Original citation:

Lei, Antonio, Loeffler, David and Zerbes, Sarah Livia. (2016) On the asymptotic growth of
Bloch-Kato--Shafarevich-Tate groups of modular forms over cyclotomic extensions. Canadian
Journal of Mathematics. pp. 1-23.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/81907

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
First published in Canadian Mathematical Bulletin at http://dx.doi.org/10.4153/CIM-2016-
034-x Copyright © 2016 Canadian Mathematical Society.

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/81907
http://dx.doi.org/10.4153/CJM-2016-034-x
http://dx.doi.org/10.4153/CJM-2016-034-x
mailto:wrap@warwick.ac.uk

Author’s Draft: To be published in the Canadian Journal of Mathematics http://dx.doi.org/10.4153/CJM-2016-034-x

ON THE ASYMPTOTIC GROWTH OF
BLOCH-KATO-SHAFAREVICH-TATE GROUPS OF MODULAR
FORMS OVER CYCLOTOMIC EXTENSIONS

ANTONIO LEI, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

ABSTRACT. We study the asymptotic behaviour of the Bloch—Kato—Shafarevich—
Tate group of a modular form f over the cyclotomic Zp-extension of Q under
the assumption that f is non-ordinary at p. In particular, we give upper
bounds of these groups in terms of Iwasawa invariants of Selmer groups de-
fined using p-adic Hodge Theory. These bounds have the same form as the
formulae of Kobayashi, Kurihara and Sprung for supersingular elliptic curves.

1. INTRODUCTION

Let p be an odd prime and f a normalised new cuspidal modular eigenform
of weight £ > 2, and p an odd prime which does not divide the level of f. For
notational simplicity, we assume in this introduction that all the Fourier coefficients
of f lie in Z. We let Vy be the cohomological p-adic Galois representation attached
to f (so the determinant of Vy is x'~* times a finite-order character). Then V;
has Hodge Tate weights {0,1 — k}, where our convention® is that the Hodge Tate
weight of the cyclotomic character is 1. Let Ty be the canonical Gg-stable Z,-lattice
in V; defined by Kato [Kat04, 8.3].

Let K be the cyclotomic Z,-extension of Q and write K,, for the unique sub-
extension of degree p”. Our aim is to study the asymptotic behaviour of the Bloch-
Kato-Shafarevich-Tate groups II(K,,, T (j)) (with j € [1, k —1]), whose definition
we shall recall below.

When k = 2, the form f corresponds to an isogeny class of elliptic curves, and
we may choose a curve & in this isogeny class such that T(1) = T,,(£), where the
latter is the p-adic Tate module of £. In this case it can be shown that the group
II(K,,T¢(1)) is the quotient of the classical p-primary Shafarevich-Tate group
I, (K, €) by its maximal divisible subgroup; hence if the latter group is finite
(which is a well-known conjecture), the two groups are equal.
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IThis is usual in p-adic Hodge theory, but the opposite convention appears to be common in
papers on modularity lifting.
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The ordinary case. The behaviour of the Selmer and Shafarevich-Tate groups
over the cyclotomic extension depends sharply on whether £ has ordinary or su-
persingular reduction at p. If £ is ordinary, then the p-Selmer group

Sel, (Koo, €) = lim Sel, (Ko, )

of A over K is cotorsion over the Iwasawa algebra Z,[Gal(K« /Q)], by a theorem
of Kato [Kat04, Theorem 17.4]. By Mazur’s control theorem [Maz72], this implies
that if the groups II,(K,, &) are finite for all n, then we must have

lenz, I, (K, &) = pp"™ + An + O(1),
for some Iwasawa invariants p and A associated to Sel,(£/K).

The supersingular case. The case of supersingular elliptic curves with a,(€) =
0 has been studied by Kurihara [Kur02] and Kobayashi [Kob03]. Suppose that
I, (Ky, ) is finite for all n and write s, (€) = leng, I,(K,, ). They showed that
for n sufficiently large,

50(E) = 8n—1(€) = qn + Az + px(p"” *pnil) — T (£),

where g, is an explicit sum of powers of p, 1 () is the rank of £ over Koo, Ay
and p4 are the Iwasawa invariants of some cotorsion signed Selmer groups, and the
sign + depends on the parity of n.

For supersingular elliptic curves with a,(£) # 0 (which can only occur when
p =2 or 3), Sprung [Sprl3] proved a similar formula:

$n(€) — sn—1(€) = Q:L + A+ (" *pnil) — T (£),

for n > 0, where ¢} is again an explicit sum of powers of p, x € {#,b}, A, and
iy are Iwasawa invariants of some cotorsion Selmer groups defined in [Spr12] and
the choice of x depends on the “modesty algorithm”. An analytic version of this
formula has been generalised to arbitrary weight 2 modular forms in [Spr15].

Higher weights. The main result of the present article is that a similar formula
for modular forms of higher weight would give us an upper bound on the growth
of the Bloch-Kato-Shafarevich-Tate groups. Suppose that ord,(a,(f)) > kQ—_pl and
3 < k < p, where a,(f) is the p-th Fourier coefficient of the modular form f. We

shall see below that the Selmer coranks
rn(f) = corankg, Sel(K,,,T¢(j))

stabilise for n > 0, and we define 7o, (f) to be the limiting value (see Proposi-
tion 5.4). We define

sn(f) = leng, I, (Kn, T¢(j))
(which is finite by definition). We prove the inequality (see Theorem 5.5 for the
precise statement)

sn(f) = sn—1(f) < @5 + A + (P = p" 1) + 5 = oo (),

for n > 0, where ¢} is once again a sum of powers of p that depends on k and
the parity of n, A, and u, are the Iwasawa invariants of the Selmer groups defined
in [LLZ10] for some choice of basis of the Wach module of T}, & is some integer
that depends on the image of some Coleman maps that we shall review in §3 of this
article and the choice of x is given by an explicit algorithm (similar to the “modesty
algorithm” of Sprung).

Copyright (c¢) 2016 Canadian Mathematical Society. All rights reserved.
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The fact that we have an inequality is a result of the growth of the logarithmic
matrix contributed from the twists of Ty (¢) for ¢ # j. In the appendix to this paper,
we relate the defect of this inequality to the Tamagamwa numbers of T (j) using
the method developed by Perrin-Riou in [PR03].

Acknowledgement. The authors are grateful to the anonymous referee for many
useful comments and suggestions, which improved the paper substantially.

2. BACKGROUND FROM p-ADIC HODGE THEORY

We recall the necessary notation and definitions from p-adic analysis and p-adic
Hodge theory. For more details see [LLZ11, §1.3]. We fix (for the duration of this
article) a finite extension E/Q, with ring of integers O, which will be the coefficient
field for all the representations we shall consider.

2.1. Iwasawa algebras and distribution algebras. Let I' = Gal(Q(up~)/Q).
This group is isomorphic to a direct product A x I';, where A is a finite group of
order p — 1 and I'1 = Gal(Q(ppe)/Q(1p)). We choose a topological generator «y
of I'y, which determines an isomorphism I'y = Z,. We also fix a finite extension
E of Q, with ring of integers O which will be our field of coefficients (i.e. we will
consider representations of Galois groups on E-vector spaces).

We write A = O[I'], the Iwasawa algebra of I'. The subalgebra O[I'1] can be
identified with the formal power series ring O[X], via the isomorphism sending ~;
to 1 4+ X; this extends to an isomorphism

(2.1) A = O[A][X].

For a character n of A and a A-module M, M" denotes its n-isotypic component,
which is regarded as an O[X]-module. For n > 1, we write I',, for the subgroup
Gal(Q(up=)/Q(ppn)) and A,, = O[I'/T',]. Note that

Ay = O[A][X]/ (wn—1(X)),

n—1

where wy,_1(X) denotes the polynomial (1 + X)?" = —1.

We may consider A as a subring of the ring H of locally analytic E-valued
distributions on I'. The isomorphism (2.1) extends to an identification between H
and the subring of power series F' € E[A][X] which converge on the open unit disc
| X| < 1.

2.2. Power series rings. Let A&Sp = O[n], where 7 is a formal variable. We equip
this ring with a O-linear Frobenius endomorphism ¢, defined by m +— (1 4+ m)P — 1,
and with an O-linear action of T' defined by 7 (1 4+ 7)X(?) — 1 for ¢ € T', where
x denotes the p-adic cyclotomic character.

The Frobenius ¢ has a left inverse 1/), satisfying

(o) (f LN fC+m)—1),
C ¢r=1
The map v is not a morphism of rings, but it is O-linear, and commutes with the

action of I'.
We write IB%+ = Af [1/p] C E[r], and

IB%;tg Q = = {F(w) € E[n] : F converges on the open unit disc},

Copyright (c¢) 2016 Canadian Mathematical Society. All rights reserved.
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so there are natural inclusions
+ + +
AQp — ]B%Qp — Brig,@,,-
The actions of ¢, ¥, and T" extend to these larger rings (via the same formulae as
before). We shall write ¢ = o(7)/m € A+p, and t =log(l 4 m) € B;ﬁg@p.

2.3. The Mellin transform. The action of I'on 1+ 7 € (Aéfp)wzo extends to an
isomorphism of A-modules

M Ai(Aap)”’:O
1—1+4m,

called the Mellin transform. This can be further extended to an isomorphism of
‘H-modules

H%(Bzg’(@p)wzo
which we denote by the same symbol.

Theorem 2.1. For every n > 1, the Mellin transform induces an isomorphism of
A-modules
An = (A )P0/ " (m)(A,) V=0

Proof. If p € wyp—1(X)A, then M(u) € cp”(7r)(I[i%lﬁg’(@p)l/’:o7 by [LLZ10, Theorem

5.4]. However, ¢™(7) is a monic polynomial in 7, so if an element of Aap is di-

visible by ¢"(7) in Blﬁg’(@p,
Mellin transform induces a map A,, — (A&p)wzo/gp”(ﬂ) (Aap)wzo; and this map is
surjective, because the Mellin transform itself is surjective. Since both sides are
free @O-modules of the same rank, namely (p — 1)p”, it follows that the map must

in fact be an isomorphism. O

it is divisible by the same element in Aap. Hence the

We write 9 for the differential operator (1 + ) on B, o , and Tw for the
ring automorphism of H defined by o — x(o)o for 0 € T'. Then one has the
compatibility relation

Mo Tw=090oM.

Let u = x () be the image of our topological generator v under the cyclotomic
character, so that Tw maps X to u(1 + X) — 1. If m > 0 is an integer, we define
Wnm(X) = wp(u™™(1 + X) — 1) and @pnm = [[1ngwn,i- By exactly the same
argument as Theorem 2.1, this gives the following isomorphism of A-modules

(2:2) A = M@p_1mA = (AG )V=0 /o™ (7 (AG )=

We will need below the following technical result, regarding the interaction be-
tween Mellin transforms and the Iwasawa invariants of power series. We recall the
Weierstrass preparation theorem, which states that any F' € O[X] can be factorized
uniquely as

F(X) =" (X + ©G(X)) - u(X),
where w is a uniformizer of O, A(F)) and u(F') are non-negative integers, G € O[X]
is a polynomial of degree < A\(F'), and u € O[X]*. The quantities \(F') and u(F)
are called the Iwasawa invariants of F.
It is clear that, for 2 € O¢, with ord,(z) > 0, we have the lower bound

(2.3) ord, F(z) > min (2 £ 4 Nord,(z)),

Copyright (c¢) 2016 Canadian Mathematical Society. All rights reserved.
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where e = 1/ ord,(w) is the absolute ramification degree of F. Moreover, if ord,(z)
is sufficiently small (depending on F'), this lower bound is an equality (it suffices
to take ord,(z) < 1/(eM)).

Proposition 2.2. Let f € A+p, and let g be the unique element of A(T'1) such that
M(g) = (1 +m)e(f). Then the A\- and p-invariants of f (as an element of O[x])
coincide with those of g (as an element of O[X]).

Proof. This is a consequence of Proposition 7.2 of [LZ12], which shows that for any
fe B;ﬁg)(@p and g € H such that M(g) = (1+7)¢(f), and any real s with 0 < s < 1,
we have vs(f) = vs(g), where

vs(f) = inf{ord, f(x) : ord,(x) > s}.

When f € O[X] and s is sufficiently small, vs(f) is determined by the Iwasawa

invariants of f: from the inequality (2.3) and the discussion following, we have

vs(f) = Tpu(f) + A(f)s for any s < T%f) So the cited proposition implies the

equalities A(f) = A(g) and u(f) = p(g)- O

2.4. Crystalline representations and Wach modules. Fontaine has defined a
certain topological Qp-algebra Be.is, equipped with an action of Gg,, a filtration
Fil®, and a Frobenius endomorphism ¢.

For any p-adic representation V' of Gg,, we define the crystalline Dieudonné
module of V' by

]D)cris(v> = (V ®Qp Bcris)GQ

The space De;is (V') inherits a filtration and a Frobenius endomorphism from those
of Beyis- It is known that dimg, Deris (V) < dimg, V', and we say V' is crystalline if
equality holds. If in fact V is an E-linear representation, then Ds(V') is naturally
an E-vector space (and its filtration and Frobenius are E-linear).

Definition 2.3. Let a < b be integers. A Wach module over Bap with weights in
[a,b] is a finite free ]B%ap -module N, equipped with an action of I' and a Frobenius
¢ : N[1/7] = N[1/¢(m)]

compatible with those of IB%+p, satisfying the following conditions:
o T' acts trivially on N/wN,
e o(m°N) C 7N,
o if o*(7°N) is the B&p—submodule of T*N generated by o(7°N), then the
quotient T N/p*(7°N) is killed by ¢*~°.
Cf. [Ber04, Definition IT1.4.1]. In op.cit. it is shown how to attach to every

crystalline E-linear representation V' of Gg, a Wach module N(V') over B&p, in
such a way that there is a canonical isomorphism

N(V) ®ng Bjig)@pu /1] 2 Deis (V) @5 B;ﬁg@p [1/1].

Moreover, the definition of Wach modules also makes sense integrally, i.e. over A&p;

and we may associate to each O-lattice T"in V' that is stable under G, an integral
Wach module N(T') € N(V) (Lemme I1.1.3 of op.cit.).

Definition 2.4. We say V satisfies the Fontaine-Laffaille condition if it is crys-
talline and has Hodge—Tate weights in [a,a + (p — 1)] for some a € Z.

Copyright (c¢) 2016 Canadian Mathematical Society. All rights reserved.
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If V satisfies the Fontaine—Laffaille condition, and V is irreducible of dimension
> 2, then one has a particularly convenient parametrisation of Gg,-stable lattices
in V. We say a O-lattice M C Dq,i5(V) is a strongly divisible lattice if the equality

¢ (M NFil' Deyis (V) C p'M
holds for all 7 € Z. Then there is a bijection T' = Dcis(T) between Gg,-stable
lattices in V, and strongly divisible lattices in De,is(V'), given by defining Deyis(7T)
to be the image of N(T') in N(V')/wN(V) 2 Dy,i5(V); cf. [Ber04, Propositions V.2.1
& V.2.3].
We shall need below the following technical result.

Theorem 2.5. Let T be a Gg,-stable O-lattice in a crystalline E-linear represen-

tation V.. Then (o*N(T))"=° is a free A-module of rank d = dimg V. Moreover, if
{ni,...,nq} is an Aap-basis of N(T') which satisfies the condition

(y — 1)n; € 7°N(T)
for all i, then {(1 4+ m)p(n;) :i=1,...,d} is a A-module basis of (¢*N(T))?=".

Proof. This is shown in the course of the proof of Theorem 3.5 of [LLZ10]. The
condition on the basis modulo 72 is the conclusion of Lemma 3.9 in op. cit. O

2.5. Iwasawa cohomology and the Fontaine isomorphism. If V is an FE-
linear p-adic representation of Gg,, and T' C V' is a Gg,-stable Og-lattice, then we
define Twasawa cohomology groups by

HIiw(Qp(,UJp“)vT) = @Hl((@p(up")a T)

(where the inverse limit is with respect to the corestriction maps). These groups are
finitely-generated A-modules, zero unless i € {1,2}. If HO(Qp(up=),T/pT) = 0,
which is the case in our applications below, then HZ is zero, and H{ is a free
A-module of rank equal to the O-rank of T

The following theorem is the starting-point for our study of Iwasawa cohomology:

Theorem 2.6 (Fontaine-Berger). If V' is crystalline with all Hodge—Tate weights
>0, and V has no non-zero quotient on which Gg, acts trivially, then there is a
canonical A-module isomorphism

th : N(T)w:1 - H%W(Qp(ﬂp‘x’)aT)-

See [CC99, §II.1], where it is shown that (for any T') there is an isomorphism
D(T)¥=t — HL (Qp(up=),T) where D(T) is the (¢,T')-module of T; and [Ber03,
§A], where it is shown that N(T)¥=1 = D(T)¥=! under the above hypotheses.

3. WACH MODULES AND COLEMAN MAPS

3.1. Review on the definition of Coleman maps. Let f = > a,¢"™ be a nor-
malised new cuspidal modular eigenform of weight k£ > 3 (note that the case k = 2
can be dealt with using the method of Sprung in [Spr13]), nebentypus € and level
N with (p, N) = 1. We take E to be the completion of the smallest number field
containing all the coefficients of f at some fixed prime above p. We assume that f
is non-ordinary at p, and that £ < p. We write T for the O-linear representation of

Copyright (c¢) 2016 Canadian Mathematical Society. All rights reserved.
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G associated to f as defined by Kato [Kat04, 8.3]. It is crystalline, with Hodge—
Tate weights 0 and 1 — k. We fix an integer j € [1,k — 1] and write T = T(j) and
T =T¢(k—1). Note that T =T (j —k+1).

The representation T'/wT (where @ is a uniformiser of O) is irreducible as a
representation of G, , so in particular we have

HO(QP(NP"")a T/wT) = 0.

Both Ty and T are G, -stable Og-lattices in crystalline representations of Gg,,
so we may consider their Wach modules and Dieudonné modules. By [Ber04, Propo-
sition III.2.1], there are inclusions of Big’Qp—modules

B, ®at N(T) CBY, o, ®0 Deris(T),
B0, ®0 Deis(Ty) CB, o, Dng, N(Ty),

where the elementary divisors of the inclusions are given by 1 and (t/7)¥~! in both
cases.

Lemma 3.1. There exists an O-basis 01,02 of Deyis(T) such that vy € Fil° Deris(T)
and v = @(v1), where  is the Frobenius action on Des(T).
Proof. The Fontaine-Laffaille condition of [FL82] implies that for all integers 4
(a) Fil? Dcris(’T) is a direct summand of Deis(7);
(b) @(Fil' Deris (7)) - P'Deris (T):
(C) Dcris (T) = Zz p_lSD(Flll Dcris(T))~
The Hodge-Tate weights of 7 are 0 and k — 1, so Fil° Deris(T) is of rank 1, say
Fil° Deis(T) = O - b1 and (b) says that vy == @(b1) € Deis(T). Furthermore, (a)
tells us that there exists some v’ € De,i5(7) such that
Dcris(T) =0- b1 B O-v.
By (c), we have
Desis(T) = O - (1) +pk71‘P(DcriS(T))-
Combing the last two equations gives
(3.1) Deris(T) = O - (01) & O - p"Lo(v').
Let D be the O-lattice generated by v, and vy. Note that (3.1) implies that
(3.2) o e D+0O-pF ().
As by = @(Ul) and
2 ap £(p)
_ + -0
ph1 ph1
on Deyis(T), we have p*~1p(b2) = a,02 — e(p)u;. In particular, this implies that
p*~1o(D) C D. Hence, we may iterate the inclusion (3.2) to deduce that

o' eD+0O-(pF o) (v)

1

for all n > 0. However, as f is non-ordinary at p, p*~l¢ is an O-operator on

Deris(7) with strictly positive slope. This implies that (p¥~1p)" — 0 as n — oo,
which forces that v/ € D. Hence, D = Dyis(7) as required. O

Copyright (c¢) 2016 Canadian Mathematical Society. All rights reserved.
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We fix an O-basis vy, 03 of Deis(T), as given by Lemma 3.1. Since Deis(7) =
N(7)/7N(T), this basis can be lifted to a basis ny,ns of N(7) as an Aap-module.

There is a change of basis matrix M € M2><2(]B:i_g7(@p) such that
(33) (n1 ng) = (Ul 02) M

and M = I, mod 7, where Iy is the 2 x 2 identity matrix. We write v; = v, -

k—j—1 _ k—j—1 _ k—1 _ k—1
th—a €_ktj4+1, Ny =Ny T J €_k+j+1,Vfi = vt €1k and ngi =0T €1k

for the corresponding bases of Deyis(T'), N(T'), Deris(T¢) and N(T) respectively.
Here e, denotes a basis of the Tate motive O(x") for r € Z. By [Ber04, proof of
Proposition V.2.3] and [Leil5, Proposition 4.2], we may choose our bases so that

(3.4) M =1, modx"!

and that the matrices of ¢ with respect to vi f,va 5 and ny f,no ¢ are given by

<p’“01 _Zfap)) and <(5q;)“ _Zz(op)>

respectively, where 6 = p/(q — 7P~1) € (Aap)x. Then, the matrices of ¢ with
respect to vy, v2 and ny, ny are given by

_ £ _ e
a= (Y p' ] and P= ko_l o .
1 pF-1 0 1

Definition 3.2. We define the logarithmic matrix Mg (with respect to the chosen
bases) to be M~ ((1 + m)Ap(M)).

Theorem 3.3. Let ny, ng be the basis of N(T) chosen above. Then, (1+m)p(n1), (1+
7)p(ng) form a A-basis of (p*N(T))¥=0.

Proof. Let v € T be a topological generator. Then, (3.3) tells us that
(v-m yome) = (01 v2)y(M).
This gives the equation
(voni yeme)=(ng mo) M Ay(M).

Hence, for both i = 1,2, we have

(1—y)n; € 7" IN(T)
thanks to (3.4). As we assume that k > 3, we have in particular

(1 —~)n; € N(T),
which is the condition required in Theorem 2.5%. Therefore, our result follows. [

Recall from [LLZ10, Remark 3.4] that for all z € N(7)¥=!, we have (1 — ¢)z €
(¢*N(T))¥=C. The latter is free of rank 2 over A, with basis (1 + 7)p(ny), (1 +
m)p(n2) as given by Theorem 3.3. This allows us to define the Coleman maps
(again, with respect to our chosen bases) as follows.

2This is the only place where we use the assumption that £ > 3.
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Definition 3.4. Fori € {1,2}, we define the A-homomorphisms Col; : N(T)¥=1 —
A given by the relation

2
(1= )z =3 Coli(2) - (1+m)p(n;) = (o1 ©2) - Mg (8123) |
=1

Let Al : N(T)¥=! — H}, (Qu(pp=), T) be the A-isomorphism given by Theo-
rem 2.6. By an abuse of notation, we shall write Coly, Coly for the compositions
Col; o (h4)~! and Coly o (h}-)~! as well.

3.2. A finite projection of the Coleman maps.

Definition 3.5. For eachn > 1, we define H, = " Y(P~1)--- (P~ and ¢, =
M- ((1+7)H,).

Remark 3.6. Note that H,, € A&p, and 7, € A; and Hy = 74 = 1.

Lemma 3.7. We have the congruence
Mg = A" - H;, mod @1 p—2(X)H.
Proof. From (3.3), we have the relation
MP = Ap(M),
which we may rewrite as M = Ap(M)P~!. On iteration, we have
M = A" (M)A (P (PP

By (3.4), we have ¢""1(M) =1 mod ¢"~!(7¥~1), so this implies that

M= A"t 2(P~Y) . p(PTH P mod " (xF ).
This implies that

o(M)=A""'. H, mod "(7*1).

Hence the result by (2.2). O
Lemma 3.8. For alln > 1 and z € N(T)¥=!, (1® ¢ ™) o (1 — ¢)z is congruent
to an element in Ay g—2 @ Deyis(T) modulo wp—1 j—2(X)H & Deyis(T).-

Proof. By Lemma 3.7 and the equation in Definition 3.4, we have the congruence

(1-@)z= (01 v2) A" I, (ggigg

If we apply (1 ® ¢~") to both sides, we obtain

> mod (I}nfl,]gfg (X)H & Dcris (T)

As 7, Coly(z) and Cola(z) are all defined over A, we see that (1 ® ¢™™)o (1 —p)z
is indeed congruent to an element in A, 2 @ Deyis (7). O

This allows us to give the following definition.
Definition 3.9. For n > 1, define
Col,, : Hyyy(Qp(p); T) —Ank—2 @ Dexis(T)
2 (1®@¢@ ™) o(l—p)o (k) ' (2) mod @p_1k_2(X).
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We recall that kY- is an isomorphism by Theorem 2.6. Therefore, Lemma 3.8
tells us that the map Col,, is well-defined.
For an integer m, we define the twisting map

Twp, =Tw " @1t "em : H Q@ Deyis(T) = H Q Deyis (T (m)).

Consider the twisting map Tw* =1 : ¢ — x*7=1(g)o on A. Since k—j—1 < k—1,

Tw" 1@, 1 x—2(X)) is divisible by w, 1 (X). Hence, Tw" 7! induces a natural
map A, x—2 — A,. Therefore, we may define

QT,n : HIIW ((@P(.UJIDOC )7 T) %An X Dcris (T)

z2—=Tw_pijy10Co0l, (2 ex—j—1) mod wy_1(X),
on identifying Hy, (Qp(tp=), T) - ex—j—1 with H{, (Qp(pp=), T).

Lemma 3.10. The map Coly,, defines a A,,-homomorphism from HYQp(ppn ), T)
tO An ® Dcris (T)

Proof. We note that Coly ,, is a A-homomorphism since both Col,, and z — TwF 7 1o
(z - ex—j—1) are A-linear. The fact that Coly,, factors through HYQp(ppn ), T)
follows from the equation H{, (Q,(ppe=), T)r, = H'(Qp(upn),T) (because of the

vanishing of HZ (Qp(tp=),T)). O

We have the explicit formula

(3.5) Coly,(2) = (v1 v2) - Tw" ™7 <j£1 (COll(z ' 6k—l—j)>)

COIQ(Z . 6k_1_j)
mod wy—1(X)A ® Deyis(T),

by Lemma 3.7 and the expansion of 1 — ¢ as given in Definition 3.4.

We now modify the definition of Coly ,, to define a map that lands in A,. For
any u € 7, we define Coly.,, ,, : H{, (Qp(pp=), T) = A, to be the composition of
Coly,, and the linear functional on Ap®Deyis(T) — Ay, given by a-vi+b-ve — a+ub.
More explicitly, (3.5) tells us that Colr,, , is given by
(3.6)

Colypu(2) = (1 w) - Twh177 (%1 : (

Note that Lemma 3.10 tells us that Coly,, ,, is Ap-linear.

COll(Z . ek—l—j)
COIQ(Z . ek_l_j)

) mod w0

3.3. Analysis of Bloch—Kato subgroups via Coleman maps. If F' is a finite
extension of Q,, we write H}(F, T) C HY(F,T) for the usual Bloch-Kato subgroup
from [BK90] and H/lf(F, T) denotes the quotient H'(F, T)/H}(F, T). The goal of
this section is to study H/lf (Qp(ppn ), T) via the map Colr,, -

Let 7* be the O-linear dual of 7. For each n > 1, we define the pairing

{(~ ™~ Hl(@p(ﬂp")vT) X Hl(Qp(Mp”)aT*(l)) —A;,
@,9) = > (2,90,

ocel’/Ty,

where [~, ~], is the standard cup-product pairing

HI(QP(NP“)vT) X Hl(Qp(ﬂp")»T*(l)) - 0.

Copyright (c¢) 2016 Canadian Mathematical Society. All rights reserved.



Author’s Draft: To be published in the Canadian Journal of Mathematics http://dx.doi.org/10.4153/CJM-2016-034-x

ASYMPTOTIC GROWTH OF SHA FOR MODULAR FORMS 11

On taking inverse limits, this induces a pairing

(~y ) s Hiy (Qp(p=), T) % Hy (Qp(pe=), T7(1)) — A
It is semi-linear over A with respect to the involution on A (which we denote by 7)
in the following sense:

<U'T7y> = O’<$7y>, <$70y> :Uz<$»y>
We may extend the pairing (~, ~) by semi-linearity to
(H ®0 Hiy(Qp(ip=), T)) x (H ®0 Hiy (Qp(pp=), T*(1))) — H,

which is again denoted by (~, ~) by an abuse of notation.
Recall that in [PR94], Perrin-Riou defined the big exponential map

Q1)1 (Bxg,(@p)wzo ® Deris (T7(1)) = H © Hyy(Qp(p=), T*(1))
By [LLZ11, proof of Proposition 4.8], for all z € H{, (Q,(pp), T),

M e)(1-p)z= Z<Zv Q7)1 (1 +7) @ 0)))v;

i=1
where v/, v} is the dual basis of D¢s(7*(1)) to vy, 0y with respect to the natural
pairing
[N» '\’] : Dcris(T) X Dcris(T*(l)) — 0.
Therefore,
2
Col,(2) =Y (2, Q)1 ((1+7) @ 0)) ™" (0;)  mod @y 152
i=1

2

= (2,97 @1((1+7) @ (pe)"(0)))o; mod @1 k2
i=1

as the dual of ¢! with respect to [~,~] is py. This description allows us to make

the following choice of u to describe the kernel of Coly,, ,,.

Proposition 3.11. There exists u € Z, such that ker(Colr,, ,,) = H} (Qp(ppn), T).
Proof. Write v’ = (v} +uvb)t~ ¥ e, i 1 € Deyis(T*(1)) and let z € H(Qp(ppn ), T).

If 6 is a Dirichlet character of conductor p™ > 1, we have the interpolation formula
of Perrin-Riou [PR94, §3.2.3] (see also [Leill, §3.2])

6 (Coly,, . (2) 0~ 1(o
(Coly.,, ))!: s 0

o€l /Ty,
where expf.,, : H'(Qp(ppm ), T) = Qp(ppm) ® Fil® Deis(T') is the Bloch-Kato dual
exponential map and 7(6) is the Gauss sum of §. There is a similar formula when ¢
is the trivial character on replacing ¢~ by (1 — %) (1—¢)~L. We note that here

exp*Tﬁm(z) is the shorthand for expr,, © COI'y /m(z)7 where cor,, /,, denotes the the
corestriction map H'(Qp(upn), T) = H'(Q(ppm), T). Recall that expi,, factors
through H/lf (Qp(ptpn), T). Therefore, we see that H}(Qp(,upn),T) is contained in
ker(QT,n,u)'

We choose u so that ¢" ™ (v'), 1 < m < n and ¢" (1 - “"T) (1—¢)~ L) are

not contained inside Fil® Deris(V). We note that such u exists since all maps are
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surjective on De,s(V) and Fil° Deris(V) is of dimension one. Let v” be any O-basis
of Deyis(T)/ Fil° Deis(T). In particular, for each m > 1, there exists a non-zero

constant ¢, € O such that " ™(v') = ¢;,v"” and " (1 — %1) (1—-¢) () =
cov” modulo Fil’ Deris (7).
Suppose that Colr , ,(z) = 0. From (3.7), we deduce that

Z 9_1(0)[exp*T)n(z”),v”] -0

ocel’'/Ty,
for all characters § on I'/T",,. By the independence of the characters, this implies
that [exp},,(27),v"] = 0 for all 0. In particular, z is contained in the kernel of
expr,,,, which is H}(Qp(,upn),T). O

Corollary 3.12. For any u € Z, that satisfies the condtion of Proposition 3.11,
Coly,, ., induces an injection of A,-modules

H/lf((@p(ﬂp”)vT) = An,
whose cokernel is finite.

Proof. The injectivity is given by Proposition 3.11. By [BK90, Theorem 4.1],
H}(QP('L&pn)’ V) is isomorphic to Deis(V)/ Fil® Deyis(V) ®z, Qp(upn). Hence, by
duality H};(Qp(ppn), V) is isomorphic to Fil® Deyis(V) ®z, Qp(ptpn ). Therefore, the
finiteness of the cokernel follows from the fact that the two sides have the same
Zy-rank. O

We remark that our map Coly,, , does depend on the choice of u. But it does
not affect our calculations later, see the proof of Proposition 4.11 below.

4. RESULTS ON p-ADIC VALUATIONS

4.1. Review of Kobayashi rank. Given an O-module N, we shall write len(N)
for the O-length of N. We fix a family of primitive p™-th root of unity (,» and
write €, = (pn — 1.

Definition 4.1. Let N = (N,,) be an inverse system of finitely generated O-modules
with transition maps m, : Ny, — Nyp_1. If m, has finite kernel and cokernel, the
Kobayashi rank VN, is defined as

VN, = len(ker 7)) — len(coker 7,,) + ranko N, _1.

If L is an O[X]-module, we define V, L to be V (L/wy,(X)L), with the connecting
map given by the natural projection L/w, (X)L — L/w,—1(X)L, if its kernel and
cokernel are finite.

Lemma 4.2. Let F € O[X] be a non-zero element. Let N be the inverse limit
defined by N, = O[X]/(F,wn), where the the connecting maps are the natural
projections.

(a) Suppose that F(ey,) # 0, then VN, is defined and is equal to ord., F(ey).
(b) When n is sufficiently large, then VN, is defined. Furthermore,

VN, =e xord,, F(e,) = e\(F) + (p" — p" Y u(F),

where e is the ramification index of E/Q, and A(F'), u(F) are the Iwasawa
invariants as defined in §2.3 above.
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(¢) If L is a finitely generated torsion O[X]-module, then V,L is defined for
n > 0 and its value is given by

ML)+ (p" = p" (L),

where A(L) and p(L) are the A- and p-invariants of a generator of the
characteristic ideal of L.

Proof. This follows from the same proof as [Kob03, Lemma 10.5]. g

We write p" for the size of the residue field of E. The following lemma allows
us to relate the growth in the size of a tower of finite O-modules and Kobayashi
ranks.

Lemma 4.3. Suppose that N = (N,,) is an inverse limit of finite O-modules such
that | Ny, | = p* for some integer s, € rZ for alln > 1. Then, rVN, = 8, — Sp—1.

Proof. Since N,,_; is finite, we have
VN,, = len(ker 7,,) — len(coker m,,)
= (len(NV,) —len(Imm,)) — (len(N,,—1) — len(Im 7y, ))
=len(N,) — len(N,,_1).
In general, if L is a finite O-module, then |L| = p™**(%). Hence the result. O
Finally, we prove a lemma on p-adic valuations that will be needed later.

Lemma 4.4. Let F € O[X] be non-zero. Then for all sufficiently large integers n
we have

ord, F(e,) = ordy, M(F)(en+1)-
Moreover, for n > 0 we also have

ord, F(e,) = ord, Tw(F)(ep).

Proof. We may write MM(F) = (1 + 7)p(G) for some G € A&p. By Proposition 2.2,
F' and G have the same Iwasawa invariants, so ord, F'(e,) = ord, G(e,) for n > 0.
This implies the first part of the lemma since (1 + m)p(G)(€n41) = Cpn+1G(€n).
The second part of the lemma follows from the fact that Tw preserves p- and
A-invariants. O

4.2. Calculations on evaluation matrices. From now on, we shall write v =
ord,(ap), where ay, is the p-th Fourier coefficient of f. Following [Sprl3, §4.1], given

W b o ) _ (ordy(a) ordy(b)
1) deined over @ we writeordy () = (0 (0) r(l) ).

Lemma 4.5. Let 1 <i<n—2, then

ond, (¢ (Pen)) = (aa 1)

any 2x2 matrix ¢ =

Proof. Recall that

so its inverse is given by
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Therefore, our result follows from the fact that § € ZY, e(p) € O* and ¢'(q) is

. ; n—i—1—1 .
equal to the p*Tl-cyclotomic polynomial, so ¢©%(q)(€,) = C’&il_l whose p-adic
. pn—z
valuation is 1/p" "1, O
Proposition 4.6. Assume that 2v > 21 For alln > 1,
—1 'n,—l k1
U+Zl L Pm ZD W P ) if n is odd.
00 00
ordy, (Hn (€n)) = noL 1 k—1
2 =t U+ Z 27 . .
=1 p=t P if n is even.
00 )

Proof. By Lemma 4.5, we have

e (2 (5 2 (5 Y

In particular,

(4.1) ord, ( nH(enH)):ordp(Hn(en))(,f_’l 0).
Therefore,

ordp(H1(€1))=(Ovo OOO> and ordp(H2(€2)):<C;1 OUO>

since 2v > % by our assumption.
Suppose that

=1 |— -1 k-1
ord,(Hae—1(e2¢-1)) = <U+ 2zt 2= p%*) ’

S 00
£ k=1 -1 k-1
ord,(Ha(€20)) = (Zi_éop%—l v+ E;l PiED )

for some integer £ > 1. By (4.1), we have first of all

£ k—1
OI'dp(H2[+1(€Qg+1)) _ (U + Z’L 1 p21 ZiZI p21_1>

(0. ¢]

because Zle k2l < Zle p@%ll On applying (4.1) again, we have

pZi
41 k-1
Ordp(H25+2(€2e+2)) _ <Zi_1 pr—1 U + Zz 1 pzl )
00
thanks to our assumption that 2v > %, which implies that
¢ {41
k—1 kE—1
T e o
i=1 i=1
Therefore, our result follows from induction. O

For i = 1,2, we fix two elements F, Fp € O[X] with p; and A; being its p- and
A-invariants.
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Corollary 4.7. Under the condition that 2v > %, forn > 0 we have the formulae

—1
A4 (" =p" ) (B o+ Z L, L) n odd,
orde, ((Hi1)1,1 - Filen)) = ’ 1)

)\1+( n 1) Hl +Zl 1p21 1) n even,
n—1
Ao+ (pn —pnh) (B2 4 30 ’“;1) n odd,
orde, (Har)r2 - Falen)) = - i
A4+ (" —p" ) (2 +v+ Y2 ) n even.
Proof. By Lemma 4.4, ord, 4%,+1(e,) = ord, Hy,(€,). Hence, our result follows
from combining Proposition 4.6 with Lemma 4.2(b). O
Corollary 4.8. Suppose that 2v > =L For n>> 0 and n odd, we have
. k-1
orde, (Ha)ia - Fulen)) < orde, (Hieihra- Falen)) o T 4ot oog < B2
e p+1 e
. k-1
orde, (#5111 - Fi(en)) > orde, (Hi)ia- Fo)(en)) if B2+ v+ 1 2.

For n> 0 and n even, we have

. k—1
orde, (#4111 Fi(en)) < orde, ()i Falen)) i B2 <22 4ot o
) k-1
orde, (Hsr)rr - Filen)) > orde, (Hsi)ro - Falen)) if 22 > 22 po g =
e e p+1
Proof. Note that
k—1 k—1 k-1
szi—lfz p2i >0 and 2211722,21 >0
i=1 i=1 i=1
and that both sequences are strictly increasing and tend to i as n — 0o. Hence
the result. 0

4.3. Some global Iwasawa modules. For n > 0 let us write K,, = Q(ppn).
Definition 4.9 (cf. [Kat04, §12.2]). For m > 0, we define

H™(T) = lim H (Spee O, [1/p],.T).
where the inverse limit is respect to the corestriction maps, and j is the inclusion
map Spec K,, — Spec Ok, [1/p].

By [Kat04, 12.4(3)], the modules H™(T') are finitely-generated over A, and are
zero unless m € {1,2}; and H'(T) is free of rank 1 over A. We fix an element
z € HY(T) so that H'(T) = A - z. Tensoring with the basis vector ey_1_; of
O(k — 1 — j) gives a bijection

H'(T) = H'(T),

and (in a slight abuse of notation) we shall write Col;(z) for the image of z - ex_1_;
under Col; composed with the localization map H' (7)) — H{ (Qp(ppe), T).
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Definition 4.10. For i =1,2 and n a Dirichlet character modulo p. Let j1] be the
p-invariant of Col;(z)". For each n > 1, we define an integer T(n,n) € {1,2} by

n n n n
{1 if%Jerr%S%andn 0dd0r%<%+v+% and n even,

2 otherwise.
Furthermore, we write ¢, = orde, ((H11)1,7(n.n) (€n))-

Note in particular that ¢ is a sum of some powers of p, together with possibly
v, as given by Proposition 4.6. Furthermore, Corollary 4.8 tells us that

2

(4.2) ord,, (Z(%H)u . Coli(z)"(en)) = q,, +orde, Col,(y ) (2)"(€n).

i=1

4.4. Analysis of some local Iwasawa modules. For n > 1, we define

Xioc () = coker (H'(T)r, = H};(Qp(1ipn), T))

which gives an inverse limit with the connecting maps given by the corestriction
maps. We would like to study VAXioc(Q(ppn+1))" for a fixed Dirichlet character n
modulo p.

Proposition 4.11. Suppose that Col,(z)" and Col,(2z)" are non-zero. For n >0,
V Xoe(Q(ppn+1))" is defined, and its value is bounded above by

Vindige < eqy + Vn(O[X]/Coly ) (2)").
Proof. Recall from Corollary 3.12, we have the injection
®T7n+l,u : H/lf (QP(NP"‘H)v T) — A’n+1‘

On taking I',-coinvariants, the same map (not Colr ,, ) induces an injection

Colr it H/lf(Qp(Np")aT) = Ay,

which admits the same description as (3.6). We write coker,, 11 and coker,, for the
cokernels of these two maps respectively. Then, we have the commutative diagram

@T,nﬁ»l,u

0 H/lf(QP('“p"“)vT) Apyy — cokerpp g — 0

! ! |

1 ET,TL+1,U
0 ’ H/f(@p(ﬂp“),T) A, —— coker, —— 0,

where the vertical maps are all natural projections. This gives

0 —— Xoc(Qp(upn+1)) —— Anta/(Coly41,,(2)) — cokernpy —— 0

l l 5

0 —— Xoe(@(p)) —— Au/(Colp,iy,(2) —— coker, — 0.

Recall from Corollary 3.12 that coker,, 1 is finite (in particular, coker,, too). Hence,
on taking n-isotypic components, V coker;,  ; (with respect to 7) is defined. In fact,
it is given by len(ker "), which is > 0.

Furthermore, recall that we assume Col;(z)" # 0 for ¢ = 1,2. Proposition 4.6 tells
us that the second row of J#,11(e,) is 0. So, the formulae (3.6) and (4.2) imply
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that Coly .1, (2)(en) # 0 when n > 0. Hence, V (Api1/(Coly,i1.,(2)" =
Vi (O[X]/Colyp 11 .(2)") is defined. Its value is given by

6qz + VH(OHX]]/COIT(n,n) (Z)n)v

thanks to Lemma 4.2.

Therefore, the fact that the Kobayashi rank V respects short exact sequences
([Kob03, Lemma 10.4]) tells us that VAXioc(Qp(ppn+1))" is defined and its value is
equal to

Vo (O[X]/Coly 11 (2)") — len(ker x).

Hence the result. O

This can be considered as a weakened version of the modesty proposition [Spr13,
Proposition 3.10]. In the k = 2 case, equality holds because the projection 7 turns
out to be an injection (see [Kob03, Lemma 10.7] and [Spr13, Lemma 4.12]).

5. SELMER GROUPS AND SHAFAREVICH—TATE GROUPS

5.1. Signed Selmer groups. Let TV be the Pontryagin dual of T. As in [LLZ10],
the Coleman maps allow us to define the Selmer groups

Hl(Qp(Np“)v Tv))
ker(Col;)+

for i = 1,2. Here Sel(T" /Q(up=)) is the Bloch-Kato Selmer group from [BK90].
We shall write X(Q(ppn)) = Sel(T /Q(upn))Y for n > 1.

Let X; be the Pontryagin dual of Sel;(TV/Q(pp)). We subsequently assume
that for any Dirichlet character n that factors through Gal(Q(p,)/Q), both X}" and
X, are O[X]-torsion. Note that this is the case if either k > 3 or a,, = 0 by [LLZ10,
Theorem 6.5]. In particular, V,, X" are defined for n > 0 by Lemma 4.2(c).

We have the Poitou-Tate exact sequence (see for example [LLZ10, (61)])

(5.1) H*(T) — Im Col; — X; — Xy — 0,

Sel, (T /Q(jup)) = ker (SeuTV/@(upoo)) S

where X is H?(T) and can be realized as the Pontryagin dual of the zero Selmer
group Selo(T" /Q(ppe)), which is defined to be

ker (HI(Q(MPw)7T\/) - HHI(Q(NP“J)MTV)> ’

where v runs through all places of Q(up). Note that X is a torsion A-module
by [Kat04, Theorem 12.4] and hence V, X is defined for n > 0 by Lemma 4.2(c).
Note that (5.1) gives the short exact sequence
O%M%?Q%XO%O.
(Coli(2))
Hence, our assumption that X’ be torsion implies that Col;(z)” # 0. In particular,
Proposition 4.11 applies.

Recall from [LLZ11, §5] that Im Col] is pseudo-isomorphic to [],, (X — x (7)™ +
1)O[X], where m runs through some subset of {0, 1, ...,k —2} depending on ¢ and
7. Let us write ;(n) for the cardinality of this subset and write k(n,1) = Kr(n,) (7).
We have the following generalization of [Sprl3, Proposition 3.11].
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Proposition 5.1. Fori = 1,2, n any Dirichlet character modulo p and n > 0,
VX =V, (A/Coli(2)" + V,, X — eri(n).

Proof. The following sequence

Im(Col;) " A Y O[X]
0 < Coli(z) > - <Coli<z>> P& —x(mrnox] €70

is exact, where G is some finite subgroup. In particular, V,,G = 0 for n > 0. We
may work out the Kobayashi rank of the second last term using Lemma 4.2(b).
Recall from [Kob03, Lemma 10.4] that Kobayashi ranks respect exact sequences,

therefore,
Im(Col;) \ " B A K
V”(Cc)uz)) ““’(")V"(c(ﬂxz)) '

From (5.1), we have furthermore the following exact sequence

0~ Col;(z)

— X — Xy — 0,

which implies that
Im(Col;) "
\Y <C01i(z)> + Vo, &) =V, X,

Combing the two equations gives our result. O

Remark 5.2. Let p) be the p-invariant of Xj. For i = 1,2, let fi] be the u-
invariant of X;'. Then, Proposition 5.1 implies that fi] = u) — pg. In particular,
wi —ps = @l — ad. Therefore, we may replace ] and p3 by i and i respectively
in Definition 4.10. In other words, we may define T(n,n) using the p-invariants of
the dual Selmer groups X;, instead of Col;(z).

Corollary 5.3. Forn > 0, VX(Q(uyn+1))" is defined. Furthermore, its value is
bounded above by

eq,, + an*:](n,n) + ek(n,n).
Proof. Let Y(Q(juy)) = coker(H (G5, T) > HY, (@ (i), 7)) and Xo(Qtpn) =

Selo(TV /Q(ppn))Y. As a consequence of the Poitou-Tate exact sequence, we have
the short exact sequence

0 = V(Q(ppn)) = X(Q(ppr)) = Xo(Q(pprn)) = 0

(c.f. [Kob03, (10.35)]). But Proposition 10.6 in op. cit. says that

o VY(Q(ppn+1))" is defined for n > 0 and is equal to VAo (Q(ppn+1))";
o VA(Qipes))" = V.

Therefore,

VX Q1)) = Voo Qptgrs)) + Vo X

and our result follows from Propositions 4.11 and 5.1. g
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5.2. Bloch—Kato—Shafarevich—Tate groups. Let L be a number field. We re-
call that the Bloch-Kato—Shafarevich—-Tate group of T over L is defined to be

(5.2) LI(L,T) = m

where (%)4iy denotes the maximal divisible subgroup of x. (See e.g. [BK90, Re-
mark 5.15.2]). If f corresponds to an elliptic curve £ and the p-primary part of the
classical Shafarevich—Tate group & is finite, then the two definitions of (p-primary)
Shafarevich-Tate groups agree.

Proposition 5.4. There exists integers ng,rl, > 0 such that
corankoSel(TV/Q(upn“ N =1l
for alln > ng.

Proof. By Corollary 5.3, VX (Q(ppn+1))" is defined for n > 0. In particular, the
kernel and cokernel of the connecting map

Sel(T" Q1)) = Sel(T” /Qppn)) "

are finite for n > 0. In particular, Sel(T"/Q(u,n+1)) and Sel(T"/Q(ppn)) must
have the same Z,-corank. 0

This implies that Sel(T" /Q(ppn+1))h, = (E/O)®"% (as Z,-modules) for n > 0.
Combined this with (5.2), we obtain the following short exact sequence of Z,-
modules

0= (E/O)®% — Sel(T /Q(pyn+1))" — TL(Q(pnt1), TV)" — 0.
Therefore, on taking Pontryagin duals, we deduce that
VX(Q(upn+1))" = 18 + VIL(Q(ptpn+1), TY)".

From Corollary 5.3, we deduce that

VIL(Q(ppn1), TY)" < eqp + Vu X, o+ eri(n,m) — k.
Therefore, we obtain the following theorem on applying Lemma 4.3.
Theorem 5.5. Let #I11(Q(pn ), TV)" = p*n. Forn >0,

St = s <7 (eq + V], ) +ex(nin) =12 ).

where r is the integer so that the residue field of E has cardinality p".

Using Lemma 4.2, we may rewrite this formula as
—1\Hr(n, T3
a1 =58 < d (474 Ay + 07 = DI i) - 7).

where d = [E : Q).
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APPENDIX A. GROWTH OF TAMAGAWA NUMBERS OVER CYCLOTOMIC
EXTENSIONS

We let T'=Ty(j) and T = Ty(k — 1) be the representations studied in the main
part of the article. In particular, we assume all the previous hypotheses on T and
T are satisfied throughout. Furthermore, we shall assume that the eigenvalues of ¢
on D,is(T) are not integral powers of p. For notational simplicity, we shall assume
that the coefficient field £ is Q, throughout.

Recall the Perrin-Riou p-adic regulator

‘CT : Hllw (QP(MPC’C )7 T) —H ® Dcris(T)
defined by MM~ o (1 — ¢) o (h4)~*, which is the map used to define the Coleman

maps in Definition 3.4. We have the following interpolation formula

Proposition A.1. Letn > 1. For any z € H{, (Qu(pp=),T), i > 0 and a Dirichlet
character 6 of conductor p™, we have
i (L =)L —p e )7 (exp*(20,-4)) -t 'e;i if n =0,
Lr(2)(X'6) = { Z ’

(8) ©" (exp*(€s - Zn,—i)) -t e otherwise,

where 7(8) is the Gauss sum of §, z, —; is the projection of z in HY(Qp(upn ), T (—1))
and €5 is the element 3, ccai, (un)/Qp) 5 1(o)o.

Proof. This is a slight reformulation of [LZ14, Theorem B.5] since we have the
equation
ot ) =p -t e,
O
Corollary A.2. Let z € H} (Q,,T). Then, L1(2)(x'8) = 0 if and only if é; -
Zn,—i € €5 - H}(Qp<ﬂp")v7—(_i))-

Proof. This is because our assumption on the eigenvalues of ¢ implies that (1 —
©)(1 —p~tp~1)~1 and ¢ are both invertible. O

We write K = Q(pp») and Agx = Gal(K/Q). For each character § on Ag, we
write p™® for its conductor. Let K, be the completion of K at the unique place
above p (which may be identified with Q,(u,n)). We fix a basis v for Fil® D (T)
and its dual v/ in Des(T%(1))/ Fil° Deris (T%(1)).  We have the definition of the
Tamagawa number as defined by Bloch-Kato [BK90]:

Tam(T/K) = [H}(K,,T) : Ok, - v]Ly(T, 1),

where L,(T, 1) is the Euler factor of the complex L-function L,(T,1) at p and we
identify O, v with its image under the Bloch-Kato exponential map. We may
decompose the Tamagawa number into isotypic components, namely

Tam(T/K) = | [ Tam(T/K)",

where the product runs through all the Dirichlet characters modulo p and Tam(7/K)"
is given by

[H}(Kp, T)" = (O, -v)"|Lp(T(1), 1),
which we may identify with Tam(T'(n)/K?).
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Lemma A.3. Let dx be the discriminant of K. Then, we have the formula
Tam(T/K) = |dx |, 'Ok, - v : Hj;(Kp, T)|Ly(T, 1),

where we identify H/lf(Kp7 T) with its image under the Bloch—-Kato dual exponential
map.

Proof. This follows from the commutative diagram

(Kp @ Fil° Deyis (7)) % (Kp ® FiBEZEST(T(*l()l))) K

Texp* J/exp lTer /Qp

(@ ® 1}, (5, 1)) % (Qy ® H} (K, T*(1))) —— Q.

(]

Take z to be a A-generator of H!(T') as in the main part of the article. This gives
a A-basis z - ej_j_1 of H'(T). We shall write L (z) for Tw_j4j+10 L7 (2 €x—j—1)

and
ik = ) (™1 —65p)e)1—p'(p)e ") "v).
5EAK
Theorem A.4. Suppose that L1(z)(5) # 0 for all § € Ag. Then,
Tam(T/K) 1 _ .
6@; Lp(z)(6) ~p W 1;[ [65H/f(Kp,T) : e(;zK} VK.
€AK

Here, we write a ~p b if a and b have the same p-adic valuation.
Proof. Let zg be the projection of z in H*(K,,T). For each character of A,
we write es = Y ca, 07 (0)o and let K; for the subfield of K defined by the

kernel of 6. Our assumption means that es - zx ¢ €5 - H}c (Qp(pn), T') for all & by
Corollary A.2. Note that > es = [K : Q]. On applying Proposition A.1, we deduce

that
© e ﬁ e * Py 5
5§K Fr00) Npl;[ [MO[AK]U- 6O[AK]T(5) exp”( K):| K
~p Hpns [eaO[AK][KT(:(S?@ : e(;(’)[AK]]
5

X [esO[Ak]v : esO[Ak] exp*(zk )] Uk -
Note that the factor (k — j — 1)! does not appear because of the Fontaine-Laffaille
condition. Now, [Gil79, Proposition 1] tells us that
7(6 T(6
|:€5(9[A}(][‘K,(()Qﬂ . e&O[AK]:| = [K . Ké‘] |:€5(9[AI(][I{6()(Qq : BJO[AK]] =1.

Therefore, we deduce from the conductor-discriminant formula that

Q) Lr(2)(8) ~p ldic |, ] [esOlA K] : esO0[AK] exp* (zx)] k.

5EAK J
Combining this with Lemma A.3 gives us the result. O

Remark A.5. There is in fact a similar formula without assuming the non-vanishing

of Tayitn (T)(0). It would involve Perrin-Riou’s p-adic height. See [PR03, p.180].
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Corollary A.6. Let n be a Dirichlet character modulo p. Under the conditions of
Theorem A./4, we have

Voo + by = 0 = a + Vi (Zp[X]/Colr g (2)") +p"H (p = Dk — j — 1)

ocC

for n >0, where T(n,n) is as defined in Definition 4.10 and b} denotes the p-adic
valuation of Tam(T/Q(pyi)") for i =mn,n+ 1.

Proof. Let A, 11 be the set of Dirichlet characters of conductor p"*! whose A-
component is 7. Its cardinality is given by p"~!(p — 1). By Theorem A.4, we

have
~ Tam(T/Q(u n+1))77 1 . n+1 ®|Ant1]
6e§+1 Lr(2)(0) ~p Tam(T/Q(;pn))n 661A—£1 [esH/f(Kp,T) : eazx} " (v) _
This gives
(A1)
—n-l Tam(T/Q(ppn+1))" 1 . 1Al
ée?iﬂ 7 oLr(@)(0) ~p Tam(T/(@(/an))n 5€1A_£+1 {65H/f(KjDaT) : €5ZK] v® .

Note that " 1oTw_jy 41 = pHtDVEI"DTw_; 40100 " 1. The terms appear-
ing on the left-hand side are therefore simply p("*V*=3=DCol,, .\ ,(z)(6). There-
fore, the p-adic valuation of the left-hand side of (A.1) is given by

p" tp—1D(n+1)(k—7j—1)+q +ord,, Col; (nn) (2)"(€n)
thanks to (4.2). Hence the result. O

The proof of our Proposition 4.11 implies that the defect of our inequality in
Theorem 5.5 is in fact given by the length of ker 7", where 7 is some projection
map. We see here that we may in fact relate this defect to the Tamagawa numbers,
namely,

leng kern” = b, — b — p" Yp—Dnk—j—1).

Let ¢7 be the integer s +b!, which is the p-adic valuation of #II(Q(ppm ), TY)" %
Tam(T/Q(upn))". The Bloch-Kato conjecture predicts that this quantity should be
related to the leading coefficient of the complex L function of T at 1. Theorem 5.5
tells us that we have the equality

thy —th = qp + V&)

7(n,n) + H(”’”) - rgo +pn71(P - 1)n(k _j - ].)

for n > 0.
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