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FRACTIONAL BROWNIAN MOTION WITH HURST INDEX H = 0
AND THE GAUSSIAN UNITARY ENSEMBLE

BY Y. V. FYODOROV1, B. A. KHORUZHENKO AND N. J. SIMM1

Queen Mary University of London

The goal of this paper is to establish a relation between characteristic
polynomials of N × N GUE random matrices H as N → ∞, and Gaussian
processes with logarithmic correlations. We introduce a regularized version
of fractional Brownian motion with zero Hurst index, which is a Gaussian
process with stationary increments and logarithmic increment structure. Then
we prove that this process appears as a limit of DN(z) = − log |det(H− zI )|
on mesoscopic scales as N → ∞. By employing a Fourier integral represen-
tation, we use this to prove a continuous analogue of a result by Diaconis
and Shahshahani [J. Appl. Probab. 31A (1994) 49–62]. On the macroscopic
scale, DN(x) gives rise to yet another type of Gaussian process with loga-
rithmic correlations. We give an explicit construction of the latter in terms of
a Chebyshev–Fourier random series.

1. Introduction. Suppose that H is a random Hermitian matrix of size N ×
N taken from the Gaussian Unitary Ensemble (GUE), with ensemble distribution
given by the measure

Const. exp
[−2N Tr

(
H2)] N∏

j=1

dHjj

∏
1≤j<k≤N

d ReHjkd ImHjk.(1.1)

It is well known that in the limit of infinite matrix dimensions N → ∞, the distri-
bution of the eigenvalues of H is supported on the interval [−1,1] and has density
2
π

√
1 − x2 there. This is known as Wigner’s semicircle law; see, for example, [43]

and [1] for precise statements. In this paper, we are concerned with the random
process in x defined by the logarithm

DN(x) = − log
∣∣det(H− xI)

∣∣(1.2)

of the characteristic polynomial of H in the limit N → ∞, with x varying in
(−1,1). The quantity DN(x) is a particular case of linear eigenvalue statistics
XN(f ) = ∑N

k=1 f (xk), where x1, . . . , xN are the eigenvalues of H. It is well
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known that for suitably regular test functions f , XN(f ) is asymptotically nor-
mal as N → ∞ with variance σ 2(f ) = 1

4
∑∞

k=1 kck(f )2, where ck(f ) are the
Chebyshev–Fourier coefficients:

ck(f ) = 2

π

∫ 1

−1

f (u)Tk(u)√
1 − u2

du, Tk(u) = cos
(
k arccos(u)

)
.(1.3)

In fact, the asymptotic normality of XN(f ) for regular f has been established for a
variety of random matrix ensembles; see, for example, [31, 38, 43] and references
therein.

Since x lies in the bulk of the eigenvalue distribution, our test function, f (u) =
log |u − x| is unbounded. Its Chebyshev–Fourier coefficients are proportional to
1/k, so that σ 2(f ) = ∞ and it is then natural to consider normalizing DN(x) be-
fore taking the limit N → ∞. Indeed, for any fixed x ∈ (−1,1) the variance of
DN(x) grows with N like 1

2 logN , and for any finite number of distinct points
x1, . . . , xm in (−1,1) the random vector (DN(x1), . . . ,DN(xm))/(1

2 logN)1/2

converges in distribution, after centering, to a collection of m independent stan-
dard Gaussians as N → ∞. This can be inferred from the asymptotic identity due
to Krasovsky [35]:

E
{
e−∑m

k=1 αkDN(xk)
}=

m∏
k=1

[
C

(
αk

2

)(
1 − x2

k

)α2
k /8

Nα2
k /4eαkN(2x2

k −1−2 log(2))/2
]

(1.4)

× ∏
1≤ν<μ≤m

(
2|xν − xμ|)−αναμ/2

(
1 + O

(
logN

N

))
,

where C(α) = 22α2
G(α + 1)2/G(2α + 1) and G(z) is the Barnes G-function. The

most salient feature of the asymptotics in (1.4) is the product of differences on the
second line, which when rewritten in the form

exp
[
− ∑

1≤ν<μ≤m

αναμ

2
log
∣∣2(xν − xμ)

∣∣],(1.5)

is suggestive of the existence of a logarithmic covariance structure in the Gaussian
process DN(x). However, this term is of sub-leading order to the variance term.
Clearly then, the normalization of the process (1.2) comes at a price, because the
nontrivial covariance structure implied by (1.5) is too small to survive the limit
N → ∞.

This motivates the following question. How can we “regularize” the pro-
cess (1.2) so that it has a well-defined limit that “feels” the covariance structure
implied by (1.5)? Hughes, Keating and O’Connell [30] answered this question
in the context of the Circular Unitary Ensemble (Haar unitary matrices). Em-
ploying convergence in functional spaces instead of point-wise convergence, they
proved that the logarithm VN(θ) = −2 log |pN(θ)| of the characteristic polynomial
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pN(θ) = det (I − Ue−iθ ) of Haar unitary matrices U converges as N → ∞ to the
stochastic process represented by the Fourier series

V (θ) =
∞∑

n=1

1√
n

(
vne

inθ + vne
−inθ ).(1.6)

Here, the coefficients vn, vn are independent standard complex Gaussians,
E{vnvn} = 1, and the convergence of the series is understood in the sense of dis-
tributions in a suitable Sobolev space. This process has a logarithmic singularity
in the covariance structure: E{V (θ1)V (θ2)} = −2 log |eiθ1 − eiθ2 |.

At this point, it is appropriate to mention that random processes and fields with
logarithmic covariance structure appear with astonishing regularity in physics and
also engineering applications; see, for example, [12] and more recently [26]. Those
objects are intimately related to multi-fractal cascades emerging in turbulence, and
from that angle attracted considerable mathematical interest within the last decade;
see, for example, [3] and [4]. In fact, closely related mathematical objects appear
in the so-called “multiplicative chaos” construction going back to Kahane’s work
[32]; also see [44] and references therein for recent research in that direction which
was motivated, in particular, by Quantum Gravity applications. In two spatial di-
mensions, the most famous example of the random field of that type is the two-
dimensional Gaussian Free Field [48]. A regularized version of this field appeared
in a nontrivial way in the work of Rider and Virág [45], who showed that it de-
scribes the limiting law of the log-modulus of characteristic polynomials in the
Ginibre ensemble. The Gaussian Free Field also appeared more recently as the
limiting distribution of the eigenvalue counting function in general β-Jacobi en-
sembles and their principal sub-minors [7]. As for the one-dimensional processes
with logarithmic correlations, they are known in natural sciences under the gen-
eral name of 1/f noises (see Section 2 in [26] for some general references) since,
in the spectral representation, the Fourier transform of the covariance or structure
function, interpreted as a “power” of the signal, is inversely proportional to the
Fourier variable (i.e., the “frequency” f ). The random process V (θ) is, arguably,
the simplest time-periodic stationary version of 1/f noise. It was found to play an
important role in the construction of conformally invariant planar random curves
[2] and statistical mechanics of disordered systems [23]. We note in passing that
from a different angle, discrete sequences with 1/f properties were considered
heuristically in the physics literature; see, for example, [21] and [39].

The motivation for the work in [30] came from number theory, as for large
N , pN(θ) provides a good model for describing statistics of the values of the
Riemann-zeta function high up the critical line [33]. The established relation of
pN(θ) to V (θ) turned out to be fruitful. It allowed one to put forward nontrivial
conjectures about statistics of extreme and high values of characteristic polynomi-
als of Haar unitary matrices emerging as N → ∞, and eventually for the Riemann-
zeta function [24, 25].
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The main goal of this paper is to investigate further the relation between 1/f -
noises and the characteristic polynomials of random matrices in the limit N → ∞.
Significantly extending the picture found in [30], we will show that the limiting
process depends on the spectral scale at which one allows the argument x of the
characteristic polynomial det(H−xI) to vary. To this end, let us remind the reader
that, as is well known in random matrix theory (see, e.g., [43]), there exist three
natural scales in the spectra of large random matrices. One, known as the global, or
macroscopic scale is set for the GUE by the width of the support of the semicircle
law and, in the normalization chosen in the present paper [see (1.1)] remains of the
order of unity as N → ∞. Second, known as the local, or microscopic scale is set
by the typical separation between neighbouring eigenvalues and is, in the chosen
normalization, of order 1/N for large N . Finally, the third scale which is called
mesoscopic can be defined as intermediate between those two.

Deferring precise statements to the next section, now we will outline the two
instances of 1/f noise that emerge in the limit N → ∞ for the GUE matrices. On
the macroscopic scale, by adapting the arguments of [30] to our setting, we prove
that, as N → ∞, the process {DN(x) : x ∈ (−1,1)} converges, after centering, to
the (aperiodic) 1/f noise given by the random Chebyshev–Fourier series

F(x) =
∞∑

n=1

1√
n
anTn(x), x ∈ (−1,1),(1.7)

where an, n = 1,2 . . . is a sequence of independent standard real Gaussians. As
with the Fourier series in (1.6), the convergence in (1.7) has to be understood in
the sense of distributions in a suitable Sobolev space. The covariance structure
associated with the generalized process (1.7) is given by an integral operator with
kernel E{F(x)F (y)} = −1

2 log(2|x − y|).
The problem of finding a suitable model to describe the statistical properties of

the characteristic polynomials of random matrices on the mesoscopic rather than
macroscopic scale turned out to be much more challenging and is the main focus
of the present paper. Our main finding is the emergence of fractional Brownian
motion with Hurst index H = 0 in this context. To describe the latter, we recall
that the conventional fractional Brownian motion (fBm) is a zero-mean Gaussian
process BH(t), BH(0) = 0, with stationary increments and the covariance structure
given by

E
{[

BH(t1) − BH(t2)
]2}= σ 2|t1 − t2|2H ,(1.8)

where H ∈ (0,1) and σ 2 > 0 are two parameters. Although first introduced by Kol-
mogorov in 1940, fBm became very popular after the seminal work of Mandelbrot
and van Ness [40] and proved to be a very rich mathematical object of high utility;
see, for example, articles by M. Taqqu and by G. Molchan in the book [16] for an
introduction and further references and applications. The utility of fBm is related to

its properties of being self-similar, that is, {BH(at) : t ∈ R} d= aH {BH(t) : t ∈ R}
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for any a > 0, and having stationary increments. These two properties character-
ize the corresponding Gaussian process uniquely; see, for example, [16]. In the
context of self-similarity, parameter H is also known as the Hurst index H or the
scaling exponent.

For H = 1/2, the fBm B1/2(t) is proportional to the usual Brownian motion
(Wiener process). We will denote the latter simply as B(t), with B(dt) being the
corresponding white noise measure, E{B(dt)} = 0 and E{B(dt)B(dt ′)} = δ(t −
t ′) dt dt ′, where we have chosen the normalization corresponding to the choice of
σ = 1 in (1.8).

It is apparent from (1.8) that the naive limit H = 0 of BH(t) is not well defined.
To overcome this problem, the first author proposed some time ago to regularize
the fBm in the limit H → 0 as follows. Consider the stochastic Fourier integral

B
(η)
H (t) = 1

2
√

2

∫ ∞
0

e−ηs

s1/2+H

[(
e−its − 1

)
Bc(ds) + (eits − 1

)
Bc(ds)

]
,

(1.9)
η ≥ 0,

where Bc(t) = BR(t) + iBI (t) and BR(t) and BI (t) are two independent copies
of the Brownian motion. For H ∈ (0,1) the integral in (1.9) is well defined for all
η ≥ 0 and represents a zero-mean Gaussian process with stationary increments and
covariance E{[B(η)

H (t1) − B
(η)
H (t2)]2} = 2φ

(η)
H (t1 − t2), where

φ
(η)
H (t) = 1

2

∫ ∞
0

e−2ηs

s1+2H

(
1 − cos (ts)

)
ds

(1.10)

= 1

4H
�(1 − 2H)

[(
4η2 + t2)H cos

(
2H arctan

t

2η

)
− (2η)2H

]
.

For fixed H ∈ (0,1), limη→0 φ
(η)
H (t) = 1

4H
�(1 − 2H) cos(πH)t2H , where �(z)

is the Euler gamma-function. Hence, B
(0)
H (t) is fBm. This also follows from the

so-called harmonizable representation of the fBm, which is precisely the integral
on the RHS in (1.9) when η = 0; see Proposition 9.2 in [16], or equation (7.16)
in [46]. On the other hand, for any fixed η > 0, the limit of H = 0 in (1.9) is well
defined, and

lim
H↓0

φ
(η)
H (t) = 1

4
log
(

t2

4η2 + 1
)
.(1.11)

We consider the resulting limiting process

B
(η)
0 (τ ) = 1

2
√

2

∫ ∞
0

e−ηs

√
s

{[
e−iτ s − 1

]
Bc(ds) + [eiτs − 1

]
Bc(ds)

}
(1.12)

as the most natural extension of the standard fBm to the case of zero Hurst index
H = 0. This process can also be defined axiomatically.
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DEFINITION. The regularized fBm with Hurst index H = 0 is a real-valued
stochastic process {B(η)

0 (τ ), τ ∈ R} with the following properties:

(i) B
(η)
0 (t) is a Gaussian process with mean 0 and B

(η)
0 (0) = 0,

(ii) Var{B(η)
0 (t)} = 1

2 log( t2

4η2 + 1) for some η > 0,

(iii) B
(η)
0 (t) has stationary increments.

The increment structure of B
(η)
0 (t) depends logarithmically on the time separa-

tion:

E
{[

B
(η)
0 (t1) − B

(η)
0 (t2)

]2}= 1

2
log
[
(t1 − t2)

2

4η2 + 1
]
,(1.13)

and hence the regularized fBm with H = 0 defines a bona fide version of the 1/f

noise with stationary increments.2 Therefore, the stochastic process B
(η)
0 (τ ) is of

interest in its own right and deserves further study. We do not pursue this direction
in the present paper except for noting for future reference that the regularized fBm
has continuous sample paths.

Note. After posting the initial version of this paper to the arXiv, we learned of
the work [52], where a regularization of fBm essentially equivalent to our B

(η)
H (t)

was introduced for H > 0. Note that neither the limit H → 0 nor the connection
with random matrices were identified or investigated there.

2. Main results.

2.1. Macroscopic regime. We start with the simpler case of the macroscopic
scale where we extend the analogous construction of [30] from unitary to Her-
mitian matrices. The relation between characteristic polynomials of Haar unitary
matrices and the random Fourier series in (1.6) can be understood by expanding
log |pN(θ)| into the Fourier series

VN(θ) = −2 log
∣∣det
(
I − Ue−iθ )∣∣= ∞∑

n=1

1√
n

(
vn,Neinθ + vn,Ne−inθ ),(2.1)

where vn,N = 1√
n

Tr(U−n). Now, the coefficients vn,N converge in distribution as
N → ∞ to independent standard complex Gaussians. This is a result due to Dia-
conis and Shahshahani [15] from which it can be inferred [30] that (1.6) represents
the limit of VN(θ) in a suitable functional space.

An analogue of the Diaconis–Shahshahani result for the N × N GUE matrices
H was obtained by Johansson [31]. He proved that for any fixed m the vector

2Compare (1.12) with a stationary version of fBm with H = 0 proposed in equation (16) of [47].
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( 2√
n

TrTn(H))mn=1, with Tn(x) = cos(n arccos(x)) being Chebyshev polynomials,
converges, after centering, to a collection of independent standard Gaussians in the
limit N → ∞. In view of the handy identity,

− log
(
2|x − y|)= ∞∑

n=1

2

n
Tn(x)Tn(y), x, y ∈ [−1,1], x 
= y,(2.2)

the desired analogue of Fourier expansion is an expansion in terms of Chebyshev
polynomials,

DN(x) = − log
∣∣det(H− xI)

∣∣= ∞∑
n=1

an,N√
n

Tn(x) + N log 2 + RN(x),

(2.3)

an,N = 2√
n

TrTn(H),

where the error term RN(x) is due to the eigenvalues of H outside the support
[−1,1] of the semicircle law. Since the probability of finding such an eigenvalue
vanishes fast as N → ∞, it can be shown that the error term does not contribute in
the limit (see the proof of Proposition 5.2 for a more precise statement). One then
concludes that the natural limit of DN(x), after centering, is given by the random
Chebyshev–Fourier series (1.7).

We will make this picture mathematically rigorous by working in a suitable
functional space. First, let us assign a formal meaning to the series in (1.7) and the
corresponding stochastic process. Consider the space L2 = L2((−1,1),μ(dx))

with μ(dx) = dx/
√

1 − x2. The Chebyshev polynomials form an orthogonal ba-
sis in this space, with cn(f ) (1.3) being the coefficients of the corresponding
Chebyshev–Fourier series. For a > 0, consider the space V (a) of functions f in
L2 such that

∑∞
n=0 |cn(f )|2(1 + n2)a < ∞. This is a Hilbert space with the inner

product

〈f,g〉a =
∞∑

n=0

cn(f )cn(g)
(
1 + n2)a.

Its dual, V (−a), is the Hilbert space of generalised functions F(x) =∑∞
n=0 cnTn(x)

with ‖F‖2−a =∑∞
n=0 |cn|2(1 + n2)−a < ∞. Setting here c0 = 0 and cn = an/

√
n

with an, n ≥ 1, being independent standard Gaussians, one obtains F(x) of (1.7).
In such case, ‖F‖2−a is finite with probability one. This defines F(x) in (1.7) as
a generalised random function (stochastic process) which acts on a test function
f ∈ V (a) in the usual way,

F [f ] =
∞∑

n=1

an√
n
cn(f ) = 〈f,F 〉0.
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This process is Gaussian with zero mean. Its covariance, E{F [f ]F [g]}, is given
by

E
{
F [f ]F [g]}=

∞∑
n=1

1

n

∫ 1

−1

∫ 1

−1
f (x)g(y)Tn(x)Tn(y)μ(dx)μ(dy).(2.4)

It can be shown (see, e.g., Lemma 3.1 in [27]) that the order of summation and
integration in (2.4) can be interchanged, and in view of (2.2), one obtains the co-
variance operator in closed form:

E
{
F [f ]F [g]}= −

∫ 1

−1

∫ 1

−1

1

2
log
(
2|x −y|)f (x)g(y)μ(dx)μ(dy), f, g ∈ V (a).

We are now in a position to formulate our result. Consider the centered process:

D̃N(x) = − log
∣∣det(H− xI)

∣∣+E
{
log
∣∣det(H− xI)

∣∣}, x ∈ (−1,1).(2.5)

Since log |x| is locally integrable, D̃N ∈ V (−a) for every N .

THEOREM 2.1. For every a > 1/2, D̃N(x) ⇒ F(x) in V (−a) as N → ∞,
where F(x) given by (1.7).

Our proof of this theorem in Section 5 involves solving at least two technical
problems that did not arise in [30]. First, when proving convergence of the finite-
dimensional distributions of D̃N(x), we are faced with a test function possessing
square-root singularities at the edges of the spectrum, arising from the Chebyshev–
Fourier coefficients of the logarithm outside [−1,1]; see Lemma 5.1. Most bounds
and concentration inequalities for linear statistics rely on the test function having
at least C1(R) regularity (see, e.g., [1, 38, 43]), while ours is only C1/2(R) (even
the recent extension [50] of such bounds to test functions from the C1/2+ε(R) class
does not suffice here). Making use of fine asymptotics of orthogonal polynomials
and Airy functions, we prove that this linear statistic converges to zero, a problem
that did not appear in [30].

Second, when proving tightness of (D̃N(x))∞N=1 we need additional control over
the variance of Tr(Tn(H)) for both large N and large n. In [30], the analogous
quantity, namely Var{Tr(U−n)}, was known explicitly due to exact results for the
unitary group obtained by Diaconis and Shashahani [15]. In contrast, for the GUE
case, Var{Tr(Tn(H))} and related quantities need to be estimated asymptotically
as N → ∞, uniformly in the degree n of the Chebyshev polynomial.

2.2. Mesoscopic regime. Now we proceed to our next task of extending the
relation between characteristic polynomials of random matrices and 1/f -noises to
the mesoscopic scale. In this case, instead of working directly with a generalised
stochastic process, we find it more convenient to work with their regularized ver-
sions.
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To formulate our results more precisely, fix a parameter η > 0 and consider the

following sequence of stochastic processes {W(η)
N (τ ) : τ ∈ R}, N = 1,2, . . . :

W
(η)
N (τ ) = − log

∣∣∣∣det
[
H−

(
x0 − τ

dN

)
I − iη

dN

I

]∣∣∣∣
(2.6)

+ log
∣∣∣∣det
[
H− x0I − iη

dN

I

]∣∣∣∣.
Note that W

(η)
N (τ ) also depends implicitly on three additional parameters: η > 0,

x0 ∈ (−1,1) and dN > 0; their importance is explained below, though for ease of
notation we will not emphasize the dependence on x0 when referring to W

(η)
N (τ ).

We use the parameter dN > 0 to zoom into the appropriate spectral scale of H
centered around a point x0 inside the bulk of the limiting spectrum of the GUE
matrices H. On the macroscopic scale dN = 1, on the microscopic scale dN = N

whilst on the mesoscopic scale dN is in between these two extremes, 1 � dN � N .
The parameter η is an arbitrary but fixed positive real number, introduced to regu-
larize the logarithmic singularity at zero.

Our main result shows that in the mesoscopic limiting regime where

dN → ∞ and dN = o(N/ logN) as N → ∞(2.7)

the stochastic process W
(η)
N (τ ) converges, after centering, to B

(η)
0 (τ ); the regular-

ized fractional Brownian motion with Hurst index H = 0. For finite-dimensional
distributions this is the content of the following theorem. Let

W̃
(η)
N (τ ) = W

(η)
N (τ ) −E

{
W

(η)
N (τ )

}
.

THEOREM 2.2. Consider GUE random matrices H in (1.1). Assume that the
reference point x0 is in the bulk of the limiting spectrum of H, x0 ∈ (−1,1), and
the scaling factor dN satisfies (2.7). Then for any fixed η > 0 and any finite number
of times (τ1, . . . , τm) ∈ R

m we have the convergence in distribution(
W̃

(η)
N (τ1), . . . , W̃

(η)
N (τm)

) d�⇒ (
B

(η)
0 (τ1), . . . ,B

(η)
0 (τm)

)
as N → ∞.(2.8)

We prove this theorem in Section 3 by adopting Krasovsky’s derivation of iden-
tity (1.4) to the mesoscopic scale. The characteristic function of the random vector
on the LHS in (2.8) is given by a Hankel determinant whose symbol possesses
Fisher–Hartwig singularities. The Riemann–Hilbert problem provides a power-
ful tool to obtain asymptotics of such Hankel determinants [14, 35–37]. On the
mesoscopic scale the Fisher–Hartwig singularities [these are located at points
x0 + (τk + iη)/dN ] are all at distance of order 1/dN from the point x0 ∈ (−1,1).
Because of this, the system of contours defining the Riemann–Hilbert problem
(inside of which the symbol is analytic) close onto the real line as N → ∞. In
this regime, the estimates become more delicate. In contrast, in the macroscopic
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regime the Fisher–Hartwig singularities are real and spaced out and one does not
need to consider the case of shrinking contours.

Here, it is appropriate to mention that linear eigenvalue statistics on the meso-
scopic scale are more challenging to study compared to the macroscopic scale.
Known results are sparse and mostly limited to regular test functions with com-
pact support; see [9, 10, 49] and also more recent works [8, 11, 17, 19, 20]. One
reason is that the majority of concentration inequalities involving derivatives, such
as, for example, Lipschitz norm [1] or the Poincaré inequality [1, 43] that proved
to be so useful on the macroscopic scale, get a factor of dN in the mesoscopic
case, and hence, no longer apply without appropriate modification. In this context,
the Riemann–Hilbert problem proves to be a powerful tool for estimating the error
terms down to very small scales (2.7).

One can extend Theorem 2.2 to an infinite-dimensional setting with a little bit
more work. Let L2[a, b] denote the Hilbert space of square integrable functions
on [a, b] with the inner product

〈f,g〉2 =
∫ b

a
f (τ )g(τ ) dτ.(2.9)

Since the sample paths of W̃
(η)
N are continuous, ‖W̃ (η)

N ‖2 < ∞. Therefore, both

W
(η)
N and its N → ∞ limit B

(η)
0 can be viewed as random elements in the space

L2[a, b]. We have the following.

THEOREM 2.3. Let −∞ < a < b < ∞. Then on mesoscopic scales (2.7), the
process W̃

(η)
N converges weakly (in the sense of probability law) to B

(η)
0 in L2[a, b]

as N → ∞. Furthermore, for every h ∈ L2[a, b], we have the convergence in dis-
tribution ∫ b

a
h(τ )W̃

(η)
N (τ ) dτ

d�⇒
∫ b

a
h(τ )B

(η)
0 (τ ) dτ, N → ∞.(2.10)

This result follows from Theorem 3 in [28], which allows one to deduce weak
convergence for general processes in L2[a, b] under the hypothesis that:

(i) The finite-dimensional distributions of W̃
(η)
N converge to those of B

(η)
0 as

N → ∞.
(ii) For some C > 0, the bound E{|W̃ (η)

N (τ )|2} ≤ C holds for all N and τ ∈
[a, b] and

lim
N→∞E

{∣∣W̃ (η)
N (τ )

∣∣2}= E
{∣∣B(η)

0 (τ )
∣∣2}.(2.11)

Note that item (i) is a restatement of Theorem 2.2, while item (ii) will be shown to
follow from our proof of Theorem 2.2.

Having established the relation between characteristic polynomials of GUE ma-
trices and 1/f noise on the mesoscopic scale, let us revisit the series expansions
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of the macroscopic scale discussed at length in Section 2.1. Instead of expanding

the process W
(η)
N (τ ) in a Chebyshev–Fourier series and applying the Diaconis–

Shahshahani result, in the mesoscopic regime it comes in handy to expand W
(η)
N (τ )

as a Fourier integral.
To this end, we now provide a suitable Fourier-integral representation for

W
(η)
N (τ ). Such a representation can be derived by making use of the identity (see,

e.g., equation (7.89) in [14])

1

2
log
(

t2

ε2 + 1
)

=
∫ ∞

0

e−εs

s

[
1 − cos(ts)

]
ds, ε > 0.(2.12)

It follows from (2.12) that

W
(η)
N (τ ) = 1

2

∫ ∞
0

e−ηs

√
s

{[
e−iτ s − 1

]
bN(s) + [eiτs − 1

]
bN(s)

}
ds,(2.13)

where

bN(s) = 1√
s

Tr e−isdN (H−x0I ).(2.14)

The identity (2.13) can be thought of as the Fourier integral version of the Fourier
series (2.1). Furthermore, comparison of the harmonizable representation (1.12)
for B

(η)
0 (t) [which can be thought as a natural integral analogue of the series ex-

pansions in (1.6) and (2.13)], suggests that the Fourier coefficients bN(s) converge
in the mesoscopic regime to Gaussian white noise. Such a statement may be in-
terpreted as a continuous analogue of the Diaconis–Shahshahani result [15] and is
the content of our next theorem.

Let C∞
0 (R+) be the space of infinitely many times differentiable functions with

compact support on R+ = {x ∈ R : x > 0}. Denote

cN(ξ) =
∫ ∞

0
ξ(s)bN(s) ds.(2.15)

THEOREM 2.4. Consider the mesoscopic regime where dN = Nα with any
α ∈ (0,1). Then for every ξ ∈ C∞

0 (R+)

lim
N→∞E

{
e−i Re cN (ξ)}= exp

(
−1

4

∫ ∞
0

∣∣ξ(s)
∣∣2 ds

)
.(2.16)

Furthermore, for any finite number of ξj ∈ C∞
0 (R+), the vector (cN(ξ1), . . . ,

cN(ξm)) converges in distribution, as N → ∞, to the centered complex Gaus-
sian vector Z ∈ R

m having relation matrix E(ZZT) = 0 and covariance matrix
� = E(ZZ†) given by

�j,k =
∫ ∞

0
ξj (s)ξk(s) ds, j, k = 1, . . . ,m.(2.17)
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PROOF. See Section 4.

REMARK 2.5. As is often the case in random matrix theory, linear eigenvalue
statistics such as (2.15) have variance of the order of unity due to strong correla-
tions between the eigenvalues and converge to a Gaussian random variable after
centering. One would typically expect that E{cN(ξ)} = O(N/dN) as N → ∞. In-
stead, we find (see Section 4) that the smoothness of ξ and the rapid oscillations
in (2.14) imply E{cN(ξ)} = O(d−1

N ) as N → ∞, and thus, centering is not really
needed.

The rest of the paper is organized as follows. Section 3 is devoted to the proof
of Theorem 2.2. To do this, we begin by adapting the differential identity used
in [35] and then outline the relevant asymptotic analysis of the Riemann–Hilbert
problem, leaving estimation of all error terms to Appendix A. Section 4 is devoted
to proving the convergence of the Fourier coefficients bN(s) to the white noise. In
the final section, we focus on the macroscopic scale and prove Theorem 2.1.

3. Mesoscopic regime. In this section, we prove Theorem 2.2. Let us fix
m − 1 distinct times τ1, . . . , τm−1, m ≥ 2, and consider the characteristic function

ϕN(α1, . . . , αm−1) = E

{
exp

(
m−1∑
k=1

αkW
(η)
N (τk)

)}

of the random vector (W
(η)
N (τ1), . . . ,W

(η)
N (τm−1)). Our strategy will be to prove

that ϕN converges to the characteristic function of the multivariate Gaussian dis-
tribution in the limit N → ∞. Theorem 2.2 will then follow by inspection of the
quadratic form in the exponential.

To begin with, we will write the characteristic function ϕN as the partition func-
tion of a matrix model with Gaussian weight, modified by the singularities

μk = √
2N

(
x0 + τk + iη

dN

)
, η > 0,(3.1)

where k = 1, . . . ,m and τm ≡ 0. A standard calculation (changing variables of
integration from H to the eigenvalues and eigenvectors of H and integrating out
the eigenvectors; see, e.g., [43]) yields

ϕN(α1, . . . , αm−1) = 1

C

∫
RN

N∏
j=1

w(xj )
∏

1≤i<j≤N

(xi − xj )
2 dx1 · · ·dxN,(3.2)

where the weight function is given by

w(x) = e−x2
m∏

k=1

|x − μk|αk , Im(μk) 
= 0, k = 1, . . . ,m(3.3)
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and αm = −α1 −· · ·−αm−1. Note the discrepancy with the measure (1.1); for con-
venience we have changed variables xj → xj/

√
2N , the resulting multiplicative

constants cancelling each other out.
Our calculation will be guided by that of Krasovsky [35] who treated a sim-

ilar partition function, but only for the macroscopic regime dN = 1 and η = 0.
In that case, the weight function acquires Fisher–Hartwig singularities inside the
spectral interval (−1,1). In contrast, our weight (3.3) possesses singularities in
the complex plane that merge toward the point x0 on the spectral axis at rate dN as
N → ∞. Since this merging process occurs sufficiently slowly [i.e., dN = o(N)],
these singularities will not play a crucial role in the calculation.

A special feature of the weight function (3.3) is the cyclic condition
m∑

k=1

αk = 0.(3.4)

This holds because the second term in (2.6) is independent of τ . Our first step is
to express the partition function (3.2) in a form suitable for the computation of
asymptotics.

3.1. Orthogonal polynomials and differential identity. The multiple integral
in (3.2) is intimately connected to the theory of orthogonal polynomials. Let

pn(x) = χn

(
xn + βnx

n−1 + γnx
n−2 + · · ·), n = 0,1,2, . . . ,

be orthogonal polynomials with respect to weight function w(x):
∫∞
−∞ pm(x) ×

pn(x)w(x) dx = δm,n. When the αj ’s are real and each αj > −1/2 we have
w(x) ≥ 0 and the existence of the polynomials pn(x) is well known [14]. Then, as
in [35], the coefficients χn,βn and γn and the polynomials pn(x) are defined for
any {αj }mj=1 ∈ C

m via analytic continuation, provided each Re(αj ) > −1/2.
Now, the partition function (3.2) can be written in terms of the coefficients

{χj }Nj=1 (see, e.g., [41])

ϕN(α1, . . . , αm−1) = N !
C

N−1∏
j=0

χ−2
j .(3.5)

Thus, in principle, our problem is reduced to computing the asymptotics of the or-
thogonal polynomials and related quantities with respect to the weight w(x). The
crucial point observed in [35] is that by taking the logarithmic derivative on both
sides of (3.5) with respect to any of the αj ’s, the RHS can be written as a sum in-
volving only O(m) terms, rather than N . To state the resulting differential identity
we also need the following 2 × 2 matrix involving the orthogonal polynomials and
their Cauchy transforms:

Y(z) =

⎛
⎜⎜⎝

χ−1
N pN(z) χ−1

N

∫ ∞
−∞

pN(x)

x − z

w(x)dx

2πi

−2πiχN−1pN−1(z) −χN−1

∫ ∞
−∞

pN−1(x)

x − z
w(x)dx

⎞
⎟⎟⎠ .(3.6)
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LEMMA 3.1. For each k = 1, . . . ,m, let μk in (3.3) be any complex parame-
ters satisfying Im(μk) 
= 0 and define αm+k = αk , μm+k = μk . Denoting by ′ dif-
ferentiation with respect to αj , the following formula holds for any j = 1, . . . ,m:

(logϕN)′ = −N(logχNχN−1)
′ − 2

(
χN−1

χN

)2(
log

χN−1

χN

)′
+ 2
(
γ ′
N − βNβ ′

N

)

+ 1

2

2m∑
k=1

αk

(
Y11(μk)

′Y22(μk) − Y21(μk)
′Y12(μk)(3.7)

+ (logχNχN−1)
′Y11(μk)Y22(μk)

)
.

PROOF. The proof follows from simple modifications of the arguments given
in Section 3 of [35]. In fact, further simplifications occur due to the cyclic condition∑m

k=1 αk = 0 and the fact that the singularities μk have nonzero imaginary part
(k = 1, . . . ,m). �

Note that χN and the coefficients βN and γN can be computed from the rela-
tions:

Y11(z) = zN + βNzN−1 + γNzN−2 + · · · ,
(3.8)

χ2
N−1 = lim

z→∞
iY21(z)

2πzN−1 .

Therefore, our plan will be to compute the asymptotics of Y(z) and then, by mak-
ing use of identities (3.8), evaluate the RHS of (3.7) to the desired accuracy in the
limit as N → ∞. We will find that the error terms in the asymptotics are uniform
in the variables {αk}m−1

k=1 belonging to a compact subset of

� = {(α1, . . . , αm−1)|Re(αk) > −1/2, k = 1, . . . ,m − 1
}
.(3.9)

This uniformity property then allows us to integrate the identity (3.7) recur-
sively with respect to {αk}m−1

k=1 and obtain asymptotics for the characteristic func-
tion (3.2). The asymptotics of Y(z) in the limit N → ∞ can be obtained by using
an appropriate Riemann–Hilbert problem. Although this technique is nowadays
standard, for the reader’s convenience we will briefly summarise the necessary
ingredients of the corresponding calculation.

3.2. The Riemann–Hilbert problem for Y(z). The relationship between or-
thogonal polynomials and Riemann–Hilbert problems was established for general
weights in [22] where it was shown that Y(z) solves the following problem:
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1. Y(z) is analytic in C \R.
2. On the real line there is a jump discontinuity

Y+(x) = Y−(x)

(
1 w(x)

0 1

)
, x ∈ R,(3.10)

where Y+(x) and Y−(x) denote the limiting values of Y(z) as z approaches the
point x ∈ R from above (+) or below (−).

3. Near z = ∞, we have the following asymptotic behaviour:

Y(z) =
(
I + O

(
1

z

))
zNσ3 .(3.11)

Here, σ3 is the third Pauli matrix and serves as a convenient notational tool. By
definition of the matrix exponential, the notation in (3.11) has the meaning

zNσ3 =
(

zN 0
0 z−N

)
.(3.12)

One can verify directly that Y(z) of (3.6) does indeed solve this Riemann–
Hilbert problem, while the uniqueness of this solution can be deduced from the
observation that detY(z) ≡ 1, in conjunction with the Liouville theorem. Further
details regarding existence and uniqueness of the problem can be found in [14].

In order to obtain asymptotics as N → ∞, we will perform a sequence of trans-
formations to our initial Riemann–Hilbert problem known as the Deift–Zhou steep-
est descent (see, e.g., [14] and [13]). The purpose of these transformations is to
identify a “limiting” problem that can be solved with elementary functions, giving
the leading order asymptotics to Y(z). For the reader’s convenience, we briefly
describe the key points underlying these transformations:

1. The first transformation Y → T normalizes the unsatisfactory asymptotic
behaviour in the third condition, equation (3.11). This comes with the cost that the
entries of the jump matrix for T (z) on the interval (−1,1) are now oscillating in
N and do not have a limit as N → ∞.

2. The second transformation T → S aims to remove these oscillations by split-
ting the contour (−1,1) into lens shaped contours where now the jump matrices
are exponentially close to the identity. For our particular mesoscopic problem, we
need the lenses to pass below the singularities for each k = 1, . . . ,m, so that their
distance from (−1,1) is of order O(d−1

N ) (see Figure 1).
3. Now it turns out that the jump matrices for S tend to the identity as N → ∞,

except on the contour (−1,1). But the jump across (−1,1) is of a special form
that can be solved exactly in terms of elementary functions. This solution, denoted
P∞(z), gives the leading order contribution to the asymptotics in the required re-
gions of the complex plane.

In Section 3.5, we will show that the asymptotics obtained in this way lead
directly to Theorem 2.2. However, to complete the proof, one has to show that the
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FIG. 1. The contour � for the S Riemann–Hilbert problem with m = 3. The crosses depict the 3
singularities and their complex conjugates, of distance O(d−1

N ) from the point x0 ∈ (−1,1). The
lenses �± pass between the real line and the singularities into the points ±1.

conclusion of (3), namely that S(z) ∼ P∞(z) as N → ∞, is really correct. This
may be regarded as the most technical part of the Deift–Zhou method. The main
problem is that although the jump matrix for S(z) converges to that of P∞(z), this
convergence is not uniform near the edges z = ±1. To remedy this, local solutions
known as parametrices have to be constructed near these points, and then matched
to leading order with the so-called outer parametrix P∞(z). These final technical
issues will be addressed in Appendix A.

3.3. T and S transformations of the Riemann–Hilbert problem. The T trans-
formation is performed in the usual way. First, we define the g-function:

g(z) =
∫ 1

−1
log(z − s)ρ(s) ds, z ∈ C \ (−∞,1],(3.13)

where throughout we take the principal branch of the logarithm. Here and below,
ρ(s) = (2/π)

√
1 − s2 denotes the limiting density of eigenvalues. The Y → T

transformation is then given by the formula

Y(z
√

2N) = (2N)Nσ3eNlσ3/2T (z)eN(g(z)−l/2)σ3,(3.14)

where l = −1 − 2 log(2). Notice that we have rescaled the Riemann–Hilbert prob-
lem so that the singularities of the corresponding weight function are of order O(1)

as N → ∞, so that from now on we deal with singularities of the form

zk = μk√
2N

= x0 + τk + iη

dN

.(3.15)

The resulting jump matrix for T (z) can now be computed from the standard
properties of the g-function:

g+(x) + g−(x) − 2x2 − l = 0, x ∈ (−1,1),

g+(x) + g−(x) − 2x2 − l < 0, x ∈ R \ [−1,1],(3.16)

g+(x) − g−(x) =

⎧⎪⎪⎨
⎪⎪⎩

2πi, x ≤ −1,

2πi

∫ 1

x
ρ(s) ds, x ∈ [−1,1],

0, x ≥ 1.
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In addition, since g(z) ∼ log(z) as z → ∞, we have eNg(z)σ3 ∼ zNσ3 . Thus, one
easily verifies that T (z) is normalized at z = ∞. We now have the following
Riemann–Hilbert problem for T (z):

1. T (z) is analytic in C \R.
2. We have the jump condition

T+(x) = T−(x)

⎛
⎜⎝ e−N(g+(x)−g−(x))

m∏
k=1

|x − zk|αk

0 eN(g+(x)−g−(x))

⎞
⎟⎠ ,

(3.17)
x ∈ (−1,1),

T+(x) = T−(x)

⎛
⎜⎝1

m∏
k=1

|x − zk|αkeN(g+(x)+g−(x)−2x2−l)

0 1

⎞
⎟⎠ ,

(3.18)
x ∈ R \ [−1,1].

3. T (z) = I + O(z−1) as z → ∞.

We see that although the problem for T (z) is normalized at ∞; the jump ma-
trix (3.17) on (−1,1) has oscillatory diagonal entries that not have a limit as
N → ∞. The Deift–Zhou steepest descent procedure remedies this situation by
splitting the contour (−1,1) into “lenses” in the complex plane (see Figure 1),
transforming the unwanted oscillations into exponentially decaying matrix ele-
ments.

This procedure is facilitated by the factorization of the jump matrix on (−1,1):(
e−Nh(x) ω(x)

0 eNh(x)

)

=
(

1 0
ω(x)−1eNh(x) 1

)(
0 ω(x)−1

−ω(x)−1 0

)(
1 0

ω(x)−1e−Nh(x) 1

)
,

where

ω(x) =
m∏

k=1

|x − zk|αk ,(3.19)

h(x) = g+(x) − g−(x) = −2πi

∫ x

1
ρ(y) dy.(3.20)

The latter objects (3.19) and (3.20) possess analytic continuations into the lens
shaped regions depicted in Figure 1. For the weight ω(x), we have

ω(z) =
m−1∏
k=1

[
(z − x0 − τk/dN)2 + (η/dN)2

(z − x0)2 + (η/dN)2

]αk/2

,(3.21)
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where throughout we take the principal branch of the roots. This function is ana-
lytic for all z such that the inequality(

Re(z) − Re(zk)
)2

>
(
Im(zk)

)2 − (Im(z)
)2(3.22)

is satisfied for every k = 1, . . . ,m. One easily verifies that for x0 ∈ (−1+ δ,1− δ),
the inequality (3.22) holds for any z chosen from the interior region bounded by
the lips �±1 and the discs z ∈ ∂B±1(δ) of sufficiently small radius (see Figure 1).
Finally, let h(z) denote the analytic continuation of (3.20) to C \ ((−∞,−1] ∪
[1,∞)). We are now ready to define the T → S transformation. Let

S(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (z), for z outside the lenses,

T (z)

(
1 0

−ω(z)−1e−Nh(z) 1

)
,

for z in the upper part of the lenses,

T (z)

(
1 0

ω(z)−1eNh(z) 1

)
,

for z in the lower part of the lenses.

(3.23)

Now we get the following Riemann–Hilbert problem for S(z):

1. S(z) is analytic in C \ � where � = �+ ∪R∪ �−.
2. S(z) has the following jumps on �:

S+(x) = S−(x)

(
1 0

ω(x)−1e∓Nh(x) 1

)
, x ∈ �±,

S+(x) = S−(x)

(
0 ω(x)

−ω(x)−1 0

)
, x ∈ (−1,1),

S+(x) = S−(x)

(
1 ω(x)eN(g+(x)+g−(x)−2x2−l)

0 1

)
, x ∈ R \ [−1,1].

3. S(z) = I + O(z−1) as z → ∞.

At this point in the asymptotic analysis, it becomes clear that the mesoscopic
regime under consideration becomes important. In order to obtain asymptotics,
it is essential that the jump matrix for S(z) approaches the identity as N → ∞
for z ∈ �±. In the Appendix (see Proposition A.4), we will see that |e∓Nh(z)| =
O(e−c1(N/dN )) as N → ∞ uniformly on �± \ (B1(δ) ∪ B−1(δ)). Notice that such
a bound fails when one approaches the critical situation dN = N corresponding
to the local or microscopic regime. It is precisely at this scale that one would not
expect the appearance of a Gaussian process in the limit N → ∞.

Therefore, in the mesoscopic regime it is reasonable to expect that in the limit
N → ∞ we may neglect the jumps on �± ∪ (R \ [−1,1]) and approximate S(z)

by a Riemann–Hilbert problem with jumps only on the interval (−1,1). This ap-
proximation will be valid only in the region U∞ = C \ (B1(δ) ∪ B−1(δ)) and will
give rise to an error that is quantified in Appendix A.
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3.4. Limiting Riemann–Hilbert problem: Parametrix in U∞. Before we per-
form the final transformation S → R of the Riemann–Hilbert problem, we must
construct parametrices in the appropriate regions of the complex plane. We saw in
the last section how the jump matrices for S(z) converge to the identity as N → ∞,
except on [−1,1]. Therefore, outside the lenses and the discs, we expect the solu-
tion to the following problem to give a good approximation to S(z) for large N :

1. P∞(z) is analytic in C \ [−1,1].
2. We have the jump condition

P∞,+(x) = P∞,−(x)

(
0 ω(x)

−ω(x)−1 0

)
, x ∈ (−1,1).(3.24)

3. P∞(z) = I + O(z−1) as z → ∞.

This problem has the advantage that it has a completely explicit solution. The
solution, as obtained in [36], is given by

P∞(z) = 1

2
(D∞)σ3

(
a + a−1 −i

(
a − a−1)

i
(
a − a−1) a + a−1

)
D(z)−σ3,

(3.25)

a(z) = (z − 1)1/4

(z + 1)1/4 ,

where D(z) is the Szegö function

D(z) = exp
(√

z + 1
√

z − 1

2π

∫ 1

−1

logω(x)√
1 − x2

dx

z − x

)
(3.26)

and

D∞ = lim
z→∞D(z) = exp

(
1

2π

∫ 1

−1

logω(x)√
1 − x2

dx

)
.(3.27)

Recalling the definition of the weight ω(x) in (3.19), the integrals in (3.26) can
be calculated explicitly by extending the procedure outlined in [35] to the case of
complex singularities.

As we shall see in the next subsection, the Szegö function D(z) will turn out to
be the key ingredient in deriving the logarithmic covariance structure in (1.13).

3.5. Asymptotics of the polynomials and proof of Theorem 2.2. We are now
ready to present the leading order asymptotics N → ∞ of the Y -matrix in (3.6),
leaving the technical matters of estimation of errors and the final transformation
of the Riemann–Hilbert problem to Appendix A. Our aim in this subsection is to
prove Theorem 2.2 using these asymptotics.

Tracing back the transformations S → T → Y , we find that

Y(z
√

2N) = (2N)Nσ3/2eNlσ3/2S(z)eN(g(z)−l/2)σ3 .(3.28)
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According to (3.7), we need the asymptotics for Y(z) in two different regions of
the complex plane, near z = ∞ in the first line of (3.7) and at z = zk in the second
line. In the following proposition, let A denote the bounded subset of C enclosed
by the lenses �± and the discs ∂B±1(δ).

PROPOSITION 3.2. Consider the Riemann–Hilbert problems S(z) and P∞(z)

from Sections 3.3 and 3.4, respectively. Then the following asymptotics hold as
N → ∞:

S(z) =
(
I + R̃1(z)

N
+ O

(
1

NdN

)
+ O

(
log(dN)e−c1(N/dN )))P∞(z),(3.29)

uniformly for all z ∈ C\A. The function R̃1(z) has an asymptotic expansion of the
form R̃1(z) = (A/z + B/z2 + O(z−3)) as z → ∞ where c1 is a positive constant
depending only on δ and η and

A =
(

0 i/24
i/24 0

)
, B =

(−1/48 0
0 1/48

)
.(3.30)

PROOF. See Appendix A. �

REMARK 3.3. The error terms in (3.29) are uniform in the parameters
{αk}m−1

k=1 belonging to � [cf. (3.9)], {τk}m−1
k=1 belonging to a compact subset of R

and x0 belonging to a compact subset of (−1 + δ,1 − δ). Furthermore, every such
error term is an analytic function in the variables {αk}m−1

k=1 whose derivatives with
respect to αj have the same order in N and have the same uniformity property
described above. Hence, in the remainder of this section it will be implicit that the
error terms involved are of this form.

Now inserting the above asymptotics (3.29) into the differential identity (3.7),
we obtain:

PROPOSITION 3.4. Let ϕN denote the characteristic function of the stochastic
process W

(η)
N (τ ) defined in (3.2). Then in the limit N → ∞, we have

ϕN(α1, . . . , αm−1) = exp

(
N

m−1∑
k=1

αk

(
Re
(
g(zk)

)− Re
(
g(zm)

))

+
m−1∑
k,j=1

αkαj

2

(
φ

(η)
0 (τk) + φ

(η)
0 (τj ) − φ

(η)
0 (τk − τj )

)
(3.31)

+ O
(
d−1
N

)+ O

(
N log(dN) exp

(
−c1

N

dN

)))
,

where g(z) is defined in (3.13) and φ
(η)
0 (τ ) in (1.11). The asympotics in (3.31) hold

uniformly in the same sense described in Remark 3.3.
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REMARK 3.5. Notice that the asymptotics in (3.31) consist of both global
error terms, which become large when dN ∼ 1 and local error terms, which become
large when dN ∼ N . Throughout the following proof, we will write eN for the local
error term of order

eN = log(dN) exp
(
−c1

N

dN

)
.(3.32)

PROOF OF PROPOSITION 3.4. We remind the reader that the prime ′ always
denotes differentiation with respect to αj . We begin by considering the second line
of (3.7). Taking into account αm = −(α1 +· · ·+αm−1), we insert (3.29) into (3.28)
and make use of the explicit formula (3.25) for P∞(z). Straightforward calculation
then gives

Y11(
√

2Nzk)
′Y22(

√
2Nzk) − Y21(

√
2Nzk)

′Y12(
√

2Nzk)

= (P∞(zk)
)′
11

(
P∞(zk)

)
22 − (P∞(zk)

)′
21

(
P∞(zk)

)
12

(3.33)
+ O

(
N−1)+ O(eN)

= C(zm, zk) − C(zj , zk) + O
(
d−1
N

)+ O(eN),(3.34)

where we introduced

C(μ, z) =
√

z + 1
√

z − 1

2π

∫ 1

−1

log |x − μ|√
1 − x2

dx

z − x
,(3.35)

and (3.34) was obtained from (3.33) using the estimate D∞ = 1 + O(d−1
N ). Since

C(zj , zk) = C(zj , zk), we find from (3.34) that

1

2

2m∑
k=1

αk

(
Y11(

√
2Nzk)

′Y22(
√

2Nzk) − Y21(
√

2Nzk)
′Y12(

√
2Nzk)

)
(3.36)

=
m∑

k=1

αk

(
Re
(
C(zm, zk)

)− Re
(
C(zj , zk)

))+ O
(
d−1
N

)+ O(eN)(3.37)

=
m−1∑
k=1

αk

(
φ

(η)
0 (τk) + φ

(η)
0 (τj ) − φ

(η)
0 (τk − τj )

)+ O
(
d−1
N

)+ O(eN).(3.38)

To obtain (3.38) from (3.37), we used the formula (B.6) to compute the asymptotics
of Re(C(zj , zk)) and used that αm = −(α1 + · · · + αm−1).

Now let us compute the asymptotics of the coefficients βN , γN and χN−1 de-
fined in (3.8) and appearing in the first line of (3.7). As usual, these quantities are
all obtained by expanding all z-dependent quantities appearing in (3.28) in powers
of 1/z. First, the Szegö function (3.26) satisfies D(z) = D∞(1 +D1/z + (D2

1/2 +
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D2)/z
2 + O(z−3)) as z → ∞, where

D1 = −1

2

m∑
k=1

αk Re
(

1

zk + √
zk + 1

√
zk − 1

)
,

(3.39)

D2 = −1

8

m∑
k=1

αk Re
(

1

(zk + √
zk + 1

√
zk − 1)2

)
,

and second, use of the definitions (3.25) and (3.13) shows that for z → ∞

g(z) = log(z) − 1

8z2 + O
(
z−4), a(z) = 1 − 1

2z
+ 1

8z2 + O
(
z−3).(3.40)

Then expanding (3.29) at z = ∞, we can compare with (3.8) and obtain

βN = √
2N

(
−D1 + A11

N
+ O

(
1

NdN

)
+ O(eN)

)
,

γN = 2N

(
1/8 − N/8 +D2

1/2 −D2 + B11 − A11D1 − iA12/2

N

+ O

(
1

NdN

)
+ O(eN)

)
,

χ2
N−1 = 2N−1

√
π(N − 1)!

(
1

D2∞
+ 1

N

(
1

12D2∞
+ 2iA21

)
+ O

(
1

NdN

)
+ O(eN)

)
.

A similar computation shows that the asymptotics of χ2
N are given by

χ2
N = 2N

√
πN !

(
1

D̃2∞
+ 1

N

(
1

12D̃2∞
+ 2iA12

)
+ O

(
1

NdN

)
+ O(eN)

)
,(3.41)

where D̃∞ denotes the quantity (3.27) with rescaled singularities z̃k =√
2N/(2N + 2)zk . This rescaling is necessary when estimating χ2

N , because
without it one obtains asymptotics with respect to the weight w(x) = ∏j |x −√

2N + 2zk|αk . Cumbersome though routine manipulations with the above asymp-
totics yield

−N(logχNχN−1)
′ = 2N

(
C(zj ,∞) − C(zm,∞)

)+ O
(
d−1
N

)+ O(NeN),
(3.42)

2
(
γ ′
N − βNβ ′

N

)= −4ND′
2 + O

(
d−1
N

)+ O(NeN),

and

(logχNχN−1)
′Y11(

√
2Nzk)Y22(

√
2Nzk) = O

(
d−1
N

)+ O(eN),
(3.43)

2
(

χN−1

χN

)2(
log

χN−1

χN

)′
= O

(
d−1
N

)+ O(eN),



3002 Y. V. FYODOROV, B. A. KHORUZHENKO AND N. J. SIMM

where we introduced

C(μ,∞) = lim
z→∞C(μ, z) = 1

2π

∫ 1

−1

log |x − μ|√
1 − x2

dx(3.44)

= 1

2
log |z + √

z + 1
√

z − 1| − 1

2
log(2).(3.45)

Using the explicit formulae (3.45) and (3.39), we get

2
(
C(zj ,∞) − C(zm,∞)

)− 4D′
2 = Re

(
g(zj )

)− Re
(
g(zm)

)
,(3.46)

where we exploited the convenient identity (see, e.g., the derivation of equa-
tion (7.89) in [14])

log |z + √
z + 1

√
z − 1| + 1

2
Re
(

1

(z + √
z + 1

√
z − 1)2

)
= Re

(
g(z)

)
.(3.47)

Now inserting (3.42), (3.38) and (3.43) into (3.7), we obtain

∂

∂αj

logϕN(α1, . . . , αm−1)

= N
(
Re
(
g(zj )

)− Re
(
g(zm)

))
(3.48)

+
m−1∑
k=1

αk

(
φ

(η)
0 (τk) + φ

(η)
0 (τj ) − φ

(η)
0 (τk − τj )

)+ O
(
d−1
N

)+ O(NeN).

Note that the error terms in (3.48) hold uniformly in the parameters (αk)
m−1
k=1 (see

Remark 3.3), so that we may integrate both sides of (3.48) according to the proce-
dure discussed in Section 5 of [35], arriving at the asymptotics (3.31). �

PROOF OF THEOREMS 2.2 AND 2.3. Bearing in mind Remark 3.3, we differ-
entiate (3.31) with respect to the parameters (αk)

m−1
k=1 and evaluate near the origin,

leading to

E
{
W

(η)
N (τ )

}= N
(
Re
(
g(zk)

)− Re
(
g(zm)

))+ O
(
d−1
N

)+ O(NeN),(3.49)

Cov
{
W

(η)
N (τ ),W

(η)
N (υ)

}
(3.50)

= φ
(η)
0 (τ ) + φ

(η)
0 (υ) − φ

(η)
0 (τ − υ) + O

(
d−1
N

)+ O(NeN),

where the error terms are uniform in τ and υ varying in a compact subset of R.

Then defining the centered process W̃
(η)
N (τ ) = W

(η)
N (τ )−E{W(η)

N (τ )} we immedi-
ately find from (3.49) and (3.31) that in the mesoscopic regime (2.7), we have

lim
N→∞E

{
ei
∑m

k=1 skW̃
(η)
N (τk)

}
(3.51)

= exp

(
−1

2

m∑
k=1

m∑
j=1

sksj
(
φ0(τk) + φ0(τj ) − φ0(τk − τj )

))
,
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where (sk)
m
k=1 ∈ R

m. Theorem 2.2 follows immediately. To complete the proof of
Theorem 2.3, it suffices to note that the error terms in (3.50) are uniform, so that
the sequence (E{(W̃N(τ ))2})∞N=1 is uniformly bounded. �

4. Convergence to white noise in the spectral representation. The main
achievement of the previous section was to prove that for any mesoscopic scales
of the form (2.7), the process W̃

(η)
N (τ ) converges in the sense of finite-dimensional

distributions to the regularized fractional Brownian motion B
(η)
0 (τ ). We also

proved Theorem 2.3 which extends this convergence to an appropriate function
space.

In this section, we will study W̃
(η)
N (τ ) from a different point of view, namely

by means of the Fourier coefficients bN(s) appearing in the spectral decomposi-
tion (2.13). We remind the reader of the definition

bN(s) = 1√
s

Tr
(
e−isdN (H−x0I )), s > 0.(4.1)

A useful and interesting feature of the integral representations (2.13) and its
N → ∞ limit (1.9) is that they are suggestive of a corresponding limiting law sat-
isfied by the coefficients bN(s). Namely, we expect that bN(s) should “converge”
to the white noise measure Bc(ds)/

√
2. The precise mode of the convergence we

consider is described in Theorem 2.4 and it is our goal in this section to prove this
result.

By its very definition, the white noise measure Bc(ds) cannot be understood in
a pointwise sense and must be regularized by integrating against a test function.
We will consider test functions ξ ∈ C∞

0 (R+), that is, ξ is a smooth function with
compact support on R+. Then we have the correspondence:

cN(ξ) =
∫ ∞

0
ξ(s)bN(s) ds =

N∑
j=1

f
(
dN(xj − x0)

)=: XN(f ),(4.2)

where

f (x) =
∫ ∞

0

ξ(s)√
s

e−isx ds.(4.3)

By our assumptions on ξ , it follows that f belongs to the Schwartz space of rapidly
decaying smooth functions, that is, f ∈ S(R) where

S(R) =
{
f ∈ C∞(R) : sup

x∈R

∣∣∣∣xγ dβf (x)

dxβ

∣∣∣∣< ∞, γ,β = 0,1,2, . . .

}
.(4.4)

In the following three subsections, we will obtain results for the mean, variance
and distribution of the random variable (4.2) as N → ∞.
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4.1. Mean. We begin by proving that centering is not required in Theorem 2.4.

PROPOSITION 4.1. On any mesoscopic scales of the form dN = Nα with any
α ∈ (0,1), we have

E
{
cN(ξ)

}= O
(
d−1
N

)
, N → ∞.(4.5)

PROOF. We write the expectation above as an integral over the normalized
density of states ρN(x),

E
{
cN(ξ)

}= N

∫ ∞
−∞

f
(
dN(x − x0)

)
ρN(x) dx,(4.6)

where

ρN(x) = 1

N
E

{
N∑

j=1

δ(x − xj )

}
.(4.7)

Firstly, note that the tails of the integral (4.6) can be removed using the rapid decay
of f . For any ε > 0, we have

E
{
cN(ξ)

}= N

∫ x0+ε

x0−ε
f
(
dN(x − x0)

)
ρN(x) dx + O

(
Nd−∞

N

)
,(4.8)

where here and elsewhere, the notation O(Nd−∞
N ) refers to a quantity that is

O(Nd
−γ
N ) for any γ > 0. Such a contribution tends to zero for the power law

scales dN = Nα with any α ∈ (0,1). Then for small enough ε, we have the uni-
form estimate (see [43], Chapter 5.2)

ρN(x) = 2

π

√
1 − x2 + O

(
N−1), x ∈ (x0 − ε, x0 + ε).(4.9)

After inserting (4.9) into (4.8), we find that

E
{
cN(ξ)

}= 2N

π

∫ x0+ε

x0−ε
f
(
dN(x − x0)

)√
1 − x2 dx + EN + O

(
Nd−∞

N

)
,(4.10)

where the error term EN = O(d−1
N ), since

|EN | ≤ C

∣∣∣∣∣
∫ x0+ε

x0−ε
f
(
dN(x − x0)

)
dx

∣∣∣∣∣≤ C

dN

∫ ∞
−∞
∣∣f (x)

∣∣dx.(4.11)

Similarly, we can replace the integration limits in (4.10) with ±1 using the
Schwartz property of f . We have

E
{
cN(ξ)

}= 2N

π

∫ 1

−1
f
(
dN(x − x0)

)√
1 − x2 dx + O

(
d−1
N

)
.(4.12)
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Next, we substitute f with the definition (4.3) and interchange the order of
integration [justified by the rapid decay of ξ(s)] so that

E
{
cN(ξ)

}= 2N

π

∫ ∞
0

ξ(s)s−1/2eisdNx0

∫ 1

−1
e−isdNx

√
1 − x2 dx ds + O

(
d−1
N

)
(4.13)

= 2N

∫ ∞
0

ξ(s)s−3/2J1(dNs)eisdNx0 ds + O
(
d−1
N

)
,

where J1(z) is the Bessel function of index 1. To complete the proof, note that
J1(dNs) has an asymptotic expansion (for any fixed γ ∈ N and s > 0) as N → ∞,

√
π

2
J1(dNs) = cos(dNs − 3π/4)

γ−1∑
k=0

Ck

d
2k+1/2
N s2k+1/2

(4.14)

+ sin(dNs − 3π/4)

γ−1∑
k=0

Dk

d
2k+3/2
N s2k+3/2

+ EN(s),

where the error term satisfies the bound |EN(s)| ≤ |Cγ d
−2γ−1/2
N s−2γ−1/2| and

Ck,Dk are constants depending only on k. Such asymptotics can be found in, for
example, [42] or [34].

Inserting (4.14) into (4.13), we see that the contribution from each term in the
sum in (4.14) is an oscillatory integral of order O(Nd−∞

N ), as follows from re-
peated integration by parts. The final error term EN(s) is integrable with respect

to ξ(s) and gives rise to an error of order O(Nd
−2γ
N ). Since γ > 0 was arbitrary,

we conclude that the term proportional to N in (4.12) is in fact asymptotically
smaller than the error term. This completes the proof of the proposition. �

4.2. Covariance. Having studied the expectation of bN(s) in the previous sub-
section, we now consider the fluctuations. In the Introduction, it was remarked, in
accordance with the expected white noise limit for bN(s) that we should have
limN→∞E{bN(s1)bN(s2)} = δ(s1 − s2). In this subsection, we will make this as-
sertion precise by proving that

lim
N→∞E

{
cN(ξ1)cN(ξ2)

}=
∫ ∞

0
ξ1(s)ξ2(s) ds(4.15)

for all smooth functions ξ1, ξ2 with compact support on R+.
It turns out that there is an exact finite-N formula for the covariance (see equa-

tion (4.2.38) in [43]):

E
{
X̃N(f1)X̃N(f2)

}= 1

8

∫
R2

�f1(dNx)�f2(dNx)K2
N(x1, x2) dx1 dx2,(4.16)

where f1 and f2 are defined in terms of ξ1 and ξ2 as in formula (4.3) and we intro-
duced the notation �f (x) = f (x1) − f (x2) for any f . The function KN(x1, x2) is
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the kernel of the GUE ensemble (see, e.g., [41, 43]) having the explicit formula

KN(x, y) = ψ
(N)
N (x1)ψ

(N)
N−1(x2) − ψ

(N)
N (x2)ψ

(N)
N−1(x1)

x1 − x2
,(4.17)

where

ψ
(N)
l (x) = e−Nx2

P
(N)
l (x),(4.18)

and P
(N)
l (x) are (rescaled) Hermite polynomials, normalized by the condition

that {ψ(N)
l }∞l=1 forms an orthonormal family on R. By making use of the known

Plancherel–Rotach asymptotics for the functions ψ
(N)
l (x), we deduce the follow-

ing covariance formula. After noting the correspondence (4.3), we immediately
derive from it the δ-correlations (4.15).

PROPOSITION 4.2. Let the test functions f1 and f2 belong to the Schwartz
space S(R) defined in (4.4) and consider the mesoscopic regime dN = Nα with
any α ∈ (0,1). We have

lim
N→∞E

{
X̃N(f1)X̃N(f2)

}= 1

2π

∫ ∞
−∞

|s|f̂1(s)f̂2(−s) ds,(4.19)

where f̂ (s) = (2π)−1/2 ∫∞
−∞ f (x)e−isx dx.

REMARK 4.3. Formula (4.19) is already known for C1 functions with com-
pact support, as in Theorem 5.2.7(iii) of [43]. It was also proved recently in [19]
for a class of Wigner matrices with f a Schwartz test function, but only up to
scales dN = Nα with any 0 < α < 1/3. Our main contribution in this subsection is
to adapt the argument given in [43] to our test functions f in (4.3), which cannot
be compactly supported due to our assumptions on ξ . We note that our proof holds
on the full range 0 < α < 1 and that the smoothness hypothesis can be relaxed to
C1 functions with rapid decay at ±∞.

PROOF OF PROPOSITION 4.2. Here, we only consider the contribution to in-
tegral (4.16) coming from the square I 2

δ = [−(1 − δ), (1 − δ)]2 for some small
δ > 0. In Appendix C, we will show that the complement of this region can be
neglected for small enough δ. We will need the following asymptotic formula for
the functions ψ

(N)
N+k defined in (4.18). Uniformly for |x| < (1 − δ) and k = O(1),

we have

ψ
(N)
N+k(x) =

(
2

π
√

1 − x2

)1/2

cos
(
Nα(x) + (k + 1/2) cos−1(x) − π/4

)
(4.20)

+ O
(
N−1),
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where α(x) = 2
∫ x
−1 dt

√
1 − t2. Formula (4.20) follows immediately from the clas-

sical asymptotic results of Plancherel and Rotach (see Sections 5 in [43] and 8
in [51]).

Now, using the symmetry about the line x1 = x2, we see that the integral (4.16)
restricted to I 2

δ can be written in the convenient form,

1

4

∫
I 2
δ

�f1(dNx)

�x

�f2(dNx)

�x
FN(x1, x2) dx1 dx2,(4.21)

where

FN(x1, x2) = ψ
(N)
N (x1)

2ψ
(N)
N−1(x2)

2

(4.22)
− ψ

(N)
N (x1)ψ

(N)
N−1(x1)ψ

(N)
N (x2)ψ

(N)
N−1(x2).

We insert the Plancherel–Rotach formula (4.20) into (4.21) and denote θ(x) =
cos−1(x). Using the double angle formula for the cosine, we find that the contri-
bution of (4.20) to the product of squares in (4.22) is

1 + cos(2Nα(x1) + θ(x1)/2 − π/4) + cos(2Nα(x2) − θ(x2)/2 − π/4)

π2
√

1 − x2
2

√
1 − x2

1

(4.23)

+ cos(2Nα(x1) + θ(x1)/2 − π/4) cos(2Nα(x2) − θ(x2)/2 − π/4)

π2
√

1 − x2
2

√
1 − x2

1
(4.24)

+ O
(
N−1).

Inserting the oscillatory terms in lines (4.23) and (4.24) into (4.21) gives rise to
error terms that are O((N/dN)−∞) as N → ∞ for every δ > 0. This can be shown
by repeated integration by parts, using the fact that α(x) is smooth and increasing
on the interval Iδ . Combined with a similar calculation applied to the second term
in (4.22), we see that the integral (4.21) is equal to

1

4π2

∫
I 2
δ

�f1(dNx)

�x

�f2(dNx)

�x

1 − x1x2√
1 − x2

1

√
1 − x2

2

dx1 dx2 + O
(
(N/dN)−∞)

= 1

4π2

∫
R2

�f1(x)

�x

�f2(x)

�x

1 − x1x2/d
2
N√

1 − x2
1/d2

N

√
1 − x2

2/d2
N

(4.25)

× χIN
(x1)χIN

(x2) dx1 dx2 + O
(
(N/dN)−∞),

where χIN
(x1) is the indicator function on the set IN = (−(1 − δ)dN, (1 − δ)dN).

Now Lebesgue’s dominated convergence theorem can be applied to take the
limit under the integral in (4.25). Indeed, it is easy to see that the integrand in (4.25)
is bounded by the integrable function(

2

δ2 − 1
)∣∣∣∣�f1(x)

�x

∣∣∣∣
∣∣∣∣�f2(x)

�x

∣∣∣∣(4.26)
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for any N ∈ N, (x1, x2) ∈ R
2 and 0 < δ < 1. We finally see that for all 0 < δ < 1,

we have

lim
N→∞

1

4

∫
I 2
δ

�f1(dNx)

�x

�f2(dNx)

�x
FN(x1, x2) dx1 dx2

(4.27)

= 1

4π2

∫
R2

�f1(x)

�x

�f2(x)

�x
dx1 dx2.

Rewriting f1 and f2 in terms of their Fourier transforms and applying the
Plancherel theorem gives the identity

1

4π2

∫
R2

f1(x1) − f1(x2)

x1 − x2

f2(x1) − f2(x2)

x1 − x2
dx1 dx2

(4.28)

= 1

2π

∫
R

|s|f̂1(s)f̂2(−s) ds,

which is precisely the RHS of (4.19). To complete the proof, we just need to show
that the integral (4.16) restricted to the complement of the square I 2

δ can be ne-
glected in the limit N → ∞. Namely, we prove in the Appendix that

lim
N→∞

∫
(I 2

δ )c
�f1(dNx)�f2(dNx)K2

N(x1, x2) dx1 dx2 = O(δ), δ → 0,(4.29)

and so complete the proof of the proposition by choosing δ > 0 sufficiently small.
�

4.3. Convergence in distribution. The aim of this subsection is to study the
full distribution of the coefficients bN(s) and ultimately to prove Theorem 2.4.
First, we need a preliminary result regarding the stochastic process W̃

(η)
N (τ ). It

will be convenient to consider the increments

�p

[
W̃

(η)
N

]
(τ )

:= W̃
(η)
N (τ ) − W̃

(η)
N (τ + p)(4.30)

= 1

2

∫ ∞
0

e−ηs

√
s

{[
1 − e−ips]e−iτ s b̃N (s) + [1 − eips]eiτs b̃N (s)

}
ds,

where b̃N (s) = bN(s) −E{bN(s)}.
Similarly, the corresponding limiting object is given by the following stationary

Gaussian process:

�p

[
B

(η)
0

]
(τ )

:= B
(η)
0 (τ ) − B

(η)
0 (τ + p)(4.31)

= 1

2
√

2

∫ ∞
0

e−ηs

√
s

{[
1 − e−ips]e−iτ sBc(ds) + [1 − eips]eiτsBc(ds)

}
.
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PROPOSITION 4.4. Let p ∈ R. For any h ∈ S(R) and on any power law scales
dN = Nα with α ∈ (0,1), we have the convergence in distribution:∫ ∞

−∞
h(τ)�p

[
W̃

(η)
N

]
(τ ) dτ

d�⇒
∫ ∞
−∞

h(τ)�p

[
B

(η)
0

]
(τ ) dτ, N → ∞.(4.32)

PROOF. The proof will be analogous to our proof of Theorem 2.3, the main
difference being we must have good enough control of the tails in the above inte-
grals. This will be taken care of by the rapid decay of h. To proceed, we fix some
(arbitrary) M ∈ R and δ0 > 0 and decompose the LHS of (4.32) as∫ M

−M
h(τ)�p

[
W̃

(η)
N

]
(τ ) dτ +

∫
|τ |∈[M,δ0dN ]

h(τ)�p

[
W̃

(η)
N

]
(τ ) dτ

(4.33)
+
∫
|τ |∈[δ0dN ,∞)

h(τ )�p

[
W̃

(η)
N

]
(τ ) dτ

and label each of the integrals in (4.33) with I1,I2 and I3. Let us begin
with the first integral, I1. By Theorem 2.2 and the Cramér–Wold device, the
finite-dimensional distributions of �p[W̃ (η)

N ](τ ) converge in law to those of

�p[B(η)
0 ](τ ). Furthermore, by the uniform estimate (3.50) we have that there is

a constant C > 0 such that E{(�p[B(η)
0 (τ )])2} ≤ C for all τ ∈ [−M,M] and for

all N . Therefore, the hypotheses of Theorem 3 in [28] are satisfied and we con-
clude that the first integral in (4.33) converges in distribution to the RHS of (4.32)
in the limit N → ∞ followed by M → ∞. To complete the proof, it suffices to
show that the second and third integrals in (4.33) converge in probability to 0 in
the same limit.

For notational convenience, we just consider the contributions to I2 and I3
where τ > 0 as the situation τ < 0 is almost identical. By Chebyshev’s inequality
and Cauchy–Schwarz, we have

P
{|I2| > ε

}≤ ε−2
∫ δ0dN

M

∣∣h(τ)
∣∣dτ

∫ δ0dN

M

∣∣h(τ)
∣∣E{�p

[
W̃

(η)
N

]
(τ )2}dτ.(4.34)

We will now argue that the variance term in (4.34) is uniformly bounded. Since
|τ | ≤ δ0dN , by choosing δ0 small enough we see that |x0 + τ/dN | < 1 − δ for
some δ > 0 independent of N . Hence, the singularities of the logarithm in (2.6)
remain inside the bulk region (−1 + δ,1 − δ) for all N and we may apply the
methods of Section 3 with m = 2 and weight [cf. (3.19)]

ω(z) =
[
(z − x0(τ,N) − p/dN)2 + (η/dN)2

(z − x0(τ,N))2 + (η/dN)2

]α/2

,

(4.35)
x0(τ,N) = x0 + τ/dN .

The only difference in the analysis of the Riemann–Hilbert problem with this
weight is that the new reference point x0(τ,N) can vary with N in the small
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fixed neighbourhood [x0 − δ0, x0 + δ0]. However, all the estimates we obtain are
uniform for x0 varying in compact subsets of (−1 + δ,1 − δ) so that the vari-
ance bound (3.50) (with υ = τ ) remains valid. This implies that for some N -
independent C > 0,

P
{|I2| > ε

}≤ ε−2C

(∫ δ0dN

M

∣∣h(τ)
∣∣dτ

)2

→ 0,(4.36)

in the limit N → ∞ followed by M → ∞.
To bound the integral I3, we again apply Chebyshev’s inequality and exploit

the rapid decay of h. We have

P
{|I3| > ε

}
(4.37)

≤ ε−2
∫ ∞
δ0dN

∫ ∞
δ0dN

E
{
h(τ1)�p

[
W̃

(η)
N

]
(τ1)h(τ2)�p

[
W̃

(η)
N

]
(τ2)
}
dτ1 dτ2

= ε−2
∫ ∞
δ0dN

∫ ∞
δ0dN

∫ ∞
−∞

∫ ∞
−∞

h(τ1)h(τ2)

2∏
j=1

(
q(x1, τj ) − q(x2, τj )

)
(4.38)

× K2
N(x1, x2) dx1 dx2 dτ1 dτ2,

where we computed the expectation using the identity (4.16) and

q(x, τ ) = − log
∣∣∣∣x − x0 − τ + iη

dN

∣∣∣∣+ log
∣∣∣∣x − x0 − τ + p + iη

dN

∣∣∣∣.(4.39)

Now, since h is a Schwartz test function, we know that for any γ > 0 and u > 0,
we have |h(udN)| ≤ (dNu)−γ for N large enough. Then using the inequalities
|q(x, τ )| ≤ Cp,η for some finite constant depending only on p and η, K2

N(x1, x2) ≤
N2ρN(x1)ρN(x2) and substituting τj = udN we obtain

P
(|I3| > ε

)≤ 4ε−2C2
p,ηN

2 d
−2γ+2
N

(∫ ∞
δ0

u−γ du

)2

.(4.40)

Then provided dN takes the form dN = Nα with α ∈ (0,1) we can always choose
γ > 0 large enough such that the RHS of (4.40) tends to 0 as N → ∞. �

We can now translate the result (4.32) into a statement about the Fourier coeffi-
cients bN(s), allowing us to prove Theorem 2.4. For the convenience of the reader,
we repeat the statement of the latter result here.

THEOREM 4.5. Let ξ1, . . . , ξm be smooth functions compactly supported on
R+. Then the vector (cN(ξ1), . . . , cN(ξm)) converges in distribution to a centered
complex Gaussian vector Z with relation matrix C = E{ZZT} = 0 and covariance
matrix � = E{ZZ†} given by

�j,k =
∫ ∞

0
ξj (s)ξk(s) ds, j, k = 1, . . . ,m.(4.41)
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PROOF. Define functions hk in terms of their Fourier transform as∫ ∞
−∞

hk(τ )e−iτ s dτ =
√

s

1 − e−ips
eηsξk(s), k = 1, . . . ,m.(4.42)

Then for sufficiently small p, the RHS of (4.42) is smooth and compactly sup-
ported. Therefore, its Fourier transform hk is a Schwartz function, that is, hk ∈
S(R). Next, note that with cN(ξ) as in (4.2), we have the identity

cN(ξk) −E
(
cN(ξk)

)= 2
∫ ∞
−∞

hk(τ )�p

[
W̃

(η)
N

]
(τ ) dτ(4.43)

which holds almost surely and follows after inserting the representation (4.30) and
interchanging the order of integration, justified by the rapid decay of ξk and hk .
Now we apply Proposition 4.4 with h(τ) =∑m

k=1 αkhk(τ ) where αk ∈ C. Since
E(cN(ξk)) = O(d−1

N ), we get the convergence in distribution

m∑
k=1

αkcN(ξk)
d�⇒ 2

m∑
k=1

αk

∫ ∞
−∞

hk(τ )�p

[
B

(η)
0

]
(τ ) dτ, N → ∞.(4.44)

By the Cramér–Wold device, this implies the convergence in distribution(
cN(ξ1), . . . , cN(ξk)

) d�⇒ (
Z(h1), . . . ,Z(hm)

)
,(4.45)

where

Z(hk) = 2
∫ ∞
−∞

hk(τ )�p

[
B

(η)
0

]
(τ ) dτ.(4.46)

Since �p[B(η)
0 ](τ ) is a Gaussian process, one easily sees that (Z(h1), . . . ,Z(hm))

is a mean zero complex Gaussian vector. Then by a simple computation using
the integral representation (4.31) and basic properties of the white noise measure
Bc(ds), we find the covariance structure

�j,k = E
{
Z(hj )Z(hk)

}=
∫ ∞

0
ξj (s)ξk(s) ds,(4.47)

and Cj,k = E{Z(hj )Z(hk)} = 0 for all j, k = 1, . . . ,m. �

5. Macroscopic regime. The main goal of this section is to prove Theo-
rem 2.1. Namely, we will show that the process D̃N(x) (2.5) converges in prob-
ability law as N → ∞ to the generalized Gaussian process F(x) given by (1.7).
The convergence is interpreted in the Sobolev space V (−a), that is, the assertion of
Theorem 2.1 is that for any bounded continuous functional q on V (−a), we have

lim
N→∞E

{
q(D̃N)

}= E
{
q(F )

}
.(5.1)

Our proof is an adaptation for the GUE matrices H of the proof of a similar result
for the CUE matrices given in [30]. First, we will prove that the finite-dimensional
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distributions of D̃N(x) converge to those of F(x) and then establish that the se-
quence D̃N(x) is tight in V (−a). This will imply the convergence in probability
law in V (−a) as in (5.1). As explained in Section 2.1, for the GUE matrices there
are additional analytical complications compared with the case of CUE matrices.

We start with a deterministic result, writing down the Chebyshev–Fourier series
for D̃N(x).

LEMMA 5.1. Let H be a Hermitian matrix of size N × N with eigenvalues
x1, . . . , xN . Then

− log
∣∣det(H− xI)

∣∣= N log 2 +
∞∑

k=0

ck(DN)Tk(x),

where the convergence is pointwise for any x ∈ [−1,1] \ {x1, . . . , xN } and the
Chebyshev–Fourier coefficients ck(DN) are given for any k > 0 by the formula

ck(DN) =
N∑

j=1

2

k
Tk(xj ) +

N∑
j=1

r+
k (xj ) +

N∑
j=1

r−
k (xj )(5.2)

and

c0(DN) = −
N∑

j=1

r+
0 (xj ) −

N∑
j=1

r−
0 (xj ),(5.3)

where for k > 0

r±
k (x) = [(2/k)(−Tk(x) + (x ∓

√
x2 − 1

)k]
χ(±1,±∞)(x)(5.4)

and

r±
0 (x) = log

∣∣x ∓
√

x2 − 1
∣∣χ(±1,±∞)(x).(5.5)

In the above formulae, χJ (x) is the indicator function on the set J .

PROOF. This follows immediately from Lemma 3.1 in [27]. �

It follows from this lemma that for our random matrices H, with probability
one,

D̃N(x) =
∞∑

k=0

ck(D̃N)Tk(x) where ck(D̃N) = ck(DN) −E
{
ck(DN)

}
.
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5.1. Convergence of finite-dimensional distributions. The main goal of this
subsection is to establish the following.

PROPOSITION 5.2. Fix M ∈ N and let X1, . . . ,XM be independent Gaussian
random variables with mean zero and variance one. Then for any (tk)

M
k=1 ∈ R

M

we have the convergence in distribution

M∑
k=0

ck(D̃N)tk
d�⇒

M∑
k=1

Xk√
k
tk, N → ∞.(5.6)

PROOF. We begin by inserting equation (5.2) into the LHS of (5.6). Then from
[31] or [43], we know that the sum

M∑
k=1

tk

(
N∑

j=1

2

k
Tk(xj ) −E

{
N∑

j=1

2

k
Tk(xj )

})
(5.7)

converges in distribution to the RHS of (5.6) as N → ∞. The main technical part
of our proof of (5.6) consists in showing that the other terms appearing in (5.2)
and (5.3) do not contribute in the limit N → ∞. All such terms that appear are of
the form

A±
k,N =

N∑
j=1

r±
k (xj )(5.8)

and by definition of the test function r±
k (x), they are nonzero only when an eigen-

value xj lies outside the bulk of the limiting spectrum [−1,1]. Intuitively, this is
a rare event and we show below that in fact E|A±

k,N | → 0 as N → ∞. We note in
passing that the regularity of the test functions r±

k (x) lies outside the best known
C1/2+ε threshold in [50], due to the singularities at the spectral edges.

Let us focus our attention on the case E{|A+
k,N |}, since the estimation of

E{|A−
k,N |} follows exactly the same pattern. First, one sees from the explicit

formula (5.4) and the elementary inequality (x − √
x2 − 1)k ≤ Tk(x) ≤ (x +√

x2 − 1)k , x ≥ 1 that −r+
k (x) is nonnegative for all x ∈ R. Therefore,

E{|A+
k,N |} = −E{A+

k,N }.
In terms of the normalized eigenvalue density, we have

E
{
A+

k,N

}= N

∫ ∞
1

r+
k (x)ρN(x) dx.(5.9)

To proceed, we split the integral as

E
{
A+

k,N

}= N

∫ 1+δN

1
r+
k (x)ρN(x) dx + N

∫ ∞
1+δN

r+
k (x)ρN(x) dx,(5.10)

where we choose δN = N−7/12. The first integral in (5.10) is over a shrinking
neighbourhood of the spectral edge x = 1. An estimate that holds uniformly in
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this region can be given in terms of the Airy function Ai(x) and its derivatives. In
particular, equation (4.4) of [18] (see also the Proof of Lemma 2.2 in [29]) shows
that as N → ∞

NρN(x) =
(

�′(x)

4�(x)
− γ ′(x)

γ (x)

)[
2Ai
(
N2/3�(x)

)
Ai′
(
N2/3�(x)

)]
+ N2/3�′(x)

[(
Ai′
(
N2/3�(x)

))2 − N2/3�(x)
(
Ai
(
N2/3�(x)

))2](5.11)

+ O

(
1

N(
√

x − 1)

)
,

where

γ (x) =
(

x − 1

x + 1

)1/4

(5.12)

and

�(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

3
∫ 1

x

√
1 − y2 dy

)2/3

, |x| ≤ 1,

(
3
∫ x

1

√
y2 − 1dy

)2/3

, |x| > 1.

(5.13)

Since �(x) ≥ 0 for x ≥ 1, the functions Ai(N2/3�(x)) and Ai′(N2/3�(x)) are

uniformly bounded on [1,∞). Furthermore, ( �′(x)
4�(x)

− γ ′(x)
γ (x)

) and �′(x) are bounded
near x = 1. Inserting (5.11) into the first integral in (5.10), we obtain the bound

N

∫ 1+δN

1
r+
k (x)ρN(x) dx = c1N

2/3
∫ 1+δN

1
r+
k (x) dx + O

(
1

N

)
,(5.14)

where c1 is an N -independent constant. In (5.14), we used that r+
k (x)(x − 1)−1/2

is bounded near x = 1 to estimate the contribution of the error term in (5.11).
A simple computation shows that

∫ 1+δN

1 r+
k (x) dx = O(δ

3/2
N ) as N → ∞ for k ≥ 0.

Inserting the latter into (5.14) yields the bound

N

∫ 1+δN

1
r+
k (x)ρN(x) dx = O

(
N2/3δ

3/2
N

)= O
(
N−5/24).(5.15)

Now consider the second integral in (5.10). We will prove below that it is expo-
nentially small as N → ∞. Using the fact that (for k ≥ 1) −r+

k (x) ≤ Tk(x) and
applying Lemma C.1, we obtain

−N

∫ ∞
1+δN

r+
k (x)ρN(x) dx(5.16)

≤ NδN

∫ ∞
1

Tk(1 + uδN)ρN(1 + uδN)du(5.17)

≤ B−1
∫ ∞

1
u−1Tk(1 + uδN)e−buN1/8

du,(5.18)
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where B,b > 0 are absolute constants. Then, for example, expanding Tk(1 +uδN)

in powers of (uδN) and integrating (5.18) term by term, we can apply the standard

Laplace method and find that (5.18) is O(e−cN1/8
) for some c > 0. If k = 0 in

the integral (5.16), one can use the inequality |r+
0 (1 + x)| ≤ √

2x, x > 0 and then
apply the Laplace method as before yielding a similar error bound. This completes
the proof of the proposition. �

5.2. Tightness. The final ingredient required for proving the weak conver-
gence in (5.1) is to show that the sequence D̃N is tight in V (−a). In direct analogy
to the proof given in Theorem 2.5 of [30] for the Circular Unitary Ensemble, we
will exploit the convenient fact that for −∞ < a < b < ∞, the closed unit ball in
V (b) is compact in V (a). Then by Chebyshev’s inequality, tightness follows if we
can bound the variance

E‖D̃N‖2
(−b) =

∞∑
k=0

E
{
ck(D̃N)2}(1 + k2)−b(5.19)

uniformly in N . Such a uniform bound will follow for any b > 1/2 provided we
show that E{ck(D̃N)2} ≤ C for some constant C independent of k and N . We begin
by writing the Chebyshev–Fourier coefficient as

ck(D̃N) =
N∑

j=1

hk(xj ) −E

{
N∑

j=1

hk(xj )

}
,(5.20)

where

hk(x) = (2/k)Tk(x)χ[−1,1](x) − (2/k)
(
x −

√
x2 − 1

)k
χ(1,∞)(x)

(5.21)
− (2/k)

(
x +

√
x2 − 1

)k
χ(−1,−∞)(x).

Then by formula (4.16), we have

E
{
ck(D̃N)2}= 1

8

∫
R2

(
hk(x1) − hk(x2)

)2
KN(x1, x2)

2 dx1 dx2,(5.22)

where KN(x, y) is the GUE kernel defined in equation (4.17).
First, we consider the contribution to the integral (5.22) coming from the region

[−1,1]2, namely the integral

1

2k2

∫
[−1,1]2

(
�Tk(x)

�x

)2

FN(x1, x2) dx1 dx2,(5.23)

where FN(x1, x2) is defined by (4.22) and, as in Section 4, for a function f , we
denote by �f the difference �f (x) = f (x1) − f (x2). By the Plancherel–Rotach
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asymptotics of Hermite polynomials, we have the bound (as follows from, e.g.,
parts (iii) and (v) of Theorem 2.2 in [13])∣∣FN(x1, x2)

∣∣≤ K1√
1 − x2

1

√
1 − x2

2

(5.24)

uniformly for (x1, x2) ∈ [−1,1]2. This implies that the modulus of (5.23) is
bounded by

K1

2k2

∫
[−1,1]2

(
�Tk(x)

�x

)2 1√
1 − x2

1

√
1 − x2

2

dx1 dx2 = K1π
2/8.(5.25)

The equality in (5.25) is a simple exercise involving standard properties of Cheby-
shev polynomials and we omit the derivation.

Finally, consider the contribution to the integral (5.22) from outside the square
[−1,1]2. For simplicity, consider just the region 1 < x1 < ∞ and −1 < x2 < 1, all
others being analogous. Since hk(x) is uniformly bounded in k and x on the whole
real line, we have∫ 1

−1

∫ ∞
1

(
hk(x1) − hk(x2)

)2
KN(x1, x2)

2 dx1 dx2(5.26)

≤
∫ ∞
−∞

∫ ∞
1

KN(x1, x2)
2 dx1 dx2(5.27)

=
∫ ∞

1
NρN(x1) dx1 =

∫ 1+δ

1
NρN(x1) dx1 + O

(
Ne−cδN

)
,(5.28)

where δ > 0 is a constant and cδ > 0. The last equality in (5.28) follows from
Theorem 5.2.3(iii) in [43]. Now we can insert the formula (5.11) which holds uni-
formly on [1,1 + δ]. The first term in (5.11) is bounded in N and x1 and so its
integral over [1,1 + δ] is bounded in N . The third term gives an error of order
1/N . The contribution from the middle term can be explicitly integrated using the
substitution u = N2/3�(x2):∫ 1+δ

1
N2/3�′(x2)

(
Ai′2
(
N2/3�(x2)

)− N2/3�(x2)Ai2
(
N2/3�(x2)

))
dx2(5.29)

=
∫ N2/3�(1+δ)

0

[
Ai′2(u) − uAi2(u)

]
du(5.30)

= −
[

2

3

(
u2Ai2(u) − uAi′2(u)

)− 1

3
Ai(u)Ai′(u)

]N2/3�(1+δ)

0
(5.31)

= Ai(0)Ai′(0)/3 + O
(
e−dδN

)
,(5.32)

where dδ > 0. A completely analogous argument proves that the integral over the
region {1 < x1 < ∞,1 < x2 < ∞} is also uniformly bounded in k and N , in addi-
tion to the remaining 6 regions that make up Bc. This completes the proof that D̃N

is tight in V (−a) for any a > 1/2, and hence completes the proof of Theorem 2.1.
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APPENDIX A: PROOF OF PROPOSITION 3.2

The purpose of this Appendix is to give the technical details required to show
that the matrix P∞(z) in Section 3.4 gives a good approximation to the matrix
S(z) in Section 3.3 for large N , as described by Proposition 3.2. Although we
can mostly follow the now standard techniques described in [13], we must take
special care with the estimates because the system of contours in Figure 1 can
come arbitrarily close to the real axis as N → ∞.

REMARK A.1. In this Appendix, there are many estimates holding uniformly
in the parameters {τk}m−1

k=1 , {αk}m−1
k=1 and x0 that appear in the partition func-

tion (3.2). We will use the big-oh notation O (distinguished from the usual O)
for an error term that defines an analytic function of the parameters {αk}m−1

k=1 on �

[cf. (3.9)] satisfying uniformity in the following parameters:

• τk varying in a compact subset of R for k = 1, . . . ,m − 1,
• αk varying in a compact subset of � for k = 1, . . . ,m − 1,
• x0 varying in a compact subset of (−1 + δ,1 − δ).

Construction of the parametrices at z = ±1. The parametrices at z = ±1
consist of a matrix valued function P±1(z) defined in the discs B±1(δ) (cf. Fig-
ure 1) satisfying the following properties:

1. P±1(z) is analytic in B±1(δ) \ �.
2. P±1(z) satisfies the same jump conditions as S(z) on � ∩ B±δ .
3. The following matching condition is satisfied on the boundary ∂B±1(δ):

P±1(z)P∞(z)−1 = I + O
(
N−1), z ∈ ∂B±1(δ),(A.1)

as N → ∞.

The functions P1(z) and P−1(z) can be obtained in precisely the same way
as in [35], which was itself based on the construction in [13] corresponding to
weights ω(z) ≡ 1. In our situation, the only difference is that our weight ω(z) and
the Szegö function D(z) are N -dependent, so that one has to be careful with the
matching condition (A.1). From equation (76) in [35], we have

P±1(z)P∞(z)−1

(A.2)
= P∞(z)ω(z)σ3/2P̃∞(z)−1P̃±1(z)P̃∞(z)−1P̃∞(z)ω(z)−σ3/2P∞(z)−1,

where P̃±1(z) and P̃∞(z) are the quantities P±1(z) and P∞(z) with ω(z) ≡ 1.
For our purposes, we will not need the explicit expression for P̃±1(z), which can
be found in, for example, [13] or [35]. Our main goal here is to check that the
matching condition (A.1) is still satisfied.
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LEMMA A.2. Let P±1(z) denote the parametrix defined in (A.2). Then we
have as N → ∞

P±1(z)P∞(z)−1 = I + �̃
(±1)
1 (z)

N
+O

(
1

NdN

)
, z ∈ ∂B±1(δ),(A.3)

where the estimate is uniform for z ∈ ∂B±1(δ). The first correction term �̃
(±1)
1 (z)

depends only on z and is analytic except for a second-order pole at z = ±1.

PROOF. Proposition 7.7 of [13] implies that there is a uniform asymptotic
expansion

P̃±1(z)P̃∞(z)−1 ∼ I +
∞∑

k=1

�̃
(±1)
k (z)

Nk
, z ∈ ∂B±1(z),(A.4)

where �̃
(±1)
k (z) are independent of N [and independent of ω(z)], and have mero-

morphic continuations inside the disc ∂B±1(δ) with a pole of order (3k + 1)/2 at
z = ±1. Inserting (A.4) back into (A.2), we find that

P±1(z)P∞(z)−1 − I ∼
∞∑

k=1

Q(z)�̃
(±1)
k (z)Q(z)−1

Nk
, z ∈ ∂B±1(δ),(A.5)

where Q(z) = P∞(z)ω(z)σ3/2P̃∞(z)−1. To prove the lemma, it is sufficient to
show that

Q(z) = I +O
(
d−1
N

)
, z ∈ B±1(δ).(A.6)

First, note that

ω(z) = 1 +O
(
d−1
N

)
, z ∈ ∂B±1(δ) ∪ [−1,1](A.7)

as follows immediately from the representation (3.21). Then the proof is complete
if we can check that√

z − 1
√

z + 1

2π

∫ 1

−1

logω(x)√
1 − x2(z − x)

dx = O
(
d−1
N

)
, z ∈ ∂B±1(δ)(A.8)

because this would imply the corresponding estimate for the Szegö function
D(z) = 1 + O(d−1

N ) [cf. (3.26)] so that P∞(z) = P̃∞(z) + O(d−1
N ). We will

prove (A.8) below only for z ∈ ∂B1(δ), the case z ∈ ∂B−1(δ) being identical. If
(z − x)−1 is bounded, the result follows immediately from (A.7), therefore, we
consider only the contribution to the integral (A.8) from a small neighbourhood
[1−δ−ε0,1−δ+ε0] and the points z ∈ ∂B1(δ) such that 0 < |z−(1−δ)| < ε0/2.
First, consider Im(z) > 0 and let C denote the clockwise oriented semi-circle in
the upper-half plane connecting the points 1 − δ − ε0 and 1 − δ + ε0. Then by the
residue theorem and analyticity of ω(x), (A.8) is equal to

i
√

z + 1
√

z − 1
logω(z)√

1 − z2
+

√
z − 1

√
z + 1

2π

∫
C

logω(x)√
1 − x2(x − z)

dx,(A.9)
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FIG. 2. The contour �R for the R(z) Riemann–Hilbert problem. The parts of the lenses
� = � \ ∂B±1(δ) near x0 are of distance O(d−1

N ) from the real line. The circles ∂B±1(δ) are of
radius δ.

where we take the principal branch of the square root. Now both terms in (A.9)
are clearly O(d−1

N ), as follows from (A.7) and the fact that (x − z)−1 is uniformly
bounded in (A.9). A similar calculation applies when Im(z) < 0. This completes
the proof of the lemma. �

Final transformation. We will now define the final transformation of the
Riemann–Hilbert problem, S → R. As usual, we set

R(z) =
{

S(z)P∞(z)−1, z ∈ U∞ \ �,

S(z)P±1(z)
−1, z ∈ B±1(δ) \ �.

(A.10)

From the Riemann–Hilbert problem for S(z), it is easily shown that R(z) has
jumps only on ∂B±1(δ), R \ [−1 − δ,1 + δ] and the parts of �± outside of
B1(δ) ∪ B−1(δ) (denoted here by �±). In what follows, we will denote the dis-
joint union of these contours as �R , which we plot in Figure 2. The function R(z)

satisfies the following:

1. R(z) is analytic in C \ �R .
2. R(z) satisfies the jump condition R+(s) = R−(s)J (s) where

J (s) = P∞(s)

(
1 ω(s)eN(g+(s)+g−(s)−2s2−l)

0 1

)
P∞(s)−1,

(A.11)
s ∈ R \ [−1 − δ,1 + δ],

J (s) = P∞(s)

(
1 0

ω(s)−1e∓Nh(s) 1

)
P∞(s)−1, s ∈ �±,(A.12)

J (s) = P±1(s)P∞(s)−1, s ∈ ∂B±1.(A.13)

3. R(z) = I + O(z−1) as z → ∞.

Estimating the jump matrix �(s). Before we estimate the jump matrix, we
need to understand the behaviour of P∞(z) [cf. (3.25)] on the contours �±.
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LEMMA A.3. The Szegö function D(s) in (3.26) and its inverse D(s)−1 are
uniformly bounded on the contours �±. In fact, we have

logD(s) = O(1), N → ∞,(A.14)

uniformly for s ∈ �±.

PROOF. It suffices to prove that∫ 1

−1

logω(x)

(s − x)
√

1 − x2
dx = O(1).(A.15)

We remind the reader that the weight ω(x) can be written

ω(x) =
m−1∏
k=1

[
(x − x0 − τk/dN)2 + (η/dN)2

(x − x0)2 + (η/dN)2

]αk/2

,(A.16)

as follows from the constraints on αk’s in (3.4). We have the elementary inequality

∣∣log
(
ω(x)

)∣∣≤ 1

2

m−1∑
k=1

|αk|
∣∣log
(
1 + gτ,η,N(x, x0)

)∣∣,(A.17)

where

gτ,η,N(x, x0) = (τ/dN)2 − 2(x − x0)τ/dN

(x − x0)2 + (η/dN)2 .(A.18)

Now, clearly if x ≤ x∗ = x0 + τ/(2dN), we have gτ,η,N(x, x0) ≥ 0, so that
log(1 + gτ,η,N(x, x0)) ≤ gτ,η,N(x, x0). If x > x∗, we symmetrise about the point
x∗ exploiting the symmetry | log(1 + gτ,η,N(x∗ − x, x0))| = | log(1 + gτ,η,N(x∗ +
x, x0))| to obtain∣∣log

(
1 + gτ,η,N(x, x0)

)∣∣≤ ∣∣gτ,η,N(x, x0)
∣∣+ ∣∣gτ,η,N

(
2x∗ − x, x0

)∣∣.(A.19)

We will focus only on the region x ∈ [x0 − ε, x0 + ε] as this gives the dominant
contribution to the integral (A.15). For s ∈ �± and x ∈ [x0 − ε, x0 + ε], we have
|s − x|−1 ≤ ((x − x0)

2 + (η/2dN)2)−1/2 and (1 − x2)−1/2 = O(1). Then the con-
tribution to (A.15) from the first term on the RHS of (A.19) is bounded by∫ x0+ε

x0−ε

|gτ,η,N(x, x0)|√
(x − x0)2 + (η/2dN)2

dx

(A.20)

≤
∫ 1

−1

|(τ/dN)2 − 2xτ/dN |
(x2 + (η/2dN)2)3/2 dx

= 8|τ |
η

(√τ 2/η2 + 1
√

(2dN/η)2 + 1 − 1√
(2dN/η)2 + 1

)
= O(1),(A.21)
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where we changed variables x → x − x0 and extended the limits of integration
back to [−1,1]. The resulting integral on the RHS of (A.20) can be evaluated
exactly in, for example, Maple.

For the second term in (A.19), we use the estimate ((x −x0)
2 + (η/dN)2)−1/2 ≤

c((x0 − x + τ/dN)2 + (η/dN)2)−1/2 (where c depends on η and τ only) to get∫ x0+ε

x0−ε

|gτ,η,N(2x∗ − x, x0)|√
(x − x0)2 + (η/(2dN))2

dx

(A.22)

≤ c

∫ x0+ε

x0−ε

|(τ/dN)2 − 2(x0 − x + τ/dN)τ/dN |
((x0 − x + τ/dN)2 + (η/(2dN))2)3/2 dx

= c

∫ ε+τ/dN

−ε+τ/dN

|(τ/dN)2 − 2uτ/dN |
(u2 + (η/(2dN))2)3/2 du = O(1),(A.23)

where we used that the last integral is bounded by the RHS of (A.20). �

PROPOSITION A.4. Let �(s) = J (s) − I where J (s) is the jump matrix for
R(z) defined on the contour �R . We have the following bounds:

• On the discs ∣∣�(s)
∣∣= O

(
N−1), s ∈ ∂B±1(δ).(A.24)

• On the upper and lower lips

∣∣�(s)
∣∣= O

(
exp
(
−c1

N

dN

))
, s ∈ �±.(A.25)

• On the real line∣∣�(s)
∣∣=O

(
exp(−c2N)

)
, s ∈ R \ [−1 − δ,1 + δ].(A.26)

Here, c1 > 0 and c2 > 0 are constants depending only on δ and η.

PROOF. The bound (A.24) follows immediately from Lemma A.2,
while (A.26) follows from the fact that P∞(s) is uniformly bounded in R \ [−1 −
δ,1 + δ] combined with the inequalities (3.16). It remains to settle (A.25). On the
contours �±, we have the explicit expression

�(s) = e∓Nh(s)

(
P∞(s)12P∞(s)22 −(P∞(s)12

)2
(
P∞(s)22

)2 −P∞(s)12P∞(s)22

)
,

(A.27)
s ∈ �±,

where h(s) was defined in (3.20). By Lemma A.3, we see that P∞(s) is uniformly
bounded on �±. Therefore, the only danger is that Reh(s) vanishes too quickly
as N → ∞. However, a careful examination of the function (3.20) shows that
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Reh(z) vanishes at the same rate that the contours �± collapse onto the real axis.
Indeed, an elementary calculation using Taylor’s theorem shows that we have the
inequalities

Re
(
h(s)

)
> c1/dN, s ∈ �+,

(A.28)
Re
(
h(s)

)
< −c1/dN, s ∈ �−,

where c1 = 4η
√

1 − (1 − δ)2. This completes the proof of (A.25). �

Estimating the R-matrix and the proof of Proposition 3.2. Finally, we are
in a position to prove Proposition 3.2. The proof follows from the standard method
described in [13]. However, in our case extra care must be taken with the estimates
because our contour �R depends explicitly on N ; see, for example, [6] for another
example of N -dependent contours.

PROPOSITION A.5. The matrix R(z) satisfies the following estimate:

R(z) = I +O
(

1

N

)
+O

(
log(dN) exp

(
−c1

N

dN

))
, N → ∞(A.29)

uniformly for z ∈ C \ �R .

PROOF. Since for every N , �R is a finite union of smooth contours, standard
theory (see, e.g., [14, 35, 36]) gives

R(z) = I + 1

2πi

∫
�R

�(s)ν(s)

s − z
ds,(A.30)

where �(s) is as in Proposition A.4 and ν(s) is the unique solution to the singu-
lar integral equation ν(s) = I + C−[ν�](s). Here, C− is the Cauchy operator on
L2(�R), defined by

C−[f ](s) = 1

2πi

∫
�R

f (x)

x − s−
dx, f ∈ L2(�R),(A.31)

where s− denotes the limiting value of the integral as the point s ∈ �R is ap-
proached from the minus side of the contour.

We begin by solving the equation for ν(s) in a perturbation series (see, e.g., [5])

ν(s) = I +
∞∑

k=1

νk(s), νk(s) = C−[νk−1�](s),(A.32)

and ν0 = I . We need to show that this series is absolutely and uniformly convergent
for any s ∈ �R . Let s ∈ �+ and deform �+ to a new contour �̃+ differing only by a
small semi-circle of radius η/(4dN) centered at s, as depicted in Figure 3. Denote
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FIG. 3. The deformed contour �̃+. The semi-circle of radius η/(4dN) is sufficiently small that it
does not touch the singularities (crosses), whose imaginary parts are η/dN .

by �̃R the contour �R with �+ replaced with �̃+. By the Cauchy theorem, we
have

ν1(s) = 1

2πi

∫
�R

�(x)

x − s−
dx = 1

2πi

∫
�̃R

�(0)(x)

x − s
dx,(A.33)

where �(0) is the analytic continuation of � to �̃R and satisfies the same bounds
as in Proposition A.4. Now we estimate, splitting the integral into a contribution
from the discs ∂B±1(δ), the real line R\ [−1− δ,1+ δ] [both of which are at most
O(N−1)] and the contribution from �̃±:

∣∣ν1(s)
∣∣≤ c3/N + 1

2π

∫
�̃±

|�(0)(x)|
|x − s| dx

≤ c3/N + 1

2π
e−c1N/dN

∫
�̃±

1

|x − s| dx(A.34)

≤ c3/N + c2 log(dN)e−c1N/dN , s ∈ �+,

where c3 and c2 are constants depending only on δ and η, with a similar bound if
s ∈ �−. If s ∈ �R \ (�+ ∪ �−), then the same bound holds with c2 = 0. Applying
this procedure inductively, we obtain∣∣νj (s)

∣∣≤ K1N
−j + K2

(
log(dN)e−c1N/dN

)j
, s ∈ �R,(A.35)

where we can choose K2 = 0 if s ∈ �R \ (�+ ∪ �−). The bound (A.35) implies
that the series (A.32) is absolutely convergent. Inserting (A.32) back into (A.30),
we arrive at

R(z) = I +
∞∑

j=1

Rj(z),

(A.36)

Rj(z) = 1

2πi

∫
�R

νj−1(s)�(s)

s − z
ds, j = 1,2,3, . . . .



3024 Y. V. FYODOROV, B. A. KHORUZHENKO AND N. J. SIMM

Now we bound the terms in the sum (A.36). First, consider the case that
dist(z,�R) ≥ η/(4dN). Then estimates entirely analogous to (A.34) yield∣∣Rj(z)

∣∣≤ K1N
−j + K2

(
log(dN)e−c2N/dN

)j
, j = 1,2,3, . . . .(A.37)

On the other hand, if 0 < dist(z,�R) < η/(4dN), one can again deform the con-
tour with a semi-circle of radius η/(4dN) and obtain the same bound (A.37) after
essentially repeating the steps (A.33) and (A.34). �

REMARK A.6. To complete the proof of Proposition 3.2, we will derive the
explicit form of the O(1/N) term in (A.29). Thus, we need to compute the function
R1(z) defined in (A.36). By Proposition A.4 and Lemma A.2, we have

R1(z) = R̃1(z)

N
+O

(
1

NdN

)
+O

(
dN exp

(
−c1

N

dN

))
,(A.38)

where

R̃1(z) = 1

2πi

∫
∂B1(δ)

�
(+1)
1 (s)

s − z
ds + 1

2πi

∫
∂B−1(δ)

�
(−1)
1 (s)

s − z
ds.(A.39)

The functions �
(±1)
1 (s) are explicitly known, for example, by setting ω(z) ≡ 1 in

equations (79), (83), of [35] or by using the results in [13]. Then expanding (A.38)
near z = ∞ and computing the residues of the function �

(±1
1 (s) near the poles

s = ±1, we find that

R̃1(z) = A/z + B/z2 + O
(
z−3), z → ∞,(A.40)

where

A =
(

0 i/24
i/24 0

)
, B =

(−1/48 0
0 1/48

)
.(A.41)

Then inserting (A.29) and the first-order correction above into the definition
(A.10), we arrive at (3.29).

APPENDIX B: THE SZEGÖ FUNCTION

For a weight ω(x), the Szegö function is defined by the formula

D(z) = exp
(√

z + 1
√

z − 1

2π

∫ 1

−1

log(ω(x))√
1 − x2

dx

z − x

)
.(B.1)

It satisfies the properties:

1. D(z) is nonzero and analytic in C \ [−1,1],
2. D+(x)D−(x) = ω(x) for x ∈ (−1,1),
3. limz→∞D(z) =D∞ 
= 0.



FBM WITH H = 0 AND THE GUE 3025

For our problem, we are interested in the weight ω(x) =∏m
k=1 |x − zk|αk where

Im(zk) 
= 0 for k = 1, . . . ,m. It can easily be seen that the above three properties
uniquely specify the Szegö function for this weight. Let c(z) = z+√

z − 1
√

z + 1
be the conformal map from C \ [−1,1] to the exterior of the unit disk. Then the
Szegö function for the weight |x − μ|2 is

|c(μ)|
2

(
1 − 1

c(μ)c(z)

)(
1 − 1

c(μ)c(z)

)
, Im(μ) 
= 0.(B.2)

This can be checked by verifying the above three conditions using the properties
c(z)+ 1

c(z)
= 2z and c+(x)c−(x) = 1 for x ∈ [−1,1]. Thus, the Szegö function for

ω(x) is

D(z) =
m∏

k=1

( |c(zk)|
2

(
1 − 1

c(zk)c(z)

)(
1 − 1

c(zk)c(z)

))αk/2

.(B.3)

Similar considerations show straightforwardly that the function C(z,μ) defined
in (3.35) is given by

C(z,μ) = 1

2
log
( |c(μ)|

2

(
1 − 1

c(μ)c(z)

)(
1 − 1

c(μ)c(z)

))
.(B.4)

Defining zk = x0 + τk+iη
dN

, one easily gets the asymptotic

dN

|c(zj )|
2

(
1 − 1

c(zj )c(zk)

)(
1 − 1

c(zj )c(zk)

)
(B.5)

= 2η + i(τj − τk) +O
(
d−1
N

)
which immediately implies that

Re
(
C(zj , zk)

)= −1
2 log(dN) + 1

4 log
(
(τj − τk)

2 + 4η2)+O
(
d−1
N

)
.(B.6)

The uniformity of the error term in the relevant compact sets follows from the
uniform expansions of the logarithm and square roots in these regions. From (B.3),
we obviously have the expansion

D(z) = D∞
(

1 + D1

z
+ D2

1/2 +D2

z2

)
+ O

(
z−3),(B.7)

where

D∞ =
m−1∏
k=1

∣∣∣∣ c(zk)

c(zm)

∣∣∣∣
αk/2

(B.8)

and

D1 = −1

2

m∑
k=1

αk Re
(

1

c(zk)

)
, D2 = −1

8

m∑
k=1

αk Re
(

1

c(zk)2

)
.(B.9)
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APPENDIX C: PROOF OF EQUATION (4.29)

Our first task is to prove that we have the limit

lim
N→∞

∫
[I c

N ]2

�f1(dNx)

�x

�f2(dNx)

�x
FN(x1, x2) dx1 dx2 = 0,(C.1)

where I c
N is the complement of the region IN = [−(1 − δN), (1 − δN)], δN =

N−7/12 and we defined FN(x, y) = (x − y)2K2
N(x, y) in terms of the GUE ker-

nel (4.17). After proving (C.1), we show that δN can be replaced with an N -
independent δ > 0 costing an error term that can be neglected.

Let 0 < ε < 1 and consider the following three subsets of R2:

R1 = {(x1, x2) ∈ R
2|(|x1| < ε

)∧ (x2 > (1 + δN)
)}

,

R2 = {(x1, x2) ∈ R
2|(|x1| < ε

)∧ (1 − δN < x2 < 1 + δN)
}
,

R3 = {(x1, x2) ∈ R
2|(x1 > ε) ∧ (x2 > ε)

}
.

It is sufficient to consider only these regions, because together with their reflections
in the x1 and x2 axes, they cover the entire region [I c

N ]2. In the following, we will
prove that the contribution from each of these regions to the integral (C.1) tends
to zero as N → ∞. Finally, we complete the proof of equation (4.19) by showing
that the difference between the integral (C.1) over [I c

N ]2 and [I c
δ ]2 converges as

N → ∞ to a function that is O(δ) as δ → 0.
We start with the contribution of the region R3 to the integral (C.1). Using the

Schwartz property of f1, f2 and the inequality K2
N(x1, x2) ≤ N2ρN(x1)ρN(x2),

we have for any γ > 0∣∣∣∣∣
∫ ∞
ε

∫ ∞
ε

�f1(dNx)�f2(dNx)K2
N(x1, x2) dx1 dx2

∣∣∣∣∣(C.2)

≤ N2(2εdN)−2γ

(∫ ∞
ε

ρN(x1) dx1

)(∫ ∞
ε

ρN(x2) dx2

)
(C.3)

= O
(
N2d−∞

N

)
,

where we used the inequality |�gj(dNx)| ≤ |gj (dNx1) + gj (dNx2)| ≤
d

−γ
N (|x1|−γ + |x2|−γ ) ≤ 2d

−γ
N (ε−γ ). We conclude that the integral (4.16) re-

stricted to the region R3 is of order O(N−∞) as N → ∞.
Now let us consider the edge region R2. We will make use of the following

lemma from [43], which states

LEMMA C.1 (Theorem 5.2.3(ii) [43]). Let ρN(x) denote the normalized den-
sity of states, as in (4.7). The bound

ρN

(
1 + sN−2/3)≤ (BN1/3s

)−1
e−bs3/2

(C.4)

holds for N large enough. Here, B and b are absolute constants and s → ∞ as
N → ∞.
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Using this result and again the bound KN(x1, x2)
2 ≤ N2ρN(x1)ρN(x2), we see

that the contribution to the integral (C.1) from the region R2 is bounded by

N2
∫ ∞
−∞

∫ ∞
(1+δN )

∣∣�f1(dNx)
∣∣∣∣�f2(dNx)

∣∣ρN(x1)ρN(x2) dx1 dx2

= CδNN2
∫ ∞
−∞

∫ ∞
1

ρN(1 + x1δN)ρN(x2) dx1 dx2

(C.5)
≤ CBN

∫ ∞
−∞

∫ ∞
1

x−1
1 e−bx

3/2
1 N1/8

ρN(x2) dx1 dx2 = O
(
N−∞),

N → ∞,

where we used that f1, f2 are uniformly bounded on R
2.

For the region R1, we need a bound for the absolute value of the functions
ψ

(N)
l (x).

LEMMA C.2 (Szegö, Section 10.8 [51]). Let ψ
(N)
l (x) denote the orthonor-

mal functions defined in (4.18). Then the following bound holds uniformly in l as
N → ∞:

sup
u∈R
∣∣ψ(N)

l (u)
∣∣= O

(
N1/4).(C.6)

First, consider the contribution from the product of squares, that is, that of
ψ

(N)
N (x1)

2ψ
(N)
N−1(x2)

2 in FN(x1, x2). Since in the region R1 we have x1 
= x2, the
bound |�fj (dNx)/�x| ≤ C, j = 1,2 holds for some N -independent C > 0. Then

the contribution coming from ψ
(N)
N (x1)

2ψ
(N)
N−1(x2)

2 is bounded by

C

∫ (1+δN )

(1−δN )

∫ ε

−ε
ψ

(N)
N (x1)

2ψ
(N)
N−1(x2)

2 dx1 dx2(C.7)

≤ C

∫ (1+δN )

(1−δN )

∫ ∞
−∞

ψ
(N)
N (x1)

2 sup
u∈R
∣∣ψ(N)

N−1(u)
∣∣2 dx1 dx2 ≤ C′N−1/12,(C.8)

where C′ > 0 is another constant independent of N . A similar calculation shows
that the contribution from the mixed term ψ

(N)
N (x1)ψ

(N)
N−1(x1)ψ

(N)
N (x2)ψ

(N)
N−1(x2)

is also O(N−1/12) as N → ∞. We conclude that the contribution of the region R1
is O(N−1/12) as N → ∞. Finally, a completely analogous calculation shows that
the contribution to (4.16) coming from all reflections of the regions R1, R2 and
R3 in the x1 and x2 axes satisfy the same corresponding asymptotic estimates as
N → ∞ and, therefore, may be neglected. Equation (C.1) is proven.

To complete the argument, we need to show that the difference between the in-
tegral (4.16) over I 2

N and the same integral over Iδ = [−(1− δ), (1− δ)]2 for some
N -independent δ > 0, can be neglected in the limit N → ∞. It will be sufficient
to consider only the thin strip |x1| < ε and (1 − δ) < x2 < (1 − δN), because the
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remaining parts of I c
N \ Iδ are either reflections of this region or are subsets of the

region R1 treated earlier. Thus, we just have to estimate the integral∫ (1−δN )

(1−δ)

∫ ε

−ε

�f1(dNx)

�x

�f2(dNx)

�x
FN(x1, x2) dx1 dx2.(C.9)

According to the first Plancherel–Rotach formula of Corollary 5.1.5 in [43],
we have the bound FN(x1, x2) = (1 − x2

1)−1/2(4 − x2
2)−1/2O(1) uniformly as

N → ∞. Therefore, since x1 
= x2 in (C.9) and f1, f2 are uniformly bounded, we
see that (C.9) is bounded in absolute value by

C

∣∣∣∣
∫ (1−δN )

(1−δ)

∫ ε

−ε

(
1 − x2

1
)−1/2(1 − x2

2
)−1/2

dx1 dx2

∣∣∣∣(C.10)

≤ C
∣∣(cos−1(1 − δN) − cos−1(1 − δ)

)∣∣→ C
∣∣cos−1(1 − δ)

∣∣,
(C.11)

N → ∞,

where C > 0 is some N -independent constant. Hence, by choosing δ > 0 suf-
ficiently small, we can ensure that the integral over this strip is as small as we
desire. This proves equation (4.29).
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