tion. We characterize a continuous equilibrium (i.e., an equilibrium in which the

agent’s belief xs is continuous) in which the principal does not invest in attention

technology if s < ŝ, for an endogenous threshold time ŝ ∈ (0,∞), and she mixes

between investing and not if s ≥ ŝ.

Consider the law of motion for the agent’s belief xs. At s = 0, the belief

is x0 = 1. Then, given no recognition, the evolution of the belief on any open

interval over which qs is continuous is governed by

ẋs = −γxs − xs(1− xs)[µas + ν(1− as)] + (1− xs)qs. (8)

Before time ŝ is reached, the principal does not invest. Substituting as = xs(µb−
νb) and qs = 0 into (8), the law of motion for s < ŝ is

ẋs = −γxs − xs(1− xs)[(µ− ν)xs(µb− νb) + ν]. (9)

Solving this differential equation with initial condition x0 = 1 pins down the

agent’s belief and effort at s < ŝ.

Consider now s ≥ ŝ. The principal must be indifferent between investing and

not investing at these times. Analogous to (7), indifference yields

Ψs[µas + ν(1− as)] = (γ + r)F. (10)

Condition (10) shows that the sign of µ− ν is key in determining the qualitative

properties of the solution. If µ − ν > 0, the solution is qualitatively the same

as that in Section 2. Suppose instead that µ − ν ≤ 0. Then (10) shows that

the agent’s effort as and the principal’s value of recognition Ψs must move in

the same direction for the principal’s instantaneous benefit of investment to be

constant for s ≥ ŝ. Now since Ψ̇s = as − rπLs , it follows that effort must be

strictly increasing (decreasing) at any time s ≥ ŝ at which it is strictly above

(below) its long-run future average, which implies that effort cannot be different
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from the long-run average at any such time. Therefore, when µ− ν ≤ 0, as and

Ψs must be constant for s ≥ ŝ.

Proposition 2. Consider a setting with recognition of good and bad performance.

If recognition is primarily of good performance (i.e. µ > ν), the continuous equi-

libria are as characterized in Proposition 1. Suppose instead that recognition is

primarily of bad performance or symmetric (i.e. µ ≤ ν). Then in any continu-

ous equilibrium with positive investment, the principal does not invest if the time

that has passed since recognition is s < ŝ, for a threshold time ŝ ∈ (0,∞), and

she invests with a constant instantaneous probability q̂ ∈ (0,∞) for s ≥ ŝ. The

agent’s belief xs and effort as are decreasing for s < ŝ and constant for s ≥ ŝ.

The unconditional instantaneous probability of recognition, xs[µas + ν(1 − as)],
is constant for s ≥ ŝ.

Proof. See Appendix C. Q.E.D.

Figure 2 illustrates the equilibria. When recognition is primarily of bad per-

formance or symmetric, the equilibrium is essentially static: the principal’s in-

vestment is zero initially and constant after it jumps up at the threshold time

ŝ; the agent’s belief and effort and the unconditional instantaneous probability

of recognition are also constant for s ≥ ŝ.18 Hence, unlike when recognition is

primarily of good performance, the relationship does not continue deteriorating

over time.

The intuition for these results stems from the principal’s incentives to invest

in attention technology. The principal’s instantaneous benefit of investment is

the product of the instantaneous probability of recognition conditional on a high

attention technology and the value of recognition. When recognition is of bad

performance or symmetric, a decline in the agent’s effort has a direct effect of

(weakly) increasing the principal’s incentive to invest because it (weakly) in-

creases the probability of obtaining recognition. However, when recognition is of

good performance, a decline in effort has a negative direct effect, as the probabil-

ity of recognition goes down. Consequently, incentivizing the principal to invest

18Appendix C shows that a continuous equilibrium with positive investment exists if and
only if the cost of investment F is small enough. Moreover, the value of ŝ is unique.
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Figure 2: Equilibrium dynamics when recognition is of good performance (solid
lines) and when recognition is of bad performance (dashed lines). We set µ = 1
and ν = 0 in the former case and µ = 0 and ν = 1 in the latter; all other
parameters are the same as in Figure 1. Recs is the unconditional instantaneous
probability of recognition, given by xs[µas+ν(1−as)]. The vertical lines indicate
the threshold times s and ŝ.
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in this case requires that her value of recognition increase; that is, she must be

threatened with continuously decreasing effort over time.

Our results have implications for the study of firm reputation. Note that when

recognition is symmetric (µ = ν), the instantaneous probability with which a

signal arrives is independent of the agent’s effort. This case corresponds to

the one typically studied in models of firm reputation. For example, Board

and Meyer-ter-Vehn (2013) consider a setting in which consumers observe public

signals of the quality of a firm’s product, but the arrival rate of these signals

is independent of consumers’ actions (which are not explicitly modeled). The

reputational dynamics they obtain are as we characterize for the case of µ ≤ ν.19

In reality, however, consumers are more likely to learn about the quality of

a product when the volume of sales is larger, both because more consumers

experience with the product directly and because more consumers are likely to

learn from the experience of others.20 To map our model into this problem,

take θs to be firm quality, xs consumers’ expectation of firm quality, and as

the volume of sales at time s. The case studied in Board and Meyer-ter-Vehn

(2013) is one in which the firm sells a single unit at each time and consumers

compete in a Bertrand fashion, so the product price equals xs and as is fixed.

But another possibility is for the price to be fixed and quantity to adjust, so that

the volume of sales as is an increasing function of perceived quality xs, analogous

to our model in Section 2. Here sales will change with perceived quality and in

turn affect the rate at which information about quality is generated. As shown

in Proposition 1 and Proposition 2, this effect leads to qualitatively different

reputational dynamics.

4 Discussion

Forward-looking agent. For tractability and to focus on the principal’s dy-

namic incentives, we assumed throughout that the agent is myopic. The presence

of a forward-looking player and a myopic one is in line with the literature on firm

19Specifically, see the case of a convergent cutoff in their perfect good news setting.
20Rob and Fishman (2005) study a model in which information about firm quality spreads

in the market through word of mouth.
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reputation. In practice, however, workers are not fully myopic, and they can ben-

efit from experimenting: unlike a myopic agent, they value having information

in the future about whether managerial attention is high or low.

While we cannot solve the model with a forward-looking agent analytically, we

can numerically construct an equilibrium analogous to the one in Proposition 1

and show that it yields qualitatively the same relationship dynamics as with a

myopic agent. Consider the setting of Section 1, in which recognition is of good

performance, but assume now that the agent is forward-looking and discounts

the future at the same rate r > 0 as the principal. The agent’s expected payoff

following recognition is

U0 =

∫ ∞
0

e−
∫ s
0 (r+µxτaτ )dτ

[
µxsas(b+ U0)− 1

2
a2
s

]
ds.

For intuition, note that the instantaneous probability assigned by the agent to

recognition occurring at a time τ is µxτaτ , and hence his belief that recognition

will not occur by time s is e−
∫ s
0 µxτaτdτ . When recognition occurs, the agent

receives the reward b plus an expected continuation payoff U0.

The agent chooses an effort plan {as}s≥0 to maximize U0 subject to the law

of motion for xs given in equation (2), where qs is taken as given. Appendix D

sets up the Hamiltonian for the agent’s problem and derives the first-order con-

ditions.21 We then solve for a continuous equilibrium that parallels the one we

constructed in Section 2: for a threshold time s ∈ (0,∞), the principal does

not invest if the time that has passed since recognition is s < s and she mixes

between investing and not investing if s ≥ s.

Figure 3 provides a graphical illustration. The figure shows that the equilib-

rium dynamics are qualitatively the same with a forward-looking agent and with

a myopic agent. As expected, though, there are quantitative differences. We

find that in the forward-looking agent case, the agent’s effort and the principal’s

investment are higher. The intuition is related to the value of experimentation

mentioned above: because a forward-looking agent benefits from knowing in the

21Note that given the principal’s investment strategy, the agent chooses a sequence of effort
to maximize his expected utility taking into account how his belief evolves as a function of his
effort choices and the principal’s investment (and recognition). This computation ensures that
no deviation (including double deviations) is profitable for the agent.

22



0 1 2 3 4 5
s

0.2

0.4

0.6

0.8

1.0
xs

0 1 2 3 4 5
s

0.2

0.4

0.6

0.8
as

0 1 2 3 4 5
s

0.2

0.4

0.6

0.8
qs

0 1 2 3 4 5
s

0.2

0.4

0.6

0.8
Recs

0 1 2 3 4 5
s

0.2

0.4

0.6

0.8

1.0
Ys

0 1 2 3 4 5
s

0.03

0.06

0.09

0.12

0.15
Ls

Figure 3: Equilibrium dynamics with a myopic agent (solid lines) and with
a forward-looking agent (dashed lines). Parameters are the same as in Fig-
ure 1. Recs is the unconditional instantaneous probability of recognition, given
by µxsas. The vertical lines indicate the threshold times s in each equilibrium.
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future whether the principal’s type is high or low, for any given belief about

the principal’s current type, his incentive to exert effort is higher than that of

a myopic agent. Given the complementarity between effort and investment, the

principal in turn invests more when the agent is forward-looking.

Recognition reward. In our model, the recognition reward b entails no costs

to the principal and has a fixed exogenous value. This formulation is appealing if

the reward is taken to be purely psychological. Suppose we instead take b to be

(partly) a monetary bonus. Then our model has assumed that this bonus is paid

not by the principal but by some external, unmodeled party, and that its value is

set exogenously. The first assumption is convenient to focus on the moral hazard

problem due to the principal’s cost of investment and abstract from another

source of moral hazard: if the principal incurs the cost of the bonus directly, she

may want to decrease her investment in attention technology to save on this cost.

The second assumption is a natural consequence of the first.

Our qualitative results are unchanged if we remove the first assumption while

keeping the second one. That is, suppose b is an exogenously set bonus but

the principal bears the cost of bonus payments. We can incorporate this by

simply re-defining the principal’s payoff following recognition as πH0 ≡ πH0 −b; our

analysis can then be performed without change. The dynamics of the relationship

are qualitatively the same as in our main model; quantitatively, of course, the

principal’s incentives to invest will now be lower.

Allowing for an endogenous (and time-varying) bonus, on the other hand, can

lead to different dynamics, as the principal may increase the bonus over time

to boost the agent’s incentives. While a full solution to this case is beyond the

scope of this paper, we highlight here a negative result: endogenizing the bonus

does not eliminate the inefficiency in effort. To see why, suppose by contradiction

that the agent’s effort is always at the efficient level. Then the principal does not

invest, as she receives the largest possible payoff when her attention technology

is low and she bears no investment nor bonus costs. It follows that in equilib-

rium the agent’s belief about the principal’s type must go down as time passes

without recognition,22 and inducing efficient effort requires the bonus to become

22Note that the principal cannot signal her type through the bonus offer: the low type can
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arbitrarily high over time. However, the high type is not willing to offer such a

high bonus: the gain is no larger than the present value of future efficient effort,

while the cost is proportional to the bonus as the high type has to pay the agent

if recognition occurs before her technology breaks.

5 Conclusion

This paper has studied a dynamic two-sided moral hazard problem in which a

worker chooses effort and the manager chooses whether to invest in an attention

technology to recognize worker performance. We showed that when recognition is

of good performance, the relationship falls into deterioration: absent recognition,

worker effort and eventually managerial investment decrease, and a return to high

productivity becomes less likely as time passes. These deteriorating dynamics do

not arise when recognition is of bad performance or independent of effort.

Our work highlights the role of workers’ beliefs about managerial attention.

These beliefs have important implications for the dynamics of the employment

relationship, particularly in jobs such as those based on innovation, where workers

are rewarded for good contributions rather than punished for bad outcomes.

We find that, as workers get pessimistic about the presence of a monitoring

system that can recognize their contributions, they reduce their effort, and even

if management then improves its monitoring system, it will find it difficult to

restore its reputation. More broadly, our paper contributes to the theory of

reputation by endogenizing the learning process and uncovering the effects of

different forms of endogenous learning.

Our analysis restricted attention to continuous equilibria. There also exist

discontinuous equilibria of our game, in which the worker’s belief jumps in the

absence of recognition. Discontinuous equilibria can in principle take many arbi-

trary forms. In Appendix E, we study a simple class of stationary discontinuous

equilibria: as a function of the time since recognition, the manager invests only in

countably many points, where the time in between these points is fixed and the

manager invests with the same mass probability at each of them. We show that

always mimic the high type at no cost.
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the manager prefers a continuous equilibrium, as characterized in Proposition 1,

to any discontinuous equilibrium in this class. A characterization of the whole

set of equilibria and their properties is left for future work.
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Dilmé, Francesc, “Reputation Building through Costly Adjustment,” 2014.

Working paper.

and Daniel Garrett, “Residual Deterrence,” 2014. Working paper.

Dur, Robert, “Gift Exchange in the Workplace: Money or Attention?,” Journal

of the European Economic Association, 2009, 7 ((2-3)), 550–560.

, Arjan Non, and Hein Roelfsema, “Reciprocity and Incentive Pay in the

Workplace,” Journal of Economic Psychology, 2010, 31, 676–686.
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A Appendix: Proof of Proposition 1

This proof is divided into six steps. Steps 1-2 solve for the equilibrium dynam-

ics; we proceed backwards by first solving for the dynamics at s ≥ s and then

considering s < s. Step 3 proves smooth pasting. Step 4 shows existence. Steps

5-6 deal with the uniqueness results.

Step 1: Dynamics at s ≥ s. At each time s ≥ s, the principal must be

indifferent between investing and not investing. Using (4)-(6), the evolution of

Λs, Ψs, and πLs at s ≥ s is given by

Λ̇s = 0, (11)

Ψ̇s = −π̇Ls , (12)

π̇Ls = −as + rπLs , (13)

with initial conditions Λs = F , Ψs = Ψ, and πLs = πL, where Ψ and πL are

derived subsequently. To solve, note that as shown in the text, (4)-(6) and (11)

imply that condition (7) holds for s ≥ s; that is, Ψsµas = (γ + r)F at each such

time.23 Combining these equations we obtain that the evolution of Ψs for s ≥ s

is given by24

Ψ̇s =
(γ + r)F

µΨs

+ rΨs − r(Ψ + πL). (14)

Condition (7) implies that Ψs is bounded away from zero for all s ≥ s. Hence,

the right-hand side of equation (14) is uniformly Lipshitz continuous and, by the

Picard-Lindelöf theorem (Hartman, 1982), the initial value problem given by (14)

and the initial condition Ψs = Ψ > 0 has a unique solution on the whole interval

[s,∞). Let Ψ∗s denote this unique solution given initial value Ψ. Then using (7)

and the fact that as = µbxs for all s ≥ 0, we can express the equilibrium belief

23To derive this equation, note that, differentiating (4) and (5), we have

Λ̇s = π̇Hs − π̇Ls = −as − γπLs − µasπH0 + (r + γ + µas)π
H
s + as − rπLs .

Canceling terms, substituting F = πHs − πLs and Ψs = πH0 − πHs , and setting Λ̇s = 0 yields the
equation.

24To obtain this equation, substitute (13) into (12) and use (7) to substitute for as. To
substitute for πLs , note that by definition, πH0 = Ψs + Λs + πLs for any s ≥ 0; hence, given Ψ
and πL, we have πH0 = Ψ + F + πL, and using (6), we obtain πLs = Ψ + πL −Ψs for all s ≥ s.
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and effort at s ≥ s in terms of Ψ∗s:

x∗s =
(γ + r)F

Ψ∗sµ
2b

, (15)

a∗s =
(γ + r)F

Ψ∗sµ
. (16)

Furthermore, note that qs must be continuous for s > s. This follows from the

fact that, by condition (7), xs = (γ+r)F

µ2bΨs
, which is a C∞ function of Ψs, which

is C1; hence, xs is also C1 and in particular ẋs, and thus qs, are continuous for

s > s. Using (2), the equilibrium investment for s > s is then given by

q∗s =
ẋ∗s + γx∗s
(1− x∗s)

+ x∗sµa
∗
s. (17)

Remark 1. As shown in Step 4 below, the equilibrium conditions imply that q∗s

given in (17) is positive for all s ≥ s.

Observe that if Ψ̇s > 0, the solution to (14) has Ψ̇∗s > 0 for all s > s (since the

solution is unique, no stationary point can be reached in finite time). We show

below that Ψ̇s > 0 must indeed hold. Using (15) and (16), this implies that the

agent’s belief x∗s and the agent’s effort a∗s are strictly decreasing for all s ≥ s.

Finally, we show that the principal’s investment q∗s is decreasing for s > s

large enough. We write the proof assuming that xs is twice differentiable and

hence qs differentiable once. However, a similar argument can be used if xs is

differentiable only once, in which case ˙̇xs must be replaced with (ẋs+δ − ẋs)/δ

and q̇s with (qs+δ − qs)/δ. Since the main point of the argument involves taking

limits on s→∞ leaving δ fixed, the result obtains for the case of xs only C1.

Differentiating (17) (and omitting the symbol ∗ below to ease the exposition),

q̇s for s > s is given by

q̇s =
˙̇xs(1− xs) + γẋs + ẋ2

s + 2µ2bxs(1− xs)2ẋs

(1− xs)2 . (18)

31



Rearranging terms,

(1− xs)
q̇s
ẋs

=
˙̇xs
ẋs

+
γ + ẋs + 2µ2bxs(1− xs)2

(1− xs)
. (19)

We will show that lims→∞(1 − xs) q̇sẋs > 0. Since ẋs < 0 and 1 − xs > 0 for all

s ∈ [s,∞), this implies q̇s < 0 for s large enough. Using (14) and (15), note that

˙̇xs
ẋs

= −2Ψ̇s

Ψs

+
˙̇Ψs

Ψ̇s

= −2Ψ̇s

Ψs

− µbxs
Ψs

+ r.

As s → ∞, ẋs → 0 and Ψ̇s → 0. Thus, substituting in (19) and denoting

x ≡ lims→∞ xs and Ψ ≡ lims→∞Ψs,

lim
s→∞

(1− xs)
q̇s
ẋs

= −µbx
Ψ

+ r +
γ + 2µ2bx(1− x)2

(1− x)
. (20)

It follows that lims→∞(1− xs) q̇sẋs > 0 if and only if

0 < −µbx(1− x) + rΨ(1− x) + γΨ + 2µ2bx(1− x)2Ψ

= r(Ψ− πL)(1− x) + γΨ + 2µ2bx(1− x)2Ψ, (21)

where πL ≡ lims→∞ π
L
s and we have used the fact that−µbx+rπL = lims→∞ π̇

L
s =

0. Observe that for all s > 0,

r(Ψs − πLs ) = r(πH0 − πHs )− rπLs

> rµb

∫ s

0

e−rτxτdτ − µbxs

> µbxs
(
1− e−rs

)
− µbxs,

where we have used the fact that xτ > xs for all τ ∈ [0, s). Therefore, we obtain

lims→∞ r(Ψs− πLs ) = r(Ψ− πL) > 0, implying that the right-hand side of (21) is

strictly positive.

32



Step 2: Dynamics at s < s. The agent’s belief xs for s ≤ s is pinned down

by the solution to the differential equation (3) with initial condition x0 = 1.

Since the right-hand side of (3) is Lipshitz continuous in x, it follows from the

Picard-Lindelöf theorem that there exists a solution and it is unique. Note that

this solution does not depend on s. Using this solution and (1), the agent’s effort

at s ≤ s is as = µbxs. Note that both xs and as are decreasing for all s < s. We

denote the values at s by xs ≡ x(s) and as ≡ a(s); when not confusing, we omit

the dependence of x and a on s. It follows from (7) that

Ψ =
(γ + r)F

µa
. (22)

Using (4)-(5), the evolution of Ψs, Λs, and πLs at s ∈ [0, s] is given by

Λ̇s = (γ + r)Λs − µasΨs, (23)

Ψ̇s = −Λ̇s − π̇Ls , (24)

π̇Ls = −as + rπLs , (25)

where the following boundary conditions must be satisfied: Λs = F by definition

of s, Ψ0 = 0 by definition, and πLs = πL by continuity of πLs . To solve, note

that given as for s ≤ s and the boundary condition πLs = πL, there is a unique

solution to (25). Moreover, by definition, Λs = F + Ψ + πL − Ψs − πLs . Hence,

having the solution for πLs , we can obtain Λs and Ψs for s < s by solving25

Ψ̇s = −(γ + r)(F + Ψ + πL −Ψs − πLs ) + µasΨs + as − rπLs , (26)

with initial condition Ψ0 = 0. This differential equation is linear and thus has a

simple closed-form integral solution.

Step 3: Smooth pasting. We next prove smooth pasting, namely that ẋs must

be continuous at s. This implies ẋs < 0 for s <∞, and hence ȧs < 0 and Ψ̇s > 0

as claimed above. Note also that smooth pasting implies qs continuous at s (i.e.

qs = 0) and thus qs is continuous for all s ≥ 0 in the equilibrium (see Step 1).

25To obtain this equation, substitute (23), (25), and Λs = F + Ψ + πL −Ψs − πLs into (24).
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To prove smooth pasting, note first that lims→s− ẋs ≤ lims→s+ ẋs. This is

immediate since qs = 0 for s < s, so it follows from (1) and (2) that xs can only

jump up at s. Next, we show that lims→s− ẋs ≥ lims→s+ ẋs. Note that

Λ̇s = (γ + r)Λs − µ2bxsΨs,

so given that Λs, xs, and Ψs are continuous, Λ̇s is also continuous, with lims→s Λ̇s =

0. Moreover, since the principal cannot have incentives to invest before time s,

Λ̇s ≥ 0 for s < s, s sufficiently close to s, and hence we must have lims→s−
˙̇Λs ≤ 0.

Noting from (14) and (23)-(25) that Ψ̇s is also continuous, we can write this as

lim
s→s−

˙̇Λs = −µ2bxsΨ̇s − µ2bΨs lim
s→s−

ẋs ≤ 0,

where we have used the fact that lims→s Λ̇s = 0. Manipulating this inequality,

lim
s→s−

ẋs ≥ −
xs
Ψs

Ψ̇s.

Now consider lims→s+ ẋs. Using (15), we have

lim
s→s+

ẋs = −(γ + r)F

µ2bΨ2
s

Ψ̇s,

where we have used again the fact that Ψ̇s is continuous. Hence, a sufficient

condition for the claim to be true is

− xs
Ψs

Ψ̇s ≥ −
(γ + r)F

µ2bΨ2
s

Ψ̇s,

which is equivalent to

xs ≤
(γ + r)F

µ2bΨs

.

By (16) and as = µbxs, this inequality holds with equality. The claim follows.

Finally, note that the result that ẋs is continuous at s implies qs = 0 and thus

−γxs − x2
s(1− xs)µ2b = −(γ + r)F

µ2bΨ2
s

Ψ̇s,
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where by (15) we have xs = (γ+r)F

Ψsµ2b
. Using Ψs = πH0 − πLs − F and (14) to

substitute Ψs and Ψ̇s and rearranging terms yields the following condition on

πLs :

πLs =
1

r

{
a(s)− [γ + (1− x(s))µa(s)]Ψ(s)

}
≡ πL(s). (27)

Step 4: Existence. Having the values of Ψ and πL (given by (22) and (27)

respectively), we can solve for the equilibrium dynamics as explained above. As

noted in Remark 1, one can verify that the equilibrium conditions ensure that qs

given in (17) is positive for all s ≥ s. To see this, suppose by contradiction that

qs < 0 for some s ≥ s. Equation (2) implies ẋs < −γxs − x2
s(1− xs)µ2b for such

s, which using (15) can be rewritten as

Ψ̇s > γΨs + (γ + r)F (1− xs) . (28)

Now substituting (16) and (27) into equation (14) yields

Ψ̇s = (as − a) + r(Ψs −Ψ) + γΨ + (1− x)(γ + r)F, (29)

and combining (28) and (29) implies

(as − a) + r(Ψs −Ψ) + γΨ + (1− x)(γ + r)F > γΨs + (1− xs) (γ + r)F.

We reach a contradiction since Ψ ≤ Ψs, (1−x) ≤ (1−xs), and (as−a) + r(Ψs−
Ψ) = (as − a) + r(πL − πLs ) ≤ 0 for any s ≥ s. Note that these inequalities are

strict for s > s finite; hence, we obtain that qs is strictly positive for any such s.

An equilibrium as we have characterized therefore exists if and only if there

exists a value s ∈ (0,∞) such that: (i) π(s) > 0; and (ii) the solution to (26)

with initial condition Ψ0 = 0 satisfies the boundary condition Ψs = Ψ(s). Note

that since π̇Ls < 0 for all s < s, (i) implies πLs > 0 for s < s; moreover, using the

solution for s ≥ s, we also obtain πLs ≥ 0 for all s > s.

We show that s ∈ (0,∞) satisfying (i) and (ii) exists if F is small enough. Con-

sider condition (i). Note from (27) that πL(s) is decreasing in s with lims→∞ π
L(s) =

−∞ and lims→0 π
L(s) = µb

r
− γ(γ+r)F

rµ2b
. Hence, to have πL(s) > 0 for some s, a
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necessary condition is
µb

r
− γ(γ + r)F

rµ2b
> 0 (30)

and s ∈ (0, s∗), where (given (30)) s∗ is defined by π(s∗) = 0. Observe that for

F → 0, (30) is satisfied and s∗ → ∞. That is, as F approaches zero, πL(s) > 0

for any s ≥ 0.

Consider next condition (ii). Note that the differential equation (25) with

boundary condition πLs = π(s) has a unique solution given by

πLs =

∫ s

s

e−r(τ−s)µbxτdτ + e−r(s−s)π(s) (31)

for s < s. Given πLs , consider now the solution to (24). This is a linear equation

in Ψs with time dependent coefficients that can be rewritten as

Ψ̇s = f1(s, s) + f2(s)Ψs,

where f1(s, s) = µbxs−(γ+r)πH0 +γπLs , f2(s) = µ2bxs+γ+r, and πH0 = Ψ+F+πL.

A closed-form solution given initial condition Ψ0 = 0 is

Ψs =

∫ s

0

f1(τ , s)e
∫ s
τ f2(i)didτ .

Hence, there exists s > 0 such that Ψs = (γ+r)F

µ2bx
if and only if

∫ s

0

f1(τ , s)e
∫ s
τ f2(i)didτ =

(γ + r)F

µ2bxs
. (32)

Note that for every s > 0, (γ+r)F

µ2bxs
goes to zero as F → 0, since xs is given by

the solution to (3) with initial condition x0 = 1 and is thus independent of F .

Furthermore, as F → 0, f1(s, s) tends to a positive limit, uniformly in s ∈ (0, s).

To see this, note that, using (27), limF→0 π
H
0 = µbx

r
, and thus

lim
F→0

f1(s, s) = µbxs − (γ + r)
µbx

r
+ γπLs .
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Since πLs > e−r(s−s)πLs for s < s (see (31)),

lim
F→0

f1(s, s) > µbxs − (γ + r)
µbx

r
+ γe−r(s−s)

µbxs
r

.

Simplifying this expression, we find that limF→0 f1(s, s) is positive for all s ∈
(0, s) if and only if

xs
x
− 1 ≥ γ

r

(
1− e−r(s−s)

)
. (33)

Both sides of this inequality are zero at s = s; hence, it suffices to show that

for s ∈ (0, s), the derivative of the left-hand side is smaller than that of the

right-hand side, i.e.

ẋs < −γxe−r(s−s). (34)

By (3) (and the fact that xs > x and 1 > e−r(s−s) for s < s), this condition is

satisfied for all s < s.

The fact that f1(s, s) goes to a positive limit uniformly in s ∈ (0, s) when F

goes to zero (while f2(s) does not depend on F ) implies that the left-hand side

of (32) also goes to a positive value, as it is the integral of a uniformly positive

function. Therefore, we have obtained that as F → 0, the left-hand side of (32)

tends to something positive and the right-hand side to zero. Note also that as

s → 0, the left-hand side of (32) tends to zero while the right-hand side has a

positive limit. By continuity of (32) in s, we conclude that for F small enough,

there exists s that satisfies (32).

We have then shown that there exists F > 0 such that if F ≤ F , both

conditions (i) and (ii) are satisfied, and note that Assumption 2 (i.e. µb ≥ (γ +

r)F ) also holds. It is immediate that if F > F , these conditions cannot be

satisfied.

Step 5: Uniqueness of s. We show that the threshold time s ∈ (0,∞) is

unique if γ > r. Rewrite (32) as

x

∫ s

0

[
µbxτ − (γ + r)πH0 + γπLτ

]
e
∫ s
τ (µ2bxi+γ+r)didτ =

(γ + r)F

µ2b
. (35)

37



Note that using (22) and (27), we have

−(γ + r)πH0 = −γ(Ψ + F + πL)− r(Ψ + F )− µbx+ γΨ + (1− x)(γ + r)F.

Thus, using again (22), we can rewrite (35) as

x

∫ s

0

{
µb(xτ − x) + γ(πLτ − πL)

−(γ + r)Fx− rF (γ+r)

µ2bx

}
e
∫ s
τ (µ2bxi+γ+r)didτ =

(γ + r)F

µ2b
. (36)

Denote the left-hand side of (36) by LHS(s) and the right-hand side by RHS.

We show that if s′ is an equilibrium, then LHS(s) is strictly increasing at s =

s′. Since LHS(s) and RHS are continuous, this implies that the equilibrium

threshold time s is unique: for any set of parameters, there exists a unique point

s′ where LHS(s′) = RHS. The derivative of LHS(s) with respect to s is

∂LHS(s)

∂s
= Ψs

∂x

∂s
+x


∫ s

0

[[
−µb− (γ + r)F + rF (γ+r)

µ2bx2

]
∂x
∂s + γ ∂(πLτ −πL)

∂s

]
e
∫ s
τ (µ2bxi+γ+r)didτ

+Ψs(µ
2bx+ γ + r)− (γ + r)Fx− rF (γ+r)

µ2bx

 .

Substituting with ∂x
∂s

= −γx−x2(1−x)µ2b, ∂(πLτ −πL)
∂s

= erτµbx+µbx(1−e−r(s−τ)),

and Ψs = Ψ, and canceling and rearranging terms yields

∂LHS(s)

∂s
= x

∫ s

0

{ [
µb+ (γ + r)F

] [
γx+ x2(1− x)µ2b

]
− rγ F (γ+r)

µ2bx

−rF (γ + r)(1− x) + γµbx
(
erτ + 1− e−r(s−τ)

) }
e
∫ s
τ (µ2bxi+γ+r)didτ.

Note that (27) and πL > 0 imply µbx > γ F (γ+r)

µ2bx
+ F (γ + r)(1 − x). Hence, a

sufficient condition for ∂LHS(s)
∂s

> 0 is

[
µb+ (γ + r)F

] [
γx+ x2(1− x)µ2b

]
+ γµbx

(
erτ + 1− e−r(s−τ)

)
> rµbx,

which is satisfied for r small enough, and in particular if γ ≥ r.

Step 6: Other equilibria. Consider first the claim that any continuous equilib-

rium with positive investment must be as characterized in Proposition 1. We be-

gin by showing that any continuous equilibrium with positive investment where,

at each time s ≥ 0, the principal either is indifferent or does not have incentives

to invest, must be as characterized in the proposition. Suppose by contradiction
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that this is not the case. Then there exists an equilibrium in which the prin-

cipal is indifferent (and invests) over an interval of time [s′, s′′] and she strictly

prefers not to invest over (s′′, s′′′), where s′ ≥ 0 and s′′ is finite. Such an equi-

librium must have s′ > 0, as otherwise the principal’s indifference would require

µΨ0a0 = (γ + r)F , which cannot be satisfied since Ψ0 = 0 by definition. Note

that qs cannot go to zero continuously as s approaches s′′: as shown in Step

1 and Step 4, for any given initial value s′ > 0, the principal’s indifference

conditions uniquely determine the evolution of qs and imply qs > 0 for finite

s. Hence, qs must jump down to zero at s′′. It follows that ẋs and therefore

µ
(
Ψ̇sas + Ψsȧs

)
also jump down at s′′. Now note that the principal’s indifference

requires Λs = F for s ∈ [s′, s′′], implying Λ̇s = (γ + r)Λs − µasΨs = 0 and
˙̇Λs = (γ + r)Λ̇s − µ

(
Ψ̇sas + Ψsȧs

)
= 0 for s ∈ (s′, s′′). Therefore, we obtain

that ˙̇Λ jumps up to a strictly positive value at s′′ (note that Λ̇s is continuous),

and as a consequence Λs increases strictly above F at that time. This yields a

contradiction as the principal’s strict incentives not to invest over (s′′, s′′′) require

Λs < F for those times.

We next show that a continuous equilibrium in which the principal has strict

incentives to invest over some time interval does not exist. Suppose by contradic-

tion that it does. Let s′ ≥ 0 be the earliest time at which the principal strictly

wants to invest in this equilibrium. The agent’s belief at s′ is xs′ = 1. Note

that the agent’s belief cannot increase continuously towards xs′ = 1: this would

require that the principal use a mixed investment strategy, and therefore that

she be indifferent between investing and not, while the belief increases; however,

the principal’s indifference conditions yield a strictly decreasing agent belief (see

Step 1). Hence, if s′ > 0, the agent’s belief would jump up at s′, which cannot

occur in a continuous equilibrium. It follows that s′ = 0 and the principal has

strict incentives to invest at s ∈ [0,∆), for some ∆ > 0. This means that for

each s ∈ [0,∆), the principal (weakly) prefers to invest at s rather than at s+ δ,

for any δ ∈ (0,∆ − s). However, for s = 0 and δ arbitrarily small, this implies

µa0Ψ0 ≥ (γ + r)F , which cannot be satisfied since Ψ0 = 0 by definition. This

completes the proof that any continuous equilibrium with positive investment

must be as characterized in Proposition 1.

Finally, consider the claim that there exists F > 0 such that a continuous
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equilibrium with no investment does not exist if F ≤ F . Suppose that a continu-

ous equilibrium with no investment exists. Then the agent’s belief xs follows the

law of motion in (3), and so the agent’s effort as = µbxs is decreasing at all s.

But then it is immediate that Λs > 0 for all s <∞ and Λ̇s > 0 in a neighborhood

of 0 (cf. (23) and Ψ0 = 0). Hence, for F > 0 small enough, there exists s such

that Λs > F and µasΨs ≥ (γ+ r)F ; that is, the principal has strict incentives to

invest at s, yielding a contradiction.
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Supplementary Appendix for Online Publication

This Online Appendix contains the proof of our results for the undiscounted

limit discussed in Section 2, the proof of Proposition 2, details for the discussion

of the forward-looking agent case described in Section 4, and an analysis of

discontinuous equilibria.

B Undiscounted limit

Denote a ≡ lims→∞ as. We prove the following result:

Proposition 3. Fix any set of parameters (γ, µ, b) and consider the limit as r

goes to zero. Let F < F so that the equilibrium of Proposition 1 exists. As

F approaches F , a vanishes, so the probability of returning to high performance

goes to zero as time passes without recognition.

Proof. Consider Ψ̇s for s ≤ s, given by equation (26). In the limit as r → 0, we

have

Ψ̇s = µbxs − γ(F + Ψ−Ψs) + γµb

∫ s

s

xtdt+ µ2bxsΨs − a, (37)

where a = rπLs . Using (27) and substituting with (22),

a = µbx− γ2F

µ2bx
− (1− x)γF. (38)

Substituting (22) and (38) in (37) yields

Ψ̇s = µbxs − γ
(
F +

γF

µ2bx
−Ψs

)
+ γµb

∫ s

s

xtdt+ µ2bxsΨs −
[
µbx− γ2F

µ2bx
− (1− x)γF

]
=
(
µ2bxs + γ

)
Ψs + µb(xs − x) + γµb

∫ s

s

xtdt− γFx.

Solving this differential equation with initial condition Ψ0 = 0 gives that for

s ≤ s,

Ψs =

∫ s

0

[
µb(xτ − x) + γµb

∫ s

τ

xtdt− γFx
]
e
∫ s
τ (µ2bxi+γ)didτ . (39)
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Following the same steps as in the proof of Proposition 1, an equilibrium is a

value of s ∈ (0,∞) such that (i) a ≥ 0 and (ii) Ψs = Ψ. For condition (i), note

that the right-hand side of (38) is increasing in x and ∂x
∂s

= −γx−x2(1−x)µ2b < 0,

so a is decreasing in s. Note also that the value of s that makes a = 0 is finite.

Hence, making the dependence of a on s explicit, a(s) ≥ 0 is equivalent to

s ≤ smax for smax defined by a(smax) = 0. Note that smax is a continuous and

differentiable function of parameters.

Using (39), condition (ii) is equivalent to

x

∫ s

0

[
µb(xτ − x) + γµb

∫ s

τ

xtdt− γFx
]
e
∫ s
τ (µ2bxi+γ)didτ =

γF

µ2b
. (40)

Denote the left-hand side of (40) by lhs(s) and the right-hand side by rhs. We

show that if s′ is an equilibrium, then lhs(s) is strictly increasing at s = s′. The

derivative of lhs(s) with respect to s is

∂lhs(s)

∂s
= Ψs

∂x

∂s
+ x

{ ∫ s
0

[
−(µb+ γF )∂x

∂s
+ γµbx

]
e
∫ s
τ (µ2bxi+γ)didτ

+Ψs(µ
2bx+ γ)− γFx

}
.

Substituting with ∂x
∂s

= −γx − x2(1 − x)µ2b and Ψs = Ψ and canceling and

rearranging terms yields

∂lhs(s)

∂s
= x

{
(µb+ γF )[γx+ x2(1− x)µ2b] + γµbx

}∫ s

0

e
∫ s
τ (µ2bxi+γ)didτ > 0.

Since both lhs(s) and rhs are continuous, this implies that the equilibrium

threshold time s is unique: there exists a unique point s′ where lhs(s′) = rhs.

Moreover, the fact that the derivative of lhs(s) is bounded away from zero al-

lows to apply the Implicit Function Theorem and obtain that the equilibrium is

continuous (in fact differentiable) in the parameters. Hence, given an original

equilibrium s′ with s′ < smax′, a new equilibrium with s′′ < smax
′′

exists for any

local change of parameters.

We next show that increasing F reduces a. Together with the results above,

this implies that starting from any given continuous equilibrium with investment,

one can increase F until a becomes arbitrarily close to zero in equilibrium. Note

42



that for a fixed s, rhs increases when F increases whereas lhs(s) decreases point-

wise. Therefore, the point s at which lhs(s) = rhs increases when F increases.

Note that x depends on F only through s, and ∂s
∂F

> 0 implies ∂x
∂F

< 0. Hence,

using (38),

∂a

∂F
=

(
µb+

γ2F

µ2bx2
+ γF

)
∂x

∂F
− γ2

µ2bx
− (1− x)γ < 0.

Q.E.D.

C Proof of Proposition 2

The case with µ > ν is analogous to that studied in Proposition 1 and thus

omitted. Consider µ ≤ ν.

The construction of the equilibrium is simple. Given a threshold time ŝ ∈
(0,∞), the law of motion for the agent’s belief on [0, ŝ] is given by (9). The

solution to this differential equation with initial condition x0 = 1 yields the

agent’s belief xs and the agent’s effort as = (µb − νb)xs for s ∈ [0, ŝ]. Since the

right-hand side of (9) is Lipshitz continuous in x, it follows from the Picard-

Lindelöf theorem that there exists a solution and it is unique. Note that this

solution does not depend on ŝ, and that both xs and as are decreasing for all

s < ŝ. Denote the values at ŝ by xŝ ≡ x̂(ŝ) and aŝ ≡ â(ŝ); we omit the dependence

on ŝ in what follows.

As explained in the text, (10) implies that the agent’s effort must be constant

for all s ≥ ŝ. Therefore, given continuity of xs, the agent’s belief and effort must

be xs = x̂ and as = â for all s ≥ ŝ. Moreover, given these constant values, the

principal’s investment is also pinned down: setting ẋs = 0 in (8), we obtain that

for all s ≥ ŝ, qs must be equal to

q̂ =
γx̂

1− x̂
+ x̂[µâ+ ν(1− â)].

Consider now the claim that any continuous equilibrium with positive in-

vestment must take this form. First, note that this equilibrium is the unique

continuous equilibrium with positive investment where, at each time s ≥ 0, the
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principal either is indifferent or does not have incentives to invest. This follows

from (10), which implies that in any continuous equilibrium, the agent’s effort

and the principal’s value of recognition must be constant for all times s ≥ s̃ if the

principal is indifferent between investing and not investing at s̃. Next, consider

continuous equilibria in which the principal has strict incentives to invest over

some time interval. By the same reasoning as in the proof of Proposition 1, there

exists ∆ > 0 such that the principal has strict incentives to invest at s ∈ [0,∆].

However, this requires [µa0 + ν(1− a0)]Ψ0 ≥ (γ + r)F , which cannot be satisfied

since Ψ0 = 0. Thus, a continuous equilibrium in which the principal has strict

incentives to invest does not exist, and the claim follows.

Finally, we prove the claims in fn. 18. As explained above, the solution to (9)

(with initial condition x0 = 1) uniquely determines xs, and thus as = (µb−νb)xs,
for s ≤ ŝ, independently of the value of ŝ. Moreover, note that for any given ŝ,

the values of as, π
L
s and πHs are pinned down for s ≥ ŝ—these values are as = â,

πLs = â
r
, and πHs = πLs + F—and as a result the values of πLs and πHs are also

pinned for s ≤ ŝ:

πLs =

∫ ŝ

s

e−r(τ−s)aτdτ + e−r(ŝ−s)
â

r
,

πHs =

∫ ŝ

s

e−(γ+r)(τ−s)−
∫ τ
s [µaz+ν(1−az)]dz

{
aτ + γπLτ + [µaτ + ν(1− aτ )]πH0

}
dτ

+e−(γ+r)(ŝ−s)−
∫ ŝ
s [µaz+ν(1−az)]dz

(
â

r
+ F

)
. (41)

Using (41), it follows that for any given ŝ, Ψŝ = πH0 − πHŝ is given by

Ψŝ =

∫ ŝ

0

e−(γ+r)τ−
∫ τ
0 [µaz+ν(1−az)]dz

{
(aτ − â) + γ(πLτ − πLŝ )

+[µaτ + ν(1− aτ )]Ψŝ − (γ + r)F

}
dτ .

It is immediate to verify that Ψŝ is strictly increasing in ŝ and is thus bounded

above by limŝ→∞Ψŝ, which is finite. Note that µâ + ν(1 − â) is also strictly

increasing in ŝ and is bounded above by ν. Therefore, it follows that there exists

F̂ > 0 such that a time ŝ at which (10) is satisfied (i.e., Ψŝ[µaŝ + ν(1 − aŝ)] =

(γ + r)F ) exists if and only if F ≤ F̂ , and such a time ŝ is unique. Given
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the construction and claims above, this proves that a continuous equilibrium

with positive investment exists if and only if F is small enough, and such an

equilibrium is unique.

D Details for Section 4

In this section, we describe how we solve numerically the case of a forward-looking

agent discussed in Section 4.

Agent’s problem. The agent’s expected payoff at s = 0 is

U0 =

∫ ∞
0

e−rs(1−Rs)

[
µxsas

(
b+ U0

)
− 1

2
a2
s

]
ds, (BC0)

where Rs ≡ 1− e−
∫ s
0 µxτaτdτ . The agent’s optimization problem is

max
as

U0 =

∫ ∞
0

e−rs(1−Rs)

[
µxsas

(
b+ U0

)
− 1

2
a2
s

]
ds

subject to ẋ = −γxs − xs(1− xs)µas + (1− xs)qs, (42)

Ṙs = (1−Rs)µasxs, (43)

x0 = 1, R0 = 0. (BC1)

Note that given the principal’s equilibrium strategy, the agent faces a relatively

simple single-agent experimentation problem where the evolution of the under-

lying state (the principal’s type) depends only on recognition, as the principal’s

investment is only a function of the time that has passed since recognition (and

her type). The agent’s action affects both the payoff process and the learning

process, and the forward-looking agent takes this into account when choosing

effort. In particular, we solve for the agent’s optimal sequence of effort taking

into account how his belief will evolve and affect effort choices depending on the

effort he chooses. This computation ensures that no deviation (including double

deviations) is profitable for the agent.
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For multipliers λ1s, λ2s, the Hamiltonian is:

H =

∫ ∞
0

{
e−rs(1−Rs)

[
µxsas

(
b+ U0

)
− 1

2
a2
s

]
+ λ1sẋs + λ2sṘs

}
ds.

The first order conditions with respect to as, λ1s and λ2s yield

0 = e−rs(1−Rs)
[
µxs

(
b+ U0

)
− as

]
− λ1sxs(1− xs)µ+ λ2s(1−Rs)µxs,

− ˙λ1s = e−rs(1−Rs)µas(b+ U0)− λ1s [γ + (1− 2xs)µas + qs] + λ2s(1−Rs)µas,

− ˙λ2s = −e−rs
[
µxsas(b+ U0)− 1

2
a2
s

]
− λ2sµasxs.

Replacing with m1s = λ1se
rs and m2s = λ2se

rs,

0 = (1−Rs)
[
µxs(b+ U0)− as

]
−m1sxs(1− xs)µ+m2(1−Rs)µxs, (44)

−ṁ1s + rm1s = (1−Rs)µas(b+ U0)−m1s [γ + (1− 2xs)µas + qs] +m2s(1−Rs)µas, (45)

−ṁ2s + rm2s = −
[
µxsas(b+ U0)− 1

2
a2
s

]
−m2sµasxs. (46)

The transversality condition on m1s and m2s is

lim
s→∞

e−rsm1s = lim
s→∞

e−rsm2s = 0. (BC2)

Given the principal’s investment qs, the agent’s effort and belief are determined

by equations (42)-(46) and boundary conditions (BC0)-(BC2).

Equilibrium dynamics and smooth pasting. We consider an equilibrium

with threshold time s ∈ (0,∞) so that the principal does not invest at s < s

and she mixes between investing and not investing at s ≥ s. As in the case of a

myopic agent, we have that for s < s,

Λ̇s = (γ + r)Λs − µasΨs, (47)

Ψ̇s = −Λ̇s − π̇Ls , (48)

π̇Ls = −as + rπLs , (49)
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with boundary conditions

Λs = F, Ψ0 = 0, and πLs = πL, (BC3)

where Ψ = (γ+r)F
µas

and πL is derived below.

For s ≥ s, Λs = F , so the system is

Λ̇s = 0, (50)

Ψ̇s = −π̇Ls , (51)

π̇Ls = −as + rπLs , (52)

with boundary conditions

Λs = F, Ψs = Ψ, and πLs = πL. (BC4)

The value of πL is obtained from smooth pasting: we require that as and xs be

continuously differentiable at s. This gives

πL =
as − Ψ̇s

r
=

1

r

(
(r + γ)F

µΨs

+
ȧsµΨ2

s

(γ + r)F

)
.

Solving for the equilibrium. We find values (s, U0,m10,m20) such that equa-

tions (42)-(52) and boundary conditions (BC0)-(BC4) are satisfied. Begin by

fixing a set of initial values (s, U0,m10,m20). We proceed as follows:

1. Solve the agent’s problem for s < s. Given (s, U0,m10,m20) and initial

conditions (BC1), and setting qs = 0, we can solve (42)-(46) on [0, s]. We

obtain as, xs, Rs,m1s, and m2s for s < s.

2. Solve the system characterizing equilibrium dynamics for s ≥ s. We solve

(50)-(52) given the boundary conditions (BC4). We obtain as, π
L
s ,Ψs, and

Λs for s ≥ s.

3. Solve for the agent’s belief and the principal’s investment for s ≥ s. We

obtain the belief xs on [s,∞) by inputting the effort path as obtained in

step 2 into the agent’s problem (42)-(46). Then having solved for xs and
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as, we can solve for the investment qs on [s,∞). We obtain qs, xs, Rs,m1s,

and m2s for s ≥ s.

4. Solve the system characterizing equilibrium dynamics for s < s. We solve

(47)-(49) given boundary conditions (BC3). Note that the value of Λs is

unknown here but we can solve the system because as is pinned down at

this point. We obtain πLs ,Ψs, and Λs for s ≤ s.

5. Compare solution to initial values. Having solved for all variables, com-

pute now the resulting values for the value of recognition and the agent’s

expected payoff at time s = 0, which we can denote by Ψ̃0 and Ũ0 respec-

tively, and the limits lims→∞ e
−rsm1s and lims→∞ e

−rsm2s. If given initial

values (s, U0,m10,m20), we obtain Ψ̃0 = 0, Ũ0 = U0, lims→∞ e
−rsm1s = 0,

and lims→∞ e
−rsm2s = 0, then we have found an equilibrium. Otherwise

we change the initial values, searching on a grid of (s, U0,m10,m20), until

these four conditions are satisfied up to some precision target.

E Discontinuous equilibria

Consider the setting of Section 1. Our analysis in the paper restricted attention to

equilibria in which the agent’s belief as a function of the time since recognition, xs,

is continuous. In this section, we study equilibria in which this belief can jump.

Because such equilibria can in principle take many arbitrary forms, we focus on

a simple class of discontinuous equilibria that are stationary. We show that the

principal prefers the continuous equilibrium characterized in Proposition 1 to any

discontinuous equilibrium in this class.

We define a stationary discontinuous equilibrium as an equilibrium in which

the principal does not invest except in countably many points s1, s2, . . . such that,

for all n ∈ N = {1, 2, . . .}, (i) sn+1 = sn+∆ for some ∆ > 0, and (ii) the principal

invests with a mass probability κ > 0 at sn. Denote the set of times at which

the principal invests by J = {s1, s1 + ∆, s1 + 2∆, . . .}. s1, ∆, and κ are such that

for some 0 ≤ x− < x+ ≤ 1, the agent’s belief that the principal is a high type

satisfies xs− = x− and xs+ = x+ for all s ∈ J . Let s0 ≡ min{s : xs = x+}; note

that s1 − s0 = ∆.
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Figure 4 depicts a discontinuous equilibrium. (While the scale makes it diffi-

cult to see, the values of all variables shown in the figure are strictly positive at

all s ≥ 0.) At each time s ∈ J at which the principal invests, the agent’s belief

xs jumps from x− to x+, and so effort as jumps from a− = µbx− to a+ = µbx+.

At all other times s /∈ J , the evolution of xs is given by the law of motion

(3), the same one that describes the agent’s belief over [0, s] in the continuous

equilibrium. Note that since the principal has incentives to invest only at the

instants s ∈ J , she must be indifferent between investing and not investing at

these times.26 Also, by construction, the low type and high type’s expected pay-

offs are the same at each s ∈ J ∪ s0, and hence the principal is also indifferent

at s0. Analogous to (6) and (7), it follows that Λs = F and µa+Ψs = (γ + r)F

at all s ∈ J ∪ s0.

It is worth noting that in any stationary discontinuous equilibrium, ∆ must be

bounded from below by a strictly positive value.27 Although the smooth pasting

condition need not be satisfied in a discontinuous equilibrium, roughly speaking

the intuition is related to that for smooth pasting in the continuous equilibrium:

if ∆ is too small, the principal’s indifference between investing and not when

she invests would imply that she has strict incentives to invest at a previous

point. Thus, as discussed in the paper, an equilibrium where the agent’s belief

is constant from (approximately) the time at which the principal starts investing

does not exist.

Comparing with the continuous equilibrium of Proposition 1, we find:28

Proposition 4. The principal’s expected payoff at s = 0, πH0 , is higher in the

continuous equilibrium of Proposition 1 than in any stationary discontinuous

equilibrium.

26If the principal had strict incentives to invest at s ∈ J , she would invest over a time interval
[s− ε, s+ ε] for some ε > 0.

27To prove this, we can show that s0 ≤ s ≤ s1, which implies that if ∆ (and thus κ) were to
go to zero, then s0 and s1 would go to s. However, in this limit, the discontinuous equilibrium
would yield a higher payoff for the principal at s = 0, πH0 , than the continuous equilibrium of
Proposition 1, contradicting Proposition 4 below. A formal proof for the claim that s0 ≤ s ≤ s1
is available from the authors upon request.

28A welfare analysis of the agent is uninteresting because the agent is myopic. A myopic
agent is indifferent between the continuous and discontinuous equilibria at time s = 0; at any
other time, he prefers the equilibrium that induces higher effort.
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Figure 4: Dynamics in the continuous equilibrium (solid lines) and the discon-
tinuous equilibrium (dashed lines). Parameters are the same as in Figure 1. Recs
is the unconditional instantaneous probability of recognition, given by µxsas. The
vertical lines indicate the times s and s0.
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Proof. Using superscripts d and c to denote variables in the discontinuous equilib-

rium and the continuous equilibrium respectively, we have xds = xcs and ads = acs at

all 0 ≤ s ≤ min{s, s1}, and xds+ = xds0 and ads+ = ads0 for all s ∈ J . As for the prin-

cipal’s incentives, as noted, indifference implies Λd
s = F and µads0Ψ

d
s = (γ + r)F

at each s ∈ J ∪ s0, and at any s /∈ J ∪ s0 we must have Λd
s < F . Finally, we will

use the fact that in the continuous equilibrium, µacsΨ
c
s ≤ (γ + r)F for all s ≤ s.

This follows from the proof of Proposition 1, where we show that the equilibrium

threshold time s is such that the left-hand side of (32) is less than the right-hand

side at all s ≤ s.

We now proceed by proving two claims.

Claim 1. If s0 > s, then πHc0 ≥ πHd0 .

Proof of Claim 1. Suppose by contradiction that s0 > s and πHd0 > πHc0 . Note

that s0 > s implies

µads0Ψ
d
s0 = (γ + r)F = µacs0Ψ

c
s0

where ads0 < acs0 . Therefore,

Ψd
s0 = πHd0 − πHds0 > πHc0 − πHcs0 = Ψc

s0 . (53)

Now note that we can write

πHd0 =

∫ s0

0

e−(γ+r)τ−
∫ τ
0 µadτ̃dτ̃

[
adτ + γπLdτ + µadτπ

Hd
0

]
dτ + e−(γ+r)s0−

∫ s0
0 µadτ̃dτ̃πHds0

<

∫ s0

0

e−(γ+r)τ−
∫ τ
0 µacτ̃dτ̃

[
acτ + γ

(∫ s0

τ

e−r(τ̃−τ)acτ̃dτ̃ + e−r(s
0−τ)πLds0

)
+ µacτπ

Hd
0

]
dτ

+e−(γ+r)s0−
∫ s0
0 µacτ̃dτ̃πHds0 ,

where the inequality follows from the fact that ads = acs for s ∈ [0, s], ads < acs for

s ∈ [s, s0], and πHd0 > πHds for s ∈ (0, s0]. It then follows that

πHd0 − πHc0 <

∫ s0

0

e−(γ+r)τ−
∫ τ
0 µacτ̃dτ̃

[
γe−r(s

0−τ)
(
πLds0 − πLcs0

)
+ µacτ

(
πHd0 − πHc0

)]
dτ

+e−(γ+r)s0−
∫ s0
0 µacτ̃dτ̃

(
πHds0 − πHcs0

)
. (54)
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Note that πLds0 = πHds0 − F and πLcs0 = πHcs0 − F ; hence, substituting,

πHd0 − πHc0 <

∫ s0

0

e−(γ+r)τ−
∫ τ
0 µacτ̃dτ̃

[
γe−r(s

0−τ)
(
πHds0 − πHcs0

)
+ µacτ

(
πHd0 − πHc0

)]
dτ

+e−(γ+r)s0−
∫ s0
0 µacτ̃dτ̃

(
πHds0 − πHcs0

)
. (55)

Recall that by the contradiction assumption, πHd0 > πHc0 . But then (55) requires

πHd0 − πHc0 < πHds0 − πHcs0 , contradicting (53).29‖

Claim 2. If s0 ≤ s, then πHc0 ≥ πHd0 .

Proof of Claim 2. Suppose by contradiction that s0 ≤ s and πHd0 > πHc0 . Note

that s0 ≤ s implies

µads0Ψ
d
s0 = (γ + r)F ≥ µacs0Ψ

c
s0 .

Note that ads = acs for s ∈ [0, s0]. Hence, we obtain

Ψd
s0 = πHd0 − πHds0 ≥ πHc0 − πHcs0 = Ψc

s0 . (56)

Now note that given ads = acs for s ∈ [0, s0], we can write

πHd0 − πHc0 =

∫ s0

0

e−(γ+r)τ−
∫ τ
0 µacτ̃dτ̃

[
γ
(
πLdτ − πLcτ

)
+ µacτ

(
πHd0 − πHc0

)]
dτ

+e−(γ+r)s0−
∫ s0
0 µacτ̃dτ̃

(
πHds0 − πHcs0

)
. (57)

29To see why (55) requires πHd0 − πHc0 < πHds0 − πHcs0 , divide both sides by πHd0 − πHc0 under
the assumption that πHd0 − πHc0 > 0:

1 <

∫ s0

0

e−(γ+r)τ−
∫ τ
0
µacτ̃dτ̃

[
γe−r(s

0−τ)
(
πHds0 − πHcs0
πHd0 − πHc0

)
+ µacτ

]
dτ+e−(γ+r)s

0−
∫ s0
0

µacτ̃dτ̃

(
πHds0 − πHcs0
πHd0 − πHc0

)
.

The claim follows from the fact that

1 =

∫ s0

0

e−(γ+r)τ−
∫ τ
0
µacτ̃dτ̃ [r + γ + µacτ ] dτ + e−(γ+r)s

0−
∫ s0
0

µacτ̃dτ̃ .
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For any τ ≤ s0,

πLdτ − πLcτ = e−r(s
0−τ)

(
πLds0 − πLcs0

)
≤ e−r(s

0−τ)
(
πHds0 − πHcs0

)
,

where the last inequality follows from the fact that πLds0 = πHds0 − F whereas

πLcs0 ≥ πHcs0 − F . Hence, substituting
(
πLdτ − πLcτ

)
in (57), we obtain

πHd0 − πHc0 ≤
∫ s0

0

e−(γ+r)τ−
∫ τ
0 µacτ̃dτ̃

[
γe−r(s

0−τ)
(
πHds0 − πHcs0

)
+ µacτ

(
πHd0 − πHc0

)]
dτ

+e−(γ+r)s0−
∫ s0
0 µacτ̃dτ̃

(
πHds0 − πHcs0

)
. (58)

Recall that by the contradiction assumption, πHd0 − πHc0 > 0. But then (58)

requires πHd0 − πHc0 < πHds0 − πHcs0 , contradicting (56).30‖ Q.E.D.

30This can be verified following analogous steps to those in fn. 29.
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