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Chapter 1

Introduction

This dissertation consists in three essays on hidden information and finance.1 The

first two essays share a common underlying motivation, and I consider them as

the starting point of a longer run reflection on financial contracts as institutions,

defined as “the rules of the game in a society, [...] the humanly devised constraints

that shape human interaction” as in North [1990]. The last chapter is an attempt

to bridge micro hidden information issues and the macroeconomy; in particular,

to provide a microfoundation of keynesian savings traps. In this introduction, I

shall briefly review the objectives and results of these essays. Beforehand, I shortly

discuss the methodology adopted.

Since the early 1970s, mainstream economic models did not allow financial

contracts to play an active role in supporting resource allocations. Indeed, in the

general equilibrium framework of Arrow and Debreu [1954], contracts are irrele-

vant; a result stressed by Modigliani and Miller [1958]. However, the asymmetric

information paradigm developed in the early 1970s pave the way for contracts to

acquire much more spotlight in subsequent decades. As Hurwicz [1973] put it: “This

new approach refuses to accept the institutional status quo of a particular time and

place as the only legitimate object of interest and yet recognises constraints that

disqualify naive utopias.” [emphasis not in the original] To the contrary, an impor-

tant objective of economic theory became precisely to analyse the optimal design of

institutions, of which financial contracts are but one example. Institutions are stud-

ied as mechanisms, responsible for regulating (i) communication, and (ii) resource

allocation across agents. Informational asymmetries came to play the role of those

“constraints that disqualify naive utopias”.

The path was short for this methodology to be fruitfully applied to financial

1The second essay is coauthored with Kostas Koufopulos and Roman Kozhan; the third is
coauthored with Herakles Polemarchakis.
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contracts, as Townsend [1979] exemplifies. The paper starts from acknowledging a

striking ‘reality’: most financial contracts around the world (and throughout history)

took the peculiar form of debt : one party promises to pay back a fixed amount to

the other, in exchange for current capital lease; it is understood that, should he fail

to repay this fixed amount, the creditor seizes all available assets, and perhaps some

‘non-pecuniary’ penalty ensues. Townsend provides a plausible explanation for why

this is the case, based on asymmetric information. He argues that it is often costly

to observe and verify the state of a debtor’s assets ex post. In such cases, debt

is the contract that minimises the need for costly verification, requiring it only in

bankruptcy states. All other financial contracts lead to greater deadweight losses

and hence are suboptimal. The result became known as he costly-state-verification

(CSV) argument for debt optimality, and was further developed by Gale and Hellwig

[1985].

From Townsend onwards, the number of papers applying mechanism design

to finance – so-called security design – grew steadily.2 Recent contributions include

Antic [2014], Carroll [2015], Hebert [2015] and Farhi and Tirole [2015]. The first

two essays of this dissertation (Trigilia [2015] and Koufopoulos et al. [2014]) belong

to this literature.

In addition, asymmetric information is a natural source of endogenous incom-

plete asset markets; it is often impossible to issue securities conditional on privately

held information. A growing literature examines the consequences of modelling ex-

plicitly endogenous incomplete markets in general equilibrium. The last chapter of

this thesis belongs to this literature.

1.1 Optimal leverage and strategic disclosure

Firms seeking external financing jointly choose what securities to issue, and the ex-

tent of their disclosure commitments. The literature shows that enhanced disclosure

reduces the cost of financing. This paper, in addition, analyses its effects on the

composition of financing means. It considers a market where firms compete under

costly-state-verification, but unlike the standard model assuming (i) that the degree

of asymmetric information between firms and outside investors is variable, and (ii)

that firms can affect it by committing to a disclosure policy, possibly incurring a

cost. Two central predictions emerge.

2Notable examples include: Allen and Gale [1988], Bolton and Scharfstein [1990], Innes [1990,
1993], Nachman and Noe [1994], Zwiebel [1996], Hart and Moore [1998], DeMarzo and Duffie [1999],
Krasa and Villamil [2000, 2003], Repullo and Suarez [2004], DeMarzo et al. [2005], DeMarzo and
Sannikov [2006], Biais et al. [2007].
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On the positive side, disclosure and leverage are negatively correlated. Ef-

ficient equity financing requires a certain amount of disclosure, whereas debt does

not; it is based on the threat of bankruptcy. Therefore, more transparent firms

issue cheaper stocks and face a higher opportunity cost of leveraged financing. The

prediction is shown to be consistent with the behaviour of US corporations since the

1980s.

On the normative side, disclosure externalities lead to under-disclosure and

excessive leverage relative to the constrained best. Mandatory disclosures can be

Pareto improving, when feasible. Otherwise, the mapping I derive from greater

equity financing to voluntary higher transparency suggests that the regulator should

tighten the capital requirements. According to the model, capital standards are

especially useful when (i) firms performances are highly correlated, and (ii) disclosure

requirements can be dodged to a large extent. Both conditions seem to apply to

large financial firms.

1.2 Security design under asymmetric information and

profit manipulation.

We consider a model of external financing in which entrepreneurs are privately in-

formed about the quality of their projects and seek funds from competitive financiers.

The literature restricts attention to monotonic or ‘manipulation proof’ securities and

finds that straight debt is the uniquely optimal contract. Monotonicity is commonly

justified arguing that it would arise endogenously if the entrepreneur can manipulate

profits before contract’s maturity.

We characterize the optimal contract when entrepreneurs can misreport their

earnings. We derive necessary and sufficient conditions for straight debt to be sub-

optimal, and we show that it is never uniquely optimal. Generically, the optimal

contract is non-monotonic and involves profit manipulation in equilibrium. It can

be implemented as debt with a strictly positive performance-based bonus. Impor-

tantly, our results suggest that ex ante asymmetric information does not suffice to

theoretically justify the optimality of straight debt.

1.3 Credit Failures

Credit failures in financial markets subject to adverse selection account for com-

petitive equilibrium allocations that are constrained suboptimal: Pareto improving

intervention (i) balances the budget and (ii) does not require information finer than

3



that available to market participants. With multiple factors of production and en-

dogenously determined relative prices, the constrained optimality of competitive

allocations obtained in recent literature for simple economies fails. Successful inter-

vention requires savings (or income) taxes and investment subsidies. In a macroe-

conomic context, this provides foundations for Keynesian phenomena and a role for

policy.
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Chapter 2

Optimal Leverage and Strategic

Disclosure

2.1 Introduction

Firms seeking external financing face a multidimensional choice problem. On the

one hand, they need to decide what securities to issue; whether to borrow or to issue

stocks, for example. On the other hand, they choose the extent of their disclosure

commitments; for instance, whether to go public or to keep private. The existing

evidence suggests that greater disclosures tend to reduce the firm’s cost of financing,

as the theory predicts, dampening the degree of asymmetric information in the

market.1 However, the effect of disclosure on the composition of financing means

has been largely overlooked by previous research. This paper aims to fill the gap, by

modelling explicitly the interlinkage between disclosure and security design under

asymmetric information. Two central predictions emerge from the analysis.

On the positive side, disclosure and leverage are negatively correlated. En-

hanced disclosure leads to the possibility of issuing cheaper equity, increasing the

opportunity cost of leveraged financing. Some firm-level evidence that supports

this prediction is found analysing the behaviour of US corporates since the 1980s.

Incidentally, one could also note that the results are consistent with the early devel-

opment of modern stock markets, in the 19th century, that has been driven to a large

extent by: (i) improvements in the information environment (e.g., the telegraph),

and (ii) the growing financing needs of relatively more transparent industries such

as the infrastructure sector (railways and canals, especially).2

1See especially Admati and Pfleiderer [2000] on the theory side, and Botosan [1997], Leuz and
Verrecchia [2000], Bushee and Leuz [2005], Bailey et al. [2006] on the empirics.

2A prominent example is the London Stock Exchange (LSE). Prior to the 1840s, the LSE was
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On the normative side, externalities in disclosure across firms lead to insuf-

ficient voluntary disclosures and excessive leverage relative to the constrained best.

The inefficiency gets reduced if regulators can credibly mandate truthful disclosures,

but this is often not the case.3 Modelling explicitly the interlinkage between dis-

closure and leverage suggests an alternative policy: setting capital requirements.

Higher capital requirements encourage firms to be more transparent, in an effort to

reduce the otherwise prohibitive costs of equity financing, and are especially useful

when (i) profits are highly correlated across firms, and (ii) mandatory disclosures

can be dodged. Both conditions seem to apply especially to financial firms, which –

consistently with the model’s predictions – are both highly leveraged and opaque.4

More specifically, I consider a financial market where firms seek financing

from a competitive pool of investors under costly-state-verification (CSV). Firms

and investors are symmetrically informed at the contracting stage, but acquire dif-

ferent information about the realised output ex post. Previous CSV models as-

sumed an extreme type of hidden information: the entrepreneurs learn the output

perfectly ex post; the investors learn nothing, but can verify the output reported

by the entrepreneur at a cost.5 This paper relaxes the assumption, supposing that

the investors learn the realised output with some probability π ∈ [0, 1], and know

nothing otherwise.6 Disclosure is privately costly and it affects the precision of the

information revealed to investors. In addition, the private disclosure of a firm might

convey information about its competitors.7

essentially a market for government debt. But after the telegraph became operational (in the early
1850s), stock trading took off and by the 1870s the LSE was set to become the largest market
for stocks of its time. Railways and infrastructure companies dominated the market, accounting
for more than 75% of its capitalisation (Grossman [2002]). Bordo et al. [1999] first implicated
asymmetric information in the story, but without a formal model and not discussing why debt was
not used instead of stocks.

3 Two examples are particularly telling. First, Sloan [2007] documents that a typical RMBS
(Residential Mortgage Backed Security) sold prior to 2008 had a disclosure prospectus of more
than 300 pages. Though it complied with regulation, the prospectus hardly made such security
transparent. Second, to show that banks balance sheet are a black box even for experienced
investors, Partnoy and Eisinger [2013] quote Paul Singer (founder of Elliott Associates) writing to
his partners that “There is no major financial institution today whose financial statements provide
a meaningful clue [about its risks]”.

4In the US, the median leverage ratio for financial firms after the 1980s ranges between 0.88 and
0.93 (Source: author’s calculation on Compustat data).

5The results of a CSV model rely on the minimisation of expected bankruptcy costs. Recent
evidence that these are substantial can be found in Molina [2005] and in Almeida and Philippon
[2007].

6The model generalises Townsend [1979] and Gale and Hellwig [1985], who restrict attention
to π = 0. More general signal structures give rise to quite complex optimal contracts, but which
maintain similar qualitative properties as those derived here. I refer the interested reader to Trigilia
[2015].

7Recent work of Badertscher et al. [2013], Shroff et al. [2013] and Durnev and Mangen [2009]
identifies the presence of substantial information externalities across firms. See also the earlier
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Optimal securities. The optimal capital structure is a mixture of debt and eq-

uity, and the amount of assets backed by debt (i.e., the leverage ratio) is monoton-

ically decreasing in the probability that the investors are informed, denoted by π,

which captures the degree of asymmetric information in the market. If π = 0, we

have full leverage as in Gale and Hellwig [1985]. The intuition is as follows: (i) the

financier must verify low messages to prevent cheating by the entrepreneur when

output is higher; (ii) whenever there is verification, the optimal repayment equals

the full realised output (this resembles bankruptcy, in which debt holders are senior

claimants); finally, (iii) whenever there is no verification, the repayment is incentive

compatible if and only if it equals a fixed constant (the face value of debt), regardless

of the realised output.8

Now consider π > 0. Property (iii) no longer holds: the highest incentive

compatible repayment strictly increases with the output, because firms with higher

output ex post have more to lose if caught cheating by the financiers (something

that happens with probability π > 0). Moreover, it is always optimal to increase

the repayments outside bankruptcy in order to minimise the ex ante need for costly

verification. Therefore, the optimal contract has an equity component. Pure debt

does not work because upon default the firm gets nothing, whereas if output is high

it retains a needlessly large fraction of it. In other words, debt imposes an inefficient

subsidy across states of nature ex post. Eventually, when π is high enough, there

is no need for verification on-the-equilibrium path and the optimal contract is pure

equity.9

Importantly, whenever there is verification on-the-equilibrium path the op-

timal capital structure is unique, for every π. Otherwise, though there may be

multiple optimal securities, they are ex ante identical to issuing no debt, and sell-

ing a fraction sπ of shares, for some s ∈ (0, 1) that is pinned down by the zero

profit condition of the investors. As a result, the feasible strategies of a firm can be

reduced to selecting the extent of its disclosure commitments, as this immediately

maps into an optimal capital structure.

Optimal disclosure. The optimal amount of disclosure can be derived as a so-

lution to the following trade-off: on the one hand, higher disclosure comes at a

literature on industrial districts, such as Pyke et al. [1990].
8More precisely, Townsend [1979] and Gale and Hellwig [1985] show that debt is the optimal

contract among those that feature commitment to deterministic audits. The result does not hold
if one allows for random audits (Border and Sobel [1987] and Mookherjee and Png [1989]) or lack
of commitment (Gale and Hellwig [1989]). Krasa and Villamil [2000] argue that debt is optimal if
both lack of commitment and random audits are assumed, see also Krasa and Villamil [2003].

9Only in the limit, when π = 1, hidden information vanishes and Modigliani and Miller [1958]
holds (i.e., the security design problem becomes irrelevant).
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higher cost;10 on the other hand, it decreases the degree of asymmetric information

ex post, enabling the firm to issue cheaper equity – i.e., lower its leverage – and

hence to reduce the expected bankruptcy costs. Each firm chooses its disclosure

and capital structure as a solution to the aforementioned trade-off, best responding

to its competitors who move simultaneously.

The disclosure game is potentially discontinuous, because the optimal lever-

age ratio might jump discretely for a marginal increase in disclosure, and it is not nec-

essarily quasi-concave. Therefore, a Nash equilibrium is not guaranteed to exist in

general. However, I present sufficient conditions for continuity and quasi-concavity,

and show that the restrictions needed are relatively mild.11 Under such restrictions,

the set of Pure Strategy Nash Equilibria (PSNE) of the game is non-empty, and can

be fully characterised.

Comparative statics and the evidence. Cæteris paribus, the model yields two

main positive predictions, for which supporting empirical evidence on US data is

found.

First, leverage is monotonically decreasing in the degree of transparency. The

prediction is novel, to my knowledge, and indeed its empirical validity has not been

much investigated.12 This paper takes a step toward filling this gap, by introducing

a measure of transparency in an otherwise standard capital structure regression. In

particular, I merge COMPUSTAT with IBES analysts’ forecast and CRSP prices.13

I add to the standard variables considered in Frank and Goyal [2009] various market

measures of transparency, such as the coefficient of variation of analysts’ Earnings

Per Share (EPS) forecasts. The intuition behind this measure of transparency is that

disagreement among analysts should decrease with the amount of public information

about the firm (i.e., its transparency), and hence the variance of forecasts is likely

to reflect – at least be correlated to – the degree of asymmetric information between

10This is a central hypothesis of Admati and Pfleiderer [2000] and much of the subsequent disclo-
sure literature. For evidence of the significant (direct and indirect) costs of disclosure see Bushee
and Leuz [2005], Leuz et al. [2008], Iliev [2010], Ellis et al. [2012] and Alexander et al. [2013] and
Dambra et al. [2015].

11They require that the distribution of output satisfies two properties: (i) an increase in the
interest rate at the optimal leverage ratio increases the expected profits of the investors (i.e., it
more than compensates for the expected increase in verification costs); and (ii) the density function
is continuously differentiable, and the first derivative is bounded below by some constant z < 0.

12A notable exception is Aggarwal and Kyaw [2009], who compare leverage and transparency
across 14 EU countries and find a negative correlation. However, it seems that we still lack firm
level evidence.

13COMPUSTAT contains both balance sheet and cash flow (annual) information or the universe
of US public firms. IBES (acronym for ‘Institutional Brokers’ Estimate System’) contains analysts’
estimates of earnings per share for several US corporations. Finally, CRSP (acronym for ‘Centre for
Research in Security Prices’) offers equity prices used to calculate market-based equity measures.
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firm’s insiders and analysts.14

The regression analysis reveals that: (i) there exists a strong, statistically sig-

nificant negative correlation between leverage and transparency ; (ii) the correlation

is robust to the inclusion of both standard control variables, and time-firm fixed

effects. As a result, even if one restricts attention to variation within firm across

time in leverage and transparency, the two remain reliably negatively correlated.

Second, consistently with the existing empirical evidence, leverage is mono-

tonically decreasing in profitability.15 The intuition is that more profitable firms

need to issue less shares (for a given price-per-share) to finance any given investment.

Therefore, they have an easier chance of being able to issue incentive-compatible eq-

uity. The result is of interest from a theory perspective, as it reconciles the theory

of optimal capital structure based on bankruptcy costs with the evidence.16 The

negative relationship between leverage and profitability is further confirmed in my

regression analysis.

Mandatory capital and disclosure requirements. Comparing the PSNE to

the Socially Efficient (SE) disclosure levels, I show that whenever information is

correlated across firms the private provision of information is excessively low, and

hence leverage is excessively high. Firms under-disclose because they free ride on

the information disclosed by their competitors, and they end up collectively stuck

in a Pareto suboptimal equilibrium. The public good nature of information leads to

the possibility of Pareto improving government interventions in financial markets.

A government that seeks to restore social optimality should consider two in-

struments. First, it could mandate a certain degree of disclosure. To the extent that

this is feasible, and firms cannot dodge the disclosure requirements, then manda-

tory disclosures restore optimality. Indeed, we observe a wide range of disclosure

requirements in every developed economy (Leuz [2010]).

However, as Ben-Shahar and Schneider [2011] document, disclosure regu-

lation is not effective in many instances. In particular, ‘mandating transparency

through disclosure’ proves harder (i) the more complex the underlying firm, and (ii)

14The idea of measuring transparency in this way is not new – see for instance Thomas [2002],
Tong [2007], Chang et al. [2007]. Many other factors, such as herding or contrarianism – as well
as personal opinions – enter the forecast process. Such factors are discussed in greater depth
in Bernhardt et al. [2006]. I implicitly assume that these additional sources of disagreement are
orthogonal to leverage. Bhat et al. [2006] show that analysts’ forecasts error and dispersion are
strongly positively correlated with the country-level transparency measures of Bushman et al. [2004].

15The negative correlation between leverage and profitability has been documented in several
previous studies, such as Frank and Goyal [2009], Welch [2011] and Graham and Leary [2011].

16Indeed, the static trade-off theory would suggest the exact opposite should hold (see, for in-
stance, Kraus and Litzenberger [1973]). The interpretation of bankruptcy costs as the costs of
verification is discussed in Gale and Hellwig [1985] and Tirole [2010].
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the greater the opportunity cost of disclosure. As it is often argued (e.g., Partnoy

and Eisinger [2013]), these conditions hold especially for large financial firms. So,

are there indirect regulatory tools that could promote endogenously greater trans-

parency of financial institutions?

The model I present suggests that capital requirements are a suitable in-

strument to this end. Through the lens of the model, even taking into account the

costs of disclosure, firms who face stringent capital requirements are encouraged to

disclose better information to the market in an effort to reduce the costs of equity

financing.17 Although the argument is simple and plausible, it is strikingly absent

from the current debate on capital standards, which I believe should not be as

separated from that on information requirements as it is at present.18

Consider the recent discussion around capital standards that is ongoing in

the US. The Federal Reserve justifies its regulation as follows:

The primary function of capital is to support the bank’s operations, act as

a cushion to absorb unanticipated losses and declines in asset values that

could otherwise cause a bank to fail, and provide protection to uninsured

depositors and debt holders in the event of liquidation. [emphasis not in

the original]

FED Supervisory Policy and Guidance Topics, as of 14.09.2015

The FED’s statement highlights three objectives. The first is to ‘support

the bank’s operations’, a relatively vague proposition which is absent from much of

the political and academic debate on the matter. The second objective is coherent

with the position of many prominent economists, who emphasise the importance of

requiring a sufficient ‘loss absorbing’ capital buffer, and is at the centre stage of both

the public and the academic debate.19 However, it offers a natural counterargument

to finance lobbyists and sceptics of regulation. Despite the virtue of capital buffers

17Of course, the argument relies on the presumption that the government shares with the market
a knowledge of individual firms covariates. Otherwise, the Pareto gains or losses in setting capital
requirements depend on the average effect on firms, as in Admati and Pfleiderer [2000]. Though
supposing that governments are well informed is empirically implausible in many instances, observe
that at present Basel III does distinguish firms that are too-big-to-fail, and imposes a capital
surcharge on them.

18The complementarities across different regulations are a generally under-researched and impor-
tant area for future work, as emphasised in Leuz and Wysocki [2008]. This is but one instance of
the more general phœnomenon.

19See especially the Squam Lake Report (French et al. [2010]); recent influential books by Kotlikoff
[2010], Sinn [2012], Admati and Hellwig [2014] and Stiglitz et al. [2015]; academic papers such as
Admati et al. [2013], Chamley et al. [2012] and Miles et al. [2013]. The general discontent among
academics (and a few politicians) with the outcome of Basel III, that sets capital requirements to
less than 5%, shifted much of the debate at the national level.
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ex-post, in crises times, they counterargue that stringent requirements tend to curb

investment during booms, making it more expensive for firms to obtain external

financing. So, from an ex ante perspective they are not necessarily desirable.20

Finally, the third argument surprised me at first sight, and can be considered as

another subsidy to debt instruments relative to alternatives, in much the same spirit

as the tax deduction of interest payments.21

This paper wishes to shift spotlight toward the first goal, offering an argument

that substantiates how capital requirements might ‘support the bank’s operations’.

The mechanism I suggest starts with a coordination failure in information provision

across banks, aggravated by (i) systemic risk and correlation of assets portfolios, and

(ii) the easiness to dodge mandatory disclosures. The under-provision of information

not only leads to opacity of financial intermediaries, evidently, but it also promotes

an excessive reliance on debt instruments to get funding. Capital requirements

force corporations to be more transparent, in order to obtain more favourable costs

of equity financing, and this is unambiguously beneficial ex ante because it lowers

the expected costs of distress, and the reduction in this deadweight loss more than

compensates the increase in disclosure costs.

Related Literature. The paper wishes to contribute to the existing literature

mainly pointing at the link between security design and disclosure.

On the security design side, it builds on Townsend [1979] and Gale and

Hellwig [1985] CSV framework. The idea that outside information leads to the

optimality of issuing some equity in a CSV model dates back to Chang [1999], who

considers a firm with two technologies: one subject to CSV and one observable and

verifiable (for which Modigliani and Miller [1958] holds). Although my interpretation

in terms of signals is different, and in general it yields different conclusions from those

in Chang (see Trigilia [2015]), the intuition is similar: the presence of some reliable

20For instance, the former CEO of Deutsche Bank Josef Ackermann claimed that capital require-
ments ‘would restict bank’s ability to provide loans to the rest of the economy’, which ‘reduces
growth and has a negative effect for all’. The CEO of JP Morgan, Jamie Dimon, argued that
capital requirements would ‘greatly diminish growth’, and a similar position has been expressed
by the former CEO of Citigroup Vikram Pandit, as well as by the lobbying group Institute for
International Finance (see Admati and Hellwig [2014], pagg. 97, 232 (18) and 274 (60)). A few
papers estimated the growth loss coming from capital requirements in a DSGE framework to be
substantial, but crucially under the exogenous assumption that equity is more costly for banks to
issue (see for instance Van den Heuvel [2008]).

21An often mentioned force pushing firms toward incresing their leverage is the tax deductibility
of interest payments, but not of dividends. Observe, though, that such factor cannot account for
the vast cross-sectional variation in leverage across firms in the US. It is therefore overlooked here.
On the contraddiction between capital requirements and tax advantages of debt, see especially
De Mooij [2012] and Fleischer [2013]. Both scholars promote the abolition of any tax advantage of
debt.
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information ex post leads to optimal contracts that cross debt from the right.

As such, the rationale for equity in the model I present is distinct from

other stories that involve either risk-aversion and transaction costs (Cheung [1968]),

costly-state-falsisification (Lacker and Weinberg [1989] and Ellingsen and Kristiansen

[2011]), double-sided moral hazard (Bhattacharyya and Lafontaine [1995]), control

rights and infinite investment horizon (Fluck [1998]) or the combination of ambiguity

and ex ante moral hazard (Carroll [2015] and Antic [2014]).22

On the disclosure side, the model builds on Fishman and Hagerty [1989, 1990]

and Admati and Pfleiderer [2000]. Like the aforementioned papers, disclosure is

privately costly and it leads to an externality due to its public good nature. Namely,

the disclosure made by one firm affects the optimal disclosure of its competitors,

and this consideration feeds back into the initial optimal disclosure decision. In such

a scenario, the private provision of information is likely to be socially inefficient,

although as Fishman and Hagerty show inefficient does not necessarily mean too

low.23

As Leuz [2010] discusses at length, the presence of information externalities

is a major justification for the existence of mandatory disclosure requirements in

practice. This paper wishes to contribute by highlighting that a similar argument

leads naturally to capital requirements as well.24

2.2 Setup

There are two dates t ∈ {0, 1}, N ≥ 1 identical firms and a large number of com-

petitive investors. Both firms and investors are risk-neutral and maximise date one

consumption.

Each firm is endowed with no initial wealth, and has access to an investment

technology at t = 0 that requires a fixed input K > 0 and generates stochastic

output x̃ at t = 1. I assume that x̃ ∈ X ≡ [0, x̄], and denote by F (x) the cumulative

22Explanations for optimal equity based on control rights face increasing difficulties in account-
ing for the empirical evidence that many corporations are adopting a two-tiered equity structure,
whereby investors are offered non-voting stocks (e.g., Google and Facebook). On this point, see
also Zingales [2000]. In contrast, explanations based on cash-flow rights used to require that the
investors play an active role. Only recently, with Carroll [2015] and this paper, equity has been
found optimal in models with relatively passive investors.

23Recent papers on disclosure include Guttman et al. [2014] and Ben-Porath et al. [2014a]. Alvarez
and Barlevy [2014] also emphasise externalities in information provision, though focusing more on
contagion.

24The argument for capital requirement presented in this paper differs markedly from the general
equilibrium arguments based on pecuniary externalities (such as Korinek and Simsek [2014] and
Geanakoplos and Kubler [2015]). It also differs from arguments based on excessive risk taking and
‘collective moral hazard’ (see Farhi and Tirole [2012] and Admati and Hellwig [2014])
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distribution of x̃, and by f(x) its density. For simplicity let f(x) > 0 for all x and

suppose it is continuous. To make the problem interesting, Assumption 4.1 guaran-

tees that the project has positive net present value (NPV) under full information.

Assumption 2.1. K < Ef [x̃]. (Positive NPV)

In this paper, I overlook the presence of agency problems within the firm,

and I refer to the owner/manager of each firm as the entrepreneur. I intend to

explore the issue in future research.

The representative investor is endowed with large initial wealth and can either

lend it to some firm, or invest it in a riskless bond with interest factor normalised

to unity.

Investment occurs under symmetric information. Hidden information comes

ex post, when the state of the project is privately observed by the entrepreneur.

The investors observe the state with some probability π ∈ [0, 1], which I will discuss

in depth later on. If the investors do not observe the state, they still have the

option of verifying it at a fixed cost µ ≥ 0. The entrepreneur can affect π at t = 0

by committing to a disclosure policy – e.g., hiring an independent and trustworthy

auditor or going public.

The timing of the game is as follows:

t=0 The entrepreneurs offer a contract (take-it-or-leave-it) to the investors. If the

investors accept, K is invested;25

t=1 Nature determines the realised state x ∈ X. Then, in sequence:

1. Each entrepreneur privately observes x and sends a public message m ∈
M about it (e.g., a balance sheet statement);

2. Investors observe x with probability π, and observe nothing otherwise;

3. If the investors did not observe the state, they can verify it at a cost µ;

4. Transfers occur and the game ends.

I now describe the feasible portfolio of securities and disclosure policies.

2.2.1 Securities

For a given set of public messagesM , the aggregate payout from firm i to its investors

can decomposed in three parts:

25Investment is assumed to be an observable and verifiable action.
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(i) The repayment function si(m) : M → R specifies the payout when investors

are uninformed about the state;

(ii) The clawback function zi(m,x) : M × X → R specifies the payout when

investors are informed about the state;

(iii) The verification function σi(m) : M → [0, 1] specifies the probability that

the state is verified for every message, when the investors are uninformed

otherwise.

I impose two restrictions on admissible securities: (i) limited liability; (ii)

deterministic verification. Limited liability implies that repayments and clawbacks

cannot be negative, and their upper bound depends on the verifiable output. Namely,

if the investors are informed the upper bound is the realised output x, otherwise it

is the message m. It is a standard assumption and it guarantees the existence of an

optimal contract.26

Deterministic verification is commonly assumed in CSV models, but it is a

restrictive assumption. Indeed, Border and Sobel [1987] and Mookherjee and Png

[1989] show that the optimal random contract is not debt. I make the assumption

for two reasons: (i) the optimal random contracts still exhibit the key features of

interest here;27 and (ii) they cannot be fully characterised, because local incentive

compatibility does not suffice for global (see Border and Sobel [1987]). Formally:

Assumption 2.2. A portfolio of securities is feasible only if, ∀m,x:

Payments satisfy limited liability: si(m) ∈ [0,m], zi(m,x) ∈ [0, x]

Verification is deterministic: σi(m) ∈ {0, 1}

2.2.2 Disclosure policies

The disclosure policy of firm i consists in the choice of a binary signal, which reveals

with probability pi ∈ [0, 1] the state of nature ex-post to the investors public at a

cost c(pi).

In the absence of correlation across firms, the probability that the investors

observe x for a given firm – denoted by πi – equals pi. In contrast, when there is

more than one firm and output is correlated across firms, we may have pi < πi.

26What is important is that the verifiable output lies in a compact set for every state x. One
could therefore easily accommodate the equivalent of a finite non-pecuniary penalty.

27Namely, lower messages are generally associated with higher verification, higher states are not
verified and repay a flat rate (in the absence of signals).
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Observing other firms’ output might be informative about firm i’s realised output

as well.

I assume that the correlation between firm i and firm j is captured by a

parameter qi, j ∈ [0, 1], so that the probability that the signal sent by firm j is

informative about firm i is qi, jpj .
28 In aggregate, the probability of having at least

an informative signal out of N independent but not identically distributed Bernoulli

trials is described by the inverse cdf of a Poisson Binomial distribution evaluated

at zero successes, and it reads:

πi(pi, p-i, q-i) = 1− (1− pi)
∏

j 6=i
(1− qi, jpj) (2.1)

The formula captures a positive externality coming from each firm’s disclosure policy,

because ∂ πi(pi, p-i, q-i) /∂pj ≥ 0 and ∂ πi(pi, p-i, q-i) /∂qi, j ≥ 0. However, one could

envision the presence of negative externalities as well. For instance, in a model

where the feasible aggregate media coverage is limited, the disclosures made by other

firms may end up limiting the attention that firm i can attract, hence reducing the

information that the investors can acquire about its output. The analysis of such

scenarios, which may give rise to strategic complementarities across firms, is left for

future research.

2.2.3 Equilibrium concept and preliminary lemmas

Before stating the equilibrium concept and the contracting problem, it is important

to acknowledge that in the environment I described the revelation principle holds:

Lemma 2.1. Without loss of generality, we can restrict attention to direct revelation

mechanisms.29

As a result, from now onwards let M = X and focus on truthful implemen-

tation. A type of firm refers to the state x of the project that the entrepreneurs

observe before sending their public messages. The driving force in deriving the opti-

mal portfolio of securities for a firm is the continuum [0, x] of incentive compatibility

constraints for each ex-post type x, which I now describe.

The expected payout from the firm to the investors when the realised state

28Evidently, it must be that qi,i = 1 for every i. Observe that q is not a statistical correlation
coefficient, it just captures the presence of spillovers in information provision. Hence, it being
positive is without loss of generality.

29The validity of the revelation principle follows from the exact same logic as in Gale and Hellwig
[1985]; the proof is omitted.
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is x and the message is x′ is denoted by:

ri(x
′, x) ≡ [πi + (1− πi)σi(x′)]zi(x′, x) + (1− πi)(1− σi(x′))si(x′)

where recall that πi is a function of pi, p−i and q−i: πi(pi,p-i, q-i). To understand

the above expression, observe that:

1. The payout equals zi(x
′, x) whenever: (i) there is verification, which happens

with probability (1 − πi)σi(x
′); and (ii) whenever the investor is informed,

which happens with probability πi;

2. The payout is equal to si(x
′) otherwise – i.e., when the signal is uninformative

and no verification takes place. The probability of this event is equal to (1−
πi)(1− σi(x′)).

To simplify the notation, let ri(x, x) ≡ ri(x).

As a consequence of Lemma 2.1, incentive compatibility requires that, for

every x, at the optimal contract the expected payoff for the entrepreneur under

truthful reporting (i.e. x− r(x)) is greater than the expected payoff by pretending

to be any other type x′ 6= x, i.e.:

x− ri(x) ≥ x− ri(x, x′), ∀(x, x′) ∈ X2 (2.2)

It is useful to refer to the incentive compatibility constraint when (i) the true state

is x and (ii) the message sent is x′, as IC(x′, x).

Any contract that implements investment must also satisfy the participation

constraint (PC) for the investor, which by Lemma 2.1 reads:∫
X

[
ri(x)− (1− πi)σi(x)µ

]
dF (x) ≥ K (2.3)

I restrict attention to pure strategy Nash equilibria, defined as follows:

Definition 2.1. A Pure Strategy Nash Equilibrium (PSNE) of the game consists in

a set of strategies {s∗i , z∗i , σ∗i , p∗i } for all firms i = 1, ..., N such that, for each firm i

and for a given vector p∗−i, both the portfolio of securities issued and the disclosure

policy are optimal:

{s∗i , z∗i , σ∗i , p∗i } ∈ arg max

∫
X

[x− ri(x)]dF (x)− c(pi) (2.4)

s.t. LL; DV ; IC(x, x′) ∀x, x′; PC.
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It is easy to see that PC must be binding at any optimal contract. This is

because whenever a contract {s, z, σ} is feasible and incentive compatible, so is a

contract {s′, z′, σ′} such that (i) σ′ = σ, (ii) s′ = αs, and (iii) z′ = αz for some

α ∈ [0, 1). By substitution, the contracting problem can be rewritten as:

{s∗i , z∗i , σ∗i , p∗i } ∈ arg max

∫
X

[x− (1− πi)σi(x)µ]dF (x)− c(pi)−K (2.5)

s.t. LL; DV ; IC(x, x′) ∀x, x′

The latter formulation highlights that the objective function is simply to minimise

the expected deadweight costs of verification and disclosure. Two intuitive lemmas

hold irrespective of pi, and prove useful in characterising the optimal contracts.

The first lemma deals with off-equilibrium clawback provisions, and shows

that we can restrict attention to contracts that impose the harshest feasible claw-

backs after cheating by the entrepreneur has been verified. Namely, optimal con-

tracts are such that verification takes place when m < y, which proves that the

entrepreneur is cheating with certainty, and z(m,x) = x whenever m 6= x.

Lemma 2.2. We can restrict attention to contracts such that:

(i) All assets are seized upon verified cheating: z∗(m,x) = x whenever m 6= x;

(ii) Messages revealed to be false are verified.

Proof. See the Appendix.

Observe that we have one degree of freedom in setting s∗(m) whenever

σi(m) = 1. As a consequence of Lemma 2.2, I let s∗(m) = z∗(m,x) = x in such

events.

The second Lemma shows that we can restrict attention to securities such

that both the aggregate payout and the repayment function are weakly increasing

on X. The intuition is that having a non-monotonic optimal contract implies that

incentive compatibility is not binding in some states, and one can always construct

a monotonic contract that replicates the same ex ante allocation satisfying all con-

straints.

Lemma 2.3. We can restrict attention to monotonic securities such that (i) r(x) ≥
r(x′), and (ii) s(x) ≥ s(x′) whenever x > x′.

Proof. See the Appendix.

I now proceed to the characterisation of optimal contracts.
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2.3 Privately Optimal Leverage and Disclosure

The results are presented according to the following roadmap. In section 2.3.1 I

characterise the optimal portfolio of securities issued for a given πi. In particular, I

show that it is a mixture of debt and equity, with leverage decreasing monotonically

with πi. Moreover, πi is a sufficient statistic to fully characterise the optimal leverage

ratio.

Next, in section 2.3.2, I characterise the set of Pure Strategy Nash Equilibria

(PSNE) of the disclosure game, where the strategy set of each firm simply consists

in choosing a pi ∈ [0, 1]. Despite the simple structure of optimal contracts in the

model, the game is generally discontinuous and not quasi-concave. I introduce two

mild restrictions on the distribution of output f(·), and show that they are sufficient

to obtain a well-behaved – i.e., continuous and quasi-concave – game, with a unique

PSNE. Comparative static results are presented and discussed at the end of the

analysis.

2.3.1 Optimal securities for a given disclosure policy

For this section, take pi as given for every i, and focus on the optimal associated

portfolio of securities. The analysis is of independent interest because it generalises

Gale and Hellwig [1985] – who restricted attention to the case of πi = 0 for all i –

and it highlights the key driving forces behind optimal securities in a CSV model

with signals. For easiness of notation, in this section I omit the subscript i and any

reference to the disclosure cost c(·).
To set a benchmark, consider the case of either π = 1 or µ = 0. The

participation constraint for investors in both cases reads
∫
X r(x)dF (x) ≥ K, and

IC(x, x′) becomes r(x) ≤ x. It follows that:

Remark 2.1. When either π = 1 or µ = 0, Modigliani and Miller [1958] holds,

and every feasible security that makes PC binding is optimal.

Proof. Immediate from the above reasoning.

From now onwards, I restrict attention to π < 1 and µ > 0. Define the two

securities that will be part of any optimal contract as follows:

Definition 2.2. A security is debt if and only if s(m) = min{m, d} for some d ∈ X.

Definition 2.3. A security is equity if and only if s(m) = αm for α ∈ [0, 1].
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The two securities are depicted in Figure 4.1. It is important to stress that

because investment is risky, any feasible debt contract that implements investment

must be such that d > K, as depicted in the left panel of the Figure. The following

proposition characterises the optimal contract.

Figure 2.1: The Relevant Securities
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Proposition 2.1. If Ef [πx̃] ≥ K equity is optimal and debt is suboptimal. If

Ef [πx̃] < K the uniquely optimal contract is a mixture of debt and equity.

Proof. See the Appendix.

The result follows from establishing three properties of optimal contracts:

Property 1: when the signal is not informative it is optimal to verify only

a convex set of low messages that includes message zero. This is because verifying

higher messages imposes a cost and no gains in terms of increasing the feasible and

incentive compatible payout from the firm to the investors. Define the following

sets: V ≡ {m|σ(m) = 1}, and NV ≡ {m|σ(m) = 0}. Because X is bounded, there

must exist xNV ≡ infx∈NV {x} and xV ≡ supx∈V {x}. The first property implies

that at the optimal contract xNV > xV .

Property 2: whenever xNV > 0, the optimal repayment function for every

x ∈ NV is given by:

s∗(x) = (1− πi)xNV + πix

The expression follows from two considerations. First, r∗(xNV ) = xNV by mono-

tonicity (i.e., Lemma 2.3) and the fact that all states x < xNV are verified and hence

cannot be profitable deviations by Lemma 2.2. Second, it is optimal to extract the

highest incentive compatible repayment in the no-verification region to push xNV
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to the minimum possible level that satisfies PC with equality. Under the given

s∗(x) = (1 − πi)xNV + πix, incentive compatibility binds for every x ∈ NV and

hence it is optimal.

Otherwise, if xNV = 0, there exist multiple optimal repayment functions.

They only need to be such that the slope is less than or equal to πi for every state in

the no-verification region. Therefore, a pure equity contract with α ≤ πi is optimal.

Property 3: for every x ∈ V , z∗(x, x) = s∗(x) = x. That is, investors are

senior claimants in verification states (that are the model equivalent of bankruptcy).

This holds because bankrupt firms have no feasible deviation such that they can

repay less (in expectation) than their realised output. As a result, minimisation of

bankruptcy costs requires them to payout all their output.

Figure 2.2, Panel (a), depicts the firm’s payout at the optimal mixture of

debt and equity. Panel (b) sketches the characterisation of the optimal contract

as a function of both transparency (measured by π) and profitability (measured as

the ratio K/Ef [x̃]). Moving from the bottom-right corner – high profitability, high

transparency – toward the top-left corner – low profitability, low transparency –

the amount of debt in the optimal contract is increasing. The gray area denotes

the parameter region where the first-best (no verification on-the-equilibrium path)

can be implemented and firms have zero leverage at the optimal contract. In the

upper-left triangle, instead, the solution is second-best and the amount of debt in

the contract is increasing in K/Ef [x̃] and decreasing in π.

The comparative static results behind the graph will be formally stated and

proved in Corollary 2.3. First, observe that Proposition 2.1 implies that pure debt

is optimal if and only if πi = 0.

Corollary 2.1. Pure debt is optimal if and only if π = 0.

Proof. Immediate from Proposition 2.1, since whenever xNV > 0 we must have

α = π.

Notice that both Proposition 2.1 and Corollary 2.1 identify the shape of the

optimal contract that implement investment, however they offer no guarantee that

investment would take place. I turn to the question of whether investment occurs

or not next.

The expected profits of the investors at a given mixture of debt and equity
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Figure 2.2: Optimal contract
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(b) Sketch of the Characterisation

are denoted by R(xNV ) ≡ Ef [r(x)− (1− π)σ(x)µ]−K, or:

R(xNV ) =

∫ xNV

0
[x−(1−π)µ]dF (x)+

∫ x

xNV

πxdF (x)+(1−F (xNV ))(1−π)xNV −K

(2.6)

R(xNV ) takes values on a compact subset of the real line, and the continuity

of f(·) implies that it is continuous in x. As a result, there must exist (at least one)

threshold x∗ that maximises R(xNV ). If there is more than one, pick the smallest.

Formally

x∗ ≡ min
{
xNV

∣∣xNV ∈ arg max R(xNV )
}

(2.7)

We obtain the following characterisation of the financing constraint coming from

hidden information:

Corollary 2.2. Investment takes place only if R(x∗) ≥ 0.

Proof. It follows from the above reasoning.

In turn, the equilibrium face value of debt d∗ is given by:

d∗ = min
{
xNV

∣∣R(xNV ) = 0
}

(2.8)

Although the expected profits of the investors do not necessarily increase

with the interest rate in a CSV model (due to the presence of verification costs), it

must be that R(d∗) is weakly increasing in its argument. Namely, that the expected

equilibrium profits of the investors increase at the margin with the interest rate.
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Lemma 2.4. R(d∗) is weakly increasing in d∗.

Proof. See the Appendix.

Because of Lemma 2.4, the effect of transparency (π), profitability (lower K

for a given Ef [x̃]) and verification costs (µ) on leverage (d∗) are monotonic and can

be easily derived.

Corollary 2.3. Cæteris paribus, leverage (d∗) is monotonically increasing in prof-

itability and decreasing in transparency. It also increases with the verification cost.

Proof. See the Appendix.

The effect of transparency and profitability on optimal leverage ratios is

depicted in Figure 2.2, panel (b). More transparent firms can finance with equity

projects of relatively lower profitability. As the converse, firms that are more opaque

need to have highly profitable investment opportunities to issue equity, it is otherwise

optimal for them to borrow (to some degree).

To provide some more intuition, I conclude the section solving an example.

Example. Suppose that x̃ is distributed uniformly and X = [0, 10]. If the ver-

ification cost is given by µ = 1 and K = 4, the optimal leverage ratio (i.e. debt

over total assets) is depicted in Figure 2.3, panel (a). Zero-leverage firms are such

that π > 4/5, else some amount of debt will be issued, monotonically decreasing in

transparency.

Consider now π ≤ 4/5. The PC reads:∫ d

0
[x− (1− π)]dx+

∫ 10

d
[πx+ (1− π)d]dx = 40

which can be rewritten as: 0.5(1 − π)d2 − 9(1 − π)d + 40 − 50π = 0. Of the two

roots, it is easy to check that we should always pick the negative one. Therefore,

we get:

d∗ = 9−
√
−19π2 + 18π + 1

1− π
Moreover, the derivative of the expression with respect to π reads:

∂d∗

∂π
=

−10

(1− π)
√
−19π2 + 18π + 1

< 0

Panel (b) plots the firm’s profits as a function of both π and K. In the purple

region at the top-left corner, investment does not take place (in fact, firm’s profits
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show to be negative in this region). Otherwise, investment takes place and profits

are decreasing in K and increasing in π. In particular, profits are strictly increasing

in transparency when some debt is issued (i.e., π < 0.8), and constant otherwise.

Figure 2.3: Optimal Contract in the Example

(a) Leverage and Transparency (b) Firm profits (gross of disclosure costs)
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2.3.2 Optimal disclosure policies

The previous section offered a characterisation of the optimal contract as a function

of πi. The optimal contract is unique whenever verification takes place on-the-

equilibrium path, and it can be implemented by pure equity otherwise. In this

section, we take advantage of this characterisation to characterise the equilibria of

the disclosure game.

To set a benchmark, consider what happens when disclosure is costless. From

PC, it is obvious that the entrepreneur only gains from increasing pi, as it prevents

any need for ex post verification. Therefore, full disclosure is expected:

Remark 2.2. If disclosure is costless (i.e., if c(pi) = 0, ∀pi and ∀i), optimal

contracts are such that p∗i = p∗j = 1 for all i, j and Modigliani and Miller [1958]

holds.

Proof. Immediate from the above reasoning and Remark 2.1.
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A more interesting and realistic scenario occurs when disclosure is costly

– e.g., the fee charged by an independent audit firm. Increasing the degree of

disclosure on the one hand raises the disclosure cost c(pi), on the other it lowers the

costs of financing by enabling the entrepreneur to issue more (cheaper) equity, hence

decreasing the face value of debt and the expected deadweight verification costs.

Observe that (2.8) allows us to express d∗i as a function of pi through its de-

pendence on πi(pi,p-i, q-i), for any given strategy of the other N−1 firms. Moreover,

we can disregard every pi such that pi > K/Ef [x̃] (regardless of strategy of the op-

ponents), because it is dominated by pi = K/Ef [x̃]. To rule out uninteresting corner

solution, suppose that the cost function satisfies the following Inada conditions:

Assumption 2.3. The cost function c(·) is strictly increasing (c′ > 0), strictly

convex (c′′ > 0) and it satisfies the following Inada conditions: c(0) = c′(0) = 0 and

c′(1)→ +∞.

Because the optimal capital structure can be fully described by πi, Program

(2.5) can be rewritten as follows:

p∗i ∈ arg max
pi∈[0,K/Ef [x̃]]

V (pi, p−i) ≡ Ef [x̃]− (1− πi(pi,p-i, q-i))F (d∗(πi(pi, p-i, q-i)))µ

− c(pi)−K (2.9)

The objective function V (pi, p−i) need not be differentiable with respect to pi, be-

cause d∗(πi(pi, p-i, q-i)) may jump as pi changes infinitesimally. This phœnomenon

happens when the payout to investors does not increase with the face value of debt

– that is, when (1 − F (d∗)) = f(d∗)µ30 – and such discontinuities are problematic

for the existence of a solution to the program. However, if the set of points such

that the equality holds is empty, then d∗(πi(pi, p-i, q-i)) is differentiable and so is

V (pi, p−i).

Define the following threshold, which corresponds to the equilibrium face

value of debt of a standard CSV model with πi = 0:

d̄ ≡ min

{
x ∈ X

∣∣∣∣ ∫ x

0
[x− µ]dF (x) + (1− F (d))d = K]

}
A sufficient condition for differentiability of d∗(πi(pi,p-i, q-i)) is the following:

Lemma 2.5. The objective function V (pi, p−i) is differentiable if the hazard rate

30Recall that by Lemma 2.4 it can never be the case that (1− F (d∗)) < f(d∗)µ.
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h(x) is uniformly bounded so that:

h(x) ≡ f(x)

(1− F (x))
<

1

µ
, ∀x ≤ d̄ (2.10)

Proof. See the Appendix.

The condition has a natural economic interpretation. It guarantees that

the gains to the investors coming by an increase in the face value of debt (e.g., a

marginally higher interest rate) more than compensate the losses due to verifica-

tion. The bound becomes tighter when the verification cost µ increases, and/or

profitability falls.

If (2.10) holds, Program (2.9) is guaranteed to have at least one solution by

the theorem of the maximum. Moreover, totally differentiating (2.8) with respect

to xNV and pi, and evaluating at xNV = d∗i yields:

d d∗i
d pi

=
d d∗i
dπi
· dπi

d pi
= −dπi

d pi
·
µF (d∗i ) +

∫ x̄
d∗i

[x− d∗i ]dF (x)

(1− πi)
[
1− F (d∗i )− µf(d∗i )

] < 0 (2.11)

where the inequality follows from three observations: (i) πi is strictly increasing in

pi; (ii) µF (d∗i ) +
∫ x̄
d∗i

[x− d∗i ]dF (x) > 0 for every d∗i ∈ X; and finally (iii) (1−πi)
[
1−

F (d∗i )− µf(d∗i )
]
> 0 by inequality (2.10) and Assumption 4.1.31

As a result, the first derivative of the objective function V (pi, p−i) reads:

∂V (pi, p−i)

∂pi
= µ

∂πi
∂pi

[
F (d∗i ) + f(d∗i ) ·

µF (d∗i ) +
∫ x̄
d∗i

[x− d∗i ]dF (x)

1− F (d∗i )− µf(d∗i )

]
︸ ︷︷ ︸

≡γ>0

−c′(pi) (2.12)

Equation (2.12) formalises the trade-off that underpins the choice of an optimal

disclosure policy: on the one hand, greater disclosure comes at a higher marginal

cost c′ (due to the strict convexity of the cost functional), on the other it pushes

leverage down – enabling the firm to issue a larger fraction of incentive compatible

equity – at a gain proportional to γ > 0.

The second derivatives with respect to pj for j = 1, ...N is a relatively long

collection of terms, and therefore I leave its derivation and explanation to the Ap-

pendix (at the beginning of the proof of Lemma 2.6). It suffices to mention here that

most of the terms can be signed to be negative, suggesting that the problem has a

certain degree of concavity built in, and coming from the participation constraint

31Assumption 4.1 implies that K/Ef [x̃] < 1, so it is never the case that (1− πi) = 0, irrespective
of q.
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for the investors (the zero profit condition).

Lemma 2.6. A sufficient condition for V (pi, p−i) to be strictly concave is the fol-

lowing:

f ′(x) > − 1

h(x)−1 − µ
, ∀x ∈ [0, d̄] (2.13)

Proof. See the Appendix.

The condition in Lemma 2.6 is not very restrictive if (2.10) holds, as h(x)−1 >

µ and the lower bound is negative. Moreover, alike (2.10), it is a straightforward

property to check. From now onwards, I assume that both restrictions on the

distribution of output hold, so that the disclosure game is well behaved:

Assumption 2.4. Both (2.10) and (2.13) hold. Hence, V (pi, p−i) is C2 and strictly

concave.

Define strict submodularity and aggregativity of a game as follows:

Definition 2.4. A game is strictly submodular if ∂V (pi, p−i)
/
∂pi∂pj 6=i < 0 for

every i and for every j 6= i.

Definition 2.5. A game is aggregative if there exists a continuous and additively

separable function g : [0, 1]N−1 → [0, 1] (the aggregator) and functions V̄ : [0, 1]2 →
R (the reduced payoff functions) such that for each player i:32

V (pi, p−i) = V̄ (pi, g(p−i)), ∀p ∈ [0, 1]N

From these definitions, and from Assumption 2.4, it follows that:

Lemma 2.7. The disclosure game is aggregative and strictly submodular.

Proof. See the Appendix.

The aforementioned properties guarantee both the existence of a PSNE, and

the presence of monotone comparative statics with respect to the correlation pa-

rameter q.

Proposition 2.2. The set of Pure Strategy Nash Equilibrium (PSNE) is non-empty,

and each firm i = 1, ...N chooses a disclosure policy p∗i such that:

1. If V1(K/Ef [x̃],p∗−i) > 0, p∗i = K/Ef [x̃];

32Both definitions are the analog of those in Acemoglu and Jensen [2013], for instance, for the
case of one-dimensional strategy sets.
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2. Otherwise V1(p∗i ,p
∗
−i) = 0 and p∗i ∈ [0,K/Ef [x̃]).33

Moreover, the smallest and the largest equilibria, denoted by Q∗(q) and Q∗(q) re-

spectively, are such that: Q∗ : [0, 1]
N(N−1)

2 → R is lower-semicontinuous and Q∗ :

[0, 1]
N(N−1)

2 → R is upper semi-continuous.

Proof. See the Appendix.

Existence of a PSNE follows from three properties of the game: (i) the con-

vexity and compactness of the strategy set [0, 1], for all i; (ii) the continuity of

V (pi, p−i) in all arguments; and (iii) the quasi-concavity of V (pi, p−i) in pi. Ag-

gregativity and submodularity also imply that monotone comparative statics with

respect to the correlation vector q−i can be derived:34

Corollary 2.4. Cæteris paribus, the equilibrium disclosure p∗i decreases with qi, j,

for every i, j. The equilibrium leverage might decrease or increase with qi, j.

Proof. See the Appendix.

Summing up, the equilibrium disclosure policies are a function of the cor-

relation vector q, and the higher the correlation the lower the disclosure of each

firm, because the larger the gains from free riding on the information produced by

competitors. It remains to consider the efficiency properties of the private disclosure

and leverage policies, which is the subject of the next section.

2.4 Socially Optimal Leverage and Disclosure

The set of Socially Efficient (SE) disclosure policies can be simply defined as the set

of disclosure vectors of length N that maximise the aggregate surplus:

SE ≡
{
pe ∈ [0, 1]N

∣∣∣∣ pe ∈ arg max
p∈[0,1]N

N∑
i=1

V (pi, p−i)

}

The set SE is non-empty, and can be characterised as follows:

Proposition 2.3. There exists a non-empty set of Socially Efficient (SE) disclosure

policy vectors such that pe > p∗, where p∗ belong to the largest Nash equilibrium

Q∗(q). In addition, pe >> p∗ whenever q−i > 0.

Proof. See the Appendix.

33As standard, V1 denotes the derivative of V with respect to the first argument.
34See Acemoglu and Jensen [2013] for general results, of which my results are a special case.
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Proposition 2.3 shows that the presence of disclosure spillovers across firms

leads to an inefficiently low private provision of information, and consequently ineffi-

ciently high leverage ratios. A social planner could increase the aggregate welfare by

promoting higher disclosure and lower borrowing. How could the result be achieved?

A first policy would focus on mandatory disclosures, and mandate that firms

disclose according to the vector pe. However, there may be limits in the efficacy

of mandatory requirements, especially when dealing with firms that are naturally

opaque (such as banks or insurance companies).

In fact, opaque sectors such as the financial industry are regulated according

to different principles. In particular, they tend to be subject to mandatory capital

requirements – that is, a certain amount of their assets must be backed by equity

claims. At present, Basel III confirms capital requirements in the range of 4% of

the risk weighted assets for banks.35 This paper shows that mandatory capital

requirements may well be welfare increasing, and can be an alternative to disclosure

egulation in those instances where reaching effective disclosures may prove daunting.

The result is summarised in the following proposition.

Proposition 2.4. When q−i > 0 for some i, the SE can be implemented as a

PSNE either mandating a certain amount of disclosure pei , or mandating capital

requirements of size lei . Transfers across firms guarantee that all firms who were

investing in the absence of regulation continue to invest.

Proof. The case for mandatory disclosure is straightforward: simply solve for the

SE, and set pei equal to the disclosure at the unique SE.

If disclosure cannot be mandated effectively, consider the leverage at the SE:

it would be αei = pei by Proposition 2.1. Then, compute the corresponding d(pei ),

and set:

lei ≡
d(pei )

d(pei )(1− pei ) + peiEf [x̃]

Note that: lei = 0 if d(pei ) = 0, and lei = 1 if d(pei ) = d̄ (which implies that αei = 0).

Although very interconnected firms may find it too costly to invest under

capital standards, transfers across firms exist such that they all continue to invest.

Existence of such transfers is guaranteed by the definition of SE, and in particular

the fact that any SE maximises the aggregate market surplus.

An important remark on the implementation of socially efficient outcomes

concerns the assumption that the regulator knows the degree of connectedness of

35However, many policy makers and academics called for substantially higher requirements. For
instance, Calomiris called for 10%, Admati and Hellwig 20-30%, and Kotlikoff 100%.
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individual firms. Although we implicitly assumed that the market knows such in-

formation, and price it correctly, it could be that a regulator does not know it. In

such a scenario, it cannot rely on firms disclosing truthfully their systemic risk : all

firms have strong incentives to underreport so they can avoid the regulatory require-

ments. Similar problems arise in most models of disclosure under externalities, such

as Admati and Pfleiderer [2000].36

Though this limitation is likely to be relevant in practice, observe that current

US regulation is implicitly following the approach sketched here, when it imposes

additional capital requirement to the too-big-too-fail institutions. Effectively, the

regulator is using a measure of the size of firms to capture their potential intercon-

nectedness, and requires better capitalisation precisely when the model I presented

suggests it to be necessary. Better measures are currently studied by academics and

policy makers.

I conclude the section by returning to our example, and solving for the pri-

vately and socially optimal disclosure policies.

Example (cont’d). Recall from the previous analysis that:

d∗ =

9−

√
−19π2

i + 18πi + 1

1− πi
if π ≤ 4/5

0 otherwise

The function is continuous, and inequality (2.10) holds because: (i) d̄ = 8; and (ii)

the hazard rate reads: 1/(10 − x), which is strictly less than 1/µ = 1 for every

x ∈ [0, 9]. Moreover, f ′ = 0 implies that (2.13) holds.

Suppose that N = 2, πi = pi + q(1 − pi)pj 6=i for both firms, and c = |1 −
0.8(0.8 − pi)−1|/100, and focus withoul loss of generality on symmetric equilibria.

Program (2.5) can be written as:

max
pi∈[0,0.8]

V (pi, p−i) = −1− πi
10

[
9−

√
−19π2

i + 18πi + 1

1− πi

]
− |1− 0.8(0.8− pi)−1|

100
+ 1

(2.14)

It is easy to check that ∂2V (pi, p−i)
/
∂p2

i < 0 and ∂2V (pi, p−i)
/
∂pi∂p−i < 0. As a

result, there exists a unique interior maximum, fully characterised by the first order

36I overlook them here not because they are unimportant, but because their consequences are ob-
vious: the regulation trades off a distortion due to ‘pooling’ with the benefits of enhanced disclosure
and lower leverage. The final result depends on parameter values.
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condition: ∂V (p∗i , p−i)
/
∂pi = 0.

In contrast, exploiting symmetry, the socially optimal disclosure can be de-

rived as the solution of a planner’s problem, who maximises aggregate welfare with

pi = p−i = p:

max
p∈[0,0.8]

W (p) ≡ (1− p)(1− qp)
5

[
9−

√
−19(p+ q(1− p)p)2 + 18(p+ q(1− p)p) + 1

1− p− q(1− p)p

]
(2.15)

− |1− 0.8(0.8− pi)−1|
50

+ 2 (2.16)

Again, it is easy to check that the planner’s objective function is strictly concave in

p. Hence, the socially optimal disclosure level satisfies: ∂W (p∗)
/
∂p = 0.

The SNE and the planner’s solution are plotted in Figure 2.4. As expected,

in the absence of externalities (i.e., when q = 0) the private and social optimum

coincide. However, for every q > 0 the SNE displays an inefficiently low level of

disclosure, relative to the social optimum. Moreover, the divergence between private

and social optimum increases with the externality parameter q.37 From Proposition

2.1, it follows that leverage is inefficiently high whenever q > 0, and the inefficiency

is increasing in q.

Figure 2.4: Privately and Socially optimal disclosure policies
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37This is an instance of the monotone comparative static derived in Acemoglu and Jensen [2013]
for more general (though still aggregative) submodular games.
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2.5 Empirical analisys

In order to check whether the predictions of the model appear consistent with the

empirical evidence, I first build a firm-level panel of the universe of US public firms,

then I construct various measures of transparency and leverage (as well as other

standard controls), and finally I run a series of regressions.

To construct my data, I combine two sources: (i) the CRSP/COMPUSTAT

merged dataset; and (ii) the IBES analysts’ forecast dataset. To do so, I follow the

path described below.

I first collect the raw CRSP/Compustat merged dataset, which contains bal-

ance sheet information about the universe of US public corporations, as well as the

prices of their securities for the period 1979-2014. From the original file, I drop the

observations that satisfy at least one of the following requirements: (i) total assets

(AT) are missing or negative; (ii) the firm is not US based (i.e. FIC6=USA); (iii)

total liabilities (LT) are missing or negative; (iv) total liabilities exceed total assets

(LT>AT); (v) either the equity price (PRCC) or the market capitalisation (CSHO)

are missing.

Then I collect the detail IBES dataset (adjusted for stock splits), which con-

tains individual analysts’ forecasts for US corporates EPS (Earnings per share). For

any given firm-year pair, I generate the following summary statistics: (i) NUMEST

– the number of analysts’ estimates of expected EPS; and (ii) CV – the coefficient

of variation of analysts’ forecasts (i.e. their standard deviation normalised by the

mean). I drop those firm-date pairs for which there are less than five analysts’

forecast, and I collapse the data at the firm-year level.38

The procedure ends with 32,361 matched firm-year pairs such that (i) both

Compustat and IBES data is successfully merged, and (ii) more than five forecasts

are available.

The descriptive statistics for the variables of interest are reported in Table

2.1. The definition I adopt of leverage includes both financial and non-financial lia-

bilities (as suggested in Welch [2011]), and it is easily computed as the ratio of total

liabilities (LT) over total assets (AT).39 The Book-to-Market ratio is computed as

38In the empirical Appendix, I conduct robustness exercises where I let the cutoff run from 1 to
4, and show the results are unchanged. Moreover, I consider alternatives to CV such as the median
absolute deviation from the mean (both normalised and not). Again, the results do not change.

39Other definitions I consider in the Appendix are: (i) LT/AM, where AM stands for market
value of assets; (ii) DT/AT, where DT = DLC + DLTT refers to the aggregate financial liabilities
(debt); and finally (iii) DT/AM. Overall, the qualitative results are not very sensitive to the leverage
measure chosen, although they are more statistically significant when book values are considered
rather than market values.
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Table 2.1: Summary statistics

Variable Mean Std. Dev. Min. Max. N

LT/AT 0.56 0.24 0 1 32361
CV forecasts 0.07 0.15 0 7.92 32361
Estimates 13.12 8.19 5 59 32361
Total Assets 7.29 1.87 -0.03 14.7 32361
Profitability 0.01 0.18 -5.88 4.1 32361
Book-to-Market 0.59 0.56 0 21.26 32361
Intangibles 0.13 0.18 0 0.92 28949
Industry Leverage 0.57 0.18 0.17 0.94 32361

the book value of a share (PRCCF) multiplied times the total number of outstanding

shares (CSHO), and then divided by the market value of equity (MEQ). Intangibles

consists in the fraction of intangible assets, defined as INTAN/AT. Finally, Total

Assets are reported as the natural logarithm of AT, hence the negative minimum

numbers which obtain for AT∈ (0, 1).

I now proceed to the regression analysis. I follow the procedure of gradually

introducing independent variables, to check how the sensitivity and significance of

the coefficients of interest evolve. The general linear regression that I estimate takes

the following form (where i indexes firms and t years):

Leveragei,t = α+ βXi,t−1 + γi + γt + εi,t

where the matrix Xi,t includes various covariates of a firm-date pair, among which

the main regressor of interest (i.e. CV – the coefficient of variation of analysts’

forecasts).

The regression results are reported in Table 2.2. I first regress leverage on

CV, a constant and the time dummies (column (1)). Then, in column (2) I add the

set of controls that the previous papers (e.g. Frank and Goyal [2009]) identified as

reliable predictors of the leverage of a firm. In column (3) I regress leverage on CV,

a constant, the time dummies and firms fixed effects. Column (4) adds the controls

to the fixed-effect regression of column (3). Next, I present two robustness checks:

in column (5) I restrict attention to non-financial firms; in column (6) I increase the

cutoff on the number of forecasts to ten. In both cases, the coefficient of interest

remains significant, and it even marginally increases in magnitude relative to that

of column (4).40

Importantly, the sign of most other controls is consistent with previous stud-

40In the Appendix, I run additional robustness exercises and show that the results are qualitatively
similar throughout various specifications.
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Table 2.2: Regression table

(1) (2) (3) (4) (5) (6)
LT/AT LT/AT LT/AT LT/AT LT/AT LT/AT

L.CV forecasts 0.0983∗∗∗ 0.0427∗∗ 0.0432∗∗∗ 0.0217∗ 0.0342∗∗ 0.0354∗∗

(5.11) (2.90) (4.18) (2.53) (2.99) (2.72)

L.Total Assets 0.0589∗∗∗ 0.00934 0.00596 0.00539
(31.28) (1.73) (1.06) (0.82)

L.Profitability -0.193∗∗∗ -0.170∗∗∗ -0.160∗∗∗ -0.216∗∗∗

(-6.28) (-7.96) (-7.33) (-7.79)

L.Book-to-Market -0.000492 0.00132 -0.00218 -0.0143∗∗

(-0.10) (0.33) (-0.50) (-2.75)

L.Intangibles -0.000937 0.0260 0.0303 0.00306
(-0.05) (1.06) (1.19) (0.10)

L.Industry Leverage 0.466∗∗∗ 0.146∗∗ 0.135∗ 0.123
(22.09) (2.67) (2.27) (1.77)

Constant 0.544∗∗∗ -0.111∗∗∗ 0.592∗∗∗ 0.424∗∗∗ 0.420∗∗∗ 0.504∗∗∗

(49.22) (-8.19) (133.26) (7.55) (7.42) (6.49)

Time FE Yes Yes Yes Yes Yes Yes

Firm FE No No Yes Yes Yes Yes

Exclude Finance No No No No Yes No

10 forecasts or more No No No No No Yes

Observations 26337 23499 26337 23499 19121 13395
Adjusted R2 0.010 0.479 0.847 0.846 0.778 0.856

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Sources: Compustat merged with CRSP (annual), IBES (detail, adjusted for stock splits).
Notes: all independent variables are lagged by one year. Stnd. errors clustered at the firm level.
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ies. Profitability is strongly negatively correlated with leverage. Average industry

leverage is strongly positively correlated with leverage. Total assets (i.e., size) is pos-

itively correlated with leverage, though the correlation vanishes after the inclusion

of firms fixed effects. Both the Book-to-Market ratio and the fraction of intangible

assets are not robustly signed. Finally, the inclusion of firms fixed effects explains

about 50% of the observed variation in leverage, consistently with other studies such

as Lemmon et al. [2008].

Overall, the results support the predictions of the model I propose, although

a validation of the my hypotheses with statistical causality is left for future research.

2.6 Conclusions

This paper analyses the effect of disclosure on the composition of financing means

for firms. In a novel costly-state-verification setting with variable and endogenous

degrees of asymmetric information between firms and investors, the paper highlights

that disclosure and leverage should be negative correlated. Higher disclosure leads

to the possibility of issuing cheaper incentive-compatible stocks, hence increasing

the opportunity of leveraged financing and its bankruptcy costs.

I find this prediction consistent with the empirical evidence for US public

firms after the 1980s, to the extent that effective transparency is correlated to the

dispersion in analysts’ EPS forecasts. Of course, the dispersion in analysts forecasts

appears a noisy proxy of transparency, and one needs to confirm that the results are

robust across various alternative measures in future work. Nevertheless, the validity

of the correlation derived in the paper hinges on the observing that most factors

that influence the dispersion of forecasts, such as herding or contrarianism, and not

linked unambiguously to leverage ratios by any existing theory.

The presence of disclosure externalities across firms yields insufficient volun-

tary disclosure and excessive leverage, relative to the constrained best. Therefore,

it brings about the question of regulation. If regulators can effectively mandate

truthful disclosures, then social efficiency can be restored. However, the explicit

treatment of the interlinkage between disclosure and financing policies suggests an

additional tool that regulators should explore when truthful disclosures prove hard

to implement: capital requirements. By setting higher capital requirements, regula-

tors promote endogenously enhanced transparency and can restore social efficiency.

The argument for mandatory capital standards I put forward relies on two

pillars: (i) firms’ output should be sufficiently correlated (e.g., in the presence of

high systemic risk); and (ii) mandatory disclosures are hard to translate into greater
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transparency, because they can be dodged to a large extent. Both conditions plau-

sibly apply to financial firms, and indeed they are the subject of regulatory capital

requirements.

Moreover, the argument is immune from the most common critique of the

existing, alternative, story based on the absorbing of losses in crises (e.g., Admati

and Hellwig [2014]). Banking lobbyists commonly counter argue that, although ex-

post desirable in crises times, capital requirement are ex-ante detrimental to credit

extension and would dampen growth during boom times, because they increase

the cost of funding for banks. Indeed, if this was not the case we would observe

already much higher equity financing in the financial industry. The model I present

is immune from this critique, because capital requirements are efficient ex ante, and

solve a coordination failure in information provisions across firms.

As always with regulation, the devil lies in the details. Moreover, important

aspects such as agency problems within firms and on the government side have been

ignored here, for the sake of simplicity. Any regulatory effort must confront such

issues convincingly in order to be credible. All this paper wishes to achieve is to raise

awareness that the debates around capital requirements and mandatory disclosures

for financial firms should be more closely connected both in the policy and in the

academic arenas.
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2.7 Appendices

2.7.1 Proofs

Lemma 2.2

Proof. Claim (i). Suppose there exists an optimal contract {s, z, σ, p} such that:

{x | z(m,x) < x, for some m 6= x} 6= ∅

Consider replacing it with another contract {s′, z′, σ′, p′} such that σ = σ′, s = s′, p = p′ and:

z′(m,x) =

x if m 6= x

z(m,x) otherwise

Clearly, the new contract is feasible because when σ = 1 the maximum feasible clawback equals

x. To see that it is incentive compatible, observe that because {s, z, σ, p} is optimal, we know

that r(x) ≤ r(x, x′) for every pair x, x′. We also know that (i) r(x) = r′(x) for every x, and

(ii) r(x, x′) ≤ r′(x, x′) for every x, x′ by construction. Hence, {s′, z′, σ′, p′} is incentive compatible.

The participation constraint remains binding because Ef [r′(x)] = Ef [r(x)], and the deadweight loss

due to verification and disclosure do not change. Therefore, the entrepreneur is indifferent between

{s, z, σ, p} and {s′, z′, σ′, p′}, proving our claim.

Claim (ii). It mirrors the proof of claim (i): start with an optimal {s, z, σ, p} that does

not satisfy the property (i.e., σ(m) = 0 for some m < y). For all such cases, replace σ with σ′ = 1.

Otherwise, set σ = σ′, z = z′ and s = s′ and p = p′ Because the change occurs only off-equilibrium

path, the participation constraint remains unchanged. Furthermore, incentive compatibility and

feasibility are trivially satisfied, proving the claim.

Lemma 2.3

Proof. Claim (i). First, we know that when π = 0 the optimal contract is debt, and it is monotonic

(Gale and Hellwig [1985]). Therefore, we can restrict attention to π > 0 and consider an optimal

contract {s, z, σ, p}. Suppose that under {s, z, σ, p} there exists a set A ⊂ X and an x̂ such that

A ≡ {x > x̂|r(x̂) > r(x)}. Evidently, the contract is not monotonic. Without loss of generality,

suppose there only exists one such x̂ (if there was more than one, the same reasoning could be

iterated).

Consider another contract {s′, z′, σ′, p′} such that σ = σ′, p = p′, s′(x) ∈ [s(x), x], z′(x, x) ∈
[z(x, x), x] and:

r′(x) =

r(x) if x /∈ A

r(x̂) otherwise

The new contract is feasible because r(x̂) ≤ x̂ < x for every x ∈ A. To show that it is also incentive

compatible, I partition the state according to whether they belong to A or not.

First, consider x /∈ A. By construction (i) r′(x) = r(x), and (ii) r′(x′, x) ≥ r(x′, x) for

every x′. Hence, because {s, z, σ, p} was incentive compatible, incentive compatibility holds also

under {s′, z′, σ′, p′}.
Second, consider x ∈ A. From the way I constructed r′, I know that r′(x′) = r(x′). First,
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IC(x̂, x′) under the old contract reads:

x̂− r(x̂) ≥ (1− π)(1− σ(x′))[x̂− s(x′)] ⇒ x̂ ≥ r(x̂)− (1− π)(1− σ(x′))s(x′)

π + (1− π)σ(x′)

The ratio is well defined because π > 0. Under the new contract, by construction we have: σ′(x′) =

σ(x′); s′(x′) = s(x′) and r′(x̂) = r(x̂), so we can write:

x̂ ≥ r(x̂)− (1− π)(1− σ(x′))s(x′)

π + (1− π)σ(x′)
=
r′(x̂)− (1− π)(1− σ′(x′))s′(x′)

π + (1− π)σ′(x′)

Observe that IC(x, x′′) under the new (prime) contract reads:

x ≥ r′(x)− (1− π)(1− σ′(x′))s′(x′)
π + (1− π)σ(x′)

=
r′(x̂)− (1− π)(1− σ′(x′))s′(x′)

π + (1− π)σ′(x′)

where the last equality holds by construction of the new contract {s′, z′, σ′, p′} – i.e., the fact that,

for every x ∈ A, r′(x) = r(x̂). Since x > x̂ the prime contract is incentive compatible as well.

Now consider the participation constraint. Regardless of the measure of the set A, at the

prime contract the investors make strictly positive profits. Define a third contract {s′′, z′′, σ′′, p′′}
such that p′′ = p′ = p, σ′′ = σ′ = σ, z′′ = αz′ and s′′ = αs′ for some α ∈ [0, 1] such that:

Ef [r′′(x) − (1 − π)σ′′(x)µ] = Ef [αr′(x) − (1 − π)σ′′(x)µ] = K We know that such an α exists

because: (i) when α = 1 we have Ef [αr′(x) − (1 − π)σ′′(x)µ] ≥ K; (ii) when α = 0 we have

Ef [−(1 − π)σ′′(x)µ] < 0; and (iii) the left hand side of the equation is continuous in α. The

new (double-prime) contract is feasible because α ∈ (0, 1), and it is trivially incentive compatible.

Because the deadweight loss does not change and the investors make zero profits, the firm must be

indifferent between {s, z, σ, p} and {s′′, z′′, σ′′, p′′}, proving the claim.

Claim (ii) Consider an optimal contract {s, z, σ, p} that satisfies Claim (i). Suppose there

exists an interval A ⊂ X, such that s(x) < s(x̂) for every x ∈ A and some x̂ < inf{x|x ∈ A}. The

repayment function is not monotonic. Introduce another contract {s′, z′, σ′, p′} such that: p = p′,

σ = σ′, r = r′ but:

s′(m) =

s(m) if m /∈ A

s(x̂) otherwise

Of course, for all x ∈ A the fact that r = r′ and the shape of s′ imply that:

z′(x, x) = z(x, x)− (1− π)

π
[s(x̂)− s(x)] < z(x, x)

The new repayment function is monotonic. To see that the prime contract is feasible, notice that

(i) the original contract was feasible; (ii) s(x̂) ≤ x̂ < x and (iii) by the monotonicity of r we have:

r(x) ≥ r(x̂) ≥ (1− π)s(x̂) ⇒ z′(x, x) = z(x, x)− (1− π)

π
[s(x̂)− s(x)] ≥ 0, ∀x ∈ A

To show it is also incentive compatible, partition the incentive constraints in the following categories:

First, consider x /∈ A. All incentive constraints hold because {s, z, σ, p} was incentive

compatible and: (i) s(x) = s′(x) for all x′ /∈ A; (ii) s(x) < s(x̂) = s′(x′) for all x′ ∈ A.

Second, consider x ∈ A If message x′ 6= x is such that σ′(x′) = 1 incentive compatibility

trivially holds. Moreover, if x is such that σ′(x) = 1 incentive compatibility holds because s′(x) is
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irrelevant (i.e., r(x) = z(x, x)). Finally, if x, x′ are such that σ′(x) = 0 = σ′(x), we have:

πz′(x, x) + (1− π)s′(x) ≤ πx+ (1− π)s′(x′)

If x′ ∈ A, then s′(x) = s′(x′) = s(x̂) by construction and since z′(x, x) ≤ x by limited liability

incentive compatibility holds. If x′ /∈ A and x′ > x, incentive compatibility follows from s′(x′) =

s(x′) ≥ s(x̂) = s′(x), by definition of the set A.t Finally, if x′ /∈ A and x′ < x, incentive compatibility

follows from r = r′ and s′(x′) = s(x′). So, the prime contract is incentive compatible.

In conclusion, observe that: (i) because σ = σ′ the deadweight verification cost does not

change; and (ii) because r = r′ the investors revenues do not change. As a result, the two contracts

are equivalent from the firm’s perspective and because {s, z, σ, p} is optimal, so is {s′, z′, σ′, p′}.

Proposition 2.1

Proof. Case 1: Ef [πx̃] ≥ K. The contract with minimum possible verification on-the-equilibrium

path is such that σ(m) = 0 for every m. Because of Lemmas 2.2-2.3, when σ(m) = 0 for every m

there is at most one binding incentive constraint for each type x ∈ X, IC(x, 0): x−r(x) ≥ (1−π)x,

or equivalently: r(x) ≤ πx – where I substituted s(0) = 0 by limited liability. In addition, evidently

one can set s(x) = r(x) for every x. If σ(m) = 0 for every m and incentive compatibility holds, the

fraction of equity that needs to be sold is α = K/Ef [x̃], and because α ≤ π equity is optimal.41

Debt is suboptimal because the incentive constraint for a type x ≤ d reads x ≤ πx, which

is never satisfied because π < 1. Moreover, d > K because investment is risky, and hence the set

of x < d is nonempty.

Case 2: Ef [πx̃] < K. The proof proceeds in three steps:

Step 1: Any optimal contract is such that xV < xNV .

Proof. Divide X into intervals X1, X2, ..., Xn such that (i) minX1 = 0, maxXn = x̄, ∪ni=1Xi = X,

and (ii) for every i, and for every pair x, x′ ∈ X2
i , σ(x) = σ(x′). By contradiction, suppose

that at the optimal contract {s, z, σ} we have xV > xNV . Without loss of generality, suppose

that X1 ⊆ NV , so that (i) X2 6= ∅ and X2 ⊆ V , (ii) X3 6= ∅ and X3 ⊂ NV , and so on.

For x ∈ X3, incentive compatibility of {s, z, σ, p} requires that (i) for every x′ ∈ X1 we have

r(x) ≤ πx+ (1− π)s(x′); and (ii) for every x′′ ∈ X2 we have r(x) ≤ x.

Consider another contract {s′, z′, σ′} such that s′ = s, z′ = z, p = p′ and:

σ′(m, 0) =

σ(m) if m /∈ X2

0 otherwise

By Lemma 2.1 the new contract is feasible, because max{m∗(x), y} = x for every x. Now I prove

it is incentive compatible.

If x ∈ X2, incentive compatibility of {s, z, σ, p}, s = s′ and z = z′ jointly imply that

IC(x, x′) is satisfied at the prime contract for every x′ ∈ X. If x ∈ X1, incentive compatibility

follows from the monotonicity of s(m) – by Lemma 2.3. If x ∈ X3 we have two cases: (i) if x′ ∈ X1

or x′ ∈ Xi and i ≥ 3 then we have r′(x) ≤ r′(x, x′) because r = r′ and σ′(x′) = σ(x′); (ii) if instead

x′ ∈ X2 incentive compatibility reads: πz′(x, x)+(1−π)s′(x) ≤ πx+(1−π)s′(x′). Because x′ > x′′

for every x′′ ∈ X1, and since X1 ⊆ V , we also have: πx + (1 − π)s′(x′) = πx + (1 − π)s(x′) ≥

41In the limit, when Ef [πx̃] = K, pure equity is the uniquely optimal contract.
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πx+ (1− π)s(x′′) = πx+ (1− π)s′(x′′), where the inequality follows from incentive compatibility

of {s, z, σ, p}. Similar arguments can be used for x ∈ Xi and i > 3, proving the claim.

Step 2: For every x ≥ xNV , z∗(x, x) = s∗(x) = (1− π)xNV + πx.

Proof. First I show that s(xNV ) = xNV . Suppose not, i.e. there exists an optimal contract

{s, z, σ, p} such that xNV > r(xNV ) (the case of the opposite inequality is prevented by limited

liability). Define the set B ≡ {x ∈ NV | r(x) < xNV }. Design a new contract {s′, z′, σ′, p′} such

that z = z′, σ = σ′, p = p′ and:

s′(m) =

s(m) if x /∈ A

xNV otherwise

Clearly, the prime contract is feasible. It is also incentive compatible because {s, z, σ, p} is incentive

compatible. It remains to show that from the optimality of {s, z, σ, p} it follows that B is of zero

measure, hence PC remains binding. By contradiction, suppose not. Define the following threshold:

x̂ ≡
{
x ∈ X

∣∣∣∣ ∫ x̂

0

[x− (1− π)µ]dF (x) +

∫ x̄

x̂

min{s′(x), x}dF (x) = K

}
We know that x̂ exists and 0 < x̂ < xNV because if x̂ = 1 we have:∫ x̂

0

[x−(1−π)µ]dF (x)+

∫ x̄

x̂

min{s′(x), x}dF (x) =

∫ xNV

0

[x−(1−π)µ]dF (x)+

∫ x̄

xNV

s′(x)dF (x) > K

if, instead, x̂ = 0 we have
∫ x̄

0
min{s′(x), x}dF (x) < K, where the inequality follows from the fact

that Ef [πx̃] < K. Observe that a contract {s′′, z′′, σ′′, p′′} such that z′′ = z′ = z, p′′ = p′ = p,

s′′ = min{s′, x} and:

σ′′(m) =

σ(m) if m /∈ [x̂, xNV ]

0 otherwise

would be both feasible and incentive compatible. Moreover, it would make the participation

constraint for the investors binding, strictly reducing the expected verification costs relative to

{s, z, σ, p}.42 As a result, {s, z, σ, p} cannot be optimal, proving our claim.

That s(x) = (1−π)xNV +πx follows from three observations. First, incentive compatibility

for x, x′ ∈ NV 2 reads:

s(x) ≤ πx+ (1− π)s(x′)

Second, because r(xNV ) = xNV and by Lemma 2.3 (i.e., monotonicity of s(·)) we have: min{s(m)|m ∈
NV } = xNV . Third, incentive compatibility must be binding almost surely for every x ∈ NV (that

is, up to sets of zero measure). To see the latter observation must hold, simply observe that if there

is a set of strictly positive measure where incentive compatibility does not hold at any candidate

optimal contract, one can repeat the argument given for the previous claim (i.e., r(xNV ) = xNV )

and show that the candidate contract cannot be optimal.

Step 3: For every x such that σ(x) = 1, we have z∗(x, x) = s∗(x) = x.

Proof. The proof is identical to that of Step 2. It consists in showing that if a contract is such

that z∗(x, x) < x for a set of states of strictly positive measure, such contract cannot be optimal

42Strictly because we supposed that B had a strictly positive measure.

39



because the deadweight verification costs can be reduced moving to z∗(x, x) = x for every x ∈ V
with another feasible, incentive compatible contract that makes PC binding.

Summing up, steps 1-3 imply that the optimal contract is a mixture of debt and equity

with α∗ = π and d∗ = min{xNV | PC binds}.

Lemma 2.4

Proof. First notice that the repayment to investors when x∗ = 0 is equal to Ef [πx̃], and it must

be strictly less than K when x∗ > 0 by Proposition 2.1. Suppose that – by contradiction – the

derivative at x∗ of the objective function in (2.7) is strictly negative, i.e.: (1 − F (x∗)) < f(x∗)µ.

Because the function is continuous, and it starts at a positive value below strictly below K, then

whenever the derivative is negative it must be that there exists an x′ < x∗ such that the repayment

to investors equals K. But this contradicts the definition of x∗, proving our claim.

Corollary 2.3

Proof. Consider profitability first. We have two cases: d = 0 and d > 0. If d = 0, it means that

K/Ef [x̃] = α ≤ π. If K′ < K I have K′/Ef [x̃] = α′ < K/Ef [x̃] = α ≤ π and d′ = d = 0. Now

consider the case of d > 0. At any optimal contract that sustains investment where d > 0, (2.2)

holds with equality at x∗ = d. We can rewrite (2.2) at the optimum as:

[Ef [x̃]−K]− (1− π)µF (x∗)−
∫ x

x∗
(1− π)xdF (x) + (1− F (x∗))(1− π)x∗ = 0

Suppose that K increases for a given Ef [x̃]. By Lemma 2.4 I know that (1 − F (x∗)) ≥ f(x∗)µ. If

the inequality is strict, totally differentiating the expression with respect to K and x∗ I get:

−dK + dx∗(1− π)
[
1− F (x∗)− f(x∗)µ

]
= 0

and dx∗/dK > 0 implies that either d increases as profitability falls, or at the new K there is no

investment. If, instead, (1−F (x∗)) = f(x∗)µ, then d must jump to the right and again either there

exists a higher d that satisfies PC, or there is no investment.

As for transparency, suppose it decreases to π′ < π. If π′ ≥ K/Ef [x̃], then d′ = d = 0. If

π′ < K/Ef [x̃] ≤ π, then either at π′ there is no investment or it must be that d′ > d = 0. Finally,

if π′ < π < K/Ef [x̃], I must have that again either at π′ there is no investment or d′ > d because

the derivative of (2.2) with respect to π is equal to µF (x∗) +
∫ x
x∗ [x− x

∗]f(x)dx > 0.

Finally, that x∗ increases with µ is immediate from inspection.

Lemma 2.5

Proof. First, recall that by Lemma 2.3 the equilibrium face value of debt is monotonically decreasing

with pi. Therefore, we must have d∗ ≤ d̄.

Second, observe that the derivative of (2.8) (conditional on Ef [πix̃] ≤ K) with respect to

xNV is given by (1− πi)
[
(1− F (xNV ))− µf(xNV )

]
, and it is strictly positive when (i) h(x) < 1/µ

for every x ≤ d̄; and (ii) πi ≤ K/Ef [x̃]

As a result, the change in d∗ as pi increases infinitesimally can be computed simply total

differentiating (2.8) with respect to xNV and pi, and evaluating at xNV = d.
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Lemma 2.6

Proof. The second derivative of V (pi, p−i) with respect to pi reads:

∂2V (pi, p−i)

∂p2
i

=µ
∂2πi
∂p2

i

[
F (d∗i ) + f(d∗i ) ·

µF (d∗i ) +
∫ x̄
d∗i

[x− d∗i ]dF (x)

1− F (d∗i )− µf(d∗i )

]
︸ ︷︷ ︸

=0 because ∂2πi/∂p
2
i =0

+ (2.17)

+ µ

(
∂πi
∂pi

)2
∂d∗i
∂πi︸ ︷︷ ︸

≤0

·
{
f(d∗i ) ·

µF (d∗i ) +
∫ x̄
d∗i

[x− d∗i ]dF (x)

1− F (d∗i )− µf(d∗i )︸ ︷︷ ︸
>0

∂f(d∗i )

∂d∗i︸ ︷︷ ︸
sign?

+

+
µF (d∗i ) +

∫ x̄
d∗i

[x− d∗i ]dF (x)[
1− F (d∗i )− µf(d∗i )

]2︸ ︷︷ ︸
>0

[ (
f(d∗i )

)2︸ ︷︷ ︸
>0

+
∂f(d∗i )

∂d∗i︸ ︷︷ ︸
sign?

µf(d∗i )︸ ︷︷ ︸
>0

]}
− c′(pi)︸ ︷︷ ︸

>0

Though the expression looks frightening, observe that we can sign all terms but those that involve

the dertivative of the density function f(·). Moreover, all terms are negative, suggesting that the

problem has a certain degree of concavity built in from the zero profit condition for investors.

Strict concavity requires ∂2V (pi, p−i)/∂p
2
i < 0. From (2.17):

f ′(x) > − f(x)

1− F (x)− µf(x)
, ∀x ∈ [0, d̄] ⇒ ∂2V (pi, p−i)

∂p2
i

< 0

dividing through the fraction in the right hand side by 1−F (x) > 0 and applying the definition of

h(x) yields the result.

Lemma 2.7

Proof. Strict Concavity: The second cross derivative of V (pi, p−i) with respect to pj 6=i, for every

such j, reads:

∂2V (pi, p−i)

∂pi∂pj
=µ

∂2πi
∂pi∂pj

[
F (d∗i ) + f(d∗i ) ·

µF (d∗i ) +
∫ x̄
d∗i

[x− d∗i ]dF (x)

1− F (d∗i )− µf(d∗i )

]
︸ ︷︷ ︸

<0 because ∂2πi/∂pi∂pj<0

+ (2.18)

+ µ

(
∂πi
∂pj

)2
∂d∗i
∂pj︸ ︷︷ ︸

≤0

·
{
f(d∗i ) ·

µF (d∗i ) +
∫ x̄
d∗i

[x− d∗i ]dF (x)

1− F (d∗i )− µf(d∗i )︸ ︷︷ ︸
>0

∂f(d∗i )

∂d∗i︸ ︷︷ ︸
sign?

+

+
µF (d∗i ) +

∫ x̄
d∗i

[x− d∗i ]dF (x)[
1− F (d∗i )− µf(d∗i )

]2︸ ︷︷ ︸
>0

[ (
f(d∗i )

)2︸ ︷︷ ︸
>0

+
∂f(d∗i )

∂d∗i︸ ︷︷ ︸
sign?

µf(d∗i )︸ ︷︷ ︸
>0

]}
− c′(pi)︸ ︷︷ ︸

>0

The expression in curly brackets is the same that we found in (2.17), hence it is strictly positive

under Assumption 2.4. As a result, the game is strictly concave.

Aggregativity: It follows immediately from the definition of πi(pi, p-i, q-i) (i.e., equation

(2.1)).

41



Proposition 2.2

Proof. Define the best response correspondence for firm i as follows:

bi(p−i) ≡ arg max
pi∈
[
0,K/Ef [x̃]

] V (pi, p−i)

We know bi(p−i) is nonempty by the theorem of the maximum because V (pi, p−i) is continuous

and the set [0,K/Ef [x̃]] is compact. Moreover, bi(p−i) is a singleton because V (pi, p−i) is strictly

concave. Hence, bi(p−i) is convex and upper hemicontinuous. It follows by Kakutani fixed point

theorem that a PSNE exists.

As for the properties of Q∗ and Q∗, they follow from Lemma 2.7, which guarantees that

my game is a special case of those to which Theorem 1 in Acemoglu and Jensen [2013] applies.

Corollary 2.4

Proof. Observe first that the FOC can be written as:

µ
∂πi
∂pi

∣∣∣∣
pi=p∗

·
[
F (d(p∗) + f(d(p∗)) ·

µF (d(p∗)) +
∫ x̄
d(p∗)[x− d(p∗)]dF (x)

1− F (d(p∗))− µf(d(p∗))

]
= c′(p∗)

The right hand side is not a function of q−i. In contrast, the left hand side is a function of q−i,

through its effect on πi. Moreover, the sign of the derivative of the left hand side with respect to

qi, j is the same as that in (2.18), hence it is strictly positive. Evidently, p∗i must decrease for the

equation to keep holding, proving that equilibrium disclosure decreases with qi, j .

As a shock to q hits the aggregator, in the sense of Acemoglu and Jensen [2013], both Q∗

and – more importantly – Q∗ decrease with it. Coming to leverage, from Proposition 2.1 we know

that leverage increases with qi, j if and only if ∂π∗/∂qi, j < 0. However, this derivative embeds two

effects: on the one hand, a higher correlation directly increases π∗i . On the other hand, it lowers

the equilibrium disclosure which in turns lowers π∗i . The elasticities cannot be signed a priori.

Proposition 2.3

Proof. Existence is immediate from continuity. Moreover, ∂V (pi, p−i)/∂pj 6=i > 0 whenever qi, j > 0

implies that the private disclosure is inefficiently lower than that at the SE.

2.7.2 Empirics: Robustness Checks

In this appendix, I present and discuss additional empirical exercises to confirm that

the correlations presented in the paper are robust.

The first exercise pertain the cutoff in the number of analysts’ forecast re-

quired for an observation to be included in the data. In the man text, I consider

a cutoff of 5, but I claim this choice does not affect the results. To show that this

is the case, Table 2.3 presents the fixed effect regression results for cutoffs ranging

from 2 to 7.43

43Evidently, two is the minimum number of forecasts needed to be able to actually compute a
coefficient of variation. Robustness to even higher cutoffs (in particular, ten) is presented in Table
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Table 2.3: Robustness Check (1): different cutoffs

(1) (2) (3) (4) (5) (6)
Cutoff 2 Cutoff 3 Cutoff 4 Cutoff 5 Cutoff 6 Cutoff 7

L.CV forecasts 0.0303∗∗∗ 0.0238∗∗ 0.0236∗∗ 0.0215∗∗ 0.0249∗∗ 0.0240∗∗

(3.63) (3.09) (3.10) (2.72) (2.86) (2.70)

L.Total Assets 0.00947∗ 0.0140∗∗ 0.0131∗∗ 0.0133∗∗ 0.0127∗ 0.0136∗

(2.20) (3.27) (2.91) (2.83) (2.51) (2.50)

L.Profitability -0.0476 -0.138∗∗∗ -0.143∗∗∗ -0.156∗∗∗ -0.158∗∗∗ -0.171∗∗∗

(-1.70) (-9.43) (-8.59) (-8.31) (-8.28) (-8.16)

L.Book-to-Market 0.00528∗ 0.00221 0.00171 0.00147 0.00196 -0.00185
(2.31) (0.90) (0.51) (0.40) (0.46) (-0.34)

L.Intangibles 0.0322 0.0286 0.0279 0.0163 0.0156 0.00911
(1.48) (1.31) (1.24) (0.71) (0.66) (0.36)

L.Industry Leverage 0.386∗∗∗ 0.348∗∗∗ 0.340∗∗∗ 0.339∗∗∗ 0.316∗∗∗ 0.322∗∗∗

(8.03) (7.32) (6.84) (6.53) (5.88) (5.82)

Constant 0.282∗∗∗ 0.272∗∗∗ 0.283∗∗∗ 0.285∗∗∗ 0.304∗∗∗ 0.302∗∗∗

(6.54) (6.35) (6.24) (5.87) (5.86) (5.36)

Time FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes Yes Yes Yes

Observations 35263 32512 29472 26465 23686 21150
Adjusted R2 0.842 0.845 0.846 0.845 0.848 0.848

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Sources: Compustat merged with CRSP (annual), IBES (detail, adjusted for stock splits).
Notes: all independent variables are lagged by one year. Stnd. errors clustered at the firm level.
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From now onwards, by ‘Usual Controls’ I shall refer to those included in the

regressions of Table 2.3.

The second set of robustness checks, presented in Table 2.4, studies how the

results change with different measures of analysts’ forecast dispersion. Column (1)

reports the benchmark estimate using the coefficient of variation (it is equivalent to

column (4) of Table 2.2). Column (2) clarifies the importance of normalising the

standard deviation by the mean: without the normalisation the significance is lost.

Column (3) and (4) do the same replacing CV with MAD (the median absolute

deviation from the mean forecast). Similar results attain. Finally, column (5) shows

that one could also use directly the number of analysts following the firm in a given

year. As expected, the number is negatively correlated with leverage, suggesting

that the higher the number of analysts following a firm, the lower its subsequent

leverage ratio.

Table 2.4: Robustness Check (2): different independent variables

(1) (2) (3) (4) (5)
LT/AT LT/AT LT/AT LT/AT LT/AT

L.CV forecasts 0.0249∗∗

(2.86)

L.STDEV 0.0000123
(0.03)

L.MAD forecasts 0.0487∗∗∗

(3.31)

L.MAD*MEAN 0.00103
(0.67)

L.Estimates -0.00120∗∗

(-3.20)

Time FE Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes Yes Yes

Usual Controls Yes Yes Yes Yes Yes

Observations 23686 23686 23686 23686 23686
Adjusted R2 0.848 0.848 0.848 0.848 0.848

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Sources: Compustat merged with CRSP (annual), IBES (detail, adjusted for stock splits).

Notes: all independent variables are lagged by one year.

Standard errors are clustered at the firm level.

2.2 in the main text.
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The third series of robustness checks is presented in Table 2.5. It considers

the effects on the estimates of changing the definition of leverage. In particular,

column (1) presents again the estimates shown in the main text, where leverage is

defined as in Welch [2011], to equal the ratio of Total Liabilities (LT) over Total

Assets (AT). Column (2) replaces AT with the market value of assets (AM = MEQ

+ LT). The coefficient of interest is positive but looses a one degree of significance.

Column (3) shows what happens when leverage is defined as the ratio of Total

debt (DT) – defined as the sum of Debt in Current Liabilities (DLC) and Long

Term Debt (DLTT) – over the book value of assets. The result is similar to that

of column (2). Finally, column (4) shows what happens when leverage is defined

as DT/AM. The coefficient looses significance altogether. Columns (5)-(7) repeat

the exercise of substituting LT/AT with alternative measures of leverage for the

independent variable MAD. Similar results attain.

Table 2.5: Robustness Check (3): different dependent variables

(1) (2) (3) (4) (5) (6) (7)
LT/AT LT/AM DT/AT DT/AM LT/AM DT/AT DT/AM

L.CV forecasts 0.0249∗∗ 0.0218∗ 0.0186∗∗ 0.0112
(2.86) (2.50) (2.67) (1.76)

L.MAD forecasts 0.0457∗∗ 0.0356∗∗ 0.0232
(2.76) (2.63) (1.82)

Time FE Yes Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes Yes Yes Yes Yes

Usual Controls Yes Yes Yes Yes Yes Yes Yes

Observations 23686 23686 23646 23646 23686 23646 23646
Adjusted R2 0.848 0.884 0.794 0.813 0.884 0.794 0.813

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Sources: Compustat merged with CRSP (annual), IBES (detail, adjusted for stock splits).
Notes: all independent variables are lagged by one year. Stnd. errors clustered at the firm level.

Finally, Table 2.6 explores the leads and lags structure of the data. Although

CV is serially correlated, the Table shows that the results are stronger when CV is

assumed to precede leverage than the other way around. Of course, the results do

not rule out reverse causality, and a statistically causal analysis is still required in

future work.
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Table 2.6: Robustness Check (4): lags and leads

(1) (2) (3) (4) (5) (6)
LT/AT LT/AT LT/AT LT/AT LT/AT LT/AT

L3.CV forecasts 0.0295∗∗

(2.77)

L2.CV forecasts 0.0266∗∗

(3.06)

L.CV forecasts 0.0249∗∗

(2.86)

CV forecasts 0.0650∗∗∗

(6.84)

F.CV forecasts 0.0176∗

(2.06)

F2.CV forecasts 0.00637
(0.77)

Time FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes Yes Yes Yes

Usual Controls Yes Yes Yes Yes Yes Yes

Observations 18597 20994 23686 23686 20568 17811
Adjusted R2 0.860 0.855 0.848 0.849 0.855 0.858

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Sources: Compustat merged with CRSP (annual), IBES (detail, adjusted for stock splits).
Notes: all independent variables are lagged by one year. Stnd. errors clustered at the firm level.
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Chapter 3

Optimal Security Design under

Asymmetric Information and

Profit Manipulation

3.1 Introduction

Since Myers and Majluf [1984], asymmetric information has been used to explain the

prevalence of simple debt contracts as a means of external financing. Debt emerges

from the lack of credible signaling opportunities which leads to pooling equilibria.

However, the impossibility of signaling is due to the assumption that the payoff of

admissible securities must be non decreasing in the project’s earnings.1

The justification for this monotonicity assumption is that the entrepreneur

can observe the realized earnings before outside financiers do, and can manipulate

them. If the payoff of a security has a decreasing segment, an entrepreneur would

borrow secretly and report higher earnings in order to repay less. Without explicitly

modelling profit manipulation, existing papers argue that this cannot be an equilib-

rium phenomenon and rule it out by exogenously restricting attention to monotonic

or ‘manipulation-proof’ securities.2

In this paper, we explicitly model both ex ante asymmetric information and

ex post profit manipulation and we solve the security design problem without ex-

ogenously restricting the admissible contracts to be monotonic.3 More specifically,

1Technically, the assumption is sufficient to prevent signaling if the earnings distribution is as-
sumed to satisfy the hazard rate ordering, a stronger property than first-order stochastic dominance.

2This argument has been widely used in the literature. See, for instance, Nachman and Noe
[1994]; DeMarzo and Duffie [1999]; DeMarzo et al. [2005].

3The only restriction imposed on admissible contracts is limited liability, as appropriately rede-
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our baseline framework features two types of entrepreneurs, both endowed with a

positive net present value project. A type corresponds to a distribution over future

earnings, and the distributions are ordered according to the monotone likelihood

ratio property. Entrepreneurs have no initial wealth, and seek funding from com-

petitive financiers. They privately know their type (ex ante asymmetric information)

and can misreport the realized earnings (ex post profit manipulation). The admis-

sible set of reported earnings is possibly a function of the realized output and it

always includes the true realization (or, equivalently, the true state of the world).4

The objective is twofold: (i) to check whether the conventional justification

for restricting attention to monotone securities is sound; and (ii) to uncover the joint

effect of ex ante asymmetric information and profit manipulation on the optimal

portfolio of securities issued by a firm. Our results can be summarized as follows:

First, any optimal contract induces profit manipulation (either output di-

version or window dressing) on-the-equilibrium path. This is fully anticipated by

outside financiers and hence properly priced. The result is novel, as it depends

on modelling profit manipulation explicitly, and it highlights the key flaw in the

story that was supposed to justify the monotonicity constraint: when diversion and

window dressing are feasible, the revelation principle does not generically hold (see

Green and Laffont [1986]), and hence profit manipulation may well be part of an

optimal contract. The optimal portfolio of securities does not prevent profit manip-

ulation. In contrast, it trades them off against the asymmetric information costs of

financing. Our result shows that it is indeed suboptimal to issue manipulation-proof

securities.

Second, non-monotonic (or bonus) contracts are always optimal. A bonus

contract requires that the financier receives the full realized earnings up to a pre-

specified threshold, and beyond the threshold the repayment falls. This contract

can be thought of as a standard debt contract with a strictly positive performance-

based bonus for the entrepreneur, that is included in any optimal contract because

it minimizes the mispricing of the securities issued by high quality entrepreneurs.

The intuition for the result is that bonus contracts impose the maximum expected

repayment when realized earnings are low, hence minimizing it when earnings are

high. Because lower quality types are more likely to obtain low earnings, bonus

contracts maximize the cost for them to mimic the high types.

fined in terms of messages.
4We shall take the extent of profit manipulation possibilities as exogenously given, and do

comparative statics with respect to it. The presence of profit manipulation possibilities may reflect
the imperfect quality of the legal system and/or corporate governance issues (e.g. LaPorta et al.
[1997]).
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Innes [1993] suggests that non-monotonic contracts would be optimal in the

absence of profit manipulation. His findings motivated the introduction of the exoge-

nous monotonicity constraint. In contrast, we explicitly model profit manipulation

and characterize necessary and sufficient conditions under which the optimal secu-

rities are monotonic.

Coming to the optimality of debt contracts, we show that: (i) straight debt

is suboptimal when profit manipulation and/or adverse selection are not severe. In

these cases, non-monotonic securities are uniquely optimal and they may implement

separating equilibria which are absent in the previous models because of monotonic-

ity; and (ii) straight debt is never optimal if the distribution of earnings is unbounded

above, as long as profit manipulation possibilities are bounded. The result implies

that debt is never the equilibrium contract in models assuming, for instance, expo-

nentially or (log)-normally distributed earnings.

The latter observation leads us to our final result: a characterization of

the necessary and sufficient conditions under which straight debt is optimal, and

monotone securities may arise in equilibrium. Such conditions are restrictive, and

whenever debt is optimal there exists a bonus contract that is ex post equivalent to

it. That is, debt is never uniquely optimal.

Overall, our findings have the following implications: (i) they show that the

assumption that admissible securities are monotonic leads to sub-optimal securities

and must be reconsidered; (ii) they provide a set of tools that can be used to

construct models in which profit manipulation occurs on-the-equilibrium path; (iii)

they make clear that ex ante asymmetric information does not suffice to theoretically

justify the optimality of debt. One needs to introduce yet additional frictions,

for example ambiguity and ambiguity aversion (see Antic [2014]), to prevent non-

monotonic contracts from being optimal and dominate debt.

The paper is structured as follows: Section 3.2 briefly reviews the literature;

Section 3.3 describes the model; Sections 3.4 and 3.5 introduce the relevant securi-

ties, and discuss when and how they induce profit manipulation; Section 3.6 derives

the main results; Section 3.7 illustrates how the general results apply in specific set-

tings; Section 3.8 discusses extensions including allowing for ex ante moral hazard

and increasing the cardinality of the type space; Section 3.9 concludes.

3.2 Literature Review

Our paper is closely related to the literature on security design under asymmet-

ric information. Myers and Majluf [1984] developed the ‘pecking order’ theory of
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debt optimality under asymmetric information in a setup where only debt and (in-

side or outside) equity contracts were allowed. Noe [1988] showed that the Myers

and Majluf theory requires somewhat restrictive assumptions on the distributions

of earnings. Innes [1993] and Nachman and Noe [1994] revisited the theoretical ar-

gument allowing for a broader set of contracts than debt and equity. These papers

found that to obtain debt as the optimal security some monotonicity constraint has

to be exogenously imposed. Such a constraint restricts the feasible contracts to be

‘manipulation proof’.

Since then, the monotonicity constraint has been widely used. Prominent

examples include DeMarzo and Duffie [1999]; DeMarzo et al. [2005]; Inderst and

Mueller [2006]; Axelson [2007], Axelson et al. [2009]; Gorbenko and Malenko [2011];

Philippon and Skreta [2012]; Scheuer [2013]; Vanasco [2014]. Our contribution is

to derive necessary and sufficient conditions for monotonicity to be without loss of

generality, and to argue that ex ante adverse selection and profit manipulation can

explain performance-sensitive debt (Manso et al. [2010]), but generically not straight

debt as previously argued.

Furthermore, our paper is related to the literature on optimal contracting

under profit manipulation. The existing papers can be separated along two dimen-

sions: (i) whether manipulations are assumed to be bounded (and a function of

types) or not; and (ii) whether repayments can be extracted via additional tools

such as verification, termination or liquidation of the firm.

A literature originating from Townsend [1979] and Gale and Hellwig [1985]

modeled unbounded manipulation with the possibility of verifying the earnings at

a cost (the so-called ‘costly state verification’ - CSV - models). Bolton and Scharf-

stein [1990] and Hart and Moore [1998] study similar models where verification is

substituted with the threats of termination and liquidation.5

In contrast, Green and Laffont [1986] considered a setup with bounded ma-

nipulation possibilities but no verification. They provided a necessary and sufficient

condition for the revelation principle to hold - the so-called nested range condition.

The condition fails naturally in financial contracting models where the set of feasible

manipulations is likely to be convex and depends on the type.6

5See Ben-Porath and Lipman [2012] and Ben-Porath et al. [2014b] for a version of CSV without
transfers.

6See Koessler and Perez-Richet [2014] and references therein for recent models along these lines.
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3.3 The Economy

There are two dates t ∈ {0, 1}, an entrepreneur and a competitive financier. Both

agents are risk-neutral and maximise date one consumption. The entrepreneur has

a project that generates stochastic date one earnings x ∈ X and requires a fixed

input of I at date zero. The financier has wealth W , and can either lend it to the

entrepreneur or store it without depreciation.

The set of possible earnings realizations is X ≡ [0,K]. When we allow for

unbounded future earnings, we let K approach infinity. There are two types of

projects (entrepreneurs), t ∈ T ≡ {l, h}. Types differ according to their distribution

of earnings.

The cumulative distribution function (cdf ) over X for a type t project is

Ft(x). The project’s type is private information of the entrepreneur. Outside fi-

nanciers only know that a fraction λl ∈ (0, 1) are type l projects, and a fraction

λh = (1− λl) are type h projects. All projects have positive net present value, and

the firm’s assets in place are assumed to be zero. Denote by Et(x) =
∫K

0 x dFt(x)

the full information expected value of a type t project. We make the following

assumption:

Assumption 3.1. min{W, Et(x)} ≥ I > 0 for every t ∈ T . (A1)

A1 guarantees that: (i) the financier can finance a project; (ii) all projects

have positive net present value; and (iii) investment is risky, because I > 0 and

strict positivity of ft(x) for every x imply that Ft(I − ε) > 0 for all t ∈ T , for ε > 0.

In addition, we make the following standard assumptions on the distributions

of earnings:

Assumption 3.2. The cumulative distribution functions are mutually absolutely

continuous, and satisfy the Strict Monotone Likelihood Ratio Property (MLRP):

∂/∂x(fh(x)/fl(x)) > 0 for every x. (A2)

Continuity is standard: it simplifies the analysis and it prevents contracts

that penalise realisations that have strictly positive probability only for one type.

Strict MLRP implies that Eh(x) > El(x), and it is a standard assumption in the

literature (see for instance DeMarzo et al. [2005]).

The timing of the game is as follows:

date 0: The entrepreneur of type t issues publicly a portfolio of securities (financial

contract) denoted by s. Each financier simultaneously quotes a price P (s) at

which he is willing to buy the securities. If a contract is signed (securities
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are sold), the entrepreneur collects P (s). Subsequent investment is observable

and verifiable;

date 1: Realized earnings x ∈ X are perfectly but privately observed by the en-

trepreneur. He can costlessly manipulate reported earnings, reporting them to

be m ∈M(x). The profit manipulation technology M(x) for a generic ex post

type x is fully characterised by two functions: η(x) and η(x). In particular,

the entrepreneur can divert resources up to x − η(x) and window dress (or

overstate) the earnings up to x+ η(x). Hence, the convex set of feasible mes-

sages when the realised earnings are x is given by M(x) ≡ [x−η(x), x+η(x)].

The manipulation technology is common knowledge at t = 0;

date 2: Claims are settled on the basis of the borrower’s self reported earning and

the game ends.

t = 0 t = 1 t = 2

Contracting stage Entrepreneur observes x
and reports m(x|s)

Claims are settled

Timeline

The novel ingredient that differentiates our findings from existing results

is the possibility of ex post profit manipulation. We summarize the restrictions

imposed on the manipulation technology in the following assumption:

Assumption 3.3. The set of admissible profit manipulation technologies for any

realised earnings x ∈ X is given by: (A3)

M(x) ≡ [x− η(x), x+ η(x)]

where η(x) and η(x) are C1 functions such that for every x: (i) η(x) ≤ x and

η′(x) ∈ [0, 1); (ii) η(x) ≤ K − x and η′(x) ≥ −1.7

We impose η′(x) ∈ [0, 1) for tractability, and it will become clear that the

assumption does not drive our qualitative results. Moreover, η′(x) ≥ −1 guarantees

that the higher the realised output, the higher the output that can be reported.

Overall, the following comments are due:

7The bounds on the η functions just guarantee that both the upper and the lower bound of the
set M(x) belong to X for every x ∈ X.
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1. Although we allow for unbounded window dressing (to nest Nachman and

Noe [1994] results as a special case of our framework), we rule out unbounded

diversion which would trivially lead to no financing;

2. An equivalent way of modelling profit manipulation would be to allow for

secret borrowing from ‘friends’. Our results do not depend on the reason why

imperfect verification comes about, but on its extent;

3. We could have modelled diversion as output destruction, in which case the

entrepreneur could not put the diverted amount in his pocket. However, in

such a scenario the entrepreneur would be indifferent between diverting and

not in equilibrium, making such possibilities useless;

4. Finally, we assume that M(x) is a convex set. This is not without loss of

generality, however we find it natural because if the entrepreneur can divert

k dollars from the project to his own accounts, we believe he should be able

to divert also k − ε for ε > 0. Further, the assumption greatly simplifies the

analysis.

The possibility of earnings misreporting means that a security s(·) cannot

be a function of x as in the previous literature. Instead, it is a function of reported

earnings m(x|s). Because M(x) is a compact set for every x ∈ X, we know that for

every security s and every x there exists a best message m∗(x|s) defined so that:

m∗(x|s) ≡ arg min
m∈M(x)

{s(m)}

Further, because M(x) ⊂ X, we know that m∗(x|s) ∈ X.8 Hence, the expected

repayment of a security (or its real payoff ) is a function s(m∗(x|s)) : X → R. It

should be noticed that the ex post verification problem created by the possibility of

profit manipulation prevents the application of the revelation principle, since M(x)

does not need to satisfy the nested-range-condition of Green and Laffont [1986].

The only restriction we impose on the contract space is that each security

must satisfy limited liability, as appropriately redefined in terms of messages:

Assumption 3.4. The set of admissible securities is given by: (A4)

S ≡ {s(m) | 0 ≤ s(m) ≤ m, ∀m}
8Our formulation restricts attention to direct mechanisms, where the set of messages is a subset

of the set of states X. It is easy to prove that the restriction is without loss of generality.
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If the borrower declares m and cannot repay s(m) to his financier, then the financier

becomes the legitimate owner of borrower’s assets.9

Denote by Vt the profits of an entrepreneur of type t whose offered security

s has been priced at P by the financier, and by Vf the financier’s profits. Then we

can write:

Vt = P − I + Et
[
x− s(m∗(x|s))

]
(3.1)

Vf = Eλ(s)

[
s(m∗(x|s))

]
− P (s) (3.2)

The expectation in (4.2) is given by the sum across types (weighted by the posterior

belief λ(t|s) that type t is issuing the contract s) of the final payoff of the security

after manipulation takes place:

Eλ(s)

[
s(m∗(x|s))

]
≡
∑
t∈T

λ(t|s)
[ ∫

x∈X
s(m∗(x|s))dFt(x)

]

Notice that we can write m∗t (x|s) = m∗(x|s) because the cost and benefits of com-

mitting accounting fraud ex post are not type-dependent.

Here we adopt the concept of Perfect Bayesian Equilibrium (PBE):

PBE: A strategy profile
(
s∗t , m

∗(x|s), P ∗(s)
)

and a common posterior belief λ∗(t|s)
for t ∈ T form a PBE of the game if the following conditions are satisfied:

1. For every x ∈ X and for s ∈ S: m∗(x|s) = arg minx∈M(x)

{
s(m)

}
;

2. For every t ∈ T , s∗t maximizes Vt(st, P
∗(st),m

∗) subject to the limited liability

constraint (st ∈ S);

3. The posterior belief λ∗(t|st) is obtained from Bayes’ Rule whenever possible;

4. Competitive Rationality: for st ∈ S, P ∗(st) = Eλ∗(t|st)(st)

As standard, a PBE is said to be separating if s∗h 6= s∗l , and pooling otherwise.

Notice that, because investment is observable and verifiable, in every equilibrium it

must be the case that either P ∗(st) = 0 (no investment), or P ∗(st) ≥ I (investment

takes place).

9Since the limited liability constraint must be defined in terms of messages rather than realized
output, we should consider the case in which the entrepreneur declares earnings that exceed true
earnings, and he does not have the resources to repay the contractual obligation. In this case, the
fraud becomes observable and verifiable: it is revealed that he is either lying about x or refusing to
make the payment he committed to make. We implicitly assume that when the fraud is revealed,
the agent receives a punishment large enough to prevent such behavior.
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To rule out ‘unreasonable’ equilibria, we refine the off-equilibrium-path be-

liefs using the Intuitive Criterion by Cho and Kreps [1987]. Denote by Vt(s
∗
t , e
∗)

the expected utility of type t entrepreneur issuing s∗t at the equilibrium e∗, and by

Π∗(s|T ) the set of all possible Nash Equilibria of the game played by financiers given

an observed s ∈ S10.

The Intuitive Criterion:11 A PBE is not reasonable if there exist an out-of-

equilibrium security s′ ∈ S such that only one type may benefit from deviating to

s′:

Vt(s
∗
t , e
∗) ≤ max

P ∗∈Π∗(s′|T )
Vt(s

′, e∗)

V−t(s
∗
t , e
∗) > max

P ∗∈Π∗(s′|T )
V−t(s

′, e∗)

In words, suppose there are two types. Consider a pooling equilibrium, and

a deviant security that could only benefit the high type (if accepted), for some

off-equilibrium beliefs, and never the low type. The Intuitive Criterion prevents

equilibria that are sustained by the off-equilibrium belief that such a security would

be offered by a low type with positive probability.

The next two sections introduce the key properties of the two contracts which

are relevant in this framework: debt and bonus contracts.

3.4 Debt Contracts

It is useful to stress again the distinction that arises in this model (unlike the existing

literature) between the promised expected payoff and the real expected payoff of a

security. The promised expected payoff is given by Eλ∗(s)(s(m = x)), where each

type x is assumed to report truthfully his type. In contrast, the real expected payoff

is given by Eλ∗(s)(s(m
∗(x|s))), where m∗(x|s) solves condition (1) of a PBE, i.e. it

maximizes the type x entrepreneur’s ex post payoff.

The characteristic features of a debt contract are: (i) the fixed repayment

in non-bankruptcy states; and (ii) seniority in bankruptcy states. If we denote the

face value of debt by d, then whenever m ≥ d, the debt security specifies s = d.

If, instead, m < d, a bankruptcy state, the debt holder is a senior claimant on the

assets, obtaining repayment s(m) = m.

10Each element of the set can be parameterized by a posterior belief λ(s) ∈ ∆T , where we adopt
the convention that bold symbols represent vectors.

11We provide a definition of the Intuitive Criterion for a generic set of types T because we extend
our main result to the case of |T | > 2.
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Definition 3.1. A security s ∈ S is a debt contract if and only if s = min{m, d}
for some d ∈M .

Figure 3.1: The Promised Payoff of Debt

450

d

d

x

s(m = x)

Like any other security with positive expected value, a debt contract provides

incentives to divert output for some x ∈ X. In order to characterize the real payoff of

a standard debt contract, we need define the introduce some additional notation. In

particular, consider a debt contract with a face value d and suppose that K−η(K) >

d. Define as m̃(d) the highest threshold such that diversion can be profitable, i.e.:

m̃(d) ≡ min
x∈X
{x|x− η(x) = d}.

Such point exists and is unique by the intermediate value theorem due to continuity

and monotonicity of function x − η(x) (see Assumption 3) and the fact that K −
η(K) > d and −η(0) < d. If K − η(K) ≤ d, instead, then simply set m̃(d) ≡ K.

Lemma 1 provides a characterization of the real payoff of a standard debt

contract.

Lemma 3.1. (The Real Payoff of Debt) Given any debt security s with fixed

repayment d, the entrepreneur optimally reports:

m∗(x|s) =

x− η(x) if x ≤ m̃(d)

x otherwise

Proof. Notice first that because a debt contract is monotonic there cannot

be any benefit from overstating earnings. The Lemma follows then trivially from
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the definition of m̃(d), which is guaranteed to exist and be unique by Assumption

3. Q.E.D.

The dashed curve in Figure 3.2 depicts the real payoff of a standard debt

contract.

Figure 3.2: The Real Payoff of Debt
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3.5 Bonus Contracts

The contract that turns out to be generically optimal takes the following form:

Definition 3.2. A security s ∈ S is a bonus contract if and only if, for some

(m, d) ∈ X2,

s(m) =

m if m < m

d otherwise
(3.3)

Notice that because any admissible security satisfies limited liability (s ∈ S), we

must have d ∈
[
0, m

]
.12 Figure 3.3 depicts the promised payoff of contracts as

defined in (3.3).

We next characterize the optimal ex post accounting fraud under bonus con-

tracts. In order to do so we need to introduce a final piece of notation. In partic-

ular, define a function ¯̄η(x) ≡ x + η̄(x). This function is continuous and strictly

increasing on [0,K]. Consider a bonus contract (d,m) such that η̄(0) < m. Given

that ¯̄η(m) > m by definition, the intermediate value theorem implies that there

12Standard debt contracts are special cases of (3.3) where d = m. For this reason we shall always
make explicit whether the contracts we discuss must feature a strictly positive bonus or not.
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Figure 3.3: The Promised Payoff of a Bonus Contract
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exists x̃(m) ∈ (0,m] such that ¯̄η(x̃) = x̃ + η̄(x̃) = m. Monotonicity of the func-

tion ¯̄η(x) ensures the uniqueness of such point. Hence, we can define a function

x̃ : [d,K]→ [0,K] as follows:

x̃(m) =

0 if η̄(0) > m,

x̃ otherwise.

Moreover, the function x̃(m) is strictly monotonic on the interval (η̄(0),K),

because of the implicit function theorem and Assumption 3.

Lemma 3.2. (The Real Payoff of a Bonus Contract) Given any bonus con-

tract s with fixed repayment d and threshold m, we have two cases:

1. If m− d > η(m), then the entrepreneur optimally reports,

m∗(x|s) =


x− η(x) if x < max{x̃(m), m̃(d)}

m if x ∈ [max{x̃(m), m̃(d)},m)

x otherwise

2. If m− d ≤ η(m), then the real payoff of a bonus contract is equivalent to that

of a debt contract (see Lemma 1).

Proof. 1. Suppose that m − d > η(m) and x̃(m) ≤ m̃(d). In this case, for

any x < m̃ it is not optimal to window dress as the entrepreneur is better off with

output diversion. For any x ∈ [m̃(d),m) we have that ¯̄η(x) ≥ ¯̄η(x̃(m)) ≥ m and

therefore the entrepreneur can report m which makes him better off than diverting
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the output. Finally, for any x > m neither output diversion nor windows dressing

benefits the entrepreneur and he truthfully reports x.

Suppose now that x̃(m) > m̃(d). In this case the entrepreneur diverts output

for any x < x̃(m) since it is impossible to reach the bonus region {x : x ≥ m} by

means of window dressing. For any x ∈ [x̃(m),m) window dressing is beneficial since

d = m̃(d)− η(m̃(d)) < x− η(x). Finally, for any x > m, as above, the entrepreneur

truthfully reports x.

2. Assume now that m − d ≤ η(m). Note that in this case m̃(d) > m. For

any x < m̃(d) it is not optimal to window dress as the entrepreneur is better off

with output diversion. For any x > m̃(d) > m the entrepreneur truthfully reports

x. Q.E.D.

Figure 3.4 depicts the real payoff of a bonus contract for the cases of two

different levels of profit manipulation. In Panel A of Figure 3.4, x̃(m) > m̃(d)

and the real payoff is not ex post monotonic. In Panels B and C of Figure 3.4,

x̃(m) < m̃(d) and the real payoff is ex post equivalent to that of a debt contract

with face value d.

3.6 Optimal Security Design

In existing work, A1 was enough to guarantee that all projects would get financing in

equilibrium. However, the possibility of profit manipulation changes this conclusion.

It is instructive to begin our analysis by deriving conditions under which financing

occurs. To do so, we simply need to consider the contract in which the financier

receives all reported earnings: s = m, ∀m. If financing does not take place with

such a contract it cannot take place with any other contract that satisfies A3.13

Clearly, under the s = m contract, it is never optimal to window dress,

because the contract is strictly increasing in m. Hence, one should only worry

about diversion. Further, it is always optimal to divert as much as feasible, for

every ex post realised earnings x.

Suppose first that there is no ex ante asymmetric information. The condition

for type t to get financing is Et(x − η(x)) ≥ I. Since El(x − η(x)) < Eh(x − η(x)),

we conclude that whenever the low type (type l) gets financing, the high type (type

h) does as well. Hence, if El(x − η(x)) < I ≤ Eh(x − η(x)), only type h receives

financing. If Eh(x − η(x)) < I no one gets funding, and finally if El(x − η(x)) ≥ I

every type is financed.

13 Notice that: (i) the s = m ∀m contract may be thought of as a bonus contract where m = K;
(ii) a borrower still prefers to offer such a contract than to get no financing, as ex post he can divert
a positive amount of output.
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Figure 3.4: The Real Payoff of a Bonus Contract
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Once we introduce asymmetric information, if El(x−η(x)) < I ≤ Eh(x−η(x))

there can only exist pooling equilibria. Hence, the boundaries of the region in which

financing takes place depends on the pooling zero profit condition, which is:

λlEl(x− η(x)) + (1− λl)Eh(x− η(x)) ≥ I

3.6.1 Separating Equilibria

In this section we characterize the set of Separating Perfect Bayesian Equilibria

(SPBE). Such equilibria never arise with the exogenous monotonicity constraint.

The intuition behind the SPBE is the following: the most productive type tries

to distinguish himself from the less productive one by offering securities with high

downside protection and a low upside payoff for the financier (such as bonus con-

tracts). By doing so, high types impose a relatively higher cost on low types should

they try to mimic.

In a SPBE, sl 6= sh. Moreover, given the offered security st, the posterior
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belief that it is offered by type t is one, i.e. λ(t|st) = 1 for every t ∈ T . Incentive

compatibility for type t reads:

Et(x− st(m∗(x|s))) ≥ Et(x− st′ 6=t(m∗(x|s)))

or, equivalently: Et(st(m∗(x|s))) ≤ Et(st′ 6=t(m∗(x|s))). Further, at any SPBE it

must be that Et(st(m∗(x|s))) = I, for every t ∈ T . Hence we can rewrite the

incentive constraint as:

Et′(st′(m∗(x|s)))− Et(st′(m∗(x|s))) ≤ 0

Finally, it is trivial to show that the only incentive constraint that may be binding is

that for the l type not to mimic the h type, i.e: Eh(sh(m∗(x|s)))−El(sh(m∗(x|s))) ≤
0. To formulate the incentive constraint in this way allows us to proceed and solve

for the optimal contract as will become clear below.

To simplify the notation, we sometimes write m̃h instead of m̃h(dh) and x̃h

instead of x̃h(mh). Suppose that sh has the shape given in (3.3). It would read:∫ max{m̃h,x̃h}

0

(
x− η(x)

) [
dFh(x)− dFl(x)

]
+

[
Fl
(

max{m̃h, x̃h}
)
−

−Fh
(

max{m̃h, x̃h}
)]
dh ≤ 0.

Notice that if max{m̃h, x̃h} = m̃h, the incentive constraint can never be satisfied

because the real payoff of the bonus contract is monotonic. To se this, integrate the

above expression by parts and get:14

∫ m̃h

0

(
1− η′(x)

) [
Fl(x)− Fh(x)

]
dx︸ ︷︷ ︸

>0 because MLRP implies FOSD

+

[
Fl
(
m̃h

)
− Fh

(
m̃h

)][
dh − m̃h + η(m̃h)

]
︸ ︷︷ ︸

=0 by the definition of m̃h

> 0

Hence, for the rest of this section suppose that max{m̃h, x̃h} = x̃h, and that

mh − dh > η(mh). Rewrite the incentive compatibility constraint as:∫ x̃h(mh)

0

(
x− η(x)

) [
dFh(x)− dFl(x)

]
+

[
Fl
(
x̃h(mh)

)
−Fh

(
x̃h(mh)

)]
dh ≤ 0 (3.4)

In a SPBE, competitive financing yields Eh(sh) = I. Substituting this into (4.4) we

14As standard, MLRP is the acronym for Monotone Likelihood Ratio Property, and FOSD for
First Order Stochastic Dominance.
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get:∫ x̃h(mh)

0

(
x− η(x)

) [
dFh(x)− dFl(x)

]
+

[
Fl
(
x̃h(mh)

)
− Fh

(
x̃h(mh)

)]
(
I −

∫ x̃h(mh)
0

(
x− η(x)

)
dFh(x)

1− Fh(x̃h(mh))

)
≤ 0

Integrating by parts and rearranging yields:

IC ≡
∫ x̃h(mh)

0

[
Fl(x)

(
1− Fh(x̃h(mh))

)
− Fh(x)

(
1− Fl(x̃h(mh))

)]
(1− η′(x))dx︸ ︷︷ ︸

≥0 by FOSD and by Assumption 3

+

[
Fl
(
x̃h(mh)

)
− Fh

(
x̃h(mh)

)]
︸ ︷︷ ︸

≥0 by FOSD

[
I − x̃h(mh) + η(x̃h(mh))

]
︸ ︷︷ ︸

sign?

≤ 0

(3.5)

Recall that x̃h(mh) is defined as the threshold such that for every x ≤ x̃h(mh)

diversion is weakly preferred to window dressing, and vice versa for x > x̃h(mh).

Hence, inequality (4.6) highlights the key mechanism that underlies separation: set-

ting a threshold mh that makes x̃h high enough so that the last bracket becomes

not just negative, but low enough that the second line counterbalances the first.

The key properties of (4.6) that are useful in the analysis are derived in

Lemma 3:

Lemma 3.3. If the set of mh that satisfies (4.6) is non-empty, then:

1. There is a unique mh at which the inequality binds. We denote it by mIC
h ;

2. For every mh < mIC
h the inequality is violated;

3. For every mh ≥ mIC
h the inequality is satisfied.

Proof. See the Appendix.

The argument to prove Lemma 3 is not immediate, as inequality (4.6) is a

non monotonic function of mh. The proof relies on the fact that if the inequality is

satisfied for some mh < K, one can show that the set of mh such that the inequality

is binding is a singleton, and the inequality is always satisfied for values mh ≥ mIC
h ,

and never otherwise.

Notice now that if (4.6) is satisfied, then a contract is incentive compatible

and leaves the financier at his participation constraint. However, it remains to
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guarantee that the underlying contract belongs to the set of admissible securities,

i.e. that dh ≥ 0.

Denote by x̃max
h the solution to the zero profit condition in a SPBE for type

h when the face value of debt dh = 0, and by mmax
h the corresponding contractual

threshold such that x̃max
h = x̃h(mmax

h ) (which exists and is unique by the mono-

tonicity of x̃h). We have:∫ x̃max
h (mmaxh )

0

(
x− η(x)

)
fh(x)dx = I. (3.6)

Notice that in the financing region equation (3.6) is guaranteed to have a solution.

Also, equation (3.6) implies that all feasible thresholds are such that mh ≤ mmax
h .

Given that, we can state the following proposition:

Proposition 3.1. (SPBE) If mIC
h exists and mIC

h ≤ mmax
h then:

1. There exists a separating equilibrium e∗s in which a type h entrepreneur issues

a contract as in (3.3) such that the financiers make zero profits, and m∗h ∈
[mIC

h , mmax
h ];

2. Type l entrepreneurs are indifferent between any contract such that El(s) = I,

as long as it is not a bonus contract with d∗l ≤ d∗h;

3. No pooling equilibrium satisfies the Intuitive Criterion.

Proof. See the Appendix.

Intuitively, when mIC
h ≤ mmax

h separation may be achieved because MLRP

implies that the low type (t = l) expects to repay relatively more than the high

type. Thus, by choosing a sufficiently high threshold for the bonus contract (and

a sufficiently low face value of debt) the high type can make the cost of mimicking

for the low type excessively high, and credibly signal his type to the uninformed

financiers.

Nevertheless, our choice of focusing on bonus contracts still needs to be

justified. Does a separating equilibrium exist outside the region covered by Theorem

1? And if so, what contracts support it? The answers to these questions are negative:

if separation is not implementable through bonus contracts, then credible signaling

cannot happen under any other security that satisfies limited liability. This occurs

because under a bonus contract the full reported earnings are transferred to the

financier if they lie between zero and the threshold m. Because the probability that

the low type reports earnings below m is higher, the bonus contract maximizes the

cost of mimicking for the l type. Given limited liability, no other contract can achieve
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a higher expected repayment for the low type in this region. In other words, the

conditions in Theorem 1 are both necessary and sufficient for separating equilibria

to exist:

Corollary 3.1. If mIC
h does not exist or mIC

h > mmax
h , then any PBE of the game

must be pooling.

Proof. See the Appendix.

The intuition for this result is as follows. Because a higher threshold for the

bonus contract (and a lower face value of debt) increases the cost of mimicking for

the low type, this cost is maximized when dh = 0 and the threshold is mmax
h . If

the distributions are such that the incentive constraint for the low type is violated

at this contract, then a separating equilibrium cannot exist and the only possible

equilibria are pooling. The argument is sometimes referred to in the literature as

showing that ‘no security in S crosses the repayment function of a bonus contract

from the left’. We characterize the pooling equilibria next.

3.6.2 Pooling Equilibria

Since Nachman and Noe [1994] seminal paper, the literature has adopted a stronger

refinement than the intuitive criterion to deal with pooling equilibria: the D1 crite-

rion. As is well known, the intuitive criterion does not bind in the pooling region of

such models. The reason is that both types may benefit from any deviation depend-

ing on the posterior belief of the financier. D1 allow us to refine the equilibrium set

and obtain a unique equilibrium because it is a condition on the range of beliefs for

which a deviation is profitable.

Denote by V ′t the utility of type t entrepreneur at the deviant contract, and by

V ∗t the utility of type t entrepreneur at the equilibrium contract. Moreover, denote

by D(t|s′) the set of responses of the financier that would deliver strictly higher

utility to type t entrepreneurs than the utility he would obtain at the equilibrium

contract. Formally:

D(t|s′) ≡ {P ∗(s′) ≥ I : V ′t > V ∗t }

where by competitive rationality, P ∗(s′) = Eλ∗(s′)(s
′) for all λ∗(s′) ∈ ∆T , as beliefs

off-the-equilibrium path are arbitrary.

Finally, define the indifference set D0(t|s′):

D0(t|s′) ≡ {P ∗(s′) ≥ I : V ′t = V ∗t }.
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The D1 restriction can be defined as follows15:

D1: Suppose s′ ∈ S is observed off-the-equilibrium path. Then for all t ∈ T :

λ∗t (s
′) =


0 if ∃ t′ ∈ T s.t. t′ 6= t, and D(t|s′) ∪D0(t|s′) ⊂ D(t′|s′)

1 if D(t′|s′) ∪D0(t′|s′) ⊂ D(t|s′), ∀t′ 6= t ∈ T

1− λt′ 6=t otherwise

The pooling zero profit condition at a contract such that d = 0 is given by:

λh

[∫ x̃λ

0

(
x− η(x)

)
fh(x)dx

]
+ (1− λh)

[∫ x̃λ

0

(
x− η(x)

)
fl(x)dx

]
= I. (3.7)

where we denote by x̃λ the threshold that solves the equation, and by mλ the

corresponding contractual threshold. Applying D1 yields:

Proposition 3.2. (PPBE, part (a)) If mIC
h > mmax

h (or mIC
h does not exist)

and mλ < K − η(mλ), then there is a unique pooling equilibrium e∗p which satisfies

D1. At e∗p, all types issue a contract as in (3.3) with d∗p = 0.

Proof. See the Appendix.

Theorem 2 characterizes the set of equilibria that satisfy D1 when separation

is not feasible (mIC
h > mmax

h ), but the earnings manipulation possibilities are low

(mλ < K−η(mλ)). In this region, the uniquely optimal contract is a bonus contract

with zero face value of debt. The intuition for the result is similar to that of Theorem

1: bonus contracts minimize the mispricing of securities issued, even though they

do not reduce it to zero.

To conclude the characterization, we consider two final cases:

Proposition 3.3. (PPBE, part (b)) If mIC
h > mmax

h (or mIC
h does not exist) and

mλ ≥ K − η(mλ), then either there is a unique pooling equilibrium e∗p that satisfies

D1, at which all types issue a contract as defined in (3.3) with d∗p > 0; or there is

no financing.

Proof. See the Appendix.

Contrary to Theorems 1 and 2, the result in Theorem 3 allows debt contracts

in equilibrium because we have d∗p > 0. To be precise:

Corollary 3.2. The optimal contract is ex post equivalent to straight debt if and

only if mλ − dp < η(mλ).

15The D1 restriction is stronger than the intuitive criterion, hence Theorem 1 goes through
unchanged if D1 is imposed.
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The Corollary follows immediately from two observations. First, straight

debt is the optimal monotonic contract (Nachman and Noe [1994]). Second, if

mλ − dp < η(mλ), there does not exist a feasible non-monotonic contract that is ex

post distinguishable from debt. Importantly, debt is never uniquely optimal because

its payoff can always be replicated by a bonus contract with a higher threshold and

identical face value d. The Corollary gives us a necessary and sufficient condition

for the optimality of debt.

Finally, observe that both Theorem 3 and its corollary rely on the distribution

of earnings being bounded above. For this reason, whenever the earnings distribution

is not bounded above they describe empty sets. Such result would hold, for instance,

whenever earnings belong to the normal or exponential family.

Proposition 3.4. If the distribution of earnings is unbounded above, i.e. K →∞,

then debt contracts are never issued in equilibrium, regardless of parameter values.

Proof. See the Appendix.

In this section we characterized the set of equilibria of the model. Bonus

contracts are always optimal, and they provide necessary and sufficient conditions to

characterize the unique equilibrium allocation of the game. Debt contracts only arise

as a corner solution, when limited liability is binding and the earnings distribution

is bounded above.

A question that may be asked concerns the likelihood of separating and

pooling equilibria in specific settings. For instance, are the conditions necessary for

separation very restrictive? Clearly, such questions require a quantitative answer,

and the answer depends on the earnings distribution that is assumed. In the coming

section we characterize the full set of equilibrium allocations for the exponential and

the (truncated and log) normal case. Moreover, because these distributions have a

support that is unbounded above, we also solve an example with linear densities

that have a finite upper bound.

3.7 Examples

We now show how our results translate both for some families of widely used distri-

butions that satisfy A2 (the exponential and normal families) and for a distribution

with bounded support. Table 1 summarizes the parameter values that we assume16.

The examples are solved under the assumption that η(x) = η(x) = η for every x,

16The examples include all projects such that $1 = I ≤ El(x) < Eh(x) for a given Eh(x) = $4.
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for η ∈ [0, 4].17

Figure 3.5 shows the characterization of equilibria for the examples. The

gray region is where a separating equilibrium exists (and it is unique, in terms of

allocations). The black region is where a pooling equilibrium in bonus contracts

exists, and it is unique. Finally, the white region is where no financing occurs.

Figure 3.5 show that the regions described in Theorems 1 and 2 are non-

empty. Because of the unboundedness of the earnings distributions support, the

pooling region does not admit any monotonic security (including debt, of course) in

both the exponential and normal (and lognormal) cases.

The unboundedness of the support is not a necessary condition for non-

monotonic contracts to be the unique equilibrium securities. To show this is the

case, we introduce a family of distribution functions that has bounded support (i.e.

K is finite), and satisfies MLRP. The pdfs for this family are linear and given by:

ft(x) =
1

K

[
K − 2x

(µt + 1)K
+ 1

]
(3.8)

with µt=l > 0 and µt=l < µt=h. This family satisfies strict MLRP, because for any

(t, t′) ∈ T 2 such that t′ < t we have:

∂

∂x

(
ft(x)

ft′(x)

)
=

2K(1 + µt′)

(K(2 + µt′)− 2x)2(1 + µt)︸ ︷︷ ︸
>0

[µt − µt′ ]

and µt′ < µt whenever t′ < t.

The bottom row of Table 3.1 summarizes the parameter values that we as-

sume for this case, and the upper left panel of Figure 3.5 characterizes the set of

equilibria. It should be clear from our results that the region where the unique equi-

librium is separating admits only non-monotonic securities. However, contrary to

the previous examples, the pooling region may include some monotonic securities,

close to the no financing region18.

17More precisely, at the boundaries of the set X we assume that: (i) whenever x − η < 0, then
η(x) = x; and (ii) whenever x+ η > K, then η(x) = K − x.

18The reader may notice two features of this final example: (i) The division between the separating
and the pooling regions seems not to depend on tl. We explore this fact in the next Section. (ii)
The division between the pooling and the no financing regions seems to depend (very loosely) on
tl. This is driven by the zero-profit pooling condition: as we increase tl the no financing region
shrinks, albeit by a very small amount.
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Table 3.1: Parameter Assumptions

Family Type I CDF Parameter

Exponential
l 1 1− e−(γl)

−1x tl ≡ γ−1
l ∈ [1, 4)

h 1 1− e−4x th ≡ γ−1
h = 4

Truncated Normal

l 1 0.5

(
1 + erf

x− γl√
2

)
tl ≡ γl ∈ [1, 4)

h 1 0.5

(
1 + erf

x− 4√
2

)
th ≡ γh = 4

Lognormal
l 1 0.5

(
1 + erf

lnx− γl√
2

)
tl ≡ eγl+0.5 ∈ [1, 4)

h 1 0.5

(
1 + erf

lnx− 0.85√
2

)
th ≡ eγh+0.5 = 4

Linear
l 1 (K(2 + µl)x− x2)

/
(K2(1 + µl)) tl ≡ µl ∈ [1, 4)

h 1 (K(2 + µh)x− x2)
/

(K2(1 + µh)) th ≡ µh = 4

3.8 Extensions

Our model is deliberately stylized in many respects. We now discuss some extensions

and we show that the main insights of our analysis do not depend on (i) the type

of asymmetric information assumed; (ii) the cardinality of the type space.

Moral hazard. Suppose that in addition to (or instead of) adverse selection, the

capital market is subject to moral hazard: borrowers can increase the expected value

of their projects by exerting costly (unobservable) effort. As Innes [1990] has shown,

as long as the effort decision generates a family of distributions which satisfy the

MLRP ordering, non-monotonic contracts dominate debt.

Innes [1990] assumes that output is perfectly verifiable, hence his conclusions

do not directly apply here. However, it is clear what the driving force of the result

is: by choosing a non-monotonic contract borrowers have incentives to exert higher

effort, because their payoff is zero unless they obtain high earnings. The optimal

contract display a pay-for-performance payoff.

In our setup, where output is only coarsely verifiable, optimal contracts are

constrained by the profit manipulation possibilities, which reduce the effort exerted

by borrowers relative to that in Innes [1990]. However, the results would be similar.
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Figure 3.5: Set of equilibria for the numerical examples

Exponential Normal

Lognormal Linear

Beyond the two-type case. Consider our assumption that there are just two

types. One wonders how the results depend on it. To show that their qualitative

properties of the optimal contracts we derive extend to richer type spaces, we char-

acterize the set of separating equilibria for an example that admits a closed form

solution.19

In particular, consider the family of linear density functions described by

(3.8). This family has a convenient property: the densities all cross at the same

19As we mentioned at the beginning of Section VI, the existence of separating equilibria is what
contrasts the most with the existing results. The solutions for the other, less interesting, cases are
available upon request.
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point. Indeed, it is easy to verify that for any pair of types (t, t′) ∈ T , ft(x) = ft′(x)

if and only if x = K/2, in which case ft(x) = 1/K for every t.

Consider now the incentive compatibility constraint (4.6) at the limit bonus

contract given by the solution to (3.6). Differentiating the LHS with respect to the

type t′ yields20:
(µt′ − µt)(2η + 3K − 4mmax

t )(mmax
t − 2η)2

6K(1 + µt′)(1 + µn)
(3.9)

To achieve separation we must have that mmax
t > 2η, so the expression is negative

if and only if:

mmax
t <

η

2
+

3K

4
(3.10)

We know that the two inequalities describe a non-empty set of earnings realizations

if K > 2η. Using (3.10), we can sign the derivative of the incentive constraint given

by (3.9) with respect to type t′, which is always negative in the relevant range, i.e.

for every x ≤ K/2.

The result has an immediate economic interpretation. It tells us that if a

type t can separate from a type t′ < t, then it can separate from any other t′′ ∈ (t′, t).

We can now restate our Theorem 1 for this case:

Proposition 3.5. Suppose that the pdfs are described by (3.8) for every t ∈ T ,

and suppose that T = {t1, t2, ..., tN}. If there exists a bonus contract with threshold

m2 ≤ mmax
2 that satisfies the incentive constraint for the pair (t2, t1), then:

1. There exists a fully separating equilibrium e∗s in which every t ∈ T \ {t1} issue

a contract as in (3.3) such that the financiers make zero profits. The contracts

are such that dn < ... < d2;

2. Type t1 is indifferent between any contract such that E1(s) = I. If it is a bonus

contract, though, it must be such that d1 > d2;

3. No pooling equilibrium satisfies the Intuitive Criterion.

Proof. From our previous analysis we know that if the incentive constraint

for the pair (t, t1) is satisfied, then the one for any pair (t, t′) such that t′ ∈ T \ {t1}
also holds. Because of our special distributional assumption, when the condition

holds for th, then it holds for all t ∈ T \{t1, t2} and a fully separating equilibrium in

which financiers make zero profits exists. That no pooling equilibrium is reasonable

can be proved as in the two-type case. Q.E.D.

20Technically, we can take such a derivative only if we assume a continuum type space. We
suppose so, and later we shall draw a finite set of types from such a continuum.
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Theorem 5 is given for a specific distribution, as the general case is difficult to

analyze21. However, it clearly shows that our main result on the signaling property

of capital structure does not depend on the two-type assumption.

3.9 Conclusion

We have shown that the optimal financial contract under ex ante asymmetric in-

formation, limited liability and ex post profit manipulation has the following fea-

tures: (i) it is non-monotonic in earnings; (ii) it exhibits profit manipulation on-

the-equilibrium path. That is, the standard justification for restricting attention to

monotonic, manipulation-proof securities is not sound. The results suggest that ex

ante asymmetric information is not sufficient to theoretically justify the optimality

and the widespread use of debt contracts.

We derive necessary and sufficient conditions for monotonic securities to

arise in equilibrium. Monotonic securities are never uniquely optimal, and they

may prevail only if both earnings are bounded, and feasibility is binding.

21To prove that the incentive constraints are ordered in the type space one deals with two coun-
tervailing forces: on the one hand, lower quality types have more to gain by mimicking higher
ones. But, on the other hand, they are the ones for whom the costs of mimicking are the highest.
Which of these two forces prevails is clear with the analytically tractable linear densities, but not
for general distributions. One can prove graphically that the order of incentive constraints holds
also for the exponential and truncated normal distributions. Such results are available from the
authors upon request.
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Appendix for: Optimal Security Design under Asymmet-

ric Information and Profit Manipulation

Proof of Lemma 3

Proof. From the definition of mIC
h we know that, if mIC

h exists, it must generate a threshold

x̃ICh such that: ∫ x̃ICh

0

(
Fl(x)

(
1− Fh(x̃ICh )

)
− Fh(x)

(
1− Fl(x̃ICh )

))
[1− η′(x)]dx

+

[
Fl
(
x̃ICh

)
− Fh

(
x̃ICh

)][
I − x̃ICh + η(x̃ICh )

]
= 0.

The proof consists on showing that the derivative of the incentive constraint with respect to x̃h

evaluated at x̃ICh is strictly negative.

Differentiating the incentive constraint (4.6) with respect to x̃h yields:

∂IC

∂x̃h
=
(
fl(x̃h)− fh(x̃h)

)
[I − x̃h + η(x̃h)]−

(
Fl(x̃h)− Fh(x̃h)

)
∗

∗ [1− η′(x̃h)] +
(
Fl(x̃h)[1− Fh(x̃h)]− Fh(x̃h)[1− Fl(x̃h)]

)
[1− η′(x̃h)]+

− fh(x̃h)

[ ∫ x̃h

0

Fl(x)[1− η′(x)]dx

]
+ fl(x̃h)

[ ∫ x̃h

0

Fh(x)[1− η′(x)]dx

]
+

+

{
fl(x̃h)

[ ∫ x̃h

0

Fl(x)[1− η′(x)]dx

]
− fl(x̃h)

[ ∫ x̃h

0

Fl(x)[1− η′(x)]dx

]}
where the last row is obtained adding and subtracting the same expression to the derivative, and

it is introduced so that the derivative simplifies to:

∂IC

∂x̃h
=
(
fl(x̃h)− fh(x̃h)

)[
I − x̃h + η(x̃h) +

∫ x̃h

0

Fl(x)[1− η′(x)]dx

]
− fl(x̃h)

[ ∫ x̃h

0

(
Fl(x)− Fh(x)

)
[1− η′(x)]dx

]
Evaluating the derivative at x̃ICh yields:(
fl(x̃h)− fh(x̃h)

)(
Fl(x̃h)− Fh(x̃h)

)[ ∫ x̃ICh

0

(
Fh(x)

(
1− Fl(x̃ICh )

)
− Fl(x)

(
1− Fh(x̃ICh )

))
∗

∗ [1− η′(x)]dx

]
+
(
Fl(x̃h)− Fh(x̃h)

)[ ∫ x̃h

0

Fl(x)[1− η′(x)]dx

]
−

− fl(x̃h)

[ ∫ x̃h

0

(
Fl(x)− Fh(x)

)
[1− η′(x)]dx

]
which can be rewritten as:∫ x̃ICh

0

(
Fl(x)− Fh(x)

))
[1− η′(x)]dx(

Fl(x̃h)− Fh(x̃h)
)︸ ︷︷ ︸

>0 by FOSD and because η′(x) < 1

[
fl(x̃h)[1− Fh(x̃h)]− fh(x̃h)[1− Fl(x̃h)]

]
︸ ︷︷ ︸

<0 because MLRP implies HRO

< 0

The fraction is strictly positive whenever x̃h > 0, which is clearly satisfied at every contract that

implements investment. The second bracket is negative because we assumed strict MLRP, and it
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is well known that strict MLRP implies the strict HRO - hazard rate ordering - which in turns

guarantees that the bracket is strictly negative.

An immediate consequence of the strict inequality is that if the incentive constraint crosses

zero, it must do so only once. Lemma 3 follows. Q.E.D.

Proof of Theorem 1

Proof. Claims 1 and 2: Follow from the previous discussion, and the fact that if tl issues

a bonus contract with d∗l ≤ d∗h that breaks even on his type, the good type would mimic him and

he would end up with a rate of repayment higher than one.

Claim 3: Suppose that all agents are in the pooling equilibrium ê of the game. Type t = h

(the better type) is certainly paying a strictly positive net rate of return to the investors. No type

other than t = h is in the set Θ for a security s′ that satisfies (4.6). Hence, the Intuitive Criterion

implies that the investor must believe that the deviation comes from type h with probability one.

If this is so, the deviation is profitable and the pooling equilibrium does not satisfy the Intuitive

Criterion. Q.E.D.

Proof of Corollary 1

Proof. To establish this result, some preliminary steps are required.

Denote the bonus contract with mh = mmax
h and dh = 0 as s∗, and compare it with another

generic security s such that Eh(s∗) = Eh(s) = I. Define the following sets:

Π+(s) ≡ {m|s∗(m = x) > s(m = x)}

Π−(s) ≡ {m|s∗(m = x) < s(m = x)}

Lemma 4. For every pair (ml = xl,mh = xh) in X2 such that ml ∈ Π+ and mh ∈ Π−

we have mh > ml. Moreover, m∗(xl|s∗) ≥ m∗(xl|s) and m∗(xh|s∗) ≤ m∗(xh|s).

Proof. First notice that Π+(s) = ∅ if and only if Π−(s) = ∅, because ft(x) > 0 for every

x ∈ [0,K], for every t ∈ T . In this case the lemma is not very useful, but it is still satisfied. Suppose

Π+(s) is non-empty. Because of limited liability, it must be the case that mh > mmax
h − η(mmax

h )

for every mh ∈ Π−, and ml < mmax
h − η(mmax

h ) for every ml ∈ Π+(s). As for the claim about the

real payoff, it follows directly from the shape of s∗. Q.E.D.

Lemma 5. Denote the bonus contract with mh = mmax
h and dh = 0 as s∗. For any generic

security s such that Eh(s∗) = Eh(s) = I, we have that El(s∗) > El(s).

Proof. The only interesting case is, again, when Π+(s) is non-empty (else the lemma

holds trivially). Suppose so. Furthermore, suppose we move from s∗ toward s through a series of

steps such that in each step we create a security s′ such that Et(s′) = I, but there exists a small

interval dxa ∈ Π+(s) such that s′(m∗(dxa)) < s∗(m∗(dxa)) and this change is compensated by

inducing a change in the real payoff for another small interval dxb ∈ Π−(s) so that s′(m∗(dxb)) >

s∗(m∗(dxb))
22. Then,

22In both cases, construct the interval such that it is of equal length as the pdf centered at the
two points: f(xa), f(xb)
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El(s
∗)− El(s

′) = fl(xa)
[
s∗(m∗(dxa))− s′(m∗(dxa))

]
+ fl(xb)

[
s∗(m∗(dxb))− s′(m∗(dxb))

]
=
[
s∗(m∗(dxb))− s′(m∗(dxb))

]︸ ︷︷ ︸
< 0 by construction

(
fl(xb)

fh(xb)
− fl(xa)

fh(xa)

)
︸ ︷︷ ︸

< 0 by MLRP

ft(xb) > 0,

where the second equality comes from Eh(s∗) = Eh(s′). The iteration of this procedure one step

at a time concludes the proof. Q.E.D.

Because of Lemma 5 we know that Eh(s∗) − El(s∗) < Eh(s) − El(s), for every Eh(s∗) =

Eh(s) = I. The Corollary follows. Q.E.D.

Proof of Theorem 2

Proof. Existence: Suppose there exists an mλ that satisfies the pooling zero profit con-

dition. Define the security sp so that: dp = 0 and mλ solves the pooling zero profit condition.

Moreover, suppose that the market posterior is equal to the prior at sp, and it is λh = 0 at any

other s′ 6= sp such that s′ ∈ S. Then, all types issuing sp is an equilibrium. It remains to show that

it satisfies D1. In particular, we need to prove that D(1|s′) ∪D0(1|s′) 6⊂ D(2|s′) for every s′ 6= sp

such that s′ ∈ S. There are two cases:

1. If El(s′) < El(sp), then D(1|s′) = [I,∞). Hence it must be that D(2|s′) ⊆ D(1|s′)∪D0(1|s′);

2. If El(s′) ≥ El(sp), Lemma 5 implies Eh(s′) ≥ Eh(sp) as well. But we can say more:

Suppose we move from sp to s′ through a series of consecutive steps (i.e. interim contracts s′′)

such that in each step we induce an increase in the real payoff of sp by raising s′′(mk = xk)

for some xk ∈ X. Clearly, it must be that xk ≥ mλ. Notice that because sp is a pooling

equilibrium, it must be that it does not satisfy (4.6). Hence, because of MLRP, at xk we

must have fl(xk) < fh(xk) - i.e. xk must exceed the (unique) crossing point of the two

densities. Therefore:

El(s′′)− El(sp) = fl(xk)
[
s′′(m∗(xk|s′′))− sp(m∗(xk|sp))

]
= fl(xk)(s′′(m∗(xk|s′′)) < fh(xk)(s′′(m∗(xk|s′′)) = Eh(s′′)− Eh(sp)

Iterating the same logic we conclude that Eh(s′)− Eh(sp) > El(s′)− El(sp). It follows that

at e∗p it must be the case that, for all P ∗ ≥ I:(
V ′h − V ∗h

)
−
(
V ′l − V ∗l

)
=
(
El(s′)− El(sp)

)
−
(
Eh(s′)− Eh(sp)

)
< 0

which implies that D(2|s′) ⊆ D(1|s′) ∪D0(1|s′) again.

Uniqueness: From Corollary 1 we know that there can only exist other pooling equilibria

if the conditions required for Therem 1 to apply do not hold. We now show that if there exists an

mλ ∈ (mmax
h ,K − η(K) such that (3.7) is satisfied, then every pooling equilibrium e′ of the game

such that e′ 6= e∗p does not satisfy D1.

Consider a generic e′ 6= e∗p. From the analysis above and Lemma 5, we know that there

exists at least an s′ such that El(s′) ≥ El(sp) but Eh(s′) < Eh(sp). Then the logic of the previous

proof (point 2 above) is reversed. We conclude that such a equilibrium does not satisfy D1. Q.E.D.

Proof of Theorem 3
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Proof. Part (1) can be proved in the same fashion as Theorem 2, with a twist: now it

must be the case that a bonus contract with d = 0 cannot satisfy the pooling zero profit condition.

Hence, we start by finding the minimum d > 0 such that the condition can be satisfied. Then, the

result follows from the logic of the previous proof.

Part (2) follows from the fact that with a contract as in (1) we are hitting the upper bound

of the distribution of earnings. If such a contract does not exist, then any other security could not

break even for the financier. Q.E.D.

Proof of Theorem 4

Proof. When K → ∞ there always exists an mmax
h such that the pooling zero profit

condition is satisfied for a face value of debt of dp = 0, because ft(x) > 0 for every x ∈ X and

every t ∈ T . Moreover, regardless of the extent profit manipulation, as long as it is bounded, the

pooling contract with dp = 0 has a real payoff which is non-monotonic. As a result, any contract

with a monotonic real payoff cannot be part of an equilibrium that satisfies D1. Q.E.D.
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Chapter 4

Credit Failures

4.1 Introduction

In the aftermath of the crisis of 2008, government intervention in financial mar-

kets has been widespread1, and it has prompted economists to focus, primarily, on

two questions. First, how should a bailout be designed? In particular, should gov-

ernments inject equity capital into troubled institutions, as happened in the UK,

or should they favour asset purchases and debt guarantees, as the US government

did2? Second, assuming that government interventions are inherently advantageous

relative to market solutions, what size and type of intervention can better leverage

on government capabilities3?

With only few who would openly advocate that governments let financial

institutions go under, a debate on intervention in financial markets is again taking

place. More broadly, Keynesian claims that market economies may suffer low or

fluctuating output and employment and that active monetary and fiscal policy is

both effective and desirable have gained interest. This is an important debate, to

which we wish to contribute. In particular, we want to emphasize that an argument

for intervention requires consideration of both sides of the balance sheet of the

government, and explicitly accounting for any opportunity cost. Whether or not

balanced interventions are desirable naturally feeds back into more practical matters

1In the US, as of March 2012, the net government bailout outlays amounted to $3.3 trillions.
These include the TARP (Troubled Asset Relief Program), Treasury outlays and Federal Reserve
outlays. The gross bailout is estimated at $4.6 trillion. In Europe, the scope and size of intervention
has differed substantially across countries. In the UK, according to the National Audit Office, in
2011 the net outlays to the financial sector amounted to £512 billion. Smaller bailouts packages
have been issued in France and other continental European countries.

2An issue of the American Economic Review, 102(1) of 2012, was dedicated to this question; the
contributions by Philippon and Skreta [2012] and Tirole [2012] are particularly relevant.

3Gertler and Kiyotaki [2010] and Holmstrom and Tirole [2011] address this question.

76



such as the optimal design of bailout (or stimulus) packages that we clarify.

Chamley [2013] sets up the question in an ingenious and methodologically

sound framework: (i) matching frictions 4 prevent the economy from operating at

first best, and (ii) the government does not have inherent advantages (nor disad-

vantages) relative to market participants. Not all dynamic equilibria are Pareto

optimal, and dynamic adjustment may lead to “savings traps.” Suboptimality de-

rives from failures of effective demand that was introduced by Say [1803], and it

plays a dominant role in Keynesian arguments. It refers to the demand that is

actually satisfied at equilibrium and may reflect multiple constraints; in contrast,

notional demand which refers to demand subject only to the budget constraint.

The concept was first formalized in the context of equilibria with price rigidities

by Drèze [1975] and Benassy [1975], and gave rise to extensive work that provides

microeconomic foundations for Keynesian arguments, such as Barro and Grossman

[1971], Benassy [1975] and Malinvaud [1977].

The work on fix-price equilibria, appropriately understood, reveals an evi-

dent but important intuition: the theorems of classical welfare economics require

that prices are the only signals that serve to coordinate economic activity; if, al-

ternatively, other parameters such as perceived constraints on trades are allowed

to play a role, than even simple Edgeworth-box economies can generate multiple

equilibria where, typically, effective and notional demand diverge, and, evidently,

Pareto optimality fails. This is indeed true in the construction of Chamley [2013],

where a Pareto optimal dynamic equilibrium exists and is selected exactly by not

allowing individuals to consider constraints on their choices other than the budget

constraint. As a consequence, it suffice for the government to select the efficient

equilibrium, as is the case in Cooper and John [1988] where Keynesian effects derive

from strategic complementarities.

Other recent work relaxes an alternative underpinning for the classical the-

orems of welfare economics to hold: the completeness of the asset market. For

example, Lorenzoni [2008] shows that inefficient credit booms may arise when asset

markets are incomplete. Similar arguments can generate inefficient credit busts,

for that matter, because it is well known since Greenwald and Stiglitz [1986] and

Geanakoplos and Polemarchakis [1986] that markets are constrained inefficient in

economies with exogenously incomplete asset markets.5 The incomplete markets

4Similar frictions were considered in Diamond [1982] and Green and Zhou [2002].
5Although in these papers government interventions were modelled as reallocations of asset

portfolios, the result can be implemented via transfers and subsidies as well (See Citanna et al.
[2006]). Further, it applies to economies with (exogenously) uninsurable idiosyncratic risk, as shown
in Carvajal and Polemarchakis [2011].
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approach does provide a stronger reason for the government to intervene, as all

competitive equilibria are (generically) constrained Pareto suboptimal. However, it

relies on the assumption that the asset market is exogenously incomplete, begging

the question as to why this is the case.

In summary, the former approach that lead to Chamley’s results rests on

modeling a friction explicitly, and obtains multiple Pareto ranked equilibria, whereas

the latter approach we described relies on exogenously assuming that markets are

incomplete and obtains a set of constrained suboptimal competitive equilibria. It

remains a challenge to construct a model in which

1. markets are as complete as the fundamentals of the economy allow,

2. competitive equilibria are not optimal, and

3. interventions compatible with the fundamentals allow for superior allocations.

In this paper, we construct an economy with hidden information where all

three properties hold. First, hidden information leads to endogenously incomplete

asset markets because individuals cannot trade assets contingent on their (unob-

servable) idiosyncratic risk.6 Second, severe hidden information problems result in

all competitive equilibria being constrained suboptimal. Third, balanced-budget

government interventions improve upon the market outcome even if the government

does not have better information relative to market participants. We deliberately

consider a simple framework where the Pareto improving government interventions

can be fully characterised analytically, in order to clarify how modeling explicitly

the revenues side of a government’s balance sheet feeds back into the optimal design

of its spending programs.

More specifically, we introduce a labour market in an economy otherwise

similar to Philippon and Skreta [2012]. There is a continuum of measure one two

types of agents: savers-workers and entrepreneurs; and two dates. The workers are

endowed with labour at both dates, but only want to consume at the end and hence

they save all their labour income in the first period. At each date, they can either

enter the labour market (i.e. work for some entrepreneur), or be self employed.

We assume that under full information labour is more productive if the worker

enters the labour market. The entrepreneurs are endowed with a technology that,

if productive, can employ future labour to produce consumption good at the end

period. The entrepreneurs are of heterogenous, privately known, types, and the type

6More precisely, fundamentals are such that separating equilibria cannot exist and, as a result,
all assets payoffs cannot be contingent on agents’ private information.
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affects the probability that the technology will be productive. All types can increase

their chances of being able to produce by employing a fixed amount of labour at the

initial date, and investment is efficient under full information.7 Entrepreneurs are

initially cashless, but can borrow from a bank in order to pay the workers’ wages at

the initial date. The wages are then deposited in the bank until the final date, at

which (i) the productive entrepreneurs pay back the bank, and (ii) workers withdraw

from the bank and consume the proceeds of their work.

In this setup, and despite the presence of a non-convexity in the investment

technology, competitive equilibria always exist. However, whenever at a competitive

equilibrium some entrepreneur is not investing, the equilibrium is constrained ineffi-

cient : there exist balanced-budget government interventions that improve upon the

market outcome. Furthermore, for some parameter values - namely, when hidden

information problems are sufficiently severe - there only exist inefficient equilibria.8

Our results are driven by the interaction of two factors. First, markets are

endogenously incomplete: the entrepreneurs cannot trade commodities contingent

on their (privately known) type. Second, a labour (spot) market opens after the

investment decisions have been made. When asymmetric information in financial

markets becomes more severe, high quality entrepreneurs prefer not to borrow and

cut down on their investment plans. As a result, the equilibrium wage decreases. The

government does not have better (or worse) information than market participants,

and it is assumed not to face internal agency costs. It can introduce taxes and

subsidies in markets, but is constrained to adopt balanced-budget interventions.

We show that the relative price effect introduced by the presence of both credit and

labour markets can be exploited by the government to improve upon the market

allocation. The optimal interventions can be implemented combining a savings (or

income) tax with two types of subsidies: a direct - lump-sum - subsidy to investment

and an interest rate subsidy. The workers are weakly better off after the intervention

because they benefit from the increase in future wages, whereas the entrepreneurs

are able to invest at a reduced informational cost.

The results differ from those derived in Bisin and Gottardi [2006], Dubey

and Geanakoplos [2002] and Rustichini and Siconolfi [2008] mainly because they

7This formulation allows us to work with a state space that contains only two states (productive;
unproductive) and with a fixed investment level. Both ingredients are essential in ruling out any
signaling possibility.

8Contrary to Philippon and Skreta [2012], we abstract from the security design question by
assuming that there are only two states of the world, and in one state entrepreneurs have no
resources available to pay back their creditors. However, notice that even in models with multiple
states it is not obvious that signalling can always be ruled out, as emphasised by Koufopoulos et al.
[2014].
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study economies where re-trading is not allowed, i.e. no spot market opens after

the realisation of uncertainty. The implication of allowing for spot markets in more

general environments subject to adverse selection is left for future research.

4.2 The Economy

4.2.1 Primitives

We consider an economy which lasts two periods t = {0, 1}. All agents are risk-

neutral and consume only at t = 1.

There is a continuum [0, 1] of two kind of agents: savers-workers and en-

trepreneurs.

The savers-workers are endowed with l0 = x̄ units of time at date zero, and

l1 = 1 at date one. At each date, they can either enter the labour force, or remain

self employed. Self employment is a constant return to scale technology: every unit

of labour supplied yields one unit of date one consumption good.

The entrepreneurs privately know their type, indexed by θ, and it is common

knowledge that types are drawn from a compact set Θ ≡ [θ, θ] with cumulative

distribution function F (θ). An entrepreneur of type θ has potential access to a

technology that produces date one consumption good by means of labour at time

one f(l1,θ), where lt,θ denotes the labour demand of an entrepreneur of type θ at

date t. The probability that the entrepreneur can use his technology depends on (i)

his type, (ii) an investment undertaken at date zero, and it is denoted by p(θ, l0,θ).

In particular:

p(θ, l0,θ) =

pθ if l0,θ ≥ x > 0

p
θ

if l0,θ < x > 0

The technology is common for all entrepreneurs, and it exhibits decreasing returns

to scale: f(l1,θ) = ξlα1,θ for some α ∈ (0, 1) and ξ > 0. Also, suppose that pθ > p
θ
;

x < x̄ and, without loss of generality, let p
θ
> p

θ′
whenever θ > θ′.

All agents are risk-neutral and do not derive any utility from leisure. As

a result, the workers save all their t = 0 income (both the labour income, and the

income derived from self employment). It is useful to think that they deposit it into a

bank, and have in mind the following circuit: (i) the bank lends to the entrepreneurs

the amount they need to pay the workers at date zero; (ii) then, it gets the worker’s

savings as a deposit; and (iii) finally, at t = 1, it collects repayments from productive

entrepreneurs and uses it to pay the workers.
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The timing of the economy is as follows:

• date 0: The (privately informed) entrepreneurs decide whether to borrow

from a bank and employ labour x or not. The workers decide whether to enter

the labour force or remain self employed;

• date 1: labour is employed (for the technologies that are operative) and

output is realised; obligations are repaid (whenever possible); consumption

takes place.

Denote the wage at date t by wt and the (gross) loan rate by r. The t = 1

consumption good is taken as the numéraire, and its price is normalised to one.

Further, we can normalise w0 = 1.9 To simplify the notation, let w1 = w.

Separating contracts. Under full information the credit market would be seg-

mented: each type of entrepreneur would face a loan rate r(θ) = p−1
θ . The loan rate

is easily pinned down by a no arbitrage condition: the return to storage (equal to

one) must be equated to the expected return from lending to entrepreneur (rpθ).

When information is asymmetric, the loan rate r might depend on θ only

at a (possibly partially) separating equilibrium. However, such equilibrium only

obtains under random contracts, i.e. contracts that consist in both a loan rate, and

a probability with which the loan is granted strictly between zero and one for all

θ ∈ Θ \{θ}. If contract are not random, we cannot have r(θ) such that r(θ) 6= r(θ′).

To see why, notice that the expected repayment of a type θ agent who declares to

be θ′ and invests is r(θ′)x. All agents will choose θ′ so that θ′ = arg min{r(θ)}, and

separation cannot occur.

We do not consider such contracts in the analysis for the following reasons:

• First, our qualitative results do not change if we allow for such contracts.

In particular, random contracts never implement full investment because all

types higher than θ have to choose a probability of investment strictly less

than one. In contrast, we shall prove that full investment is implementable as

a competitive equilibrium with government intervention;

• Second, they would require us to introduce incentive compatibility constraints

in the definition of a competitive equilibrium;

• Finally, random contracts of this type are not observed empirically. Although

this is not a valid critique, there may be a theoretical reason: these contracts

9We can normalise an additional price because we are left with three goods and four prices.
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are not renegotiation proof. Suppose that an entrepreneur offers a random

contract. After the contract is signed, there exists a Pareto improvement avail-

able for both parties: increase the probability of investment to one and split

the surplus. Since renegotiation would be anticipated, incentive compatibility

would not be satisfied hence and no separation could take place.

As a result, in our analysis the loan rate r cannot depend on θ, and competi-

tive equilibria are defined as standard. It is useful to present the three maximisation

problems that agents solve at equilibrium:

At date zero, the bank chooses whether to lend to the entrepreneurs or not.

Each entrepreneur who decides to invest needs to borrow x, because the wage at

t = 0 has been normalised to one and it is never optimal to employ more that x.

The bank chooses optimally lends an amount b∗ that solves:

b∗ = arg max
b∈R

b[r ∗ E[pθ | r∗]− 1]

Clearly, the interior solution b∗ = x requires the no-arbitrage condition r∗E[pθ | r] =

1 to hold.

The entrepreneurs have two decisions: at date one – if they are productive –

they decide how much labour to employ, and l∗1,θ solves f ′(l1,θ) = w.

At date zero, they choose whether to employ x units of labour or not correctly

forecasting their future l∗1,θ, and for a given vector of prices:

l∗0,θ = arg max
l0,θ∈{0,x}

l∗0,θpθ{x−1[f(l∗1,θ)− wl∗1,θ]− r}+ (x− l∗0,θ)x−1p
θ
[f(l∗1,θ)− wl∗1,θ]

Before proceeding to the analysis, it is useful to recall the standard definition

of a competitive equilibrium:

Definition 1: A competitive equilibrium (CE) consists of a vector of prices

(r∗, w∗) such that: (i) all agents maximise expected utility subject to budget con-

straints; (ii) markets clear.

Define the effective interest rate for type θ as rθ ≡ pθr. It is individually

rational for an entrepreneur of type θ to invest if and only if the expected increase

in his profits from production (i.e. (pθ − p θ)ξ(1 − α)lαθ ) more than offsets the cost
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of investing (given by rθx):10

(pθ − p θ)ξ(1− α)lαθ ≥ rθx (4.1)

Furthermore, in equilibrium, each productive entrepreneur demands a quan-

tity of labour such that its marginal productivity equals the wage rate w, i.e.

lθ = (w∗/αξ)1/(α−1). The aggregate labour supply is inelastic: LS = 1, whereas

the aggregate labour demand is denoted by LD ≡
∫
Θ lθdF (θ) and it is maximal

when all types invest. In this case, we would have:

LD
∣∣
Full Investment (FI)

=

(
w∗

αξ

) 1
α−1
(∫

Θ
pθdF (θ)

)
= 1 = LS

As a consequence, under full investment we observe the highest feasible equilibrium

wage: w∗FI = αξ(
∫
Θ pθdθ)

1−α; and hence the lowest individual labour demand by

any type θ entrepreneur who is productive: l∗θ,FI = (
∫
Θ pθdF (θ))−1.

We make the following assumptions on parameters:

Assumption 4.1. Investment has positive net present value for all types under full

information:

For every θ: (pθ − p θ)ξ(1− α)

(∫
Θ
pθdF (θ)

)−α
≥ x

where we substituted in (4.1): (i) the full information equilibrium loan rate

for type θ: rθ = p−1
θ ; and (ii) the lowest possible equilibrium labour demand l∗θ,FI.

11

Assumption 4.2. Type-independent benefits from investment:

For every θ: (pθ − p θ) = q

Assumption 4.2 is not needed to derive our results, however it greatly sim-

plifies the notation and makes our results immediately comparable to those of other

related models that make the same assumption such as Philippon and Skreta [2012].

10To obtain the expression for the expected increase in his profits from production notice that,
since f ′(lθ) = w:

(pθ − p θ)
[
ξlαθ − wlθ

]
= (pθ − p θ)

[
ξlαθ − αξlα−1

θ lθ
]

= (pθ − p θ)ξ(1− α)lαθ

11Evidently, the condition guarantees that for every equilibrium labour demand l∗θ > l∗θ,FI invest-
ment is of positive net present value under full information.
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Assumption 4.3. The distribution function F (θ) is continuous over Θ and F (θ) =

0. Both pθ and p
θ

are continuous in Θ under the integral sign.

Assumption 4.3 is made for technical reasons, and it simplifies the arguments.

4.2.2 Properties of equilibria

Before we proceed to the results, it is useful to highlight two key properties of

competitive equilibria in our setup.

First property of equilibria: whenever type θ invests in equilibrium, so do all

types θ′ < θ.

Proof. To see this, consider condition (4.1). In equilibrium we always have l∗θ = l,

the same constant for every θ - regardless of whether they invested or not. Hence,

the left hand side does not depend on θ. As for the right hand side, its derivative

with respect to θ is equal to r∗x > 0. As a result, whenever type θ invests, all types

θ′ < θ do as well.

From now onwards, define θ̂ ≡ maxθ∈Θ{θ | (4.1) holds}.

Second property of equilibria: an equilibrium can be fully characterised by a

threshold θ̂.

Proof. To see that this is the case, we show that both the loan rate r and the wage

w in equilibrium only depend on θ̂. From (4.1) it then follows that all endogenous

quantities only depend on the threshold for investing agents θ̂.

The equilibrium loan rate r∗ is pinned down by a no arbitrage condition:

workers must be indifferent between using the storage technology and lending to

the entrepreneurs. Because consumption at date one is the numèraire, the return of

the storage technology is one. No arbitrage and the first property of equilibria we

just derived yield:12

r∗(θ̂) =
F (θ̂)∫ θ̂

θ pθdF (θ)
(4.2)

12Notice that only the limit of the expression is well defined at θ = θ, in which case by de l’Hôpital
rule we get: r∗ → p−1

θ . Because this limit is equivalent to the full information loan rate for the

lowest productivity types, as one would have expected, we define r∗(θ) = p−1
θ .
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It is easy to see that the equilibrium loan rate w∗ is given by:

w∗(θ̂) = αξ

(∫ θ̂

θ
pθdF (θ) +

∫ θ

θ̂
p
θ
dF (θ)

)1−α
(4.3)

and as we claimed both prices only depend on θ̂.

This preliminary analysis allows us to translate the problem of finding the

set of equilibrium prices and allocations into the equivalent problem of finding the

equilibrium θ̂. In the next section we derive existence of equilibria, and constrained

suboptimality of those competitive equilibria such that θ̂ < θ.

4.3 Existence and optimality of competitive equilibria

The key condition that determines the set of competitive equilibria in our setup is

inequality (4.1), which identifies the set of types for whom it is individually rational

to invest at any given price vector (r, w). From the properties of equilibria we

derived, (4.1) can be written only as a function of θ̂ as follows:

β ≡ q(1− α)ξ

x
≥
pθF (θ̂)

( ∫ θ̂
θ pθdF (θ) +

∫ θ
θ̂ p θdF (θ)

)α∫ θ̂
θ pθdF (θ)

≡ h(θ, θ̂) (4.4)

The left hand side is just a strictly positive constant β > 0, whereas the right hand

side is a strictly increasing function of the first argument (i.e. θ), and a continuous

function of the second argument (i.e. the threshold θ̂).

In particular, h(θ, θ) = p−1
θ

( ∫ θ
θ p θdF (θ)

)α
pθ > 0, and it is finite.13 More-

over, h(θ, θ) = p θ
( ∫ θ

θ pθdF (θ)
)α−1

> 0 and finite.

Although evidently the derivative of h(θ, θ̂) with respect to θ is strictly pos-

itive (i.e. h1(θ, θ̂) > 0), that with respect to θ̂ has an indeterminate sign. The

latter observation potentially leads to multiple equilibria for a range of parameter

values. Nevertheless, we show that there exist parameters for which the equilibrium

is unique.

Notice that h(θ, θ̂) is a continuous function of the threshold θ̂ which takes

values over a compact set. By the extreme value theorem we then know that there

exist at least a maximal and a minimal element for every θ. We are especially

interested in the extreme points for θ̂ = θ, for reasons that will become clear below.

13The equality - instead of the limit operator - is a consequence of our definition r∗(θ) = p−1
θ .
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It is useful to define them as follows:

ȳ ≡ max
θ̂∈Θ

h(θ, θ̂)

y ≡ min
θ̂∈Θ

h(θ, θ̂)

Our first result characterises the set of competitive equilibria of the economy.

Proposition 4.1. A Competitive Equilibrium (CE) always exists and:

1. If β > y, at the unique CE every type invests (θ̂ = θ);

2. β < y, at every CE some type is not investing (θ̂ < θ);

3. If β ∈ [y, y], there may be multiple CE, possibly with full investment.

Proof.

We shall prove existence and (where applicable) uniqueness case by case.

Case (1). First, notice that an equilibrium with θ̂ = θ exists because β >

y ≥ h(θ, θ). Further, the equilibrium with θ̂ = θ is unique because β > y ≥ h(θ, θ̂)

for every θ̂ ∈ Θ.

Case (2). It is obvious that we cannot have an equilibrium with θ̂ = θ

because β < y ≤ h(θ, θ̂) for every θ̂ ∈ Θ. It remains to show that an equilibrium

with θ̂ < θ exists.

Notice that Assumption 4.1 can be rewritten as: β ≥ h(θ, θ). We know that

h(θ, θ) ≤ β < y ≤ h(θ, θ). Notice that the function g(θ̂) ≡ h(θ̂, θ̂) is continuous in θ̂,

and a CE is characterised by a threshold θ̂ such that g(θ̂) = β. The existence of a

CE then follows immediately from the intermediate value theorem. Figure 1 shows

an example of such case, where there exist three equilibria (θ̂1,θ̂2,θ̂3).

Case (3). Recall from Case (2) that Assumption 4.1 can be written as:

β ≥ h(θ, θ). We know that h(θ, θ) ≤ y ≤ β ≤ y. We need to study again the

function g(θ̂) ≡ h(θ̂, θ̂), which is continuous in θ̂. In particular, we have two cases:

(i) if maxθ̂∈Θ g(θ̂) ≥ β, then a CE exists by the intermediate value theorem (like in

Case (2)); (ii) if instead maxθ̂∈Θ g(θ̂) < β, then there exists a unique equilibrium

with θ̂ = θ (like in Case (1)).

Notice that in Cases (2) and (3) there may well be multiple CE. However, in

Case (2) we know that any CE must be such that θ̂ < θ; in Case (3) an equilibrium

with full investment may well exist.
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Figure 4.1: Existence of a CE in Case (2)

θ θ̂1 θ̂2 θ̂3 θ

g(θ)

β

g(θ)

Note that Proposition 4.1 identifies a non-empty, dense set of parameter

values for which asymmetric information leads to allocations that are all less efficient

than the first best - full information - benchmark. The competitive equilibrium

allocations are inefficient because they induce agents to leave profitable investment

opportunities on the table, and hence to misallocate their savings (so-called savings

traps). However, can something be done about it?

To answer this question, it is misleading to focus on the first best because

the comparison in terms of efficiency is unfair: to the extent that asymmetric in-

formation is a binding constraint, clearly being able to relax it would be Pareto

improving. In this respect, it is no different than asking whether in a standard

Edgeworth box economy adding additional endowment of some desirable good leads

to a Pareto improvement. The correct benchmark is not the first best, but the

constrained best, derived by taking into account all the relevant constraints among

which the informational asymmetry.

Operationally, one can address the question by introducing a benevolent gov-

ernment in the economy. The government is constrained to balance its budget, and

it has no informational advantages (nor disadvantages) relative to market partici-

pants. It can raise resources through taxes and redistribute them as subsidies. We

shall consider one of possibly many government intervention, and show that it leads

to a Pareto improvement relative to any CE with θ̂ < θ.

To be specific, suppose that the government can subsidise interest payments

at a rate τr; it can tax savings at a rate τs; and finally it can subsidise investment

via a lump-sum transfer φ ∈ [0, x]. Moreover, for simplicity of exposition, assume
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that the savings tax is progressive:

τs =

τ for the excess savings (x̄− x)

0 otherwise
(4.5)

Given any CE with threshold for investing entrepreneurs equal to θ̂ ∈ Θ if the gov-

ernment’s intervention pushes the economy to full investment, the balanced budget

condition requires that:

τ(x̄− x) = φ+ τr(x− φ) (4.6)

We are concerned with Pareto improvements: all agents must be at least as well off

as at the laissez-faire market allocation, and some agents must be strictly better off.

To make the notation less cumbersome, we need to introduce a final bit of

notation:

z(θ̂) ≡
∫ θ̂

θ
pθdF (θ) +

∫ θ

θ̂
p
θ
dF (θ)

which denotes the fraction of productive entrepreneurs at t = 1 if the threshold for

investment is θ̂.

Consider the workers first. Without a government intervention their indirect

utility would be:

Vs,NG = αξz
(
θ̂
)1−α

+ x̄

where the first term denotes the labour income, the second the expected return on

savings.

If the government does intervene and manages to push investment to θ > θ̂,

they would get:

Vs,G = αξz
(
θ
)1−α

+ x+ (1− τ)(x̄− x)

They are weakly better off after the government’s intervention if and only if

Vs,NG ≤ Vs,G, or:

αξ

[
z
(
θ
)1−α − z(θ̂ )1−α] ≥ τ(x̄− x) (4.7)

That is, workers are better off only if the amount they gain in the labour market

weakly offsets the savings tax they are required to pay.

Now consider the entrepreneurs who did not invest before the government’s

intervention, i.e. the pool of higher types θ ∈ Θ \{θ′| θ′ ≤ θ̂}. After the government
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intervenes, they invest if and only if:

q(1− α)ξz
(
θ
)−α ≥ (x− φ)

[
pθ

(∫ θ

θ
pθdF (θ)

)−1

− τr
]

(4.8)

whereas their utility constraint Vθ>θ̂,NG ≤ Vθ>θ̂,G is:

(1− α)ξ

[
pθ z

(
θ
)−α − p

θ
z
(
θ̂
)−α] ≥ (x− φ)

[
pθ

(∫ θ

θ
pθdF (θ)

)−1

− τr
]

(4.9)

Inequalities (4.8) and (4.9) differ only in the left hand side. Moreover, θ > θ̂

implies that (4.8) is always slack. Intuitively, the difference between the inequalities

(4.8) and (4.9) is that in (4.8) a high type entrepreneur who invests gets a low return

from production. The fact that all other agents are investing leads to high labour

costs. On the contrary, in (4.9) all entrepreneurs of high quality are not investing,

and hence the wage rate is lower. This increases the outside option of not investing

for each of them.

Furthermore, it is easily seen that (4.9) is easier the be satisfied the higher

the type θ. In fact, it can be rewritten as follows:

(1−α)ξqz
(
θ
)−α ≥ (x−φ)

[
pθ

(∫ θ

θ
pθdF (θ)

)−1

−τr
]

+(1−α)ξp
θ

[
z
(
θ
)−α−z(θ̂ )−α]

The left hand side is a strictly positive constant, whereas the right hand side is an

increasing function of θ.14 Hence, we can restrict attention to the highest type that

is supposed to switch from investing to not investing, i.e. θ.

Finally, consider the entrepreneurs who did invest before the government’s

intervention. We have that Vθ≤θ̂,NG ≤ Vθ≤θ̂,G if and only if:

pθ(1− α)ξ

[
z
(
θ
)−α − z

(
θ̂
)−α] ≥(x− φ)

[
pθ

(∫ θ

θ
pθdF (θ)

)−1

− τr
]

− xF (θ̂) pθ

(∫ θ̂

θ
pθdF (θ)

)−1

14This holds provided that φ ≤ x, which we conjecture and we confirm at the end of the proof of
Proposition 4.2.
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Diving both sides by pθ and rearranging we get:

(1− α)ξ

[
z
(
θ̂
)−α − z

(
θ
)−α] ≤(x− φ)

(
τr
pθ

)
+ φ

(∫ θ

θ
pθdF (θ)

)−1

(4.10)

+x
[
r(θ̂)− r(θ)

]
The left hand side of (4.10) is a positive constant independent of θ, whereas the

right hand side is decreasing with θ.15 Hence, the inequality is binding at most for

type θ̂ himself.

The next result considers any equilibrium with less than full investment, and

it shows that there always exist a Pareto improving government intervention.

Proposition 4.2. All equilibria such that θ̂ < θ are constrained suboptimal.

Proof. Consider any equilibrium with θ̂ < θ. First we restate the conditions we

derived above which must be satisfied for the government intervention we sketched

to support an equilibrium with full investment; second we check that there exist

feasible values for the government’s parameters such that the system has a solution.

The condition for workers reads:

αξ

[
z
(
θ
)1−α − z(θ̂ )1−α] ≥ τ(x̄− x) (4.11)

From an earlier argument, we know that we can restrict attention to the

entrepreneurs of type θ and θ̂, and if they are weakly better off after the government’s

intervention all other entrepreneurs will be as well.

The condition for the entrepreneurs of highest quality such that θ > θ̂ reads:

(1− α)ξ

[
pθ z

(
θ
)−α − p

θ
z
(
θ̂
)−α] ≥ (x− φ)

[
pθz
(
θ
)−1 − τr

]
(4.12)

and recall that it guarantees that their investment constraint holds as well.

Finally, the condition for the entrepreneurs of highest quality among those

that were investing absent the government’s intervention, i.e. θ̂, reads:

pθ̂(1− α)ξ

[
z
(
θ
)−α − z

(
θ̂
)−α] ≥ (x− φ)

[
pθ̂z
(
θ
)−1 − τr

]
− xF (θ̂) pθ̂z

(
θ̂
)−1

(4.13)

The analysis above left us with a system of one equation (given by (4.6))

15This holds provided that τr ≥ 0, which we conjecture and we confirm at the end of the proof
of Proposition 4.2.
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and three inequalities (that are: (4.11), (4.12) and (4.13)).

Take inequality (4.11), and set τ∗ such that it binds. We get:

αξ

[
z
(
θ
)1−α − z(θ̂ )1−α] = τ∗(x̄− x) (4.14)

Plugging (4.14) into the balanced budget constraint we get:

αξ

[
z
(
θ
)1−α − z(θ̂ )1−α] = φ+ τr(x− φ) (4.15)

Plugging (4.15) into (4.12) we get:

φ ≥
(
pθz
(
θ
)−1 − 1

)−1[
xpθz

(
θ
)−1 − s1(θ̂)

]
≡ z1 (4.16)

where we define:

s1(θ̂) ≡ ξ
{

(1− α)

[
pθz
(
θ
)−α − p

θ
z
(
θ̂
)−α]

+ α

[
z
(
θ
)1−α − z(θ̂ )1−α]}

Recall from Assumptions 4.1 and 4.2 that q(1− α)ξz(θ̂)−α ≥ x for every θ̂ ∈ Θ. As

a consequence, we can rewrite s1(θ̂) as follows:

s1(θ̂) = ξ

{
(1− α)

[
qz(θ̂)−α + pθ

[
z
(
θ
)−α − z

(
θ̂
)−α]]

+ α
[
z
(
θ
)1−α − z(θ̂ )1−α]}

≥ x+ ξ

{
(1− α)pθ

[
z
(
θ
)−α − z

(
θ̂
)−α]

+ α
[
z
(
θ
)1−α − z(θ̂ )1−α]}

≡ x+ ξ
[
(1− α)pθδ1 + αδ2

]
Now consider the lower types. We have to deal with three cases, depending on

whether the threshold type θ̂ is paying or receiving a subsidy under full investment,

i.e. depending on the sign the sign of pθ̂r(θ)− 1.

Case 1: pθ̂r(θ) < 1.

Plugging (4.15) into (4.13) we get:

φ ≤
(
1− pθ̂z(θ)

−1
)−1
[
s2(θ̂)− xpθ̂

[
z(θ)−1 − F (θ̂)z(θ̂)−1

]]
≡ z2 (4.17)
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where we define:

s2(θ̂) ≡ ξ
{
pθ̂(1− α)

[
z
(
θ
)−α − z

(
θ̂
)−α]

+ α
[
z
(
θ
)1−α − z(θ̂ )1−α]}

= ξ
[
pθ̂(1− α)δ1 + αδ2

]
We need to show that (4.16) and (4.17) can be jointly satisfied, i.e. that

z2 ≥ z1.16 The condition can be rewritten as

x
[
pθ̂F (θ̂)z(θ̂)−1 − 1

]
≥ −

(
pθ − pθ̂

)[
(1− α)δ1 + αδ2z(θ)

−1
]

pθz(θ)
−1 − 1

(4.18)

where the left hand side of (4.18) is weakly positive because of cross type subsidis-

ation. Namely, the fact that if type θ̂ is the highest type who is investing, he must

be paying a gross real interest rate greater than the full information rate (which

is one, as we discussed earlier). As for the right hand side of (4.18), notice that(
pθ − pθ̂

)
> 0 because θ̂ < θ. Moreover, the denominator is strictly positive again

because of cross subsidisation: pθz(θ)
−1 > 1. It remains to study the sign of the

square bracket in the numerator, that is the expression (1− α)δ1 + αδ2z(θ̂)
−1. We

can rewrite it as follows:

(1− α)z(θ)δ1 + αδ2

z(θ)
=

(1− α)z(θ)
[
z
(
θ
)−α − z

(
θ̂
)−α]

+ α
[
z
(
θ
)1−α − z(θ̂ )1−α]

z(θ)

=
(1− α)

[
z
(
θ
)1−α − z(θ) z(θ̂ )−α]+ α

[
z
(
θ
)1−α − z(θ̂ )1−α]

z(θ)

=
z
(
θ
)1−α − [(1− α)z(θ) z

(
θ̂
)−α

+ αz
(
θ̂
)1−α]

z(θ)
> 0

The strict inequality follows from θ̂ < θ (and of course z(θ) > 0). In particular,

taking the derivative of the right hand side with respect to θ̂ yields

∂
[
(1− α)z(θ) z

(
θ̂
)−α

+ αz
(
θ̂
)1−α]

∂θ̂
= α(1− α)qz

(
θ̂
)−α[

z
(
θ
)
− z
(
θ̂
)]
z
(
θ̂
)−1

> 0

and when θ̂ → θ the expression tends to zero. As a result, inequality (4.18) holds for

every parameter configuration, and hence the equilibria with θ̂ < θ are constrained

suboptimal.

16Notice that it is enough to prove a weak inequality to ensure that at least some agents is strictly
better off after the government’s intervention. This follows from the presence of types different from
θ̂ and θ, for whom the inequality is strict by necessity.

92



In addition, notice that z2 ≤ x if and only if

x
[
pθ̂F (θ̂)z(θ̂)−1 − 1

]
≥ −s2(θ̂)

which is always satisfied because we proved s2(θ̂) ≥ 0.

As a result, φ ≤ x and τr > 0 as we conjectured.

Case 2: pθ̂r(θ) > 1.

Plugging (4.15) into (4.13) we get:

φ ≥
(
pθ̂z(θ)

−1

)−1[
ξ
(
pθ̂(1− α)δ1 + αδ2

)
− xpθ̂

(
r(θ̂)− r(θ)

)]
≡ z3 (4.19)

To get a Pareto improvement we can simply set φ ≥ max{z1, z3}.
Again, it is easy to verify that φ ≤ x and τr > 0.

Case 3: pθ̂r(θ) = 1.

In this final case, we can set φ ≥ z1 as the condition for type θ̂ does not

depend on φ. However, we still need to show that type θ̂ is weakly better off, which

is the case if and only if:

x
(
pθ̂r(θ̂)− 1

)
≥ −ξ

[
(1− α)pθ̂δ1 + αδ2

]
(4.20)

From an earlier argument, we now that the left hand side is strictly positive. Notice

that in Case 3 we have pθ̂ = r(θ)−1, hence the right hand side can be simplified

along the lines of Case 1 and shown to be strictly negative whenever θ̂ < θ.

Again, it is easy to verify that φ ≤ x and τr > 0.

It is important to notice that in setting up the intervention we implicitly

considered a case where x̄ > x, and the difference between the two is ‘sufficiently

large’. However, it could be that the borrowing need wipes out most (or even all)

of available savings. In such case, the Pareto improvement that we characterised

does not work. Nevertheless, we can always replace the savings tax with an income

tax of identical size, and the reasoning goes through unchanged. The proof of this

equivalence is straightforward and hence we omit it.

4.4 Information crises and government interventions

So far, we argued that competitive equilibria are constrained suboptimal when hid-

den information problems are severe. Namely, there exist Pareto improving govern-

ment intervention that (i) balance the government’s budget; and (ii) do not require
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more or less information than the one market participants have.

To conclude our analysis, we come back to the question of studying inter-

ventions in times of crises. Asymmetric information is key in most arguments used

by politicians and academics to justify emergency interventions. They roughly go

as follows: although crises may depend on solvency and not on liquidity issues (e.g.

Lehman was bust in September 2008; it did not suffer from a self fulfilling run),

they originate panic in financial markets. Suddenly, investors run on many other

institutions because they fear they would also go under. Why do they fear so? Be-

cause they do not have accurate information about their portfolio holdings. Because

subsequent runs are inefficient, namely they trigger defaults of solvent institutions

that run out of liquid assets, governments ought to restore confidence and intervene.

To capture this scenario - i.e. a purely informational crisis - one needs to

be careful that, playing with the information structure, he does not affect the real

resources in the economy. For instance, shifting the probability distribution over

the type space Θ in the sense of first order stochastic dominance does not work, as

we would fall back into an output crisis. In this section, we proceed as follows: (i)

first, we introduce a parameter λ ∈ [0, 1] that captures the measure of entrepreneurs

that cannot costlessly certify their type.17 In other words, we segment the market

into the fraction subject to hidden information, and the fraction fully transparent;

(ii) we solve for the competitive equilibria and study whether increasing the λ we

also increase the need for governments to intervene.

Observe that the previous analysis covered the case of λ = 1, whereas the

case of λ = 0 can be easily described. It would imply that, at the unique competitive

equilibrium: (i) all types invest (because of Assumption 4.1); (ii) r∗(θ) = p−1
θ ; (iii)

the wage equals w∗FI and the equilibrium is Pareto optimal by the First Welfare

Theorem.

It remains to consider the case of λ ∈ (0, 1). For the fraction of agents not

subject to hidden information, the equilibrium behaviour is simple to characterise:

all agents invest, and they face type-specific interest rates r∗(θ) = p−1
θ . As for the

others, and assuming that each type has the same probability of being subject to

hidden information, the equilibrium is exactly the same as in the previous section.

As a result, aggregate investment as a function λ reads I(λ) ≡ λF (θ̂)+(1−λ).

Evidently, the higher the degree of asymmetric information, the lower the investment

at equilibrium and hence the greater the need for government’s intervention.

17It is trivial to show that if a type is known to posses private information which he can certify,
in equilibrium there must be unraveling of this information. In other words, all types known to be
able to certify who they are optimally reveal their private information in equilibrium. The result
is reminiscent of Dye [1985].
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