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The fates of Solar system analogues with one additional

distant planet
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ABSTRACT
The potential existence of a distant planet (“Planet Nine”) in the Solar system has
prompted a re-think about the evolution of planetary systems. As the Sun transitions
from a main sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are
currently assumed to survive in expanded but otherwise unchanged orbits. However, a
sufficiently-distant and sufficiently-massive extra planet would alter this quiescent end
scenario through the combined effects of Solar giant branch mass loss and Galactic
tides. Here, I estimate bounds for the mass and orbit of a distant extra planet that
would incite future instability in systems with a Sun-like star and giant planets with
masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find
that this boundary is diffuse and strongly dependent on each of the distant planet’s
orbital parameters. Nevertheless, I claim that instability occurs more often than not
when the planet is as massive as Jupiter and harbours a semimajor axis exceeding
about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about
3000 au. These results hold for orbital pericentres ranging from 100 to at least 400
au. This instability scenario might represent a common occurrence, as potentially
evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout
the Galaxy.

Key words: methods: numerical – celestial mechanics – planets and satellites: dy-
namical evolution and stability – Sun: evolution – stars: AGB and post-AGB – stars:
white dwarfs

1 INTRODUCTION

Thousands of planets outside of our Solar system have al-
ready been discovered despite our potential ignorance of
what planets may reside in our own backyard. This arrest-
ing notion (Brown, Trujillo & Rabinowitz 2004; Gladman &
Chan 2006; Iorio 2012) was given added credence with the
discovery of the second Sednoid, 2012 VP113 (Trujillo &
Sheppard 2014), because both that object and Sedna have
arguments of pericentre clustered around −50◦ (see their
table 1). This clustering is not likely to be a result of obser-
vational bias (de la Fuente Marcos & de la Fuente Marcos
2014), and may be explained by one or more planets which
exist beyond the orbit of Neptune but are so far invisible
to us (Iorio 2014; Luhman 2014; Trujillo & Sheppard 2014;
Gomes, Soares & Brasser 2015; Iorio 2015). However, the
existence of these two scattered disc objects do not neces-
sarily require the presence of additional planets (J́ılková et
al. 2015).

The recent finding that several distant Kuiper Belt Ob-
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jects exhibit this same clustering in orbital space, as well a
clustering in physical space (Batygin & Brown 2016), has
prompted a febrile response amongst the public and scien-
tific community. Constraining the location and size of a pu-
tative “Planet Nine” has been the focus of many subsequent
publications, through both orbital dynamics (Beust 2016;
Brown & Batygin 2016; de la Fuente Marcos & de la Fuente
Marcos 2016a,b; de la Fuente Marcos, de la Fuente Marcos &
Aarseth 2016; Fienga et al. 2016; Holman & Payne 2016a,b;
Lawler et al. 2016; Malhotra, Volk & Wang 2016) and intrin-
sic physical properties (Cowan, Holder & Kaib 2016; Fortney
et al. 2016; Ginzburg, Sari & Loeb 2016; Linder & Mordasini
2016; Toth 2016).

Overall and roughly, these studies suggest that Planet
Nine is more massive than the Earth and resides at hun-
dreds or thousands of au away from the Sun (other simi-
larly massive planets could lie further away). Other studies
investigated potential origins for Planet Nine, including in-
situ formation (Kenyon & Bromley 2016), scattering into
its current (theorized) orbit (Bromley & Kenyon 2016) and
capture from other stars in the Sun’s birth cluster (Mustill,
Raymond & Davies 2016). The survivability of Planet Nine
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due to passing stars has also been investigated (Li & Adams
2016). Additional planets which orbit the Sun also could ex-
ist but evidence for their presence has yet to be marshalled.

Two points not emphasized in the above studies are: (1)
how our knowledge of the fate of the Solar system changes
with the presence of planets beyond Neptune’s orbit, and
(2) the deeper fundamental issue of what the implications
are for similarly-constructed systems and more generally ex-
oplanetary science. These two concepts are linked through
white dwarf planetary systems, and represent the motivation
for this paper.

1.1 The fate of an eight-planet Solar system

The Sun will leave the main sequence in about 6.5 Gyr, and
undergo drastic changes (Fig. 1). Its radius will increase by
a factor of about 230, it will lose almost half of its current
mass, and its luminosity will reach a peak value which is
about 4000 times its current value (see e.g Schröder & Con-
non Smith 2008, Veras & Wyatt 2012 and fig. 3 of Veras
2016). The Sun will become so large that its radius will ex-
tend just beyond where the Earth currently sits. These ma-
jor changes will occur in two phases. The red giant branch
phase will last about 800 Myr. In this timespan, the Sun will
gradually lose about a quarter of its mass. The second phase,
when the Sun becomes an asymptotic giant branch star, is
quicker: lasting just 5 Myr. Another quarter of the Sun’s
mass will be lost during this period. During both phases,
the radius of the Sun will extend out to nearly the Earth’s
distance.

The consequences for the inner Solar system will be pro-
found. The terrestrial planets, which are likely to remain in
stable orbits until the end of the main sequence at the ap-
proximately 99% level (Laskar & Gastineau 2009; Batygin,
Morbidelli & Holman 2015; Zeebe 2015), will be in danger.
Mercury and Venus will be engulfed, and the Earth will be
on the edge of survivability (Rybicki & Denis 2001; Schröder
& Connon Smith 2008). Mars will be roasted, but should
survive, because it will escape being ensnared by the tidal
reach of the Sun (Villaver & Livio 2009; Kunitomo et al.
2011; Mustill & Villaver 2012; Adams & Bloch 2013; Nord-
haus & Spiegel 2013; Villaver et al. 2014; Staff et al. 2016).
Asteroid belt constituents between 100 m and 10 km in ra-
dius will be spun up to breakup speed (Veras, Jacobson &
Gänsicke 2014a), creating a sea of debris, some of which
may be water-rich (Jura & Xu 2010, 2012; Farihi, Gänsicke
& Koester 2013; Raddi et al. 2015; Malamud & Perets 2016).

The consequences for the giant planets, however, will
be more benign. Jupiter, Saturn, Uranus and Neptune will
increase their semimajor axes by a factor of about two each,
and not undergo scattering nor instability (Duncan & Lis-
sauer 1998), even though the chemistry of at least Jupiter’s
atmosphere will be fundamentally altered (Villaver & Livio
2007; Spiegel & Madhusudhan 2012). The giant planet ec-
centricities will remain effectively fixed because they reside
within the adiabatic limit, beyond which stellar mass loss
changes both eccentricity and semimajor axis (Veras et al.
2011). The present-day “adiabatic”1 limit for the Solar sys-

1 In this context, adiabaticity has nothing to do with heat, but
rather refers to the conservation of eccentricity.

tem specifically lies between about 103 and 104 au (Veras &
Wyatt 2012). Further, even though mass loss changes sta-
bility limits (Debes & Sigurdsson 2002; Mustill, Marshall
& Villaver 2013; Portegies Zwart 2013; Veras et al. 2013a;
Voyatzis et al. 2013; Mustill, Veras & Villaver 2014; Veras
& Gänsicke 2015; Veras et al. 2016a), this change will not
be large enough to affect the giant planets. I perform some
simulations here also to back up this statement.

Moons, the Kuiper Belt, scattered disc and Oort Cloud
will also be affected. Moons of planets will become more en-
trenched in the Hill spheres of the host planets, and would
stay there in the absence of a planetary scattering event
(Payne et al. 2016a,b). Although known Kuiper Belt and
scattered disc objects are within the adiabatic limit, many
are likely to become unstable as the stability limits between
Neptune and Kuiper Belt objects change as the Sun’s mass
decreases (e.g. Bonsor, Mustill & Wyatt 2011) and its lumi-
nosity increases (Veras, Eggl & Gänscike 2015a). The Oort
Cloud will be both excited and decimated (Veras & Wy-
att 2012; Veras et al. 2014b), which will alter the influx
of comets into the inner Solar system (Alcock, Fristrom &
Siegelman 1986; Parriott & Alcock 1998; Veras, Shannon
& Gänscike 2014c; Stone, Metzger & Loeb 2015), and these
comets can be subsequently perturbed by radiation from the
Solar white dwarf (Veras, Eggl & Gänsicke 2015b).

1.2 The effect of additional planets

The presence of additional planets (one or more) can trigger
instability purely through Lagrange instability as the Sun
becomes older. This phenomenon in main sequence extraso-
lar systems has been well-explored (e.g. Chambers, Wether-
ill & Boss 1996; Barnes & Greenberg 2006, 2007; Chatterjee
et al. 2008; Deck, Payne & Holman 2013; Veras & Mustill
2013; Davies et al. 2014; Marzari 2014; Petrovich 2015; Pu
& Wu 2015) and will have greater predictive power as as-
teroseismology continues to pinpoint the ages of old stars
(Campante, Barclay & Swift 2015; Silva Aguirre et al. 2015;
Veras et al. 2015c; North et al. 2016). Mass loss from giant
branch evolution will change the limits further, as outlined
above. Additionally, a planet residing in the non-adiabatic
regime will have its eccentricity changed during this mass
loss, altering the limits even further. When combined with
Galactic tides and stellar flybys, the result may be a signif-
icantly more dynamically active evolved system than previ-
ously envisaged.

Hence, although Jupiter, Saturn, Uranus and Neptune
by themselves will remain stable throughout the Sun’s giant
branch and white dwarf phases, the presence of additional
planets might trigger instability after the Sun has left the
main sequence, but not before. This scenario might be com-
mon throughout the Milky Way if extrasolar planetary sys-
tem architectures from about 5 to 30 au resemble the Solar
system’s, and contain a sufficiently distant and massive ex-
tra planet. In this paper, I quantify this scenario, and place
rough bounds on the mass and orbit of one additional planet
which can trigger future instability.

1.3 The polluted planet-host star

The importance of considering extrasolar systems in general
arises from the outcome of the instability during the white
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Figure 1. The future evolution of the Sun’s mass (M⋆), radius (R⋆), effective temperature (Teff⋆) and luminosity (L⋆) during the
transition between the red giant branch phase (yellow background) and the asymptotic giant branch phase (pink background). These
evolutionary tracks were computed with the SSE code (Hurley et al. 2000). The η parameter (Equation 1) determines the extent of the
mass loss on the red giant branch phase, which has implications for evolution on the asymptotic giant branch phase. The phase transition
(7.8587 Gyr) is shown for η = 0.5; other phase transitions are 7.8571 Gyr for η = 0.2 and 7.8738 Gyr for η = 0.8. The Sun eventually
becomes a white dwarf with a mass of 0.511− 0.534M⊙.

dwarf phase. We know that planetary systems around white
dwarfs are just as common as those orbiting main sequence
stars, primarily through the detection of metal debris in the
atmospheres of the degenerate stars. Such “polluted” white
dwarfs now number in the thousands (Dufour et al. 2007;
Kleinman et al. 2013; Kepler et al. 2015, 2016 and Hollands
et al. in preparation). High-sensitivity observational surveys
reveal that between one-quarter and one-half of the known
Milky Way white dwarfs are estimated to host planetary
debris (Zuckerman et al. 2003, 2010; Koester, Gänsicke &
Farihi 2014).

The spectacular discovery of at least one minor planet
disintegrating in real time within the white dwarf disruption
radius (Vanderburg et al. 2015) has prompted a spate of ob-
servational follow-up studies (Alonso et al. 2016; Croll et al.
2016; Gänsicke et al. 2016; Rappaport et al. 2016; Xu et al.
2016; Zhou et al. 2016) as well as some theoretical attempts
to explain the complex behaviour (Gurri, Veras & Gänsicke
2016; Veras et al. 2016b). Such minor planets are assumed
to supply dusty and gaseous debris discs which orbit the
white dwarf (Zuckerman & Becklin 1987; Gänsicke et al.
2006; Farihi, Jura & Zuckerman 2009; Bergfors et al. 2014;
Wilson et al. 2014; Xu & Jura 2014; Barber et al. 2016; Far-
ihi 2016; Manser et al. 2016). Such discs eventually accrete
onto the atmosphere of the star itself (Bochkarev & Rafikov

2011; Rafikov 2011a,b; Metzger, Rafikov & Bochkarev 2012;
Rafikov & Garmilla 2012; Wyatt et al. 2014).

The specific primary mechanism which transports the
rocky bodies to the white dwarf is still debatable (see sec-
tion 7 of Veras 2016) but relies on interactions between mi-
nor planets and larger bodies (Bonsor et al. 2011; Bonsor &
Wyatt 2012; Debes, Walsh & Stark 2012; Frewen & Hansen
2014). Instabilities which arise in white dwarf planetary sys-
tems (Veras et al. 2013a; Voyatzis et al. 2013; Mustill et al.
2014; Veras & Gänsicke 2015; Bonsor & Veras 2015; Payne
et al. 2016a,b; Hamers & Portegies Zwart 2016; Petrovich
& Muñoz 2016) promote an architecture conducive to pol-
lution by placing planets and liberated moons in orbits that
sweep through regions of space which may access reservoirs
of debris. Examples of such reservoirs are those that arise
from planet-planet collisions (Shannon et al. in preparation)
or YORP-induced asteroid breakup (Veras et al. 2014a).

Therefore, the ubiquity of white dwarf pollution
throughout the Milky Way (Zuckerman et al. 2003, 2010;
Koester et al. 2014) suggests that post-main-sequence insta-
bility is common, an idea that would be aided by the pres-
ence of extrasolar analogues of Planet Nine: i.e. potentially
massive planets on wide orbits that remain stable during
the main sequence phase but begin to scatter gravitation-
ally during or after giant branch mass loss. If the presence of

 at U
niversity of W

arw
ick on Septem

ber 27, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


planets at hundreds or thousands of au is the norm, regard-
less of their dynamical origin, then that scenario is broadly
consistent with the observed end states of planetary systems.

1.4 Outline for this paper

In this paper I characterize the mass and orbital parameters
of an additional distant planet that would create gravita-
tional instability amongst giant planet analogues orbiting a
Sun-like star after the latter turns off of the main sequence.
This result would also apply to the Solar system if no Planet
Nine is found now: at some point later in the Sun’s main se-
quence lifetime the Sun may capture an additional planet
(Sumi et al. 2011; Perets & Kouwenhoven 2012; Varvoglis,
Sgardeli & Tsiganis 2012).

In Section 2, I provide more detail about the evolution
of Sun-like stars, before, in Section 3, isolating the varied ef-
fects that come into play during the giant branch and white
dwarf phases. My computational method is detailed in Sec-
tion 4. I explain the initial conditions and report on my
simulation results in Section 5 before summarizing the con-
clusions of this work in Section 6.

2 THE SUN’S FUTURE EVOLUTION

Amongst the Sun’s many physical properties (such as ra-
dius and luminosity), its mass is the most important one for
my study. On the main sequence, the Sun’s mass loss rate
(≈ 2.4× 10−14M⊙ yr−1) is negligible (Vial 2013). However,
the Sun’s future evolution beyond the main sequence is un-
known. A potentially good guess is to consider the typical
evolution of other 1M⊙ stars with metallicities of Z = 0.02.
Although these two parameters are well-established for the
Sun, an important unknown is the future rate of mass loss
during the red giant branch phase.

A traditional formulation of this rate is the Reimers
prescription (Reimers 1975, 1977), which has now been im-
proved (Schröder & Cuntz 2005), and may be parametrized
as

dM⋆

dt
= η

(

4× 10−13M⊙ yr−1
)

(

L⋆

L⊙

)(

R⋆

R⊙

)(

M⋆

M⊙

)−1

×

(

T⋆

4000 K

)7/2
[

1 + 2.3 × 10−4

(

g⋆
g⊙

)−1
]

, (1)

where M⋆, L⋆, R⋆, T⋆ and g⋆ are the mass, luminosity, ra-
dius, temperature and surface gravity of the star. The value
of η = 0.2 reproduces the coefficient given in Schröder &
Cuntz (2005), and η = 0.5 reproduces the coefficient given
in the traditional formulation, which does not contain the
terms dependent on T⋆ nor g⋆.

Equation (1) applies to the giant branch phase only.
Mass loss evolution on the asymptotic giant branch phase is
qualitatively different, and is typically characterised by the
prescription of Vassiliadis & Wood (1993):

log

(

dM⋆

dt

)

= −11.4+0.0125 [P − 100max (M⋆ − 2.5, 0.0)](2)

where dM⋆/dt is computed in M⊙ yr−1 and such that

logP ≡ min (3.3, −2.07− 0.9 logM⋆ + 1.94 logR⋆) , (3)

where the value P is computed in years. The continued com-
mon use of this prescription even over two decades after
it was published helps indicate its robustness in the face
of new observations. This formulation also importantly in-
cludes the “superwind” (peak mass loss) which occurs at the
“tip” (end-point) of the asymptotic giant branch (Lagadec
& Zijlstra 2008).

After the asymptotic giant branch phase, the Sun will
become a white dwarf. The Solar white dwarf will not lose
mass nor change its radius, but will gradually dim. Figure
1 illustrates the Sun’s evolution for (η = 0.2, 0.5, 0.8) from
the SSE code, which uses the traditional Reimers formulation
and will be described in more detail in Section 4. I adopted
these values in order to encompass a realistic range, as out-
lined above, and further to conform to the range adopted in
Veras & Wyatt (2012). Fig. 1 displays the Sun’s mass evolu-
tion during the transition between the red giant branch and
asymptotic giant branch for all three values (also included
for added perspective are the Sun’s radius, luminosity and
effective temperature changes). The resulting Solar white
dwarf mass for each of these values is 0.534M⊙ (η = 0.2),
0.519M⊙ (η = 0.5) and 0.511M⊙ (η = 0.8).

3 ISOLATING DIFFERENT EFFECTS

The motion of any planet orbiting a star at a distance of
at least hundreds or thousands of au could be affected by
a variety of effects. These include post-main-sequence mass
loss, Galactic tides, and flybys from passing stars (see fig.
2 of Veras 2016). Combining these effects with the gravita-
tional interactions from a set of giant planets like Jupiter,
Saturn, Uranus and Neptune is non-trivial, especially dur-
ing close encounters. I am interested in the consequences of
these effects on the orbits of giant planets, and in the below
subsections, isolate these physical processes.

Consider first a single planet with an arbitrary sub-
stellar mass in isolation on an arbitrary orbit whose peri-
centre lies beyond 102 au from the Sun-like star.

3.1 Stellar flybys

Stars pass by the Sun on a regular basis, and occasionally
enter the Sun’s gravitational sphere of influence. Sometimes
these intrusions are deep. In fact, a Sun-like star can expect
to encounter another star at a distance of a few hundred
au over its main sequence lifetime (Zakamska & Tremaine
2004; Veras & Moeckel 2012). The consequences for a distant
planet may be any outcome (orbit perturbation, collision,
ejection, engulfment) depending on the velocity, direction
and mass of the flyby star. On Gyr-timescales, objects with
semimajor axes of the order 104 au have a significant chance
of being stripped away by passing stars (Li & Adams 2016).

These flybys will occur during all phases of stellar evo-
lution. However, predicting where and when these flybys will
occur is generally not possible because the stellar kinematic
memory in the Galaxy is lost well-before 1 Gyr in the future
(Nakajima, Morino & Fukagawa 2010). In fact, the signifi-
cant distance errors on the closest known Solar flyby, which
occurred about 70+10

−15 × 103 yr ago, are 52+23
−14 × 103 au (Ma-

majek et al. 2015). Consequently, accurately predicting the
incidence of flybys on the giant branch or white dwarf phases
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Figure 2. The final semimajor axis and eccentricity of an isolated planet orbiting the Solar white dwarf, assuming no other Solar system
planets exist and the only active force was and is gravity from the Sun. The left panels show the case for a main sequence, or, “initial”
epl = 0.5 value and the right panels for an initial epl = 0.8. The adiabatic limits, given by the straight horizontal lines, are reliable
predictors typically only for apl ≪ 500 au (specifically see Eq. 15). These plots illustrate the non-monotonicity of the planet’s evolution
as a function of initial apl.

of Sun-like stars is not possible, and hence I do not consider
flybys any further.

3.2 Galactic tides

The effect of Galactic tides is more predictable. In the So-
lar neighbourhood2, the vertical component of these tides
is an order of magnitude stronger than the planar compo-
nents (Heisler & Tremaine 1986; Matese & Whitman 1989,
1992; Matese et al. 1995; Breiter, Dybczynski & Elipe 1996;
Brasser 2001; Breiter & Ratajczak 2005), greatly simplify-
ing the equations of motion (see the contrast within table 1
of Veras et al. 2014b). For most orbits except those near the
escape boundary, Galactic tides change a planet’s eccentric-
ity e, inclination i, argument of periastron ω and longitude
of ascending node Ω – but not its semimajor axis a (Brasser
2001; Fouchard 2004; Fouchard et al. 2006; Veras & Evans
2013a). However, near the escape boundary (within a factor
of 3-10 in orbital period), all of the orbital elements vary
(fig. 3 of Veras et al. 2014b).

2 I did not consider the possibility that the parent star has mi-
grated or will radially migrate within the Galaxy (Sellwood &
Binney 2002; Roškar et al. 2008).

The strength of these tidal changes depends primar-
ily on the inclination of the planetary orbit with respect to
the Galactic plane, with the maximum effect achieved for
polar orbits. In this extreme case, the planet’s eccentricity
may reach unity and consequently escape the system. In the
other extreme, coplanar, case the minimum eccentricity in-
crease and decrease factors generated by Galactic tides in
the Solar neighbourhood are roughly 1±10−8(a/au)3/2 (eq.
44 of Veras & Evans 2013a). This value corresponds to an
eccentricity change of about 10−5 for a = 102 au and 10−2

for a = 105 au.

The Solar system, however, does not fit either extreme.
The ecliptic is inclined to the Galactic plane by about 60◦,
and the orbits of the outer planets therefore have a relative
inclination of about 57.5◦−62.5◦ with respect to the Galactic
plane. This orientation dictates that an object like Sedna
(with a semimajor axis of about 500 au and eccentricity
of 0.86) will change its eccentricity by about 10−3

− 10−2

from now until the end of the main sequence (fig. 2 of Veras
& Evans 2013b). At 103 au, a substellar companion may
significantly change its eccentricity by 10−1 after 10 Gyr
(fig. 3 of Veras & Evans 2013a).

Overall then, the inclination of a distant planet with
respect to the Galactic plane may importantly be affected
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Figure 3. An isolated planet’s evolution dependence on physical location and argument of pericentre. This figure is similar to Fig. 2,
except here I did not vary the main sequence, or initial, values of apl and epl (left panels: apl = 103 au and epl = 0.8 and right panels:
apl = 104 au and epl = 0.8) while instead varying ωpl (argument of pericentre) and Πpl (mean anomaly). The purple spades and orange
triangles respectively demonstrate the effect of varying initial ωpl and Πpl. The difference is dramatic, and helps exhibit the sensitive
dependence of mass loss on planet position along the orbit. This sensitivity is further emphasized by the pink stars, which result from
the initial values of ωpl and Πpl being equal to each other and to the x-axes values. Because the pink stars and orange triangles become
more coincident as apl is increased (from the left panels to the right panels), non-adiabaticity directly correlates with sensitivity on Πpl,
a known theoretical result (Veras et al. 2011). The larger value of apl also allows for some systems to become unbound.

by Galactic tides, with a potential subsequent effect on the
stability of the remaining planets in the system.

3.3 Stellar mass loss

Stellar mass loss will likely represent the key dynamical
driver of the future Solar system, as well as for most ex-
oplanetary systems. The motion of a distant planet will be
determined by the solution of the following set of differential
equations (Omarov 1962; Hadjidemetriou 1963; Veras et al.
2011)

dapl

dt
= −

apl

(

1 + e2pl + 2epl cos fpl
)

1− e2pl

Ṁ⋆ + Ṁpl

M⋆ +Mpl

(4)

= −apl

(

1 + epl cosEpl

1− epl cosEpl

)

Ṁ⋆ + Ṁpl

M⋆ +Mpl

, (5)

depl
dt

= − (epl + cos fpl)
Ṁ⋆ + Ṁpl

M⋆ +Mpl

(6)

= −

[

(

1− e2pl
)

cosEpl

1− epl cosEpl

]

Ṁ⋆ + Ṁpl

M⋆ +Mpl

, (7)

dipl
dt

= 0, (8)

dΩpl

dt
= 0, (9)

dωpl

dt
= −

(

sin fpl
epl

)

Ṁ⋆ + Ṁpl

M⋆ +Mpl

(10)

= −





√

1− e2pl sinEpl

epl (1− epl cosEpl)





Ṁ⋆ + Ṁpl

M⋆ +Mpl

, (11)

where fpl and Epl refer to the true anomaly and eccentric
anomaly of the planet. I have denoted the star’s (changing)
mass as M⋆ (M⊙ is just the current value of the mass of a
Sun-like star) and the planet’s mass as Mpl. The evolution
of the anomalies is
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dfpl
dt

= −
dωpl

dt
+

npl (1 + epl cos fpl)
2

(

1− e2pl

) 3

2

, (12)

dEpl

dt
= −

1
√

1− e2pl

dωpl

dt
+

npl

1− epl cosEpl

. (13)

where the mean motion npl = G1/2 (M⋆ +Mpl)
1/2 a

−3/2
pl ,

and generally, Ṁ⋆ < 0. Because the planet accretes some of
the stellar ejecta (Hadjidemetriou 1963 and section 4.2.2. of
Veras 2016) Ṁpl > 0. However, for Solar system analogues,
Ṁpl/Ṁ⋆ ≪ 1.

Equations (5)-(13) are not known to be solvable analyt-
ically, and assume that the Sun-like star loses mass isotrop-
ically. Veras, Hadjidemtriou & Tout (2013b) showed that
this approximation is excellent because latitudinal mass-loss
variations anisotropically affect the planet’s motion only if
the mass loss is asymmetric about the stellar equator. Unre-
alistic longitudinal variations (of over 0.1%) must be main-
tained for long periods (over 1 Myr) in order to produce
semimajor axis variations of order 0.1 au and eccentricity
variations of order 0.01. See their fig. 2 for rough magni-
tudes, although their choice of reference frame alters the in-
terpretation of the orbital elements (Dosopoulou & Kalogera
2016a,b).

The smaller the value of apl, the better that the semi-
major axis evolution can be approximated in the adiabatic
limit as
(

dapl

dt

)

adiabatic

= −apl

(

Ṁ⋆ + Ṁpl

M⋆ +Mpl

)

. (14)

The goodness of this approximation can be quantified by the
time variable mass loss index Ψ, introduced by equation 15
of Veras et al. (2011) as

Ψ ≡
Ṁ⋆ + Ṁpl

npl (M⋆ +Mpl)

≈ 0.005

(

Ṁ⋆ + Ṁpl

10−6M⊙/yr

)

( apl

103 au

) 3

2

(

M⋆ +Mpl

1M⊙

)−
3

2

.(15)

The “adiabatic regime” is a useful characterisation for the
regime which typically occurs when Ψ ≪ 0.1 − 1. Conse-
quently, a planet located at 103 au should be approaching
the edge of the adiabatic limit. In order to quantify this
sentiment, I have run simulations of a planet at different
semimajor axes and two different eccentricities, for each of
the three η = 0.2, 0.5, 0.8 stellar models. Fig. 2 illustrates
the results.

The figure demonstrates how non-adiabaticity increases
with initial (or, main sequence values of) apl. For η = 0.8,
which has the slowest rate of mass loss of the three tracks
that I sampled despite releasing the most mass overall (see
Fig. 1), the adiabat is followed most closely (within a few
per cent) for distances including and under 103 au. In all
cases, the departure from adiabaticity is non-monotonic with
increasing apl, and one system in the left panels and one
in the right become unbound. Such behaviour is explained
further in Veras et al. (2011) and Veras & Wyatt (2012).

The systems sampled in Fig. 2 fix the planet’s initial ar-
gument of pericentre and mean anomaly (≡ Πpl). However,

the value of these orbital elements is potentially of crucial
importance. Hence, in Fig. 3, I fixed the initial values of
apl and epl and instead varied orbital angles. The almost
straight lines of purple spades in all of the plots reveal that
(i) this choice produces a notable deviation from the adia-
batic limit, and (ii) for the particular initial fixed Πpl value
of 0◦, changing the initial value of ωpl has little effect on
the overall outcome. Conversely, the scattered orange tri-
angles and pink stars demonstrate a strong dependence on
the planet’s location along its orbit during the Solar giant
branch phase. As shown by the right panels, if the initial
apl is large enough, then values of Πpl may be found which
would lead to escape.

In both Figs 2 and 3 the mass of the planet is not re-
ported. The reason is that its mass is largely insensitive to
the process of mass loss. In particular, because Mpl always
appears in summation with M⋆ in equations (5)-(15) for all
Mpl ≪ M⊙, the influence of planet mass on its resulting mo-
tion should enter at the 0.1% level for Jupiter-mass planets.

3.4 Galactic tides and stellar mass loss together

The interplay between Galactic tides and mass loss can be
partitioned because each acts on a different timescale. Veras
et al. (2014b) concluded that in the Solar neighbourhood
the tidal timescale is orders of magnitude longer than the
mass loss timescale, allowing one to decouple the equations
of motion in each phase. In other words, one can use the
tidal equations along the main sequence and white dwarf
phases, and the mass loss equations alone along the giant
branch phases.

The consequences for long-term stability are highlighted
in Bonsor & Veras (2015). Consider a wide-orbit (> 103

au) planet whose pericentre during the main sequence is
high enough to not perturb an inner planetary system. After
mass loss, the orbit expands enough to cause Galactic tides
to excite the distant planet’s eccentricity to the extent that
the inner planetary system is now affected (see, in particular,
their fig. 2). The eccentricity of the distant planet is likely
to further change if during mass loss the planet is in the
non-adiabatic regime (see Figs 2 and 3).

3.5 Planet-planet scattering

By themselves, Jupiter, Saturn, Uranus and Neptune are not
assumed to scatter off one another during the Sun’s evolu-
tion. 3 In order to confirm this notion, I have performed three
simulations (η = 0.2, 0.5, 0.8) with the four giant planets
only plus Galactic tides. I ran these simulations throughout
the giant branch phases and for 10 Gyr on the white dwarf
phase. In no case did the giant planets commence strong
scattering.

Now consider the inclusion of a distant planet. Although
unimportant for Galactic tides or stellar mass loss, the mass
of the planet will crucially determine whether Jupiter, Sat-
urn, Uranus and Neptune will be perturbed enough to cause

3 Technically, at some point in the distant future (e.g. many Hub-
ble times) the system will become unstable (e.g. Murray & Hol-
man 1997).
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large-scale instability in the Solar system analogue. A dis-
tant planet which is comparable in mass to any of the known
gas giants will likely create such an instability during a close
encounter. What happens if the planet is a super-Earth-mass
planet is less clear. Before exploring these possibilities, I de-
scribe in detail the computational method used in this work
and lay out the initial conditions for my simulations.

4 COMPUTATIONAL METHOD

4.1 Numerical codes

In order to model the future evolution of a Sun-like star
concurrently with the dynamical evolution of Jupiter, Sat-
urn, Uranus, Neptune analogues and a distant planet, I uti-
lized a facility which has combined the stellar evolution code
SSE (Hurley et al. 2000) with a heavily modified version
of the Bulirsch-Stoer integrator in the planetary dynamics
code Mercury (Chambers 1999). This combination has been
shown to yield converging errors as the accuracy parameter
decreases (e.g. fig. 1 of Veras et al. 2013a), and the resulting
code has been used in several previous studies (e.g. Veras
et al. 2016a). I adopt the version of the code that includes
effects from Galactic tides, and a realistic Hill ellipsoid, in
order to correctly track escape (Veras & Evans 2013a; Veras
et al. 2014b). For these computations, I assumed that the
Sun-like star resides at exactly 8 kpc away from the Galactic
Centre.

The Hill ellipsoid is stretched towards the centre of
the Galaxy, and compressed along the other two axes. At
a distance of 8 kpc, the semi-axes of this ellipsoid are
(1.49, 1.92, 2.89)× 105 au. Any planet which the code found
to reside outside of this ellipsoid at any timestep was con-
sidered to have escaped from the planetary system. None of
the Mpl values that I chose were large enough to alter these
semi-axes.

The SSE code produces a single evolutionary track given
a set of zero-age-main-sequence values of M⋆, Z and η. As
previously mentioned, η is a key unknown (Fig. 1). Rather
than adopting a single value, I chose three (0.2, 0.5, 0.8) for
the reasons outlined in Section 2.

4.2 Simulation duration

The timespan over which I ran the simulations was limited
by computational resources because of the number of orbits
that needed to be accurately modelled. This value is depen-
dent on the parent star’s mass and size of the orbits. Hence,
evolution during the white dwarf phase can proceed at a
rate tens of times faster (fig. 8 of Veras et al. 2013a) than
on the main sequence.

This computational slowness along the main sequence
(together with the difficulty of self-consistently modelling
multiple phases of stellar evolution) partly illustrates why
many post-main-sequence exoplanetary evolution studies
have restricted their simulations to a timespan of under
about 1 Gyr (Debes & Sigurdsson 2002; Bonsor et al. 2011;
Debes et al. 2012; Kratter & Perets 2012; Frewen & Hansen
2014). Although multi-Gyr simulations were later performed
by Veras et al. (2013a) and Mustill et al. (2014), they had to

restrict the main sequence stellar masses which they sam-
pled to M⋆ > 3M⊙ because of the correspondingly short
main sequence lifetimes (. 500 Myr). Nevertheless, Veras
& Gänsicke (2015) and Veras et al. (2016a) achieved full-
lifetime (14 Gyr) simulations by adopting stars with main
sequence masses between 1.5 − 2.5M⊙, and hence main se-
quence lifetimes of 600 Myr to 3 Gyr.

However, the main sequence lifetime for a 1.0M⊙ star
is much longer, and approaches 11 Gyr, meaning that the
Sun will remain on the main sequence for another 6.5 Gyr
or so. This timespan was too prohibitive for my numerical
integrations. Consequently, I began all my simulations just
before the red giant branch phase. Nevertheless, I ran these
simulations for a total of 11.6 Gyr, which included roughly
1.5 Gyr on the giant branch phases, and 10 Gyr on the white
dwarf phase. In order to maximize resources, the occurrence
of instability (defined as ejection or collision) terminated a
simulation. I ran the simulations which generated Figs 2 and
3 for just 1.55 Gyr, because only the giant branch phases
needed to be sampled.

4.3 Planet parameters

Regarding the planets, as mentioned previously, Jupiter,
Saturn, Uranus and Neptune are expected to survive until
the end of the main sequence in approximately their cur-
rent orbits. Their exact positions 6.5 Gyr from now are not
known (e.g. Zeebe 2015), even if the errors in current mea-
surements were as small as a Planck length, because the
outer Solar system itself is chaotic with a Lyapunov time of
order 10 Myr. Hence, I simply adopted as initial conditions
the values of a, e and f of the planets at the Julian Date
2451000.5 that are provided within the default version of
Mercury.

However, I treated their values of i, Ω, and ω differently.
The code considers the Galactic Plane to exist at i = 0◦, and
the relative inclination of each planet to that plane may be
important when coupled with the distant planet’s inclina-
tion and the effect of Galactic tides. Because the ecliptic is
approximately inclined at an angle of 60◦ to the planets, I
reproduced faithful analogues by tilting the planetary sys-
tems so that the orbital planes are approximately centred
about this value. I did so by applying the rotation matrix





1 0 0
0 cos 60◦ − sin 60◦

0 sin 60◦ cos 60◦



 (16)

to the Cartesian elements (positions and velocities) of the
four planets, and then transforming back into orbital ele-
ment space (this transformation does not affect a, e nor f).
The result was that the inclination values of the four plan-
ets ranged from 58.8◦ to 60.3◦. Because the Sun-like stars
were treated as point masses, they were not affected by, nor
affected, this rotation.

5 MONTE-CARLO SIMULATIONS

Having laid out the background for my study, I am now
ready to present my Monte-Carlo simulations.
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5.1 Initial conditions

In order to establish initial conditions, I consider each pa-
rameter in turn. In all cases, when I use the term “ini-
tial”, that refers to the starting point of my simulations
(10941.0429 Myr from the zero-age-main-sequence) but also
more generally to main sequence values. Time is measured
from the current epoch, which was assumed to occur ex-
actly 4.6 Gyr after the zero-age-main-sequence. My adopted
ranges for the distant planet’s mass, semimajor axis and in-
clination (below) are all larger than those assumed by recent
studies attempting to constrain the properties of a (poten-
tial) Planet Nine in the Solar system. These expanded ranges
allow me to help identify when instability would occur for
planetary systems that generally resemble the Solar system.
Naturally if Planet Nine is discovered and its mass, orbit
and position are pinpointed, then a dedicated post-main-
sequence study which adopts those parameters would be of
interest.

• I chose to sample Mpl randomly from a logarith-
mic distribution with range 101 − 104M⊕. I assumed that
lower masses would not likely be able to significantly per-
turb the giant planets even during a close encounter (the
masses of Uranus and Neptune are about 14-17M⊕). Higher
masses would represent stars rather than planets; in fact
the typically-assumed planet-brown dwarf boundary of 13
Jupiter masses is approximately equal to 4100M⊕.

• I sampled apl(initial) randomly from a logarith-
mic distribution with range 5 × 102 − 5 × 104 au,
and the planet’s initial orbital pericentre ≡

qpl(initial) = apl(initial) × [1− epl(initial)] from a uni-
form distribution with a range of 100 to 400 au. These
choices allowed me to sample the entire system from 102 au
out to the edge of the Hill Ellipsoid (at ≈ 105 au).

• I sampled ipl(initial) randomly from a uniform distri-
bution with range 40◦−80◦, which is centred around the ap-
proximately 60◦ tilt that I have imposed for the giant plan-
ets (recall that i = 0◦ corresponds to the Galactic plane).
My range is somewhat arbitrary: I recognize that a distant
planet may have any inclination, particularly if it is a cap-
tured object, but for computational purposes restricted the
range to an order of magnitude greater than the mutual in-
clinations amongst the giant planets. Sampling non-zero in-
termediate values of inclination is anyway particularly valu-
able in order to probe the effect of Galactic tides.

• The orbital angles ωpl(initial) and Ωpl(initial), and
Πpl(initial) were sampled randomly from a uniform distri-
bution over their entire ranges.

5.2 Results

I present my results in two stages. The first is an analy-
sis of specific systems, and the second is an analysis of the
ensemble.

5.2.1 Specific systems

I have analyzed the outcomes for each of nearly 300 simu-
lations on an individual basis, and decided to present here
a flavour of the wide variety of outcomes. In the following
figures, I consistently use the same horizontal and vertical
ranges, even for unstable simulations that were terminated.

Figure 5. Tidally-induced instability: Here the distant planet
(Mpl ≈ 109M⊕) has a large enough initial semimajor axis
apl(initial) ≈ 2030 au for Galactic tides to have a noticeable effect
during the white dwarf phase. The tides create an initial increase
in the already high value of epl(initial) ≈ 0.85, triggering ejection
of the analogue of Neptune as qpl approaches the location of the
other four planets (bottom plot). Eventually, qpl < Rmax, causing
the distant planet to sweep through any remaining debris in the
inner system, which may pollute the eventual white dwarf once
inside its disruption radius RRoche.
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Figure 4. A quiet end: one example of an evolutionary sequence of Jupiter, Saturn, Uranus, Neptune analogues and a more distant
planet with Mpl ≈ 82M⊕, apl(initial) ≈ 536 au, qpl(initial) ≈ 260 au and ipl(initial) ≈ 42.8◦ (where i for the other planets ranges from
58.8◦ to 60.2◦). The upper left and right panels illustrate the semimajor axis and eccentricity evolution of all of the planets during the
end of the main sequence phase (yellow background), the entire giant branch phase (pink background), and for about 10 Gyr of the
white dwarf phase (gray background). Rmax refers to the maximum Solar radius attained during the giant branch phase. The bottom
panels are also time evolution plots (not snapshots) but shown on the x − y and x − z planes. The semimajor axes of all planets are
small enough to ensure adiabatic evolution during mass loss and an insensitivity to Galactic tides. Consequently, during mass loss the
semimajor axes approximately double and the eccentricities remain unchanged.

• Figure 4 (stable) One of the simplest cases was
evolved with a η = 0.5 Sun-like star and features a dis-
tant planet on a short-enough orbit that neither Galactic
tides nor non-adiabatic mass loss ever become factors. Con-
sequently, the semimajor axis and eccentricity changes were
predictable, and all planets were far away enough from each
other such that they did not suffer close encounters. The ec-
centricities of the analogues of the four known giant planets
mirrored their main sequence values and variations, whereas
the distant planet’s eccentricity was slightly noticeably al-
tered: the amplitude of epl increased just after mass loss, and
Galactic tides did cause a barely perceptible secular change
over 10 Gyr of white dwarf evolution.

The Cartesian cross-sections (bottom panels) reveal how
mass loss changes planetary orbits in space. For each planet,
there are two distinct tori of points, corresponding to main
sequence and white dwarf values. For the distant planet, a
sparse intermediate ring of points can be seen, which corre-
sponds to a transition state during the giant branch phase.

• Figure 5 (unstable) Here the distant planet’s initial
semimajor axis of about 2030 au was (i) small enough to

achieve adiabatic mass loss, (ii) small enough to be unaf-
fected by Galactic tides on the main sequence and giant
branch phases, (iii) and large enough to be affected by Galac-
tic tides non-negligibly on the white dwarf phase. Regard-
ing the first point, this semimajor axis lies within the Solar
system adiabaticity transition region of 103 − 104 au, but
remained adiabatic because here η = 0.8 (see fig. 2 of Ve-
ras & Wyatt 2012). The modulation of epl due to Galactic
tides was high enough to be seen on the middle plot. This in-
crease of eccentricity (by about a tenth from 0.85) decreased
qpl (bottom plot) gradually, until close encounters pumped
up the eccentricities of the Uranus and Neptune analogues,
eventually ejecting the Neptune-like planet and stopping the
simulation.

The value of qpl became much lower than the orbital peri-
centres of the other planets before ejection. Indicated on the
right axis of the bottom plot are Rmax and RRoche, which
represent the maximum radius that the star attained during
the giant branch phase, and the Roche, or disruption radius,
of the white dwarf. For all plots, I computed this radius as-
suming a Jupiter-mass planet. In this figure, qpl < Rmax.
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Figure 9. The outcomes from all simulations. Stable simulations are indicated in green symbols, and unstable ones are in red. The
different shapes refer to different Solar models; these plots illustrate that the results are independent of η. Both stable and unstable
simulations populate all areas of all plots, except for the blue triangle in the upper-left plot; this triangle contains all stable simulations.
Orange rectangles indicate regions where stability is more likely to occur than not. The outcomes are largely independent of qpl(initial)
and ipl(initial).

Consequently, the distant planet swept through an area of
space that had been untouched since the end of the giant
branch phase. Hence, extant debris from the inner system
(such as e.g. planets like Mars, and remnants of asteroid
belt-like breakups; Veras et al. 2014a), could be perturbed
towards the white dwarf and pollute it. This same behaviour
was observed in Veras & Gänsicke (2015) and Veras et al.
(2016a).

• Figure 6 (stable) Here the distant planet’s initial
semimajor axis of 2230 au is very similar to that in Fig.
5, except in this instance the mass loss evolution was non-
adiabatic. The reason partly is, for this simulation, η = 0.5
(see fig. 2 of Veras & Wyatt 2012). The resulting large jump
in the value of apl, by nearly a factor of 10, created a situ-
ation where Galactic tides played a large role during white
dwarf evolution.

Whereas Galactic tides slightly decreased epl on the main
sequence and white dwarf phases, the large jump in apl cre-
ated discernable oscillations during the white dwarf phase.
If Jupiter, Saturn, Uranus and Neptune analogues were
not present, then these oscillations would have had a con-
stant amplitude and frequency. However, mutual interac-
tions triggered semimajor axis “jumps” (upper plot) plus

a corresponding change in shape of the eccentricity oscilla-
tions. Further, over the first 7 Gyr of white dwarf evolution,
Neptune-analogue’s eccentricity increased by over an order
of magnitude, to about 0.1-0.2. Nevertheless, over the dura-
tion of the simulation, the system remained stable.

The bottom plot illustrates deep radial incursions (within
or close to Rmax) of the distant planet towards the white
dwarf: one at 10 Gyr, and then four more from 14-18 Gyr.
These illustrate how a dynamically-active inner planetary
system environment can be triggered at any white dwarf
age, potentially explaining white dwarf pollution at different
epochs (Bonsor & Veras 2015; Hamers & Portegies Zwart
2016; Petrovich & Muñoz 2016).

• Figure 7 (unstable) A highly eccentric (& 0.9) dis-
tant planet with apl > 104 au is likely to generate interest-
ing dynamical behaviour because it is sure to evolve non-
adiabatically from mass loss and always is affected signifi-
cantly by Galactic tides. For this system, these attributes
provided an environment which was conducive to strong
scattering events, allowing the analogue of Uranus to be
“captured” into a 104 au orbit. This orbit existed for an
appreciable 5 Gyr – longer than the Solar system’s current
age – before the analogue of Uranus was ejected.
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Figure 6. Stability despite tidal excitation: A super-Earth-sized
distant planet (Mpl ≈ 12M⊕) leaves the main sequence in an
orbital configuration which causes non-adiabatic evolution, yield-
ing an order of magnitude increase in semimajor axis. Conse-
quently, Galactic tides become strong, producing oscillations in
eccentricity on the order of tenths. The non-uniformity of the
oscillations and jumps in apl indicate effects from perturbations
with the other four planets, whose eccentricities remain under 0.2.
The repeated deep radial incursions of the distant planet near
or within Rmax might provide pathways to pollute the eventual
white dwarf.

Figure 7. The Uranus-like planet is kidnapped, then ejected:
In this unusual case, mass loss triggers scattering between
the Uranus and Neptune analogues and the distant planet
(Mpl ≈ 806M⊕), which harbours a cometary-like orbit with
apl(initial) ≈ 17000 au and qpl(initial) ≈ 222 au. Because Uranus-
analogue’s semimajor axis is increased by two orders of magni-
tude, both the Uranus-like planet and the distant planet are then
strongly affected by Galactic tides (middle panel). Eventually,
soon after the Uranus analogue approaches the orbits of the Nep-
tune, Saturn and Jupiter analogues at a time of about 13 Gyr
(bottom panel), the Uranus-like planet is ejected. A caveat to
this figure is that stellar tidal effects on the Uranus analogue (not
modelled) may have played a role during strong scattering on the
star’s red giant branch phase.
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Figure 8. The Neptune-like planet is kidnapped, but the sys-
tem remains stable: For this rare case, the tip of the asymp-
totic giant branch coincides with a pericentre passage of the dis-
tant planet (bottom panel). During this time, the Neptune and
Uranus analogues are perturbed enough by the slightly larger
distant planet (Mpl ≈ 30M⊕) to force Neptune-analogue’s semi-
major axis to increase by two orders of magnitude and increase
Uranus analogue’s eccentricity to about 0.4. The planet’s already
non-adiabatic value of [apl(initial) ≈ 27000 au] combined with
this scattering event results in a negligible change in apl. Subse-
quently, both the Neptune-like and the distant planet are affected
by Galactic tides and sweep through the Solar system analogue,
achieving qpl < Rmax. However, these actions do not disturb
Uranus, Saturn nor Jupiter, and the system retains all planets
until the end of the simulation.

Some other noteworthy dynamical aspects of this η = 0.5
system are: (i) the change in frequency of the distant planet’s
eccentricity oscillations from the giant branch to white dwarf
phases (due to semimajor axis increase), (ii) the Uranus-like
planet achieving an orbit with a pericentre of nearly 1 au at
the end of the red giant branch phase (but before the asymp-
totic giant branch phase); this fact places a significant caveat
on this figure because tidal interactions with the star (not
modelled) could have retarded the planet’s evolution during
this stage (Schröder & Connon Smith 2008), (iii) Neptune,
Jupiter and Saturn analogues settling into orbits whose sec-
ular eccentricity evolution was well-behaved, compared to
that from any other figures.

• Figure 8 (stable) In this figure,
apl(initial) ≈ 27000 au, a value 59 per cent greater
than the corresponding value in Fig. 7, and the initial
eccentricities in both figures coincidentally differed by just
0.05 per cent. Despite these values, the amplitude of the
eccentricity oscillations due to Galactic tides in this figure
was not as high. The reason is because of the distant
planet’s other orbital parameters: ipl, ωpl, and Ωpl all
played a significant, non-trivial role.

Regardless, the pericentre passages were deep enough to
coincide with the orbits of the four giant planet analogues.
One of these passages occurred close to the tip of the asymp-
totic giant branch (whereas in Fig. 7 a passage occurred
close to the tip of the red giant branch). The resulting scat-
tering event helped contribute to apl’s net negligible change
at the giant branch / white dwarf boundary, and triggered
a semimajor axis increase for the analogue of Neptune to
almost 104 au after a few hundred Myr. Neptune-analogue’s
eccentricity then became strongly affected by Galactic tides.
Subsequently, both the Neptune-like planet and the distant
planet experienced repeated radial incursions – at different
rates – providing a dynamically active and ever-changing en-
vironment potentially conducive to pollution. The Uranus,
Saturn and Jupiter analogues were not bothered by this ac-
tivity, and the system remained stable for the duration of
the simulation.

5.2.2 System ensemble

The primary goal of this study is to determine the stability
boundary: for what mass and orbital parameters of a distant
planet will instability occur. Amongst the different poten-
tial combinations of variables to plot, I found that the most
revealing combinations are those seen in Fig. 9. The figure
reveals the following points.

• Any potentially sharp boundary is limited to the blue
triangle in the upper-left plot; in this triangle every system
sampled was stable. Even so, just a few tens of simulations
within that triangle were performed. Otherwise, unstable
and stable simulations appear on all regions of all plots,
showcasing how sensitive the simulation outcome is to all
orbital parameters, including Ωpl, ωpl and Πpl.

The blue triangle makes sense: Although the notion that
smaller values of apl would yield greater stability might seem
counterintuitive, in fact such values guarantee that the mass
loss evolution is adiabatic and that Galactic tides play no
significant role in the dynamics. Also, the greater the value
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of Mpl, the more likely that the distant planet could scatter
off of the other planets and create instability.

• Mass aside, stability is more generally likely to occur
than not when apl(initial) is within a few thousand au, as
indicated by the orange regions. The reason is the same as
above.

• There is no discernable stability dependence on η (for
values between 0.2 and 0.8).

• There is no discernable stability dependence on qpl (for
values between 100 and 400 au).

• There is no discernable stability dependence on ipl (for
values within 20◦ below and above the ecliptic).

Other trends from the ensemble of plots include details
of the instability: 97 per cent of all unstable simulations
featured ejections. The remainder were engulfments (defined
to occur when a planet intersected the star’s Roche radius).
In no case did the Jupiter-like planet become unstable. The
analogues of Saturn, Uranus and Neptune and the distant
planet were either ejected or engulfed 8, 53, 24 and 15 per
cent of the time, respectively. This result makes sense given
that in almost every simulation, the analogue of Uranus was
the least massive planet. Veras et al. (2016a) showed that
scattering amongst unequal-mass planets across all phases
of stellar evolution will preferentially eject the least massive
planet (just as along the main sequence alone).

6 CONCLUSIONS

I demonstrated that a distant planet with an orbital pericen-
tre under 400 au could pose a serious danger to the stabil-
ity of Solar system analogues during a Sun-like star’s giant
branch and white dwarf phases. This statement holds true
for a distant planet which is at least as massive as Jupiter
and harbours a semimajor axis beyond about 300 au, or for
a super-Earth when its semimajor axis exceeds about 3000
au. The driver for the instability is a combination of Galac-
tic tides and stellar mass loss, which together or separately
may induce close encounters amongst the five planets, with
the distant planet always representing the trigger.

These results have implications for both the Solar sys-
tem and for extrasolar systems. The existence of a trans-
Neptunian planet could eventually eliminate (likely through
ejection) at least one of the giant planets (most likely
Uranus, then Neptune) and rearrange the others, but only if
this “extra” planet is massive enough, distant enough and its
orbit is appropriately oriented with respect to the Galactic
plane and the existing giants. This planet may represent the
purported Planet Nine, a hidden other planet, or a planet
that will be captured later during the Sun’s main sequence
evolution. Because the Sun will become a white dwarf and
contain strewn-about debris from a destroyed asteroid belt
(Veras et al. 2014a) plus a charred Mars and perhaps some
liberated moons (Payne et al. 2016a,b), an ample reservoir
of extant material in the inner Solar system would be avail-
able to be perturbed into the Solar white dwarf, “polluting”
it.

The consequences for other planetary systems are pro-
found. Multiple planets beyond about 5 au (such as ana-
logues of Jupiter, Saturn, Uranus and Neptune) may be
common, but are so far unfortunately effectively hidden from

detection by Doppler radial velocity and transit photome-
try techniques, the two most successful planet-finding tech-
niques. If more distant, trans-Neptunian-like planets are also
common, then the ingredients may exist to regularly gen-
erate instability and a frequently-changing dynamical envi-
ronment during white dwarf phases of evolution. Such move-
ment could provide a natural way to perturb inner system
debris into white dwarfs at a variety of white dwarf ages and
rates, helping to explain current observations.
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Petrovich C., Muñoz D. J. 2016, Submitted to ApJ,
arXiv:1607.04891

Portegies Zwart S. 2013, MNRAS, 429, L45
Pu B., Wu Y. 2015, ApJ, 807, 44
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