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Abstract 

 

A Semi-analytical Approach Utilising Limit Analysis for 

Slope Stability Assessment and Optimal Design 

 

A thesis submitted for the degree of Doctor of Philosophy  

at the University of Warwick 

 

Weigao Wu 

 

An analytical upper bound method of limit analysis is adopted to derive 

generalized formulations for assessing the stability of slopes made of geomaterials 

obeying both the linear Mohr-Coulomb failure criterion and the non-linear Hoek-

Brown failure criterion. The thesis is aimed at seeking slope profiles of optimal 

stability and facilitating the optimal design of pile reinforcement. The effect of the 

presence of cracks, water pressure, seismic actions, non-homogeneous anisotropic 

ground and blast-induced damage is investigated. An extensive parametrical study 

was carried out. A large number of stability and design charts were provided for 

the benefit of practitioners. A software package to evaluate the safety of slope was 

created to overcome the limitations of chart-based design using analytical methods. 

 

The main findings of this study can be summarized as follows. Firstly, to avoid 

potential local failure (sliding of the soil/rock mass behind cracks), the most critical 

failure mechanism should be determined under the constraint of maximum stable 

crack depth. Secondly, the application of the tangential technique to tackle the non-
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linear Hoek-Brown failure criterion is an acceptable and convenient tool compared 

with the equivalent ܿ െ ߶ method and the variational approach. The minimization 

of the least upper bound solution corresponding to the Hoek-Brown failure 

criterion has to be implemented under certain stress constraints to avoid any 

unrealistic selection of tangent lines. Thirdly, contrary to the previous literature 

assuming entirely concave shapes, the optimal profiles exhibit both a concave and 

a convex part. In comparison with the traditional planar profiles, the percentage of 

increase in the stability factor can reach (up to) 49%. In addition, for engineered 

slope excavation, given the same stability factor, the average slope inclination of an 

optimal slope is always higher than that of a planar slope. The amount of ground 

excavated for the optimal profile can be as little as 50% of that for a planar profile. 

Lastly, above-pile failure mechanisms must be taken into account when 

determining the optimal pile position otherwise the installation of piles may be 

completely ineffective. 
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Notation 

 

௖௖ܣ ௖௖ܣ ൌ ௖௢௡௖௔௩௘ܣ ൅  ௖௢௡௩௘௫ܣ

 ௖௢௡௖௔௩௘ area of concave part of an optimal slopeܣ

 ௖௢௡௩௘௫ area of convex part of an optimal slopeܣ

 ௘௫ excavated areaܣ

 ௜, i=1,2,3…7 areas of several fictitious areas to divide a slopeܣ

ܾ௦ width of a slice 

ܿ generic cohesion 

ܿ௘ equivalent cohesion 

௙ܿ  cohesion at failure 

ܿ௛ horizontal principal cohesion 

ܿ௜ 

cohesion at the point where its major principal stress is inclined at 

angle

݅ to the vertical direction 

ܿ௚ cohesion of the geomaterial away from failure 

ܿ௧ intercept of a tangent to a non-linear failure envelope 

ܿ௩ vertical principal cohesion 

 disturbance coefficient ܦ

 centre-to-centre piles spacing 1ܦ

 opening between piles 2ܦ

 ௗ disturbance coefficient along excavation faceܦ

 ௜ disturbance coefficient of undamaged rockܦ

 ௅ energy dissipation between layersܦ

 ௌ energy dissipation along the slip surfaceܦ

݀௖ energy dissipation along the crack during crack formation 

,ܧ  ோ inter-slice normal forceܧ ,௅ܧ

 factor of safety ܨ

 ௗ௢௨௕௟௘ two-parameter factor of safetyܨ

 ௣ resultant force brought from the pilesܨ

 ௦௜௡௚௟௘ single-parameter factor of safetyܨ

 ௪ resultant force of water pressureܨ

ௗ݂ ௗ݂ ൌ ௗ݂ି௖ ൅ ௗ݂ି௟௢௚  

ௗ݂ି௖ 
function used to calculate the rate of energy dissipation along the 

crack 
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ௗ݂ି௟௢௚, ௗ݂ି௟௢௚
ᇱᇱ   

function used to calculate the rate of energy dissipation due to 

cohesion 

݂݀െ݈݃݋
′  

function used to calculate the rate of energy dissipation for 

materials obeying a non-linear failure criterion 

ு݂, ௛݂ function used to calculate the stability factor 

௜݂, i=1,2,3…7 functions used to calculate the rates of external work పܹሶ  

௜݂௛, i=1,2,3…7 functions used to calculate the rates of external work పܹ௛ሶ  

௜݂௩, i=1,2,3…7 ௜݂௩ ൌ ሺ1 ൅ ݇௩ሻ ௜݂ 

௣݂, ௣݂,ଵ, ௣݂,ଶ function used to calculate the rate of resistance work ௣ܹሶ  

 geological strength index ܫܵܩ

݃  trend line function in Figure 5.24 

 generic slope height ܪ

 ௖௥௜௧௜௖௔௟ critical height of a slopeܪ

ܿ ௘௤ critical height of a slope using the equivalentܪ െ ߶ method 

 ௜ current excavation depthܪ

 ௧௔௡ critical height of a slope using the tangential techniqueܪ

 ௧௢௧௔௟ total designed excavation heightܪ

 ௏஺ critical height of a slope using the variational approachܪ

bh   buried depth of piles 

crh  height of tension crack zone 

fh  depth of the failure surface measured from slope surface 

sh  height of a slice 

 ௐܭ
ௐܭ ൌ  coefficient indicating the amount of water in the ,ߜ/௪ߜ

crack 

 ݈݌ܭ
coefficient indicating the magnitude of the stabilizing force 

brought from piles 

݇௖ yield acceleration coefficient 

݇௛ horizontal seismic acceleration coefficient 

݇௜ relative position of a nodal point ݅ on slope face 

݇௩ vertical seismic acceleration coefficient 

 horizontal distance from slope toe to crest ܮ

 ଴ܮ
horizontal distance from slope crest to the point of failure line 

daylighting on upper slope 

 ௖ܮ
horizontal distance from slope crest to opening of the crack 

daylighting on upper slope 
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݈௦ length of slice base 

 ௙ anti-sliding momentܯ

 ௣ resultant moment brought from pilesܯ

݉ 
a parameter used in the Hoek-Brown failure criterion related to 

rock type 

݉ி 
coefficient for the type of lateral pressure distribution along the 

pile 

݉௜ value of ݉ for intact rock 

ܰ stability factor 

௖ܰ௢௡௖௔௩௘ stability factor of the optimal concave slope 

ிܰா௅஻ 
stability factor obtained by using finite element lower bound 

method 

ிܰா௎஻ 
stability factor obtained by using finite element upper bound 

method 

ܰுି஻ 
stability factor for slopes made of rocks obeying the Hoek-Brown 

failure criterion 

௟ܰ௢௚ି௦௣௜௥௔௟ stability factor of the optimal logarithmic spiral slope 

ܰெି஼ 
stability factor for slopes made of geomaterials obeying the Mohr-

Coulomb failure criterion 

ܰெି஼,ఉ stability factor of an intact slope of inclination ߚ 

ܰெି஼,ଽ଴ stability factor of an intact vertical slope 

ܰ௠௜௡ 
the minimum value of the stability factor with the change of crack 

depth and location 

௢ܰ௣௧௜௠௔௟ stability factor of the optimal slope 

௣ܰ௟௔௡௔௥ stability factor of the planar slope 

௎ܰ஻ stability factor obtained by using analytical upper bound method 

௏ܰ஺ stability factor obtained by using the combined method 

ܰ∗ stability number 

݊ 
a parameter used in the Hoek-Brown failure criterion related to the 

degree of imperfection of the rock mass 

݊଴, ݊ଵ, ݊ଶ, ݊௜ ratios of relative cohesions at various depth 

௕ܲ base normal force of a slice 

 ௪ି௟௢௚݌ ,௪ି௖݌
functions used to calculate the rates of external work done by 

water pressure 

ܳ total virtual work of the sliding mass 
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,ଶݍ,ଵݍ ଷ functions used to calculate the rate of external work ௗܹሶݍ  

 ௨ pore water pressure coefficientݎ

 ݏ
a parameter used in the Hoek-Brown failure criterion related to the 

degree of fracturing 

௦ܶ base shear force of a slice 

ܶ∗ external loads 

 water pressure ݑ

 maximum horizontal displacement ݔݑ

ܹ weight of the sliding mass 

ሶܹ ௗି௖ rate of energy dissipation along the crack 

ሶܹ ௗି௟௢௚, ሶܹ
ௗି௟௢௚
ᇱᇱ  rate of energy dissipation due to cohesion 

ሶܹ
ௗି௟௢௚
ᇱ  

rate of energy dissipation for geomaterials obeying a non-linear 

failure criterion 

ሶܹ ௘௫௧௘௥௡௔௟  rate of external work 

ሶܹ ௜௡௧௘௥௡௔௟  rate of internal energy dissipation 

ሶܹ ௜, i=1,2,3…7 
rates of external work done by the gravity of several fictitious 

areas 

ሶܹ ௜௛, i=1,2,3…7 
rates of external work done by the horizontal seismic actions on 

several fictitious areas 

௣ܹሶ , ௣ܹ,ଵሶ , ௣ܹ,ଶሶ 	 rate of resistance work done by pile reinforcement 

௦ܹሶ , ௦ܹ,௛ሶ , ௦ܹ,௩ሶ  rate of external work done by seismic actions 

௪ܹሶ  rate of external work done by pore water pressure 

௪ܹି௖ሶ  rate of external work done by water in a crack 

ఊܹሶ  rate of external work done by gravity 

ܺ, ܺ௅, ܺோ inter-slice shear force 

 crack position measured from slope crest ݔ

 ଶݔ	,ଵݔ
variables identifying the zone in a slope whose stability is affected 

by the presence of cracks  

 pile location ݌ݔ

 upper slope inclination ߙ

 slope inclination ߚ

 ௖ critical slope inclinationߚ

 ᇱ angle used to identify a below failure mechanismߚ

 unit weight of the ground ߛ

 ௪ unit weight of waterߛ
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 crack depth ߜ

 ௖ most adverse crack depthߜ

 ௠௔௫ maximum allowable crack depthߜ

 ௪ normalized length of the water-filled part of a crackߜ

ߟ ߟ ൌ  normalized crack depth ,ܪ/ߜ

 ௠௔௫ maximum normalized crack depthߟ

 ௛ angles to define a logarithmic spiral failure mechanismߠ ,଴ߠ ,௖ߠ

ሷߠ  angular acceleration 

ߢ ߢ ൌ ܿ௛ ܿ௩⁄ , anisotropy factor 

 ߦ
angle between the velocity discontinuity vector and the failure 

surface 

,ଵߪ  ଷ major and minor principle stressesߪ

ଷ to determine equivalentߪ ଷ௠௔௫ Maximum bound ofߪ ܿ௘ and ߶௘ 

 ௖ compressive strength of the groundߪ

 ௖௜ uniaxial compression strengthߪ

 ௖௠ rock mass strengthߪ

 ௡ normal stressߪ

 ௧ tensile strengthߪ

߬ shear stress 

߬௚ shear strength of the ground 

߶ generic friction angle 

߶௘ equivalent friction angle 

߶௙ friction angle at failure 

߶௠ mobilized friction angle 

߶௚ internal friction angle of the geomaterial away from failure 

߶௧ inclination of a tangent to a non-linear failure envelope 

߯ crack inclination 

߰ dilatancy angle 

߱ angular velocity of the sliding mass 
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Chapter 1 Introduction 

1.1 Background and motivation 

 

Landsides are a major threat to human life and property. They can be triggered by 

weathering, earthquakes, rainfall and improper man-made excavations, etc. Major 

landslides occurred around the globe in the past century are listed in Table 1-1. 

According to British Geological Survey (GeoSure 2011), almost 1/3 of the UK 

territory is prone to landslide accidents, as shown in Figure 1-1. Thus, slope 

stability assessment and reinforcement design are among the most important 

research topics in the world of geotechnical engineering. Early investigation of the 

stability of  slopes dates back to Terzaghi (1943). However, despite years of study, 

people’s knowledge of the mechanism behind slope failure is still limited, and 

current stability assessment methods are unsatisfactory in certain cases.  

 

Table 1-1. Major landslides occurred worldwide in the past century (USGS 2015). 

Year 
Country 

(State/Province) 
Name & type(s)

Triggering 
process 

Impact 

1911
Tadzhik Rep. 

(Formerly USSR) 
Usoy rock slide

Usoy earthquake 
M = 7.4 

Usoy village destroyed; 54 killed; 
Murgab River dammed, impounding 
65-km long still existing Lake Sarez 

1919 Indonesia (Java) 
Kalut lahars 
(Volcanic 
mudflows) 

Eruption of Kalut 
volcano 

5,110 killed; 104 villages destroyed or 
damaged 

1920 China (Ningxia) 
Haiyuan 

landslides 
Haiyuan 

earthquake 
100,000 killed; many villages 

destroyed 

1921
Kazakh Rep. 

(formerly USSR) 
Alma-Ata debris 

flow 
Snowmelt 500 killed 

1933 China (Sichuan) Deixi landslides
Deixi earthquake 

M = 7.5 
6,800 killed by landslides; 2,500 

drowned when landslide dam failed 

1939 Japan (Hyogo) 
Mount Rokko 
slides and mud 

flows 
Heavy rain 

505 dead/missing; 130,000 homes 
destroyed or badly damaged by mass 

movements and/or floods 

1949
Tadzhik Rep. 

(formerly USSR) 
Khait rock slide

Khait earthquake 
M = 7.5 

12,000 - 20,000 killed or missing; 33 
villages destroyed 

1953
Japan 

(Wakayama) 

Arita River 
slides and 

debris/mud 
flows 

Heavy rain 
460 dead/missing; 4,772 homes 

destroyed by mass movements/floods 

1953 Japan (Kyoto) 

Minamiy-
amashiro slides 
& debris/mud 

flows 

Heavy rain 
336 dead/missing; 5,122 homes 

destroyed or badly damaged by mass 
movements/floods 
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1958 Japan (Shizuoka) 
Kanogawa slides 
and mud/debris 

flows 
Heavy rain 

1,094 dead/missing; 19,754 homes 
destroyed or badly damaged by mass 

movements/floods 

1962 Peru (Ancash) 
Nevados 

Huascaran debris 
avalanche 

Not known 
4,000-5,000 killed; much of village of 

Ranrahirca destroyed 

1963
Italy (Friuli-

venezia-Griulia) 
Vaiont Reservoir 

Rockslide 
Not known 

2,000 killed; city of Longarone badly 
damaged; total damages: US$200 

million (1963 $) 

1964
United States 

(Alaska) 
1964 Alaska 

landslides 

Prince William 
Sound 

Earthquake M = 
9.4 

Estimated US$280 million (1964 $) 
damages 

1965 China (Yunnan) Rock slide Not known Four villages destroyed; 444 dead 

1966
Brazil (Rio de 

Janeiro) 

Rio de Janeiro 
slides, 

avalanches, 
debris/mud 

flows 

Heavy rain 1,000 dead from landslides and floods 

1967
Brazil (Serra das 

Araras) 

Serra das Araras 
slides, 

avalanches, 
debris/mud 

flows 

Heavy rain 1,700 dead from landslides and floods 

1970 Peru (Ancash) 
Nevados 

Huascaran debris 
avalanche 

Earthquake M = 
7.7 

18,000 dead; town of Yungay 
destroyed; Ranrahirca partially 

destroyed 

1974
Peru 

(Huancavelica) 

Mayunmarca 
rock slide-debris 

avalanche 
Not known 

Mayunmarca village destroyed, 450 
killed; failure of 150-m-high landslide 

dam caused major downstream 
flooding 

1980
United States 
(Washington) 

Mount St. 
Helens rock 
slide-debris 
avalanche 

Eruption of 
Mount St. Helens

Only 5-10 killed, but major destruction 
of homes, highways, etc.; major debris 
flow; deaths low because of evacuation 

1983
United States 

(Utah) 
Thistle debris 

slide 
Snowmelt & 
heavy rain 

Major railroad and highways 
destroyed; Spanish Fork flooding town 

of Thistle dammed; no deaths 

1983 China (Gansu) 
Saleshan 
landslide 

Not known 
237 dead; four villages buried; two 

reservoirs filled 

1985
Colombia 
(Tolima) 

Nevado del Ruiz 
debris flows 

Eruption of 
Nevado del Ruiz

Four towns and villages destroyed; 
flow in valley of Lagunillas River 
killed more than 20,000 in city of 

Armero. 

1986
Papua, New 

Guinea (East New 
Britain) 

Bairaman Rock 
slide-debris 
avalanche 

Bairaman 
earthquake M = 

7.1 

Village of Bairaman destroyed by 
debris flow from breached landslide 

dam; evacuation prevented casualties; 
huge effect on local landscape 

1987 Ecuador (Napo) 
Reventador 
landslides 

Reventador 
earthquakes M = 

6.1 and 6.9 

1,000 killed; many kms of trans-
Ecuadorian oil pipeline and highway 
destroyed; total losses: US$ 1 billion 

(1987 $) 

1994 Colombia (Cauca) Paez landslides
Paez earthquake, 

M = 6.4 

Several villages partially destroyed by 
landslides; 271 dead; 1,700 missing; 

158 injured; 12,000 displaced. 

1998

Honduras, 
Guatemala, 

Nicaragua, El 
Salvador 

Hurricane Mitch
flooding 

Landslides 
debris-flows

Hurricane Mitch

Approximately 10,000 people killed in 
the flooding and landslides, which 

occurred throughout the region. Casitas 
volcano in Nicaragua experienced large 

debris flows. Impossible to 
differentiate deaths from landslides 

from deaths due to flooding. 

1999
Venezuela 
(Vargas) 

Vargas tragedy Heavy rain 
Caused by a heavy storm that deposited 

30000 people killed. 
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2004
Indonesia (South 

Sulawesi) 

 
Mt. 

Bawakaraeng 
landslide 

Collapse of 
caldera wall 

32 casualties. 

2005
United States 
(California) 

La Conchita 
Landslide 

Remobilization of 
a previous 

landslide deposit

13 houses were destroyed and 23 
others severely damaged, 10 confirmed 

fatalities. 

2006
Philippines 

(Southern Leyte) 
Southern Leyte 

mudslide 
Heavy rain 

The landslide overwhelmed the village 
of Guinsaugon resulting in the loss 
of over 1100 people, including 250 
schoolchildren who were attending 
morning classes at the Guinsaugon 

School. 

2007
Bangladesh 
(Chittagong) 

Chittagong 
mudslides 

Illegal hillside 
cutting and 

monsoon rains

Landslides in two days killed at least 
123 people in the port city. 

2008 Egypt (Cairo) Cairo landslide Not known 
Rockfall from cliffs, individual 

boulders up to 70 tonnes, 119 people 
died in the rockslide. 

2009 China (Taiwan) 
Shiaolin 
landslide 

Typhoon 439-600 casualties. 

2010
Uganda (Bududa 

District) 
2010 Uganda 

Landslide 
Heavy rain 

The slides buried three villages, 
leaving 83 dead and more than 300 

missing. 

2013
India 

(Uttarakhand) 

2013 
Uttarakhand 

floods 
Floods 

 
More than 5,700 people were 

"presumed dead". 

2014
Afghanistan 
(Badakhshan 

Province) 

Badakhshan 
mudslides 

A pair of 
mudslides 

The number of deaths varying from 
350 to 2,700. Around 300 houses were 
buried and over 14,000 were affected. 

2015
Colombia 
(Antioquia 

Department) 

2015 Colombian 
landslide 

Heavy rain 
At least 78 people were killed by the 

landslide. An addition 37 people were 
injured. 

 

 

Figure 1-1. Landslide potential in the United Kingdom (GeoSure 2011). 
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Although numerical simulations such as the displacement-based finite element 

method with strength reduction technique (Zienkiewicz et al. 1975), finite element 

limit analysis (Sloan 2013) and distinct element method (Cundall and Strack 1979) 

are widely applied in evaluating slope stability, they continue to struggle with 

issues such as mesh dependency, computational efficiency, numerical convergence. 

Analytical limit analysis was established by Drucker et al. (1950, 1952) and 

has been employed in various fields in geotechnical engineering extensively since 

Chen (1975). Compared with the widely-acknowledged limit equilibrium methods, 

limit analysis is a more rigorous approach which is ensured by the bound theorems.  

In this thesis, an analytical upper bound method of limit analysis is adopted to 

derive generalized formulations for assessing the stability of slopes made of 

geomaterials obeying both the linear Mohr-Coulomb failure criterion and the non-

linear Hoek-Brown failure criterion. When the factor of safety of a slope is 

considered to be insufficient, reinforcement measures will take place. The thesis 

seeks slope profiles of optimal stability when the slope crest and toe are fixed 

points in space. In addition, the optimal position of pile reinforcement is 

reappraised with special emphasis placed on both pass-through-pile and above-pile 

failure mechanisms, which are critical in the optimal pile design.   

The effect of the presence of cracks, water pressure, seismic actions, non-

homogeneous anisotropic ground and blast-induced damage is investigated. An 

extensive parametrical study was carried out, and a large number of stability and 

design charts were provided. Moreover, a software package to evaluate slope 

stability was created to overcome the limitation of chart-based design using 

traditional analytical methods and to become a powerful competitor against 

existing commercial software based on limit equilibrium and finite element method 

such as Slide (Rocscience 2006), Phase2 (Rocscience 2015) and OptumG2 

(OptumCE 2013) 
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1.2 Thesis outline 

 

To begin with, in Chapter 2, the methodologies available for slope stability 

assessment are reviewed. The pros and cons of different methods are summarized 

and compared. The reason why the analytical kinematic approach of limit analysis 

is adopted as the main research tool is explained. In addition, the current findings 

on the slope profiles of optimal stability and the optimal position of pile 

reinforcement are reviewed. Moreover, the challenges encountered in the slope 

stability assessment and the optimal design are evaluated. 

Chapter 3 lays out the analytical formulation of the stability assessment of 

slopes made of geomaterials obeying the Mohr-Coulomb failure criterion. This 

chapter provides a unitary theoretical framework upon which the following 

chapters are built. Upper bound solutions are derived for slopes in the presence of 

both vertical and inclined cracks, various hydraulic conditions and seismic actions. 

With regard to hydraulic conditions, two scenarios are considered, i.e., water only 

presents in cracks and seepage induced pore water pressure distribution. The 

pseudo-static approach is adopted to account for seismic actions. Moreover, the 

effect of ground strength anisotropy and spatial non-homogeneity in the vertical 

direction is considered. Stability charts corresponding to different types of loadings 

and ground conditions are provided. 

Chapter 4 evaluates the stability of rock slopes assuming the Hoek-Brown 

failure criterion including for the first time the presence of pre-existing cracks and 

blast-induced damage on rocks. Three different techniques are employed and 

compared: the tangential line technique, the equivalent cohesion-friction angle 

method and the variational approach.  



6 
 

Chapter 5 aims to seek the optimal profile of a slope whose crest and toe 

points are fixed. The optimal profile is here defined as the shape corresponding to 

maximum stability, i.e., the stability factor of the optimal shape is the highest 

among any shape satisfying a given set of geometrical constraints. With the 

discretization of slope profile, the stability factors of slopes of any arbitrary shapes 

are derived. Two different optimization algorithms, i.e., pattern search and genetic 

algorithm are employed to locate the optimal profile. The results obtained from the 

proposed kinematic formulation are compared with previous analytical solutions 

and validated with displacement-based finite element method and finite element 

limit analyses. In addition, since the new upper bound formulation is capable of 

computing the stability factors of slopes of any arbitrary shape, the stability of a 

slope whose shape is varying during the excavation process can be assessed. 

Moreover, the influence of the presence of pre-existing cracks, non-homogeneity 

and anisotropy of the ground strength on the optimal profiles is studied. Finally, the 

optimal profiles corresponding to slopes made of rocks obeying the Hoek-Brown 

failure criterion are investigated. The effect of blast-induced damage on the 

stability of the optimal slope is studied. 

Chapter 6 discusses the optimal design of pile reinforcement, which can be 

divided into three categories: the most effective pile location, the location of the 

pile ensuring maximum stability factor and the location with the minimum 

accumulative displacement during an earthquake. Above-pile failure mechanism is 

taken into account for the first time when deriving the analytical solution based 

upon the upper bound limit analysis. Design charts illustrating all three cases are 

provided. Also the effect of the presence of cracks, water pressure and seismic 

actions is evaluated.  

Previous research findings employing limit analysis are chart-based. But no 

stability chart can cover a wide range of ground strength parameters, slope 

geometries and loading conditions, therefore practitioners at times find it difficult 
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to use charts for a specific slope project. In Chapter 7, the development of a 

software package for slope stability assessment based on the analytical upper 

bound method is introduced. Demonstrations of the software features and 

validations with other existing software are provided.  

Chapter 8 summarizes the findings of previous chapters and provides 

recommendations for future work. 
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Chapter 2 Literature Review 

 

Slope stability analysis is performed to assess the safety of natural slopes and 

ensure the sound design of man-made slopes (e.g. embankment, open-pit mining, 

excavation etc.). Slope stability assessment methods may be divided into two major 

groups: analytical/semi-analytical solutions (e.g., single wedge analysis, limit 

equilibrium methods, limit analysis) and numerical simulations (e.g., displacement-

based finite element method with strength reduction technique, finite element limit 

analysis). Engineers must fully understand the limitations of each technique to 

make the right choice in practice.  

In this chapter, different slope stability analysis methodologies are reviewed. 

The pros and cons of each technique are summarized. The reason for employing 

the upper bound method of limit analysis as the main research tool in the thesis is 

illustrated.  

Then, the topic of the optimal profile of man-made slopes is introduced. In 

addition, current findings on the optimal position of pile reinforcement are 

reviewed. These are two important ways to stabilize slopes. Moreover, the 

challenges encountered in slope stability assessment are discussed. 

 

2.1 Brief review of methodologies in slope stability 

assessment 

2.1.1 Limit equilibrium method (LEM) 

 

The limit equilibrium method (LEM) is the earliest technique for assessing slope 

stability, and is still the most routinely employed approach in engineering practice. 

As shown in Figure 2-1, soil/rock mass ܥܤܣ above an assumed failure surface is 



9 
 

treated as a rigid body at limit equilibrium. The normal and shear stresses along the 

failure mechanism ܥܣ෢  follow the Mohr-Coulomb failure criterion. The factor of 

safety ܨ	of the slope is defined as the ratio of shear strength ߬௦	of the material over 

the actual shear stress ߬ along ܥܣ෢ :  

 

sF



   (2-1) 

 

/
s

F


 

Figure 2-1. A slope at limit equilibrium. 

 

The factor of safety is obtained by finding the least ܨ corresponding to all 

tentative failure mechanisms, mainly through trial and error. However, since ߬௙ in 

Eq. (2-1) is not constant along the failure surface, Eq. (2-1) cannot be applied 

directly to search for the minimum of ܨ. Hence, the slice method is proposed as a 

solution.  

Limit equilibrium methods (LEM), sometimes just known as slice methods, 

divide the slope into several vertical, horizontal or inclined slices (see Figure 2-2). 

Each slice and the entire sliding mass must meet both static and moment 

equilibrium equations. The block ܥܤܣ reaches a limit state on an assumed failure 
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mechanism. The factor of safety ܨ remains constant along the failure mechanism 

for each slice. 

In Figure 2-2, for illustrative purposes, the failure surface ܥܣ෢ 	is assumed to be 

circular, with ܱ  as its centre and ܴ  its radius. The block ܥܤܣ  is divided into ݊ 

vertical slices, each with a width of ܾ௦. The base for each slice is assumed to be a 

straight line, which has an inclination of ߙ to the horizontal. The height of the slice 

is sh . 

 

 

Figure 2-2. Schema of slice method. 

 

The forces acting on each slice are: 

1) Self-weight of each slice s sW b h  , with ߛ the unit weight of the material. 

2) Base normal force ௕ܲ ൌ  ௡ the normal stress along the base, ݈௦ߪ ௡݈௦, withߪ

the length of the base.  

3) Base shear force ܶ ൌ ݈߬௦, with ߬ the shear stress along the base. 

4) Inter-slice normal force ܧ௅ and ܧோ. 

5) Inter-slice shear force ܺ௅ and ܺோ. 

Different slice methods have different assumptions to eliminate unknowns. 

For instance, Fellenius (1936) neglected the inter-slice forces ܧ௅ ோܧ , , ܺ௅  and ܺோ 
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and obtained conservative estimation of ܨ . Later on, Bishop (1955) proposed a 

slice method that is capable of taking into account the inter-slice forces. The inter-

slice normal forces ܧ௅ and ܧோ  are assumed to act horizontally and the inter-slice 

shear force	ܺ௅ ൌ ܺோ ൌ 0.  

The failure surfaces in the Fellenius method and the Bishop method are 

assumed to be circular, which are not always valid. Janbu (1954, 1972) developed a 

more general slice method considering non-circular failure surfaces. The line of 

action points (thrust line) of inter-slice normal forces ܧ௅ and ܧோ are postulated. The 

height of action point is generally be 1/3 of slice height h௦. Moreover, Morgenstern 

and Price (1965) put forward a more generalized slice method that can satisfy all 

force and moment equilibrium equations. There is no assumption about the shape 

of the failure surface. The force diagrams for different slice methods are illustrated 

in Figure 2-3.  

 

 
(a) Fellenius method (Fellenius 1936) (b) Bishop method (Bishop 1955) 

 
(c) Janbu method (Janbu 1972) (d) Morgenstern & Price method 

(Morgenstern and Price 1965) 
Figure 2-3. Force diagrams for different slice methods. 
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Although the limit equilibrium method (LEM) neglects the plastic flow rule 

for the material and make arbitrary assumptions on the inter-slice forces and the 

shapes of slip surface in some cases, however LEM is still a very popular slope 

stability assessment method in practice. The issues of accuracy, difficulties and 

limitations in the calculations are carefully addressed and widely discussed in 

substantive review papers such as Wright et al. (1973), Fredlund and Krahn (1977), 

Ching and Fredlund (1983) and Krahn (2003). Thanks to work done by 

Leshchinsky and Huang (1992), Lam and Fredlund (1993), Espinoza et al. (1994), 

Zhu et al. (2003), Deng et al. (2014), etc., modern limit equilibrium methods are 

capable of tackling sophisticated geometry, irregular water conditions, various 

linear and non-linear shear strength models, etc. In addition, the results obtained 

from LEM are compared with numerical simulations such as the displacement-

based finite element method and finite element limit analysis (e.g., Ugai and 

Leshchinsky 1995, Duncan 1996, Yu et al. 1998, Hammah 2005, Cheng et al. 

2007a) to ensure credible slope stability assessment and design.  

 

2.1.2 Displacement-based finite element method (FEM) 

 

The displacement-based finite element method (FEM) is widely applied in 

geotechnical engineering since Clough and Duncan (1971) based on the concept of 

a discrete formulation. It is a powerful tool to assess slope stability, because finite 

element analyses can provide estimates of displacement patterns and mobilized 

stresses within the slopes, which has the following advantages over the limit 

equilibrium method: 

1) Even if the force and moment equilibrium equations are satisfied in certain 

“rigorous” slice methods, only the global equilibrium of the slices is imposed. The 
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finite element method ensures the imposition of local equilibrium at the level of 

each element within the slope. 

2) Limit equilibrium methods calculate the overall factor of safety of a given 

slope, but no information on the displacements of the slope. The finite element 

method is capable of obtaining both stress and displacement fields, which is very 

important for performance-based design. 

3) Limit equilibrium methods investigate slopes made of materials obeying 

the linear Mohr-Coulomb failure criterion. However, some geomaterials may be 

better described by non-linear criteria. Sophisticated constitutive models can be 

incorporated in finite element slope stability analyses. 

4) Finite element method is better to model various loading conditions and a 

complex geology such as layered slopes, the presence of a weak layer, soil-

structure interaction, rain infiltration, blast-induced vibration, etc. 

5) No assumptions need to be made in advance about the shape or location of 

the potential failure surface, inter-slice forces and their directions. The most critical 

failure mechanism obtained can be extremely general, and does not have to be 

limited to circular or logarithmic spiral curves as required by most limit 

equilibrium methods. 

Generally speaking, there are two approaches to evaluating slope stability 

using the displacement-based finite element method. One approach is to increase 

the gravity/external load (Li et al. 2009b) until failure happens, while the second 

approach is to reduce the shear strength of the material. The latter one, first 

proposed by Zienkiewicz et al. (1975), is also known as the strength reduction 

technique, and is by far more popular in the research community. 

To find the factor of safety of a given slope, it is important to define the limit 

state when the slope is about to fail. There are three typical indicators of slope 

instability: 
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(a) Non-convergence within a user-specified number of iterations in the finite 

element program. (Ugai 1989) 

(b) The onset of a sudden big jump of the maximum nodal displacement in 

certain area of the slope compared to that before failure. (Zienkiewicz et al. 1975) 

(c) A plastic zone developing from slope toe to the top. (Luan et al. 2003) 

The slope is regarded as being on the verge of failure when one or several 

indicators are satisfied. Among them, indicator (b) is the most accepted criterion. 

Zienkiewicz et al. (1975) divided both cohesion and internal friction angle of the 

material in a homogenous slope by F to bring the slope to a limit state. F is then 

determined as the factor of safety of the slope. Later, Matsui and San (1992) took 

up the work done by Zienkiewicz et al. (1975) and named the method as “strength 

reduction technique”. They found that the factors of safety obtained from the 

traditional limit equilibrium method and finite element method are very close to 

each other. 

Duncan (1996) summarized the experience of using FEM in various aspects, 

including the choice of stress-strain relationship of the material and the discrepancy 

in results compared with field measurements. Griffiths and Lane (1999) and 

Griffiths and Marquez (2007) conducted a comprehensive 2D and 3D elastoplastic 

FEM analysis, using the strength reduction technique. The cases of homogeneous 

slopes, slopes with weak layers, slopes sitting on weak foundation and dams under 

water drawdown are investigated. A large amount of results are compared with 

those obtained from limit equilibrium method. 

The main drawback of the application of FEM in slope stability analyses is 

that results can be different depending on which indicator of slope failure is 

selected. Without a universally accepted indicator, the interpretation of FEM 

results still causes a problem, and users should rely on their experience and 

intuition. On the other hand, the internal stress state within the slope after strength 

reduction is different from the initial condition. Moreover, the mesh density, 
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number of load steps, the numerical integration scheme, the tolerances used to 

check convergence of the global equilibrium iterations and the type of element 

employed in the model (Sloan 2013) may affect the obtained results. Thus, the 

results obtained from FEM should be deemed as a reference, together with some 

other techniques. 

   

2.1.3 Limit analysis (LA) 

 

Stress equilibrium equations, stress-strain relations and compatibility equations 

must be satisfied in order to work out a unique solution in finite element analyses. 

However, a descriptive stress-strain relation is not always accessible especially for 

geotechnical materials. The main advantage of the application of limit analysis is 

that the limit or ultimate collapse load can be obtained directly without a step-by-

step elastoplastic analysis. 

Limit analysis is based on the limit theorems formulated by Drucker et al. 

(1950, 1952), and assume that the geotechnical structures under investigation 

undergo small deformations that they are made of rigid-perfectly plastic materials 

and follow an associated flow rule (normality rule). Two key theorems are (the so-

called) upper bound and lower bound theorems: (Chen 1975, 1990) 

Theorem Ⅰ (lower bound, LB) - The loads, determined from a distribution of 

stress alone, that satisfies: (a) the equilibrium equations; (b) the stress boundary 

conditions; and (c) the yield criterion, are not greater than the actual collapse loads. 

Theorem Ⅱ (upper bound, UB) - The loads, determined by equating the external 

rate of work to the internal rate of dissipation in an assumed kinematically 

admissible velocity field, that satisfies: (a) the velocity boundary conditions; and (b) 

the strain and velocity compatibility conditions, are not less than the actual collapse 

load.  
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Thus, the actual collapse load can be bracketed when upper bound and lower 

bound values are known. Sometimes a lower and upper bound identical to each 

other are found so that a precise collapse load can be ascertained on this basis. 

However, most of the time it is not possible to construct statically admissible stress 

fields needed by the lower bound theorem. Thus, the kinematic approach of limit 

analysis (upper bound method) is more popular, and widely employed.  

The extensive application of limit analysis in soil mechanics began with Chen 

(1969), and has been extended to various aspects of geotechnical engineering such 

as the bearing capacity of footings (Michalowski 1997a, Soubra 1999), 

determination of the coefficients of active/passive earth pressures (Soubra 2000, 

Yang 2007) and face stability of tunnels (Leca and Dormieux 1990, Lee and Nam 

2001 and Huang and Yang 2011). Upper bound solutions concerning the stability 

of slopes were proposed to assess the influence of pore water pressure 

(Michalowski 1995, Viratjandr and Michalowski 2006 and Yang and Zou 2006), 

seismic actions (You and Michalowski 1999, Michalowski 2002), geosynthetic 

reinforcement (Michalowski 1997b, Michalowski 1998 and Michalowski 2008) 

and the presence of cracks (Utili 2013, Michalowski 2013). 

As described in Chen (1975, 1990) and Donald and Chen (1997), within the 

framework of the upper bound limit analysis, slopes are assumed to be made of 

geomaterials that obey a convex yield condition such as the Mohr-Coulomb failure 

criterion, with the plastic deformations being governed by the associative flow rule. 

The application of the kinematic approach is based on equating the rate of work 

done by external loads (e.g., water pressure, seismic forces and surface loads) and 

body forces to the internal energy dissipation rate for an assumed kinematically 

admissible failure mechanism at limit state. This is illustrated in the following 

equation: 
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where the first term on the left-hand side of Eq. (2-2) is the rate of work done by 

the effective stress ߪ௜௝
,  over the virtual strain rates ߝሶ௜௝

∗ , dissipated within Ω , the 

volume of the sliding soil/rock mass. The second left-hand side term is the internal 

energy dissipation along the slip surface Γ. The two terms on the right-hand side 

refer to the rates of work done by the weight of soil ܹ  and external loads 

ܶ∗	respectively. ܸ∗ is the velocity at the points where ܹ and ܶ∗ apply. A so-called 

stability factor 
ఊு

௖
	(according to the terminology of Taylor 1948) can be derived 

from Eq. (2-2) and will be treated as a measurement of slope stability in the 

following chapters. 

 

2.1.4 Finite element limit analysis (FELA) 

 

It is extremely difficult to construct statically admissible stress fields according to 

the lower bound theorem. Moreover, kinematically admissible failure mechanisms 

for upper bound solutions have to be defined beforehand, which is not available in 

case of slopes with complex geometry and loading conditions. The theory of finite 

element limit analysis (FELA) provides a solution, and it combines the bounding 

theorems with the power of the finite element discretization technique and has 

become a powerful approach to assess slope stability.  

Lysmer (1970) is one of the early pioneers in the development of finite 

element lower bound analysis. The theory has been significantly improved by 

Sloan (1988), Yu et al. (1998), Lyamin and Sloan (2002a) and Makrodimopoulos 

and Martin (2006) to tackle non-linear yield surfaces and incorporate more 

efficient optimization processes (e.g., non-linear and order cone programming). On 

the other hand, based on the success of implementing the finite element lower 
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bound limit analysis, Sloan (1989) proposed an upper bound counterpart by using 

linear programming. Lyamin and Sloan (2002b) continued to develop the first 

rigorous upper bound method that comprises both continuum and discontinuity 

deformation, using non-linear programming. Krabbenhoft et al. (2005) went on to 

modify the theory by adopting a new stress-based method using an assembly of 

continuum elements to account for velocity discontinuities, which is capable of 

accommodating non-linear yield surfaces. Moreover, second order cone 

programming is employed by Makrodimopoulos and Martin (2007) to increase the 

efficiency of the optimization process in FELA.  

Finite element limit analysis is capable of solving the factor of safety of a 

slope by applying a strength reduction technique without any information about the 

complicated stress-strain relationship of the material. The error of the calculation 

can be estimated by the bound theorems. With the rise of computational power, the 

heterogeneity and anisotropy of the geomaterial, complex boundary and loading 

conditions, the effect of water pressure and seismic actions, etc. can be modelled. 

In addition, FELA is suitable to simulate jointed material and soil/structure 

interfaces for its intrinsic advantage of incorporating discontinuities in the stress 

and velocity fields. However, FELA still has the same drawbacks (mesh 

dependency, element types, numerical convergence, etc.) as those in traditional 

FEM. 

 

2.1.5 Choice of the method 

 

The four methods (LEM, FEM, LA, FELA) introduced in the previous sections are 

widely adopted in slope stability assessment. As summarized in Sloan (2013), the 

properties of each technique are compared in Table 2-1. Since no single method 
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can outperform the others, the choice of method to be used has to be determined on 

a case by case basis.  

Considering the two analytical solutions of limit equilibrium and limit analysis, 

although practitioners are more familiar with the limit equilibrium method, its 

reliability has suffered a lot from some arbitrary assumptions of the inter-slice 

forces and failure surfaces in certain limit equilibrium methods (Fredlund and 

Krahn 1977, Yu et al. 1998). In addition, LEM becomes less efficient or even 

struggles to converge when sophisticated geometry and loading conditions are 

encountered (Fredlund 1984, Krahn 2003). Analytical limit analysis is a more 

rigorous approach, which is ensured by the lower and upper bound theorems (Chen 

1975). More importantly, the theory of limit analysis is consistently enhanced by 

the recent development of solutions (e.g., Utili and Nova 2007, Utili 2013) to 

tackle new challenges in slope stability assessment and design. 

In this thesis, slope profiles of optimal stability are systematically explored 

through global optimization techniques. Hundreds of thousands of slope stability 

analyses have to be executed, which makes the numerical methods less favourable. 

In addition, extensive parametrical assessment and comprehensive stability charts 

production require an extremely efficient method. The kinematic approach of limit 

analysis is a suitable candidate for its theoretical rigor, simplicity and the ability to 

cope with some issues, such as the presence of cracks, water pressure and seismic 

actions. 

However, the limitations of the upper bound approach such as the 

overestimation of slope stability and the assumption of associated flow rule should 

also be borne in mind (Tschuchnigg et al. 2015). Thus, in the thesis, the 

displacement-based finite element method with strength reduction technique and 

finite element limit analysis are adopted as a reference to validate the results 

obtained by the analytical upper bound solutions. 
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Table 2-1. Comparisons among different slope stability assessment methods (Sloan 2013). 

Property LEM FEM UB LA LB LA 
Assumed failure 

mechanism? 
Yes No Yes - 

Equilibrium satisfied? 
Yes 
In 

slices

Yes 
At nodes 

- Yes 

Flow rule satisfied? No 
Yes 

At integration 
points 

Yes - 

Complex loading and 
boundary conditions 

possible? 
No Yes Yes Yes 

Complex material models 
possible? 

No Yes No No 

Coupled analysis possible? No Yes No No 

Error estimate? No No 
Yes 

With lower 
bound 

Yes 
With upper 

bound 
Note: 
UB LA represents upper bound limit analysis 
LB LA represents lower bound limit analysis 
 

2.2 Optimal profile of a slope 

 

In conventional slope stability assessment, it is generally assumed that the slope is 

planar from crest to toe. However, natural slopes are invariably curved. Very few 

systematic studies have been carried out on the stability of non-planar slopes.  

 Jenike and Yen (1962) presented the results of slope stability analyses in axial 

symmetry using the slip-line theory formulated by Sokolovskiĭ (1960). They found 

that S-shaped critical profiles are able to describe the theoretical failure shape. 

However, as the radius of the slope increases, the profile of the stable slope in axial 

symmetry approaches the profile of the slope in plane strain, which has an entirely 

concave shape. 

Piteau and Jennings (1970) investigated the impact of curvature in plain-strain 

conditions on the stability of slopes in four diamond mines in South Africa. Slopes 

were all at incipient failure (i.e. factor of safety of 1). The average slope height was 
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100m. They found that that average slope angle for slopes with radii of curvature 

of 60m was 39.5° as compared to 27.3° for slopes with radii of curvature of 300m.  

Hoek and Bray (1981) summarized the influence of slope curvature on slope 

stability as follows. The stability of slopes can be measured by the steepest 

allowable slope inclinations under a given factor of safety. When the radius of 

curvature of a concave slope (see Figure 2-4) is less than the height of the slope, 

the critical slope inclination can be 10°  steeper than that of a planar slope 

recommended by a routine limit equilibrium stability analysis. In the case of a 

convex slope with a radius of curvature smaller than the slope height, the slope 

could be 10° flatter than the inclination of a planar slope. With the increase of the 

radius of curvature in excess of a value greater than the slope height, these 

corrections should be brought down for either concave or convex slopes. For radii 

of curvature beyond twice the slope height, the slope inclination is obtained 

according to a conventional slope stability analysis. The factor of safety is plotted 

against different values of d/L (see Figure 2-4) in Figure 2-5. 

In order to validate the findings in Hoek and Bray (1981) and quantify the 

impact of slope curvature on stability, a series of analyses using finite difference 

strength reduction technique were performed by Lorig and Varona (2001). A 500m 

high dry slope made of an isotropic homogenous material with 35° friction, 0.66 

MPa cohesion, and 2600 ݇݃/݉ଷ  density is modelled and two series of analysis 

were implemented. In the first series, the factor of safety was calculated for 

axisymmetric conditions with different radii of curvature. The results are shown in 

Table 2-2. In the second series, the critical slope angle β௖ was increased until a 

factor of safety of 1.3 had been achieved. The results of second series of analyses 

are illustrated in Table 2-3, which are consistent with the findings in Hoek and 

Bray (1981).  
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Figure 2-4. Circular slopes with different radii. (Hoek and Bray 1981) 

 

 

Figure 2-5. Factor of safety against the curvature of circular slope profile. Analysis is 

carried out using Janbu method (Hoek and Bray 1981). 

 

Table 2-2. Effect of radius of curvature on factor of safety ܨ	for 45° slope. 

β௖ ൌ 45° 
R=100 m R=250 m R=500 m R→∞
1.3=ܨ 1.55=ܨ 1.65=ܨ 1.75=ܨ

 



23 
 

Table 2-3. Effect of radius of curvature on slope angle for factor of safety ܨ ൌ 1.3. 

F ൌ 1.3 
R=100 m R=250 m R=500 m R→∞ 
β௖ ൌ 75° β௖ ൌ 65° β௖ ൌ 55° β௖ ൌ 45°

  

The following investigation concentrates on the effect of geometries on three-

dimensional slope stability using limit equilibrium method (Xing 1988) and 

displacement-based finite element method with strength reduction (Rassam and 

Williams 1999, Cała 2007, Nian et al. 2012, Zhang et al. 2013, Zhang et al. 2015). 

None of them attempted to find the best slope profile providing the highest stability. 

In addition, the analyses of previous authors are limited to some pre-determined 

classes of shape and restricted slope features.  

Although the stability of slopes of non-planar profile is evaluated in the 

aforementioned literature, the shape of the slope profile is imposed, and treated as 

an input data. The optimal profile of a slope under given geometry constraints has 

never been attempted before. Planar profiles are taken for granted and routinely 

adopted when constructing man-made slopes.  

Utili and Nova (2007) looked for the most stable profile in the class of slopes 

profiles with logarithmic spiral shape. To do so, they derived a new formulation in 

limit analysis to compute the external work made by a double logarithmic spiral 

shaped soil region sliding away based on the kinematic approach of limit analysis. 

The optimal log-spiral profiles are determined by maximizing the stability factor. 

In comparison with slopes with planar profile, the percentage of increase provided 

by the best spiral in terms of the stability factor can reach as high as 30.5% 

(depending on the ground properties). If the amount of soil mass to be excavated is 

fixed, the improvement is even larger. 

Theoretical and experimental findings (such as Stefano et al. 2000, Rieke-

Zapp and Nearing 2005) seem to indicate that slopes of concave profiles are more 

capable of resisting erosion. Therefore, based on the optimal profile found for a 
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weightless or frictionless slope, solved by Sokolovskiĭ (1960) and Sokolovskii 

(1965), Jeldes et al. (2013) and Jeldes et al. (2014) derived an approximate solution 

for slopes with ߶ ൐ 0  and 0<ߛ to determine the geometry of optimal concave 

slopes. This type of profiles belongs to a specific shape of concave slope which is 

determined by the slip-line method of characteristics. 

Although the above studies attempted to seek the best concave profile, none of 

them considered the arbitrariness of the potential optimal profile and its 

contribution to enhance slope stability. Hence it was decided to systematically 

investigate the most stable slope shape for various geometrical constraints and 

ground properties. 

 

2.3 Optimal position of pile reinforcement 

 

When the factor of safety of a slope is considered to be insufficient, reinforcement 

measures will take place, one of which is re-profiling the slope with the new found 

optimal profile and another is to install piles. Anti-sliding piles are widely 

implemented to stabilize slopes in practice. The investigation of the optimal 

position of piles is very important because it can maximize pile capacity and bring 

enormous economic benefit. 

The slope-pile system brings new challenges to the existing slope stability 

assessment procedures by considering the complexity of soil-pile interaction, 

which has enjoyed an extensive investigation over recent decades. Ito and Matsui 

(1975) appeared to be the first to develop a theoretical framework to analyze the 

distribution mode of lateral force around the piles. The impact of pile diameters, 

spacing between piles and material strength were studied. Soon afterwards, Ito et al. 

(1979, 1981, 1982) continued to improve the theory by considering the cases of 

single/multiple row of piles, different locations of piles, constrains of pile heads, 
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etc. Matsui et al. (1982) carried out small-scale experiments to model soil-pile 

interaction to verify the theory. The following studies can be categorized into four 

groups using different methods: limit equilibrium method (Poulos 1995, Lee et al. 

1995, Hassiotis et al. 1997, Zeng and Liang 2002), finite element/finite difference 

analyses (Chen and Poulos 1993, Cai and Ugai 2000, Jeong et al. 2003, Won et al. 

2005 , Fırat 2009, Wei and Cheng 2009, Kourkoulis et al. 2010, Kourkoulis et al. 

2011), limit analysis (Ausilio et al. 2001, Nian et al. 2008, Li et al. 2009c),  field 

and physical model tests (Tika et al. 1996, Mezazigh and Levacher 1998, Leung et 

al. 2000, Pan et al. 2002, Abdoun et al. 2003, Brandenberg et al. 2005, de Sousa 

Coutinho 2006, Smethurst and Powrie 2007, Frank and Pouget 2008, Guo and Qin 

2010, Hayward et al. 2000, Knappett and Madabhushi 2011). 

As summarized in Li et al. (2012), the obtained results in predicting the 

optimal position of pile reinforcement are rather different, or even contradict each 

other. Poulos (1995) pointed out that the row of piles should be placed in the 

vicinity of the center of the critical failure surface, to refrain from merely 

relocating the failure surface behind or in front of the piles. Hassiotis et al. (1997) 

concluded that the piles should be installed close to the top of the slope, to achieve 

the maximum safety factor, when the slope is steep in particular. Cai and Ugai 

(2000) proposed that piles should be located in the center of the slope to realize 

maximum safety. Ausilio et al. (2001) deduced that the optimal location of the 

piles within the slope is near the toe of the slope, where the stabilizing force 

required to increase the safety factor to the desired value takes a minimum value. 

The conclusion is ascribed to the assumed logarithmic-spiral failure mechanism in 

limit analysis having a radius that increases as the surface develops from the top to 

the toe of the slope. Nian et al. (2008) and Li et al. (2009c) observed similar results 

by extending the kinematic approach of Ausilio et al. (2001). Both Won et al. 

(2005) and Wei and Cheng (2009) used FLAC3D and drew the conclusion that the 

optimal pile position falls between the middle of slope and the middle of the 
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critical slip surface. Lee et al. (1995) found out that the most effective pile 

positions are at the toe and crest of the slope for homogeneous cohesive soil slopes, 

and between the middle and the crest of the slope for a two-layered soil slope. 

The results of all numerical analyses disclose that the optimal position of a 

row of piles is close to the middle of the slope. However, by using the combined 

limit equilibrium analysis and Ito-Matsui’s formula (Ito and Matsui 1975), the 

optimal position approaches the top of the slope. Moreover, according to the results 

obtained by analytical limit analysis method, the optimal position is near the toe of 

the slope. There are discrepancies in terms of how the resistance force provided by 

the anti-sliding piles is considered and what type of the failure mechanism is 

assumed to be in the formulations. The presence of piles is treated as an equivalent 

force and a moment in the analytical solutions such as  Hassiotis et al. (1997), 

Ausilio et al. (2001) and Li et al. (2012) but the influence of the soil-pile 

interaction is neglected. As pointed out by Wei and Cheng (2009), the critical 

failure surface is divided into two sections when the pile spacing is small, and these 

two sections will gradually get connect with the increase of pile spacing until a 

clear single critical failure surface is formed. However, in the all analytical 

solutions (limit equilibrium method and limit analysis), the failure surfaces are 

assumed a prior as a continuous circular or logarithmic spiral line.  

In this thesis, the optimal pile position is reappraised by using the analytical 

upper bound limit analysis. 

 

2.4 Challenges in slope stability assessment 

 

Besides the shear strength parameters, slope geometry and reinforcement measures, 

other factors that would affect the stability of a slope include the presence of cracks, 

seismic actions and the non-linearity of failure criteria of the ground materials. 
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These factors pose significant challenges to the traditional slope stability 

assessment assuming only continuous, static ground obeying the linear Mohr-

Coulomb failure criterion. The following sections discuss the influence of these 

factors. 

 

2.4.1 The presence of cracks 

 

Cracks are often found in both soil and rock slopes. The presence of cracks can 

substantially reduce the resistance to failure (Utili 2013, Michalowski 2013). 

Therefore, it is important to consider cracks in slope stability analysis. The limit 

equilibrium method, variational approach and limit analysis are three main 

analytical techniques adopted to investigate the effect of cracks on slope stability. 

The issue of the presence of cracks appeared as early as 1943 in one of the 

most classic publication in geotechnical engineering, by Terzaghi (1943). It is 

addressed by the limit equilibrium method. Spencer (1967, 1968, 1973) developed 

a new slice method, taking into account the effect of tension in the soil at the top of 

an embankment. An expression is proposed for determining the critical depth of 

tension cracks. Later on, in the book of Hoek and Bray (1981), the stability of 

cracked rock slopes is tackled. In addition, water present in tension cracks and on 

sliding surface is considered. Afterwards, Chowdhury and Zhang (1991) studied 

the effect of tension cracks on the maximum reinforcement force in embankments. 

Zhu et al. (2003) is one of the recent studies to include the presence of cracks in the 

generalised framework of limit equilibrium. 

Based on the variational approach, Baker (1981) evaluated the influence of 

tensile strength on the stability of slopes. The depth of tension cracks and their 

effect on slope stability is estimated. To answer the criticism of the variational 

approach raised by De Josselin De Jong (1981) and Castillo and Luceno (1982), 
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Baker (2003) consolidated the previous theory by imposing sufficient conditions 

for the existence of the minimum in the limit equilibrium analysis.  

Recently, Utili (2013) investigated the stability of slopes made of cohesive 

frictional material subjected to cracks based on the kinematic approach of limit 

analysis. In the study, detailed derivations of the upper bound solutions are 

provided, and the case of water appearing in the cracks is discussed. Meanwhile, 

Michalowski (2013) also evaluated both slopes with pre-existing cracks and the 

formation of cracks as part of the failure mechanism using limit analysis. In 

addition, the pore water pressure effect is considered by imposing ݎ௨  in 

Michalowski (2013). 

In this thesis, the stability analysis of slopes subjected to the presence of 

cracks is present in a unified and consistent framework based on the kinematic 

approach of limit analysis. 

 

2.4.2 Seismic loading 

 

As summarized in Gazetas (1987) and Jibson (2011), there are three general 

categories to assess the stability or performance of slopes during earthquakes: (1) 

pseudo-static analysis (2) dynamic stress- deformation analysis and (3) permanent-

displacement analysis.  

Terzaghi (1950) appeared to be the first to apply permanent static body forces 

onto the conventional static limit equilibrium to represent the seismic actions, as 

shown in Figure 2-6.  Although the so-called pseudo-static analysis makes some 

unrealistic assumptions such as the fact that the body force applied is permanent 

and constant in direction, it is still widely adopted for its simplicity, especially in 

deriving analytical solutions using limit equilibrium method (e.g., Seed and Idriss 

1969, Koppula 1984, San and Leshchinsky 1994, Zhou and Cheng 2014) and limit 
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analysis (e.g., Ausilio et al. 2000, Michalowski 2002, Siad 2003, Li et al. 2009c, 

Utili and Abd 2016).  

 

/
s

F


 

Figure 2-6. Force diagram of pseudo-static analysis. 

 

Since Clough and Chopra (1966), dynamic stress-deformation analysis using 

numerical tools such as finite element method is widely employed to model the 

dynamic response of slope during earthquakes. In most of the literature, including 

Seed et al. (1975), Zienkiewicz et al. (1980), Prévost et al. (1985), Yiagos and 

Prevost (1991), Cetin et al. (2004), Elia et al. (2010), Andrianopoulos et al. (2014), 

sophisticated constitutive models describing the  stress-strain relationship of the 

ground are required. Robust dynamic stress-deformation is guaranteed only if 

reliable material parameters are available.  

To bridge the gap between the simplicity of the pseudo-static analysis and the 

complexity of dynamic stress-deformation analysis, Newmark (1965) introduced a 

method to evaluate the permanent displacement of slopes subjected to seismic 

actions. This was then extended by Makdisi and Seed (1977) and Rathje and Bray 

(1999) to consider the internal deformation within the slope. 
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In this thesis, the pseudo-static method is employed to investigate the stability 

of slopes subject to seismic actions. Moreover, seismic displacement calculation 

procedures proposed by Newmark (1965) are adopted to evaluate the optimal pile 

position corresponds to that yielding the minimum cumulative displacement during 

an earthquake 

 

2.4.3 Non-linear strength envelope 

 

Experiments (e.g. Hoek and Brown 1980; Agar et al. 1987; Baker 2004; Descamps 

et al. 2012; Meng et al. 2015; Rathnaweera et al. 2015) show a large amount of 

evidence that the shear strength for both soil and rock can be better represented by 

using nonlinear failure envelopes. Therefore, it is important to assess the stability 

of slopes made of geomaterials obeying a nonlinear failure criterion. This issue has 

been investigated by limit equilibrium methods, limit analysis and finite element 

methods. 

Among all limit equilibrium slice methods, the normal and shear stress on the 

slip surface can be obtained more easily using the Fellenius method (Fellenius 

1936) since it ignores inter-slice forces. The adoption of non-linear failure criteria 

in Bishop (Bishop 1955) and Janbu (Janbu 1972) stability analysis is provided in 

Wyllie et al. (2004). Deng et al. (2014) proposed a generalized limit equilibrium 

method to incorporate both non-circular failure surfaces and non-linear failure 

criteria. For rocks obeying the Hoek-Brown failure criterion (Hoek et al. 2002), an 

equivalent set of cohesion ܿ and friction angle ߶ is derived to linearize the non-

linear failure envelope. Hoek et al. (2002) provided an equation to determine the 

equivalent ܿ െ ߶  values.  Li et al. (2008) went on to give new equations 

considering the impact of slope inclinations. 
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Baker and Frydman (1983), Zhang and Chen (1987) and Chen and Liu (1990) 

presented a variational approach to assess the stability of slopes made of material 

obeying a general non-linear failure criterion. Variational calculus is capable of 

solving the equation of the most critical failure mechanism, together with the stress 

distribution along it.  

In addition, the tangential technique is widely applied to incorporate a non-

linear failure envelope in limit analysis. There are numerous tangents to the non-

linear failure envelope (see Figure 2-7). For each of them, stability analysis 

corresponding to a linear Mohr-Coulomb failure envelope can be implemented by 

replacing ܿ with ܿ௧, ߶ with ߶௧. Strength parameters ܿ௧,௖ and ߶௧,௖, which correspond 

to the tangent yielding the most critical upper bound solution, will be selected as 

the parameters to linearize the non-linear failure criterion. Collins et al. (1988) and 

Drescher and Christopoulos (1988) were the first to employ the so-called tangential 

technique to evaluate the stability of slopes for non-linear failure criteria. Later on, 

Yang et al. (2004) and Yang and Zou (2006) adopted the same method to account 

for more complex conditions such as an inclined upper slope surface and the 

presence of pore water pressure for rocks obeying the generalized Hoek-Brown 

failure criterion.  

 

 

Figure 2-7. Tangential technique for a non-linear failure criterion. 
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The strength reduction technique in finite element and finite difference 

numerical modelling is a very powerful approach to evaluate the stability of slopes. 

However, it is based on the linear Mohr-Coulomb failure criterion. Fu and Liao 

(2010) derived the instantaneous shear strength of the Hoek-Brown materials at a 

micro-unit level, and described in detail the implementation of the non-linear shear 

strength reduction using finite element method. Shen and Karakus (2013) carried 

on to investigate the three-dimensional effect using FLAC 3D.  

Based on the theory of finite element limit analysis (Lyamin and Sloan 2002a, 

Lyamin and Sloan 2002b, Krabbenhoft et al. 2005, Merifield et al. 2006), Li et al. 

(2008) provided stability charts for slopes made of rock obeying the Hoek-Brown 

failure criterion. Comparisons are made with those obtained from limit equilibrium 

analysis. More complex cases such as the presence of seismic actions and the effect 

of non-uniform rock mass disturbance are discussed in the following papers (Li et 

al. 2009a, Li et al. 2011).  

This thesis evaluates the stability of rock slopes assuming the non-linear 

Hoek-Brown failure criterion. Three different techniques are employed and 

compared: the tangential line technique, the equivalent cohesion-friction angle 

method and the variational approach. 
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Chapter 3 Stability Assessment of Slopes Made of 

Geomaterials Obeying the Mohr-Coulomb Failure 

Criterion 

 

In this chapter, based on the existing formulations of Chen (1975), Utili (2013) and 

Michalowski (2013), generalized formulations for assessing the stability of slopes 

made of geomaterials obeying the linear Mohr-Coulomb failure criterion subjected 

to the presence of cracks, water pressure and seismic actions are illustrated, using 

the kinematic approach of limit analysis.  

The presence of cracks alters the geometry of the sliding mass. Upper bound 

formulations are derived for slopes subjected to both vertical and inclined cracks. 

As for the influence of water pressure, two scenarios, i.e., only water present in the 

cracks and saturated slopes are discussed. The pseudo-static approach is adopted to 

account for the seismic actions. In this approach, constant accelerations are 

assumed to act on the slope.  

In addition, the effect of ground strength anisotropy and spatial non-

homogeneity in the vertical direction is considered. Stability charts corresponding 

to different types of loadings and ground conditions are provided. 

 

3.1 Presence of cracks 

 

The majority of analytical solutions for slope stability analyses are based on the 

assumption that slopes are made of isotropic, homogeneous and continuous 

material (e.g., Morgenstern and Price 1965, Chen and Giger 1971, Sarma 1979, 

Michalowski 1995, Yu et al. 1998, etc.).  However, the presence of cracks can 

substantially reduce slope stability (Utili 2013, Michalowski 2013) because of the 
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length of failure surface is reduced and the additional force due to water pressure 

filling cracks increases the tendency of slope failure. 

Previous literature concerning the influence of the presence of cracks involve 

mainly the application of limit equilibrium approaches (e.g. Spencer 1967, 1968; 

Hoek and Bray 1981; Chowdhury and Zhang 1991; Kaniraj and Abdullah 1994), or 

employing variational calculus (e.g. Baker 1981; Baker 2003). Recently, Utili 

(2013) investigated the stability of slopes made of cohesive frictional material 

subjected to cracks based on the kinematic approach of limit analysis. In the study, 

detailed derivations of the upper bound solutions are provided. Meanwhile, 

Michalowski (2013) independently evaluated both slopes with pre-existing cracks 

and the formation of cracks as part of the failure mechanism using the same 

methodology. In addition, the effect of pore water pressure is assessed by imposing 

 ௨ in Michalowski (2013). In this chapter, the kinematic approach of limit analysisݎ

is employed to assess the stability of cracked slopes made of geomaterials obeying 

the Mohr-Coulomb failure criterion. The upper bound formulations following the 

work done by Chen (1975), Utili (2013) and Michalowski (2013) are modified to 

treat a cracked slope as an intact slope having additional surcharge. Both vertical 

and inclined cracks are included. The advantage of employing this formulation is 

that cracked slopes made of geomaterials obeying a non-linear failure criterion can 

be analysed by using the same conceptual framework (see Chapter 4). It also 

should be noted that the procedures for slope stability assessment in this chapter 

establish the basis for determining the optimal slope profiles and optimal pile 

positions in Chapter 5 and Chapter 6.  

 

3.1.1 Upper bound formulation considering the presence of pre-

existing cracks 
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In the following section, the upper bound limit analysis formulation for a slope 

subjected to pre-existing cracks is illustrated. There are multiple cracks daylighting 

on the slope under investigation. The failure mechanism passes through one of 

them. It is assumed that the validity of the normality rule holds true and the shape 

of the failure mechanism is a logarithmic spiral curve. Within the framework of the 

upper bound limit analysis, and assuming a rigid-rotational type of failure 

mechanism and ground materials obeying the Mohr-Coulomb failure criterion, it 

has been proven by the variational analysis of Chen (1975), Baker and Garber 

(1978), Baker (1981) and Baker and Frydman (1983) that the logarithmic spiral 

failure surface is the most critical one for both intact slopes and slopes with pre-

existing cracks (regardless of slope geometry). 

In Figure 3-1, a block of soil/rock mass ABCDE rigidly rotates away about a 

centre of rotation O. The remaining part is bounded by a crack DE and a 

logarithmic spiral ࡰ࡯෢ . The angle between the displacement rate ݑሶ  of the soil/rock 

mass sliding away and the failure line ࡰ࡯෢ 	must be always equal to ߶ according to 

the normality rule, with ߶ the friction angle at failure. However, it is not the case 

for the angle ߦ	between ݑሷ 	and the crack DE, which can be different from ߶. The 

expression for ࡰ࡯෢ 	written in polar coordinates with reference to the spiral centre O 

is: 

 

  0tan
0r r e      (3-1) 

 

with ݎ	the distance of a generic point of the spiral to its centre O, ߠ	the angle 

formed by ݎ  with the horizontal axis, and ߠ଴	and ݎ଴  identifying the angle and 

distance of point D to the centre O. In Figure 3-1, ߜ is the depth of a crack and ܪ is 

the slope height. The failure mechanism is completely defined by angles ߠ଴,  ᇱߚ ,௛ߠ

and normalized crack depth ߟ ൌ  A slope with cracks daylighting on its upper .ܪ/ߜ
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surface can be treated as an intact slope with the additional surcharge due to the 

self-weight of AEDF. 

 

 

Figure 3-1. Slope geometry and failure mechanism. 

 

The rate of external work due to the weight of region ABCDE is computed by 

the rate of work done by region FBCD plus that of region AFDE ( ሶܹ ௎). Meanwhile, 

the rate of external work done by region FBCD is the result of work done by ࡯ࡰࡻ  

( ሶܹ ଵ) subtracts ODF ( ሶܹ ଶ), OFB ( ሶܹ ଷ) and OBC ( ሶܹ ସ).  Therefore, the total rate of 

external work is expressed as: 

 

 
 

1 2 3 4 1 2 3 4

3
0 1 2 3 4     =

U U

U

W W W W W W W W W W W

r f f f f f





         

   

          
  (3-2) 

 

The expressions of ሶܹ ଵ ~ ሶܹ ଷ are found in Chen (1975) and Utili (2013) and 

here only the final expressions are provided:  
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with γ  being the material unit weight and ߱  being the angular velocity of the 

sliding mass. The height of the fictitious intact slope is: 

 

  0tan
0 0sin sinh
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The length of FD is: 
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Considering the region of OBC, the rate of external work is calculated by:  
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where ீݔସ and ݔ଴ are the horizontal coordinates of the gravity center of OBC and 

the center of rotation O respectively. ܣସ is the area of OBC. 

Crack DE has an inclination of ߯. The calculation of ௎ܹሶ  is divided into the 

rate of work done by two triangular regions AFD and AED, which are written as: 
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where ீݔ௎,ଵ andீݔ௎,ଶ are the horizontal coordinates of the gravity center of AFD 

and AED. ܣ௎,ଵ and ܣ௎,ଶ are the areas of AFD and AED respectively. The vertical 

distance from point A to FD is:  
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The total height of the slope (vertical distance measured from slope crest to the toe) 

is:  
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Because of the presence of pre-existing cracks, internal energy is dissipated 

only along the spiral ࡰ࡯෢ . There is no energy dissipation along the crack ED since 

the soil/rock mass sliding away has already detached from the soil/rock at rest. The 

rate of the energy dissipation is calculated by Chen (1975): 
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with ܿ the cohesion at failure. 

According to the upper bound theorem of limit analysis, the rate of external 

work is no greater than the rate of internal energy dissipation. Equating the rate of 

external work to the rate of energy dissipation, leads to: 
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Dividing by ߱ and ݎ଴
ଶ and rearranging, the stability factor 

ఊு

௖
	(the terminology of 

Taylor 1948) for cracked slopes made of geomaterials obeying the Mohr-Coulomb 

failure criterion is obtained:  
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with 

 

 log( ) d hg f f     (3-15) 

 

and 

 

 1 2 3 4( ) Uq f f f f f        (3-16) 

 

The stability factor defined in Eq. (3-14) is a function of four variables ߠ଴, ,௛ߠ

  and η  denoting the failure mechanism. Among all the potential failure 

mechanisms, the most critical one is obtained by a minimization process. The 

minimum value of the stability factor (corresponding to the most adverse crack) is 

found by repeated evaluation of Eq. (3-14) over a fine grid of physically 

meaningful ߠ଴, ,௛ߠ   and η values. The physical ranges of ߠ଴ and ߠ௛ are provided 

by Chen and Liu (1990): 

 

 00
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2 h
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For purely cohesive soil (߶ ൌ 0), according to the de L’Hopital rule, the stability 

factor in Eq. (3-14) becomes: 
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3.1.2 The maximum stable crack depth for pre-existing cracks 

 

For illustrative purposes, slopes having horizontal upper slope face (ߙ ൌ 0°) and 

vertical crack (߯ ൌ 90° ) are considered in the following sections. For slopes 

subjected to pre-existing cracks, crack depth is limited by the stability of the sub-

slope ED in Figure 3-1. In fact, if the crack depth is larger than the critical height 

of slope ED, a failure mechanism involving ED must take place (see Figure 3-2), 

which will cause local deformation or failure on the left part of ED as well. This 

type of local failure can be handled by different types of analysis (e.g. FEM or 

DEM). However, in order to be consistent with the overall method adopted in the 

thesis, the upper bound limit analysis has been used to determine the maximum 

stable crack depth. 

In the case of a dry slope, Michalowski (2013) calculated the maximum stable 

crack depth by the lower bound and upper bound solutions to the stability of a 

vertical crack boundary (analogous to a vertical slope) as:  
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  (3-20) 

 

In this chapter, to be on the safe side, the upper bound value on the maximum crack 

depth is taken. In addition, since the lower bound solutions are not available in 
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many cases, it is convenient to select the upper bound as the maximum crack depth 

for all cases including both the presence of water pressure and seismic action. 

Hence, the maximum normalized crack depth is determined as: 
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where ܰெି஼,ఉ	is the stability factor of  an intact (ߜ ൌ 0) slope of inclination ߚ	and 

ܰெି஼,ଽ଴° is the stability factor of an intact vertical slope. The minimum value of 

the stability factor defined in Eq. (3-14) should be obtained within the range of 

0 ൏ ߟ ൏   .௠௔௫ߟ

 

  

Figure 3-2. Maximum stable crack depth. 

 

3.1.3 Stability charts in the presence of the most adverse pre-existing 

cracks 

 

For the most common circumstances, when there is no information about the depth 

and the location of cracks, in order to search for the least upper bound solution, the 
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stability factor	ܰெି஼ (defined in Eq. (3-14)) is minimized over all possible ߠ଴,  ,௛ߠ

  and ߟ under the constraint of ߟ ൏  ௠௔௫. The most adverse crack is defined asߟ

the one yielding the minimum value of the stability factor. 

Slope stability assessment involves measuring the margin of safety of a given 

slope. A common definition of the factor of safety (ܨ) is the ratio of the shear 

strength of the material to the actual shear stress within the slope. For geomaterials 

obeying the Mohr-Coulomb failure criterion,  
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with ܿ௚  and ϕ௚  the cohesion and internal angle of shearing resistance of the 

geomaterial; c௙ and ϕ௙ the strength parameters at failure. By replacing c, ϕ with 
ୡ೒
ி

, 

ம೒
ி

 in Eq. (3-14), the factor of safety (ܨ) appears in both sides of Eq. (3-14) and has 

to be determined in an iterative manner. 

According to Bell (1966) and Michalowski (2002), ܰ∗  is defined as the 

stability number which is independent of the factor of safety ܨ: 
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ி

୲ୟ୬ம೒
	 is plotted against 

ୡ೒
ஓୌ୲ୟ୬ம೒

	 corresponding to the case of cracks of 

unspecified depth and location in Figure 3-3. The most adverse cracks are 

considered. Figure 3-3 is regarded as a stability chart. Charts-based design is very 

important for slope stability assessment. There are a wide variety of stability charts 

available such as Taylor’s charts (Taylor 1948), Spencer’s charts (Spencer 1967), 

Hunter and Schuster charts (Hunter and Schuster 1968) and the charts used in 
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Wyllie et al. (2004) and Tang et al. (2015). The advantage of employing the chart 

in Figure 3-3 is mainly that it is widely adopted in recent publications when 

deriving analytical solutions of slope stability (e.g., Michalowski 2013 and Gao et 

al. 2014). Moreover, practitioners can obtain the factor of safety of a cracked slope 

directly from the chart without any iteration. For example, let a 10m tall slope with 

a 60°  inclination be comprised of soil whose ߶௚ ൌ 20°, ܿ௚ ൌ 20	݇ܰ/݉ଶ , and 

ߛ ൌ 19	݇ܰ/݉ଷ. Using the chart in Figure 3-3, the value of c௚/݊ܽݐܪߛ߶௚ ൌ 0.289. 

For β ൌ 60°  in Figure 3-3, F/tanϕ௚ ൎ 3.1 , hence F ൌ 3.1 ∙ tan20° ൎ 1.13.  It 

should be pointed out that the factor of safety obtained in Figure 3-3 is a 

conservative estimate of slope stability, since the crack with the most adverse depth 

and location is considered. In reality, other pre-existing cracks with depths and 

locations other than the most adverse one may happen. The factor of safety of the 

corresponding failure mechanisms may be higher than the value provided in Figure 

3-3. Stability charts that correspond to intact slopes can be found in Michalowski 

(2002). 

 

 

Figure 3-3. Stability chart for slopes subjected to the presence of the most adverse pre-

existing cracks. 
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3.1.4 Crack forming as part of the slope failure mechanism 

 

In the previous section, it is assumed that there is no energy dissipation along the 

crack, since the mass sliding away has already detached from the slope at rest.  If 

crack formation is considered, the stability of slope is evaluated in a different 

manner. A slope is postulated to be intact at the outset, and the failure mechanism 

is comprised of two parts: a vertical section (crack) and a logarithmic spiral line 

(see Figure 3-4). In order to calculate the energy dissipated by the formation of the 

crack, the envelope of the yield stress where cracks are expected to form should be 

known beforehand. According to Chen and Drucker (1969) and Michalowski 

(2013), the classic linear Mohr-Coulomb failure envelope is modified with a 

circular termination, as shown in Figure 3-5, which is regarded as a more precise 

description of the material shear and tensile strengths. According to the normality 

flow rule, the direction of deformation is represented by the velocity discontinuity 

vector ሾݒሿ  being perpendicular to the yield envelope, which varies along the 

circular portion of the failure envelope. This geometric relation leads to a closed-

form expression for the rate of energy dissipation along the crack (Michalowski 

2013): 
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where ߪ௖ and ߪ௧ are the compressive and tensile strengths respectively:  

 

 
2 cos

1 sinc

c 





  (3-25) 

 



46 
 

 
2 cos

1 sint

c 





  (3-26) 

 

ߦ  is the angle velocity discontinuity vector ሾݒሿ  makes with the direction of an 

opening crack. The integration of the rate of energy dissipation along the crack is 

calculated by: 
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Equating the rate of external work to the rate of energy dissipation on both the 

crack and logarithmic spiral slip line leads to:  
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After rearranging, the stability factor defined in Eq. (3-14) becomes: 
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The least upper bound is determined by the minimization of Eq. (3-29) with four 

variables ߠ଴, ,௛ߠ   and η denoting the most critical failure mechanism. Stability 

charts for both limit tensile strength (ߪ௧
ᇱ ൌ

ఙ೟
ଶ

 ) and tension cut-off (ߪ௧ ൌ 0) cases 

are provided in Figure 3-6 and Figure 3-7.  
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Figure 3-4. Failure mechanism for a slope with a vertical crack daylighting on the upper 

part. 

 

(a) limited tensile strength (ߪ௧
ᇱ ൌ

ఙ೟
ଶ

 ) (b) tension cut-off 

Figure 3-5. Modified failure envelope to account for limited tensile strength and tension 

cut-off (Michalowski 2013). 
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Figure 3-6. Stability chart considering crack formation (limited tensile strength, ݐߪ
′ ൌ

ݐߪ

2
). 

 

 

Figure 3-7. Stability chart considering crack formation (tension cut-off). 

 

3.2 Water pressure  
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In this section, the effect of water pressure on destabilizing slopes is investigated. 

Stability assessment of slopes subjected to two possible groundwater conditions 

will be illustrated. First, water may be present in the cracks only, for example when 

a heavy rainstorm results in surface water seeping into the crack and the remainder 

of the soil/rock mass is relatively impermeable in the short term. Second, for slopes 

with high permeability, a pore water pressure distribution may develop inside the 

slope depending on the hydraulic boundary conditions. The derived formulation 

will also be used in Chapter 6.         

 

3.2.1 Water appearing in the crack only 

 

The presence of water in the pre-existing cracks is a major contributor of slope 

instability, as shown in Figure 3-4. The external work done by water pressure 

filling the crack w cW 
  can be expressed as:  
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  (3-30) 

  

where ܨ௪ is the resultant force of water pressure filling the crack, and ݑ௪ሶ  is the 

displacement rate of ܨ௪. ߛ௪ is the unit weight of water and ߜ௪	is the length of the 

water-filled part of crack. A dimensionless coefficient ܭ௪ is introduced to express 

the amount of water in the crack, e.g. ܭ௪ ൌ 0 indicates a dry crack and ܭ௪ ൌ 1 

means that the crack is full of water (Utili 2013). ܭ௪	ሺ0 ൑ ௪ܭ ൑ 1ሻ is defined as 

௪ܭ ൌ  :Thus, Eq. (3-30) can be rewritten as .ߜ/௪ߜ
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The external work here consists of both the work done by the weight of the 

sliding mass and that due to water pressure in the crack. Equating the rate of 

external work to the rate of energy dissipation, leads to:  
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After rearranging, the new stability factor considering the effect of water 

pressure appearing only in the crack is obtained:  
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The stability factor defined in Eq. (3-33) is minimized to search for the most 

critical failure mechanism under the constraint of the maximum stable crack depth 

defined in Eq. (3-21). Note that Eq. (3-21) is still valid since the soil/rock mass 

behind the crack is assumed to be dry. Stability charts for water-filled cracks cases 

(both ܭ௪ ൌ 0.5 and K௪ ൌ 1 ) are plotted in Figure 3-8. The most adverse pre-

existing cracks for the stability of the slope are assumed to be present. 
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(a) ܭ௪ ൌ 0.5 

 

(b) ܭ௪ ൌ 1 

Figure 3-8. Stability charts considering water pressure appearing only in the crack. 
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3.2.2 Seepage induced pore water pressure distribution 

 

The influence of seepage flow within the slope contains the work done by pore 

water pressure on the volumetric deformation of the soil/rock mass along the 

failure surface and water pressure present in the crack. 

The overall pore water pressure conditions in slopes were described first by 

Bishop and Morgenstern (1960) using a coefficient ݎ௨ ൌ
௨

௛೑∙ఊ
, where ݑ	is the pore 

water pressure and fh  is the depth of the failure surface measured from the slope 

surface. This	method has been widely adopted as a rapid way to assess the stability 

of partly saturated slopes using a nominal single value ݎ௨. Compared with other 

approaches such as water table and flow net methods (Abramson 2002), the ݎ௨ 

method is laborious and inaccurate in some cases (Barnes 1999). However, it is 

still very popular when deriving analytical solutions using either limit equilibrium 

method (e.g., Low et al. 1998; Jiang and Yamagami 2006) or limit analysis. By 

imposing ݎ௨, Michalowski (1995, 2002, 2013) studied the stability of slopes made 

of geomaterials obeying the Mohr-Coulomb failure criterion subjected to pore 

water pressure based on the kinematic approach of limit analysis. Yang and Zou 

(2006) derived the upper bound solutions for slopes made of rock obeying the 

Hoek-Brown failure criterion by introducing ݎ௨  as well. In this section, it is 

assumed that the pore water pressure coefficient ݎ௨	is constant throughout the slope. 

௨ݎ ൌ 0.5 represents approximately a fully submerged slope. When ݎ௨ ൏ 0.5 , an 

average value for a partially submerged slope is assumed. 

In Figure 3-4, according to the definition of ݎ௨ , pore water pressure at the 

bottom of the crack is found by: 

 

 uu r   (3-34) 
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Eq. (3-34) can be rewritten as: 

 

 w wu    (3-35) 

 

Combing Eqs. (3-34) and (3-35), the following expression is obtained: 
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   The external work done by water filling the crack and pore water pressure 

along the failure line may be obtained: 
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where ݌௪ି௖ is defined in Eq. (3-31) and ݌௪ି௟௢௚ is calculated by Michalowski 

(1995): 
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with ߠଵ, ߠଶ	(see Figure 3-9) determined by the following constraints: 
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h  ଴ and ݀ are given by Eqs. (3-6), (3-7) and (3-10). The expressions forܮ ,

,ଵݖ  :ଷ are provided belowݖ and	ଶݖ
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Figure 3-9. Geometrical relationships to calculate ݌௪ି௟௢௚. 
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Finally, by equating the rate of external work due to the material weight and 

water pressure to the rate of energy dissipation and rearranging, the stability factor 

is obtained: 
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The stability factor defined in Eq. (3-44) is minimized under the constraint of the 

maximum allowable crack depth. Because of the presence of water pressure, now 

the maximum allowable crack depth needs to be defined differently compared with 

Eq. (3-21) : 
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where ܰெି஼,ଽ଴°ሺݎ௨ሻ is the stability factor of an intact vertical slope when a given ݎ௨ 

is imposed. ܰெି஼,ఉሺݎ௨ሻ is the stability factor of an intact slope of inclination ߚ 

with the same ݎ௨. 

Stability charts for ݎ௨ ൌ 0.25 and ݎ௨ ൌ 0.5 are provided in Figure 3-10. Pre-

existing cracks with the most adverse location and depth are considered. 
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(a) ݎ௨ ൌ 0.25 

 

(b) ݎ௨ ൌ 0.5 

Figure 3-10. Stability charts considering general pore water pressure distribution. 
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3.3 Seismic loading  

 

Seismic loading is one of the major threats to slope stability. Seismic effect on 

slopes is routinely considered by imposing pseudo-static forces on the centre of 

gravity of the slope (see Figure 3-4). The so-called pseudo-static approach has been 

widely adopted for its simplicity and practical applicability since Terzaghi (1950). 

Coefficients ݇௛  and ݇௩	 represent the intensity of horizontal and vertical 

acceleration as a fraction of the gravity acceleration. In this section, the seismic 

effect is included in limit analysis as additional work terms in the energy balance 

Eq. (3-14). The derived formulation will also be used in Chapter 6. 

In order to distinguish the work done by the seismic actions from the work due 

to the material weight, letting ଵ݂௩ ൌ ሺ1 ൅ ݇௩ሻ ∙ ଵ݂, ଶ݂௩ ൌ ሺ1 ൅ ݇௩ሻ ∙ ଶ݂, ଷ݂௩ ൌ

ሺ1 ൅ ݇௩ሻ ∙ ଷ݂, …… , ௎݂௩ ൌ ሺ1 ൅ ݇௩ሻ ∙ ௎݂  in Eqs. (3-3)-(3-9) includes the vertical 

seismic acceleration. The calculation of the rate of external work done by 

horizontal seismic loading is also the summation of the rate of work done by 

seismic actions on the region of ODC ( ሶܹ ଵ௛), ODF ( ሶܹ ଶ௛), OFB ( ሶܹ ଷ௛), OBC ( ሶܹ ସ௛) 

and AFDE ( ሶܹ ௎௛), respectively. For each term, it can be written as: 

 

 0h Gi iW y y A     (3-46) 

 

where ீݕ௜ and ݕ଴ are the vertical coordinates of the gravity center of the region and 

the center of rotation O respectively. ܣ௜ is the area of each region. The expressions 

for ሶܹ ଵ௛~ ሶܹ ଷ௛ are found in Chen and Liu (1990) and Utili and Abd (2016): 
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Considering the region OBC,  
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where ீݕସ is the vertical coordinates of gravity center of the region OBC.  

The calculation of ௎ܹ௛ሶ  is divided into the rate work done by two triangular 

regions AFD and AED, which are written as: 
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  (3-51) 

 

where ீݕହ,ଵ and	ீݕହ,ଶ are the vertical coordinates of the gravity center of AFD and 

AED. 

Equating the rate of external work done by the material weight and seismic 

actions to the rate of energy dissipation, leads to:  

 



59 
 

 

 
 

3
0 1 2 3 4

3
0 1 2 3 4

2
log 0 log

s v v v v Uv

h h h h Uh

d d

W W r f f f f f

r f f f f f

W c r f

 



 

      

   

 

 


  (3-52) 

 

After rearranging, the stability factor of cracked slopes subject to seismic 

actions is the modification of Eq. (3-14) by adding extra dynamic terms: 
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The stability factor is minimized under the constraint of maximum allowable crack 

depth, which is defined as: 
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where ܰெି஼,ଽ଴°ሺ݇௛, ݇௩ሻ is the stability factor of an intact vertical slope when a set 

of ሺ݇௛, ݇௩ሻ is imposed. ܰெି஼,ఉሺ݇௛, ݇௩ሻ is the stability factor of an intact slope of 

inclination ߚ with the same ݇௛, ݇௩. 

Stability charts for slopes under seismic actions of four typical values of horizontal 

acceleration, i.e.,  ݇௛ ൌ 0.05, ݇௛ ൌ 0.1, ݇௛ ൌ 0.2  and ݇௛ ൌ 0.3  are provided in 

Figure 3-11. For illustrative purposes, the vertical acceleration of the earthquake is 

assumed to be nil. The most adverse pre-existing crack depth and location are 

considered.  
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(a) ݇௛ ൌ 0.05 

 

(b) ݇௛ ൌ 0.1 

 

(c) ݇௛ ൌ 0.2 
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(d) ݇௛ ൌ 0.3 

Figure 3-11. Stability charts considering horizontal seismic actions, ݇௩ ൌ 0. 

 

3.4 Non-homogenous slopes with anisotropic strength 

 

By treating the presence of cracks as additional weight on intact slopes, the current 

research findings on intact slopes may be extended to tackle cracked ones. As an 

example, in this section, the upper bound solutions for intact slopes considering the 

effect of ground strength anisotropy and spatial non-homogeneity in the vertical 

direction proposed by Chen (1975) are extended to include the presence of pre-

existing cracks. The derived formulation will also be used in Chapter 5. 

Natural soils always show a certain degree of non-homogeneity and 

anisotropy under natural sedimentation process (Lo 1965; Chen 1975; Nian et al. 

2008). ߶ shows little anisotropy and dependence on loading direction (Duncan and 

Seed 1966; Mayne 1985; Al-Karni and Al-Shamrani 2000), thus it is here assumed 

to remain a constant in the whole slope. Let us consider five general patterns of 

cohesion varying with depth within the slope as shown in Figure 3-12 (Chen 1975). 

The fourth distribution of cohesion is the most general case and will be discussed 
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in the following, see Figure 3-13 (c). ݊଴ܿ, ݊ଵܿ, ݊ଶܿ and ݊௜ܿ indicate the magnitudes 

of cohesion at various depth as shown in Figure 3-13 (c), with ܿ the cohesion at the 

depth of ܪ. 

 

  

Figure 3-12. Several types of cohesion varying with depth (Chen 1975). 

 

 

 

Figure 3-13. Slope geometry, failure mechanism and ground condition. 
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For anisotropic geomaterials, the exhibited cohesion also depends on the 

loading direction. According to Figure 3-13 (b), the cohesion ܿ௜ at the point where 

its major principal stress is inclined at angle ݅ to the vertical direction is given by 

Lo (1965) and Chen (1975): 

 

   2cosi h v hc c c c i     (3-55) 

  

where ܿ௛ and ܿ௩ are the horizontal and vertical principal cohesions. The ratio of the 

principal cohesions ܿ௛ ܿ௩⁄ , denoted by ߢ, is assumed to be the same at all points 

within the slope. For an isotropic material, ܿ௜ ൌ ܿ௛ ൌ ܿ௩ and ߢ ൌ 1.  

As shown in Figure 3-13(c), there is an abrupt change of cohesion below the 

slope toe. Cohesion exhibited along the direction tangent to the failure line can be 

calculated by using Eq. (3-55). The total rate of internal energy dissipation along 

the failure line ࡰ࡯෢ 	 is divided into two parts (Chen 1975): 
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where angles ߠ௠ and ݅ are obtained by the following geometric relationships: 
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 

  (3-59) 

 

Due to the presence of pre-existing cracks, the internal energy dissipates from 

point D, as shown in Figure 3-13. The cohesion at the depth of ߜ is ݊௜ܿ, with  
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Referring to Eq. (3-55), ሺܿ௜ሻଵ and ሺܿ௜ሻଶ in Eq. (3-56) are found by: 
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Substituting Eqs. (3-61) and (3-62) into Eq. (3-56), after rearranging, Eq. (3-56) 

becomes: 
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with ݍଵ,  :ଷ given byݍ ଶ andݍ
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Equating the rate of external work to the rate of energy dissipation, leads to: 
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After rearranging, the stability factor of slopes made of anisotropic and 

nonhomogeneous ܿ െ ߶ material is expressed as: 
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The stability factor still needs to be minimized under the constraint of maximum 

allowable crack depth, which is defined as: 
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where ܰெି஼,ଽ଴°ሺܿ௜ሻ is the stability factor of an intact vertical slope in the same 

ground conditions. ܰெି஼,ఉሺܿ௜ሻ  is the stability factor of an intact slope of 

inclination ߚ. 

Stability charts for two typical cases of cohesion linearly varying along depth 

(i.e., ݊଴ ൌ 0 and ݊଴ ൌ 0.5) are presented in Figure 3-14. Again, the most adverse 

pre-existing cracks are considered. 

 



67 
 

 

(a) ݊଴ ൌ 0, ߢ ൌ 1 

 

(b) ݊଴ ൌ 0.5, ߢ ൌ 1 

Figure 3-14. Stability charts for non-homogenous slopes with anisotropic strength. 

 

3.5 Conclusions 
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In this chapter, upper bound formulations for slopes made of geomaterials obeying 

the Mohr-Coulomb failure criterion subjected to the presence of cracks, water 

pressure and seismic actions were present in a unified and consistent framework. A 

large number of stability charts were provided for the benefit of practitioners. The 

following conclusions can be drawn: 

(a) The upper bound formulations illustrated in this chapter can be regarded as 

extension and clarification of the work done by Utili (2013) and Michalowski 

(2013), and are the basis of stability assessment of slopes made of geomaterials 

obeying the non-linear failure criterion in the following chapters. The issues 

regarding slopes made of frictionless soil, maximum stable crack depth, different 

ground and water conditions and the influence of seismic loading are tackled. 

Stability charts (
ி

௧௔௡థ೒
 against 

௖೒
ఊு௧௔௡థ೒

) for uniform slopes with water only present 

in the crack, uniform slopes subjected to different seismic actions and non-

homogenous slopes with anisotropic strength are provided for the first time 

considering the most adverse pre-existing cracks being present in the slope.  

(b) It is import to note that in order to seek the most adverse crack depth and 

location, the stability factor 
ఊு

௖
 is minimized over the angles denoting the failure 

mechanism and the normalized crack depth. To avoid the potential local failure 

(sliding of the soil/rock mass behind the crack), the minimization process should be 

done under the constraint of maximum stable crack depth defined in Eqs. (3-21), 

(3-45), (3-54) and (3-74).  
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Chapter 4 Stability Assessment of Slopes Made of 

Rocks Obeying the Hoek-Brown Failure Criterion 

 

According to experimental evidence (e.g. Hoek and Brown 1980; Agar et al. 1987; 

Baker 2004; Descamps et al. 2012; Meng et al. 2015; Rathnaweera et al. 2015), the 

shear strength for both soil and rock is better represented by using nonlinear failure 

criteria. However, with regard to the strength of soil, even though all soils show a 

certain degree of nonlinearity, the liner Mohr-Coulomb failure criterion is by far 

the most applied by researchers and practitioners, due to the advantage in 

simplicity of using a linear criterion. But rocks present significantly more 

pronounced nonlinearity than soils, and thus, the Mohr-Coulomb failure criterion is 

considered unsuitable to describe rock mass behaviour, especially for slope 

stability problems where rocks are subjected to low confining pressure making the 

nonlinearity more prominent.  

Based on the result of a series of field investigations and triaxial tests on rocks, 

the non-linear Hoek-Brown failure criterion was first proposed by Hoek and Brown 

(1980). Three decades after its introduction, there is a stronger consensus in the 

scientific community that Hoek-Brown failure criterion is a very good criterion for 

the characterization of rock strength (Hoek 1983, Martin et al. 1999, Fraldi and 

Guarracino 2009, Rojat et al. 2015). In this chapter, the stability of slopes made of 

rock obeying the Hoek-Brown failure criterion is investigated for the first time 

including the presence of pre-existing cracks and blast-induced rock damage. The 

results have been obtained by employing three different techniques: the tangential 

line technique, the equivalent cohesion-friction angle method and the variational 

approach.  
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4.1 Introduction of rock slope failure mode 

 

As reported in Hudson and Harrison (2000), there are two types of failure 

mechanisms occurring in rock slopes, i.e., a curvilinear one when the rock slope 

can be considered as an equivalent continuum and a linear one when it is governed 

by the behaviour of single discontinuities (see Figure 4-1). This chapter is devoted 

to the first type of mechanism. A rock mass behaves as a continuum either when it 

is intact or when the scale of discontinuities is small in comparison to the scale of 

the slope, for instance, in the case of closely fractured or highly weathered rocks, a 

strongly defined structural pattern (in the geological sense) no longer exists and the 

slide surface is free to find the line of least resistance through the slope (Wyllie et 

al. 2004). Hoek (1983) and Li et al. (2008) classified rock masses into three 

structural groups, namely Group I, Group II and Group III. In Figure 4-1, the 

transition from an isotropic intact rock (Group I), through a highly anisotropic rock 

mass (Group II), to a heavily jointed rock mass (Group III) is illustrated. In this 

chapter, the rock masses of Group I and III are considered. Concerning Group III, 

the presence of the many discontinuities in the rock mass is accounted for by 

determining strength parameters for the equivalent continuum via the use of rock 

mass classification systems (e.g. ܴܫܵܩ ,ܴܯ). For the cases of Group I and III, 

based on site investigation and experience, Hudson and Harrison (2000) state that 

the slip surface for a slope is curvilinear, and usually terminates at a tension crack 

at the upper slope surface. This highlights the importance of considering the 

presence of cracks in the stability analyses of rock slopes.  

Previous literature (e.g., Hoek and Bray 1981; Wyllie et al. 2004) 

investigating the effect of the presence of cracks on rock slopes mainly 

concentrates on geomaterials obeying the linear Mohr-Coulomb strength criterion. 

In this chapter, the influence of the presence of pre-existing cracks on the upper 
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face of slopes made of weak rocks (e.g. highly altered and weathered rocks) and/or 

rock slopes with closely spaced randomly oriented discontinuities. So rocks of 

Group I and III are investigated via limit analysis. The rock mass will be treated as 

a continuum obeying the non-linear Hoek-Brown failure criterion.  

 

(a) 
(b) 

 

(c) 

Figure 4-1. Applicability of the continuum approach and the Hoek-Brown failure criterion 

for rock slope stability problems. (a) A continuum failure mechanism (Hudson and 

Harrison 2000). (b) A discontinuum failure mechanism (Hudson and Harrison 2000). (c) 

Three groups to be considered depending on the joint size relative to the domain dimension 

(Li et al. 2008). 
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4.2 The Hoek-Brown failure criterion 

 

According to the latest version of the Hoek-Brown failure criterion (Hoek et al. 

2002), the generalized Hoek-Brown failure criterion is expressed as: 
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with 1 , 3 the major and minor principle stresses respectively, ci the uniaxial 

compression strength of the intact rock mass, ݉	a parameter related to the rock 

type considered, ݏ a parameter expressing the degree of fracturing of the rock mass 

and ݊ a parameter accounting for degree of imperfection of the rock mass. For a 

given rock type, ݉, ,ݏ ݊	can be determined from the geological strength index ܫܵܩ 

as follows:  
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where ݉௜	 is the value of ݉	 for intact rock and ܦ	 is defined as a disturbance 

coefficient ranging from 0 for undisturbed in situ rock masses to 1 for very 

disturbed rock masses. The ܫܵܩ index, introduced by Hoek et al. (1995), provides a 
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number which, when combined with the intact rock properties, can be used for 

estimating the reduction in rock mass strength for different geological conditions. It 

combines the two fundamental parameters of a rock mass, i.e., the blockiness of the 

mass and the conditions of the discontinuities in the rock mass (Marinos et al. 

2005). The Hoek-Brown failure envelope is a non-linear curve in ሺߪଵ െ  .ଷሻ spaceߪ

In Figure 4-2, the criterion is plotted in the ሺ߬ െ  ሻ space as well. Some typicalߪ

values of	݉௜, ܦ ,ݏ and their physical meaning are listed in Table 4-1 and Table 4-2. 

The theory of limit analysis was initially developed for geomaterials obeying 

the linear Mohr-Coulomb failure criterion (Drucker et al. 1952; Chen 1975). Hence, 

it is not directly applicable to geomaterials obeying the Hoek-Brown criterion. 

However, in principle, limit analysis can still be employed as long as the material 

considered satisfies the normality rule. There are two ways to apply limit analysis 

to a non-linear failure envelope. One method consists of linearizing the Hoek-

Brown failure criterion, so that a single Mohr-Coulomb failure envelope to 

represent the non-linear curve is found. In this case, only a partial modification of 

the existing limit analysis formulations based on the Mohr-Coulomb failure 

criterion is needed. A second method consists of implementing a step-by-step 

evaluation of the energy dissipated along the yet-to-be-determined failure surface.  

Three methods were adopted in this chapter: the so-called tangential technique, 

the equivalent ܿ െ ߶ method and the variational approach. The first two methods 

belong to the first category while the variational approach falls into the second one.  
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non-linear failure criteria. Later, Yang et al. (2004) and Yang and Zou (2006) 

adopted the same method to account for more complex conditions such as an 

inclined upper slope surface and the presence of pore water pressure for rocks 

obeying the generalized Hoek-Brown failure criterion.  

The Hoek-Brown failure criterion is originally defined in the ሺߪଵ,  ଷሻ spaceߪ

(see Eq. (4-1)) and can be rewritten in terms of shear and normal stresses ߬ and ߪ. 

A tangent to the Hoek-Brown failure criterion in ሺ߬,  :ሻ stress space is expressed asߪ

 

 tan t tc     (4-5) 

 

where ܿ௧	is the intercept of the tangential line with the ߬ axis, and ߶௧	is the dip 

angle of the tangent to the Hoek-Brown failure envelope at a generic point 

considered (See Figure 4-3).  

According to Yang et al. (2004), the Hoek-Brown failure criterion in the ሺ߬,  ሻߪ

space is a parameter equation in terms of ߶௧: 
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From Eqs. (4-5), (4-6), (4-7), tc  is derived as: 
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There are numerous tangents to the Hoek-Brown failure envelope (see Figure 

4-3). For each of these, the stability factor corresponding to a Mohr-Coulomb 

failure envelope can be calculated by replacing ܿ  with ܿ௧ , ߶  with ߶௧  in the 

expressions such as Eq. (3-14) in Chapter 3. Here ߶௧  is treated as a variable to 

determine the least possible stability factor. Strength parameters ܿ௧,௖  and ߶௧,௖ , 

which correspond to the tangent yielding the least stability factor, will be selected 

as the parameters to linearize Hoek-Brown failure criterion. Therefore, the upper 

bound solution for geomaterials satisfying the linear Mohr-Coulomb failure 

criterion can be extended to account for the non-linear Hoek-Brown failure 

criterion with an additional variable ߶௧. 

 

 

Figure 4-3. Tangential technique for Hoek-Brown failure criterion. 

 

There is some arbitrariness in the choice of reference stress used to define the 

dimensionless stability factor for a non-linear material (Collins et al. 1988). In this 

chapter, the stability factor for slopes made of rock obeying the Hoek-Brown 

failure criterion is defined as ܰுି஻ ൌ
ఊு

ఙ೎೔
  according to Li et al. (2008) and Shen et 

al. (2013), because other rock strength parameters such as tensile strength can be 

obtained from ߪ௖௜ . And ߪ௖௜  is the most accessible parameter in measuring rock 

strength (Wyllie et al. 2004). 
ఊு

ఙ೎೔
 is derived by the modification of Eq. (3-14) 

corresponding to the Mohr-Coulomb failure criterion: 
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߶ is replaced by ߶௧ in the expressions of ଵ݂~ ସ݂, ௎݂ and ௛݂. According to the upper 

bound theorem, the least upper bound is associated with the minimum value of 

ܰுି஻  which is to be found by evaluating repeatedly Eq. (4-9) over the five 

variables ߠ଴, ,௛ߠ   and ߶௧	ߟ , in the range of values of engineering interest. It 

should be noted that  
ఙ

ఙ೎೔
	 defined in Eq. (4-7)  must be within the range of െ

௦

௠
൏

ఙ

ఙ೎೔
൏ 1 to avoid any unrealistic selection of ߶௧. െ

௦

௠
 ௖௜ is the tensile strength of theߪ

rock. However, Collins et al. (1988) and Yang et al. (2004) overlooked the 

constraint and arrived at some unrealistic results, e.g., Table II in Collins et al. 

(1988) and Table II in Yang et al. (2004). 

If the ground condition and the height of a slope are known, in addition, the 

factor of safety ܨ	is assumed to apply to ߪ௖௜ only, ܨ can be obtained from Eq. (4-9) 

directly: 
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Three different types of problems concerning the depth and location of the 

cracks are to be studied: 
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(a) Slopes with cracks of known depth but unspecified location (for instance 

the depth of tension crack zone can be estimated). 

(b) Slopes with cracks of known location but unspecified depth (a typical 

scenario for rock slopes). 

(c) Slopes with cracks of unspecified depth and location (the most adverse 

crack is to be sought to yield the minimum stability). 

 

4.3.1 Cracks of known depth 

 

To start with, the problem of cracks of known depth but unspecified location is 

handled. Since the normalized crack depth η	is known, the variables in Eq. (4-9) to 

determine the most critical failure mechanism reduce to four. For illustrative 

purposes, rock slopes having horizontal upper slope face (ߙ ൌ 0°) and vertical 

crack (߯ ൌ 90° ) are considered in the following sections. The constraint of 

maximum stable crack depth can be expressed as: 
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defining ܰுି஻,ఉ as the stability factor of an intact ሺߜ ൌ 0ሻ slope of inclination ߚ 

and ܰுି஻,ଽ଴° as the stability factor of an intact vertical slope. The minimum value 

of the stability factor defined in Eq. (4-9) subject to cracks with known depth is 

determined within the range of 0 ൏ ߟ ൏   .௠௔௫ߟ

In Figure 4-4, for slopes made of different rock types (i.e., ݉௜ ൌ5, 10, 20, 30 

and ܫܵܩ ൌ20, 40, 60, 80, 100), the stability factors ܰுି஻ defined in Eq. (4-9) are 

plotted against the normalized crack depth ܪ/ߜ  corresponding to different 

inclinations (i.e., ߚ ൌ 60°, 75°	and 90°). For non-vertical slopes (β ് 90°), there is 
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a minimum value of the stability factor for each inclination and its corresponding 

crack depth is ߜ௖, beyond which the crack depth no longer affects the stability of 

the slope, so that the value of the stability factor ܰுି஻ is constant for ߜ ൐  ௖ untilߜ

ߜ ൌ ௠௔௫ߜ . For a given rock type, the length of ߜ௖  increases with progressively 

steeper inclination. In addition, ߜ௖ increases with higher values of ݉௜ and ܫܵܩ. For 

vertical slope, the curve shows a monotonic decreasing trend with a minimum 

value of ܰுି஻ at ܪ/ߜ ൌ 1.   

 

 

(a) ݉௜ ൌ 5, ܫܵܩ ൌ 100, ܦ ൌ 0 (b) ݉௜ ൌ 10, ܫܵܩ ൌ 100, ܦ ൌ 0 

 

(c) ݉௜ ൌ 20, ܫܵܩ ൌ 100, ܦ ൌ 0 (d) ݉௜ ൌ 30, ܫܵܩ ൌ 100, ܦ ൌ 0 
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(e) ݉௜ ൌ 5, ܫܵܩ ൌ 20, ܦ ൌ 0 (f) ݉௜ ൌ 5, ܫܵܩ ൌ 40, ܦ ൌ 0 

 

(g) ݉௜ ൌ 5, ܫܵܩ ൌ 60, ܦ ൌ 0 (h) ݉௜ ൌ 5, ܫܵܩ ൌ 80, ܦ ൌ 0 

Figure 4-4. Stability factor ுܰି஻ against crack depth for various slope inclinations and rock 

strength parameters. 

 

4.3.2 Cracks of known location 

 

The case of cracks of known location, measured as the horizontal distance 
௫

ு
	 (the 

length of AE over the total height of slope, shown in Figure 3-1) from the slope 

crest, but with unspecified depth is addressed in this section. Both the region where 

the presence of cracks makes the slope less stable and the region where slope 

stability is not affected by cracks are of great interest. 

Since the location of the crack is known, the variables to determine the failure 

mechanism reduce to four, and the following constraint of these variables is found: 
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The stability factors defined in Eq. (4-9) are minimized under the constraint of 

Eqs. (4-11) and (4-12). In Figure 4-5, the stability factors ܰுି஻ are plotted against 

different values of 
௫

ு
െ ߚݐ݋ܿ  for slopes in various rock types with ߚ ൌ

60°, 75°	and	90° . There are regions bounded by ݔଵ  and ݔଶ  where the stability 

factors are lower than those of intact slopes. These regions are defined as the 

affected zones. Within the affected zone, 
௫

ு
 corresponding to the minimum value of 

the stability factor ܰ௠௜௡  yields the most adverse location of the crack. If ܫܵܩ is 

fixed (in Figure 4-5 (a)~(d)), rocks with higher value of ݉ tend to have a narrower 

affected zone. However, when ݉௜ is fixed (in Figure 4-5 (e)~(h)), the rock slopes 

with lower ܫܵܩ  have wider affected zones. Practitioners can have an instant 

evaluation that if the cracks fall outside of ݔଵ െ  ଶ, the stability of the slope willݔ

not be affected by the presence of cracks. 

 

 

(a) ݉௜ ൌ 5, ܫܵܩ ൌ 100, ܦ ൌ 0 (b) ݉௜ ൌ 10, ܫܵܩ ൌ 100, ܦ ൌ 0 
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(c) ݉௜ ൌ 20, ܫܵܩ ൌ 100, ܦ ൌ 0   (d) ݉௜ ൌ 30, ܫܵܩ ൌ 100, ܦ ൌ 0 

 

(e) ݉௜ ൌ 5, ܫܵܩ ൌ 20, ܦ ൌ 0 (f) ݉௜ ൌ 5, ܫܵܩ ൌ 40, ܦ ൌ 0 

 

(g) ݉௜ ൌ 5, ܫܵܩ ൌ 60, ܦ ൌ 0 (h) ݉௜ ൌ 5, ܫܵܩ ൌ 80, ܦ ൌ 0 

Figure 4-5. Stability factor ுܰି஻ against crack location for various slope inclinations and 

rock strength parameters. 

 

4.3.3 Cracks of unspecified depth and location  

 

For the most common circumstances, when there is no information about the depth 

and the location of cracks, in order to search for the least upper bound solution, the 

stability factor	ܰுି஻ is minimized over all possible ߠ଴, ௛, ߠ   and ߶௧ under the ߟ ,

constraint of ߟ ൏  ௠௔௫, maximum stable crack depth defined in Eq. (4-11). Theߟ
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most adverse crack is defined as the one yielding the minimum value of the 

stability factor. 

Stability charts corresponding to different inclinations (ߚ ൌ 45°, 60°, 75°, 90°), 

different rock types, ܫܵܩ and degree of fracture ܦ are presented in Figure 4-6. The 

stability factors are found to increase when ݉௜ or ܫܵܩ increases. As expected, the 

stability factors decrease with a larger number of ܦ (a higher level of disturbance).  

 

 

(a) ߚ ൌ 45°, ܦ ൌ 0 
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(b) ߚ ൌ 45°, ܦ ൌ 0.7 

 

(c) ߚ ൌ 45°, ܦ ൌ 1 
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(d) ߚ ൌ 60°, ܦ ൌ 0 

 

(e) ߚ ൌ 60°, ܦ ൌ 0.7 
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(f) ߚ ൌ 60°, ܦ ൌ 1 

 

(g) ߚ ൌ 75°, ܦ ൌ 0 
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(h) ߚ ൌ 75°, ܦ ൌ 0.7 

 

(i) ߚ ൌ 75°, ܦ ൌ 1 
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(j) ߚ ൌ 90°, ܦ ൌ 0 

 

(k) ߚ ൌ 90°, ܦ ൌ 0.7 
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(l) ߚ ൌ 90°, ܦ ൌ 1 

Figure 4-6. Stability charts for different slope inclination and various rock types. 

 

4.4 Equivalent ࢉ െ ࣘ method 

 

The tangential method described in 4.1 is an ingenious way to tackle the non-linear 

failure criterion based on the classic limit analysis. However, since most 

geotechnical software is still written in terms of the Mohr-Coulomb failure 

criterion, it is necessary to determine equivalent cohesion ܿ௘ and friction angle ߶௘ 

for rock mass obeying the Hoek-Brown failure criterion. This is done by fitting an 

average linear relationship to the curve generated by solving Eq. (4-1) for a range 

of minor principal stress values defined by ߪ௧ ൏ ଷߪ ൏ ଷ௠௔௫ߪ , as illustrated in 

Figure 4-7. ߪଷ௠௔௫ is the upper limit of confining stress over which the relationship 

between the Hoek-Brown and the Mohr-Coulomb criteria is considered. As 

suggested by Hoek et al. (2002), the equivalent	ܿ௘	and ߶௘	ready to use as the Mohr-
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Coulomb parameters are obtained by balancing the areas above and below the 

Mohr-Coulomb plot (see Figure 4-7): 
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where 3 3max /n ci   . 

 

 

Figure 4-7. Relationships between major and minor principal stresses for the Hoek-Brown 

and the equivalent Mohr-Coulomb criteria (Hoek et al. 2002). 
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It should be noted that the value of ߪଷ௠௔௫  has to be determined for each 

particular case.  For slope stability analyses, ߪଷ௠௔௫	is suggested by Hoek et al. 

(2002): 
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where ܪ	is the height of the slope, ߪ௖௠	is called the ‘global rock mass strength’ 

(see Hoek and Brown 1997) and is expressed as: 
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However, the determination of ߪଷ௠௔௫	remains questionable. Slope inclination 

should affect	ߪଷ௠௔௫	since the state of stress within the slope is a function of ߚ. Li 

et al. (2008) conducted both numerical limit analysis and Bishop’s simplified 

method using the software SLIDE (Rocscience 2006) to propose two new 

expressions of ߪଷ௠௔௫, where dependency on slope inclination is included: 
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Once the equivalent ܿ௘ and ߶௘ are obtained, the stability of slopes made of rock 

obeying the non-linear Hoek-Brown failure criterion can be assessed by the 

findings in Chapter 3. 

 

4.5 Variational approach, the combined method 

 

Baker and Garber (1978) presented a variational approach to assess the stability of 

slopes made of geomaterials obeying the Mohr-Coulomb failure criterion. Soon 

afterwards, Baker (1981) extended the formulations to account for presence of 

tension cracks. Baker and Frydman (1983), Zhang and Chen (1987) and Chen and 

Liu (1990) went on to extend the approach by investigating the stability of slopes 

made of geomaterials obeying a general non-linear failure criteria. In this section, 

the combined method proposed by Chen and Liu (1990) is modified and developed 

to consider cracked slopes made of rock obeying the non-linear Hoek-Brown 

failure criterion.  

It has been proven by variational calculus that the logarithmic spiral failure 

mechanism used in Chapter 3 and section 4.3 is the most critical failure surface for 

a rigid-body rotational sliding mechanism (Baker and Garber 1978; Chen 1975). 

However, this holds true only for geomaterials obeying the Mohr-Coulomb failure 

criterion. Fortunately, variational calculus is capable of solving the expression of 

most critical failure surface together with the stress distribution along it for a 

general non-linear failure criterion. For a slope with pre-existing cracks on its 

upper face, the geometry of the slope can be treated as an intact slope with extra 

weight of AEDF on the top (see Figure 4-8). Thus, the formulations given by Chen 

and Liu (1990) for intact slopes can be modified to evaluate the stability of cracked 

rock slopes for the Hoek-Brown failure criterion. 
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For an isotropic and homogeneous slope, a single rigid-body rotation along a 

surface of velocity discontinuity is considered. The generalized Hoek-Brown 

failure criterion (Hoek et al. 2002) can be written in terms of shear and normal 

stresses (see Eqs. (4-6) and (4-7)). By combining Eq. (4-6) and Eq. (4-7), yields: 
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Considering the equilibrium of the rock mass ABCDE shown in Figure 4-8, 

the total virtual work of the sliding mass is: 

 

 H V MQ uF vF F      (4-20) 

 

where ܨெ  is the resultant moment about the centre of rotation ܱ, ܨு ௏ܨ ,  are the 

resultant horizontal and vertical forces acting on the rigid body respectively. Ωሶ  is 

the rate of virtual rotation of the rigid body. ݑሶ  and ݒሶ  are the rates of horizontal and 

vertical virtual displacement to the reference point ܱ . The expressions for 

,ுܨ ,௏ܨ  :can be found in Chen and Liu (1990)	ெܨ
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with ݕሺݔሻ expressing the slip surface where ߬ ൌ ݂ሺߪሻ is satisfied. ߪሺݔሻ	ܽ݊݀	߬ሺݔሻ 

are normal and shear stress distribution along ݕሺݔሻ. 0ݔ  and ݊ݔ  are start and end 

coordinates of ݕሺݔሻ. ݕതሺݔሻ describes the slope surface.  

After rearranging, the total virtual work may be also written as: 
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According to the virtual work principle (Dym and Shames 1973), if a static 

equilibrium system is subjected to an arbitrary, kinematically admissible virtual 

displacement, the total virtual work done by both the external and internal force 

must be equal to zero. Then, the problem becomes a typical variational calculus 

issue: integral Q  is stationary when its first variation vanishes. The Euler 

differential equations are used to obtain the necessary conditions expressing the 

requirement of stationary: 
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where 
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    , 0G f        (4-29) 

 

Two necessary conditions for finding the most critical solution are given by Baker 

and Frydman (1983) and Chen and Liu (1990), which provide both the expressions 

for the failure mechanism and the stress distribution along it: 
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Eq. (4-31) can be rewritten as: 
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Eqs. (4-30) and (4-32) constitute a pair of differential equations for determining the 

most critical slip surface and its associated stress distribution. Using Eq. (4-19) and 

after solving the integral of Eq. (4-30), we obtain: 
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Referring to Eq. (4-7) and after rearranging (4-32), gives: 
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The position of the entry point of the failure surface D (ߠ଴) is a variable. According 

to Zhang and Chen (1987) , the transversality condition of point D can be 

expressed as: 
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The combined method proposed by Chen and Liu (1990) adopts both the 

characteristics of the failure mechanism and stress distribution derived from 

varational calculus and kinematic approach in limit analysis. The expressions for 

the failure mechanism and the stress distribution are given in Eqs. (4-33) and 

(4-34). The least upper bound is achieved by a minimization procedure. In the 

following, the expression for the stability factor using the combined method is 

derived. 
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Figure 4-8. Slope geometry and failure mechanism. 

 

The rate of external work due to the weight of rock of region ABCDE is 

computed the same way as that in section 3.1. ሶܹ ఊ is found in Eq. (3-2).   

The rate of the energy dissipation along CD is written as: 
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where ߬ is determined by Eqs. (4-19) and (4-34), ߪ is determined by Eqs. (4-7) and 

(4-34). 

Equating the rate of external work to the rate of energy dissipation, leads to: 
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with ଵ݂, ଶ݂, ସ݂, ௎݂ found in Eqs. (3-3)-(3-9). Dividing by ߱ and ݎ଴
ଶ and rearranging, 

the stability factor 
ఊு

ఙ೎೔
 is obtained: 
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The most critical failure mechanism is still determined by minimizing Eq. (4-38) 

over four variables: ߠ଴,  ௧ at the entry point of the failure mechanism߶ .ߟ ᇱ andߚ ,௛ߠ

depends on the transversality condition in Eq. (4-35). However, since ௗ݂ି௟௢௚
ᇱ  is 

written in the form of an integral, it has to be solved by using numerical integration. 

According to Chen and Liu (1990), it is worth noting that the proposed combined 

method combines both the upper-bound and lower-bound methods together. 

Kinematic constrains, yield criterion and equilibrium equations are all satisfied.  

 

4.6 Comparisons of results 

 

In order to make comparisons among the results obtained from the tangential 

technique, equivalent ܿ െ ߶	method and the variation approach, the critical heights 

of slopes in a same ground condition derived from all three methods are compared. 

The expressions of the critical heights are solved according to Eqs. (4-9), (3-14) 

and (4-38) in the following: 
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The equivalent cohesion	ܿ௘  corresponding to a given set of ݉௜, ,ܫܵܩ  is	௖௜ߪ and ܦ

used to replace ܿ	in Eq. (3-14). In addition, ߛ in Eqs. (4-40), (4-39) and (4-41) is 

assumed to be the same. Since ܿ௘ is dependent on the choice of slope height (in Eqs. 

(4-15), (4-17) and (4-18)), the critical height of ܪ௘௤ has to be solved by an iterative 

procedure. 

In Figure 4-9, slopes made of different rock type (݉௜ ൌ 5, 10, 20, 30; ܫܵܩ	 ൌ

20, 40, 60, 80, 100) are investigated. The corresponding equivalent ܿ௘	and ߶௘	are 

determined according to Hoek et al. (2002) (Eq. (4-15)) and Li et al. (2008) (Eqs. 

(4-17) and (4-18)) respectively. The most adverse pre-existing cracks are 

considered. The results of the critical heights (ܪ௧௔௡, ,௘௤ܪ ሻ	௏஺ܪ  against slope 

inclinations are plotted and compared. Although the difference among all three 

methods evolves with different rock parameters, it can be observed that the critical 

heights obtained by the variational approach ܪ௏஺	are always lower than those 

obtained by the tangential technique ܪ௧௔௡  since the tangent method leads to 

overestimate the strength of rock mass. The biggest different between ܪ௧௔௡  and 

௏஺ܪ  is 9.66% when ݉௜ ൌ 5, ܫܵܩ ൌ 20.  With the increase of rock strength, the 

difference becomes less. On the other hand, the largest gap between ܪ௘௤ (Li et al. 

2008) and ܪ௏஺  is 12.04%. The values of ܪ௘௤  obtained according to Hoek et al. 

(2002) tend to overestimate the critical heights. The overestimation compared with 

௏஺ܪ  can reach as high as 94.95% when ݉௜ ൌ 30, ܫܵܩ ൌ 100 . The difference 

among all three methods becomes less obvious when slope inclination increases. 

Thus, both the tangential technique and the equivalent ܿ െ ߶ method (Li et al. 2008) 

are good approximation to linearize Hoek-Brown failure envelope of the material, 

especially when slope inclination is high. These two methods are popular for their 

simplicity of use, while the applicability of the variational approach depends on the 
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types of the slope geometry and external loadings. The equivalent ܿ௘  and ߶௘ 

obtained from Hoek et al. (2002) are an overestimation of the strength of rock mass 

obeying the Hoek-Brown failure criterion for its independence on slope inclination 

and the adoption of the less rigorous Bishop circular slice method. 

 

 

(a) ݉௜ ൌ 5, ܫܵܩ ൌ 100, ܦ ൌ 0 
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(b) ݉௜ ൌ 10, ܫܵܩ ൌ 100, ܦ ൌ 0 

 

(c) ݉௜ ൌ 20, ܫܵܩ ൌ 100, ܦ ൌ 0 
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(d) ݉௜ ൌ 30, ܫܵܩ ൌ 100, ܦ ൌ 0 

 

(e) ݉௜ ൌ 5, ܫܵܩ ൌ 20, ܦ ൌ 0 
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(f) ݉௜ ൌ 5, ܫܵܩ ൌ 40, ܦ ൌ 0 

 

(g) ݉௜ ൌ 5, ܫܵܩ ൌ 60, ܦ ൌ 0 
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(h) ݉௜ ൌ 5, ܫܵܩ ൌ 80, ܦ ൌ 0 

Figure 4-9. Comparison among different methods. 

 

4.6 Blast-induced non-homogeneity in rock slopes 

 

Construction work (e.g., excavation and blasting) to create man-made slopes 

inevitably brings damage to the strength of geomaterials. In order to account for 

rock strength loss during construction, a disturbance factor ܦ  is defined in the 

Hoek-Brown failure criterion (see Eqs. (4-2) and (4-3)). It ranges from 0 for 

undisturbed in situ rock masses to 1 for very disturbed rock mass properties. In the 

previous section 4.1, a rock slope with a uniform ܦ is considered. Stability charts 

considering different disturbance level (ܦ ൌ ܦ ,0 ൌ 0.7 and ܦ ൌ 1.0) are provided 

in Figure 4-6.  In this section, the case of disturbance factor ܦ varying linearly 

according to the distance to the excavation face is investigated.  
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To the best of the author’s knowledge, due to the impact of different 

construction techniques, the quality of controlled blasting, the scale of overburden 

removal and the strength of the material, few studies have been able to unveil the 

distribution of the damage during a blasting excavation with general acceptance. It 

is suggested by Marinos et al. (2005) and Li et al. (2011) that disturbance factor ܦ 

decreases as a linear function of the distance from the exposed slope, which is 

adopted in this section.  

The disturbance coefficient ܦௗ  along the excavation face is assumed to be 

constant. The rock strength within the slope is somehow affected by blasting, but 

the damage is less compared with that on the excavation surface. The affected area 

due to blasting can be divided into three zones. In Zone 1, the disturbance factor ܦ 

varies linearly along the horizontal direction, from ܦௗ at the crest to ܦ௜ (the value 

for undamaged rock, in most cases ܦ௜ ൌ 0 ) at a distance of ܪ.  In Zone 2, the 

disturbance factor ܦ  varies linearly along a direction (
గ

ଶ
െ ߚ  to the horizontal), 

from ܦௗ on the slope face to ܦ௜ at a distance of ܪ from the slope profile. In Zone 3, 

the disturbance factor ܦ varies linearly with depth, from ܦௗ on the surface to ܦ௜ at 

the depth of ܪ ൈ cos	ߚ. 
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Figure 4-10. The distribution of disturbance coefficient ܦ in a non-homogeneous rock slope 

under blasting. 

 

To include in limit analysis the strength inhomogeneity of the rock mass, the 

disturbance coefficient at each angle along the potential failure line (determined by 

 :௛) are expressed asߠ and	଴ߠ
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where 
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The parameters for the Hoek-Brown failure criterion are no longer constant 

throughout the slope, but are functions of	ߠ. They can be written as: 
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where ݊ is defined in Eq. (4-4).  

The tangential technique is employed to calculate the stability factor for non-

homogenous rock slopes under blasting. The rate of the energy dissipation along 

the failure line ࡰ࡯෢  is:  
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Equating the rate of external work (defined in Eq. (3-2)) to the rate of energy 

dissipation, leads to:  
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Dividing by ߱ and ݎ଴
ଶ and rearranging, the stability factor considering the effect of 

blast-induced damage is obtained:  
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The least upper bound solution is obtained by minimizing Eq. (4-50). The most 

critical failure mechanism is still determined by four variables: ߠ଴, ௛ߠ  .ߟ ᇱ andߚ ,

Numerical integration is required to solve the integral in Eq. (4-50). 

In Figure 4-11, the stability factors corresponding to both uniform rock slopes 

( ܦ ൌ ܦ,0 ൌ 0.7, ܦ ൌ 1 ) and non-homogeneous rock slopes under blasting 

( ௜ܦ ൌ 0, ௗܦ ൌ 1 ) are plotted against different ݉௜  for slope inclinations ߚ ൌ

45°, 60°, 75°	and	90°. The stability factors of non-uniform slopes are bracketed 

between those of uniform slopes with ܦ ൌ 0.7 and ܦ ൌ 1. 
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(a) ߚ ൌ 45°, ܫܵܩ ൌ 50 (b) ߚ ൌ 60°, ܫܵܩ ൌ 50 

 

(c) ߚ ൌ 75°, ܫܵܩ ൌ 50 (d) ߚ ൌ 90°, ܫܵܩ ൌ 50 

Figure 4-11. Stability factors against ݉௜ for uniform and non-uniform (ܦ௜ ൌ 0, ௗܦ ൌ 1) 

slopes. 

 

Stability charts corresponding to different ݉௜  and various values of ܫܵܩ 

considering linearly varying disturbance factor (ܦ௜ ൌ 0, ௗܦ ൌ 1) are also provided 

in Figure 4-12. 
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(a) ߚ ൌ 45°, ௜ܦ ൌ 0, ௜ܦ ൌ 1 

 

(b) ߚ ൌ 60°, ௜ܦ ൌ 0, ௜ܦ ൌ 1 
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(c) ߚ ൌ 75°, ௜ܦ ൌ 0, ௜ܦ ൌ 1 

 

(d) ߚ ൌ 90°, ௜ܦ ൌ 0, ௜ܦ ൌ 1 

Figure 4-12. Stability charts for various rock types considering linearly varying disturbance 

factor. 
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4.7 Conclusions 

 

In this chapter, the stability of cracked slopes made of rock obeying the non-linear 

Hoek-Brown failure criterion was investigated using three methods (i.e., tangential 

technique, equivalent ܿ െ ߶  method and variational approach). In addition, the 

safety analyses of non-homogeneous slopes under blasting are studied. The 

following conclusions can be drawn: 

(a) The results obtained by the tangential technique are still upper bound 

solutions, which is an overestimation of the material strength and the safety of 

slopes. Compared with the more rigorous (both equilibrium equations and 

kinematic constraints are satisfied, see Chen and Liu 1990) variational approach, it 

is important to learn the difference of results between these two methods. It was 

reported by Drescher and Christopoulos (1988) that the adoption of the tangential 

technique only overestimates the stability factor of slopes made of geomaterials 

obeying the power-law failure criterion by less than 1%. However, it is illustrated 

in section 4.6 that the disparity between the tangential technique and the variational 

approach for the Hoek-Brown failure criterion can be as high as 9.66% when the 

rock mass is weak. Nevertheless, the application of the tangential technique is still 

an acceptable and convenient tool for evaluating the stability of slopes for the 

Hoek-Brown failure criterion. It is worth noting that the use of the equivalent 

ܿ െ ߶  method according to Li et al. (2008) yields satisfactory results, with the 

biggest difference being 12.04% for low ܫܵܩ values. 

(b) The minimization process in finding the least upper bound for the stability 

factor defined in Eqs. (4-9) and (4-50) has to be conducted under the constraint of 

െ
௦

௠
൏

ఙ

ఙ೎೔
൏ 1 to avoid unrealistic selection of ߶௧. However, Collins et al. (1988) 

and Yang et al. (2004) overlooked the constraint and arrived at some unrealistic 

results, e.g., Table II in Collins et al. (1988) and Table II in Yang et al. (2004). The 
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critical heights obtained from these two papers can be more than 50% less than 

those from Hoek et al. (2002) and Li et al. (2008).  

(c) The analytical upper bound formulation for rock slopes subject to blast-

induced damage (disturbance factor ܦ varying linearly according to the distance to 

the excavation face) was derived for the first time. 
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Chapter 5 Optimal Profiles of Slopes 

 

The optimal profile of a slope whose crest and toe are fixed points in space is 

investigated by means of the kinematic approach of limit analysis. The optimal 

profile is here defined as the shape corresponding to maximum stability, i.e., the 

stability factor of the optimal shape is the highest among any shape satisfying the 

set geometrical constraint imposed (the position of the toe and crest). With the 

discretization of slope profile, the stability factors of slopes of any arbitrary shapes 

are derived. Two different optimization algorithms, i.e., genetic algorithm and 

pattern search are employed for locating the optimal profile. The results obtained 

from the proposed kinematic formulation are compared with previous analytical 

solutions and validated through the displacement-based finite element method and 

finite element limit analysis. In addition, since the new upper bound formulation is 

capable of computing the stability factors of slopes of any arbitrary shape, the 

stability of a slope whose shape is varying during excavation process can be 

assessed. Moreover, the influence of the presence of pre-existing cracks, non-

homogeneity and anisotropy of the ground on the optimal profiles is studied. 

Finally, the optimal profiles corresponding to slopes made of rock obeying the 

Hoek-Brown failure criterion are investigated. Special consideration is given in the 

discussion to the blast-induced damage. 

 

5.1 Introduction 

 

In nature, slopes present different shapes, such as concave, convex and S-shaped 

profiles (see Figure 5-1). In a variety of geotechnical problems concerning slope 

stability such as the design of embankments and open cast mines, man-made slopes 

are excavated. It is important to optimize the shape of slope profile in order to 
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maximize slope stability under certain geometry constraints. For instance, when the 

allowable height (ܪ) and width (ܮ) of an excavation are assigned, i.e., slope crest 

and toe are fixed points, the planar profile AC (see Figure 5-2) is widely adopted in 

engineering practice, but it has been proved not to be the best one in terms of 

stability (Hoek and Bray 1981; Utili and Nova 2007; Jeldes et al. 2013; Jeldes et al. 

2014).  

There is limited literature about the stability of non-planar slopes.  Jenike and 

Yen (1962) presented the results of slope stability analyses in axial symmetry using 

the slip-line theory formulated by Sokolovskiĭ (1960). They found out that S-

shaped critical profiles are able to describe the theoretical failure shape. Hoek and 

Bray (1981) argued for plain strain slopes that concave slopes are more stable than 

convex slopes. However, they did not produce any detailed investigation to 

underpin their claim.  

Considering logarithmic spiral curves only, Utili and Nova (2007) derived a 

new upper bound limit analysis formulation to compute the external work made by 

the weight of a double logarithmic spiral shaped soil region sliding away. The 

optimal logarithmic spiral profiles were determined by maximizing the stability 

factor 
ఊு

௖
. Compared with slopes with planar profile, the percentage of increase 

provided by the best spiral in terms of stability factor can reach as high as 30.5% 

(depending on the ground properties).  

Theoretical and experimental findings (such as Stefano et al. 2000, Rieke-

Zapp and Nearing 2005) seem to indicate that slopes of concave profiles are more 

capable of resisting erosion. Therefore, based on the optimal profiles found for 

weightless and frictionless slopes by Sokolovskiĭ (1960) and Sokolovskii (1965), 

Jeldes et al. (2013) and Jeldes et al. (2014) derived an approximate solution for 

slopes with 0<ߛ and ߶ ൐ 0 to determine the geometry of optimal concave slopes, 
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having restricted the choice of slope profiles to a certain class compatible with the 

slip line method requirements (see Sokolovskii, 1965). 

The above studies attempted to find the best slope profile among certain pre-

determined classes of shapes, but none of them considered the more general and 

fundamental problem of determining the optimal profile of a slope of any arbitrary 

shape. Moreover, the analyses of previous authors are limited to some restricted 

slope features. This is the first study to systematically attempt to find the most 

stable slope shape for various geometrical constraints and ground properties.  

In this chapter, the optimal profile of a slope is investigated by means of the 

kinematic approach of limit analysis. The slope is treated as a continuum obeying 

the Mohr-Coulomb failure criterion (soil slope) or the Hoek-Brown failure criterion 

(rock slope). By discretizing the slope face into several linear piece-wise points, 

slopes of any arbitrary profiles can be examined (see Figure 5-3). Two global 

optimization techniques, i.e., genetic algorithm and pattern search are adopted to 

search for the optimal profile.  

 

 

(a) A concave slope in Canada 
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(b) Wave rock (convex slope) in Perth, Western Australia 

 

(c) A S-shaped slope in Rio de Janeiro, Brazil  

Figure 5-1. Slopes of different shapes. 
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Figure 5-2. Different slope profiles under given geometry constraints. 

 

5.2 Upper bound formulation for a slope of an arbitrary 

profile 

 

In the following, the upper bound formulation for a slope of an arbitrary profile 

under the constraint of fixed crest and toe is specified. By fixing these two points, 

the average slope inclination ߚ ൌ ݊ܽݐܿݎܽ
ு

௅
 is prescribed. No other geometrical 

constraint on the slope profile is imposed. The stability factor, defined as 
ఊு

௖
	, 

corresponding to a given slope of an arbitrary shape is determined by the 

discretization of the slope profile. In Figure 5-3, the rectangle region of ABCD is 

discretized into ࢔	horizontal rows. For each horizontal line ܯ௜ܳ௜ , a nodal point 

௜ܲ 	lies between ܯ௜ and ܳ௜. ݇௜ is here defined as
 
 ݇௜ ൌ

௉೔ொ೔
ெ೔ொ೔

ൌ
௉೔ொ೔
௅

, with 0 ൑ ݇௜ ൑ 1, 

݅ ൌ 1,2,3…݊ ൅ 1. ݇௜ gives the relative position of	 ௜ܲ on ܯ௜ܳ௜ and can be regarded 

as the coordinate of ௜ܲ  on ܯ௜ܳ௜ . Slope profile ࡯࡭෢   is represented by piecewise 

linearization through all the nodal points ௜ܲ  on each horizontal line ܯ௜ܳ௜ . By 

increasing ࢔, the discretization of the slope profile becomes more refined. In order 
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to seek the optimal profile, under the constraint of fixed crest and toe, by changing 

݇௜ on each horizontal line, slopes with different shapes are to be examined. Among 

all candidate profiles, the optimal one provides the highest stability, which 

corresponds to the largest stability factor having fixed ground properties. 

Considering the slope under investigation is made of a homogeneous rigid 

perfectly plastic continuum, obeying the Mohr-Coulomb failure criterion, the mass 

ࡱࡲ࡯࡭  rigidly sliding away about the centre of rotation ࡻ , the validity of the 

normality flow rule of the material is assumed to hold true and ࡲࡱ෢ 	is assumed to be 

a logarithmic spiral failure line. It is important to point out that the logarithmic 

spiral failure line is the most critical failure mechanism within the framework of 

the kinematic approach of limit analysis regardless of slope shapes (Chen 1975, 

Baker and Garber 1978, Baker and Frydman 1983, Zhang and Chen 1987). The 

following geometrical relationships are obtained according to Figure 5-3: 
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where ߶ is the friction angle at failure, ܮ଴ is the length of AE. The rate of work 

done by the weight of ࡱࡲ࡯࡭ is calculated as the work done by the fictitious weight 

of the region ࡲࡱࡻ ( ଵܹሶ ) minus the work done by the fictitious weight of the regions 

OEA ( ଶܹሶ ) ࡯࡭ࡻ ,( ଷܹ,௡ሶ ) and OCF ( ସܹሶ ). Therefore, the total rate of external work 

due to the material weight is expressed as: 

 

  3
1 2 3, 4 0 1 2 3, 4=n nW W W W W r f f f f              (5-5) 

 

The expressions of ଵܹሶ  and ଶܹሶ  are found in Chen (1975), and here only the final 

expressions are given: 
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where γ is the unit weight of the ground material, ω is the angular velocity of the 

sliding mass. Considering the region of OFC, the rate of external work is 

calculated by:  

 

 

 

4 4 0 4

3 0
0 0

0 0

0
0

0 0 0

3
0 4 0

1 1
sin sin

6 tan tan tan

   2cos 2 cos
tan tan

, ,   

G

h

W x x A

LH H
r

r r

L H H

r r r

r f

 

  
  

 
 

   

 

  
       

 
     





  (5-8) 

 



122 
 

where ீݔସ and ݔ଴ are the horizontal coordinates of the gravity center of the soil 

region and the center of rotation ࡻ respectively. ܣସ is the area of OCF. 

With the discretization of the slope profile ࡯࡭෢ , the rate of work ଷܹ,௡ሶ  is 

divided into n segments (see Figure 5-3). Each of them can be expressed in terms 

of the coordinates of ௜ܲ and ௜ܲାଵ. ଵܲ is point A and ௡ܲାଵ	is point C. In a Cartesian 

coordinate system with ࡻ as its origin, the coordinates of ௜ܲ 	and ௜ܲାଵ	are written as 

௜ܲሺ݈௜ܿߠݏ݋௜, ݈௜ߠ݊݅ݏ௜ሻ and ௜ܲାଵሺ݈௜ାଵܿߠݏ݋௜ାଵ, ݈௜ାଵߠ݊݅ݏ௜ାଵሻ, with  
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The area of a segment ܱ ௜ܲ ௜ܲାଵ is expressed as: 
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Then the rate of work done by the weight of ࡯࡭ࡻ is obtained as the summation of 

each segment: 
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where ீݔ௜ is the horizontal coordinate of the gravity centre of each segment.  

For planar slopes, ଷܹ,௡ሶ  becomes: 
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Figure 5-3. Slope shape discretization and failure mechanism.

 
 

The rate of internal energy dissipation along the logarithmic spiral ࡲࡱ෢  has 

been calculated by Chen (1975): 
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Equating the rate of external work to the rate of energy dissipation, leads to: 
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Dividing by ߱  and ݎ଴
ଶ  and rearranging, the upper bound on the stability 

factor	ܰெି஼	of a slope of any arbitrary profile is obtained: 

 

 log

1 2 3, 4

d H
M C

n

f fH
N

c f f f f

 



 

  
  (5-16) 

 

The least upper bound is found as the minimum value of Eq. (5-16) which has to be 

determined by evaluating repeatedly Eq. (5-16) over the three geometric variables 

,଴ߠ ௛ and ߠ  . The most critical logarithmical spiral failure mechanism is the one 

associated to be the least upper bound. 

So far, it has been implicitly assumed that the logarithmic spiral failure line 

passes through or below the slope toe. But for a slope of a non-planar profile, the 

most critical failure mechanism may pass above the slope toe (see Figure 5-4). In 

this case, each nodal point ௜ܲ 	can be regarded as a potential slip toe of a sub-slope 

whose height ih is shorter than the total height ܪ . The most critical failure 

mechanism for the entire slope is then determined by finding the minimum value of  

ܰெି஼,ௌ௨௕ ∙
ு

ு೔
 among all the potential above-toe failure mechanisms, with ܰெି஼,ௌ௨௕ 

the stability factor of sub-slope ଵܲ పܲ෢ . For each potential failure mechanism, 

ܰெି஼,ௌ௨௕ is calculated by using Eq. (5-16) and replacing ܪ with ܪ௜. Note that the 

corresponding inclination ߚ௜  and ݇௜
ᇱ  of the sub-slope ଵܲ పܲ෢  must be updated 

according to the coordinate of the potential slip toe ௜ܲ:  
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Figure 5-4. Failure mechanism passing above slope toe. 

 

5.3  Optimization algorithms to determine the optimal 

profile  

 

The shape of any arbitrary profile is represented by the coordinates of the nodal 

points ௜ܲ (see Figure 5-3). The coordinates of ௜ܲ are determined by the number of 

rows (࢔) the rectangle area of ABCD is discretized into and the relative position	݇௜. 

In searching of the optimal profile, by changing the values of ݇௜  of each nodal 

point ௜ܲ along the horizontal line, different shapes can be evaluated. Among all the 

candidate profiles, the optimal one providing the highest stability is sought. For 

each candidate profile to be evaluated, it can be mathematically expressed by an 

array: ࡼ ൌ ሾ݊, ݇ଵ, ݇ଶ, ݇ଷ …݇௜ሿ. ݇ଵ, ݇ଶ, ݇ଷ …݇௜  are variables to be optimized. The 
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optimal profile searching process is then transformed into a typical optimization 

problem. The objective function to be maximized is the stability factor defined in 

Eq. (5-16). The optimization process proceeds to find a profile that provides the 

maximum stability factor among all the available ones:  

 

  max M CN  P   (5-19) 

 

where ܰெି஼  is the stability factor defined in Eq. (5-16).  It is worth noting that for 

each candidate profile, the stability factor of the slope has to be sought by a 

minimization process according to the upper bound theorem. Thus, finding the 

optimal profile for a given 
ு

௅
 is a minimization-maximization process. The 

constraints for this optimization problem are given by prescribing that each nodal 

point ௜ܲ stays in the rectangle area of ABCD, i.e., 0 ൑ ݇௜ ൑ 1. Moreover, in order 

to exclude some physically infeasible profiles, ݇௜ ൒ ݇௜ାଵ , ݅ ൌ 1,2,3, … ݊  (see 

Figure 5-5). Thus, the constrained maximization can then be expressed as: 
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The objective function of the stability factor is highly nonlinear due to the 

presence of several products between exponential and trigonometric functions. 

Hence traditional gradient-type optimization methods such as gradient descent and 

conjugate gradient (Hestenes and Stiefel 1952) are not suited to this type of 

function. In these methods, an initial trial/guess value is needed. Suitable values are 

difficult to determine. Using these methods, local maximum/minimum close to the 

initial guess value employed may be found instead of the global 

maximum/minimum (Chen and Shao 1988, Cheng et al. 2007c).  
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Figure 5-5. Selection of feasible profiles. 

 

Global optimization methods are powerful tools to search for the most critical 

failure surface within the framework of limit equilibrium. As summarized in Cheng 

and Lau (2014), there are six global optimization methods, i.e., simulated annealing 

algorithm (Cheng 2003, Cheng 2007), genetic algorithms (McCombie and 

Wilkinson 2002), particle swarm algorithm (Cheng et al. 2007b), Tabu search 

algorithm (Cheng et al. 2007c), harmony search algorithm (Cheng et al. 2008) and 

ant colony algorithm (Kahatadeniya et al. 2009, Gao 2014). According to Cheng et 

al. (2007c), no single method can outperform all the other methods under all 

scenarios, and a genetic algorithm is considered to be an efficient approach when 

the system variables are less than 20. In this chapter, genetic algorithm and pattern 

search were selected as the global optimization algorithms to determine the optimal 

profile, since they exhibit a proven track record in slope stability analyses: e.g., 

genetic algorithm being employed by McCombie and Wilkinson (2002), Zolfaghari 

et al. (2005), Sun et al. (2008), Li et al. (2010), Jurado-Piña and Jimenez (2015) 

and pattern search by Mo et al. (1999). In addition, these two algorithms are 

already implemented in the Optimization Toolbox of MATLAB R2014b 
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(Mathworks 2014). In the following, the main principles underpinning these two 

methods are illustrated briefly.  

Genetic algorithm (GA) is derived from Darwin’s theory of survival of the 

fittest. The algorithm starts with a set of possible solutions called the “population”. 

Each possible solution within the “population” is called a “chromosome”. A new 

chromosome outgrows its predecessor and evolves to be a fitter chromosome (fitter 

means a higher value of the objective function is found). This evolution is repeated 

until the best chromosome representing the optimal solution is found when some 

termination criteria are met. The genetic algorithm is the most widely adopted 

method in determining the critical slip surfaces in the literature and the flowchart 

of the algorithm is provided in Figure 5-6. 

Pattern search (PS) is a direct search method which does not require any 

information about the gradient of the objective function. At each step, the 

algorithm looks for a set of solutions, called a mesh, around the current solution 

(the solution computed at the previous step). The mesh is formed by adding the 

current solution to a scalar multiple of a set of vectors called a pattern. If the 

pattern search algorithm finds a solution in the mesh that improves the objective 

function, the new solution becomes the current solution for the next step of the 

algorithm. The flowchart for the pattern search algorithm is illustrated in Figure 

5-7.  
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Figure 5-6. Flowchart for genetic algorithm. 

 

 

Figure 5-7. Flowchart for pattern search (MATLAB R2014b). 

 



130 
 

The optimization parameters for the applications of genetic algorithm and 

pattern search are listed in Table 5-1. For the sake of simplicity, here the case of 

horizontal upper slope (ߙ ൌ 0) is considered. To obtain the results reported here, 

parallel optimization was performed on an 8-core workstation (CPU: Xeon 5110, 

RAM: 16GB). Optimizations were run for various discretizations of the slope 

profile. As may be expected, the accuracy of the result increases with the number 

of piecewise segments ݊ employed to discretize the profile. It turns out that the 

improvement of results becomes less than 1% for ݊ ൐ 20, as shown in Figure 5-8. 

Therefore to keep the computation time within reasonable limits, ݊ ൌ 20  was 

adopted as a standard discretization. 

 

Table 5-1. Optimization parameters for genetic algorithm and pattern search. 

Genetic Algorithm 
Parameters Description Value 

CrossoverFraction The fraction of the population at the next generation, not including elite 
children. 

0.8 

EliteCount Positive integer specifying how many individuals in the current 
generation are guaranteed to survive to the next generation. 

10 

Generations Positive integer specifying the maximum number of iterations before the 
algorithm halts 

100݊ 

PopulationSize Size of the population 200 
StallGenLimit Positive integer. The algorithm stops if the average relative change in 

the best fitness function value over StallGenLimit generations is less 
than or equal to TolFun. 

50 

TolFun Positive scalar. The algorithm stops if the average relative change in the 
best fitness function value over StallGenLimit generations is less than or 

equal to TolFun. 

10ି଺ 

Pattern Search 
Parameters Description Value 
InitialMeshSize Initial mesh size for pattern algorithm 1.0 
MaxFunEvals Maximum number of objective function evaluations 2000݊ 

MaxIter Maximum number of iterations 100݊ 
MeshContraction Mesh contraction factor, used when iteration is unsuccessful 0.5 
MeshExpansion Mesh expansion factor, expands mesh when iteration is successful 2.0 

TolFun Tolerance on function, stop if both the change in function value and the 
mesh size are less than TolFun 

10ି଺ 
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(a) 
ு

௅
ൌ tan 75° , ߶ ൌ 20° 

 

(b) 
ு

௅
ൌ tan 30° , ߶ ൌ 20° 

Figure 5-8. Influence of number of rows (݊) on results, based on genetic algorithm. The 

difference in stability factor ܰெି஼ is defined as ቀ1 െ
ேಾష಴ሺ௡ሻ

ேಾష಴ሺ௡ିଵሻ
ቁ ൈ 100%. 

 

In Table 5-2, the optimization results obtained by using both genetic algorithm 

and pattern search for different values of ܮ/ܪ and friction angle ߶ are presented 

and compared. For the selection of the employed parameters, the recommended 

default values in MATLAB R2014b were adopted (see Table 5-1). Values of the 

parameters other than the recommended default values were also examined, but the 

difference in results is less than 1%. The planar profile is selected as the 
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initial/guess profile to initiate the optimization process in pattern search. The 

results from both algorithms are almost identical to each other and the difference is 

within 1% in terms of both the stability factors (defined in Eq. (5-16)) and 

coordinates of nodal points ௜ܲ. 

 

Table 5-2–Comparison of the optimal profiles obtained using genetic algorithm and pattern 

search, ߙ ൌ 0° 

ܪ 
ܮ
ൌ tan	75° 

߶ ൌ 40°

ܪ
ܮ
ൌ tan 75° 

߶ ൌ 30°

ܪ
ܮ
ൌ tan 75° 

߶ ൌ 20°
 GA PS GA PS GA PS 

݇ଶଵ 0.000 0.000 0.000 0.000 0.000 0.000 

݇ଶ଴ 0.122 0.121 0.147 0.146 0.178 0.178 

݇ଵଽ 0.239 0.238 0.286 0.285 0.342 0.342 

݇ଵ଼ 0.351 0.351 0.417 0.417 0.493 0.493 

݇ଵ଻ 0.458 0.458 0.538 0.538 0.630 0.630 

݇ଵ଺ 0.559 0.559 0.649 0.649 0.754 0.754 

݇ଵହ 0.654 0.653 0.752 0.751 0.862 0.861 

݇ଵସ 0.741 0.740 0.848 0.847 0.948 0.948 

݇ଵଷ 0.822 0.822 0.926 0.926 1.000 1.000 

݇ଵଶ 0.898 0.898 0.976 0.976 1.000 1.000 

݇ଵଵ 0.957 0.956 1.000 0.999 1.000 1.000 

݇ଵ଴ 0.988 0.988 1.000 1.000 1.000 1.000 

݇ଽ 1.000 1.000 1.000 1.000 1.000 1.000 

଼݇ 1.000 1.000 1.000 1.000 1.000 1.000 

݇଻ 1.000 1.000 1.000 1.000 1.000 1.000 

݇଺ 1.000 1.000 1.000 1.000 1.000 1.000 

݇ହ 1.000 1.000 1.000 1.000 1.000 1.000 

݇ସ 1.000 1.000 1.000 1.000 1.000 1.000 

݇ଷ 1.000 1.000 1.000 1.000 1.000 1.000 

݇ଶ 1.000 1.000 1.000 1.000 1.000 1.000 

݇ଵ 1.000 1.000 1.000 1.000 1.000 1.000 

ܰெି஼ 17.8041 17.8014 11.7492 11.7465 8.4105 8.4102 

ܪ 
ܮ
ൌ tan	60° 

߶ ൌ 40°

ܪ
ܮ
ൌ tan 60° 

߶ ൌ 30°

ܪ
ܮ
ൌ tan 60° 

߶ ൌ 20°
 GA PS GA PS GA PS 

݇ଶଵ 0.000 0.000 0.000 0.000 0.000 0.000 

݇ଶ଴ 0.010 0.011 0.026 0.025 0.047 0.046 

݇ଵଽ 0.022 0.023 0.083 0.083 0.083 0.083 

݇ଵ଼ 0.050 0.049 0.179 0.178 0.224 0.223 

݇ଵ଻ 0.095 0.094 0.283 0.282 0.371 0.371 
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݇ଵ଺ 0.197 0.199 0.378 0.378 0.488 0.488 

݇ଵହ 0.313 0.311 0.466 0.466 0.586 0.586 

݇ଵସ 0.418 0.416 0.552 0.552 0.679 0.679 

݇ଵଷ 0.507 0.505 0.635 0.635 0.764 0.764 

݇ଵଶ 0.585 0.582 0.712 0.712 0.838 0.838 

݇ଵଵ 0.656 0.658 0.782 0.782 0.902 0.901 

݇ଵ଴ 0.727 0.724 0.845 0.845 0.960 0.960 

݇ଽ 0.788 0.787 0.902 0.902 0.998 0.998 

଼݇ 0.838 0.834 0.953 0.953 1.000 1.000 

݇଻ 0.883 0.881 0.988 0.988 1.000 1.000 

݇଺ 0.926 0.923 1.000 1.000 1.000 1.000 

݇ହ 0.952 0.955 1.000 1.000 1.000 1.000 

݇ସ 0.974 0.975 1.000 1.000 1.000 1.000 

݇ଷ 0.987 0.986 1.000 1.000 1.000 1.000 

݇ଶ 0.995 0.993 1.000 1.000 1.000 1.000 

݇ଵ 1.000 1.000 1.000 1.000 1.000 1.000 

ܰெି஼ 41.5634 41.5602 21.8677 21.8654 12.9896 12.9879 

ܪ 
ܮ
ൌ tan	45° 

߶ ൌ 40°

ܪ
ܮ
ൌ tan 45° 

߶ ൌ 30°

ܪ
ܮ
ൌ tan 45° 

߶ ൌ 20°
 GA PS GA PS GA PS 

݇ଶଵ 0.000 0.000 0.000 0.000 0.000 0.000 

݇ଶ଴ 0.015 0.017 0.013 0.013 0.008 0.008 

݇ଵଽ 0.054 0.052 0.035 0.032 0.020 0.020 

݇ଵ଼ 0.097 0.099 0.102 0.100 0.052 0.052 

݇ଵ଻ 0.154 0.151 0.170 0.171 0.119 0.118 

݇ଵ଺ 0.210 0.207 0.229 0.230 0.225 0.225 

݇ଵହ 0.269 0.267 0.288 0.287 0.342 0.342 

݇ଵସ 0.335 0.331 0.359 0.358 0.437 0.437 

݇ଵଷ 0.394 0.399 0.434 0.434 0.524 0.525 

݇ଵଶ 0.475 0.470 0.505 0.505 0.602 0.602 

݇ଵଵ 0.538 0.534 0.572 0.572 0.684 0.684 

݇ଵ଴ 0.601 0.603 0.638 0.638 0.761 0.761 

݇ଽ 0.658 0.654 0.702 0.702 0.829 0.829 

଼݇ 0.713 0.717 0.763 0.764 0.888 0.888 

݇଻ 0.764 0.760 0.822 0.823 0.937 0.937 

݇଺ 0.811 0.815 0.878 0.877 0.976 0.976 

݇ହ 0.855 0.857 0.927 0.927 1.000 1.000 

݇ସ 0.896 0.898 0.968 0.970 1.000 1.000 

݇ଷ 0.934 0.938 0.997 1.000 1.000 1.000 

݇ଶ 0.969 0.965 1.000 1.000 1.000 1.000 

݇ଵ 1.000 1.000 1.000 1.000 1.000 1.000 

ܰெି஼ 198.044 198.039 49.6545 49.6515 22.4191 22.4175 
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5.4  Results and comparisons 

 

In Figure 5-10, the optimal profiles obtained by genetic algorithm corresponding to 

various assigned values of 
ு

௅
 and ߶ are plotted. For steep slopes with 

ு

௅
ൌ  ,°75݊ܽݐ

the optimal profiles turn out to be entirely concave for low ߶ values (see Figure 

5-10 (a),(b) ). Instead, for slopes with 
ு

௅
ൌ  and °60݊ܽݐ

ு

௅
ൌ  the optimal ,°45݊ܽݐ

profiles exhibit both a concave and a convex part. These profiles look different 

from those obtained in Utili and Nova (2007) and Jeldes et al. (2013), which 

assume the optimal profiles to be completely concave. A more detailed 

investigation of the geometrical properties of the optimal profiles can be found in 

the following sections (5.6 and 5.7).  

The stability factors defined in Eq. (5-16) for slopes of both planar and 

optimal profiles are also reported in Figure 5-10.  Compared with the planar slopes, 

there is a significant increase in terms of the stability factor of the optimal slopes. 

In order to have quantitative measurements, the percentage of increase of the 

stability factor is defined as ൬
ே೚೛೟೔೘ೌ೗

ே೛೗ೌ೙ೌೝ
െ 1൰ ൈ 100, with ௣ܰ௟௔௡௔௥  and ௢ܰ௣௧௜௠௔௟  the 

stability factors of planar and optimal slopes respectively. The percentage of 

increase is plotted against ߚ  for ߶ ൌ 20°, 30°  and 40°  in Figure 5-11. The 

percentage of increase rises from 0 corresponding to the case of vertical slope to a 

maximum value and then drops to 0 for 
ு

௅
 approaching ݊ܽݐ߶. In both cases (i.e., 

vertical slope and 
ு

௅
ൌ  the optimal profiles coincide with planar profiles. In ,(߶݊ܽݐ

fact, ߚ ൌ 90°	ܽ݊݀	߶ are singular cases for the optimization process where physical 

considerations alone suffice to conclude that no non-linear profile can outperform 

the linear (planar) one. The maximum value of the percentage in Figure 5-11 can 

reach up to 49% when ߶ ൌ 40°, ߚ ൌ 65°. 
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The obtained optimal profiles are superior to the optimal logarithmic spiral 

profiles found by Utili and Nova (2007) in all the cases considered. The percentage 

of increase of the stability factor on the optimal logarithmic spiral profiles of  Utili 

and Nova (2007) are plotted in Figure 5-11(b). The maximum value of the 

percentage in Figure 5-11(b) climbs up to 25% when ߶ ൌ 40°, ߚ ൌ 65°.  

Jeldes et al. (2013) and Jeldes et al. (2014) proposed an approximate solution 

to define the geometry of concave slope based on slip-line field method. The 

obtained concave profiles can be expressed analytically as: 

 

     
0                                                                  0

( )
1 csc 1 cot csc 1          0

crh y
x y

A y B c B y   

            
  (5-21) 

 

where  

 

 
 
cos

2 1 sin
A


 




  (5-22) 

 

 1 sin
ln 1

cot 1 sin

y
B

c

 
 

  
     

  (5-23) 

 

The directions of ݔ and ݕ is illustrated in Figure 5-9. According to Jeldes et al. 

(2013), the obtained optimal concave profile consists of a vertical tension crack 

zone whose height is assumed to be: 

 

 
2 cos

(1 sin )cr

c
h


 




  (5-24) 
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Figure 5-9. Optimal concave profile according to Jeldes et al. (2013). 

 

The stability factor of the optimal concave profile is then found as: 

 

 
( )cr

concave

h y
N

c

 
   (5-25) 

 

In all cases considered the optimal profiles here found are superior to the profiles 

determined by Jeldes et al. (2013). In Figure 5-11(c), the increase of the stability 

factor in percent of the obtained optimal profiles over the ones from Jeldes et al. 

(2013) is plotted. The maximum percentage is as high as 26% when ϕ =40°, β=60°. 

Note that the profiles from Utili and Nova (2007) are marginally better than the 

ones from Jeldes et al. (2013). The advantage of optimal slopes in improving the 

stability factor is more prominent for high friction angles cases in Figure 5-11. 

 



137 
 

   

(a) 
ு

௅
ൌ ߶ ,°75݊ܽݐ ൌ 20° (b) 

ு

௅
ൌ ߶ ,°75݊ܽݐ ൌ 30° (c) 

ு

௅
ൌ ߶ ,°75݊ܽݐ ൌ 40° 

  

(d) 
ு

௅
ൌ ߶ ,°60݊ܽݐ ൌ 20° (e) 

ு

௅
ൌ ߶ ,°60݊ܽݐ ൌ 30° (f) 

ு

௅
ൌ ߶ ,°60݊ܽݐ ൌ 40° 
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(g) 
ு

௅
ൌ ߶ ,°45݊ܽݐ ൌ 20° (h) 

ு

௅
ൌ ߶ ,°45݊ܽݐ ൌ 30° (i) 

ு

௅
ൌ ߶ ,°45݊ܽݐ ൌ 40° 

Figure 5-10. Optimal profiles for ܿ െ ߶ slopes corresponding to different assigned 
ு

௅
 and 

friction angles. 

 

 

(a) Increase of stability factor over traditional planar profiles
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Figure 5-11. Increase of stability factor in percent for the obtained optimal profiles over the 

corresponding planar, optimal log-spiral and optimal concave profiles. Case (a): increase of 

stability factor over traditional planar profiles calculated as ൬
ே೚೛೟೔೘ೌ೗

ே೛೗ೌ೙ೌೝ
െ 1൰ ൈ 100 , with 

௣ܰ௟௔௡௔௥ and ௢ܰ௣௧௜௠௔௟ the stability factors of planar and optimal slopes respectively; Case 

 

(b) Increase of stability factor over optimal log-spiral profiles (Utili and Nova 2007) 

 

(c) Increase of stability factor over optimal concave profiles (Jeldes et al. 2013) 
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(b): increase of stability factor over optimal log-spiral profiles calculated as ൬
ே೚೛೟೔೘ೌ೗

ே೗೚೒షೞ೛೔ೝೌ೗
െ

1൰ ൈ 100 , with ௟ܰ௢௚ି௦௣௜௥௔௟  being the stability factor of the optimal logarithmic spiral 

profile: Case (c): increase of stability factor over optimal concave profiles calculated as 

ቀ
ே೚೛೟೔೘ೌ೗

ே೎೚೙೎ೌೡ೐
െ 1ቁ ൈ 100 , with ௖ܰ௢௡௖௔௩௘  being the stability factor of the optimal concave 

profile. 

 

5.5  Validation by numerical analyses 

 

Let us recall that the obtained results are based on the upper bound theorem of limit 

analysis, which provide by definition an overestimation of the slope stability. 

Therefore, it is desirable to investigate the stability of the optimal profiles found by 

the analytical approach described using other methods such as the numerical 

lower/upper bound limit analysis and displacement-based finite element method 

with strength reduction technique. The software Optum G2 (OptumCE 2013) was 

used for numerical finite element limit analysis while Phase 2 (Rocscience 2015) 

for finite element analyse with strength reduction technique. The input values of 

Optum G2 and Phase2 are given in Table 5-3 and mesh discretization techniques 

employed in the two types of software are illustrated in Figure 5-12. 

Finite element lower bound and upper bound results of the stability factors 

obtained from Optum G2 are listed in Table 5-4. For all the optimal profiles found 

in the previous section 5.4, comparing the analytical findings corresponding to 

different values of ߚ  and friction angles, the biggest difference, defined as 

ቀ ேೆಳ
ேಷಶಽಳ

െ 1ቁ ൈ 100, is around 6%, with ிܰா௅஻ being the stability factor obtained 

from finite element lower bound analysis and ௎ܰ஻  the analytical stability factor 

defined in Eq. (5-16).  
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Additionally, we may note that the upper bound theorem is based on the 

assumption of an associative flow rule (i.e. dilatancy angle ߰ ൌ ߶). However, in 

reality, the dilatancy angle ߰ varies within the range 0 ൑ ߰ ൏ ߶. In this section, 

the stability of optimal slopes is examined by shear strength reduction technique 

via Phase 2. Elastoplastic analyses following both associative flow rule (߶ ൌ ߰, as 

assumed in limit analysis) and non-associative flow rule (߰ ൌ
థ

ସ
) were conducted 

and compared. Slopes were discretized into uniform 6 noded triangular meshes. 

The results obtained from the stability factors are given in Table 5-5. The analytical 

upper bound solution provides an estimate very close to the collapse value from the 

finite element method. The influence of dilatancy on the results is small (less than 

5%).  

In Figure 5-13, yielded elements (× points) within the slope of both planar and 

optimal profiles on the verge of failure are exhibited for different inclinations 

ߚ) ൌ 45°, 60°, 75°) using Phase 2. Having the same material strength, the area of 

yielded elements within optimal slopes is notably much larger than that within the 

planar slopes, which means the ground strength is better utilized in the optimal 

slopes. 

 

Table 5-3. Input values in Optum G2 and Phase2. 

Unit Weight 19 ߛ ݇ܰ/݉ଷ 
Young’s Modulus 3000 ܽܲܯ 
Poisson’s Ratio 0.3 
Slope Height 20 ܪ ݉ 

Cohesion ܿ ఊு

ேಾష಴
   (ܰெି஼ is defined in Eq. (5-16)) 

Mesh Density (see Figure 5-12) Adaptive (Optum G2) 
Approximately 50/݉ଶ (Phase 2) 
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(a) Optum G2 

 

(b) Phase 2 

Figure 5-12. Mesh discretization. 

 

Table 5-4. Validation with finite element limit analysis (Optum G2). 

β 75° 70° 

ɸ ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇ ൈ 100% ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100%

20° 8.12 8.26 8.41 3.55% 9.25 9.45 9.61 3.85% 
25° 9.66 9.82 9.98 3.37% 11.16 11.31 11.53 3.31% 
30° 11.30 11.53 11.75 3.86% 13.60 14.00 14.25 4.70% 
35° 13.91 14.07 14.27 2.62% 17.09 17.36 17.58 2.87% 
40° 17.08 17.47 17.80 4.23% 22.74 23.29 23.76 4.60% 
β 65° 60° 

ɸ ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100% ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100%

20° 10.70 10.94 11.13 4.01% 12.45 12.76 12.98 4.25% 
25° 13.11 13.48 13.74 4.77% 15.82 16.29 16.64 5.22% 
30° 16.64 17.25 17.46 4.99% 20.78 21.42 21.87 5.21% 
35° 21.87 22.30 22.68 3.68% 28.55 29.29 29.86 4.57% 
40° 30.57 31.66 32.20 5.33% 39.47 40.87 41.56 5.45% 
β 55° 50° 

ɸ ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100% ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100%

20° 14.57 15.03 15.29 5.00% 17.27 17.81 18.28 5.80% 
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Table 5-5. Validation by displacement-based finite element method with strength reduction 

technique (Phase 2). 

 

25° 19.32 19.82 20.22 4.67% 24.37 25.00 25.70 5.45% 
30° 26.52 27.33 27.80 4.96% 35.01 36.11 37.02 5.57% 
35° 36.78 38.03 38.89 5.73% 59.26 61.09 62.62 5.67% 
40° 52.65 54.31 55.67 5.74% 80.74 82.47 85.56 5.97% 
β 45° 40° 

ɸ ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100% ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100%

20° 21.28 21.91 22.42 5.22% 26.50 27.27 27.91 5.13% 
25° 32.52 33.44 34.20 5.17% 47.73 49.10 50.27 5.32% 
30° 46.94 48.57 49.65 5.77% 69.56 71.87 73.57 5.77% 
35° 89.10 91.01 93.29 5.90% 112.57 116.06 119.30 5.98% 
40° 186.79 192.40 198.04 6.02%     
β 35° 30° 

ɸ ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100% ிܰா௅஻ ிܰா௎஻ ௎ܰ஻ ቆ
ܤܷܰ
ܤܮܧܨܰ

െ1ቇൈ100%

20° 32.71 33.72 34.53 5.55% 45.44 46.90 48.20 6.08% 
25° 79.30 81.32 83.54 5.34% 128.52 131.78 136.39 6.12% 
30° 149.40 153.11 158.20 5.89%     

ிܰா௅஻  ---- Stability factor (finite element lower bound) 
ிܰா௎஻  ---- Stability factor (finite element upper bound) 

௎ܰ஻  ---- Stability factor (defined in Eq. (5-16)) 
ߚ݊ܽݐ ൌ    ܮ/ܪ

ɸ --- friction angle 

β= 75° ɸ =20° ɸ =25° ɸ =30° ɸ =35° ɸ =40° 

௎ܰ஻ థܰୀట
ி.ா  థܰୀ

ଵ
ସట

ி.ா  
௎ܰ஻ థܰୀట

ி.ா  థܰୀ
ଵ
ସట

ி.ா
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா  
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா

8.41 
8.16 
3.1% 

8.06 
4.3% 

9.98 
9.66 
3.2% 

9.49 
4.9%

11.75
11.35
3.4%

11.23
4.5%

14.27
14.21
0.4%

14.07 
1.4% 

17.80 
17.61
1.1%

17.30
2.9% 

β= 60° ɸ =20° ɸ =25° ɸ =30° ɸ =35° ɸ =40° 

௎ܰ஻ థܰୀట
ி.ா  థܰୀ

ଵ
ସట

ி.ா  
௎ܰ஻ థܰୀట

ி.ா  థܰୀ
ଵ
ସట

ி.ா
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா  
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா

12.98 
12.72 
2.0% 

12.63 
2.8% 

16.64 
16.68 
0.2% 

16.39
1.5%

21.87
22.43
2.6%

21.85
0.2%

29.86
29.83
0.1%

29.26 
2.0% 

41.56 
42.47
2.2%

41.11
1.1% 

β= 45° ɸ =20° ɸ =25° ɸ =30° ɸ =35° ɸ =40° 

௎ܰ஻ థܰୀట
ி.ா  థܰୀ

ଵ
ସట

ி.ா  
௎ܰ஻ థܰୀట

ி.ா  థܰୀ
ଵ
ସట

ி.ா
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா  
௎ܰ஻ థܰୀట

ி.ா
థܰୀ

ଵ
ସట

ி.ா

22.42 
22.49 
0.3% 

22.05 
1.7% 

34.20 
34.54 
1.0% 

34.10
0.3%

49.65
50.89
2.5%

50.20
1.1%

93.29
95.90
2.8%

94.97 
1.8% 

198.04 
203.39
2.7%

200.81
1.4% 

β= 30° ɸ =20° ɸ =25° 
థܰୀట
ி.ா   ---- Stability factor (FE SSR technique following associative flow rule) 

థܰୀ
భ
ర
ట

ி.ா   ---- Stability factor (FE SSR technique following non-associative flow rule)

௎ܰ஻  ---- Stability factor (defined in Eq. (5-16)) 
tanβ=H/L 

ɸ --- friction angle 

௎ܰ஻ థܰୀట
ி.ா  థܰୀ

ଵ
ସట

ி.ா  
௎ܰ஻ థܰୀట

ி.ா  థܰୀ
ଵ
ସట

ி.ா

48.20 
48.92 
1.5% 

48.39 
0.4% 

136.39 
139.80 
2.5% 

138.16
1.3%
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(a) ߚ ൌ 45°, ߶ ൌ 20°, optimal slope 

 

(b) ߚ ൌ 45°, ߶ ൌ 20°, planar slope 
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(c) ߚ ൌ 60°, ߶ ൌ 30°, optimal slope 

 

(d) ߚ ൌ 60°, ߶ ൌ 30°, planar slope 
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(e) ߚ ൌ 75°, ߶ ൌ 40°, optimal slope 

 

(f) ߚ ൌ 75°, ߶ ൌ 40°, planar slope 

Figure 5-13. Yielded elements at failure for slopes of planar and optimal profiles. 
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5.6 Study of the geometrical and physical properties of the 

optimal profile 

 

The advantage of finding the optimal profiles is illustrated above to show their 

capacity to increase the stability factor by up to 49%. In terms of geometry, the 

optimal profile exhibits both a concave and a convex part, see Figure 5-14. The 

convex part vanishes when the assigned value of 
ு

௅
 is high or friction angle is small. 

In Figure 5-15, the optimal profiles of slopes with various assigned values of  
ு

௅
 

corresponding to friction angles ߶ ൌ 20° and 40° are reported. The curved bold 

lines represent the concavity/convexity inflexion point of each optimal profile, 

whose equations are obtained by 3rd order polynomial fit.  

The excavation area ܣ௘௫ of a man-made slope is the shaded region in Figure 

5-14(a). So far the optimal and planar profiles have been compared given the same 

average slope inclination (ߚ ൌ ݊ܽݐܿݎܽ
ு

௅
). Instead, in Figure 5-16, ܣ௘௫/ܪଶ  is 

plotted against the stability factor ܰெି஼  defined in Eq. (5-16) for both planar and 

optimal slopes corresponding to friction angles ߶ ൌ 20°, 30° and 40°. The average 

slope inclination of an optimal slope is always higher than that of a planar slope, 

given the same stability factor. The amount of ground excavated away for the 

optimal profile can be as little as 50% of that for a planar profile when ߶ ൌ

40°,
ு

௅
ൌ   .°70݊ܽݐ
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(a) excavated area ܣ௘௫ (b) convex/concave areas ܣ௖௢௡௩௘௫/ܣ௖௢௡௖௔௩௘ 

Figure 5-14. Concavity and convexity of the optimal profile. 

 

 

(a) ߶ ൌ 20° 
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(b) ߶ ൌ 40° 
Figure 5-15. Optimal profiles for various assigned 

ு

௅
 and concavity/convexity inflexion 

point curves. 

 

 

(a) ߶ ൌ 20° 
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(b) ߶ ൌ 30° 

 

(c) ߶ ൌ 40° 

Figure 5-16. Excavation area against the stability factor ܰெି஼ (× indicates the vertical 
profile). 

 

In Figure 5-17, the area of the concave part plus the area of the convex part 

௖௖ܣ) ൌ ௖௢௡௖௔௩௘ܣ ൅ ௖௢௡௩௘௫ܣ , as shown in Figure 5-14 (b)), is plotted against ߚ 

corresponding to ߶ ൌ 20°, 30° and 40°. ܣ௖௖ starts from 0 for ߚ ൌ ߶ to a maximum 
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value and then decreases to 0 for ߚ ൌ 90°. This area represents the amount of 

ground to be excavated to re-profile a planar slope into an optimal profile 

maintaining the average slope inclination. In section 5.7, it will be shown that this 

type of re-profiling may well be enough to stabilize planar slope showing signs of 

distress (impending failure). In addition, the length of the concave part of the 

optimal profile over the total length of the profile is plotted against ߚ in Figure 

5-18, from which the average inclination corresponding to when the optimal profile 

becomes entirely concave can be obtained. 

Since the shapes of the optimal profiles are highly non-linear, it is necessary to 

abstract some key geometric parameters of the optimal profiles for practical use in 

excavation design. To this end, the following variables can be employed: ݖ௩ (the 

vertical distance starting from slope crest), uh (the horizontal distance from the 

midpoint of ܦܣതതതത  to the optimal profile), lh (the horizontal distance from the 

midpoint of ܥܦതതതത to the optimal profile) and ݔ௉ூ/ݕ௉ூ (horizontal/vertical coordinates 

of inflexion point ܥ ,ܦ as the origin), as illustrated in Figure 5-19. Table 5-6~Table 

5-8 list the five key geometric parameters of the optimal profiles for different 

values of   corresponding to ߶ ൌ 20°, 30°	and	40°.  

 

  

Figure 5-17. Area of concave part plus convex part against ߚ.  
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Figure 5-18. Length of concave part over length of the entire profile against ߚ. 

 

 

Figure 5-19. Key geometric parameters of an optimal profile. 

 

Table 5-6. Geometric parameters defining the optimal profiles, for soil slope of  ߶ ൌ 20° 

 ߚ
௩ݖ
ܪ

 
௉ூݔ
ܪ

 
௉ூݕ
ܪ

 uh

H
  lh

H
 

75° 0.600 0.000 0.000 1.850 0.000 
70° 0.525 0.000 0.000 1.375 0.000 
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65° 0.475 0.150 0.050 0.975 0.050 
60° 0.425 0.300 0.150 0.700 0.100 
55° 0.375 0.500 0.250 0.500 0.175 
50° 0.300 0.475 0.325 0.350 0.175 
45° 0.225 0.450 0.375 0.250 0.175 
40° 0.150 0.375 0.400 0.175 0.100 
35° 0.100 0.300 0.425 0.100 0.050 
30° 0.050 0.250 0.450 0.050 0.025 

 

Table 5-7. Geometric parameters defining the optimal profiles, for soil slope of ߶ ൌ 30° 

 ߚ
௩ݖ
ܪ

 
௉ூݔ
ܪ

 
௉ூݕ
ܪ

 uh

H
  lh

H
 

75° 0.500 0.000 0.000 1.675 0.000 
70° 0.400 0.275 0.000 1.175 0.150 
65° 0.300 0.425 0.125 0.800 0.225 
60° 0.275 0.425 0.225 0.525 0.300 
55° 0.200 0.575 0.325 0.350 0.350 
50° 0.150 0.475 0.375 0.250 0.225 
45° 0.100 0.400 0.425 0.150 0.150 
40° 0.025 0.325 0.450 0.100 0.100 

 

Table 5-8. Geometric parameters defining the optimal profiles, for soil slope of ߶ ൌ 40° 

 ߚ
௩ݖ
ܪ

 
௉ூݔ
ܪ

 
௉ூݕ
ܪ

 uh

H
  lh

H
 

75° 0.300 0.000 0.000 1.575 0.000 
70° 0.250 0.350 0.125 1.025 0.150 
65° 0.125 0.600 0.250 0.700 0.325 
60° 0.075 0.550 0.300 0.425 0.400 
55° 0.025 0.500 0.350 0.275 0.225 
50° 0.000 0.450 0.400 0.175 0.125 

 

5.7 Applications of the optimal slope 

5.7.1. Safety monitoring during excavation 
 

The analytical formulation described in section 5.2 can be used to calculate the 

stability factors of slopes of any arbitrary shapes. For instance, for slopes with 

ு

௅
ൌ °45݊ܽݐ  and ߶ ൌ 20°, the shapes of different circular slopes are plotted in 

Figure 5-20 (a). The corresponding stability factors (defined in Eq. (5-16)) of 
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different circular slopes are plotted against their radii in Figure 5-20 (b). Hoek and 

Bray (1981) investigated the stability of circular slopes; however, they did not 

tackle optimality, i.e. which one is optimal. The optimal circular profile (having the 

highest stability factor) is determined in Figure 5-20 (b).  

 

 

(a) different circular slopes 

 

(b) stability factor against radius of curvature, ߶ ൌ 20°,
ு

௅
ൌ tan45° 
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Figure 5-20. Optimal circular profile.  

 

In the case of man-made slope excavation, since the slope profile varies with 

the excavation steps, it is important to monitor the evolving stability status during 

the whole construction period. The stability factor of the excavated part is here 

defined as ܰெି஼ሺܪ௜ሻ
ு೟೚೟ೌ೗
ு೔

, with ܰெି஼  the stability factor defined in Eq. (5-16). 

 is the final excavation height to be	௧௢௧௔௟ܪ is the current excavation height and	௜ܪ

undertaken. In Figure 5-21, the stability factors of engineered slopes of the optimal 

logarithmic spiral profile (Utili and Nova 2007), the optimal concave profile 

(Jeldes et al. 2013), the optimal circular profile and the optimal profile are plotted 

against excavation steps 
ு೔

ு೟೚೟ೌ೗
. The optimal slope is the one providing the highest 

stability. 

 In Figure 5-22, the stability factors of the excavated part are plotted against 

ு೔
ு೟೚೟ೌ೗

 for different values of 
ு

௅
 and friction angles ߶ from the start until the end of 

excavation. It merges that the stability factor of an optimal slope tends to remain 

almost constant after reaching a critical excavation depth, which is one of the key 

features of the optimal profile. However, it should be noted that the calculated 

value ܰெି஼
ு೟೚೟ೌ೗
ு೔

 may increase during the excavation process in some cases when 

the failure line daylighting above the excavation toe point.  
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Figure 5-21. Slope stability factor of the excavated part of profile against excavation step. 

 

 
(a) ߶ ൌ 20° 
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(b) ߶ ൌ 30° 

 
(c) ߶ ൌ 40° 

Figure 5-22. Stability factor of the excavated part of profile during excavation for various 

friction angles and values of 
ு

௅
. 

 

5.7.2. Re-profiling/profiling a slope to maximize the factor of safety 
 

In the design of engineered slopes, often there are unavoidable space constraints 

(see Figure 5-23). It is desirable to find the optimal profile providing the maximum 

factor of safety for a slope of assigned 
ு

௅
  and prescribed ground strength properties 

(cohesion ܿ௚ and friction angle ߶௚). In Figure 5-24, each point corresponds to a 

different optimal profile found for the assigned 
ு

௅
 and ߶ .  

௖

ఊு
 is plotted against 

߶݊ܽݐ  by the least square polynomial function fitting. The trend line function 
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௖

ఊு
ൌ ݃ሺ݊ܽݐ߶ሻ  and coefficient of determination ܴଶ  of each curve is reported 

alongside. 

The maximum factor of safety can be determined via a graphic method. For 

example, in Figure 5-24, ܯ is the point known corresponding to the values of ܿ௚ 

and ߶௚ of the ground material. ܣ is the unknown point to be found on the curve for 

ߚ ൌ 45° in Figure 5-24. According to the definition of the factor of safety in Eq. 

(3-22), i.e. the same factor applied on both cohesion and internal ߶: 

 

 
tan (tan )

tan (tan )
g g g

f f f

c g
F

c g

 
 

     (5-26) 

 

where ௙ܿ  and ߶௙  are cohesion and internal friction angle at failure, ݃  being the 

trend line function. 

The graphic interpretation of Eq. (5-26) is written as follows: 

  

 
AC AD

ME MF
   (5-27) 

 

After rearranging Eq. (5-26), ݊ܽݐ߶௙ is obtained: 

 

 
(tan )

tan tan
(tan )

f
f g

g

g

g


 


   (5-28) 

 

Note that there is some approximation in finding the maximum factor of safety 

according to Eqs. (5-26) and (5-28) due to the use of interpolation functions used. 

If needed, a more accurate result can be obtained by running a search for the 

optimal profile corresponding to the ߶௙ and assigned 
ு

௅
 obtained from Eq. (5-28). 

In this case, the error on the maximum factor of safety due to interpolation can be 
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estimated by the difference between 
௖೑
ఊு

 and the value found after determining the 

exact optimal profile: 

  

 1 100%f M C
r

c N
E

H
     (5-29) 

 

with ܰெି஼  being the stability factor defined in Eq. (5-16). 

Sometimes for the sake of space and minimization of material to be excavated, 

the maximum inclination ߚ௠௔௫  of a man-made slope is sought for a prescribed 

factor of safety. This problem can also be solved by using the chart in Figure 5-24.  

 ܤ ௠௔௫ can be obtained by interpolation measuring the distance from pointߚ

 ,௙߶݊ܽݐ)
௖೑
ఊு

 ) to the adjacent two curves (corresponding to two	ߚ values) along the 

direction indicated by the unit vector ሬ݊Ԧ (ߠ ൌ ݊ܽݐܿݎܽ
௖೑

ఊு௧௔௡థ೑
 to the horizontal, see 

Figure 5-24). Then in order to find the shape of the optimal profile, an optimization 

has to be run prescribing ߶௙ and ߚ௠௔௫. The value of 
௖

ఊு
 obtained can be slightly 

different from 
௖೑
ఊு

 because of the use of interpolation. The difference between these 

two values provides a measure of the approximation/error introduced when 

interpolating functions are employed. 

 

 

Figure 5-23. A slope under constraints (Utili 2015). 
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Figure 5-24. 
௖

ఊு
 against ݊ܽݐ߶ by interpolation. 

 

5.8  The effect of the presence of pre-existing cracks on soil 

slopes 

 

In Chapter 3 and Chapter 4, the effect of the presence of cracks has been 

investigated for planar slopes. It turns out that the presence of cracks reduces the 

stability factor significantly. In this section, the influence of the presence of pre-

existing cracks on the stability of optimal slopes and how the optimal profiles 

should be modified to be still optimal when cracks are present is examined. 

In Figure 5-25, considering the presence of pre-existing crack GH, the 

following geometrical relationships are found: 
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 
 

 
     0

0

0
tan

0

sin

sin

cos
sin sin

sin cos
c

c

c
c

c
c

c

L r

e   

 
 

    
  



  
    

        

  (5-30) 

 

      0tan
0 0

1
sin sin

cos
c

cr e       


        (5-31) 

 

with ܮ௖ the length of AG and ߜ being the crack depth. 

 

  

Figure 5-25. Failure mechanism for a slope subject to a pre-existing crack. 

 

Considering the block ࡳࡴࡲ࡯࡭ rigidly rotating away about a centre of rotation 

 the remaining part is bounded by a crack GH and a logarithmic spiral failure ,ࡻ

surface ܪܨ෢ . The rate of external work due to the weight of region ࡳࡴࡲ࡯࡭  is 

computed as the work done by region ࡱࡲࡻ minus the work of region OEA, region 

 ࡴࡱࡳ And the rate of external work for region .ࡴࡱࡳ region OFC and region ,࡯࡭ࡻ

is the result of work done by ࡴࡱࡻ subtract OEG and OGH.  ଵܹ,ሶ   ଶܹሶ , ଷܹ,௡ሶ , ସܹሶ , 
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ହܹሶ , ଺ܹሶ , and ଻ܹሶ  indicate the work done by ࡱࡲࡻ, OEA, ࡯࡭ࡻ, OFC, ࡴࡱࡻ, OEG 

and OGH respectively. ଵܹሶ , ଶܹ,ሶ ଷܹ,௡ሶ , ସܹሶ  are given in Eqs. (5-6), (5-7), (5-12), 

(5-8). ହܹሶ , ଺ܹሶ , and ଻ܹሶ  are calculated by Utili (2013) and are written as follows:  

 

 

   
 

 

03tan
0 03

5 0 2

3
0 5 0

3tan cos sin 3tan cos sin

3 1 9 tan

,

c

c c

c

e
W r

r f

        




  

   





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  (5-32) 
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
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  (5-34) 

 

Internal energy is dissipated only along the spiral ࡲࡴ෢ . The rate of the energy 

dissipation is expressed as: 
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  (5-35) 

 

Equating the rate of external work to the rate of energy dissipation leads to: 

 

  3 2
0 1 2 3, 4 5 6 7 log 0 logn d dW r f f f f f f f W c r f                (5-36) 

 

After rearranging, the stability factor of a slope of an arbitrary profile considering 

the presence of cracks is derived: 
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 log

1 2 3, 4 5 6 7

d H

n

f fH

c f f f f f f f

  


     
  (5-37) 

 

The least upper bound is minimized over all possible values of ߠ଴, ,௛ߠ ௖ andߠ    of 

engineering interests. In the following calculation, the case of horizontal upper 

slope (ߙ ൌ 0) and the most adverse pre-existing cracks are considered. 

The optimal profiles of cracked slopes are obtained by the genetic algorithm 

described in section 5.3. The objective function to be maximized is the stability 

factor defined in Eq. (5-37). In Figure 5-26, the optimal profiles considering the 

presence of pre-existing cracks corresponding to various values of 
ு

௅
 and friction 

angles are presented. The optimal profiles of intact slopes are also plotted in Figure 

5-26 as reference. The presence of cracks alters the shape of the optimal profiles in 

such a way that the profile near the crest is no longer vertical but becomes sub-

vertical. This is because the presence of cracks makes the upper part of the slopes 

more prone to failure. From the results obtained, it emerges that the presence of 

cracks reduces the improvement given by adopting an optimal profile over a planar 

one. For instance, for intact slopes, optimal profiles increase the stability factors by 

up to 39% (
ு

௅
ൌ tan 45° , ߶ ൌ 20°) and 27% (

ு

௅
ൌ tan	75°, ߶ ൌ 40°) over planar 

ones. However, if the presence of cracks is considered, the optimal profiles of 

cracked slopes can only improve the stability factor by 36% (
ு

௅
ൌ tan 45° , ߶ ൌ 20°) 

and 11% (
ு

௅
ൌ tan75°	, ߶ ൌ 40°) in comparison with cracked planar slopes, less 

than the improvement in the intact case. 
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(a) 
ு

௅
ൌ ,°75݊ܽݐ ߶ ൌ 40° (b) 

ு

௅
ൌ ,°75݊ܽݐ ߶ ൌ 20° 

 

(c) 
ு

௅
ൌ ,°60݊ܽݐ ߶ ൌ 40° (d) 

ு

௅
ൌ ,°60݊ܽݐ ߶ ൌ 20° 
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(e) 
ு

௅
ൌ ,°45݊ܽݐ ߶ ൌ 40° (f) 

ு

௅
ൌ ,°45݊ܽݐ ߶ ൌ 20° 

 

(g) 
ு

௅
ൌ ,°30݊ܽݐ ߶ ൌ 20° 

Figure 5-26. Optimal profiles for cracked slopes. 

 

5.9  The effect of non-homogeneity and anisotropy of the 

ground on optimal slopes 

 

In practice, slopes are excavated in different ground conditions. In this section, the 

influence of ground strength anisotropy and spatial non-homogeneity in the vertical 

direction on the optimal profiles is investigated, using the methodology presented 

in section 3.4. The stability factor ܰெି஼  defined in Eq. (5-16) is extended to 

accommodate the different expressions for the energy dissipation along the failure 
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surface caused by the spatially varying cohesion (according to Eq. (3-73)) and is 

rewritten as: 

 

 
 1 2 3

1 2 3, 4

H

n

q q q fH

c f f f f

   


  
  (5-38) 

 

where ݍଵ~ݍଷ are defined in Eqs. (3-64) ~ (3-66). 

Optimal profiles accounting for ground non-homogeneity and anisotropy are 

determined by the genetic algorithms described in section 5.3. The objective 

function to be maximized is the stability factor defined in Eq. (5-38). In Figure 

5-28, the optimal profiles corresponding to four different cases of linearly varying 

cohesion (see Figure 5-27 (b), ݊଴ ൌ 0, 0.25, 0.5, 0.75) and uniform cohesion within 

soil slopes are illustrated. Comparing slopes featured by the same value of ߶, but 

different spatial distributions of cohesion, it emerges that the optimal profiles for 

all cases are similar to each other. In other words, the optimal profiles obtained in 

section 5.3 are applicable to slopes made of non-homogenous and anisotropic 

materials, which is another important characteristic of optimal profiles. It appears 

that  the shapes of optimal profiles are predominately governed by the ground 

internal friction angle rather than the spatially distribution of cohesion. 
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Figure 5-27. Spatial distribution of cohesion varying linearly with depth. 

 

 

(a) general case

 

(b) five typical cases of spatial distribution of cohesion.
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(a) 
ு

௅
ൌ ,°75݊ܽݐ ߶ ൌ 40° (b) 

ு

௅
ൌ ,°75݊ܽݐ ߶ ൌ 20° 

  

(c) 
ு

௅
ൌ ,°60݊ܽݐ ߶ ൌ 40° (d) 

ு

௅
ൌ ,°60݊ܽݐ ߶ ൌ 20° 
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(e) 
ு

௅
ൌ ,°45݊ܽݐ ߶ ൌ 40° (f) 

ு

௅
ൌ ,°45݊ܽݐ ߶ ൌ 20° 

 

(g) 
ு

௅
ൌ ,°30݊ܽݐ ߶ ൌ 20° 

Figure 5-28. Optimal profiles in non-homogenous and anisotropic grounds for various 
ு

௅
 

and ߶. Five typical cases of spatial distributions correspond to those in Figure 5-27 (b). 

 

5.10 The optimal profiles of slopes made of rock obeying the 

Hoek-Brown failure criterion 

 

In this section, the continuum equivalent approach is employed to characterize rock 

slopes obeying the Hoek-Brown failure criterion. Using the tangential technique 

described in section 4.3, the stability factor of a rock slope of any arbitrary profile 
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is obtained by extending the solutions corresponding to the Mohr-Coulomb failure 

criterion. Referring to Eqs.(5-16) and (4-8), the stability factor of a rock slope is 

defined as: 
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 (5-39) 

 

where ߶௧ is the dip angle of the tangent to the Hoek-Brown failure envelope in 

ሺ߬,  .and ݊ are material parameters defined in Eqs. (4-2)-(4-4) ݏ ,݉ .ሻ stress spaceߪ

 .௖௜ is the uniaxial compression strength for intact rock. The minimization of Eqߪ

(5-39) is now carried out over the same valuables as in Eq. (5-16) with the addition 

of ߶௧. 

The optimal profiles of slopes made of rock obeying the Hoek-Brown failure 

criterion are obtained by the genetic algorithm described in section 5.3. The 

objective function to be maximized is the stability factor defined in Eq. (5-39). In 

Figure 5-29, the shapes of the optimal profiles with various assigned 
ு

௅
 are present. 

How the optimal profiles evolve with different rock types is illustrated in Figure 

5-29. Compared with soil slopes in section 5.4, the optimal profiles of rock slopes 

present similar trends. For steep slopes made of weak rock with 
ு

௅
ൌ  the ,°75݊ܽݐ

optimal profiles turn out to be all concave in the cases of (a) ~ (c) in Figure 5-29. 

However, for all other cases, the optimal profiles exhibit both a concave and a 

convex part. The stability factors defined in Eq. (5-39) for slopes of both the planar 

and the optimal profiles are reported in Figure 5-29 as well. Compared with the 
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planar slopes, there is a significant increase in terms of the stability factor. The 

percentage of increase is plotted against ߚ corresponding to different values of ݉௜ 

and ܫܵܩ in Figure 5-30 and Figure 5-31. The percentage of increase rises from 0 

which corresponds to vertical slopes to a maximum value, and then drops. The 

maximum value of the percentage in Figure 5-30 can reach up to 55% when 

݉௜ ൌ 26.2, ܫܵܩ ൌ 100, ߚ ൌ 60°. 

 

  

(a) 
ு

௅
ൌ ,°75݊ܽݐ ܫܵܩ ൌ 20 (b) ு

௅
ൌ ,°75݊ܽݐ ܫܵܩ ൌ 60 (c) ு

௅
ൌ ,°75݊ܽݐ ܫܵܩ ൌ 100 
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(d) ு
௅
ൌ ,°60݊ܽݐ ܫܵܩ ൌ 20 (e) ு

௅
ൌ ,°60݊ܽݐ ܫܵܩ ൌ 60 (f) ு

௅
ൌ ,°60݊ܽݐ ܫܵܩ ൌ 100 

  

(g) ு
௅
ൌ ,°45݊ܽݐ ܫܵܩ ൌ 20 (h) ு

௅
ൌ ,°45݊ܽݐ ܫܵܩ ൌ 60 (i) ு

௅
ൌ ,°45݊ܽݐ ܫܵܩ ൌ 100 

Figure 5-29. Optimal profiles of different rock slopes with different assigned 
ு

௅
. 
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Figure 5-30. Percentage of increase of stability factor against ߚ for different values of ݉௜, 

ܫܵܩ ൌ 100. 

 

 

Figure 5-31. Percentage of increase of stability factor against ߚ for different values of ܫܵܩ, 

݉௜ ൌ 7.3. 

 



174 
 

5.11  The effect of blast-induced damage on rock slopes 

 

In geotechnical problems involving man-made slope excavations such as open cast 

mine, rock slopes are routinely excavated with controlled blasting, which 

inevitably causes damage to the rock strength. In this section, the optimal profiles 

of slopes made of rock obeying the Hoek-Brown failure criterion subjected to 

blast-induced damage are investigated. Recalling section 4.3, the tangential 

technique is employed. 

Consistent with the assumptions adopted in section 4.6, the disturbance 

coefficient ܦௗ  along the excavation face is assumed to be constant. The rock 

strength of each point within the rock mass is assumed to vary linearly proportional 

with its distance to the excavation face (Marinos et al., 2005; Li et al., 2011). The 

spatial distribution of the blast-induced damage in the rock is illustrated in Figure 

5-32. The affected area due to blasting can be divided into three zones. In Zone 1, 

the disturbance factor ܦ varies linearly along the horizontal direction, from ܦௗ at 

the crest to ܦ௜ (the value for undamaged rock, in most cases ܦ௜ ൌ 0 ) at a distance 

of ܪ.  In Zone 2, the disturbance factor ܦ varies linearly along a direction (
గ

ଶ
െ  to ߚ

the horizontal), from ܦௗ on the slope face to ܦ௜ at a distance of ܪ from the slope 

profile. In Zone 3, the disturbance factor ܦ varies linearly with depth, from ܦௗ on 

the surface to ܦ௜ at the depth of ܪ ൈ cos	ߚ. 

To include the non-homogeneity of rock strength within slopes caused by 

blasting in the limit analysis upper bound approach, the disturbance coefficient at 

each angle along the potential failure surface (governed by ߠ଴	and ߠ௛, see Figure 

5-32) can be expressed as: 
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  (5-40) 

 

where ݕሺߠሻ  and ݔሺߠሻ  are defined in Eqs. (4-43) and (4-44) respectively. ܲሺߠሻ 

represents the geometry of the optimal profile in the polar coordinates with ࡻ as its 

center.  

 

  

Figure 5-32. The distribution of the disturbance coefficient ܦ in a non-homogeneous rock 

slope subjected to blasting. 
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For rock slopes subjected to blasting, the material parameters obeying the 

Hoek-Brown failure criterion are no longer constants within the slope but vary 

with	ߠ. They are written as follows: 
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where ݊ is defined in Eq. (4-4).  

The rate of the energy dissipation along the failure line ࡰ࡯෢  is:  
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Equating the rate of external work (written in Eq. (5-5)) to the rate of energy 

dissipation, leads to:  
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Dividing by ߱ and ݎ଴
ଶ and rearranging, the stability factor of rock slopes of any 

arbitrary profile subjected to blast-induced damage is obtained: 
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The optimal profiles of slopes made of material obeying the Hoek-Brown 

failure criterion drilled  by blasting are obtained by the genetic algorithm described 

in section 5.3. The objective function to be maximized is the stability factor 

defined in Eq. (5-46). In Figure 5-33, the optimal rock slopes with different 

assigned values of 
ு

௅
 are present. The disturbance coefficients along the failure 

surface are provided as reference. It turns out that blast-induced damage can 

significantly reduce the stability factor and alter the shape of the optimal profile. 

For example, for a rock slope whose 
ு

௅
ൌ ௜݉ ,°45݊ܽݐ ൌ ܫܵܩ ,7.3 ൌ ௜ܦ ,50 ൌ 0 and 

ௗܦ ൌ 1, the stability factor defined in Eq. (5-46) is only 39% of a slope excavated 

without blasting. 

 

 

(a) 
ு

௅
ൌ ௜݉,°75݊ܽݐ ൌ 7.3: limestone (b) 

ு

௅
ൌ ௜݉,°75݊ܽݐ ൌ 26.2: granite 
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(c) 
ு

௅
ൌ ௜݉,°60݊ܽݐ ൌ 7.3: limestone (d) 

ு

௅
ൌ ௜݉,°60݊ܽݐ ൌ 26.2: granite 

 

(e) 
ு

௅
ൌ ௜݉,°45݊ܽݐ ൌ 7.3: limestone 
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(f) 
ு

௅
ൌ ௜݉,°45݊ܽݐ ൌ 26.2: granite 

Figure 5-33. Optimal profiles of rock slopes under blasting. ܫܵܩ ൌ 50, ௜ܦ ൌ 0, ௗܦ ൌ 1. 

 

5.12 Conclusions 

 

In this chapter, arbitrary slope profiles are represented by piecewise lines between 

nodal points determined by an equally spaced discretization along the horizontal 

direction. Under the constraint of fixed crest and toe, genetic algorithm and pattern 

search were adopted for locating the optimal profile among all possible candidate 

profiles. The following conclusions can be drawn: 

(a) Previous literature (e.g., Utili and Nova 2007, Jeldes et al. 2013) searched 

for the optimal profile among concave types of slopes. From this study instead, it 

turns out that the optimal profiles of ܿ െ ߶ slopes exhibit both a concave and a 

convex part. In comparison with the traditional planar profiles, the percentage of 

increase of the stability factor can reach up to 49%. In addition, given the same 

stability factor, the average slope inclination of an optimal slope is always higher 
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than that of a planar slope. The amount of ground excavated for the optimal profile 

can be as little as 50% of that for a planar profile. 

(b) For all the average slope inclinations considered, the optimal slopes turn 

out to be better than the optimal logarithmic spiral slopes (Utili and Nova 2007) 

and the optimal concave slopes (Jeldes et al. 2013 and Jeldes et al. 2014) in terms 

of their stability. This can be explained by the fact that for the first time the search 

for the optimal shape is not constrained to any particular class of shapes. 

(c) Potential overestimation of slope stability due to use of a semi-analytical 

approach to assess the slope stability factor based upon upper bound limit analysis, 

and the assumption of associative flow rule were examined. The error is estimated 

within 6% according to the validations performed by finite element limit analysis 

and displacement-based finite element method with strength reduction technique.  

(d) The geometrical properties of the optimal profiles including the average 

inclination corresponding to when the convex part of an optimal profile vanishes 

are investigated. Key geometric parameters to abstract the highly non-linear 

optimal profiles are provided. The area of yielded elements (in finite element 

strength reduction modelling) within optimal slopes is much larger than that within 

the planar slopes, which means the ground strength is better utilized in optimal 

slopes. 

(e) Since the new upper bound formulation is capable of computing the 

stability factors of slopes of any arbitrary shape, the stability of the profile to be 

excavated can be monitored during the whole construction period. Optimal profiles 

exhibit a peculiar property: near full mobilization of the ground strength occurs in a 

large region within the slope rather than a thin shear band only. The stability factor 

of the excavated part after reaching a critical depth tends to remain constant with 

the progression of the excavation. 
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(f) A method to find the maximum factor of safety for engineered slopes for 

prescribed ground properties and assigned 
ு

௅
 , as well as the maximum inclination 

of slopes under prescribed factors of safety is provided. 

(g) An analytical approach to calculating the optimal slope profiles in the 

presence of cracks is provided. The presence of cracks can alter the shapes of 

optimal slopes and reduce its capacity to increase slope stability. 

(h) An analytical approach to account for the optimal slope profiles in non-

homogenous and anisotropic grounds is put forward. The optimal profiles obtained 

for uniform ܿ െ ߶ slopes are also applicable for anisotropic slopes whose cohesion 

varies linearly with depth.  

(i) For slopes made of rock obeying the Hoek-Brown failure criterion, the 

optimal profiles have both a concave and a convex part as well. An analytical 

approach to tackle the impact of blast-induced damage is laid out. If rock slopes are 

excavated by blasting, the damage caused will inevitably alter the shapes of the 

optimal profiles. 
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Chapter 6 Optimal Design of Pile Reinforcement 

 

When the factor of safety of a slope is considered to be insufficient, reinforcement 

measures will take place. In Chapter 5, finding the optimal profiles provides a 

solution to improve slope stability. However, excavating slopes following the 

optimal profiles requires sophisticated land-forming techniques such as auto-

guidance construction equipment and advanced mapping technology. When they 

are not available, other reinforcement measures should be considered. Anti-sliding 

piles are widely implemented to stabilize slopes in practice. The slope-pile system 

brings new challenges to the existing slope stability assessment procedures 

considering the complexity of soil-pile interaction. 

In the literature review in section 2.4, the results of all numerical analyses 

show that the optimal position of a row of piles is close to the middle of the slope. 

However, by using the combined limit equilibrium analysis and Ito-Matsui’s 

formula (Ito and Matsui 1975), the optimal position approaches the top of the slope. 

Moreover, according to the results obtained by means of the analytical limit 

analysis method, the optimal position is near the toe of the slope. The discrepancies 

are ascribed to how the resistance force provided by the anti-sliding piles is 

considered and what type of the failure mechanism is assumed in the formulations. 

The presence of piles is treated as an equivalent force and a moment in the 

analytical solutions such as  Hassiotis et al. (1997), Ausilio et al. (2001) and Li et 

al. (2012) but the influence of the soil-pile interaction is neglected. As pointed out 

by Wei and Cheng (2009), the critical failure surface is divided into two sections 

when the pile spacing is small, and these two sections will gradually connect with 

the increase of pile spacing until a clear single critical failure surface is formed. 

However, in all the analytical solutions (limit equilibrium method and limit 
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analysis), the failure surfaces are assumed beforehand as a continuous circular or 

logarithmic spiral line.  

As stated in Li et al. (2012), the investigation of the optimal position of a row 

of piles in slope stabilization can be divided into two categories: the most effective 

pile location and the location of the pile ensuring the maximum factor of safety.  

In Ausilio et al. (2001), Nian et al. (2008) and Li et al. (2012), the most 

effective pile location is defined as the place where the stabilizing force needed to 

increase factor of safety to a desired value takes the minimum value. All the above 

studies conclude that the most effective pile location is somewhere around the 

slope toe. However, for piles placed near the toe, it is entirely possible that the 

buried depth is so small that the capacity of piles cannot be fully utilized or above-

pile failure can happen, which makes the pile installation completely ineffective as 

shown in Figure 6-1. In this chapter, the most effective location of the stabilizing 

piles is reappraised by considering both the above-pile and pass-through-pile 

failure mechanisms. It turns out that the stabilizing piles have to be installed within 

certain range to avoid above-pile failure.  

According to Hassiotis et al. (1997), Li et al. (2009c) and Li et al. (2012), by 

assuming that the piles are long enough, built with prescribed materials, installed 

with certain diameter and spacing, the stabilizing force that a row of piles can 

provide is proportional to their buried depth. In this case, given a row of piles, the 

optimal position corresponds to the location yielding maximum factor of safety.  

For the sake of conciseness, the most effective pile location will be referred as 

case 1 and the location of the pile ensuring the maximum stability factor will be 

referred as case 2 in the following. In this chapter, design charts illustrating both 

case 1 and case 2 are provided based on the kinematic approach of limit analysis. 

The effect of the presence of pre-existing cracks, pore water pressure and seismic 

actions is discussed. Finally, the optimal position of piles corresponding to the 
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location yielding the minimum accumulative displacement during an earthquake is 

evaluated. 

 

   

Figure 6-1. Above-pile and pass-through-pile failure mechanisms. 

 

6.1 The most effective pile location 

 

The stability of slopes without pile reinforcement is assessed in Chapter 3 and 

Chapter 4. In this section, slopes reinforced with a row of piles are investigated. In 

the two dimensional plain strain case, one pile is inserted into the slope to provide 

stabilization (see Figure 6-2). The failure surface is still assumed to be a 

logarithmic spiral line, and the following geometrical relationship can be found in 

Figure 6-2: 
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 ௣ is the pile location measured from the slope toe. The total height of buried depthݔ

bh of the piles varies with ݔ௣ and is written as: 
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Figure 6-2. Failure mechanism for a slope reinforced with a row of piles (plain strain case). 

 

Considering the mass ࡰ࡯࡮࡭ rigidly sliding away about the centre of rotation 

O, the energy dissipation of the pile-slope system includes both the dissipated 

energy along the failure mechanism ࡰ࡯෢ 	and the stabilizing work brought from pile 
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reinforcement (represented by an equivalent horizontal lateral force per unit width 

and a moment). 

The rate of additional stabilizing work is expressed as: 

 

  0tan

,1 ,1 0 ,1 ,1 ,1sin p

p p p p p pW F r e M F f
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where F௣,ଵ and M௣,ଵ are the equivalent lateral force and moment which are found 

by: 

 

 
2

,1 2p pl

H
F K


   (6-6) 

 

 ,1 ,1p p F bM F m h   (6-7) 

 

with K୮୪  a dimensionless coefficient indicating the magnitude of the stabilizing 

force. ݉ி is a coefficient representing the type of lateral pressure distribution along 

the pile, and ݉ி ൌ
௉ு

ீு
 (see Figure 6-2). When lateral pressure is assumed to be 

linearly varying along the depth, ݉ி ൌ 1/3. For rectangular distribution, ݉ி ൌ

1/2. According to Poulos (1995), when ݉ி ൌ 0, only the resistance force F௣,ଵ is 

considered, M௣,ଵ ൌ 0. 

Equating the rate of external work done by the material weight to the rate of 

internal energy dissipation due to cohesion and pile reinforcement, leads to: 

 

  3 2
0 1 2 3 4 log ,1 0 log ,1 ,1d p d p pW r f f f f W W c r f F f                (6-8) 

  

where ଵ݂, ଶ݂,	 ଷ݂, ସ݂ are found in Eqs. (5-6), (5-7), (5-13) and (5-8). 
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After rearranging, the stability factor for a slope reinforced with a row of piles 

is expressed as: 

 

 log
,1 2

1 2 3 4 ,12

H d
p

H
pl p

f fH
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with ு݂ defined in Eq. (5-3), ௗ݂ି௟௢௚ defined in Eq. (5-35). The least upper bound is 

found by the minimization of Eq. (6-9) with θ଴ , θ୦  and βᇱ  denoting the most 

critical failure mechanism.  

To achieve the desired value of factor of safety, the stabilizing force needed 

can be derived from Eq. (6-9): 
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  (6-10) 

 

In Ausilio et al. (2001), Nian et al. (2008) and Li et al. (2012), the most 

effective pile location is found near the slope toe where the stabilizing force needed 

to increase the factor of safety to a desired value takes the minimum value. This 

conclusion can be restated that given the same magnitude of stabilizing force, the 

stability factor for a reinforced slope reaches a maximum value when the piles are 

placed near the slope toe. However, it is completely possible that for piles located 

at around the slope toe, the buried depth is so small that the capacity of piles cannot 

be fully utilized or above-pile failure can happen, which makes the pile installation 

completely ineffective. Thus, in this section, both above-pile and pass-through-pile 

failure mechanisms are considered, as shown in Figure 6-1. The stability factor 

corresponding to above-pile failure can be obtained by considering the sliding of an 
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unreinforced slope just above the piles whose height is bH h . It is worth noting 

that F௣,ଵ is routinely assumed to act horizontally (e.g., Ausilio et al. 2001, Li et al. 

2012). The case that F௣,ଵ is tangent to the failure surface at the point H (where the 

piles intersect with the potential sliding surface) is investigated as well. The 

difference in terms of the stability factor defined in Eq. (6-9) is within 3%, thus 

F௣,ଵ is still assumed to be horizontal in this section. 

In Figure 6-3, by changing the pile location (x୮), the stability factors defined 

in Eq. (6-9) are plotted against x୮ of a slope reinforced with a row of piles whose 

K୮୪ ൌ 0.1, β ൌ 45°. For illustrative purposes, the case of horizontal upper slope 

ߙ) ൌ 0°) is considered, the friction angle of the material is specified as 20° and the 

lateral force distribution is assumed to be triangular (݉ி ൌ 1/3).  In Figure 6-3, 

the solid line represents the stability factors obtained by imposing failure 

mechanisms passing through the piles. The dotted line stands for the stability 

factors of the unreinforced slope just above the piles. The stability factors 

corresponding to the above-pile failure mechanisms are more critical than those 

corresponding to the pass-through-pile failure mechanisms until x୮ ൌ 0.46, which 

means that the slope is more likely to slide above the pile making the presence of 

piles completely ineffective when 0 ൏ xp ൏ 0.46. Ausilio et al. (2001), Nian et al. 

(2008) and Li et al. (2012) neglect the above-pile failure mechanism, which turns 

out to be critical for both slope-pile interaction analysis and the determination of 

the optimal pile position. The point where the solid line and dotted line intersects 

can be regarded as the most effective pile location, which yields the highest 

possible stability factor. 

Design charts illustrating the most effective pile location are provided in 

Figure 6-4 for various slope inclinations and friction angles. For example, let a 

15m tall slope with a 30° inclination be comprised of soil whose ߶ ൌ 15°, ܿ ൌ

20	݇ܰ/݉ଶ and ߛ ൌ 19.40	݇ܰ/݉ଷ. The desired factor of safety ܨ is set to be 1.5. 
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The friction angle at failure is arctan ቀ
௧௔௡ଵହ°

ி
ቁ ൎ 10°. Using the chart in Figure 6-4 

(a), the value of ܨܪߛ/ܿ ൌ 21.83,	its corresponding ܭ௣௟=0.15. The stabilizing force 

needed is determined by ܨ௣,ଵ=ܭ௣௟
ఊுమ

ଶ
ൌ 327.38	݇ܰ/݉. The most effective pile 

location is ݔ௣ ൈ
ு

௧௔௡ଷ଴°
ൌ 10.39 m measured from slope toe. It is worth noting that 

with the increase of ܭ௣ and friction angle, the most effective pile location shifts 

towards the upper-middle part of a slope.  

   

 

Figure 6-3. Stability factors against pile location considering both pass-through-pile and 

above-pile failure mechanisms, ߙ ൌ 0°, ߚ ൌ 45°, ߶ ൌ 20°, ௣௟ܭ ൌ 0.1,݉ி ൌ 1/3. 
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(a) ߚ ൌ 30°, ߶ ൌ 10° 

 

(b) ߚ ൌ 30°, ߶ ൌ 20° 
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(c) ߚ ൌ 45°, ߶ ൌ 10° 

 

(d) ߚ ൌ 45°, ߶ ൌ 20° 
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(e) ߚ ൌ 60°, ߶ ൌ 10° 

 

(f) ߚ ൌ 60°, ߶ ൌ 20° 
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(g) ߚ ൌ 60°, ߶ ൌ 30° 

 

(h) ߚ ൌ 60°, ߶ ൌ 40° 
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(i) ߚ ൌ 75°, ߶ ൌ 10° 

 

(j) ߚ ൌ 75°, ߶ ൌ 20° 
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(k) ߚ ൌ 75°, ߶ ൌ 30° 

 

(l) ߚ ൌ 75°, ߶ ൌ 40° 

Figure 6-4. Design charts corresponding to the most effective pile location for various slope 

inclinations and friction angles, ߙ ൌ 0°,݉ி ൌ 1/3. 
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6.2 Location of the pile ensuring maximum stability factor 

for the slope 

 

According to Hassiotis et al. (1997), Li et al. (2009c) and Li et al. (2012), by 

assuming that the piles are long enough, built with prescribed materials, installed 

with certain diameter and spacing, the stabilizing force that a row of piles can 

provide is proportional to their buried depth. The location of the pile ensuring the 

largest factor of safety given a row of piles is investigated in this section. 

There is no universally accepted lateral pressure distribution mode around the 

piles. However, according to previous studies such as Ito and Matsui (1975), Ito et 

al. (1981), Hassiotis et al. (1997) and Zeng and Liang (2002), the lateral pressure 

distribution can be simplified with a triangular mode as shown in Figure 6-5.  

 

 

Figure 6-5. Lateral pressure distribution along the pile. 
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Ito and Matsui (1975) proposed a formula to simplify the magnitude of lateral 

pressure based on active earth pressure on a row of passive piles. The soil around 

the pile is assumed to be in plastic equilibrium, satisfying the Mohr-Coulomb 

failure criterion. The lateral force per unit thickness of soil layer acting on the piles 

is estimated by: 
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where Dଵ is the centre-to-centre piles spacing, Dଶ is the opening between piles, z is 

the depth of the soil layer from ground surface, as shown in Figure 6-6. Note that 

the lateral pressure along the pile will increase as the pile spacing decreases 

according to Eq. (6-11). However, the pressure on the pile would be expected to 

increase with pile spacing as each pile has to support a greater width of the slope 

(Hayward et al. 2000, Smethurst and Powrie 2007). Eq. (6-11) is regarded as an 

available estimation of lateral pressure to provide an analytical solution.  
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Figure 6-6. Plan view of piles in a row (Ito and Matsui 1975). 

 

Considering the mass ࡰ࡯࡮࡭ rigidly sliding away about the centre of rotation 

O, once the pressure along the pile/slope interface is postulated, the presence of 

pile reinforcement is incorporated by adding an additional stabilizing work term in 

the energy balance equation. In other words, the internal energy dissipation of the 

pile-slope system includes both the dissipated energy along the failure mechanism 

෢ࡰ࡯ 	and the work done by the resistance pressure applied on the falling mass along 

GH.  

As suggested by Hassiotis et al. (1997) and Li et al. (2009c), the total lateral 

force acting on a pile is obtained by integrating Eq. (6-11) along the buried depth 

of the pile inserted into the sliding slope mass. Thus, the resistance force (F௣) per 

unit width of soil provided by the pile is expressed as: 

 

 ,2 0
1

( )bh

p

p z
F dz

D
    (6-14)  

 

After integration, we obtain: 
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where ଵܲ and ଶܲ are functions of ܦଵ, ܦଶ, which are written as: 
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F௣,ଶ acts horizontally on the point of P at a height of 
௛

ଷ
 above the intersection 

point H between the pile and the failure surface. Some literature such as Hassiotis 

et al. (1997) and Nian et al. (2008) assumes that F௣ is parallel to the failure surface 

at the point H. However, in order to be consistent with the theory proposed by Ito 

and Matsui (1975), it is assumed here that there is no shear traction along the slope-

pile interface and F௣,ଶ acts horizontally. The rate of additional stabilizing work due 

to pile reinforcement corresponding to case 2 is determined by:  
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Equating the rate of external work to the rate of energy dissipation due to 

cohesion and pile reinforcement, leads to: 

 

  3 2
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After rearranging, the stability factor for a reinforced slope corresponding to 

Ito and Matsui’s theory (Ito and Matsui 1975) is given by: 
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In Figure 6-7, by changing the pile location (x୮), the stability factors N୮,ଶ 

defined in (6-20) against x୮  for slopes with different inclinations ( β ൌ

30°, 45°, 60°, 75°) reinforced with a row of piles whose 
ୈమ
ୈభ
ൌ 0.6 are illustrated. 

The friction angle of the material ranges from 10° to 30°. The locations of the pile 

ensuring maximum stability factor will shift downwards to the middle of slope face 

when the friction angle increases. 
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(a) ߚ ൌ 30° 

 

(b) ߚ ൌ 45° 
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(c) ߚ ൌ 60° 

 

(d) ߚ ൌ 75° 

Figure 6-7. Design charts according to the Ito and Matsui (1975)’s theory for various slope 

inclinations and friction angles, ߙ ൌ 0°,  
஽మ
஽భ
ൌ 0.6. 
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Once the stability factors of slopes reinforced with a row of piles are derived, 

the factor of safety F can be calculated by replacing ܿ with ܿ௦/ܨ  and ݊ܽݐ߶ with 

 in Eq. (6-20). F is obtained by an iterative process since it appears in both ܨ/௦߶݊ܽݐ

side of Eq. (6-20). In order to validate the upper bound formulation in this section, 

the results obtained from Hassiotis et al. (1997) using limit equilibrium and from 

Wei and Cheng (2009) adopting finite element strength reduction technique are 

selected as reference. 

In Figure 6-8, the factor of safety against pile location x୮ is plotted for two 

sample slopes (used in Hassiotis et al. 1997). The two slopes have different 

inclination and height. The factors of safety obtained by using Eq. (6-20) are 

smaller/more critical than those from Hassiotis et al. (1997) except when piles are 

placed at around slope toe. The optimal pile positions obtained from the two 

methods are close to each other for slope I, but different for slope II. The 

discrepancy lies in the application of two distinct methods. As pointed out by the 

authors themselves, the results in Hassiotis et al. (1997) are quite sensitive to the 

pre-determined circular failure mechanisms. In addition, the direction of F୮  is 

assumed differently in both methods. 

 



204 
 

 

(a) Slope I: ߚ ൌ 30°, ܪ ൌ 13.7݉ 

 

(b) Slope II: ߚ ൌ 49°, ܪ ൌ 9.14݉ 

Figure 6-8. Comparison with the results from Hassiotis et al. (1997). 

 

In Figure 6-9, the factor of safety is plotted against six values of 
ୈమ
ୈభ

 

corresponding to different cases of pile spacing. The sample slope is 10 m in height 

with a gradient of 1:1.5. The cohesive strength, friction angle and unit weight of 
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the material are 10 kPa, 20° and 20 kN/mଷ, respectively. The results obtained by 

using Eq. (6-20) are more conservative than those from Wei and Cheng (2009). 

The maximum discrepancy is around 10%.  

 

 

Figure 6-9. Comparison with the results from Wei and Cheng (2009). 

 

6.3 The effect of cracks on optimal pile position 

 

The upper bound formulations to include the presence of cracks in slope stability 

analyses are detailed in Chapter 3 and Chapter 5. As shown in Figure 6-10, the 

external work done by the weight of sliding mass ࡱࡰ࡯࡮࡭ is calculated by the 

work done by the fictitious weight of the region ࡲ࡯࡮࡭ minus the work done by 

that of the region ࡲࡰࡱ. Equating the rate of external work to the rate of energy 

dissipation due to cohesion and pile reinforcement leads to: 
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where fହ, f଺, f଻ are defined in Eqs. (5-32), (5-33) and (5-34). ௗ݂ି௟௢௚
ᇱᇱ  is defined in 

Eq. (5-35). And 
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Figure 6-10. Failure mechanism for cracked slope reinforced with piles. 

  

After rearranging, the stability factors for a cracked slope reinforced with piles 

corresponding to both case 1 and case 2 are obtained: 
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The least upper bound is found by minimization of Eq. (6-23) and (6-24) with θ଴, 

θୡ, θ୦ and βᇱ denoting the most critical failure mechanism.  

In Figure 6-11, the stability factors defined in Eq. (6-23) corresponding to case 

1 are plotted against x୮ for both intact and cracked cases. For illustrative purposes, 

the case of horizontal upper slope (α ൌ 0°) is considered. The friction angle of the 

material is specified as 20° . Slopes with different inclinations 

( β ൌ 30°, 45°, 60°, 75° ) reinforced with a row of piles whose K୮୪ ൌ 0.1  are 

illustrated. For cracked slopes, the most adverse pre-existing cracks are considered. 

It is expected that the stability factors of intact slope is higher than those of the 

cracked one. However, the difference of the most effective pile location between 

intact and cracked cases is marginal. The biggest difference is 0.05ܮ  when 

ߚ ൌ 75°. 

In Figure 6-12, the stability factors defined in Eq. (6-24) corresponding to case 

2 are plotted against x୮ for both intact and cracked cases. Slopes with different 

inclinations (β ൌ 30°, 45°, 60°, 75°) reinforced with a row of piles whose 
ୈభ
ୈమ
ൌ 0.6 

are illustrated. In Figure 6-12, for gentle slopes (β ൌ 30°, 45°), the locations of the 

pile ensuring maximum stability factor are within the upper-middle part of the 

slope for both intact and cracked cases. For steep slopes (β ൌ 60°, 75° ), the 

locations approach the slope crest. Moreover, it is important to know the presence 

of cracks has little influence on the optimal pile position. 
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(a) ߚ ൌ 30° 

 

(b) ߚ ൌ 45° 
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(c) ߚ ൌ 60° 

 

(d) ߚ ൌ 75° 

Figure 6-11. Stability factor corresponding to case 1 against pile position for slopes with 

various inclinations, ߙ ൌ 0°, ߶ ൌ ௣௟ܭ ,20° ൌ 0.1. 
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(a) ߚ ൌ 30° 

 

(b) ߚ ൌ 45° 
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(c) ߚ ൌ 60° 

 

(d) ߚ ൌ 75° 

Figure 6-12. Stability factor corresponding to case 2 against pile position for slopes with 

various inclinations, ߙ ൌ 0°, ߶ ൌ 20°,  
஽మ
஽భ
ൌ 0.6. 
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6.4 The effect of pore water pressure on optimal pile 

position 

 

The influence of water acting on both the crack and the failure surface is evaluated 

in this section. ݎ௨  is imposed to describe the general pore water pressure 

distribution as that in section 3.2.  

The external work of the soil-pile system contains both the work done by the 

material weight and pore water pressure. Equating the rate of external work to the 

rate of energy dissipation, leads to: 
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After rearranging, the stability factors defined in Eqs. (6-23) and (6-24) 

corresponding to case 1 and case 2 for dry slopes are extended to include the 

presence of pore water pressure: 
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where ݌௪ି௖ and ݌௪ି௟௢௚ are obtained by the revision of Eqs. (3-31) and (3-38) and 

written as follows: 
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where ߠଵ, ߠଶ, ݖଵ, ݖଶ and ݖଷ are found in Eqs. (3-39) ~ (3-43).  

In Figure 6-13, the stability factors defined in Eq. (6-26) are plotted against 

pile location x୮	 for slopes with different inclinations ( β ൌ 30°, 45°, 60°, 75° ) 

subjected to pore water pressure. Slopes are reinforced by a row of piles whose 

௣௟ܭ ൌ 0.1. For illustrative purposes, the case of horizontal upper slope (α ൌ 0°) is 

considered. The friction angle of the material is specified as 20°. Two pore water 

pressure distributions, i.e., ݎ௨ ൌ 0.25  and ݎ௨ ൌ 0.5  are investigated. It is worth 

noting that the presence of pore water pressure not only lowers the stability factors 

of slopes but changes the behaviour of pile reinforcement in the way that the most 

effective pile location shifts downwards with the increasing magnitude of ݎ௨. 

Stability factors defined in Eq. (6-27) are plotted against pile location x୮ for 

slopes with different inclinations (β ൌ 30°, 45°, 60°, 75°) in Figure 6-14. Slopes 

are reinforced by a row of piles whose 
ୈమ
ୈభ
ൌ 0.6. Compared with the dry case 

௨ݎ) ൌ 0), the locations of the pile ensuring maximum stability factor for saturated 

slope are at the crest of the slope. 
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(a) ߚ ൌ 30° 

 

(b) ߚ ൌ 45° 
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(c) ߚ ൌ 60° 

 

(d) ߚ ൌ 75° 

Figure 6-13. Stability factor corresponding to case 1 against pile location for slopes 

subjected to pore water pressure with various inclinations, ߙ ൌ 0°, ߶ ൌ ௣௟ܭ ,20° ൌ 0.1. 
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(a) ߚ ൌ 30° 

 

(b) ߚ ൌ 45° 
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(c) ߚ ൌ 60° 

 

(d) ߚ ൌ 75° 

Figure 6-14. Stability factor corresponding to case 2 against pile location considering for 

slopes subjected to pore water pressure, ߙ ൌ 0°, ߶ ൌ 20°,  
஽మ
஽భ
ൌ 0.6. 
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6.5 The effect of seismic action on optimal pile position 

 

In this section, reinforced slopes subjected to seismic actions are investigated using 

the pseudo-static method as described in section 3.3. Coefficients ݇௛  and 

݇௩	represents the intensity of horizontal and vertical acceleration as a fraction of 

the gravity acceleration.  

The external work of the soil-pile system contains the work done by the 

material weight and horizontal/vertical seismic actions. Equating the rate of 

external work to the rate of energy dissipation, leads to: 

 

 , ,s v s h d pW W W W W           (6-30) 

 

where ௦ܹ,௩ሶ  and ௦ܹ,௛ሶ  are the rate of work done by vertical and horizontal seismic 

actions respectively. ௦ܹ,௩ሶ  is calculated by: 

 

 ,s v vW k W     (6-31) 

 

௦ܹ,௛ሶ  acting on the sliding region ࡱࡰ࡯࡮࡭ (see Figure 6-10) is the summation of the 

rate of work done by seismic actions on the region ࡲ࡯ࡻ  ( ሶܹ ଵ௛) minus the work of 

OAF ( ሶܹ ଶ௛), OAB ( ሶܹ ଷ௛),  OBC ( ሶܹ ସ௛) and ࡰࡲࡱ respectively. Similarly, the rate of 

work of region ࡰࡲࡱ is the result of work done by seismic actions on ࡲࡰࡻ ( ሶܹ ହ௛) 

subtract OEF ( ሶܹ ଺௛) and ODE ( ሶܹ ଻௛). For each term, it can be expressed uniformly 

as: 

 

 0ih h Gi iW k y y A     (6-32) 
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where ீݕ௜ and ݕ଴ are the vertical coordinates of the gravity center of the region and 

of the center of rotation O respectively. ܣ௜  is the area of each region. The 

expressions for ሶܹ ଵ௛~ ሶܹ ଷ௛ are found in Chen and Liu (1990): 
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Considering the regions of OBC, ࡲࡰࡻ, OEF and ODE, 
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After rearranging Eq. (6-30), the stability factors corresponding to both case 1 and 

case 2 for reinforced slopes subjected to seismic actions are obtained: 

 

 
 

   

 

,1,

log 1 ,1

1 2 3 4 5 6 7

2

1 2 3 4 5 6 7 ,1

1

2

p s

H d p

v

H
h h h h h h h h pl p

H
N

c

f f P f

k f f f f f f f

f
k f f f f f f f K f







  


       

        

  (6-40) 

 

               
 

   

 

,2,

log 1 ,2

1 2 3 4 5 6 7

2

1 2 3 4 5 6 7 2 ,2 2
0

1

2

p s

H d p

v

b
h h h h h h h h p

H
N

c

f f P f

k f f f f f f f

h
k f f f f f f f P f

r







  


       

          

  (6-41) 

 

The optimal pile positions under seismic actions for slopes with different 

inclinations (β ൌ 30°, 45°, 60°, 75°) are revealed in Figure 6-15 and Figure 6-16. 

For illustrative purposes, the case of horizontal upper slope (α ൌ 0°) is considered. 

The friction angle of the material is specified as 20° . Vertical acceleration is 

disregarded. Stability factors defined in Eq. (6-40) against pile location x୮ for two 

seismic actions (݇௛ ൌ 0.1, 0.3) are presented in Figure 6-15. Slopes are reinforced 
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by a row of piles whose ܭ௣௟ ൌ 0.1 . The most effective pile location shifts 

downwards with the increasing magnitude of ݇௛. 

Stability factors defined in Eq. (6-41) are plotted against pile location x୮ in 

Figure 6-16. Slopes are reinforced by a row of piles whose 
ୈమ
ୈభ
ൌ 0.6. For slopes 

subjected to gentle seismic action (݇௛ ൌ 0.1), the locations of the pile ensuring 

maximum stability factor are almost consistent with those for static cases. However, 

when violent earthquakes (݇௛ ൌ 0.3) occur, the locations convert to the crest of 

slopes. 

 

 

(a) ߚ ൌ 30° 
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(b) ߚ ൌ 45° 

 

(c) ߚ ൌ 60° 
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(d) ߚ ൌ 75° 

Figure 6-15. Stability factor corresponding to case 1 against pile location subjected to 

seismic actions, ߙ ൌ 0°, ߶ ൌ 20°, ݇௩ ൌ ௣௟ܭ ,0 ൌ 0.1.  

 

 

(a) ߚ ൌ 30° 
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(b) ߚ ൌ 45° 

 

(c) ߚ ൌ 60° 
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(d) ߚ ൌ 75° 

Figure 6-16. Stability factor corresponding to case 2 against pile location subjected seismic 

actions, ߙ ൌ 0°, ߶ ൌ 20°, ݇௩ ൌ 0,  
஽మ
஽భ
ൌ 0.6.  

 

6.6 Performance-based optimal design of piles during 

earthquakes 

 

Besides the stability factor, the stability of slopes can be measured according to the 

potential cumulative displacement during an earthquake. In this section, the 

optimal pile position corresponds to that yielding the minimum cumulative 

displacement during an earthquake is investigated. Seismic displacement 

calculation procedures proposed by Newmark (1965) and Chang et al. (1984) are 

adopted. 

In Figure 6-10, when the rotational acceleration of the sliding block ࡱࡰ࡯࡮࡭ 

about ܱ  is not zero, an additional moment due to inertial forces will appear. 
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According to Chang et al. (1984)  and You and Michalowski (1999), the rotational 

acceleration of the block ߠሷ  is given by:  
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where ܩ is the weight of the rotating block ࡱࡰ࡯࡮࡭. The total area of ࡱࡰ࡯࡮࡭ is 

the summation of regions ࡲ࡯ࡻ (ܣଵ) minus OAF (ܣଶ), OAB (ܣଷ), OBC (ܣସ) and 

 (ହܣ) ࡲࡰࡻ is the summation of ࡰࡲࡱ respectively. Similarly, the area of region ࡰࡲࡱ

subtract OEF (ܣ଺) and ODE (ܣ଻). Thus, ܩ is expressed as: 

 

  1 2 3 4 5 6 7G A A A A A A A         (6-43) 

 

with  

 

 
02 tan ( )

2
1 0

1 1

2 2 tan

he
A r

  



 
   (6-44) 

 

  2 0
2 0 0

0

1
sin

2

L
A r

r
     (6-45) 

 

 

0
0

2 0 0
3 0 0

0 0

sin sin
1

cos cos
2 tan

L

L rH
A r

r r

 
 



  
   
 
 
 

  (6-46) 

 

 2
4 0

0

1
sin

2
t

h h

L
A r r

r
   (6-47) 

 



227 
 

 
02 tan ( )

2
5 0

1 1

2 2 tan

ce
A r

  



 
   (6-48) 

 

  2
6 0 0

0

1
sin

2
cL

A r
r

     (6-49) 

 

  0tan2
7 0

0

1
cos

2
c

cA r e
r

      (6-50) 

 

݈௚ is the distance from point ܱ to the centre of gravity of the block ࡱࡰ࡯࡮࡭, and is 

calculated by: 
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The permanent rotation increment ߠߜ is calculated by double integrating block 

acceleration ߠሷ  over time interval ݐߜ: 
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The maximum horizontal displacement of slope toe is computed as: 
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where ݇௖ is the yield acceleration coefficient, for slopes reinforced with piles, it 

can be obtained by rearranging Eq. (6-41) corresponding to case 2 and letting 

݇௩ ൌ 0: 
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The maximum cumulative horizontal displacement during an earthquake can 

be calculated using Eq. (6-53) when the acceleration record of an earthquake is 

provided. The Northridge 1994 earthquake (Yegian et al. 1995) is selected as an 

example to illustrate the determination of the optimal pile positions corresponding 

to minimum displacement. The Northridge (Moorpark Station) record of horizontal 

ground acceleration is illustrated in Figure 6-17. 

In Figure 6-18, the cumulative horizontal displacements at slope toe are 

plotted against different pile location ݔ௣  for slopes with various inclinations 

(β ൌ 30°, 45°, 60°, 75°) and values of 
ஓୌ

ୡ
	. Slopes are reinforced by a row of piles 

whose 
ୈభ
ୈమ
ൌ 0.6. For both intact slopes and cracked slopes, the optimal position for 

gentle slopes is within the upper-middle part of the slope. However, the optimal 

position switches to the crest for steep slopes. The observations are consistent with 

those in section 6.3, case 2. Thus, the determination of the optimal position of pile 

reinforcement based on the cumulative displacement during an earthquake yields 

similar results to that based on the stability factor. 
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Figure 6-17. Northridge 1994 earthquake record (Moorpark Station), horizontal ground 

acceleration. 

 

 

(a) ߚ ൌ 30°, 
ఊு

௖
ൌ 40 
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(b) ߚ ൌ 45°, 
ఊு

௖
ൌ 15 

 

 

(c) ߚ ൌ 60°, 
ఊு

௖
ൌ 9 
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(d) ߚ ൌ 75°, 
ఊு

௖
ൌ 5.5 

Figure 6-18. Displacement at slope toe against pile position for various slope inclinations, 

ߙ ൌ 0°, ߶ ൌ 20°, ݇௩ ൌ 0, 
஽మ
஽భ
ൌ 0.6.  

 

6.7 Conclusions 

 

In this chapter, the optimal pile positions corresponding to the most effective pile 

location, the location of the pile ensuring maximum stability factor and the location 

ensuring the minimum accumulative displacement during an earthquake are 

investigated using the kinematic approach of limit analysis. The effect of presence 

of crack, pore water pressure and seismic actions is evaluated. The following 

conclusions can be drawn: 

(a) In the previous studies of Ausilio et al. (2001), Nian et al. (2008) and Li et 

al. (2012), the most effective pile location is found around the slope toe where the 

stabilizing force needed to increase factor of safety to a desired value takes the 

minimum value. However, the above-pile failure mechanism can make the 
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installation of piles completely ineffective. The most effective pile location is 

sought where the above-pile and pass-through-pile failure mechanisms yield the 

same stability factor. With the increase of ܭ௣ and friction angle, the most effective 

pile location shifts towards the upper-middle part of slope. 

(b) In order to evaluate the location of the pile ensuring maximum stability 

factor, the presence of pile reinforcement is taken into account by integrating the 

dissipated energy along the slope-pile interface according to Ito and Matsui’s 

theory (Ito and Matsui 1975). The locations will shift towards the middle of slope 

face when the friction angle increases. 

(c) The presence of pre-existing cracks has little impact on the optimal 

position of a row of piles used in slope stabilization. 

(d) The presence of pore water pressure changes the behavior of pile 

reinforcement. The most effective pile location shifts downwards to lower-middle 

part with the increasing magnitude of ݎ௨ . The locations of the pile ensuring 

maximum stability factor for saturated slope stay at the crest of the slope. 

(e) For reinforced slopes subjected to seismic actions, the most effective pile 

location shifts downwards to the lower-middle part with the increasing magnitude 

of ݇௛ . For slopes subjected to gentle seismic action (݇௛ ൌ 0.1), the locations 

ensuring maximum stability factor are almost consistent with those for static cases. 

However, when violent earthquakes ( ݇௛ ൌ 0.3 ) occur, the optimal locations 

convert to the crest of slopes. 

(f) Besides the stability factor, the optimal pile position can be evaluated 

according to the potential cumulative displacement during an earthquake. The 

optimal pile position for gentle slopes is within the upper-middle part of the slope. 

However, it switches to the slope crest for steep slopes. 
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Chapter 7 Development of a Software Package for 

Slope Stability Assessment 

 

In Chapter 3 to Chapter 6, a great number of stability charts are provided for safety 

assessment and optimal design. However, it should be noted that the application of 

analytical limit analysis is still limited since most of the research findings are chart-

based (e.g., Michalowski 1995, Utili 2013, Gao et al. 2012). Since no such stability 

chart is available to cover a wide range of material strength parameters, slope 

geometries and external loads, practitioners find it difficult to use the charts for a 

specific slope project. Nevertheless, the kinematic approach of limit analysis is still 

a powerful tool to assess slope stability for its theoretical rigor and simplicity. In 

comparison with plenty of existing commercial software based on limit equilibrium 

and FEM (e.g., Slide, Phase2, OptumG2, Plaxis, FLAC), the practical use of 

analytical limit analysis for individual projects is not yet available. In this chapter, 

the development of a software package for slope stability assessment based on the 

analytical upper bound method is introduced. The software package is nested in 

MATLAB R2014b (Mathworks 2014) using GUI (Graphical User Interfaces). An 

independent executable file (.exe) is also available by adopting the MATLAB 

Compiler toolbox. Illustrations of the software features and validations with other 

existing software are provided. The present software package turns out to be 

accurate and efficient in solving the factor of safety, failure mechanism and 

implementing sensitivity analysis. 

 

7.1 Theoretical basis 

7.1.1 Generalized formulation for homogeneous slopes  
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According to Chen (1975, 1990), under the assumption that the slope under 

investigation is made of geomaterials obeying the Mohr-Coulomb failure criterion 

and normality flow rule, a logarithmic spiral failure mechanism (rigid-rotational 

type) is the most critical one among all kinematically admissible mechanisms 

regardless of the shape of the slope profile and the influence of external loads (e.g., 

pore water pressure and seismic actions).  

In Figure 7-1, the slope is considered as a homogeneous rigid perfectly plastic 

continuum. It is subjected to the presence of pre-existing crack, vertical and 

horizontal seismic actions and pore water pressure, reinforced with a row of piles, a 

single block ࡱࡰ࡯࡮࡭ rotates as a rigid body about ܱ with angular velocity ߱, the 

remaining part is bounded by a vertical crack DE and a logarithmic spiral line ܦܥ෢ . 

Similar to previous chapters, the rate of work due to the material weight and 

external loads can be expressed uniformly as: 
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with ݇௛	and ݇௩, the intensity of horizontal and vertical acceleration as a fraction of 

the gravity acceleration, ߛ	being the unit weight of the material. The detailed 

expressions for ଵ݂, ଶ݂, ସ݂, ହ݂, ଺݂, ଻݂, ଵ݂௛, ଶ݂௛, ସ݂௛, ହ݂௛, ଺݂௛, ଻݂௛	and ݌௪ି௖,  ௪ି௟௢௚ can be݌

found in Chapter 6. For ଷ݂ and ଷ݂௛, since a non-planar slope profile is encountered, 

they are written into the forms: 
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where ܲሺߠሻ is the function of the slope profile ܤܣ in the polar coordinate system 

with ܱ as its center.  

 

 

Figure 7-1. Slope geometry, loading conditions and failure mechanism. 

 

The energy dissipation within the slope includes both the dissipated energy 

along the failure mechanism ܦܥ෢ 	and the additional stabilizing work brought from 

pile reinforcement. The rate of internal energy dissipation is then expressed as: 

 

 2
internal 0 logd p pW c r f F f     (7-4) 
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with ௗ݂ି௟௢௚
ᇱᇱ  and ௣݂  defined in Eqs. (5-35) and (6-22). In order to calculate ௣݂ 

corresponding to a non-planar slope profile, bh defined in Eq. (6-4) has to be 

revised as: 

 

  cos cosb G G p ph P r      (7-5) 

 

where ீߠ is determined by:  

 

  sin sinG G p pP r     (7-6) 

 

By equating the rate of external work to the rate of internal energy dissipation, 

leads to:  

 

  3 2
0 internal 0 log1external v v h h w d p pW r k f k f f W c r f F f                 (7-7) 

 

After rearranging, the generalized stability factor of a homogenous slope is defined 

as: 
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where ு݂, ଵܲ and ଶܲ are found in Eqs. (5-3), (6-16) and (6-17).  

The most critical failure mechanism is determined by four parameters 

,଴ߠ ,௖ߠ  ᇱ, which are regarded as variables. The least upper bound is foundߚ ௛ andߠ

through an optimization procedure where the minimum value of the stability factor 

defined in Eq. (7-8) is sought. By replacing ܿ with ܿ௦/ܨ and ݊ܽݐ߶ with ݊ܽݐ߶௦/ܨ, 
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the factor of safety ܨ	appears in both sides of the Eq. (7-8), ܨ can be solved by an 

iterative procedure until the mobilized strength of the material are progressively 

reduced according to Eq. (3-22), until  
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For slopes made of geomaterials obeying a non-linear failure criterion such as 

the Hoek-Brown failure criterion, Eq. (7-8) could be modified by using the 

equivalent cohesion and friction angle method or the tangential technique (see 

Chapter 4).  

 

7.1.2 Generalized formulation for non-homogeneous slopes  

 

In sections 3.4 and 5.9, the case of ground strength anisotropy and spatial non-

homogeneity in the vertical direction has been investigated. The corresponding 

stability factors for non-homogenous slopes can be obtained by replacing ௗ݂ି௟௢௚
ᇱᇱ  in 

Eq. (7-9) with ݍଵ, ,ଶݍ  .ଷ in Eqs. (3-64), (3-65), (3-66)ݍ

So far, the slope stability assessment procedure is based on the assumption 

that the slope will fail as a single rigid body rotating along a surface of velocity 

discontinuity. However, field observation (e.g., Xie et al. 2004, Huang et al. 2012) 

shows that the failure surfaces are sometimes not curvilinear especially for ground 

of complicated structures. For layered slopes, each layer shows different material 

parameters such as unit weight, cohesion, friction angle and seismic coefficients. 

Donald and Chen (1997) developed a general framework for slope stability 

analysis, based on the kinematic approach of limit analysis. A slope is made up of 
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multiple rigid wedges obeying the linear Mohr-Coulomb failure criterion and 

normality flow rule. Hu et al. (2013) extended the theory of Donald and Chen 

(1997) by dividing the slope into several horizontal rows (see Figure 7-2) to 

account for layered slopes. Each layer is assumed to be a rigid body, but there is 

energy dissipation along the interfaces of layers when the slope is about to slice. 

The energy balance equation between the rates of external and internal work 

becomes: 

 

  L SD D WV TV      (7-10) 

 

where ܦ௅ is the energy dissipation between layers and ܦௌ is the energy dissipation 

along the slip surface. The two terms on the right-hand side refer to the rates of 

work done by the weight of soil ܹ  and external loads ܶ	respectively. ܸ∗  is the 

velocity at the points where ܹ and ܶ∗ apply. Detailed expression of Eq. (7-10) can 

be found in the Appendix A. 

 

 

Figure 7-2. Layered slope analysis. 
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7.1.3 Sensitivity analysis 

 

The stability of slopes is governed by a range of factors, such as material strength, 

slope geometry, external loads and reinforcement measures. All these factors are 

treated as known and deterministic variables in previous sections. In fact, most of 

the factors are stochastic, and each of them has a different degree of impact on the 

slope stability. Thus, it is important to implement sensitivity analysis, since it helps 

to establish the relationship of the factor of safety of a slope with each factor 

quantitatively. It is even more interesting to study the interaction between the 

factors and to determine the major/minor factors to cause slope failure.    

Two types of sensitivity analysis will be adopted in this section. First, the one-

at-a-time sensitivity analysis (Saltelli et al. 2009) is implemented by varying one 

factor at a time, while keeping other factors constant. Second, the multi-variable 

sensitivity analysis (Cannavó 2012) investigates the slope stability as a system of 

multiple factors and evaluates their correlations. The existing sensitivity analyses 

in slope stability assessment are mainly conducted with limit equilibrium method 

or FEM (e.g., Christian et al. 1994, Low et al. 1998, El-Ramly et al. 2002, Griffiths 

and Fenton 2004, Navarro et al. 2010, Jiang et al. 2014). In comparison with using 

limit analysis, long computational time and low efficiency make them less 

attractive to carry out a comprehensive sensitivity study. The present software is 

capable of running both one-at-a time and multi-variable sensitivity analysis to 

assess the distinct influence of each factor. 

 

7.2 Framework of the software package 

 

The framework of the software is explained in Figure 7-3. To begin with, users 

should input general information about the slope including its geometry, material 
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properties, external forces and pile reinforcement. The inputs of slope geometry 

include the total height, the inclination of the slope, the inclination of upper slope, 

the estimated position or depth of pre-existing cracks and the shape of slope profile 

(see Figure 7-4). Although the stability assessment of slopes of any arbitrary shape 

can be implemented according to Eq. (7-9), the input of complex slope shape 

requires sophisticated graphic processing, which is meant to be available in the 

following versions of the software. In the current version, slopes of circular profiles 

are allowed. The centre of the circular profile is located on the midperpendicular of 

 in Figure 7-1. For slopes of planar profiles, the input value of the radius of ܤܣ

slope face should be zero. It is worth mentioning that the software considers both 

the cases of cracks of known position and cracks of know depth and selects a more 

critical failure mechanism.  

The ground parameters for a Mohr-Coulomb material include unit weight, 

cohesion and friction angle. For layered slopes, users should input the parameters 

for each layer (see Figure 7-5). In addition, for a Hoek-Brown material, the values 

of ݉௜, geological strength index (ܫܵܩ), disturbance coefficient (ܦ) and ߪ௖௜ must be 

assigned.    

The inputs corresponding to external forces include the horizontal and vertical 

accelerations to be specified for seismic actions and ݎ௨ when pore water pressure is 

considered. Moreover, the position of pile reinforcement is yet another input.  

Three different types of strength reduction techniques are available to choose 

from for materials obeying the Mohr-Coulomb failure criterion. The most routinely 

adopted way is to reduce both cohesion and friction angle at the same time. Isakov 

and Moryachkov (2014) proposed that cohesion and friction angle decrease at 

different rates, two-parameter factor of safety ܨௗ௢௨௕௟௘ is then defined as: 
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In addition, the factor of safety may apply to cohesion only. It should be noted 

that for rock obeying the Hoek-Brown failure criterion, the factor of safety applies 

to ߪ௖௜ only: 
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   (7-12) 

 

where ߪ௖௜,௙ is the uniaxial compression strength at failure.  

The interfaces of the input control panel are shown in Figure 7-4 and Figure 

7-5. After the inputs of all information concerning the slope project are ready, the 

software will calculate the factor of safety for the given slope iteratively according 

to Eq. (7-8) and manifest the failure mechanism at collapse (see Figure 7-6). 

Moreover, the software can carry out one-at-a time and multi-variables sensitivity 

analysis. For instance, let a slope be made of material obeying the Mohr-Coulomb 

failure criterion. The cohesion ܿ  and friction angle ߶  of the geomaterial satisfy 

normal distribution. The mean values of ܿ and ߶ are 20 kPa and 30°. The variances 

of ܿ and ߶ are 2 kPa and 3° respectively. Other parameters such as ݎ௨, crack depth, 

slope face radius, ݇௛  and ݇௩  satisfy uniform distribution as well. Their variation 

ranges are presented in Figure 7-7. Users can watch the variation of the factor of 

safety against one variable (e.g. the radius of slope face in Figure 7-7) or sensitivity 

coefficients of each variable. 

 



242 
 

 

Figure 7-3. Framework of the software package. 

 

 

Figure 7-4. Input interface of the software. 

 

(a) Mohr-Coulomb material 

Input

Slope Geometry: 

height, inclination, cracks, profile… 

Material Properties:

unit weight, cohesion, friction angle… 

External Forces:

݇௛, ݇௩, ݎ௨ … 

Analyse

The Factor of Safety Failure Mechanism Sensitivity Analysis 

 ௣ݔ

Pile: 

Results
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(b) Hoek-Brown material 

Figure 7-5. Input interface for layered slope. 

 

 

Figure 7-6. Result display. 

 

 

Figure 7-7. Sensitivity analysis. 
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7.3 Examples and validations 

 

The reliability of the software package is examined and validated with two types of 

commercial finite-element software, i.e., Phase2 (Rocscience 2015) and Optum G2 

(OptumCE 2013). The input values of Phase2 and Optum G2 are given in Table 

7-1. The associated rule flow (߰ ൌ ߶ ) is implemented in both software to be 

consistent with the assumption in limit analysis. The influence of dilatancy angle 

(߰ ൏ ߶) is discussed in section 5.5 and Cheng and Lau (2014). The factors of 

safety obtained from associated-flow-rule analyses are very slightly greater (<5%) 

than those from non-associated-flow-rule analyses. 

 

Table 7-1. Input values in Optum G2 and Phase2. 

Unit Weight 19 ߛ ݇ܰ/݉ଷ 

Young’s Modulus 3000 ܽܲܯ 

Poisson’s Ratio 0.3 

Mesh Density (see Figure 5-12) Adaptive (Optum G2) 

Approximately 50/݉ଶ (Phase 2) 

 

For intact slopes made of geomaterials obeying the Mohr-Coulomb failure 

criterion, the factors of safety of slopes with various values of inclinations, 

cohesions and friction angles are presented in Table 7-2 to Table 7-4. When one 

factor varies, the others keep constant. It turns out that the present software gives 

almost identical results in comparison with with those obtained from both Phase2 

and Optum G2. 
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Table 7-2. Verifications of slopes with different inclinations. 

slope height ܪ ൌ 20݉, unit weight ߛ ൌ 19݇ܰ/݉ଷ, cohesion ܿ ൌ 20݇ܲܽ, friction 

angle ߶ ൌ 20° 

 ሺ°ሻ 30 40 50 60ߚ

 
 ܨ

Present 
Work 

1.27 
Present 
Work 

1.03 
Present 
Work 

0.85
Present 
Work 

0.73 

Phase2 1.27 Phase2 1.02 Phase2 0.85 Phase2 0.73 
Optum 1.27 Optum 1.02 Optum 0.85 Optum 0.73 

 ሺ°ሻ 70 80 90ߚ

 
 ܨ

Present 
Work 

Present 
Work 

Present 
Work 

Present 
Work 

Present 
Work 

0.52

Phase2 Phase2 Phase2 Phase2 Phase2 0.52
Optum Optum Optum Optum Optum 0.52

 

Table 7-3. Verifications of slopes with different cohesions. 

slope height ܪ ൌ 20݉, slope inclination ߚ ൌ 45°, unit weight ߛ ൌ 19݇ܰ/݉ଷ, 

friction angle ߶ ൌ 20° 

ܿሺ݇ܲܽሻ 10 15 20 25 

 
 ܨ

Present 

Work 
0.72 

Present 

Work 
0.83

Present 

Work 
0.93

Present 

Work 
1.03 

Phase2 0.71 Phase2 0.83 Phase2 0.93 Phase2 1.03 

Optum 0.71 Optum 0.83 Optum 0.93 Optum 1.03 

ܿሺ݇ܲܽሻ 30 35 40 

 
 ܨ

Present 

Work 
1.13 

Present 

Work 
1.22

Present 

Work 
1.32

Phase2 1.12 Phase2 1.22 Phase2 1.31

Optum 1.12 Optum 1.22 Optum 1.31

 

Table 7-4. Verifications of slopes with different friction angles. 

slope height ܪ ൌ 20݉, slope inclination ߚ ൌ 45°, unit weight ߛ ൌ 19݇ܰ/݉ଷ, 

cohesion ܿ ൌ 20݇ܲܽ 

߶ሺ°ሻ 10 15 20 25 

 
Present 0.64 Present 0.80 Present 0.93 Present 1.08 
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 Work Work Work Work ܨ

Phase2 0.64 Phase2 0.79 Phase2 0.93 Phase2 1.08 

Optum 0.64 Optum 0.79 Optum 0.93 Optum 1.08 

߶ሺ°ሻ 30 35 40 

 
 ܨ

Present 

Work 
1.24 

Present 

Work 
1.40

Present 

Work 
1.58

Phase2 1.23 Phase2 1.40 Phase2 1.57

Optum 1.23 Optum 1.40 Optum 1.57

 

Table 7-5. Verifications of slopes subjected to different seismic actions. 

slope height ܪ ൌ 10݉, slope inclination ߚ ൌ 45°, unit weight ߛ ൌ 19݇ܰ/݉ଷ, 

cohesion ܿ ൌ 20݇ܲܽ, friction angle ߶ ൌ 20° 

݇௛ 0.05 0.1 0.15 0.2 0.25 0.3 

 

 ܨ

Present 

Work 
1.21 

Present 

Work 
1.13

Present 

Work
1.05

Present 

Work
0.98

Present 

Work
0.91 

Present 

Work 
0.85 

Phase2 1.21 Phase2 1.12 Phase2 1.05 Phase2 0.97 Phase2 0.90 Phase2 0.84 

Optum 1.21 Optum 1.12 Optum 1.05 Optum 0.97 Optum 0.89 Optum 0.83 

 

Table 7-6. Verifications of slopes subjected to different levels of pore water pressure. 

slope height ܪ ൌ 10݉, slope inclination ߚ ൌ 45°, unit weight ߛ ൌ

19݇ܰ/݉ଷ, cohesion ܿ ൌ 20݇ܲܽ, friction angle ߶ ൌ 20° 

 ௨ 0.1 0.2 0.3 0.4 0.5ݎ

 ܨ

Present 

Work 
1.23 

Present 

Work
1.15

Present 

Work
1.07

Present 

Work
0.99

Present 

Work 
0.91 

Phase2 1.22 Phase2 1.13 Phase2 1.04 Phase2 0.96 Phase2 0.87 

 

In Table 7-5 and Table 7-6, the presence of seismic forces and pore water 

pressure are inspected respectively. The present software provides almost the same 

results with different values of seismic accelerations. The difference in terms of 

pore water pressure is more visible than any other factors. However, the largest 
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discrepancy in the factors of safety among different software when ݎ௨ ൌ 0.5 is 

within 5%.  
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Chapter 8 Conclusions and Recommendations for 

Future Work 

 

In this thesis, the analytical upper bound method of limit analysis was employed to 

derive generalized formulations for assessing the stability of slopes made of 

geomaterials obeying both the linear Mohr-Coulomb failure criterion and the non-

linear Hoek-Brown failure criterion. The thesis is aimed at seeking slope profiles of 

optimal stability and enhancing the optimal design of pile reinforcement. The 

influence of the presence of cracks, water pressure, seismic actions, non-

homogeneous anisotropic ground and blast-induced damage is investigated. An 

extensive parametrical study was carried out. A large number of stability charts and 

design charts are provided for the benefit of practitioners. A software package to 

evaluate the safety of slopes was created to overcome the limitations of chart-based 

design using analytical methods. The design of a software package to evaluate the 

safety of slope based on the kinematic approach of limit analysis is introduced. In 

this chapter, the findings of previous chapters are summarized and 

recommendations for future works are proposed. 

 

8.1 Summary 

 

(i) Optimal profiles of slopes 

 

 Previous literature (e.g., Utili and Nova 2007, Jeldes et al. 2013) searched 

for the optimal profile among concave types of slopes. From this study instead, it 

turns out that the optimal profiles of ܿ െ ߶ slopes exhibit both a concave and a 

convex part. In comparison with the traditional planar profiles, the percentage of 
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increase of the stability factor can reach up to 49%. In addition, given the same 

stability factor, the average slope inclination of an optimal slope is always higher 

than that of a planar slope. The amount of ground excavated for the optimal profile 

can be as little as 50% of that for a planar profile. 

 For all the average slope inclinations considered, the optimal slopes turn 

out to be better than the optimal logarithmic spiral slopes (Utili and Nova 2007) 

and the optimal concave slopes (Jeldes et al. 2013 and Jeldes et al. 2014) in terms 

of their stability. This can be explained by the fact that for the first time the search 

for the optimal shape is not constrained to any particular class of shapes. 

 Potential overestimation of slope stability due to use of a semi-analytical 

approach to assess the slope stability factor based upon upper bound limit analysis, 

and the assumption of associative flow rule were examined. The error is estimated 

within 6% according to the validations performed by finite element limit analysis 

and displacement-based finite element method with strength reduction technique. 

 The geometrical properties of the optimal profiles including the average 

inclination corresponding to when the convex part of an optimal profile vanishes 

are investigated. Key geometric parameters to abstract the highly non-linear 

optimal profiles are provided. The area of yielded elements (in finite element 

strength reduction modelling) within optimal slopes is much larger than that within 

the planar slopes, which means the ground strength is better utilized in optimal 

slopes. 

 Since the new upper bound formulation is capable of computing the 

stability factors of slopes of any arbitrary shape, the stability of the profile to be 

excavated can be monitored during the whole construction period. Optimal profiles 

exhibit a peculiar property: near full mobilization of the ground strength occurs in a 

large region within the slope rather than a thin shear band only. The stability factor 



250 
 

of the excavated part after reaching a critical depth tends to remain constant with 

the progression of the excavation. 

 A method to find the maximum factor of safety for engineered slopes for 

prescribed ground properties and assigned 
ு

௅
 , as well as the maximum inclination 

of slopes under prescribed factors of safety is provided. 

 An analytical approach to calculating the optimal slope profiles in the 

presence of cracks is provided. The presence of cracks can alter the shapes of 

optimal slopes and reduce its capacity to increase slope stability. 

 An analytical approach to account for the optimal slope profiles in non-

homogenous and anisotropic grounds is put forward. The optimal profiles obtained 

for uniform ܿ െ ߶ slopes are also applicable for anisotropic slopes whose cohesion 

varies linearly with depth.   

 For slopes made of rock obeying the Hoek-Brown failure criterion, the 

optimal profiles have both a concave and a convex part as well. An analytical 

approach to tackle the impact of blast-induced damage is laid out. If rock slopes are 

excavated by blasting, the damage caused will inevitably alter the shapes of the 

optimal profiles. 

 

(ii) Optimal design of pile reinforcement 

 

 In the previous studies of Ausilio et al. (2001), Nian et al. (2008) and Li et 

al. (2012), the most effective pile location is found around the slope toe where the 

stabilizing force needed to increase factor of safety to a desired value takes the 

minimum value. However, the above-pile failure mechanism can make the 

installation of piles completely ineffective. The most effective pile location is 

sought where the above-pile and pass-through-pile failure mechanisms yield the 
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same stability factor. With the increase of ܭ௣ and friction angle, the most effective 

pile location shifts towards the upper-middle part of slope. 

 In order to evaluate the location of the pile ensuring maximum stability 

factor, the presence of pile reinforcement is taken into account by integrating the 

dissipated energy along the slope-pile interface according to Ito and Matsui’s 

theory (Ito and Matsui 1975). The locations will shift towards the middle of slope 

face when the friction angle increases. 

 The presence of pre-existing cracks has little impact on the optimal 

position of a row of piles used in slope stabilization. 

 The presence of pore water pressure changes the behavior of pile 

reinforcement. The most effective pile location shifts downwards to lower-middle 

part with the increasing magnitude of ݎ௨ . The locations of the pile ensuring 

maximum stability factor for saturated slope stay at the crest of the slope. 

 For reinforced slopes subjected to seismic actions, the most effective pile 

location shifts downwards to the lower-middle part with the increasing magnitude 

of ݇௛ . For slopes subjected to gentle seismic action (݇௛ ൌ 0.1), the locations 

ensuring maximum stability factor are almost consistent with those for static cases. 

However, when violent earthquakes ( ݇௛ ൌ 0.3 ) occur, the optimal locations 

convert to the crest of slopes. 

 Besides the stability factor, the optimal pile position can be evaluated 

according to the potential cumulative displacement during an earthquake. The 

optimal pile position for gentle slopes is within the upper-middle part of the slope. 

However, it switches to the slope crest for steep slopes. 

 

(iii) Stability assessment of slopes made of rocks obeying the Hoek-Brown 

failure criterion 
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 The results obtained by the tangential technique are still upper bound 

solutions, which is an overestimation of the material strength and the safety of 

slopes. Compared with the more rigorous (both equilibrium equations and 

kinematic constraints are satisfied, see Chen and Liu 1990) variational approach, it 

is important to learn the difference of results between these two methods. It was 

reported by Drescher and Christopoulos (1988) that the adoption of the tangential 

technique only overestimates the stability factor of slopes made of geomaterials 

obeying the power-law failure criterion by less than 1%. However, it is illustrated 

in section 4.6 that the disparity between the tangential technique and the variational 

approach for the Hoek-Brown failure criterion can be as high as 9.66% when the 

rock mass is weak. Nevertheless, the application of the tangential technique is still 

an acceptable and convenient tool for evaluating the stability of slopes for the 

Hoek-Brown failure criterion. It is worth noting that the use of the equivalent 

ܿ െ ߶  method according to Li et al. (2008) yields satisfactory results, with the 

biggest difference being 12.04% for low ܫܵܩ values. 

 The minimization process in finding the least upper bound for the stability 

factor defined in Eqs. (4-9) and (4-50) has to be conducted under the constraint of 

െ
௦

௠
൏

ఙ

ఙ೎೔
൏ 1 to avoid unrealistic selection of ߶௧. However, Collins et al. (1988) 

and Yang et al. (2004) overlooked the constraint and arrived at some unrealistic 

results, e.g., Table II in Collins et al. (1988) and Table II in Yang et al. (2004). The 

critical heights obtained from these two papers can be more than 50% less than 

those from Hoek et al. (2002) and Li et al. (2008).  

 The analytical upper bound formulation for rock slopes subject to blast-

induced damage (disturbance factor ܦ varying linearly according to the distance to 

the excavation face) was derived for the first time. 

 

(iv) Development of a software package for slope stability assessment 
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 The limitation of chart-based design using analytical methods can be 

overcome by the creation of a software package which can solve the factors of 

safety and the failure mechanisms of slopes automatically. The present software is 

proved to be accurate by providing almost identical results with those obtained 

from Phase2 and OptumG2. Thanks to its high computation efficiency, the 

software makes parametric design and sensitivity analysis much easier. 

 

(v) Stability assessment of slopes made of geomaterials obeying the Mohr-

Coulomb failure criterion 

 

 The upper bound formulations illustrated in this chapter can be regarded as 

extension and clarification of the work done by Utili (2013) and Michalowski 

(2013), and are the basis of stability assessment of slopes made of geomaterials 

obeying the non-linear failure criterion. The issues regarding slopes made of 

frictionless soil, maximum stable crack depth, different ground and water 

conditions and the influence of seismic loading are tackled. Stability charts (
ி

௧௔௡థ೒
 

against 
௖೒

ఊு௧௔௡థ೒
) for uniform slopes with water only present in the crack, uniform 

slopes subjected to different seismic actions and non-homogenous slopes with 

anisotropic strength are provided for the first time considering the most adverse 

pre-existing cracks being present in the slope.  

 It is import to note that in order to seek the most adverse crack depth and 

location, the stability factor 
ఊு

௖
 is minimized over the angles denoting the failure 

mechanism and the normalized crack depth. To avoid the potential local failure 

(sliding of the soil/rock mass behind the crack), the minimization process should be 

done under the constraint of maximum stable crack depth defined in Eqs. (3-21), 

(3-45), (3-54) and (3-74).  
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8.2 Recommendations for future work 

 

(i) Two-dimensional plane strain analysis is predominately adopted and is 

regarded as a more conservative estimation of slope stability. However, in certain 

cases when the width of a slope is clearly defined and the three-dimensional effect 

cannot be neglected, a 3D stability analysis is required. The biggest challenge to 

implement analytical three-dimensional limit analysis is to construct kinematically 

admissible 3D failure mechanisms especially when the presence of cracks is 

considered. 

(ii) The most adverse crack depth and location are obtained by a mathematical 

minimization process in Chapter 3 and Chapter 4. They may be further validated by 

modern numerical analysis such as fracture mechanics (Scavia 1990, Ning et al. 

2011). 

(iii) The optimal design of anti-sliding piles requires more medium-large scale 

experimental validations. The main concern is how to model the process from a 

stable status to the failure of the slope-pile system. Wang and Zhang (2014) 

designed an apparatus which has a load plate on the upper slope, however, it is 

difficult to simulate progressive failure only with local pressure on the top of 

slopes.  

(iv) The development of the software package in Chapter 7 needs subsequent 

refinement such as user interface optimization, the capability to tackle more 

complicated slope geometry and intelligent searching for the most critical failure 

mechanisms.  
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Appendix A Layered slopes analysis 

 

In Figure  A‐1, a piecewise linear model with ݊ ൅ 1	nodes is adopted to represent 

the failure surface of a slope with ݊ layers. ݔଵ~ݔ௡ାଵ are unknown variables to be 

optimized to find the most critical failure mechanism. ݕଵ~ݕ௡ାଵ are determined by 

the thickness ݄௜ of each layer: 
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The linear slip surface of each layer is  
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having an inclination of ߙ௜ to the horizontal axis. ߙ௜ is given by 
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The length of the interface between the last two layers is 
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And the length of the interface between layer	݅ and layer (݅ െ 1ሻ is  
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Let the unit weight of layer ݅ be ߛ௜ , frictional angle be ߶௜ , cohesion be ܿ௜  . 

According to the normality flow rule, the velocity of layer ݅, ௜ܸ 	makes an angle of 

߶௜  to the linear base. The relative velocity between layer	݅  and layer (݅ െ 1ሻ is 

௜ܸ,௜ିଵ , making an angle of ߶௜,௜ିଵ  to the layer interface. In order to establish a 

kinematically compatible velocity field within the slope, two adjacent layers must 

not move to cause overlap or indentation, which implies that the velocity 

hodograph must be closed. The velocities must satisfy: 
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The weight of the bottom layer is 
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For each layer above, the weight is found by 
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Thus, the rate of work done by the total weight of the slope sliding away is 

expressed as 
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It is possible to consider the seismic action on each layer, the rate of work done by 

the pseudo static seismic force is computed by 
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where ,h ik  is the horizontal seismic acceleration. 

According to Eq. (7-10), the internal energy dissipation constitutes two parts, 

one is the energy dissipation along the slip surface ܦௌ and another is that on the 

layers interface ܦ௅. We have   
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By equating the rate of external work to the rate of energy dissipation, leads to 
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Using the ܿ െ ߶ strength reduction technique described in section 3.1.3, the shear 

strength parameters ܿ௜, ߶௜	of each layer are reduced to bring the whole slope into a 

critical state: 
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The factor of safety ܨ has to be sought by an iterative process since it appears on 

both side of Eq. (7-10). 

 

 

Figure A-1. Layered slope analysis. 
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Appendix B Program Scripts (MATLAB R2014b) 

 

i. Chapter 3 

 
% Main program: Stability factor of slopes subjected to the most adverse 
% Crack (Mohr-Coulomb failure criterion) 
% ------------------------------------------------------------------------- 
clear; 
  
% slope inclination [deg] 
beta_grad=60; 
% friction angle [deg] 
phi_grad=20; 
% initial slope inclination [deg] 
alpha_grad=0; 
  
% derived variables in radian 
% ------------------------------------------------------------------------- 
beta=beta_grad/180*pi; 
alpha=alpha_grad/180*pi; 
phi=phi_grad/180*pi; 
b=tan(phi); 
  
% indicate the magnitude of water filling in the crack 
Kw=0; 
% the ratio of water unit weight over ground unit weight 
gamma_ratio=0; 
% indicate crack formation 
c_f=0; 
% indicate the magnitude of seismic accelerations 
Kh=0; 
Kv=0; 
  
% indicate the range of theta0, theta_c, theta_h, beta' 
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
x_delta_grad=24; 
y_delta_grad=21; 
z_delta_grad=24; 
beta_delta_grad=18; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
beta_pass_grad=1; 
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
beta_range_grad=(beta_grad-beta_delta_grad):beta_pass_grad:beta_grad; 
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi;  
z_range=z_range_grad/180*pi; 
beta_range=beta_range_grad/180*pi; 
  
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
temp=size(beta_range); 
n4=temp(2); 
MatrixN=zeros(n1,n2,n3,n4); 
  
for i=1:n1 
    for j=1:n2 
        for k=1:n3 
            for l=1:n4 
  
                x=x_range(i); 
                y=y_range(j); 
                z=z_range(k);                     
                beta_f=beta_range(l); 
  
                if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                    MatrixN(i,j,k,l)=NaN; 
                else 
                    
MatrixN(i,j,k,l)=funXYZ_crack(alpha,beta,b,x,y,z,beta_f,Kw,gamma_ratio,c_f,Kh,Kv); 
                end 
  



260 
 

            end 
        end 
    end 
end 
  
[N,BiI]=min(MatrixN(:)); 
[x_f,y_f,z_f,b_f]=ind2sub(size(MatrixN),BiI); 
X(1)=x_range(x_f); 
X(2)=y_range(y_f); 
X(3)=z_range(z_f); 
X(4)=beta_range(b_f); 
 
 
  
function N=funXYZ_crack(alpha,beta,b,x,y,z,beta_f,Kw,gamma_ratio,c_f,Kh,Kv) 
  
H=sin(beta_f)/sin(beta_f-alpha)*(exp(b*(y-x))*sin(y+alpha)-sin(x+alpha));  
L1=sin(y-x)/sin(y+alpha)-sin(y+beta_f)/(sin(y+alpha)*sin(beta_f-alpha))*(exp(b*(y-
x))*sin(y+alpha)-sin(x+alpha)); 
L2=sin(z-x)/sin(z+alpha)-cos(z)/sin(z+alpha)/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-
sin(x+alpha));  
D=1/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-sin(x+alpha));                                        
f1v=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                     
f2v=1/6*L1*sin(x+alpha)*(2*cos(x)-L1*cos(alpha));                     
f3v=1/6*exp(b*(y-x))*(sin(y-x)-L1*sin(y+alpha))*(cos(x)-L1*cos(alpha)+exp(b*(y-
x))*cos(y)); 
f4v=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                                     
f5v=1/6*L2*sin(x+alpha)*(2*cos(x+alpha)-L2);                                                          
f6v=1/3*D*exp(2*b*(z-x))*cos(z)*cos(z);                    
f7v=1/2*H^2*sin(beta-beta_f)/sin(beta)/sin(beta_f)*(cos(x)-L1*cos(alpha)-
1/3*H*(1/tan(beta_f)+1/tan(beta))); 
  
if Kh==0 
    fh=0; 
else    
    f1h=(exp(3*b*(y-x))*(-cos(y)+3*b*sin(y))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 
    f2h=1/6*L1*(2*sin(x)+L1*sin(alpha))*sin(x+alpha); 
    f3h=1/6*exp(b*(y-x))*(sin(y-x)-L1*sin(y+alpha))*(sin(x)+exp(b*(y-x))*sin(y)); 
    f4h=(exp(3*b*(z-x))*(-cos(z)+3*b*sin(z))-3*b*sin(x)+cos(x))/(3*(1+9*b^2));   
    f5h=1/3*L2*sin(x+alpha)*sin(x+alpha);  
    f6h=1/6*D*exp(b*(z-x))*cos(z)*(2*exp(b*(z-x))*sin(z)-D); 
    fh=Kh*(f1h-f2h-f3h-f4h+f5h+f6h);    
end 
  
tan_theta_c=sin(x)/((exp(b*(z-x)))*cos(z)); 
theta_c=atan(tan_theta_c); 
if c_f==0     % pre-existing cracks  
    fcf=0; 
elseif c_f==1 % limited tensile strength 
    int_fcf1 = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 
    int_fcf2 = integral(@(theta) (sin(theta)-b/sqrt(b^2+1))./(cos(theta)).^3,theta_c,z); 
    fcf=((sin(x)/tan_theta_c)^2)*((1/sqrt(b^2+1)/(1-
b/sqrt(b^2+1)))*int_fcf1+(1/sqrt(b^2+1)/((1-(b/sqrt(b^2+1)).^2)))*int_fcf2)*(exp(b*(y-
x))*sin(y)-sin(x)); 
elseif c_f==2 % tension cut-off 
    int_fcf1 = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 
    int_fcf2 = 0; 
    fcf=((sin(x)/tan_theta_c)^2)*((1/sqrt(b^2+1)/(1-
b/sqrt(b^2+1)))*int_fcf1+(1/sqrt(b^2+1)/((1-(b/sqrt(b^2+1)).^2)))*int_fcf2)*(exp(b*(y-
x))*sin(y)-sin(x)); 
end    
     
flag=1; 
if gamma_ratio==0 
    fw1=0; 
    fw2=0; 
    fw3=0; 
else    
    options = optimset('TolX',1e-5); 
    [theta1,fval,exitflag,output] = fzero(@(theta1)cos(theta1)*exp(b*(theta1-x))-
cos(x)+L1*cos(alpha),(z+y)/2,options); 
    if (exitflag==1) && (theta1>z) && (theta1<y) 
        fw1=integral(@(angle)funw1(angle,x,b),z,theta1); 
        fw2=integral(@(angle)funw2(angle,x,y,b,beta),theta1,y); 
        fw3=1/2*Kw*Kw*D*D*(exp(b*(z-x))*sin(z)-1/3*Kw*D); 
    else 
        flag=0; 
    end     
end 
  
if flag==1       
    % indicate the degree of non-homogeneity 
    n0=0.5; 
    ni=n0+D/H-D/H*n0; 
    q1=ni/exp(2*x*b)*(funpsi(y,b)-funpsi(x,b));  
    q2=(1-ni)/H/exp(3*x*b)*((funksi(y,b)-funpsi(y,b)*sin(x)*exp(x*b))-(funksi(x,b)-
funpsi(x,b)*sin(x)*exp(x*b))); 
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    N=((q1+q2)*H+fcf)/((1+Kv)*(f1v-f2v-f3v-f4v+f5v+f6v-
f7v)+(fw1+fw2+fw3)*gamma_ratio+fh);    
    if N<1 || N>500 
        N=NaN; 
    end      
else 
    N=NaN; 
end 
 
 
 
function W=funw1(t,x,b)  
  
W=b*(exp(b*(t-x)).*sin(t)-sin(x)).*exp(2*b*(t-x)); 
  
 
 
function W=funw2(t,x,y,b,beta) 
  
W=b*(exp(b*(t-x)).*sin(t)-sin(y).*exp(b*(y-x))+tan(beta)*(exp(b*(t-x)).*cos(t)-
cos(y).*exp(b*(y-x)))).*exp(2*b*(t-x)); 
 
 
 
function F=funpsi(theta,b) 
  
F=exp(2*theta*b)/2/b; 
 
     
 
function F=funksi(theta,b) 
  
F=(3*b*sin(theta)-cos(theta))*exp(3*theta*b)/(1+9*b*b); 
 
 
 

ii. Chapter 4 

 
% Main program: Stability factor of slopes subjected to the most adverse 
% Crack (Hoek-Brown failure criterion, tangential technique) 
% ------------------------------------------------------------------------- 
clear; 
  
% slope inclination [deg] 
beta_grad=60; 
% initial slope inclination [deg] 
alpha_grad=0; 
  
% derived variables in radian 
% ------------------------------------------------------------------------- 
beta=beta_grad/180*pi; 
alpha=alpha_grad/180*pi; 
  
% input ground material strength parameteres 
mi=10; 
GSI=50; 
D=1; 
m=mi*exp((GSI-100)/(28-14*D)); 
s=exp((GSI-100)/(9-3*D)); 
n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
  
% indicate the range of theta0, theta_c, theta_h, phi 
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
phi_guess_grad=24; 
x_delta_grad=24; 
y_delta_grad=21; 
z_delta_grad=24; 
phi_delta_grad=15; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
phi_pass_grad=1; 
  
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
phi_range_grad=(-
phi_delta_grad+phi_guess_grad):phi_pass_grad:(phi_delta_grad+phi_guess_grad); 
  
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi;  
z_range=z_range_grad/180*pi; 
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phi_range=phi_range_grad/180*pi; 
  
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
temp=size(phi_range); 
n4=temp(2); 
MatrixN=zeros(n1,n2,n3,n4); 
  
for i=1:n1 
    for j=1:n2 
        for k=1:n3 
            for l=1:n4 
  
                x=x_range(i); 
                y=y_range(j); 
                z=z_range(k);                     
  
                if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                    MatrixN(i,j,k,l)=NaN; 
                else 
                    phi=phi_range(l); 
                    b=tan(phi); 
                    strength_ratio=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n); 
                    sigma_ratio=(1/m+sin(phi)/m/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-
n))-s/m; 
                    if sigma_ratio>1 
                         MatrixN(i,j,k,l)=NaN; 
                    else 
                         
MatrixN(i,j,k,l)=s^n*strength_ratio*funXYZ_crack(alpha,beta,b,x,y,z,beta,0,0,0,0); 
                    end 
                end 
            end 
        end 
    end 
end 
  
[N,BiI]=min(MatrixN(:)); 
[x_f,y_f,z_f,p_f]=ind2sub(size(MatrixN),BiI); 
X(1)=x_range_grad(x_f); 
X(2)=y_range_grad(y_f); 
X(3)=z_range_grad(z_f); 
X(4)=phi_range_grad(p_f); 
 
 
 
% Main program: Critical height of slopes subjected to the most adverse 
% Crack (Hoek-Brown failure criterion, variational approach) 
clear 
  
% slope inclination [deg] 
beta_grad=60; 
  
% input ground material strength parameteres 
c=30;   % uniaxial compression strength 
GSI=100; 
D=0; 
mi=10; 
m=mi*exp((GSI-100)/(28-14*D)); 
s=exp((GSI-100)/(9-3*D)); 
a=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
gamma=19; 
  
% indicate the range of theta0,theta_h 
x_guess_grad=54; 
y_guess_grad=94; 
x_delta_grad=5; 
y_delta_grad=5; 
x_pass_grad=0.1; 
y_pass_grad=0.1; 
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
x_range=x_range_grad/180*pi; 
temp=size(x_range); 
n1=temp(2); 
y_range=y_range_grad/180*pi; 
temp=size(y_range); 
n2=temp(2); 
d_range=0.35:0.05:0.45; 
temp=size(d_range); 
n3=temp(2); 
funH=zeros(n1,n2,n3); 
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for i=1:n1 
    for j=1:n2 
        for k=1:n3 
            x=x_range(i); 
            y=y_range(j); 
            d=d_range(k); 
            flag=1; 
                options = optimset('TolX',1e-2); 
                [p0,fval,exitflag,output] = fzero(@(p0)(((1/m+sin(p0)/m/a)*(m*a*(1-
sin(p0))/2/sin(p0))^(1/(1-a))-s/m)*cos(x)+cos(p0)/2*(m*a*(1-sin(p0))/2/sin(p0))^(a/(1-
a))*(sin(x)+cos(x)*(tan(p0)*sin(x)+cos(x))/(sin(x)-tan(p0)*cos(x)))),63/180*pi,options); 
                if (exitflag~=1) || (p0>90/180*pi) || (p0<10/180*pi) 
                   flag=0; 
                end 
            if (x>y-0.1) || (flag==0)  
                funH(i,j,k)=NaN; 
            else 
                funH(i,j,k)=H_critical(x,y,d,p0,beta,m,s,a,c,gamma); 
            end 
        end 
    end 
end 
  
[Hc,BiI]=min(funH(:)); 
[x_f,y_f,d_f]=ind2sub(size(funH),BiI); 
Theta0=x_range_grad(x_f); 
ThetaH=y_range_grad(y_f); 
ThetaC=d_range(d_f); 
 
 
  
function Hc = H_critical(x,y,d,p0,beta,m,s,a,c,gamma) 
  
[Theta, Phi] = ode45(@(theta,phi) PhiAlongTheta(theta,phi,c,m,a,x,gamma), [x y], p0); 
  
Num=size(Phi); 
  
Sigma=zeros(1,Num(1)); 
Tau=zeros(1,Num(1)); 
Radius=zeros(1,Num(1)); 
Cohesion=zeros(1,Num(1)); 
XX=zeros(1,Num(1)); 
YY=zeros(1,Num(1)); 
  
for i=1:Num(1) 
    Sigma(i)=c/m*(2*sin(Phi(i))/m/a/(1-sin(Phi(i))))^(1/(a-1))*(sin(Phi(i))/a+1)-s*c/m; 
    Tau(i)=c*cos(Phi(i))/2*(2*sin(Phi(i))/m/a/(1-sin(Phi(i))))^(a/(a-1)); 
    
Radius(i)=exp(cos(Phi(i))*a*m/2/(sin(Phi(i))/a+1)*((m/c*Sigma(i)+s)/(sin(Phi(i))/a+1))^
(a-1)*(Theta(i)-x)); 
    Cohesion(i)=Tau(i)-Sigma(i)*tan(Phi(i)); 
    XX(i)=Radius(i)*cos(Theta(i)); 
    YY(i)=Radius(i)*sin(Theta(i)); 
end 
  
h=YY2(Num(1))-YY2(1); 
L=XX2(1)-XX2(Num(1))-h/tan(beta); 
  
f1=0; 
for i=1:(Num(1)-1) 
    f1=f1+((Radius(i))^3*cos(Theta(i))+(Radius(i+1))^3*cos(Theta(i+1)))*(Theta(i+1)-
Theta(i))/6; 
end 
  
f2=sin(x)*L*(2*cos(x)-L)/6; 
f3=Radius(Num(1))*(sin(y-x)-L*sin(y))*(cos(x)-L+cos(y)*Radius(Num(1)))/6; 
  
g=0; 
for i=1:(Num(1)-1) 
    g=g+(Cohesion(i)*(Radius(i))^2+Cohesion(i+1)*(Radius(i+1))^2)*(Theta(i+1)-
Theta(i))/2; 
end 
  
D=d/(1-d)*h; 
  
f4=1/6*(3*cos(x)-L+D/tan(beta))*(L-D/tan(beta))*D; 
f5=1/6*(3*cos(x)-2*L+D/tan(beta))*L*D; 
  
Hc=g*h/gamma/(f1-f2-f3+f4+f5)/(1-d); 
  
if (Hc<c/gamma) || (Hc>100*c/gamma) || (L<0) 
    Hc=NaN; 
end 
 
  
  
function dphi = PhiAlongTheta(theta,phi,c,m,a,x,gamma) 
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dphi=-((a-1)*a*m*(sin(phi)-1)*(2*sin(phi)/(a*m-a*m*sin(phi)))^(1/(1-a))*(exp(a*(theta-
x)*sin(phi)*cos(phi)/(1-sin(phi))/(a+sin(theta)))*gamma*cos(theta)-
c*cos(phi)*(2*sin(phi)/(a*m-a*m*sin(theta)))^(a/(a-1)))*tan(phi))/c/(a+a*sin(phi)-(a-
1)*sin(theta^2)); 
 
 
 
% Main program: Stability factor of slopes subjected to blasting, the most adverse 
% Crack (Hoek-Brown failure criterion, tangential technique) 
% ------------------------------------------------------------------------- 
clear; 
  
% slope inclination [deg] 
beta_grad=60; 
% initial slope inclination [deg] 
alpha_grad=0; 
  
% derived variables in radian 
% ------------------------------------------------------------------------- 
beta=beta_grad/180*pi; 
alpha=alpha_grad/180*pi; 
  
n_integral=20; 
  
% input ground material strength parameteres 
mi=10; 
GSI=50; 
D0=0; 
D1=1; 
n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
  
% indicate the range of theta0, theta_c, theta_h, phi 
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
phi_guess_grad=24; 
x_delta_grad=24; 
y_delta_grad=20; 
z_delta_grad=24; 
phi_delta_grad=21; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
phi_pass_grad=1; 
  
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
phi_range_grad=(-
phi_delta_grad+phi_guess_grad):phi_pass_grad:(phi_delta_grad+phi_guess_grad); 
  
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi;  
z_range=z_range_grad/180*pi; 
phi_range=phi_range_grad/180*pi; 
  
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
temp=size(phi_range); 
n4=temp(2); 
MatrixN=zeros(n1,n2,n3,n4); 
  
for i=1:n1 
    for j=1:n2 
        for k=1:n3 
            for l=1:n4 
                x=x_range(i); 
                y=y_range(j); 
                z=z_range(k);                     
                if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                    MatrixN(i,j,k,l)=NaN; 
                else 
                    phi=phi_range(l); 
                    
MatrixN(i,j,k,l)=funXYZ_crack_D(alpha,beta,phi,x,y,z,beta,mi,GSI,n,D0,D1,0,0,n_integral
); 
                end 
            end 
        end 
    end 
end 
  
[N,BiI]=min(MatrixN(:)); 
[x_f,y_f,z_f,p_f]=ind2sub(size(MatrixN),BiI); 
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X(1)=x_range(x_f)/pi*180; 
X(2)=y_range(y_f)/pi*180; 
X(3)=z_range(z_f)/pi*180; 
X(4)=phi_range(p_f)/pi*180; 
 
  
  
function 
F=funXYZ_crack_D(alpha,beta,phi,x,y,z,beta_f,mi,GSI,n,D0,D1,Kw,gamma_ratio,n_integral) 
  
b=tan(phi); 
H=sin(beta_f)/sin(beta_f-alpha)*(exp(b*(y-x))*sin(y+alpha)-sin(x+alpha));  
L=H/tan(beta); 
ry=exp(b*(y-x)); 
L1=sin(y-x)/sin(y+alpha)-sin(y+beta_f)/(sin(y+alpha)*sin(beta_f-alpha))*(exp(b*(y-
x))*sin(y+alpha)-sin(x+alpha)); 
L2=sin(z-x)/sin(z+alpha)-cos(z)/sin(z+alpha)/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-
sin(x+alpha));  
D=1/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-sin(x+alpha));                                        
f1v=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                     
f2v=1/6*L1*sin(x+alpha)*(2*cos(x)-L1*cos(alpha));                     
f3v=1/6*exp(b*(y-x))*(sin(y-x)-L1*sin(y+alpha))*(cos(x)-L1*cos(alpha)+exp(b*(y-
x))*cos(y)); 
f4v=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                                        
f5v=1/6*L2*sin(x+alpha)*(2*cos(x+alpha)-L2);                                                            
f6v=1/3*D*exp(2*b*(z-x))*cos(z)*cos(z);                    
f7v=1/2*H^2*sin(beta-beta_f)/sin(beta)/sin(beta_f)*(cos(x)-L1-
1/3*H*(1/tan(beta_f)+1/tan(beta))); 
  
flag=1; 
  
if gamma_ratio==0 
    fw1=0; 
    fw2=0; 
    fw3=0; 
else    
    options = optimset('TolX',1e-5); 
    [theta1,fval,exitflag,output] = fzero(@(theta1)cos(theta1)*exp(b*(theta1-x))-
cos(x)+L1*cos(alpha),(z+y)/2,options); 
    if (exitflag==1) && (theta1>z) && (theta1<y) 
        fw1=integral(@(angle)funw1(angle,x,b),z,theta1); 
        fw2=integral(@(angle)funw2(angle,x,y,b,beta),theta1,y); 
        fw3=1/2*Kw*Kw*D*D*(exp(b*(z-x))*sin(z)-1/3*Kw*D); 
    else 
        flag=0; 
    end     
end 
  
if flag==1     
    t=zeros(1,n_integral+1); 
    D=zeros(1,n_integral+1);  
    c=zeros(1,n_integral+1);  
    for i=1:(n_integral+1) 
        t(i)=z+(y-z)/n_integral*(i-1); 
        x_coord=exp(b*(t(i)-x))*cos(t(i))-ry*cos(y); 
        y_coord=ry*sin(y)-exp(b*(t(i)-x))*sin(t(i)); 
        if (y_coord > (-L/H*x_coord+H+L^2/H)) 
            D(i)=(H-(exp(b*(t(i)-x))*sin(t(i))-sin(x))/sin(pi/2-beta))/H*(D1-D0)+D0; 
        else 
            D(i)=(H-exp(b*(t(i)-x))*cos(pi/2-t(i)-beta)+ry*sin(pi-y-beta))/H*(D1-D0)+D0; 
        end   
        if D(i)<D0 
            D(i)=D0; 
        elseif D(i)>D1; 
            D(i)=D1; 
        end        
        m=mi*exp((GSI-100)/(28-14*D(i))); 
        s=exp((GSI-100)/(9-3*D(i)));        
        sigma_ratio=(1/m+sin(phi)/m/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))-s/m;         
        c(i)=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
tan(phi)/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*tan(phi)); 
    end     
    q=0; 
    for i=1:n_integral 
        q=q+(c(i)*exp(2*b*(t(i)-x))+c(i+1)*exp(2*b*(t(i+1)-x)))*(y-z)/n_integral/2; 
    end     
    F=q*H/(f1v-f2v-f3v-f4v+f5v+f6v-f7v+(fw1+fw2+fw3)*gamma_ratio); 
    if F<0 || F>500 || sigma_ratio>1 
        F=NaN; 
    end     
else 
    F=NaN; 
end 
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iii. Chapter 5 

 
% Main program: Genetic Algorithm  
% ------------------------------------------------------------------------- 
clear; 
  
% initialize parallel computing 
CoreNum=8; 
if matlabpool('size')<=0 
    matlabpool('open','local',CoreNum); 
else 
    disp('Already initialized'); 
end 
  
ObjectiveFunction = @Fun_MC;    % objective function to maximize 
n_points = 19;    % Number of variables 
LB = zeros(1,n_points); % Lower bound 
UB = ones(1,n_points);  % Upper bound 
  
beta=60/180*pi; 
  
opts = gaoptimset('PopulationSize',400, 'StallGenLimit',100, 'Generations',2000, 
'UseParallel', 'always');   
  
ConstraintFunction = @ConstraintR; 
[R,Fval,exitFlag,Output] = 
ga(ObjectiveFunction,n_points,[],[],[],[],LB,UB,ConstraintFunction,opts); 
  
N=-Fval; 
L_array=[0 (1-fliplr(R)) 1]; 
H_array=zeros(1,n_points+2); 
for i=1:(n_points+2) 
    H_array(i)=(i-1)/(n_points+1)*tan(beta); 
end 
  
matlabpool close 
 
 
 
function [c, ceq] = ConstraintR(R) 
  
n_points=19; 
c=ones(1,n_points-1); 
  
for i=1:(n_points-1) 
    c(i)=R(i)-R(i+1); 
end 
  
c=c'; 
  
ceq = []; 
 
 
     
% function to be maximized (Mohr-Coulomb failure criterion) 
function N_=Fun_MC(R) 
  
% slope inclination [deg] 
beta_grad=60; 
% friction angle [deg] 
phi_grad=20; 
  
% derived variables in radian 
beta=beta_grad/180*pi; 
phi=phi_grad/180*pi; 
b=tan(phi); 
  
n_points=19; 
  
% indicate the range of theta0, theta_c, theta_h 
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
x_delta_grad=24; 
y_delta_grad=20; 
z_delta_grad=24; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
x_range=x_range_grad/180*pi; 
temp=size(x_range); 
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n1=temp(2); 
y_range=y_range_grad/180*pi; 
temp=size(y_range); 
n2=temp(2); 
z_range=z_range_grad/180*pi; 
temp=size(z_range); 
n3=temp(2); 
MatrixN=zeros(n1,n2,n3); 
N_all=zeros(1,n_points+1); 
X_all=zeros(3,n_points+1); 
  
H_R=zeros(1,n_points+1); 
for k=1:(n_points+1) 
    H_R(k)=(n_points+1)/(n_points+2-k); 
end 
  
R_new=R; 
beta_new=beta; 
  
for loop=1:(n_points+1) 
    for i=1:n1 
        for j=1:n2 
            for k=1:n3 
                x=x_range(i); 
                y=y_range(j);  
                z=z_range(k);  
                if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                    MatrixN(i,j)=NaN; 
                else 
                    MatrixN(i,j)=funXY_Crack(x,y,beta_new,b,(n_points+1-loop),R_new); 
                end            
            end 
        end             
    end 
     
    [N_all(loop),BiI]=min(MatrixN(:)); 
    [x_f,y_f]=ind2sub(size(MatrixN),BiI); 
    X_all(1,loop)=x_range(x_f); 
    X_all(2,loop)=y_range(y_f); 
    X_all(3,loop)=z_range(z_f);  
     
    R_temp=R_new; 
    if (n_points+1-loop)==0 
        R_new=NaN; 
        beta_new=NaN;  
    else       
        if (n_points-loop)==0 
            R_new=NaN; 
        else 
            R_new=zeros(1,n_points-loop); 
            for k=1:(n_points-loop) 
                R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
            end 
        end 
        beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));  
    end           
end 
  
N_all=H_R.*N_all; 
[N_, toe]=min(N_all); 
if toe==1       
    flag=1; 
    for i=1:(n_points+1) 
        if isnan(N_all(i)) 
            flag=0; 
        end 
    end    
    if flag==0; 
        N_=1; 
    else 
        X(1)=X_all(1,toe); 
        X(2)=X_all(2,toe); 
        X(3)=X_all(3,toe); 
        N_=-N_; 
    end       
else 
    N_=1; 
end 
  
 
 
function N=funXY_Crack(x,y,z,beta,b,n_points,R) 
  
flag=1; 
  
H=exp(b*(y-x))*sin(y)-sin(x); 
L=H/tan(beta); 
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Lrx=sin(x+beta)/sin(beta)-exp(b*(y-x))*sin(y+beta)/sin(beta); 
rc=sqrt(sin(x)*sin(x)+(cos(x)-Lrx)^2); 
sc=acos((cos(x)-Lrx)/rc); 
ry=exp(b*(y-x));  
  
H_points=zeros(1,n_points); 
L_points=zeros(1,n_points); 
ss=zeros(1,n_points); 
rr=zeros(1,n_points); 
  
for i=1:n_points 
    H_points(i)=sin(x)+H*i/(n_points+1); 
    L_points(i)=cos(x)-Lrx-R(i)*L; 
    rr(i)=sqrt(H_points(i)*H_points(i)+L_points(i)*L_points(i)); 
    ss(i)=acos(L_points(i)/rr(i));     
    if rr(i)>exp(b*(ss(i)-x)) 
        flag=0; 
    end 
    if ss(i)>y 
        flag=0; 
    end 
end 
  
if flag==1        
    g=exp(2*b*(z-x))*(exp(2*b*(y-z))-1)*(exp(b*(y-x))*sin(y)-sin(x))/(2*b); 
    f1=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 
    f2=1/6*Lrx*sin(x)*(2*cos(x)-Lrx); 
    f3=0;                 
    p1=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 
    p2=1/6*sin(x)*((cos(x))^2-exp(2*b*(z-x))*(cos(z))^2); 
    p3=1/3*exp(2*b*(z-x))*(cos(z))^2*(sin(z)*exp(b*(z-x))-sin(x));                                                 
    if n_points==0 
        f3=fun3(rc,sc,ry,y); 
    end 
    if n_points==1 
        f3=fun3(rc,sc,rr(1),ss(1))+fun3(rr(1),ss(1),ry,y); 
    end 
    if n_points>1 
        f3=fun3(rc,sc,rr(1),ss(1)); 
        for i=1:(n_points-1) 
            f3=f3+fun3(rr(i),ss(i),rr(i+1),ss(i+1)); 
        end 
        f3=f3+fun3(rr(n_points),ss(n_points),ry,y); 
    end 
     
    N=g/(f1-f2-f3-p1+p2+p3); 
     
    if N<1 || N>500 
        N=NaN; 
    end   
else 
    N=NaN; 
end 
 
 
 
% function to be maximized (Hoek-Brown failure criterion, Blasting) 
function N_=Fun_HB(R) 
  
% slope inclination [deg] 
beta_grad=60; 
% derived variables in radian 
beta=beta_grad/180*pi; 
  
n_points=19; 
n_integral=20; 
  
% input ground material strength parameteres 
mi=10; 
GSI=50; 
D0=0; 
D1=1; 
  
% indicate the range of theta0, theta_c, theta_h, phi 
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
phi_guess_grad=24; 
x_delta_grad=24; 
y_delta_grad=20; 
z_delta_grad=24; 
phi_delta_grad=21; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
phi_pass_grad=1; 
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
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z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
phi_range_grad=(-
phi_delta_grad+phi_guess_grad):phi_pass_grad:(phi_delta_grad+phi_guess_grad); 
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi;  
z_range=z_range_grad/180*pi; 
phi_range=phi_range_grad/180*pi; 
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
temp=size(phi_range); 
n4=temp(2); 
MatrixN=zeros(n1,n2,n3,n4); 
N_all=zeros(1,n_points+1); 
X_all=zeros(4,n_points+1); 
  
H_R=zeros(1,n_points+1); 
for l=1:(n_points+1) 
    H_R(l)=(n_points+1)/(n_points+2-l); 
end 
  
R_new=R; 
beta_new=beta; 
  
for loop=1:(n_points+1) 
    for i=1:n1 
        for j=1:n2 
            for k=1:n3 
                for l=1:n4           
                    x=x_range(i); 
                    y=y_range(j); 
                    z=z_range(k); 
                    phi=phi_range(l); 
                    if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                        MatrixN(i,j,k,l)=NaN; 
                    else 
                        
MatrixN(i,j,k,l)=funXY_D(x,y,z,phi,beta_new,mi,GSI,D0,D1,(n_points+1-
loop),n_integral,R_new); 
                    end 
                end 
            end 
        end 
    end 
     
    [N_all(loop),BiI]=min(MatrixN(:)); 
    [x_f,y_f,z_f,p_f]=ind2sub(size(MatrixN),BiI); 
    X_all(1,loop)=x_range(x_f); 
    X_all(2,loop)=y_range(y_f); 
    X_all(3,loop)=z_range(z_f); 
    X_all(4,loop)=phi_range(p_f); 
        
    R_temp=R_new; 
    if (n_points+1-loop)==0 
        R_new=NaN; 
        beta_new=NaN;  
    else        
        if (n_points-loop)==0 
            R_new=NaN; 
        else 
            R_new=zeros(1,n_points-loop); 
            for k=1:(n_points-loop) 
                R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
            end 
        end 
        beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));          
    end           
end 
  
N_all=H_R.*N_all; 
[N_, toe]=min(N_all); 
if toe==1       
    flag=1; 
    for i=1:(n_points+1) 
        if isnan(N_all(i)) 
            flag=0; 
        end 
    end     
    if flag==0; 
        N_=1; 
    else 
        X(1)=X_all(1,toe); 
        X(2)=X_all(2,toe); 
        X(3)=X_all(3,toe); 
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        X(4)=X_all(4,toe); 
        N_=-N_; 
    end      
else 
    N_=1; 
end 
  
 
  
function F=fun3(r1,s1,r2,s2)  
         
    x1=r1*cos(s1); 
    y1=r1*sin(s1); 
    x2=r2*cos(s2); 
    y2=r2*sin(s2); 
    S=1/2*abs(x1*y2-x2*y1); 
    F=(x1+x2)/3*S; 
 
 
 
function F=funXY_D(x,y,z,phi,beta,mi,GSI,D0,D1,n_points,n_integral,R) 
  
b=tan(phi); 
H=exp(b*(y-x))*sin(y)-sin(x); 
L=H/tan(beta); 
Lrx=sin(x+beta)/sin(beta)-exp(b*(y-x))*sin(y+beta)/sin(beta); 
  
th=atan(sin(x)/(cos(x)-Lrx)); 
if th<0 
    th=pi+atan(sin(x)/(cos(x)-Lrx)); 
end 
  
rt=sqrt(sin(x)*sin(x)+(cos(x)-Lrx)^2); 
ry=exp(b*(y-x));  
  
H_points=zeros(1,n_points); 
L_points=zeros(1,n_points); 
tt=zeros(1,n_points); 
rr=zeros(1,n_points); 
DD=zeros(1,n_points); 
cc=zeros(1,n_points); 
flag=1; 
  
for i=1:n_points 
    H_points(i)=sin(x)+H*i/(n_points+1); 
    L_points(i)=cos(x)-Lrx-R(i)*L; 
    rr(i)=sqrt(H_points(i)*H_points(i)+L_points(i)*L_points(i)); 
    tt(i)=acos(L_points(i)/rr(i));     
    if rr(i)>exp(b*(tt(i)-x)) 
        flag=0; 
    end 
    if tt(i)>y 
        flag=0; 
    end    
    if flag==1     
        x_coord=rr(i)*cos(tt(i))-ry*cos(y); 
        y_coord=ry*sin(y)-rr(i)*sin(tt(i)); 
        if (y_coord > -L/H*x_coord+H+L^2/H) 
            DD(i)=(H-(rr(i)*sin(tt(i))-sin(x))/sin(pi/2-beta))/H*(D0-D1)+D1; 
        else 
            DD(i)=(H-(exp(b*(tt(i)-x))-rr(i)))*cos(pi/2-tt(i)-beta)/H*(D0-D1)+D1; 
        end 
        if DD(i)>D0 
            DD(i)=D0; 
        elseif DD(i)<D1; 
            DD(i)=D1; 
        end 
        m=mi*exp((GSI-100)/(28-14*D(i))); 
        s=exp((GSI-100)/(9-3*D(i))); 
        n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
        cc(i)=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n);       
    end       
end 
  
if flag==1 
    f1=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 
    f2=1/6*Lrx*sin(x)*(2*cos(x)-Lrx); 
    f4=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                                       
    f5=1/6*L2*sin(x+alpha)*(2*cos(x+alpha)-L2);                                                            
    f6=1/3*D*exp(2*b*(z-x))*cos(z)*cos(z);                    
    f3=0; 
    q=0; 
    if n_points==0       
        f3=fun3(rt,th,ry,y); 
        t=zeros(1,n_integral+1); 
        D=zeros(1,n_integral+1); 
        c=zeros(1,n_integral+1);        
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        for i=1:(n_integral+1) 
            t(i)=x+(y-x)/n_integral*(i-1); 
            x_coord=exp(b*(t(i)-x))*cos(t(i))-ry*cos(y); 
            y_coord=ry*sin(y)-exp(b*(t(i)-x))*sin(t(i)); 
            if (y_coord > -L/H*x_coord+H+L^2/H) 
                D(i)=(H-(exp(b*(t(i)-x))*sin(t(i))-sin(x))/sin(pi/2-beta))/H*(D0-D1)+D1; 
            else 
                D(i)=(H-exp(b*(t(i)-x))*cos(t(i)-pi/2+beta)+ry*sin(pi-y-beta))/H*(D0-
D1)+D1; 
            end  
            m=mi*exp((GSI-100)/(28-14*D(i))); 
            s=exp((GSI-100)/(9-3*D(i))); 
            n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
            c(i)=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n);             
        end      
        for i=1:(n_integral+1)             
            q=q+(c(i)*exp(2*b*(t(i)-x))+c(i+1)*exp(2*b*(t(i+1)-x)))*(y-x)/n_integral/2; 
        end                        
    end            
    if n_points~=0        
        if n_points==1 
            f3=fun3(rt,th,rr(1),tt(1))+fun3(rr(1),tt(1),ry,y); 
        else       
            f3=fun3(rt,th,rr(1),tt(1)); 
            for i=1:(n_points-1) 
                f3=f3+fun3(rr(i),tt(i),rr(i+1),tt(i+1)); 
            end 
            f3=f3+fun3(rr(n_points),tt(n_points),ry,y); 
        end        
        t1=zeros(1,n_integral+1); 
        D1=zeros(1,n_integral+1); 
        c1=zeros(1,n_integral+1); 
        for i=1:(n_integral+1) 
            t1(i)=x+(th-x)/n_integral*(i-1);            
            x_coord=exp(b*(t1(i)-x))*cos(t1(i))-ry*cos(y); 
            y_coord=ry*sin(y)-exp(b*(t1(i)-x))*sin(t1(i)); 
            if (y_coord > -L/H*x_coord+H+L^2/H) 
                D1(i)=(H-(exp(b*(t1(i)-x))*sin(t1(i))-sin(x))/sin(pi/2-beta))/H*(D0-
D1)+D1; 
            else 
                D1(i)=(H-exp(b*(t1(i)-x))*cos(t1(i)-pi/2+beta)+ry*sin(pi-y-
beta))/H*(D0-D1)+D1; 
            end  
            m=mi*exp((GSI-100)/(28-14*D(i))); 
            s=exp((GSI-100)/(9-3*D(i))); 
            n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
            c1(i)=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n);             
        end         
        for i=1:n_integral             
            q=q+(c1(i)*exp(2*b*(t(i)-x))+c1(i+1)*exp(2*b*(t(i+1)-x)))*(th-
x)/n_integral/2; 
        end        
        cc_start=c(n_integral+1); 
        m=mi*exp((GSI-100)/(28-14*D0)); 
        s=exp((GSI-100)/(9-3*D0)); 
        n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
        cc_last=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n); 
        D2=zeros(1,n_points); 
        c2=zeros(1,n_points);      
        for i=1:n_points             
            x_coord=exp(b*(tt(i)-x))*cos(tt(i))-ry*cos(y); 
            y_coord=ry*sin(y)-exp(b*(tt(i)-x))*sin(tt(i)); 
            if (y_coord > -L/H*x_coord+H+L^2/H) 
                D2(i)=(H-(exp(b*(tt(i)-x))*sin(tt(i))-sin(x))/sin(pi/2-beta))/H*(D0-
D1)+D1; 
            else 
                D2(i)=(H-(exp(b*(tt(i)-x))-rr(i))*cos(pi/2-tt(i)-beta))/H*(D0-D1)+D1; 
            end  
            m=mi*exp((GSI-100)/(28-14*D(i))); 
            s=exp((GSI-100)/(9-3*D(i))); 
            n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
            c2(i)=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n);             
        end        
        q=q+(cc_start*exp(2*b*(th-x))+c2(1)*exp(2*b*(tt(1)-x)))*(tt(1)-th)/2; 
        for i=1:(n_points-1) 
            q=q+(c2(i)*exp(2*b*(tt(i)-x))+c2(i+1)*exp(2*b*(tt(i+1)-x)))*(tt(i+1)-
tt(i))/n_integral/2; 
        end                  
        q=q+(c2(n_points)*exp(2*b*(th-x))+cc_last*exp(2*b*(y-x)))*(y-tt(n_points))/2; 
    end 
    F=q*(exp(b*(y-x))*sin(y)-sin(x))/(f1-f2-f3-f4+f5+f6);     
    if F<1 || F>500 
        F=NaN; 
    end     
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else 
    F=NaN; 
end 
 
 
  

iv. Chapter 6 

 
% Main program: Case 2 
% ------------------------------------------------------------------------- 
clear; 
  
% slope inclination [deg] 
beta_grad=60; 
% friction angle [deg] 
phi_grad=20; 
% initial slope inclination [deg] 
alpha_grad=0; 
  
% derived variables in radian 
% ------------------------------------------------------------------------- 
beta=beta_grad/180*pi; 
alpha=alpha_grad/180*pi; 
phi=phi_grad/180*pi; 
b=tan(phi); 
  
m=1/3; 
Kw=1; 
gamma_ratio=0; 
Kh=0; 
Kv=0; 
  
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
x_delta_grad=24; 
y_delta_grad=20; 
z_delta_grad=24; 
beta_delta_grad=15; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
beta_pass_grad=1; 
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
beta_range_grad=(beta_grad-beta_delta_grad):beta_pass_grad:beta_grad; 
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi;  
z_range=z_range_grad/180*pi; 
beta_range=beta_range_grad/180*pi; 
position_left=0.04; 
position_right=0.96; 
position_step=0.02; 
  
Position=position_left:position_step:position_right; 
  
temp=size(Position); 
n=temp(2); 
  
X=zeros(n,4); 
N=zeros(1,n); 
     
for i=1:n               
    [X(i,:), 
N(i)]=Grid_Fun_Pile(alpha,beta,b,x_range,y_range,z_range,beta_range,m,Position(i),Kw,ga
mma_ratio,Kh,Kv);   
end 
 
 
 
function [X, 
N_]=Grid_Fun_Pile(alpha,beta,b,x_range,y_range,z_range,beta_range,m,p,Kw,gamma_ratio,Kh
,Kv) 
  
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
temp=size(beta_range); 
n4=temp(2); 
MatrixN=zeros(n1,n2,n3,n4); 
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for i=1:n1 
    for j=1:n2 
        for k=1:n3 
            for l=1:n4 
                x=x_range(i); 
                y=y_range(j);  
                z=z_range(k); 
                beta_f=beta_range(l); 
               if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                    MatrixN(i,j,k,l)=NaN; 
                else 
                    
MatrixN(i,j,k,l)=funXYZ_Pile(alpha,beta,b,x,y,z,beta_f,m,p,Kw,gamma_ratio,Kh,Kv); 
               end        
            end 
        end 
    end 
end    
  
[N_,BiI]=min(MatrixN(:)); 
[x_f,y_f,z_f,b_f]=ind2sub(size(MatrixN),BiI); 
X(1)=x_range(x_f)/pi*180; 
X(2)=y_range(y_f)/pi*180; 
X(3)=z_range(z_f)/pi*180; 
X(4)=beta_range(b_f)/pi*180; 
  
 
  
function N=funXYZ_Pile(alpha,beta,b,x,y,z,beta_f,m,p,Kw,gamma_ratio,Kh,Kv) 
  
H=sin(beta_f)/sin(beta_f-alpha)*(exp(b*(y-x))*sin(y+alpha)-sin(x+alpha));  
L=H/tan(beta); 
ry=exp(b*(y-x)); 
L1=sin(y-x)/sin(y+alpha)-sin(y+beta_f)/(sin(y+alpha)*sin(beta_f-alpha))*(exp(b*(y-
x))*sin(y+alpha)-sin(x+alpha)); 
L2=sin(z-x)/sin(z+alpha)-cos(z)/sin(z+alpha)/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-
sin(x+alpha));  
D=1/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-sin(x+alpha));                     
g=exp(2*b*(z-x))*(exp(2*b*(y-z))-1)/(2*b);               
f1v=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                     
f2v=1/6*L1*sin(x+alpha)*(2*cos(x)-L1*cos(alpha));                     
f3v=1/6*exp(b*(y-x))*(sin(y-x)-L1*sin(y+alpha))*(cos(x)-L1*cos(alpha)+exp(b*(y-
x))*cos(y)); 
f4v=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                                        
f5v=1/6*L2*sin(x+alpha)*(2*cos(x+alpha)-L2);                                                           
f6v=1/3*D*exp(2*b*(z-x))*cos(z)*cos(z);                    
f7v=1/2*H^2*sin(beta-beta_f)/sin(beta)/sin(beta_f)*(cos(x)-L1*cos(alpha)-
1/3*H*(1/tan(beta_f)+1/tan(beta))); 
  
if Kh==0 
    fh=0; 
else    
    f1h=(exp(3*b*(y-x))*(-cos(y)+3*b*sin(y))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 
    f2h=1/6*L1*(2*sin(x)+L1*sin(alpha))*sin(x+alpha); 
    f3h=1/6*exp(b*(y-x))*(sin(y-x)-L1*sin(y+alpha))*(sin(x)+exp(b*(y-x))*sin(y)); 
    f4h=(exp(3*b*(z-x))*(-cos(z)+3*b*sin(z))-3*b*sin(x)+cos(x))/(3*(1+9*b^2));   
    f5h=1/3*L2*sin(x+alpha)*sin(x+alpha);  
    f6h=1/6*D*exp(b*(z-x))*cos(z)*(2*exp(b*(z-x))*sin(z)-D); 
    fh=Kh*(f1h-f2h-f3h-f4h+f5h+f6h);   
end 
  
flag=1; 
options = optimset('TolX',1e-3); 
[theta,fval,exitflag,output] = fzero(@(theta)cos(theta)*exp(b*(theta-x))-p*L-sin(beta-
beta_f)/sin(beta)/sin(beta_f)*H-ry*cos(y),(x+y)/2,options); 
if (exitflag~=1) || (theta<x) || (theta>y) 
    flag=0; 
end 
  
if gamma_ratio==0 
    fw1=0; 
    fw2=0; 
    fw3=0; 
else   
    options = optimset('TolX',1e-5); 
    [theta1,fval,exitflag,output] = fzero(@(theta1)cos(theta1)*exp(b*(theta1-x))-
cos(x)+L1*cos(alpha),(z+y)/2,options); 
    if (exitflag==1) && (theta1>z) && (theta1<y) 
        fw1=integral(@(angle)funw1(angle,x,b),z,theta1); 
        fw2=integral(@(angle)funw2(angle,x,y,b,beta),theta1,y); 
        fw3=1/2*Kw*Kw*D*D*(exp(b*(z-x))*sin(z)-1/3*Kw*D); 
    else 
        flag=0; 
    end   
end 
  
if flag==1   



274 
 

     
    h=abs(exp(b*(theta-x))*sin(theta)-ry*sin(y))+p*L*tan(beta);  
    % indicate pile diameter and spacing 
    D1=H; 
    D2=0.6*H; 
    Np=tan(pi/4+atan(b)/2)*tan(pi/4+atan(b)/2); 
    A=D1*(D1/D2)^(b*Np^0.5+Np-1); 
    C1=A*(1/Np/b*(exp((D1-D2)/D2*Np*b*tan(pi/8+atan(b)/4))-2*b*Np^0.5-
1)+(2*b+2*Np^0.5+Np^(-0.5))/(b*Np^0.5+Np-1))-(D1*(2*b+2*Np^0.5+Np^(-0.5))/(b*Np^0.5+Np-
1)-2*D2*Np^(-0.5)); 
    C2=(A*exp((D1-D2)/D2*Np*b*tan(pi/8+atan(b)/4))-D2)/Np; 
    C3=sin(theta)*exp(b*(theta-x))-m*h; 
    C1=C1/D1; 
    C2=C2/D1; 
  
    N=H*(g+C1*C3*h)/((1+Kv)*(f1v-f2v-f3v-f4v+f5v+f6v-f7v)-
0.5*C2*C3*h^2+(fw1+fw2+fw3)*gamma_ratio+fh); 
  
    if N<1 || N>400  
        N=NaN; 
    end 
else 
    N=NaN; 
end 
  
 
     
% Main program: Performance-based optimal design  
% ------------------------------------------------------------------------- 
clear; 
  
% slope inclination [deg] 
beta_grad=60; 
% friction angle [deg] 
phi_grad=20; 
% initial slope inclination [deg] 
alpha_grad=0; 
  
% derived variables in radian 
% ------------------------------------------------------------------------- 
beta=beta_grad/180*pi; 
alpha=alpha_grad/180*pi; 
phi=phi_grad/180*pi; 
b=tan(phi); 
  
m=1/3; 
Kw=1; 
gamma_ratio=0; 
N=1/5.5; 
  
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
x_delta_grad=24; 
y_delta_grad=20; 
z_delta_grad=24; 
beta_delta_grad=10; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
beta_pass_grad=1; 
  
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
beta_range_grad=(beta_grad-beta_delta_grad):beta_pass_grad:beta_grad; 
  
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi;  
z_range=z_range_grad/180*pi; 
beta_range=beta_range_grad/180*pi; 
  
position_left=0.04; 
position_right=0.96; 
position_step=0.02; 
  
Position=position_left:position_step:position_right; 
  
temp=size(Position); 
n=temp(2); 
  
X=zeros(n,4); 
Kw=zeros(1,n); 
C=zeros(1,n); 
DISP=zeros(1,n); 
  
for i=1:n               
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    [X(i,:), Kw(i), 
CC(i)]=Grid_Fun_Pile_Disp(alpha,beta,b,x_range,y_range,z_range,beta_range,m,Position(i)
,Kw,gamma_ratio,N);   
    DISP(i)=CC(i)*9.81*Displacement(Kw(i)); 
end 
 
 
  
function [X, K_, 
C_]=Grid_Fun_Pile_Disp(alpha,beta,b,x_range,y_range,z_range,beta_range,m,p,Kw,gamma_rat
io,N) 
  
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
temp=size(beta_range); 
n4=temp(2); 
MatrixN=zeros(n1,n2,n3,n4); 
  
for i=1:n1 
    for j=1:n2 
        for k=1:n3 
            for l=1:n4 
                x=x_range(i); 
                y=y_range(j);  
                z=z_range(k); 
                beta_f=beta_range(l); 
               if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                    MatrixN(i,j,k,l)=NaN; 
                else 
                    
MatrixN(i,j,k,l)=funXYZ_Pile_Disp(alpha,beta,b,x,y,z,beta_f,m,p,Kw,gamma_ratio,N); 
               end         
            end 
        end 
    end 
end    
  
[K_,BiI]=min(MatrixN(:)); 
[x_f,y_f,z_f,b_f]=ind2sub(size(MatrixN),BiI); 
X(1)=x_range(x_f); 
X(2)=y_range(y_f); 
X(3)=z_range(z_f); 
X(4)=beta_range(b_f); 
  
H=sin(X(4))/sin(X(4)-alpha)*(exp(b*(X(2)-X(1)))*sin(X(2)+alpha)-sin(X(1)+alpha));  
L1=sin(X(2)-X(1))/sin(X(2)+alpha)-sin(X(2)+X(4))/(sin(X(2)+alpha)*sin(X(4)-
alpha))*(exp(b*(X(2)-X(1)))*sin(X(2)+alpha)-sin(X(1)+alpha)); 
L2=sin(X(3)-X(1))/sin(X(3)+alpha)-cos(X(3))/sin(X(3)+alpha)/cos(alpha)*(exp(b*(X(3)-
X(1)))*sin(X(3)+alpha)-sin(X(1)+alpha));  
D=1/cos(alpha)*(exp(b*(X(3)-X(1)))*sin(X(3)+alpha)-sin(X(1)+alpha));   
  
a1=(exp(2*b*(X(2)-X(1)))-1)/2/b; 
a2=L1*sin(X(1)+alpha); 
a3=H*(cos(X(1))-L1*cos(alpha)+(sin(X(1))+L1*sin(alpha))/tan(X(4))); 
a4=(exp(2*b*(X(3)-X(1)))-1)/2/b; 
a5=L2*sin(X(1)+alpha); 
a6=D*exp(b*(X(3)-X(1)))*cos(X(3)); 
 
f1v=(exp(3*b*(X(2)-X(1)))*(sin(X(2))+3*b*cos(X(2)))-3*b*cos(X(1))-
sin(X(1)))/(3*(1+9*b^2));                     
f2v=1/6*L1*sin(X(1)+alpha)*(2*cos(X(1))-L1*cos(alpha));                     
f3v=1/6*exp(b*(X(2)-X(1)))*(sin(X(2)-X(1))-L1*sin(X(2)+alpha))*(cos(X(1))-
L1*cos(alpha)+exp(b*(X(2)-X(1)))*cos(X(2))); 
f4v=(exp(3*b*(X(3)-X(1)))*(sin(X(3))+3*b*cos(X(3)))-3*b*cos(X(1))-
sin(X(1)))/(3*(1+9*b^2));                                        
f5v=1/6*L2*sin(X(1)+alpha)*(2*cos(X(1)+alpha)-L2);                                                           
f6v=1/3*D*exp(2*b*(X(3)-X(1)))*cos(X(3))*cos(X(3));                    
     
f1h=(exp(3*b*(X(2)-X(1)))*(-cos(X(2))+3*b*sin(X(2)))-
3*b*sin(X(1))+cos(X(1)))/(3*(1+9*b^2)); 
f2h=1/6*L1*(2*sin(X(1))+L1*sin(alpha))*sin(X(1)+alpha); 
f3h=1/6*exp(b*(X(2)-X(1)))*(sin(X(2)-X(1))-L1*sin(X(2)+alpha))*(sin(X(1))+exp(b*(X(2)-
X(1)))*sin(X(2))); 
f4h=(exp(3*b*(X(3)-X(1)))*(-cos(X(3))+3*b*sin(X(3)))-
3*b*sin(X(1))+cos(X(1)))/(3*(1+9*b^2));   
f5h=1/3*L2*sin(X(1)+alpha)*sin(X(1)+alpha);  
f6h=1/6*D*exp(b*(X(3)-X(1)))*cos(X(3))*(2*exp(b*(X(3)-X(1)))*sin(X(3))-D); 
 
G=1/2*(a1-a2-a3-a4+a5+a6-a7); 
l=1/G*sqrt((f1h-f2h-f3h-f4h+f5h+f6h-f7h)^2+(f1v-f2v-f3v-f4v+f5v+f6v-f7v)^2); 
C_=sin(X(2))*exp(b*(X(2)-X(1)))/(G*l*l)*(f1h-f2h-f3h-f4h+f5h+f6h-f7h); 
  
X=X/pi*180; 
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function N=funXYZ_Pile_Disp(alpha,beta,b,x,y,z,beta_f,m,p,Kw,gamma_ratio,N) 
  
H=sin(beta_f)/sin(beta_f-alpha)*(exp(b*(y-x))*sin(y+alpha)-sin(x+alpha));  
L=H/tan(beta); 
ry=exp(b*(y-x)); 
L1=sin(y-x)/sin(y+alpha)-sin(y+beta_f)/(sin(y+alpha)*sin(beta_f-alpha))*(exp(b*(y-
x))*sin(y+alpha)-sin(x+alpha)); 
L2=sin(z-x)/sin(z+alpha)-cos(z)/sin(z+alpha)/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-
sin(x+alpha));  
D=1/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-sin(x+alpha));                     
g=exp(2*b*(z-x))*(exp(2*b*(y-z))-1)/(2*b);                    
f1v=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                     
f2v=1/6*L1*sin(x+alpha)*(2*cos(x)-L1*cos(alpha));                     
f3v=1/6*exp(b*(y-x))*(sin(y-x)-L1*sin(y+alpha))*(cos(x)-L1*cos(alpha)+exp(b*(y-
x))*cos(y)); 
f4v=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                                        
f5v=1/6*L2*sin(x+alpha)*(2*cos(x+alpha)-L2);                                                            
f6v=1/3*D*exp(2*b*(z-x))*cos(z)*cos(z);                    
f7v=1/2*H^2*sin(beta-beta_f)/sin(beta)/sin(beta_f)*(cos(x)-L1*cos(alpha)-
1/3*H*(1/tan(beta_f)+1/tan(beta))); 
    
f1h=(exp(3*b*(y-x))*(-cos(y)+3*b*sin(y))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 
f2h=1/6*L1*(2*sin(x)+L1*sin(alpha))*sin(x+alpha); 
f3h=1/6*exp(b*(y-x))*(sin(y-x)-L1*sin(y+alpha))*(sin(x)+exp(b*(y-x))*sin(y)); 
f4h=(exp(3*b*(z-x))*(-cos(z)+3*b*sin(z))-3*b*sin(x)+cos(x))/(3*(1+9*b^2));   
f5h=1/3*L2*sin(x+alpha)*sin(x+alpha);  
f6h=1/6*D*exp(b*(z-x))*cos(z)*(2*exp(b*(z-x))*sin(z)-D); 
  
flag=1; 
options = optimset('TolX',1e-3); 
[theta,fval,exitflag,output] = fzero(@(theta)cos(theta)*exp(b*(theta-x))-p*L-sin(beta-
beta_f)/sin(beta)/sin(beta_f)*H-ry*cos(y),(x+y)/2,options); 
if (exitflag~=1) || (theta<x) || (theta>y) 
    flag=0; 
end 
  
if gamma_ratio==0 
    fw1=0; 
    fw2=0; 
    fw3=0; 
else    
    options = optimset('TolX',1e-5); 
    [theta1,fval,exitflag,output] = fzero(@(theta1)cos(theta1)*exp(b*(theta1-x))-
cos(x)+L1*cos(alpha),(z+y)/2,options); 
    if (exitflag==1) && (theta1>z) && (theta1<y) 
        fw1=integral(@(angle)funw1(angle,x,b),z,theta1); 
        fw2=integral(@(angle)funw2(angle,x,y,b,beta),theta1,y); 
        fw3=1/2*Kw*Kw*D*D*(exp(b*(z-x))*sin(z)-1/3*Kw*D); 
    else 
        flag=0; 
    end    
end 
  
if flag==1       
    h=abs(exp(b*(theta-x))*sin(theta)-ry*sin(y))+p*L*tan(beta);      
    D1=0.15*H; 
    D2=0.09*H; 
    Np=tan(pi/4+atan(b)/2)*tan(pi/4+atan(b)/2); 
    A=D1*(D1/D2)^(b*Np^0.5+Np-1); 
    C1=A*(1/Np/b*(exp((D1-D2)/D2*Np*b*tan(pi/8+atan(b)/4))-2*b*Np^0.5-
1)+(2*b+2*Np^0.5+Np^(-0.5))/(b*Np^0.5+Np-1))-(D1*(2*b+2*Np^0.5+Np^(-0.5))/(b*Np^0.5+Np-
1)-2*D2*Np^(-0.5)); 
    C2=(A*exp((D1-D2)/D2*Np*b*tan(pi/8+atan(b)/4))-D2)/Np; 
    C3=sin(theta)*exp(b*(theta-x))-m*h; 
  
    N=(N*H*(g+C1*C3*h)-(f1v-f2v-f3v-f4v+f5v+f6v-f7v-
0.5*C2*C3*h^2+(fw1+fw2+fw3)*gamma_ratio))/(f1h-f2h-f3h-f4h+f5h+f6h-f7h);     
  
    if N<0 || N>1 
        N=NaN; 
    end 
else 
    N=NaN; 
end 
  
  
     
function TotalD=Displacement(Kc) 
  
Rec_N=1000;  
acc=load('Northridge Moorpark.txt'); % importing earthquake acceleration data. 
   acc_t=acc';      
   acc_r=(acc_t(:))';  
Ka=acc_r(1:Rec_N);    
t_interval= 0.02; % the time interval (sec) 
t_step=0:t_interval:(Rec_N-1)*(t_interval); 
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K=Ka-Kc;  
A_add=zeros(1,Rec_N); 
  
for i=1:(Rec_N-1) 
    A_add(i+1)=(K(i)+K(i+1))*t_interval/2; 
end 
Velo=zeros(1,Rec_N); 
for i=1:(Rec_N-1) 
    Velo(i+1)=Velo(i)+A_add(i+1); 
     
    if Velo(i+1)<0 
        Velo(i+1)=0; 
    end     
end 
V_add=zeros(1,Rec_N); 
  
for i=1:(Rec_N-1) 
    V_add(i+1)=(Velo(i)+Velo(i+1))*t_interval/2; 
end 
Disp=zeros(1,Rec_N);  
for i=1:(Rec_N-1) 
    Disp(i+1)=Disp(i)+V_add(i+1);    
end 
TotalD=Disp(Rec_N); 
 
 
  

v. Chapter 7 

 
% Main program: Unitary Formulation 
% ------------------------------------------------------------------------- 
clear 
  
% height [m] 
Height=20; 
% slope inclination [deg] 
beta_grad=45; 
% upper slope inclination [deg] 
alpha_grad=0; 
% position of phreatic line 
water_pos=0.01; 
% unit weights [kN/m^3] 
gamma_w=9.81; 
% seismic coefficients 
Kh=0; 
Kv=0; 
% crack 
crack_type=1;   % 1)known depth  2)known location  3) free 
crack_x=0;      % departs from slope crest 
crack_depth=0; 
% slope profile 
shape=1;        % 1)planar 2)circular 
Radius=Height;  % circular radius 
  
% determination of angles in radians 
beta=beta_grad/180*pi; 
alpha=alpha_grad/180*pi; 
  
% x,y,z represent different failure mechanisms 
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
x_delta_grad=24; 
y_delta_grad=20; 
z_delta_grad=24; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
  
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
  
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi; 
z_range=z_range_grad/180*pi; 
  
% number of points used to discretize slope profile 
n_points=19; 
  
% number of points used to discretize crack depth 
n_depth=10; 
  
% to indicate a Mohr-Coulomb or Hoek-Brown failure criterion   1)M-C  2)H-B 
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failure_criterion=1;   
  
if failure_criterion==1    
    % friction angle [deg] 
    phi_grad=20; 
    phi=phi_grad/180*pi; 
    % cohesion [kPa] 
    c=20; 
    % unit weights [kN/m^3] 
    gamma_s=19; 
    % strength reduction 
    SR_ratio=1;   % Fc/Ff    0 if reduce cohesion only     
    
[FS,X_ini,N_ini]=Fryctoria_MohrCoulomb(x_range,y_range,z_range,n_depth,n_points,beta,al
pha,phi,c,Height,water_pos,gamma_s,gamma_w,Kh,Kv,crack_type,crack_x,crack_depth,shape,R
adius,SR_ratio); 
     
elseif failure_criterion==2   
    % rock parameters 
    mi=7.3; 
    GSI=100; 
    D=0; 
    m=mi*exp((GSI-100)/(28-14*D)); 
    s=exp((GSI-100)/(9-3*D)); 
    n=1/2+1/6*(exp(-GSI/15)-exp(-20/3)); 
    sigma_c=20; 
    % unit weights [kN/m^3] 
    gamma_r=20;     
    % tangential technique 
    phi_guess_grad=20; 
    phi_delta_grad=10; 
    phi_pass_grad=1;     
    phi_range_grad=(-
phi_delta_grad+phi_guess_grad):phi_pass_grad:(phi_delta_grad+phi_guess_grad); 
    phi_range=phi_range_grad/180*pi; 
    
[FS,X_ini,N_ini]=Fryctoria_HoekBrown(x_range,y_range,z_range,phi_range,n_depth,n_points
,beta,alpha,m,s,n,sigma_c,Height,water_pos,gamma_r,gamma_w,Kh,Kv,crack_type,crack_x,cra
ck_depth,shape,Radius);     
end 
 
 
 
function [FS,X,N_ini] = 
Fryctoria_MohrCoulomb(x_range,y_range,z_range,n_depth,n_points,beta,alpha,phi,c,Height,
Ru,gamma_s,gamma_w,Kh,Kv,crack_type,crack_x,crack_depth,shape,Radius,SR_ratio) 
  
% normalized crack depth 
d_norm=crack_depth/Height; 
  
% normalized crack position 
hx_norm=crack_x/Height; 
  
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
  
beta_new=beta; 
if shape==1    % planar profile, similarity exists 
    n_points=0; 
    R_new=NaN; 
else 
    R_new=Fryctoria_Circular_Coordinates(Radius,Height,beta,n_points);   % profile 
nodes coordinates for a circular profile 
end 
  
N_all=zeros(1,n_points+1); 
X_all=zeros(3,n_points+1); 
  
H_R=zeros(1,n_points+1); 
for l=1:(n_points+1) 
    H_R(l)=(n_points+1)/(n_points+2-l); 
end 
  
gamma_ratio=gamma_w/gamma_s; 
  
F=1; 
SR_Flag=1; 
SR_Count=1; 
  
%Crack Free 
if crack_type==3 
    while SR_Flag         
        b=tan(phi)/F*SR_ratio; 
        MatrixN=zeros(n1,n2,n3); 
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        for loop=1:(n_points+1)        
            for i=1:n1 
                for j=1:n2 
                    for k=1:n3 
                        x=x_range(i); 
                        y=y_range(j); 
                        z=z_range(k); 
                        if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                            MatrixN(i,j,k)=NaN; 
                        else 
                            
MatrixN(i,j,k)=Fryctoria_MatrixN(x,y,z,alpha,beta_new,b,Kh,Kv,Ru,gamma_ratio,(n_points+
1-loop),R_new); 
                        end 
  
                    end 
                end 
            end 
            [N_all(loop),BiI]=min(MatrixN(:)); 
            [x_f,y_f,z_f]=ind2sub(size(MatrixN),BiI); 
            X_all(1,loop)=x_range(x_f); 
            X_all(2,loop)=y_range(y_f); 
            X_all(3,loop)=z_range(z_f);                       
            if shape~=1        
                R_temp=R_new; 
                if (n_points+1-loop)==0 
                    R_new=NaN; 
                    beta_new=NaN;  
                else 
                    if (n_points-loop)==0 
                        R_new=NaN; 
                    else 
                        R_new=zeros(1,n_points-loop); 
                        for k=1:(n_points-loop) 
                            R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
                        end 
                    end 
                    beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));       
                end 
            end         
        end 
        N_all=H_R.*N_all; 
        [N, toe]=min(N_all); 
        X(1)=X_all(1,toe); 
        X(2)=X_all(2,toe); 
        X(3)=X_all(3,toe);        
        if (SR_Count==1) 
            N_ini=N; 
        end        
        if SR_ratio==0             
             FS=N_ini*c/gamma_s/Height; 
             SR_Flag=0; 
        else       
            SR_Count=SR_Count+1; 
            N_Actual=gamma_s*Height/c*F;     
            if ((gamma_s*Height/c-N_ini)*(N_Actual-N))<=0 
                SR_Flag=0; 
                FS=(1+SR_ratio)*F/2; 
            end 
            if(N_Actual<N) 
                F=F+0.01 
            else 
                F=F-0.01 
            end 
            if isnan(N) 
                disp('Error'); 
                FS=NaN; 
                X=NaN; 
                N_ini=NaN; 
                break 
            end 
        end 
    end 
end 
     
%Crack Depth 
if crack_type==1 
    if d_norm==0 
        n_depth=1; 
    end 
    while SR_Flag         
        b=tan(phi)/F*SR_ratio; 
        MatrixN=zeros(n1,n2,n_depth); 
        z_depth=zeros(n1,n2,n_depth); 
        for loop=1:(n_points+1) 
            for i=1:n1 
                for j=1:n2 
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                    for l=1:n_depth 
                        x=x_range(i); 
                        y=y_range(j); 
                        if (x>y-10e-6)  
                            MatrixN(i,j,l)=NaN; 
                        else                           
                            const=(1-d_norm/n_depth*l*sin(beta)/sin(beta-
alpha))*exp(b*x)*sin(x+alpha)+d_norm/n_depth*l*sin(beta)/sin(beta-
alpha)*exp(b*y)*sin(y+alpha);                            
                            options = optimset('TolX',1e-3); 
                            [z,fval,exitflag,output] = fzero(@(z)exp(b*z)*sin(z+alpha)-
const,(x+y)/2,options); 
                            if (exitflag~=1) || (z>y) || (z<x) 
                               MatrixN(i,j,l)=NaN; 
                            else  
                                z_depth(i,j,l)=z; 
  
                                
MatrixN(i,j,l)=Fryctoria_MatrixN(x,y,z,alpha,beta_new,b,Kh,Kv,Ru,gamma_ratio,(n_points+
1-loop),R_new); 
                            end 
                        end 
                    end 
                end 
            end           
            [N_all(loop),BiI]=min(MatrixN(:)); 
            [x_f,y_f,d_f]=ind2sub(size(MatrixN),BiI); 
            X_all(1,loop)=x_range(x_f); 
            X_all(2,loop)=y_range(y_f);       
            X_all(3,loop)=z_depth(x_f,y_f,d_f);             
            if shape~=1 
                R_temp=R_new; 
                if (n_points+1-loop)==0 
                    R_new=NaN; 
                    beta_new=NaN;  
                else 
                    if (n_points-loop)==0 
                        R_new=NaN; 
                    else 
                        R_new=zeros(1,n_points-loop); 
                        for k=1:(n_points-loop) 
                            R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
                        end 
                    end 
                    beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));       
                end   
            end 
        end 
        N_all=H_R.*N_all; 
        [N, toe]=min(N_all); 
        X(1)=X_all(1,toe); 
        X(2)=X_all(2,toe); 
        X(3)=X_all(3,toe);  
        if (SR_Count==1) 
            N_ini=N; 
        end         
        if SR_ratio==0 
            FS=N_ini*c/gamma_s/Height; 
            SR_Flag=0; 
        else        
            SR_Count=SR_Count+1; 
            N_Actual=gamma_s*Height/c*F;     
            if ((gamma_s*Height/c-N_ini)*(N_Actual-N))<=0 
                SR_Flag=0; 
                FS=(1+SR_ratio)*F/2; 
            end 
            if(N_Actual<N) 
                F=F+0.01 
            else 
                F=F-0.01 
            end 
            if isnan(N) 
                disp('Error'); 
                FS=NaN; 
                X=NaN; 
                N_ini=NaN; 
                break 
            end 
        end 
    end 
end 
  
%Crack H-distance 
if crack_type==2    
    while SR_Flag         
        b=tan(phi)/F*SR_ratio;         
        MatrixN=zeros(n2,n3); 
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        x_pos=zeros(n2,n3); 
        for loop=1:(n_points+1) 
            for j=1:n2 
                for k=1:n3 
                    y=y_range(j); 
                    z=z_range(k); 
                    if (z>y-10e-6)  
                        MatrixN(j,k)=NaN; 
                    else                        
                        const=(exp(b*y)*cos(y)-
exp(b*z)*cos(z))/(hx_norm+cot(beta))+exp(b*y)*sin(y);                       
                        options = optimset('TolX',1e-3); 
                        [x,fval,exitflag,output] = fzero(@(x)exp(b*x)*sin(x)-
const,[xlim_inf xlim_sup],options); 
                        if (exitflag~=1) || (x>z) 
                           MatrixN(j,k)=NaN; 
                        else 
                            x_pos(j,k)=x; 
                            
MatrixN(j,k)=min(Fryctoria_MatrixN(x,y,x,alpha,beta_new,b,Kh,Kv,Ru,gamma_ratio,(n_point
s+1-
loop),R_new),Fryctoria_MatrixN(x,y,z,alpha,beta_new,b,Kh,Kv,Ru,gamma_ratio,(n_points+1-
loop),R_new)); 
                        end 
                    end 
                end 
            end 
             
            [N_all(loop),BiI]=min(MatrixN(:)); 
            [y_f,z_f]=ind2sub(size(MatrixN),BiI); 
            X_all(1,loop)=x_pos(y_f,z_f); 
            X_all(2,loop)=y_range(y_f);       
            X_all(3,loop)=z_range(z_f);   
            if shape~=1  
                R_temp=R_new; 
                if (n_points+1-loop)==0 
                    R_new=NaN; 
                    beta_new=NaN;  
                else 
                    if (n_points-loop)==0 
                        R_new=NaN; 
                    else 
                        R_new=zeros(1,n_points-loop); 
                        for k=1:(n_points-loop) 
                            R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
                        end 
                    end 
                    beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));       
                end  
            end 
        end 
        N_all=H_R.*N_all; 
        [N, toe]=min(N_all); 
        X(1)=X_all(1,toe); 
        X(2)=X_all(2,toe); 
        X(3)=X_all(3,toe);         
        if (SR_Count==1) 
            N_ini=N; 
        end        
            if SR_ratio==0 
                FS=N_ini*c/gamma_s/Height; 
                SR_Flag=0; 
            else 
                SR_Count=SR_Count+1; 
                N_Actual=gamma_s*Height/c*F;     
                if ((gamma_s*Height/c-N_ini)*(N_Actual-N))<=0 
                    SR_Flag=0; 
                    FS=(1+SR_ratio)*F/2; 
                end 
                if(N_Actual<N) 
                    F=F+0.01 
                else 
                    F=F-0.01 
                end 
                if isnan(N) 
                    disp('Error'); 
                    FS=NaN; 
                    X=NaN; 
                    N_ini=NaN; 
                    break 
                end 
            end       
    end 
end 
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function [FS,X,N_ini] = 
Fryctoria_HoekBrown(x_range,y_range,z_range,phi_range,n_depth,n_points,beta,alpha,m,s,n
,sigma_c,Height,Ru,gamma_r,gamma_w,Kh,Kv,crack_type,crack_x,crack_depth,shape,Radius) 
  
% normalized crack depth 
d_norm=crack_depth/Height; 
  
% normalized crack position 
hx_norm=crack_x/Height; 
  
temp=size(x_range); 
n1=temp(2); 
temp=size(y_range); 
n2=temp(2); 
temp=size(z_range); 
n3=temp(2); 
temp=size(phi_range); 
n4=temp(2); 
  
beta_new=beta; 
if shape==1    % planar profile, similarity exists 
    n_points=0; 
    R_new=NaN; 
else 
    R_new=Fryctoria_Circular_Coordinates(Radius,Height,beta,n_points);   % profile 
nodes coordinates for a circular profile 
end 
  
N_all=zeros(1,n_points+1); 
X_all=zeros(4,n_points+1); 
  
H_R=zeros(1,n_points+1); 
for l=1:(n_points+1) 
    H_R(l)=(n_points+1)/(n_points+2-l); 
end 
  
gamma_ratio=gamma_w/gamma_r; 
  
%Crack Free 
if crack_type==3      
    MatrixN=zeros(n1,n2,n3,n4); 
    for loop=1:(n_points+1)        
        for i=1:n1 
            for j=1:n2 
                for k=1:n3 
                    for q=1:n4 
                        x=x_range(i); 
                        y=y_range(j); 
                        z=z_range(k); 
                        phi=phi_range(q); 
                        b=tan(phi); 
                        strength_ratio=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-
n))-b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n); 
                        if (x>y-10e-6) || (x>z-10e-6) || (z>y-10e-6)  
                            MatrixN(i,j,k,q)=NaN; 
                        else 
                            
MatrixN(i,j,k,q)=strength_ratio*Fryctoria_MatrixN(x,y,z,alpha,beta_new,b,Kh,Kv,Ru,gamma
_ratio,(n_points+1-loop),R_new); 
                        end 
                    end 
                end 
            end 
        end 
        [N_all(loop),BiI]=min(MatrixN(:)); 
        [x_f,y_f,z_f,p_f]=ind2sub(size(MatrixN),BiI); 
        X_all(1,loop)=x_range(x_f); 
        X_all(2,loop)=y_range(y_f); 
        X_all(3,loop)=z_range(z_f); 
        X_all(4,loop)=phi_range(p_f);         
        if shape~=1        
            R_temp=R_new; 
            if (n_points+1-loop)==0 
                R_new=NaN; 
                beta_new=NaN;  
            else 
                if (n_points-loop)==0 
                    R_new=NaN; 
                else 
                    R_new=zeros(1,n_points-loop); 
                    for k=1:(n_points-loop) 
                        R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
                    end 
                end 
                beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));       
            end 
        end         
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    end 
    N_all=H_R.*N_all; 
    [N_ini, toe]=min(N_all); 
    X(1)=X_all(1,toe); 
    X(2)=X_all(2,toe); 
    X(3)=X_all(3,toe); 
    X(4)=X_all(4,toe);     
    FS=N_ini*(s^n)*sigma_c/gamma_r/Height; 
end 
     
%Crack Depth 
if crack_type==1    
    if d_norm==0 
        n_depth=1; 
    end 
    MatrixN=zeros(n1,n2,n4,n_depth); 
    z_depth=zeros(n1,n2,n4,n_depth);   
    for loop=1:(n_points+1) 
        for i=1:n1 
            for j=1:n2 
                for q=1:n4 
                    for l=1:n_depth 
                        x=x_range(i); 
                        y=y_range(j); 
                        phi=phi_range(q); 
                        b=tan(phi); 
                        strength_ratio=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-
n))-b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n); 
                        if (x>y-10e-6)  
                            MatrixN(i,j,q,l)=NaN; 
                        else 
                            const=(1-d_norm/n_depth*l*sin(beta)/sin(beta-
alpha))*exp(b*x)*sin(x+alpha)+d_norm/n_depth*l*sin(beta)/sin(beta-
alpha)*exp(b*y)*sin(y+alpha); 
                            options = optimset('TolX',1e-3); 
                            [z,fval,exitflag,output] = fzero(@(z)exp(b*z)*sin(z+alpha)-
const,(x+y)/2,options); 
                            if (exitflag~=1) || (z>y) || (z<x) 
                               MatrixN(i,j,q,l)=NaN; 
                            else  
                                z_depth(i,j,q,l)=z; 
  
                                
MatrixN(i,j,q,l)=strength_ratio*Fryctoria_MatrixN(x,y,z,alpha,beta_new,b,Kh,Kv,Ru,gamma
_ratio,(n_points+1-loop),R_new); 
                            end                          
                        end 
                    end 
                end 
            end 
        end                     
        [N_all(loop),BiI]=min(MatrixN(:)); 
        [x_f,y_f,p_f,d_f]=ind2sub(size(MatrixN),BiI); 
        X_all(1,loop)=x_range(x_f); 
        X_all(2,loop)=y_range(y_f);       
        X_all(3,loop)=z_depth(x_f,y_f,p_f,d_f); 
        X_all(4,loop)=phi_range(p_f);                 
        if shape~=1 
            R_temp=R_new; 
            if (n_points+1-loop)==0 
                R_new=NaN; 
                beta_new=NaN;  
            else 
                if (n_points-loop)==0 
                    R_new=NaN; 
                else 
                    R_new=zeros(1,n_points-loop); 
                    for k=1:(n_points-loop) 
                        R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
                    end 
                end 
                beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));       
            end   
        end 
    end 
    N_all=H_R.*N_all; 
    [N_ini, toe]=min(N_all); 
    X(1)=X_all(1,toe); 
    X(2)=X_all(2,toe); 
    X(3)=X_all(3,toe);  
    X(4)=X_all(4,toe); 
    FS=N_ini*(s^n)*sigma_c/gamma_r/Height; 
end 
  
%Crack H-distance 
if crack_type==2         
    MatrixN=zeros(n2,n3,n4); 
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    x_pos=zeros(n2,n3,n4); 
    for loop=1:(n_points+1) 
        for j=1:n2 
            for k=1:n3 
                for q=1:n4 
                    y=y_range(j); 
                    z=z_range(k); 
                    phi=phi_range(q); 
                    b=tan(phi); 
                    strength_ratio=(cos(phi)/2*(m*n*(1-sin(phi))/2/sin(phi))^(n/(1-n))-
b/m*(1+sin(phi)/n)*(m*n*(1-sin(phi))/2/sin(phi))^(1/(1-n))+s/m*b)/(s^n); 
                    if (z>y-10e-6)  
                        MatrixN(j,k)=NaN; 
                    else 
                    const=(exp(b*y)*cos(y)-
exp(b*z)*cos(z))/(hx_norm+cot(beta))+exp(b*y)*sin(y); 
                    options = optimset('TolX',1e-3); 
                    [x,fval,exitflag,output] = fzero(@(x)exp(b*x)*sin(x)-
const,z/2,options); 
                    if (exitflag~=1) || (x>z) 
                       MatrixN(j,k,q)=NaN; 
                    else 
                        x_pos(j,k,q)=x; 
                        
MatrixN(j,k,q)=strength_ratio*min(Fryctoria_MatrixN(x,y,x,alpha,beta_new,b,Kh,Kv,Ru,gam
ma_ratio,(n_points+1-
loop),R_new),Fryctoria_MatrixN(x,y,z,alpha,beta_new,b,Kh,Kv,Ru,gamma_ratio,(n_points+1-
loop),R_new)); 
                    end 
                    end   
                end 
            end 
        end                              
        [N_all(loop),BiI]=min(MatrixN(:)); 
        [y_f,z_f,p_f]=ind2sub(size(MatrixN),BiI); 
        X_all(1,loop)=x_pos(y_f,z_f,p_f); 
        X_all(2,loop)=y_range(y_f);       
        X_all(3,loop)=z_range(z_f); 
        X_all(4,loop)=phi_range(p_f);      
        if shape~=1  
            R_temp=R_new; 
            if (n_points+1-loop)==0 
                R_new=NaN; 
                beta_new=NaN;  
            else 
                if (n_points-loop)==0 
                    R_new=NaN; 
                else 
                    R_new=zeros(1,n_points-loop); 
                    for k=1:(n_points-loop) 
                        R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 
                    end 
                end 
                beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-
loop)/R_temp(n_points+1-loop));       
            end  
        end 
    end 
    N_all=H_R.*N_all; 
    [N_ini, toe]=min(N_all); 
    X(1)=X_all(1,toe); 
    X(2)=X_all(2,toe); 
    X(3)=X_all(3,toe); 
    X(4)=X_all(4,toe); 
    FS=N_ini*(s^n)*sigma_c/gamma_r/Height;     
end 
 
 
 
function N=Fryctoria_MatrixN(x,y,z,alpha,beta,b,Kh,Kv,Ru,gamma_ratio,n_points,R) 
  
H=sin(beta)/sin(beta-alpha)*(exp(b*(y-x))*sin(y+alpha)-sin(x+alpha));  
L=H/tan(beta); 
L1=sin(y-x)/sin(y+alpha)-sin(y+beta)/(sin(y+alpha)*sin(beta-alpha))*(exp(b*(y-
x))*sin(y+alpha)-sin(x+alpha)); 
L2=sin(z-x)/sin(z+alpha)-cos(z)/sin(z+alpha)/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-
sin(x+alpha));  
D=1/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-sin(x+alpha));                     
g=exp(2*b*(z-x))*(exp(2*b*(y-z))-1)*(exp(b*(y-x))*sin(y)-sin(x))/(2*b);                     
f1v=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                     
f1h=(exp(3*b*(y-x))*(-cos(y)+3*b*sin(y))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 
f2v=1/6*L1*sin(x+alpha)*(2*cos(x)-L1*cos(alpha));                     
f2h=1/6*L1*(2*sin(x)+L1*sin(alpha))*sin(x+alpha);   
f4v=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2));                     
f4h=(exp(3*b*(z-x))*(-cos(z)+3*b*sin(z))-3*b*sin(x)+cos(x))/(3*(1+9*b^2));                     
f5v=1/6*L2*sin(x+alpha)*(2*cos(x+alpha)-L2);                     
f5h=1/3*L2*sin(x+alpha)*sin(x+alpha);                                        
f6v=1/3*D*exp(2*b*(z-x))*cos(z)*cos(z);                    
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f6h=1/6*D*exp(b*(z-x))*cos(z)*(2*exp(b*(z-x))*sin(z)-D); 
  
flag=1; 
  
if Ru>0 
    options = optimset('TolX',1e-3); 
    [theta1,fval,exitflag,output] = fzero(@(theta1)cos(theta1)*exp(b*(theta1-x))-
cos(x)+L1*cos(alpha),(z+y)/2,options); 
    if (exitflag==1) && (theta1>z) && (theta1<y) 
        fw1=integral(@(angle)funw1(angle,x,y,b,alpha,beta,water_pos),z,theta1); 
    else 
        fw1=NaN; 
        flag=0; 
    end        
end 
  
t=atan(sin(x+alpha)/(cos(x+alpha)-L1))-alpha; 
if t<0 
    t=pi+atan(sin(x+alpha)/(cos(x+alpha)-L1))-alpha; 
end 
  
rt=sqrt(sin(x+alpha)*sin(x+alpha)+(cos(x+alpha)-L1)^2); 
ry=exp(b*(y-x));  
  
H_points=zeros(1,n_points); 
L_points=zeros(1,n_points); 
ss=zeros(1,n_points); 
rr=zeros(1,n_points); 
  
for i=1:n_points 
    H_points(i)=sin(x)+L1*sin(alpha)+H*i/(n_points+1); 
    L_points(i)=cos(x)-L1*cos(alpha)-R(i)*L; 
    rr(i)=sqrt(H_points(i)*H_points(i)+L_points(i)*L_points(i)); 
    ss(i)=acos(L_points(i)/rr(i));     
    if rr(i)>exp(b*(ss(i)-x)) 
        flag=0; 
    end 
    if ss(i)>y 
        flag=0; 
    end 
end 
  
if (flag==1) && (water_pos>=0)        
    f3v=0; 
    f3h=0; 
    fw2=0; 
    if n_points==0 
        f3v=fun3v(rt,t,ry,y); 
        f3h=fun3h(rt,t,ry,y); 
        fw2=integral(@(angle)funw3(angle,x,y,b,alpha,beta,water_pos),theta1,y); 
    end 
    if n_points==1 
        f3v=fun3v(rt,t,rr(1),ss(1))+fun3v(rr(1),ss(1),ry,y); 
        f3h=fun3h(rt,t,rr(1),ss(1))+fun3h(rr(1),ss(1),ry,y); 
        
fw2=fw2sum(x,y,theta1,b,alpha,beta,water_pos,sin(x)+L1*cos(alpha),H_points(1),0,L_point
s(1))+fw2sum(x,y,theta1,b,alpha,beta,water_pos,H_points(1),ry*sin(y),L_points(1),L); 
    end 
    if n_points>1 
        f3v=fun3v(rt,t,rr(1),ss(1)); 
        f3h=fun3h(rt,t,rr(1),ss(1)); 
        
fw2=fw2sum(x,y,theta1,b,alpha,beta,water_pos,sin(x)+L1*cos(alpha),H_points(1),0,L_point
s(1)); 
  
        for i=1:(n_points-1) 
            f3v=f3v+fun3v(rr(i),ss(i),rr(i+1),ss(i+1)); 
            f3h=f3h+fun3h(rr(i),ss(i),rr(i+1),ss(i+1)); 
            
fw2=fw2+fw2sum(x,y,theta1,b,alpha,beta,water_pos,H_points(i),H_points(i+1),L_points(i),
L_points(i+1)); 
        end 
        f3v=f3v+fun3v(rr(n_points),ss(n_points),ry,y); 
        f3h=f3h+fun3h(rr(n_points),ss(n_points),ry,y); 
        
fw2=fw2+fw2sum(x,y,theta1,b,alpha,beta,water_pos,H_points(n_points),ry*sin(y),L_points(
n_points),L); 
    end 
    N=g*sin(beta)/sin(beta-alpha)/((1+Kv)*(f1v-f2v-f3v-f4v+f5v+f6v)+Kh*(f1h-f2h-f3h-
f4h+f5h+f6h)+(fw1+fw2)*gamma_ratio*b); 
    if N<1 || N>500 
        N=NaN; 
    end     
elseif (flag==1) && (water_pos<0)    
    f3v=0; 
    f3h=0; 
    if n_points==0 
        f3v=fun3v(rt,t,ry,y); 
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        f3h=fun3h(rt,t,ry,y); 
    end 
    if n_points==1 
        f3v=fun3v(rt,t,rr(1),ss(1))+fun3v(rr(1),ss(1),ry,y); 
        f3h=fun3h(rt,t,rr(1),ss(1))+fun3h(rr(1),ss(1),ry,y); 
    end 
    if n_points>1 
        f3v=fun3v(rt,t,rr(1),ss(1)); 
        f3h=fun3h(rt,t,rr(1),ss(1)); 
        for i=1:(n_points-1) 
            f3v=f3v+fun3v(rr(i),ss(i),rr(i+1),ss(i+1)); 
            f3h=f3h+fun3h(rr(i),ss(i),rr(i+1),ss(i+1)); 
        end 
        f3v=f3v+fun3v(rr(n_points),ss(n_points),ry,y); 
        f3h=f3h+fun3h(rr(n_points),ss(n_points),ry,y); 
    end 
    N=g*sin(beta)/sin(beta-alpha)/((1+Kv)*(f1v-f2v-f3v-f4v+f5v+f6v)+Kh*(f1h-f2h-f3h-
f4h+f5h+f6h));     
    if N<1 || N>500 
        N=NaN; 
    end     
else  
    N=NaN; 
end 
 
 
 
% Main program: Sensitivity Analysis 
% ------------------------------------------------------------------------- 
  
clear 
% Input data (non-varibles) 
% ------------------------------------------------------------------------- 
% height [m] 
Height=20; 
% slope inclination  
beta_grad=45; 
beta=beta_grad/180*pi; 
% upper slope inclination [deg] 
alpha_grad=0; 
alpha=alpha_grad/180*pi; 
% position of phreatic line 
water_pos=-1; 
% unit weights [kN/m^3] 
gamma_w=10; 
gamma_s=20; 
% crack 
crack_type=1;   % 1)known depth  2)known location  3) free 
crack_depth=0;  % crack depth 
crack_x=0;      % departs from slope crest 
% slope profile 
shape=1;        % 1)planar 2)circular 
Radius=Height;  % circular radius 
% x,y,z represent different failure mechanisms 
x_guess_grad=50; 
y_guess_grad=88; 
z_guess_grad=50; 
x_delta_grad=24; 
y_delta_grad=20; 
z_delta_grad=24; 
x_pass_grad=1; 
y_pass_grad=1; 
z_pass_grad=1; 
x_range_grad=(-x_delta_grad+x_guess_grad):x_pass_grad:(x_delta_grad+x_guess_grad); 
y_range_grad=(-y_delta_grad+y_guess_grad):y_pass_grad:(y_delta_grad+y_guess_grad); 
z_range_grad=(-z_delta_grad+z_guess_grad):z_pass_grad:(z_delta_grad+z_guess_grad); 
x_range=x_range_grad/180*pi; 
y_range=y_range_grad/180*pi; 
z_range=z_range_grad/180*pi; 
  
% number of points used to discretize slope profile 
n_points=19; 
% number of points used to discretize crack depth 
n_depth=10; 
% strength reduction 
SR_ratio=1;   % Fc/Ff    0 if reduce cohesion only 
  
% to indicate a Mohr-Coulomb or Hoek-Brown failure criterion   1)M-C  2)H-B 
failure_criterion=1;     
% create a new sensitivity analysis project 
pro = pro_Create(); 
% parameters and their disturbution 
pro = pro_AddInput(pro, @()pdf_Sobol([15/180*pi 25/180*pi]), 'Friction'); 
% pro = pro_AddInput(pro, @()pdf_Sobol([15 25]), 'Cohesion'); 
pro = pro_AddInput(pro, @()pdf_Sobol([0.1 0.3]), 'Kh'); 
pro = pro_AddInput(pro, @()pdf_Sobol([0.0 0.5]), 'Water'); 
pro = pro_AddInput(pro, @()pdf_Sobol([0.1 0.2]), 'Crack'); 
% Set the model 
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pro = pro_SetModel(pro, @(ParaArray) 
Fryctoria_Sensitivity_Fcn(ParaArray,x_range,y_range,z_range,n_depth,n_points,beta,alpha
,Height,gamma_s,gamma_w,crack_type,crack_x,shape,Radius,SR_ratio), 'Fryctoria'); 
% Set the number of samples for the quasi-random Monte Carlo sampling 
pro.N = 10; 
% Initialize the project by calculating the model at the sample points 
pro = GSA_Init(pro); 
[Sen Err pro] = GSA_GetSy(pro, {'Friction','Kh','Water','Crack'}); 
Sfast = GSA_FAST_GetSi(pro); 
 
 
  
function Fryctoria_Plot_FailureMechanism(handle,X,alpha,beta,b,Height,shape,n_points,R) 
  
x=X(1); 
y=X(2); 
z=X(3); 
  
rx=Height/(sin(beta)/sin(beta-alpha)*(exp(b*(y-x))*sin(y+alpha)-sin(x+alpha))); 
L=Height/tan(beta); 
L1=rx*(sin(y-x)/sin(y+alpha)-sin(y+beta)/(sin(y+alpha)*sin(beta-alpha))*(exp(b*(y-
x))*sin(y+alpha)-sin(x+alpha))); 
L2=rx*(sin(z-x)/sin(z+alpha)-cos(z)/sin(z+alpha)/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-
sin(x+alpha)));  
D=rx/cos(alpha)*(exp(b*(z-x))*sin(z+alpha)-sin(x+alpha));  
xf=rx*cos(x); 
yf=rx*sin(x); 
xb=xf-L2*cos(alpha); 
yb=yf+L2*sin(alpha); 
xc=xb; 
yc=yb+D; 
xe=xf-L1*cos(alpha); 
ye=yf+L1*sin(alpha); 
xd=xe-L; 
yd=ye+Height; 
xrb=xf+Height/4*cos(alpha); 
yrb=yf-Height/4*sin(alpha); 
xlb=xd-Height/2; 
ylb=yd; 
Angle=z:(y-z)/100:y; 
xLogS=rx*exp(b*(Angle-x)).*cos(Angle); 
yLogS=rx*exp(b*(Angle-x)).*sin(Angle); 
  
if shape==1 
    line([xrb xe],[-yrb -ye],'Color','k','LineWidth',2.0); 
    hold on 
    line([xb xc],[-yb -yc],'Color','b','LineStyle',':'); 
    hold on 
    line([xe xd],[-ye -yd],'Color','k','LineWidth',2.0); 
    hold on 
    line([xd xlb],[-yd -ylb],'Color','k','LineWidth',2.0); 
    hold on 
    plot(xLogS,-yLogS,'Color','r') 
    axis equal 
    set(gca,'xtick',[]) 
    set(gca,'ytick',[]) 
elseif shape==2 
    R=[0 R 1]; 
    xProfile=zeros(1,n_points+2); 
    yProfile=zeros(1,n_points+2); 
    for i=1:(n_points+2) 
        xProfile(i)=xe-L*R(i); 
        yProfile(i)=ye+(i-1)/(n_points+1)*Height; 
    end      
    line([xrb xe],[-yrb -ye],'Color','k','LineWidth',2.0); 
    hold on 
    line([xb xc],[-yb -yc],'Color','b','LineStyle',':'); 
    hold on 
    plot(xProfile,-yProfile,'Color','k','LineWidth',2.0); 
    hold on 
    line([xd xlb],[-yd -ylb],'Color','k','LineWidth',2.0); 
    hold on 
    plot(xLogS,-yLogS,'Color','r') 
    axis equal 
    set(gca,'xtick',[]) 
    set(gca,'ytick',[])   
end 
 
 
 
 
 
 
 
 
 
 
 



288 
 

Bibliography 

 
Abdoun, T., Dobry, R., O'rourke, T. D. & Goh, S. (2003) Pile response to lateral 

spreads: centrifuge modeling. Journal of Geotechnical and Geoenvironmental 
Engineering 129(10):869‐878. 

Abramson, L. W. (2002) Slope stability and stabilization methods. John Wiley & 
Sons. 

Agar, J. G., Morgenstern, N. R. & Scott, J. D. (1987) Shear‐strength and stress‐
strain behavior of Athabasca oil sand at elevated‐temperatures and pressures. 
Canadian Geotechnical Journal 24(1):1‐10. 

Al‐Karni, A. A. & Al‐Shamrani, M. A. (2000) Study of the effect of soil anisotropy on 
slope stability using method of slices. Computers and Geotechnics 26(2):83‐
103. 

Andrianopoulos, K. I., Papadimitriou, A. G., Bouckovalas, G. D. & Karamitros, D. K. 
(2014) Insight into the seismic response of earth dams with an emphasis on 
seismic coefficient estimation. Computers and Geotechnics 55:195‐210. 

Ausilio, E., Conte, E. & Dente, G. (2000) Seismic stability analysis of reinforced 
slopes. Soil Dynamics and Earthquake Engineering 19(3):159‐172. 

Ausilio, E., Conte, E. & Dente, G. (2001) Stability analysis of slopes reinforced with 
piles. Computers and Geotechnics 28(8):591‐611. 

Baker, R. (1981) Tensile strength, tension cracks, and stability of slopes. Soils and 
Foundation 21(2):1‐17. 

Baker, R. (2003) Sufficient conditions for existence of physically significant 
solutions in limiting equilibrium slope stability analysis. International Journal 
of Solids and Structures 40(13):3717‐3735. 

Baker, R. (2004) Nonlinear Mohr envelopes based on triaxial data. Journal of 
Geotechnical and Geoenvironmental Engineering 130(5):498‐506. 

Baker, R. & Frydman, S. (1983) Upper bound limit analysis of soil with non‐linear 
failure criterion. Soils and Foundation 23(4):34‐42. 

Baker, R. & Garber, M. (1978) Theoretical analysis of stability of slopes. 
Geotechnique 28(4):395‐411. 

Barnes, G. (1999) A commentary on the use of the pore pressure ratio ru in slope 
stability analysis. Ground engineering 32(8). 

Bell, J. M. (1966) Dimensionless parameters for homogeneous earth slopes. 
Journal of the Soil Mechanics and Foundations Division 92(5):51‐66. 

Bishop, A. & Morgenstern, N. (1960) Stability coefficients for earth slopes. 
Geotechnique 10(4):129‐153. 

Bishop, A. W. (1955) The use of the slip circle in the stability analysis of slopes. 
Geotechnique(5):7‐17. 

Brandenberg, S. J., Boulanger, R. W., Kutter, B. L. & Chang, D. (2005) Behavior of 
pile foundations in laterally spreading ground during centrifuge tests. Journal 
of Geotechnical and Geoenvironmental Engineering 131(11):1378‐1391. 

Cai, F. E. I. & Ugai, K. (2000) Numerical analysis of the stability of a slope 
reinforced with piles. Soils and Foundation 40(1):73‐84. 

Cała, M. (2007) Convex and concave slope stability analyses with numerical 
methods. Archives of Mining Sciences 52(1):75‐89. 

Cannavó, F. (2012) Sensitivity analysis for volcanic source modeling quality 
assessment and model selection. Computers & Geosciences 44:52‐59. 



289 
 

Castillo, E. & Luceno, A. (1982) A critical analysis of some variational methods in 
slope stability analysis. International Journal for Numerical and Analytical 
Methods in Geomechanics 6(2):195‐209. 

Cetin, K. O., Isik, N. & Unutmaz, B. (2004) Seismically induced landslide at 
Degirmendere Nose, Izmit Bay during Kocaeli (Izmit)‐Turkey earthquake. Soil 
Dynamics and Earthquake Engineering 24(3):189‐197. 

Chang, C.‐J., Chen, W. F. & Yao, J. T. (1984) Seismic displacements in slopes by 
limit analysis. Journal of Geotechnical engineering 110(7):860‐874. 

Chen, L. & Poulos, H. (1993) Analysis of pile‐soil interaction under lateral loading 
using infinite and finite elements. Computers and Geotechnics 15(4):189‐220. 

Chen, W.‐F. (1975) Limit analysis and soil plasticity.  Amsterdam ; Oxford, Elsevier. 
Chen, W.‐F. & Drucker, D. (1969) Bearing capacity of concrete blocks or rock. 

Journal of Engineering Mechanics. 
Chen, W.‐F. & Giger, M. (1971) Limit analysis of stability of slopes. Journal of Soil 

Mechanics & Foundations Div. 
Chen, W. F. (1969) Soil mechanics and theorems of limit analysis. Journal of the 

Soil Mechanics and Foundations Division 95(2):493‐518. 
Chen, W. F. & Liu, X. (1990) Limit analysis in soil mechanics.  Amsterdam, Elsevier. 
Chen, Z.‐Y. & Shao, C.‐M. (1988) Evaluation of minimum factor of safety in slope 

stability analysis. Canadian Geotechnical Journal 25(4):735‐748. 
Cheng, Y. (2003) Location of critical failure surface and some further studies on 

slope stability analysis. Computers and Geotechnics 30(3):255‐267. 
Cheng, Y. (2007) Global optimization analysis of slope stability by simulated 

annealing with dynamic bounds and Dirac function. Engineering Optimization 
39(1):17‐32. 

Cheng, Y., Lansivaara, T. & Wei, W. (2007a) Two‐dimensional slope stability 
analysis by limit equilibrium and strength reduction methods. Computers and 
Geotechnics 34(3):137‐150. 

Cheng, Y., Li, L., Chi, S.‐C. & Wei, W. (2007b) Particle swarm optimization 
algorithm for the location of the critical non‐circular failure surface in two‐
dimensional slope stability analysis. Computers and Geotechnics 34(2):92‐103. 

Cheng, Y., Li, L. & Chi, S. (2007c) Performance studies on six heuristic global 
optimization methods in the location of critical slip surface. Computers and 
Geotechnics 34(6):462‐484. 

Cheng, Y., Li, L., Lansivaara, T., Chi, S. & Sun, Y. (2008) Minimization of factor of 
safety using different slip surface generation methods and an improved 
harmony search minimization algorithm. Engineering Optimization 40(2):95‐
115. 

Cheng, Y. M. & Lau, C. (2014) Slope stability analysis and stabilization: new 
methods and insight. CRC Press. 

Ching, R. & Fredlund, D. (1983) Some difficulties associated with the limit 
equilibrium method of slices. Canadian Geotechnical Journal 20(4):661‐672. 

Chowdhury, R. N. & Zhang, S. (1991) Tension cracks and slope failure. In Slope 
Stability Engineering: Developments and Applications ),pp. 27‐32. 

Christian, J. T., Ladd, C. C. & Baecher, G. B. (1994) Reliability applied to slope 
stability analysis. Journal of Geotechnical engineering. 

Clough, G. W. & Duncan, J. M. (1971) Finite element analyses of retaining wall 
behavior. Journal of the Soil Mechanics and Foundations Division 
97(12):1657‐1673. 

Clough, R. W. & Chopra, A. K. (1966) Earthquake stress analysis in earth dams. 
Journal of the Engineering Mechanics Division 92(2):197‐212. 



290 
 

Collins, I. F., Gunn, C. I. M., Pender, M. J. & Yan, W. (1988) Slope stability analyses 
for materials with a non‐linear failure envelope. International Journal for 
Numerical and Analytical Methods in Geomechanics 12(5):533‐550. 

Cundall, P. A. & Strack, O. D. (1979) A discrete numerical model for granular 
assemblies. Geotechnique 29(1):47‐65. 

De Josselin De Jong, G. (1981) Variational fallacy. Geotechnique 31(4):289‐290. 
Deng, D.‐P., Zhao, L.‐H. & Li, L. (2014) Limit equilibrium slope stability analysis 

using the nonlinear strength failure criterion. Canadian Geotechnical Journal 
52(5):563‐576. 

Descamps, F., Da Silva, M. R., Schroeder, C., Verbrugge, J. C. & Tshibangu, J. P. 
(2012) Limiting envelopes of a dry porous limestone under true triaxial stress 
states. International Journal of Rock Mechanics and Mining Sciences 56:88‐99. 

De Sousa Coutinho, A. G. (2006) Data reduction of horizontal load full‐scale tests 
on bored concrete piles and pile groups. Journal of Geotechnical and 
Geoenvironmental Engineering 132(6):752‐769. 

Donald, I. B. & Chen, Z. Y. (1997) Slope stability analysis by the upper bound 
approach: fundamentals and methods. Canadian Geotechnical Journal 
34(6):853‐862. 

Drescher, A. & Christopoulos, C. (1988) Limit analysis slope stability with nonlinear 
yield condition. International Journal for Numerical and Analytical Methods in 
Geomechanics 12(3):341‐345. 

Drucker, D., Prager, W. & Greenberg, H. (1952) Extended limit design theorems 
for continuous media. 

Drucker, D. C., Greenberg, H. & Prager, W. (1950) The safety factor of an elastic‐
plastic body in plane strain. Division of Applied Mathematics, Brown 
University. 

Duncan, J. M. (1996) State of the art: limit equilibrium and finite‐element analysis 
of slopes. Journal of Geotechnical engineering 122(7):577‐596. 

Duncan, J. M. & Seed, H. B. (1966) Anisotropy and stress reorientation in clay. 
Journal of the Soil Mechanics and Foundations Division 92(5):21‐50. 

Dym, C. L. & Shames, I. H. (1973) Solid mechanics. Springer. 
El‐Ramly, H., Morgenstern, N. & Cruden, D. (2002) Probabilistic slope stability 

analysis for practice. Canadian Geotechnical Journal 39(3):665‐683. 
Elia, G., Amorosi, A., Chan, A. & Kavvadas, M. (2010) Fully coupled dynamic 

analysis of an earth dam. Geotechnique 61(7):549‐563. 
Espinoza, R. D., Bourdeau, P. L. & Muhunthan, B. (1994) Unified formulation for 

analysis of slopes with general slip surface. Journal of Geotechnical 
Engineering‐Asce 120(7):1185‐1204. 

Fellenius, W. (1936) Calculations of the stability of earth dams. In In Transactions 
of the 2nd Congress on Large Dams.), Washington, D.C., vol. 4, pp. 445‐463. 

Fırat, S. (2009) Stability analysis of pile‐slope system. Scientific Research and 
Essays 4(9):842‐852. 

Fraldi, M. & Guarracino, F. (2009) Limit analysis of collapse mechanisms in cavities 
and tunnels according to the Hoek–Brown failure criterion. International 
Journal of Rock Mechanics and Mining Sciences 46(4):665‐673. 

Frank, R. & Pouget, P. (2008) Experimental pile subjected to long duration thrusts 
owing to a moving slope. Geotechnique 58(8):645‐658. 

Fredlund, D. (1984) Analytical methods for slope stability analysis. In Proceedings 
of the 4th International Symposium on Landslides.)  s. l.]:[sn], pp. 229‐250. 

Fredlund, D. & Krahn, J. (1977) Comparison of slope stability methods of analysis. 
Canadian Geotechnical Journal 14(3):429‐439. 



291 
 

Fu, W. X. & Liao, Y. (2010) Non‐linear shear strength reduction technique in slope 
stability calculation. Computers and Geotechnics 37(3):288‐298. 

Gao, W. (2014) Forecasting of landslide disasters based on bionics algorithm (Part 
1: Critical slip surface searching). Computers and Geotechnics 61:370‐377. 

Gao, Y., Zhang, F., Lei, G., Li, D., Wu, Y. & Zhang, N. (2012) Stability charts for 3D 
failures of homogeneous slopes. Journal of Geotechnical and 
Geoenvironmental Engineering 139(9):1528‐1538. 

Gao, Y. F., Zhu, D. S., Zhang, F., Lei, G. H. & Qin, H. Y. (2014) Stability analysis of 
three‐dimensional slopes under water drawdown conditions. Canadian 
Geotechnical Journal 51(11):1355‐1364. 

Gazetas, G. (1987) Seismic response of earth dams: some recent developments. 
Soil Dynamics and Earthquake Engineering 6(1):2‐47. 

Geosure (2011) Landslides (slope instability). British Geological Survey, See 
http://www.bgs.ac.uk/products/geosure/landslides.html (accessed 25/10 
/2015). 

Griffiths, D. & Lane, P. (1999) Slope stability analysis by finite elements. 
Geotechnique 49(3):387‐403. 

Griffiths, D. & Marquez, R. (2007) Three‐dimensional slope stability analysis by 
elasto‐plastic finite elements. Geotechnique 57(6):537‐546. 

Griffiths, D. V. & Fenton, G. A. (2004) Probabilistic slope stability analysis by finite 
elements. Journal of Geotechnical and Geoenvironmental Engineering 
130(5):507‐518. 

Guo, W. D. & Qin, H. (2010) Thrust and bending moment of rigid piles subjected to 
moving soil. Canadian Geotechnical Journal 47(2):180‐196. 

Hammah, R. (2005) A comparison of finite element slope stability analysis with 
conventional limit‐equilibrium investigation. In Proceedings of the 58th 
Canadian Geotechnical and 6th Joint IAH‐CNC and CGS Groundwater 
Specialty Conferences–GeoSask 2005.)  Citeseer. 

Hassiotis, S., Chameau, J. & Gunaratne, M. (1997) Design method for stabilization 
of slopes with piles. Journal of Geotechnical and Geoenvironmental 
Engineering 123(4):314‐323. 

Hayward, T., Lees, A., Powrie, W., Richards, D. & Smethurst, J. (2000) Centrifuge 
modelling of a cutting slope stabilised by discrete piles. Transport Research 
Laboratory. 

Hestenes, M. R. & Stiefel, E. (1952) Methods of conjugate gradients for solving 
linear systems. 

Hoek, E. (1983) Strength of jointed rock masses. Geotechnique 33(3):187‐223. 
Hoek, E. & Bray, J. D. (1981) Rock slope engineering. CRC Press. 
Hoek, E. & Brown, E. (1997) Practical estimates of rock mass strength. 

International Journal of Rock Mechanics and Mining Sciences 34(8):1165‐
1186. 

Hoek, E. & Brown, E. T. (1980) Empirical strength criterion for rock masses. Journal 
of Geotechnical and Geoenvironmental Engineering 106(ASCE 15715). 

Hoek, E., Carranza‐Torres, C. & Corkum, B. (2002) Hoek‐Brown failure criterion‐
2002 edition. Proceedings of NARMS‐Tac 1:267‐273. 

Hoek, E., Kaiser, P. K. & Bawden, W. F. (1995) Support of underground excavations 
in hard rock.  Rotterdam, Balkema. 

Hu, J., Zhong, L. & Yang, X. G. (2013) Upper bound approach for slope stability 
analysis based on arbitrary sliding surface and horizontal slices (in Chinese). 
China Civil Engineering Journal 46(6):117‐121. 



292 
 

Huang, F. & Yang, X. (2011) Upper bound limit analysis of collapse shape for 
circular tunnel subjected to pore pressure based on the Hoek–Brown failure 
criterion. Tunnelling and Underground Space Technology 26(5):614‐618. 

Huang, R., Pei, X., Fan, X., Zhang, W., Li, S. & Li, B. (2012) The characteristics and 
failure mechanism of the largest landslide triggered by the Wenchuan 
earthquake, May 12, 2008, China. Landslides 9(1):131‐142. 

Hudson, J. A. & Harrison, J. P. (2000) Engineering rock mechanics‐ an introduction 
to the principles. Elsevier Science. 

Hunter, J. H. & Schuster, R. (1968) Stability of simple cuttings in normally 
consolidated clays. Geotechnique 18(3):372‐378. 

Isakov, A. & Moryachkov, Y. (2014) Estimation of Slope Stability Using Two‐
Parameter Criterion of Stability. International Journal of Geomechanics 
14(3):3. 

Ito, T. & Matsui, T. (1975) Methods to estimate lateral force acting on stabilizing 
piles. Soils and Foundation 15(4):43‐59. 

Ito, T., Matsui, T. & Hong, W. P. (1979) Design method for the stability analysis of 
the slope with landing pier. Soils and Foundation 19(4):43‐57. 

Ito, T., Matsui, T. & Hong, W. P. (1981) Design method for stabilizing piles against 
landslide: one row of piles. Soils and Foundation 21(1):21‐37. 

Ito, T., Matsui, T. & Hong, W. P. (1982) Extended design method for multi‐row 
stabilizing piles against landslide. Soils and Foundation 22(1):1‐13. 

Janbu, N. (1954) Application of composite slip surfaces for stability analysis. In 
Proc. European Conf. on Stability of Earth Slopes, Stockholm, 1954.), vol. 3, pp. 
43‐49. 

Janbu, N. (1972) Earth pressure computations in theory and practice. In Fifth Eur 
Conf On Soil Proc/Sp/.). 

Jeldes, I. A., Drumm, E. C. & Yoder, D. C. (2014) Design of Stable Concave Slopes 
for Reduced Sediment Delivery. Journal of Geotechnical and 
Geoenvironmental Engineering 141(2):04014093. 

Jeldes, I. A., Vence, N. E. & Drumm, E. C. (2013) Approximate solution to the 
Sokolovskiĭ concave slope at limiting equilibrium. International Journal of 
Geomechanics. 

Jenike, A. W. & Yen, B. C. (1962) Slope Stability in Axial Symmetry. 
Jeong, S., Kim, B., Won, J. & Lee, J. (2003) Uncoupled analysis of stabilizing piles in 

weathered slopes. Computers and Geotechnics 30(8):671‐682. 
Jiang, J.‐C. & Yamagami, T. (2006) Charts for estimating strength parameters from 

slips in homogeneous slopes. Computers and Geotechnics 33(6):294‐304. 
Jiang, S.‐H., Li, D.‐Q., Zhang, L.‐M. & Zhou, C.‐B. (2014) Slope reliability analysis 

considering spatially variable shear strength parameters using a non‐intrusive 
stochastic finite element method. Engineering geology 168:120‐128. 

Jibson, R. W. (2011) Methods for assessing the stability of slopes during 
earthquakes—a retrospective. Engineering geology 122(1):43‐50. 

Jurado‐Piña, R. & Jimenez, R. (2015) A genetic algorithm for slope stability 
analyses with concave slip surfaces using custom operators. Engineering 
Optimization 47(4):453‐472. 

Kahatadeniya, K. S., Nanakorn, P. & Neaupane, K. M. (2009) Determination of the 
critical failure surface for slope stability analysis using ant colony 
optimization. Engineering geology 108(1):133‐141. 

Kaniraj, S. R. & Abdullah, H. (1994) The effect of berms and tension cracks on the 
maximum reinforcement force in embankments on soft soils. Geotextiles and 
Geomembranes 13(2):101‐117. 



293 
 

Knappett, J. & Madabhushi, S. (2011) Effects of axial load and slope arrangement 
on pile group response in laterally spreading soils. Journal of Geotechnical 
and Geoenvironmental Engineering 138(7):799‐809. 

Koppula, S. (1984) Pseudo‐static analysis of clay slopes subjected to earthquakes. 
Geotechnique 34(1):71‐79. 

Kourkoulis, R., Gelagoti, F., Anastasopoulos, I. & Gazetas, G. (2010) Slope 
stabilizing piles and pile‐groups: parametric study and design insights. Journal 
of Geotechnical and Geoenvironmental Engineering 137(7):663‐677. 

Kourkoulis, R., Gelagoti, F., Anastasopoulos, I. & Gazetas, G. (2011) Hybrid method 
for analysis and design of slope stabilizing piles. Journal of Geotechnical and 
Geoenvironmental Engineering. 

Krabbenhoft, K., Lyamin, A. V., Hjiaj, M. & Sloan, S. W. (2005) A new discontinuous 
upper bound limit analysis formulation. International Journal for Numerical 
Methods in Engineering 63(7):1069‐1088. 

Krahn, J. (2003) The 2001 RM Hardy Lecture: The limits of limit equilibrium 
analyses. Canadian Geotechnical Journal 40(3):643‐660. 

Lam, L. & Fredlund, D. (1993) A general limit equilibrium model for three‐
dimensional slope stability analysis. Canadian Geotechnical Journal 
30(6):905‐919. 

Leca, E. & Dormieux, L. (1990) Upper and lower bound solutions for the face 
stability of shallow circular tunnels in frictional material. Geotechnique 
40(4):581‐606. 

Lee, C., Hull, T. & Poulos, H. (1995) Simplified pile‐slope stability analysis. 
Computers and Geotechnics 17(1):1‐16. 

Lee, I.‐M. & Nam, S.‐W. (2001) The study of seepage forces acting on the tunnel 
lining and tunnel face in shallow tunnels. Tunnelling and Underground Space 
Technology 16(1):31‐40. 

Leshchinsky, D. & Huang, C.‐C. (1992) Generalized three‐dimensional slope‐
stability analysis. Journal of Geotechnical engineering 118(11):1748‐1764. 

Leung, C., Chow, Y. & Shen, R. (2000) Behavior of pile subject to excavation‐
induced soil movement. Journal of Geotechnical and Geoenvironmental 
Engineering 126(11):947‐954. 

Li, A., Lyamin, A. & Merifield, R. (2009a) Seismic rock slope stability charts based 
on limit analysis methods. Computers and Geotechnics 36(1):135‐148. 

Li, A., Merifield, R. & Lyamin, A. (2011) Effect of rock mass disturbance on the 
stability of rock slopes using the Hoek–Brown failure criterion. Computers 
and Geotechnics 38(4):546‐558. 

Li, A. J., Merifield, R. S. & Lyamin, A. V. (2008) Stability charts for rock slopes based 
on the Hoek‐Brown failure criterion. International Journal of Rock Mechanics 
and Mining Sciences 45(5):689‐700. 

Li, L., Tang, C., Zhu, W. & Liang, Z. (2009b) Numerical analysis of slope stability 
based on the gravity increase method. Computers and Geotechnics 
36(7):1246‐1258. 

Li, X., He, S. & Wu, Y. (2009c) Seismic displacement of slopes reinforced with piles. 
Journal of Geotechnical and Geoenvironmental Engineering 136(6):880‐884. 

Li, X., Pei, X., Gutierrez, M. & He, S. (2012) Optimal location of piles in slope 
stabilization by limit analysis. Acta Geotechnica 7(3):253‐259. 

Li, Y.‐C., Chen, Y.‐M., Zhan, T. L., Ling, D.‐S. & Cleall, P. J. (2010) An efficient 
approach for locating the critical slip surface in slope stability analyses using a 
real‐coded genetic algorithm. Canadian Geotechnical Journal 47(7):806‐820. 



294 
 

Lo, K. Y. (1965) Stability of slopes in anisotropic soils. Journal of the Soil Mechanics 
and Foundations Division 91(4):85‐106. 

Lorig, L. & Varona, P. (2001) Practical slope‐stability analysis using finite‐difference 
codes. Slope stability in surface mining:115‐124. 

Low, B., Gilbert, R. & Wright, S. (1998) Slope reliability analysis using generalized 
method of slices. Journal of Geotechnical and Geoenvironmental Engineering 
124(4):350‐362. 

Luan, M. T., Wu, Y. J. & Nian, T. K. (2003) A criterion for evaluating slope stability 
based on development of plastic zone by shear strength reduction FEM (in 
Chinese). Journal of Disaster Prevention and Mitigation Engineering 23(3):1‐8. 

Lyamin, A. & Sloan, S. (2002a) Lower bound limit analysis using non‐linear 
programming. International Journal for Numerical Methods in Engineering 
55(5):573‐611. 

Lyamin, A. V. & Sloan, S. (2002b) Upper bound limit analysis using linear finite 

elements and non‐linear programming. International Journal for Numerical 
and Analytical Methods in Geomechanics 26(2):181‐216. 

Lysmer, J. (1970) Limit analysis of plane problems in soil mechanics. Journal of Soil 
Mechanics & Foundations Div. 

Makdisi, F. I. & Seed, H. B. (1977) Simplified procedure for estimating dam and 
embankment earthquake‐induced deformations. In ASAE Publication No. 4‐
77. Proceedings of the National Symposium on Soil Erosion and Sediment by 
Water, Chicago, Illinois, December 12‐13, 1977.). 

Makrodimopoulos, A. & Martin, C. (2006) Lower bound limit analysis of 

cohesive‐frictional materials using second‐order cone programming. 
International Journal for Numerical Methods in Engineering 66(4):604‐634. 

Makrodimopoulos, A. & Martin, C. (2007) Upper bound limit analysis using 

simplex strain elements and second‐order cone programming. International 
Journal for Numerical and Analytical Methods in Geomechanics 31(6):835‐
865. 

Marinos, V., Marinos, P. & Hoek, E. (2005) The geological strength index: 
applications and limitations. Bulletin of Engineering Geology and the 
Environment 64(1):55‐65. 

Martin, C., Kaiser, P. & Mccreath, D. (1999) Hoek‐Brown parameters for predicting 
the depth of brittle failure around tunnels. Canadian Geotechnical Journal 
36(1):136‐151. 

Mathworks (2014) MATLAB 2014b.  Mathworks, Natick, United States. 
Matsui, T., Hong, W. P. & Ito, T. (1982) Earth pressures on piles in a row due to 

lateral soil movements. Soils and Foundation 22(2):71‐81. 
Matsui, T. & San, K.‐C. (1992) Finite element slope stability analysis by shear 

strength reduction technique. Soils and Foundation 32(1):59‐70. 
Mayne, P. W. (1985) Stress anisotropy effects on clay strength. Journal of 

Geotechnical engineering 111(3):356‐366. 
Mccombie, P. & Wilkinson, P. (2002) The use of the simple genetic algorithm in 

finding the critical factor of safety in slope stability analysis. Computers and 
Geotechnics 29(8):699‐714. 

Meng, F. Z., Zhou, H., Zhang, C. Q., Xu, R. C. & Lu, J. J. (2015) Evaluation 
Methodology of Brittleness of Rock Based on Post‐Peak Stress‐Strain Curves. 
Rock Mechanics and Rock Engineering 48(5):1787‐1805. 

Merifield, R. S., Lyamin, A. V. & Sloan, S. (2006) Limit analysis solutions for the 
bearing capacity of rock masses using the generalised Hoek–Brown criterion. 
International Journal of Rock Mechanics and Mining Sciences 43(6):920‐937. 



295 
 

Mezazigh, S. & Levacher, D. (1998) Laterally loaded piles in sand: slope effect on 
PY reaction curves. Canadian Geotechnical Journal 35(3):433‐441. 

Michalowski, R. (1997a) An estimate of the influence of soil weight on bearing 
capacity using limit analysis. Soils and Foundation 37(4):57‐64. 

Michalowski, R. (2008) Limit analysis with anisotropic fibre‐reinforced soil. 
Geotechnique 58(6):489‐501. 

Michalowski, R. L. (1995) Slope stability analysis: A kinematical approach. 
Geotechnique 45(2):283‐293. 

Michalowski, R. L. (1997b) Stability of uniformly reinforced slopes. Journal of 
Geotechnical and Geoenvironmental Engineering 123(6):546‐556. 

Michalowski, R. L. (1998) Limit analysis in stability calculations of reinforced soil 
structures. Geotextiles and Geomembranes 16(6):311‐331. 

Michalowski, R. L. (2002) Stability charts for uniform slopes. Journal of 
Geotechnical and Geoenvironmental Engineering 128(4):351‐355. 

Michalowski, R. L. (2013) Stability assessment of slopes with cracks using limit 
analysis. Canadian Geotechnical Journal 50(10):1011‐1021. 

Mo, H., Tang, C. & Liu, S. (1999) Determination of the most dangerous slip surface 
with pattern search method. CHINESE JOURNAL OF GEOTECHNICAL 
ENGINEERING‐CHINESE EDITION‐ 21(6):696‐699. 

Morgenstern, N. & Price, V. E. (1965) The analysis of the stability of general slip 
surfaces. Geotechnique 15(1):79‐93. 

Navarro, V., Yustres, A., Candel, M., López, J. & Castillo, E. (2010) Sensitivity 
analysis applied to slope stabilization at failure. Computers and Geotechnics 
37(7):837‐845. 

Newmark, N. M. (1965) Effects of Earthquakes on Dams and Embankments. 
Geotechnique 15(2):139‐160. 

Nian, T.‐K., Huang, R.‐Q., Wan, S.‐S. & Chen, G.‐Q. (2012) Three‐dimensional 
strength‐reduction finite element analysis of slopes: geometric effects. 
Canadian Geotechnical Journal 49(5):574‐588. 

Nian, T., Chen, G., Luan, M., Yang, Q. & Zheng, D. (2008) Limit analysis of the 
stability of slopes reinforced with piles against landslide in nonhomogeneous 
and anisotropic soils. Canadian Geotechnical Journal 45(8):1092‐1103. 

Ning, Y., An, X. & Ma, G. (2011) Footwall slope stability analysis with the numerical 
manifold method. International Journal of Rock Mechanics and Mining 
Sciences 48(6):964‐975. 

Optumce (2013) Optum G2.  Optum Computational Engineering, Newcastle, 
Australia. 

Pan, J., Goh, A., Wong, K. & Teh, C. (2002) Ultimate soil pressures for piles 
subjected to lateral soil movements. Journal of Geotechnical and 
Geoenvironmental Engineering 128(6):530‐535. 

Poulos, H. G. (1995) Design of reinforcing piles to increase slope stability. 
Canadian Geotechnical Journal 32(5):808‐818. 

Prévost, J.‐H., Abdel‐Ghaffar, A. M. & Elgamal, A.‐W. M. (1985) Nonlinear 
hysteretic dynamic response of soil systems. Journal of Engineering 
Mechanics 111(5):696‐713. 

Rassam, D. W. & Williams, D. J. (1999) 3‐Dimensional effects on slope stability of 
high waste rock dumps. International Journal of Surface Mining, Reclamation 
and Environment 13(1):19‐24. 

Rathje, E. M. & Bray, J. D. (1999) An examination of simplified earthquake‐induced 
displacement procedures for earth structures. Canadian Geotechnical Journal 
36(1):72‐87. 



296 
 

Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., Lashin, A. & Al Arifi, N. (2015) 
Non‐linear stress‐strain behaviour of reservoir rock under brine saturation: 
An experimental study. Measurement 71:56‐72. 

Rieke‐Zapp, D. & Nearing, M. (2005) Slope shape effects on erosion. Soil Science 
Society of America Journal 69(5):1463‐1471. 

Rocscience (2006) Slide 5.0.  Rocscience Inc., Toronto, Canada. 
Rocscience (2015) Phase2 9.0.  Rocscience Inc., Toronto, Canada. 
Rojat, F., Labiouse, V. & Mestat, P. (2015) Improved analytical solutions for the 

response of underground excavations in rock masses satisfying the 
generalized Hoek–Brown failure criterion. International Journal of Rock 
Mechanics and Mining Sciences 79:193‐204. 

Saltelli, A., Chan, K. & Scott, E. M. (2009) Sensitivity Analysis. Wiley. 
San, K.‐C. & Leshchinsky, D. O. V. (1994) Seismic slope stability analysis: pseudo‐

static generalized method. Soils and Foundation 34(2):73‐77. 
Sarma, S. K. (1979) Stability analysis of embankments and slopes. Journal of the 

Geotechnical Engineering Division 105(12):1511‐1524. 
Scavia, C. (1990) Fracture mechanics approach to stability analysis of rock slopes. 

Engineering Fracture Mechanics 35(4):899‐910. 
Seed, H. B., Idriss, I., Lee, K. L. & Makdisi, F. (1975) Dynamic analysis of the slide in 

the Lower San Fernando Dam during the earthquake of February 9, 1971. 
Journal of Geotechnical and Geoenvironmental Engineering 101(ASCE# 11541 
Proceeding). 

Seed, H. B. & Idriss, I. M. (1969) Influence of soil conditions on ground motions 
during earthquakes. Journal of the Soil Mechanics and Foundations Division 
95(1):99‐138. 

Shen, J. & Karakus, M. (2013) Three‐dimensional numerical analysis for rock slope 
stability using shear strength reduction method. Canadian Geotechnical 
Journal 51(2):164‐172. 

Shen, J., Karakus, M. & Xu, C. (2013) Chart‐based slope stability assessment using 
the Generalized Hoek–Brown criterion. International Journal of Rock 
Mechanics and Mining Sciences 64:210‐219. 

Siad, L. (2003) Seismic stability analysis of fractured rock slopes by yield design 
theory. Soil Dynamics and Earthquake Engineering 23(3):21‐30. 

Sloan, S. (1988) Lower bound limit analysis using finite elements and linear 
programming. International Journal for Numerical and Analytical Methods in 
Geomechanics 12(1):61‐77. 

Sloan, S. (1989) Upper bound limit analysis using finite elements and linear 
programming. International Journal for Numerical and Analytical Methods in 
Geomechanics 13(3):263‐282. 

Sloan, S. (2013) Geotechnical stability analysis. Geotechnique 63(7):531‐571. 
Smethurst, J. & Powrie, W. (2007) Monitoring and analysis of the bending 

behaviour of discrete piles used to stabilise a railway embankment. 
Geotechnique 57(8):663‐677. 

Sokolovskii, V. V. (1965) Statics of Granular Media.  Oxford, U.K., Pergamon Press. 
Sokolovskiĭ, V. V. (1960) Statics of soil media.  London, Butterworths Scientific 

Publications. 
Soubra, A.‐H. (1999) Upper‐bound solutions for bearing capacity of foundations. 

Journal of Geotechnical and Geoenvironmental Engineering 125(1):59‐68. 
Soubra, A.‐H. (2000) Static and seismic passive earth pressure coefficients on rigid 

retaining structures. Canadian Geotechnical Journal 37(2):463‐478. 



297 
 

Spencer, E. (1967) A method of analysis of the stability of embankments assuming 
parallel inter‐slice forces. Geotechnique 17(1):11‐26. 

Spencer, E. (1968) Effect of tension on stability of embankments. Journal of the 
Soil Mechanics and Foundations Division 94(5):1159‐1176. 

Spencer, E. (1973) Thrust line criterion in embankment stability analysis. 
Geotechnique 23(1). 

Stefano, C. D., Ferro, V., Porto, P. & Tusa, G. (2000) Slope curvature influence on 
soil erosion and deposition processes. Water resources research 36(2):607‐
617. 

Sun, J., Li, J. & Liu, Q. (2008) Search for critical slip surface in slope stability 
analysis by spline‐based GA method. Journal of Geotechnical and 
Geoenvironmental Engineering. 

Tang, G.‐P., Zhao, L.‐H., Li, L. & Yang, F. (2015) Stability charts of slopes under 
typical conditions developed by upper bound limit analysis. Computers and 
Geotechnics 65:233‐240. 

Taylor, D. W. (1948) Fundamentals of soil mechanics. Soil Science 66(2):161. 
Terzaghi, K. (1943) Theoretical soil mechanics. Wiley. 
Terzaghi, K. (1950) Mechanism of Landslides.  New York, Geological Society of 

America. 
Tika, T. E., Vaughan, P. & Lemos, L. (1996) Fast shearing of pre‐existing shear 

zones in soil. Geotechnique 46(2):197‐233. 
Tschuchnigg, F., Schweiger, H. & Sloan, S. (2015) Slope stability analysis by means 

of finite element limit analysis and finite element strength reduction 
techniques. Part I: Numerical studies considering non‐associated plasticity. 
Computers and Geotechnics 70:169‐177. 

Ugai, K. (1989) A Method of Calculation of Total Safety Factor of Slope by Elasto‐
Plastic FEM. Soils and Foundation 29(2):190‐195. 

Ugai, K. & Leshchinsky, D. O. V. (1995) Three‐dimensional limit equilibrium and 
finite element analyses: a comparison of results. Soils and Foundation 
35(4):1‐7. 

Usgs (2015) Catastrophic Landslides of the 20th Century ‐ Worldwide. United 
States Geological Survey, See http://landslides.usgs.gov/learn/majorls.php 
(accessed 25/10 /2015). 

Utili, S. (2013) Investigation by limit analysis on the stability of slopes with cracks. 
Geotechnique 63(2):140‐154. 

Utili, S. (2015) Slopes of optimal shape.) Invited presentation at Newcastle 
University (U.K.) edn., Newcastle University (U.K.). 

Utili, S. & Abd, A. (2016) On the stability of fissured slopes subject to seismic 
action. International Journal for Numerical and Analytical Methods in 
Geomechanics. 

Utili, S. & Nova, R. (2007) On the optimal profile of a slope. Soils and Foundations 
47(4):717‐729. 

Viratjandr, C. & Michalowski, R. L. (2006) Limit analysis of submerged slopes 
subjected to water drawdown. Canadian Geotechnical Journal 43(8):802‐814. 

Wang, L. P. & Zhang, G. (2014) Progressive failure behavior of pile‐reinforced clay 
slopes under surface load conditions. Environmental earth sciences 
71(12):5007‐5016. 

Wei, W. & Cheng, Y. (2009) Strength reduction analysis for slope reinforced with 
one row of piles. Computers and Geotechnics 36(7):1176‐1185. 

Won, J., You, K., Jeong, S. & Kim, S. (2005) Coupled effects in stability analysis of 
pile–slope systems. Computers and Geotechnics 32(4):304‐315. 



298 
 

Wright, S. G., Kulhawy, F. H. & Duncan, J. M. (1973) Accuracy of equilibrium slope 
stability analysis. Journal of the Soil Mechanics and Foundations Division 
99(10):783‐791. 

Wyllie, D. C., Mah, C. W. & Hoek, E. R. S. E. (2004) Rock slope engineering : civil 
and mining. 4th ed. / Duncan C. Wyllie and Christopher W. Mah. edn. London, 
Spon. 

Xie, M., Esaki, T. & Cai, M. (2004) A GIS‐based method for locating the critical 3D 
slip surface in a slope. Computers and Geotechnics 31(4):267‐277. 

Xing, Z. (1988) Three‐dimensional stability analysis of concave slopes in plan view. 
Journal of Geotechnical engineering 114(6):658‐671. 

Yang, X.‐L. (2007) Upper bound limit analysis of active earth pressure with 
different fracture surface and nonlinear yield criterion. Theoretical and 
Applied Fracture Mechanics 47(1):46‐56. 

Yang, X. L., Li, L. & Yin, J. H. (2004) Stability analysis of rock slopes with a modified 
Hoek‐Brown failure criterion. International Journal for Numerical and 
Analytical Methods in Geomechanics 28(2):181‐190. 

Yang, X. L. & Zou, J. F. (2006) Stability factors for rock slopes subjected to pore 
water pressure based on the Hoek‐Brown failure criterion. International 
Journal of Rock Mechanics and Mining Sciences 43(7):1146‐1152. 

Yegian, M., Gazetas, G., Dakoulas, P. & Makris, N. (1995) The Northridge 
earthquake of 1994: Ground motions and geotechnical aspects. In Third 
International Conference on Recent Advances in Geotechnical Earthquake 
Engineering and Soil Dynamics (1981: April 2‐7; St. Louis, Missouri).)  Missouri 
S&T (formerly the University of Missouri‐‐Rolla). 

Yiagos, A. & Prevost, J. (1991) Two‐phase elasto‐plastic seismic response of earth 
dams: theory. Soil Dynamics and Earthquake Engineering 10(7):357‐370. 

You, L. & Michalowski, R. L. (1999) Displacement charts for slopes subjected to 
seismic loads. Computers and Geotechnics 25(1):45‐55. 

Yu, H., Salgado, R., Sloan, S. & Kim, J. (1998) Limit analysis versus limit equilibrium 
for slope stability. Journal of Geotechnical and Geoenvironmental Engineering 
124(1):1‐11. 

Zeng, S. & Liang, R. (2002) Stability analysis of drilled shafts reinforced slope. Soils 
and Foundation 42(2):93‐102. 

Zhang, L., Fredlund, M. D., Fredlund, D. G., Lu, H. & Wilson, G. (2015) The 
influence of the unsaturated soil zone on 2‐D and 3‐D slope stability analyses. 
Engineering geology. 

Zhang, X. J. & Chen, W. F. (1987) Stability analysis of slopes with general nonlinear 
failure criterion. International Journal for Numerical and Analytical Methods 
in Geomechanics 11(1):33‐50. 

Zhang, Y., Chen, G., Zheng, L., Li, Y. & Zhuang, X. (2013) Effects of geometries on 
three‐dimensional slope stability. Canadian Geotechnical Journal 50(3):233‐
249. 

Zhou, X. & Cheng, H. (2014) Stability analysis of three‐dimensional seismic 
landslides using the rigorous limit equilibrium method. Engineering geology 
174:87‐102. 

Zhu, D., Lee, C. & Jiang, H. (2003) Generalised framework of limit equilibrium 
methods for slope stability analysis. Geotechnique 53(4):377‐395. 

Zienkiewicz, O., Chang, C. & Bettess, P. (1980) Drained, undrained, consolidating 
and dynamic behaviour assumptions in soils. Geotechnique 30(4):385‐395. 



299 
 

Zienkiewicz, O. C., Humpheson, C. & Lewis, R. W. (1975) Associated and non‐
associated visco‐plasticity and plasticity in soil mechanics. Geotechnique 
25(4):671‐689. 

Zolfaghari, A. R., Heath, A. C. & Mccombie, P. F. (2005) Simple genetic algorithm 
search for critical non‐circular failure surface in slope stability analysis. 
Computers and Geotechnics 32(3):139‐152. 

 


