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APPROXIMATION PROPERTIES OF β-EXPANSIONS II

SIMON BAKER

ABSTRACT. Let β ∈ (1, 2) be a real number. For a function Ψ : N → R≥0, define Wβ(Ψ) to be
the set of x ∈ R such that for infinitely many n ∈ N, there exists a sequence (εi)

n
i=1 ∈ {0, 1}n

satisfying 0 ≤ x −
∑n
i=1

εi
βi ≤ Ψ(n). In [1], the author conjectured that for Lebesgue almost

every β ∈ (1, 2), the condition
∑∞
n=1 2nΨ(n) = ∞ implies that Wβ(Ψ) is of full Lebesgue

measure within [0, 1
β−1 ]. In this paper we make a significant step towards proving this conjecture.

We prove that given a sequence of positive real numbers (ωn)∞n=1 satisfying limn→∞ ωn = ∞,
for Lebesgue almost every β ∈ (1, 497 . . . , 2), the set Wβ(ωn · 2−n) is of full Lebesgue measure
within [0, 1

β−1 ]. We also study the case where
∑∞
n=1 2nΨ(n) < ∞ in which the set Wβ(Ψ) has

Lebesgue measure zero. Applying the mass transference principle developed by Beresnevich and
Velani in [3], we obtain some results on the Hausdorff dimension and the Hausdorff measure of
Wβ(Ψ).

1. INTRODUCTION

Expansions in non-integer bases were pioneered in the late 1950’s with the papers of Parry
[14] and Rényi [17]. Since then they have been studied by many authors and have connections
with ergodic theory, fractal geometry, and number theory (see the survey articles [12] and [20]).
In this article we study expansions in non-integer bases from the perspective of Diophantine
approximation and metric number theory.

Classical Diophantine approximation is concerned with the approximation properties of the
rational numbers. These approximation properties are described via a limsup set in the following
general way. Given Ψ : N→ R≥0 we associate the set

J(Ψ) : =
∞⋂
n=1

∞⋃
q=n

⋃
p∈Z

[p
q
−Ψ(q),

p

q
+ Ψ(q)

]
=
{
x ∈ R :

∣∣∣x− p

q

∣∣∣ ≤ Ψ(q) for infinitely many (p, q) ∈ Z× N
}
.

A well known theorem due to Khintchine [11] states that if Ψ is a non-increasing function and∑∞
q=1 qψ(q) =∞, then almost every x ∈ R is contained in J(Ψ). By the Borel-Cantelli lemma,

if
∑∞

q=1 qψ(q) < ∞ then J(Ψ) has zero Lebesgue measure. In a significant paper Duffin and
Schaeffer [5] showed that in the statement of Khitchine’s theorem, it is not possible to remove
the monotonicity assumption on Ψ. They constructed a function Ψ : N → R≥0 for which
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2 SIMON BAKER∑∞
q=1 qΨ(q) =∞, yet J(Ψ) has zero Lebesgue measure. In the statement of Khintchine’s theo-

rem, almost every is meant with respect to the Lebesgue measure. Throughout this paper when-
ever we use the phrase “almost every”, we always mean with respect to the Lebesgue measure.
We denote the Lebesgue measure by λ(·).

This article is motivated by the following question:

Does an analogue of Khintchine’s theorem hold within expansions in non-integer bases?

Before stating the appropriate analogue of Khintchine’s theorem, it is necessary to recall some
of the theory behind expansions in non-integer bases.

1.1. Expansions in non-integer bases. Let β ∈ (1, 2) and Iβ := [0, 1
β−1 ]. Given x ∈ Iβ we call

a sequence (εi)
∞
i=1 ∈ {0, 1}N a β-expansion for x if

x =
∞∑
i=1

εi
βi
.

Note that x has a β-expansion if and only if x ∈ Iβ . Despite being a simple generalisation of
the well known integer base expansions, β-expansions exhibit very different behaviour. As an
example, a well known theorem of Sidorov [19] states that for any β ∈ (1, 2), almost every
x ∈ Iβ has a continuum of β-expansions. This is of course completely different to the usual
integer base expansions, where every number has a unique expansion except for a countable set
of exceptions which have precisely two.

Given β ∈ (1, 2) and a sequence (εi)
n
i=1 ∈ {0, 1}n, we call the number

∑n
i=1 εiβ

−i the level
n sum corresponding to (εi)

n
i=1 ∈ {0, 1}n. Moreover, given x ∈ Iβ we call a sequence (εi)

n
i=1 ∈

{0, 1}n an n prefix for x, if there exists (εn+i)
∞
i=1 such that

(1.1) x =
n∑
i=1

εi
βi

+
∞∑
i=1

εn+i
βn+i

.

In other words, the sequence (εi)
n
i=1 is an n prefix for x if it can be extended to form a β-

expansion of x. When a sequence (εi)
n
i=1 satisfies (1.1), if there is no confusion we may refer to

both the sequence (εi)
n
i=1 and the number

∑n
i=1 εiβ

−i as an n prefix for x. The building blocks
of a β-expansion are the prefixes. As we will see below, the prefixes play the same role for us as
the rational numbers do in traditional Diophantine approximation.

Given β ∈ (1, 2) and Ψ : N→ R≥0 we associate the following limsup set:

Wβ(Ψ) :=
∞⋂
m=1

∞⋃
n=m

⋃
(εi)ni=1∈{0,1}n

[ n∑
i=1

εi
βi
,

n∑
i=1

εi
βi

+ Ψ(n)
]
.

Alternatively, Wβ(Ψ) is the set of x ∈ R such that for infinitely many n ∈ N, there exists a level
n sum satisfying the inequalities

(1.2) 0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n).
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Our goal is to understand how well a generic x ∈ Iβ can be approximated by its prefixes. In (1.2)
the approximation to x is given by a level n sum, not necessarily an n prefix for x. However, as is
explained in [1], if (1.2) is satisfied by an arbitrary (εi)

n
i=1, then it is also satisfied by an n-prefix

of x.
Our goal of understanding how well a generic x ∈ Iβ can be approximated by its prefixes, is

in a sense equivalent to understanding how uniformly the level n sums are distributed throughout
Iβ . If we can show that an optimal rate of approximation holds for a generic x, then the level n
sums should be distributed reasonably uniformly throughout Iβ . Similarly, if the level n sums
are well distributed within Iβ, we would expect to have good approximation properties. This
behaviour was observed in [1]. Understanding how the level n sums are distributed within Iβ
is a long standing and classical problem. For recent developments on this problem we refer the
reader to an important paper by Hochman [10], and the references therein. Given a β ∈ (1, 2),
one method for understanding how these sums are distributed is to study the properties of the
measure µβ, where

µβ(E) = P
({

(εi)
∞
i=1 ∈ {0, 1}N :

∞∑
i=1

εi
βi
∈ E

})
,

for any Borel set E ⊆ R. Here P is the (1/2, 1/2) probability measure on {0, 1}N. The measure
µβ is known as the Bernoulli convolution with respect to β. If µβ fails to be absolutely continuous
with respect to the Lebesgue measure, then it is expected that the level n sums will be distributed
in a far from uniform way. This statement is supported by the fact that the only known β ∈ (1, 2)
for which µβ is not absolutely continuous are the Pisot numbers, and in a Pisot base the level
n sums are poorly distributed. In a breakthrough paper, Solomyak [21] showed that for almost
every β ∈ (1, 2) the measure µβ is absolutely continuous with respect to the Lebesgue measure.
This was recently improved upon by Shmerkin [18] who showed that the set of β for which µβ
is not absolutely continuous has Hausdorff dimension zero. The study of the sets Wβ(Ψ) could
be interpreted as an alternative method for understanding the distribution of the level n sums.

As mentioned above, it is believed that if the level n sums are well distributed then µβ will be
absolutely continuous. The author expects that a similar property would imply a Khintchine type
result. The following definition introduces the set of β ∈ (1, 2) for which we have Khintchine
type behaviour. We call a β ∈ (1, 2) approximation regular, if

∑∞
n=1 2nΨ(n) = ∞ implies that

Wβ(Ψ) is of full measure within Iβ . Note that if
∑∞

n=1 2nΨ(n) < ∞, then Wβ(Ψ) will always
have zero Lebesgue measure by the Borel-Cantelli lemma. For a generic β we expect the level n
sums to be well distributed within Iβ, as such we made the following conjecture in [1].

Conjecture 1.1. Almost every β ∈ (1, 2) is approximation regular.

Conjecture 1.1 is our analogue of Khintchine’s theorem within expansions in non-integer
bases. Note that any β which satisfies a polynomial with coefficients in {−1, 0, 1} cannot be
approximation regular. As such, there is a dense set of exceptions to Conjecture 1.1. In [1] we
were able to verify Conjecture 1.1 for a class of algebraic integers known as Garsia numbers.
These numbers are the positive real algebraic integers with norm ±2, whose conjugates are all
of modulus strictly greater than 1. In particular the main result of [1] is the following.
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Theorem 1.2. All Garsia numbers are approximation regular.

Note that Garsia showed that whenever β is a Garsia number, the associate Bernoulli convolu-
tion µβ is absolutely continuous with respect to the Lebesgue measure, and has bounded density
[8]. In this paper we make a significant step towards a proof of Conjecture 1.1. Our main result
is the following.

Theorem 1.3. Let (ωn)∞n=1 be a sequence of real numbers that tend to infinity. Then for almost
every β ∈ (1.497 . . . , 2) the set Wβ(ωn · 2−n) is of full Lebesgue measure within Iβ .

The quantity 1.497 . . . is a constant appearing as a consequence of transversality arguments
used in [2]. The proof of Theorem 1.3 relies heavily on counting estimates appearing within
this paper. In the statement of Theorem 1.3 the sequence (ωn)∞n=1 should be interpreted as a
sequence that tends to infinity at a very slow rate. As an application of Theorem 1.3 we obtain
the following corollary.

Corollary 1.4. For almost every β ∈ (1.497 . . . , 2), the set of x ∈ Iβ with infinitely many
solutions to the inequalities

0 ≤ x−
n∑
i=1

εi
βi
≤ log n

2n
,

is of full Lebesgue measure within Iβ .

Remark 1.5. Note that any β which satisfies a height one polynomial, as well as failing to be
approximation regular, also satisfies λ(Wβ(log n·2−n)) = 0. So there is a dense set of exceptions
to Corollary 1.4. It is natural to ask about the set Iβ \Wβ(log n ·2−n). We will see later that there
exists β for whichWβ(log n ·2−n) is of full Lebesgue measure within Iβ , yet Iβ \Wβ(log n ·2−n)
has positive Hausdorff dimension.

One of the remaining difficulties in proving Conjecture 1.1 is not knowing how to deal with Ψ
for which

∑∞
n=1 2nΨ(n) = ∞, yet 2nΨ(n) is bounded. Another difficulty would be to replace

(1.497 . . . , 2) with (1, 2). Theorem 1.3 provides no answers in this case. However, Theorem 1.3
does at least demonstrate that studying approximations of the order 2−n is the correct action to
take.

Given Theorem 1.3, it is natural to ask whether a single β-expansion (εi)
∞
i=1 ∈ {0, 1}N can

satisfy

0 ≤ x−
n∑
i=1

εi
βi
≤ ωn

2n
,

for infinitely many n ∈ N? This happens whenever a mild technical condition is satisfied. We
say that (ωn)∞n=1 is growing regularly, if for each m ∈ N there exists Km ∈ N such that

(1.3)
ωn+m
ωn

≥ 1

Km

holds for every n ∈ N. We emphasise that the constant Km is allowed to depend on m. Note
that a sequence (ωn)∞n=1 satisfies the growing regularly property whenever (ωn)∞n=1 is increasing,
by simply taking Km = 1 for all m ∈ N. The condition that (ωn)∞n=1 is growing regularly is
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equivalent to the function Ψ(n) = ωn · 2−n decaying regularly. We refer the reader to [1] for the
definition of decaying regularly. We have the following theorem.

Theorem 1.6. Let (ωn)∞n=1 be a sequence of real numbers that tend to infinity and are growing
regularly. Then for almost every β ∈ (1.497 . . . , 2), the set of x ∈ Iβ that have a β-expansion
(εi)

∞
i=1 satisfying

0 ≤ x−
n∑
i=1

εi
βi
≤ ωn

2n
,

for infinitely many n ∈ N, is of full Lebesgue measure within Iβ .

Replicating the proof of Theorem 1.4 from [1], we can use Theorem 1.3 to prove Theorem
1.6. As this proof is a simple generalisation we do not include the details. As a consequence of
Theorem 1.6 we obtain the following corollary.

Corollary 1.7. For almost every β ∈ (1.497 . . . , 2), the set of x ∈ Iβ that have a β-expansion
(εi)

∞
i=1 satisfying

0 ≤ x−
n∑
i=1

εi
βi
≤ log n

2n
,

for infinitely many n ∈ N, is of full Lebesgue measure within Iβ .

In Section 2 we prove Theorem 1.3. In Section 3 we study the Hausdorff dimension and
Hausdorff measure of the set Wβ(Ψ) in the case when

∑∞
n=1 2nΨ(n) < ∞. In particular, we

employ the mass transference principle of Beresnevich and Velani [3] to calculate these quantities
for certain values of β.

Before moving onto our proof of Theorem 1.3 we summarise the work of some other authors
on the approximation properties of β-expansions. In [15] and [16] Persson and Reeve consider a
setup very similar to our own. They introduced the set

Kβ(Ψ) :=
∞⋂
m=1

∞⋃
n=m

⋃
(εi)ni=1∈{0,1}n

[ n∑
i=1

εi
βi
−Ψ(n),

n∑
i=1

εi
βi

+ Ψ(n)
]
.

Notice that Wβ(Ψ) ⊆ Kβ(Ψ). Our setup is slightly different because we are interested in the
approximation properties of prefixes. Persson and Reeve restrict to the case where Ψ(n) = 2−nα

for some α ∈ (1,∞), so by the Borel-Cantelli lemma Kβ(2−nα) is of zero Lebesgue measure for
any β ∈ (1, 2). Motivated by Falconer [7] they studied the intersection properties of Kβ(Ψ). In
[7] Falconer defined Gs to be the set of A ⊆ R, which have the property that for any countable
collection of similarities {fj}∞j=1, we have

dimH

( ∞⋂
j=1

fj(A)
)
≥ s.

Persson and Reeve generalised the definition of Gs to arbitrary intervals I by defining Gs(I) :=
{A ⊆ I : A + diam(I)Z ∈ Gs}. The main results of [15] and [16] are summarised in the
following theorem.
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Theorem 1.8. Let α ∈ (1,∞) and Ψ(n) = 2−αn.
• For all β ∈ (1, 2), dimH(Kβ(Ψ)) ≤ 1

α
.

• For almost every β ∈ (1, 2), Kβ(Ψ) ∈ Gs(Iβ) for s = 1
α
.

• For a dense set of β ∈ (1, 2), dimH(Kβ(Ψ)) < 1
α
.

• For all β ∈ (1, 2), Kβ(Ψ) ∈ Gs(Iβ) for s = log β
α log 2

.

• For a countable set of β ∈ (1, 2), dimH(Kβ(Ψ)) = log β
α log 2

.

The approximation properties of β-expansions were also studied by Dajani, Komornik, Loreti,
and de Vries in [4]. Given x ∈ Iβ, they call a sequence (εi)

∞
i=1 an optimal expansion for x if

(εi)
∞
i=1 is a β-expansion for x, and if for every other β-expansion of x the following inequality

holds for every n ∈ N :

x−
n∑
i=1

εi
βi
≤ x−

n∑
i=1

ε′i
βi
.

In other words, for each n ∈ N the n prefix (εi)
n
i=1 always provides the closest approximation. In

[4] the authors showed that every x in Iβ has an optimal expansion if and only if β is contained
in a special class of algebraic integers known as the multinacci numbers. A multinacci number
is the unique root of an equation of the form xn+1 = xn + · · · + x + 1 contained in (1, 2). The
main result of [4] is the following.

Theorem 1.9. • Let β be a multinacci number, then every x ∈ Iβ has an optimal expan-
sion.
• If β ∈ (1, 2) is not a multinacci number, then the set of x ∈ Iβ with an optimal expansion

is nowhere dense and has zero Lebesgue measure.

Note that the countable set of β appearing in Theorem 1.8 for which dimH(Kβ(Ψ)) = log β
α log 2

is precisely the set of multinacci numbers.

2. PROOF OF THEOREM 1.3

2.1. Normalisation to the unit interval. Before giving our proof of Theorem 1.3 we normalise
Iβ and the level n sums, so we can focus our attention on the unit interval [0, 1]. This will make
some of our later calculations more straightforward. Given β ∈ (1, 2) and Ψ : N → R≥0, we
introduce the set

Vβ(Ψ) :=
∞⋂
m=1

∞⋃
n=m

⋃
(εi)ni=1∈{0,1}n

[
(β − 1)

n∑
i=1

εi
βi
, (β − 1)

n∑
i=1

εi
βi

+ Ψ(n)
]
.

By replacing the
∑n

i=1 εiβ
−i term appearing inWβ(Ψ) with a (β−1)

∑n
i=1 εiβ

−i term, we ensure
that Vβ(Ψ) ⊆ [0, 1] whenever Ψ(n) → 0. The case where Ψ(n) does not tend to zero is trivial,
so we will always assume that Vβ(Ψ) ⊆ [0, 1]. It is important to note that for any x ∈ [0, 1] there
exists a sequence (εi)

∞
i=1 ∈ {0, 1}N such that

(2.1) x = (β − 1)
∞∑
i=1

εi
βi
.
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This is a simple consequence of the fact that every element of Iβ has a β-expansion.
In this section we will prove the following theorem.

Theorem 2.1. Let (ωn)∞n=1 be a sequence of real numbers tending to infinity. Then for almost
every β ∈ (1.497 . . . , 2) the set Vβ(ωn · 2−n) is of full Lebesgue measure within [0, 1].

Theorem 2.1 is equivalent to Theorem 1.3. So to conclude our main result we just have to
prove Theorem 2.1.

We recall some of the results of Benjamini and Solomyak from [2]. The counting estimates
provided in [2] will be essential in our proof of Theorem 2.1. Benjamini and Solomyak studied
how the set

An(β) :=
{

(β − 1)
n∑
i=1

εi
βi

: (εi) ∈ {0, 1}n
}

is distributed within [0, 1]. Note that An(β) is precisely the set of level n sums normalised by a
factor (β − 1). Given β ∈ (1, 2), s > 0 and n ∈ N, Benjamini and Solomyak introduced the set

P (β, s, n) :=
{

(a, b) ∈ An(β)2 : a 6= b and |a− b| ≤ s

2n

}
,

and conjectured that for almost every β ∈ (1, 2) there exist c, C > 0 such that

cs ≤ #P (β, s, n)

2n
≤ Cs

for all n ∈ N and s > 0. Within [2] some results are proved in the direction of this conjecture.
For our purposes we only need one result which is the following.

Theorem 2.2 (Theorem 2.1 of [2]). There exists C1 > 0 such that∫
(1.497...,2)

#P (β, s, n)

2n
dβ ≤ C1s

for all n ∈ N and s > 0.

Importantly the C1 appearing in Theorem 2.2 does not depend on n or s. Theorem 2.2 is a
slightly weaker version of Theorem 2.1 from [2], but we only require this weaker statement.

2.2. Proof of Theorem 2.1. For the rest of this section we fix a sequence (ωn)∞n=1 that tends to
infinity. For ease of exposition we let I := (1.497 . . . , 2). Our proof of Theorem 2.1 will be via
a proof by contradiction.

Given β ∈ I let

Bad(β) :=
{
x ∈ [0, 1] : There are only finitely many solutions to the inequalities

0 ≤ x− (β − 1)
n∑
i=1

εi
βi
≤ ωn

2n

}
.



8 SIMON BAKER

Similarly, given l ∈ N we let

Bad(β, l) :=
{
x ∈ [0, 1] : For all n ≥ l there are no solutions to the inequalities

0 ≤ x− (β − 1)
n∑
i=1

εi
βi
≤ ωn

2n

}
.

Clearly Bad(β) = ∪∞l=1Bad(β, l) and Bad(β, l) ⊆ Bad(β, l + 1). We also introduce the set

E :=
{
β ∈ I : λ(Bad(β)) > 0

}
,

and to each l ∈ N we introduce the following subset of E :

El :=
{
β ∈ I : λ(Bad(β, l)) > 0

}
.

It is a reasonably straightforward exercise to show that both E and El are measurable, we omit
the details but take the opportunity to emphasise this fact. Note that

(2.2) E =
∞⋃
l=1

El and El ⊆ El+1.

To achieve a contradiction, we assume that Theorem 2.1 is false, i.e., λ(E) > 0. Then by (2.2),
there exists L ∈ N for which λ(EL) > 0. This value of L will be fixed for the rest of our proof.

The proof of Theorem 2.1 will rely on an application of the Lebesgue density theorem: if
E ⊆ R is a measurable set, then for almost every x ∈ E the following holds

(2.3) lim
r→0

λ(E ∩ [x− r, x+ r])

2r
= 1.

We call any x ∈ E satisfying (2.3) a density point for E. To each β ∈ I we associate the set

Badd(β, L) :=
{
x ∈ Bad(β, L) : x is a density point for Bad(β, L)

}
.

Clearly Badd(β, L) ⊆ Bad(β, L), and the Lebesgue density theorem implies λ(Badd(β, L)) =
λ(Bad(β, L)). Importantly if β ∈ EL both of these quantities are positive. Let

A :=

∫
I
λ(Badd(β, L))dλ(β).

It is a consequence of EL having positive measure that A > 0. The following lemma constructs
a y ∈ [0, 1] for which y ∈ Badd(β, L) for a large subset of I. Given x ∈ [0, 1] let B̂ad(x, L) :=

{β ∈ I : x ∈ Badd(β, L)}. We emphasise that B̂ad(x, L) is measurable.

Lemma 2.3. There exists y ∈ [0, 1] such that λ(B̂ad(y, L)) ≥ A.
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Proof. This lemma is a consequence of Fubini’s theorem. Observe

A =

∫
I
λ(Badd(β, L))dλ(β)

=

∫
I

∫
[0,1]

1Badd(β,L)(x)dλ(x)dλ(β)

=

∫
[0,1]

∫
I
1B̂ad(x,L)(β)dλ(β)dλ(x) (By Fubini’s theorem)

=

∫
[0,1]

λ(B̂ad(x, L))dλ(x).

Then at least one x ∈ [0, 1] must satisfy λ(B̂ad(x, L)) ≥ A.Otherwise
∫
[0,1]

λ(B̂ad(x, L))dλ(x) <

A, which is not possible. �

For the rest of our proof the value y ∈ [0, 1] will always denote the element we have con-
structed in Lemma 2.3. We now define a collection of subsets of B̂ad(y, L). Given m ∈ N
let

B̂ad(y, L,m) :=
{
β ∈ B̂ad(y, L) : For all n ≥ m we have

λ(Bad(β, L) ∩ [y − 1
βn , y + 1

βn ])

2β−n
> 1− A

20C1

}
.

For each β ∈ B̂ad(y, L) the element y is a density point for Bad(β, L), therefore B̂ad(y, L) =

∪∞m=1B̂ad(y, L,m). Since B̂ad(y, L,m) ⊆ B̂ad(y, L,m + 1), we can take M ∈ N sufficiently
large that

(2.4) λ(B̂ad(y, L,M)) ≥ A/2.

This quantity M will be fixed for the rest of our proof. The appearance of the quantity A/20C1

within the definition of B̂ad(y, L,m) is due to technical reasons that will become clear when we
finish our proof of Theorem 2.1. Moreover the parameter C1 is the same number appearing in
the statement of Theorem 2.2.

We now define a new subset of An(β). Given β ∈ (1, 2), s > 0, and n ∈ N, let

T (β, s, n) :=
{
a ∈ An(β) : ∃b ∈ An(β) satisfying a 6= b and |a− b| ≤ s

2n

}
.

If T (β, s, n) is a small set, then most elements of An(β) will be separated by a factor s · 2−n. We
will show that for certain values of β, s, and n we have such a property. To obtain bounds on the
size of the set T (β, s, n), we relate the size of T (β, s, n) with the size of P (β, s, n). We will then
be able to use the machinery of Benjamini and Solomyak.

Lemma 2.4. #T (β, s, n) ≤ #P (β, s, n).

Proof. Since T (β, s, n) is a projection of P (β, s, n) to An(β), the result follows. �
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In the following proposition s is a fixed value. For this value of s we will construct for each
n ∈ N a useful β ∈ B̂ad(y, L,M) for which T (β, s, n) is small.

Proposition 2.5. For each n ∈ N there exists βn ∈ B̂ad(y, L,M) such that #T (βn,
A

5C1
, n) <

2n−1.

Proof. Let

Hn :=
{
β ∈ I : #T

(
β,

A

5C1

, n
)
≥ 2n−1

}
.

It suffices to show that for any n ∈ N we have λ(Hn) < λ(B̂ad(y, L,M)). In fact,

λ(Hn) ≤ λ
(
β ∈ I : #P

(
β,

A

5C1

, n
)
≥ 2n−1

)
(By Lemma 2.4)

=
2nλ
(
β ∈ I : #P

(
β, A

5C1
, n
)
≥ 2n−1

)
2n

≤ 2

∫
β∈I:#P

(
β, A

5C1
,n

)
≥2n−1

#P
(
β, A

5C1
, n
)

2n
dλ(β)

≤ 2

∫
I

#P
(
β, A

5C1
, n
)

2n
dλ(β)

≤ 2C1A

5C1

(By Theorem 2.2)

<
A

2
.

By (2.4) we know that λ(B̂ad(y, L,M)) ≥ A/2, so we can conclude our result. �

We emphasise that the βn we construct in Proposition 2.5 depends on n. Also note that without
loss of generality we may assume that βn is transcendental and therefore #An(βn) = 2n. We
now have all the necessary tools to prove Theorem 2.1.

Proof of Theorem 2.1. We begin by taking N ∈ N to be some natural number sufficiently large
that

(2.5) L ≤ N +M,

and

(2.6)
A2M

5C1βM
≤ ωN+M

for all β ∈ I. Recall that M is the parameter appearing in (2.4). We can pick an N that satisfies
(2.6) because (ωn)∞n=1 tends to infinity. Applying Proposition 2.5 with N as above, there exists
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βN ∈ B̂ad(y, L,M), which we may assume to be transcendental, for which the set

S :=
{
a ∈ AN(βN) : such that |a− b| > A

5C12N
for all b ∈ AN(βN) \ {a}

}
satisfies

(2.7) #S ≥ 2N−1.

For each a ∈ S there exists (εi)
N
i=1 ∈ {0, 1}N such that (βN − 1)

∑
εiβ
−i
N = a. Let {(εji )Ni=1}

denote the set of these sequences. By (2.7) this set must contain at least 2N−1 elements.
To each (εji )

N
i=1 we associate the interval

Ij :=
[
(βN − 1)

N∑
i=1

εji
βiN

, (βN − 1)
N∑
i=1

εji
βiN

+
A

5C12N

]
.

Without loss of generality Ij ⊆ [0, 1] for each (εji )
N
i=1. Moreover, since each element of S is

separated by a factor of at least A(5C12
N)−1, we have Ij ∩ Ij′ = ∅ for each j 6= j′.

Each interval Ij is contained within the interval [0, 1], we have no information about how they
are positioned except that they are all mutually disjoint. To achieve our desired contradiction we
need to take these intervals and make them somehow local to y. This we do below.

Let (δi)
∞
i=1 ∈ {0, 1}N satisfy y = (βN − 1)

∑∞
i=1 δiβ

−i
N . Such a sequence exists by (2.1). For

any m ∈ N we have

(2.8) (βN − 1)
m∑
i=1

δi
βiN
∈
[
y − 1

βmN
, y
]
.

Given an interval Ij we now define the following local scaled interval

Ĩj := (βN − 1)
M∑
i=1

δi
βiN

+
Ij

βMN

=
[
(βN − 1)

( M∑
i=1

δi
βiN

+
N∑
i=1

εji
βM+i
N

)
, (βN − 1)

( M∑
i=1

δi
βiN

+
N∑
i=1

εji
βM+i
N

)
+

A

5C1βMN 2N

]
These intervals satisfy the following properties:

Ĩj ∩ Ĩj′ = ∅ for all j 6= j′,(2.9)

λ(Ĩj) =
A

5C1βMN 2N
,(2.10)

Ĩj ⊂ [y − β−MN , y + β−MN ].(2.11)

Equation (2.9) follows from Ij ∩ Ij′ = ∅, equation (2.10) is obvious, and equation (2.11) is a
consequence of equation (2.8). Moreover (2.6) implies that

A

5C1βMN 2N
≤ ωN+M

2N+M
.
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Therefore, since N +M ≥ L we have

(2.12) Ĩj ⊆ Badc(βN , L).

Here Badc(βN , L) is simply the complement of Bad(βN , L). Combining the above properties
we have the following estimates on the normalised Lebesgue measure of Bad(βN , L) within the
interval [y − β−MN , y + β−MN ] :

λ(Bad(βN , L) ∩ [y − β−MN , y + β−MN ])

2β−MN
= 1− λ(Badc(βN , L) ∩ [y − β−MN , y + β−MN ])

2β−MN

≤ 1− λ(
⋃
Ĩj)

2β−MN
(By (2.11) and (2.12))

= 1−
∑
λ(Ĩj)

2β−MN
(By (2.9))

≤ 1− 2N−1A

10C1βMN 2Nβ−MN
(By (2.7) and (2.10))

= 1− A

20C1

.

But this contradicts the condition βN ∈ B̂ad(y, L,M). So we have our contradiction and have
proved Theorem 2.1. �

Remark 2.6. It is natural to ask why the proof of Theorem 2.1 cannot be extended to show that for
almost every β ∈ I the set Vβ(2−n) is of full measure. We cannot prove this stronger statement
as a consequence of the way we scale the intervals Ij to the local intervals Ĩj. The natural
way to scale the intervals Ij is to use the expansion of y, as we do in our proof of Theorem
2.1. However, this method takes intervals of the order c · 2−N and gives intervals of the order
c · β−M2−N which are contained within an interval of size d · β−M . To prove that Vβ(2−n) is
of full measure, we would need intervals of the order c · 2−(N+M) which are within an interval
of size d · 2−M . In our proof of Theorem 2.1 we used the fact that (ωn)∞n=1 tends to infinity, to
overcome the inefficiencies in the way we scale the intervals Ij to the local intervals Ĩj .

Remark 2.7. By Theorem 1.3 we know that for a typical β ∈ I the set Wβ(ωn · 2−n) is of full
measure, but what can we say about the exceptional set Iβ \ Wβ(ωn · 2−n)? As we will see,
the following set is always contained in Iβ \Wβ(ωn · 2−n), whenever (ωn)∞n=1 grows sufficiently
slowly.

Let

Uβ :=
{
x ∈

(
0,

1

β − 1

)
: x has a unique β-expansion

}
.

Understanding the properties of the set Uβ is a classical problem within expansions in non-integer
bases. In [9] Glendinning and Sidorov showed that Uβ has strictly positive Hausdorff dimension
if β ∈ (βc, 2). Here βc ≈ 1.78723 is the Komornik-Loreti constant introduced in [13].
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The connection between the set Uβ and the set Iβ \Wβ(ωn ·2−n) is seen through the following
inequalities. For each x ∈ Uβ there exists κ(x) > 0 such that

(2.13)
κ(x)

βn(β − 1)
≤ x−

n∑
i=1

εi
βi
≤ 1

βn(β − 1)

for all n ∈ N. Here (εi)
∞
i=1 is the unique β-expansion of x. As a consequence of (2.13), if

ωn · 2−n = o(β−n) then Uβ ⊆ Iβ \Wβ(ωn · 2−n). Therefore, Theorem 1.3 combined with the
aforementioned result of Glendinning and Sidorov implies that there exists β ∈ (βc, 2) for which
Wβ(ωn · 2−n) has full Lebesgue measure, yet Iβ \Wβ(ωn · 2−n) is a set of positive Hausdorff
dimension.

3. THE CONVERGENCE CASE AND THE MASS TRANSFERENCE PRINCIPLE

In this section we discuss the case where
∑∞

n=1 2nΨ(n) < ∞ and point out some conse-
quences of the work presented here and in [1]. To obtain these results we make use of the mass
transference principle of Beresnevich and Velani [3]. Given a ball B = B(x, r) contained in R,
let Bs := B(x, rs) where s is any parameter within (0, 1). The following theorem is a version of
Theorem 3 from [3] that we have rewritten to suit our purposes.

Theorem 3.1. Let (Bi)
∞
i=1 be a sequence of balls in Iβ such that r(Bi) → 0. Suppose that for

any ball B ⊆ Iβ we have

λ
(
B
⋂

lim supBs
i

)
= λ(B).

Then for any ball B ⊆ Iβ we have

Hs
(
B
⋂

lim supBi

)
= Hs(B).

Here Hs is the s-dimensional Hausdorff measure. A version of Theorem 3.1 holds for more
general dimension functions, in this article we focus only on Hausdorff measure and Hausdorff
dimension.

Combining Theorem 3.1 with Theorem 1.2 we have the following result.

Theorem 3.2. Let β ∈ (1, 2) be a Garsia number and Ψ : N→ R≥0 satisfy Ψ(n)→ 0. Then the
following statements are true:

∞∑
n=1

2nΨ(n)s <∞⇒ Hs(Wβ(Ψ)) = 0

and
∞∑
n=1

2nΨ(n)s =∞⇒ Hs(Wβ(Ψ)) =∞.

The first part of Theorem 3.2 follows from a covering argument. The second statement is
where we use the mass transference principle. As an application of Theorem 3.2 we obtain the
following result.

Theorem 3.3. Let α ∈ (1,∞) and Ψ(n) = 2−nα, thenH1/α(W√2(Ψ)) =∞.
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This follows since
√

2 is a Garsia number. Note that Theorem 3.3 provides an explicit example
of a β which satisfies the almost everywhere statement appearing in Theorem 1.8. Theorem 3.3
also yields the Hausdorff measure at the dimension, something which is not covered by Theorem
1.8. What is more, combining Theorem 1.2 with Theorem 2 from [6] we may also conclude that
Wβ(2−nα) ∈ G1/α(Iβ) whenever β is a Garsia number.

The following weaker version of Theorem 1.8 follows from Theorem 1.3 and Theorem 3.1.

Theorem 3.4. For almost every β ∈ (1.49 . . . , 2), we have that dimH(Wβ(2−nα)) = 1/α for
any α ∈ (1,∞).

Proof. By Theorem 1.3 the setWβ(log n/2n) is of full measure for almost every β ∈ (1.49 . . . , 2).
We now fix β′ in this full measure set and let α ∈ (1,∞) be arbitrary. The proof of the up-
per bound dimH(Wβ′(2

−nα)) ≤ 1/α follows from a straightforward covering argument. To
prove our lower bound we start by remarking that for any ε > 0 we have Wβ((log n/2n)α+ε) ⊆
Wβ(2−nα). It follows from Theorem 3.1 that dimH(Wβ′((log n/2n)α+ε)) = (α+ε)−1. Therefore
dimH(Wβ′(2

−nα)) ≥ (α+ ε)−1. Since ε is arbitrary we may conclude that dimH(Wβ′(2
−nα)) ≥

1/α and our proof is complete. �

Unfortunately the proof of Theorem 3.4 does not provide any information on the Hausdorff
measure at the critical dimension. This is a consequence of having to introducing a log n term in
our proof. A proof of Conjecture 1.1 would imply that for almost every β ∈ (1, 2) we have an
analogue of Theorem 3.2.
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