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Abstract

In this thesis we studied nematic liquid crystals using molecular dynamics
simulations based on the coarse grained Gay-Berne potential. The elastic and dy-
namical properties of the nematic bulk were calculated and the impact of the system
size and simulation run time were investigated showing that both have to be con-
sidered carefully. For the bend fluctuations we observed propagating modes for the
director and velocity components. This contradicts statements found in the liter-
ature that assume these modes are overdamped. We derive from nematodynamics
that this assumption may not be valid for all systems and hence we argue that
propagating modes may be observed in experiments.

Furthermore we studied defect structures forming due to nanoparticle inclu-
sions in nematics. Depending on the particle size and the surface anchoring three
different defect types were observed: Saturn ring, surface-ring and boojum defects.
The satellite defect was found to be unstable for the particle sizes studied here,
which is in agreement with theoretical predictions. For two nanoparticles in close
proximity entangled defects formed, similar to experimental observations for micron
sized particles. We explain the three-ring structure, which was observed in other
molecular simulations, as a superposition of the different entangled states.

Finally we calculated the line tension and viscous drag of a single disclination
line of strength -1/2. Nanoparticles placed in close proximity of the single discli-
nation experienced highly non-linear attractive forces. Once the particle ‘touches’
the disclination it remained connected for the entire simulation. In addition we
have shown that the presence of a single disclination has a significant impact on
inter-nanoparticle interactions.

x



Chapter 1

Introduction to liquid crystals

The liquid crystal (LC), or mesomorphic, state is a phase that can occur between

the liquid and the crystalline phases [6]. On the one hand liquid crystals have some

liquid-like properties, for example fluidity and the inability to support shear; on the

other hand they show a crystal-like anisotropy in optical, electrical and magnetic

properties. Liquid crystals exhibit birefringence and easy switching in response to

an applied field, which has driven their main application in the display technology.

We distinguish between thermotropic and lyotropic liquid crystals. For ther-

motropic LCs the phase transitions are temperature driven. Here the molecules

are usually elongated or disk-shaped, which, due to their shape, tend to align with

each other. They are also referred to as calamitic and discotic mesogens respectively.

The phase transitions in lyotropic liquid crystals are driven by concentration, rather

than temperature. Lyotropic LCs can be formed by amphiphilic molecules, which

self-assemble due to the hydrophobic effect. Another group of lyotropic LCs are

colloidal suspensions. In lyotropic LCs the orientational order is mostly caused by

the geometry of the LC molecules.

Due to their unique properties liquid crystals are of major technological im-

portance. Their main application is in liquid crystal displays [7, 8]. Since LCs are

very sensitive to external fields, the orientation of the molecules can be controlled

by applying an electric field across the LC. Most commercial LC displays are based

on twisted-nematic LCs. An external light source is polarised before it enters the

twisted-nematic film, which guides the light through the film. Here the optical axis

is along the averaged orientation of the molecules. The axis of polarisation rotates,

following the twist of the LC. If the orientation of the molecules of the final layer

matches the angle of the second polariser, the light passes through. The LC can

be untwisted gradually by applying an external field. By controlling the strength

1



Figure 1.1: The area of all flat-panel displays produced worldwide. Reproduced
with permission from [3]. Original from Merck KGaA.

of the external field, light can be allowed to pass through in varying amounts. LC

displays have the advantage of being inexpensive and being able to operate under

low voltage. They are commonly used in devices such as television and phones. The

liquid crystal display market is constantly growing. In Fig. 1.1 the area of annually

produced displays worldwide is shown. One can see that the area is increasing by

roughly 5% each year. In 2013 only, more than one billion smart phones with LC

displays were produced [3]. The main advantages of liquid crystal displays compared

to other displays are fast response times, high contrast and resolution and energy

efficiency.

1.1 Liquid crystal molecules and different liquid crys-

talline phases

Throughout the years many different molecules were found that can form a liquid

crystalline phase. Especially interesting are the ones that can be mesomorphic at

room temperature, which makes them particularly interesting for everyday applica-

tions. A few typical examples of mesogenic compounds are shown in Fig. 1.2. Note

that the mesomorphic behaviour is mainly determined by the molecular shape.

LC molecules can show a variety of different LC phases. The most com-

mon one for rod-like molecules is the nematic phase, which is defined by long-range

orientational order, but the absence of long-range positional order. A LC with posi-

tional order, but in one or two directions only is called smectic phase. The smectic

A phase can be thought of as piled layers of nematics with molecules perpendicu-

lar to the smectic plane. The smectic B phase is very similar to the A phase; the

molecules however are arranged into a network of hexagons within the smectic layer.

In the smectic C phase the molecules are arranged as in a smectic A phase, but the

2



Figure 1.2: Mesogenic compounds from left to right: (i) 5CB (4-cyano-4’-
pentylbiphenyl), nematic at room temperature (22.5 − 35◦C), (ii) MBBA (N-p-
methoxybenzylidene-p-butylaniline), (iii) PAA (p-azoxyanisole) [6, 9].

molecules are tilted within the smectic plane. Disk-shaped LC molecules can exhibit

the columnar phase, where molecules are stacked on top of each other in column-

like structures, hence demonstrating two-dimensional positional order. A nematic

phase formed by disk-like particles is referred to as discotic phase. Another phase

is the cholesteric LC phase. Here the average orientation of the molecules varies

throughout the medium following a helical structure. The distance over which the

orientation rotates through a full cycle is called the pitch length, which is similar

to the optical wave length of several hundred nanometers. The pitch length is very

sensitive to temperature and external fields. Hereafter we will be dealing solely with

the nematic phase.

1.2 Order parameters

For all LC phases we can identify an average direction of the particles’ major axes

called the director n̂, which is in general time and position dependent. The director

is not a vector, because no net polarisation has been observed in liquid crystals,

i.e. the number of molecules pointing into opposite directions is the same. In other

words, n̂ and -n̂ are indistinguishable. In general, the direction of the director is

arbitrary, but in practice it is enforced by the environment, such as the walls of the

container.

To describe the ordering within a liquid crystal, an order parameter S is

introduced, which quantifies the orientation fluctuation of the molecules around the

director. The choice is non-trivial since it has to vanish in isotropic liquids due to

symmetry. Taking into account the -n̂ ↔ n̂ equivalence, the order parameter can

be calculated via [6]

S =
1

2
〈(3 cos2 θ − 1)〉 , (1.1)

where θ is the angle between the orientation vector of a molecule and the director

3



n̂. The angle brackets denote a statistical average. The order parameter S varies

between −1
2
and 1. If all molecules are perfectly aligned with the director, the angle

between each molecule and the director is zero, hence 〈cos2 θ〉=1 and therefore S=1.

The order parameter is zero if the orientation of the molecules is entirely random,

i.e. isotropic, since 〈cos2 θ〉 = 1
3
. Note that in simulations with N particles finite-size

effects will lead to a small positive value of order O(N−1/2) [10]. For the nematic

phase S takes an intermediate value with 0.5 ≤ S ≤ 0.85 [7, 11]. For S=−1
2
all

molecules lie within the surface normal to the director. The order parameter can

also be calculated from the more general order tensor Q which is given by

Qmm′ =
1

N

N
∑

i=1

3

2
ûimûim′ − 1

2
δmm′ (1.2)

for uniaxial molecules. Here ûi is the orientation vector of the molecule i and

m,m′ = x, y, z. δmm′ is the Kronecker delta and N the total number of molecules

within the volume for which Qmm′ is calculated. Qmm′ is a symmetric and traceless

tensor. A full description of the nematic phase requires an order tensor to account

for all five degrees of freedom: orientation of the director, orientation of the possible

biaxial ordering and the nematic order S and biaxiality P . Here we solely focus

on uniaxial nematics, for which P = 0. As for S, finite size effects will lead to a

value of biaxiality P that is not identically zero. Both the order parameter and the

director can be calculated directly from the order tensor. The order parameter S is

equal to the highest eigenvalue of the order tensor and its corresponding normalised

eigenvector represents the director n̂. In diagonal form Q is given by

Qdiag =









2
3
S 0 0

0 −1
3
S + P 0

0 0 −1
3
S − P









. (1.3)

1.3 Phenomenological free energy

In this section we give a brief summary of the phenomenological free energy, which

can be minimised to study nematic phases. The majority of numerical work dis-

cussed in later chapters is based on this mean-field approach. A more detailed

description can be found elsewhere [6, 12, 13].

The basic idea of Landau-de Gennes calculations is to express the phe-

nomenological free energy and minimise it with respect to Q in order to find the

equilibrium structure of the nematic field. Depending on the chosen initial condi-

4



Figure 1.3: Schematic sketches of the three basic deformation modes in a liquid
crystal: Splay, twist and bend.

tions, stable as well as unstable configurations can be explored. The Landau-de

Gennes free energy functional can be divided into three main parts: the bulk, the

elastic and the surface free energy density. In addition to the bulk and elastic free

energy, terms can be added to account for dielectric coupling [13] or surface anchor-

ing at particles’ and containers’ surfaces [14]. The free energy volume density fphase

can be written as

fphase =
1

2
a(T − TNI)QijQji +

1

3
BQijQjkQki +

1

4
C
(

QijQji

)2
, (1.4)

where a,B,C are phenomenological material coefficients, T is the temperature and

TNI is the supercooling temperature. Summation over repeated indices is assumed.

Equation (1.4) is a Landau expansion correct up to fourth order taking into account

the invariants of the nematic order tensor.

Each deformation of a liquid crystal increases its total energy. Assuming

these deformations vary slowly in space, i.e. for large wavelength distortions, they

can be described using continuum elastic theory. Any elastic deformation can be

decomposed into three basic deformation modes: splay, twist and bend, shown in

Fig. 1.3. The elastic free energy fgrad can be expressed in terms of second order

derivatives of Q

fgrad =
1

2
L1

∂Qij

∂xk

∂Qij

∂xk
+

1

2
L2

∂Qij

∂xj

∂Qik

∂xk
+

1

2
L3Qij

∂Qkl

∂xi

∂Qkl

∂xj
, (1.5)

where L1, L2 and L3 are elastic constants. fgrad can be rewritten in terms of the

director field n̂(r) for uniaxial nematics in the Frank-Oseen form as

fFO
grad =

1

2
K1

(

∇ · n̂
)2

+
1

2
K2

(

n̂ ·∇ ∧ n̂
)2

+
1

2
K3

∣

∣

∣n̂ ∧
(

∇ ∧ n̂
)

∣

∣

∣

2

. (1.6)

where K1, K2 and K3 are the splay, twist and bend Frank elastic constants re-

spectively. Note that higher order terms are neglected. The elastic constants in

Equation (1.5) are directly related to the Frank elastic constants with L1 = (K3 +

2K2−K1)/9S
2, L2 = 4(K1−K2)/9S

2 and L3 = 2(K3−K1)/9S
2. In the mean-field

approach the one-elastic-constant approximation is commonly used, which assumes
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that the splay, twist and bend elastic constants are equivalent K = K1 = K2 = K3.

However this is a rather crude assumption. We show in Chapter 3 that for some

systems and state points the bend Frank elastic constant is eight times higher than

the corresponding twist elastic constant.

This phenomenological approach complements molecular simulations. Com-

pared to molecular simulations it has the advantage to allow access to large length

scales (micrometre regime), similar to the length scales accessible in experiments.

Furthermore it does not require details about the molecular interactions. However

it also has several disadvantages. The free energy minimisation only finds one state

at a time and therefore it is possible to miss other (meta)stable configurations of a

system. Since continuum theory can only describe distortions with wavelength large

compared to the size of the LC molecules, systems below this limit, for example

nanoparticle inclusions in nematics, can only be studied using molecular simula-

tions.

1.4 Elastic properties of nematic liquid crystals

Using continuum elastic theory each elastic deformation varying slowly in space

can be described by the three basic deformation modes described in Section 1.3.

To quantify these thermal equilibrium fluctuations it is convenient to define a new

orthogonal Cartesian axis system with (ê1, ê2, ê3), where ê3 is along the director

n̂. In this system n̂ = (0, 0, 1) and (n1, n2, 0) describe small fluctuations of the

director. When studying these fluctuations in reciprocal space, the wave vector k

can be restricted to lie in the ê1–ê3 plane, i.e. k = (k1, 0, k3). In the following

we derive the second derivatives of the director field n̂(r) used in the Frank free

energy expression in Equation (1.6). A schematic of the director fluctuations for the

different deformation modes is shown in Fig. 1.4. The fluctuations of the director

field may be expanded in Fourier components

nm(r) =
1

V

∑

k

ñm(k) exp(ik · r) , m = 1, 2 , (1.7a)

ñm(k) =

∫

V
dr nm(r) exp(−ik · r) , (1.7b)
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Δx3

Figure 1.4: Schematic of the three basic deformation modes in a nematic liquid
crystal [12]. n1 and n2 are small deviations from the director assuming that the
initial director n0 is along x̂3.

where V is the volume. The spatial derivatives of n̂(r) used in Equation (1.6) can

be derived as

∇ · n̂(r) = 1

V

∑

k

ik1ñ1(k) exp(ik · r) ,

∇× n̂(r) =
1

V

∑

k

(

−ik3ñ2(k), ik3ñ1(k), ik1ñ2(k)
)

exp(ik · r) ,

n̂(r) ·∇× n̂(r) =
1

V

∑

k

ik1ñ2(k) exp(ik · r) ,

n̂(r)×
(

∇× n̂(r)
)

=
1

V

∑

k

−ik3
(

ñ1(k), ñ2(k), 0
)

exp(ik · r) .

These expressions are particularly simple in this coordinate system, because n3 = 0

and k2 = 0. Applying Parseval’s theorem, which is given by

∫

V
dr
∣

∣φ(r)
∣

∣

2
=

1

V

∑

k

∣

∣φ̃(k)
∣

∣

2
,

to Equation (1.6) leads to

∆F =
1

V

∑

k

1
2
K1k

2
1

∣

∣ñ1(k)
∣

∣

2
+ 1

2
K2k

2
1

∣

∣ñ2(k)
∣

∣

2
+ 1

2
K3k

2
3

(

∣

∣ñ1(k)
∣

∣

2
+
∣

∣ñ2(k)
∣

∣

2
)

=
1

V

∑

k

1
2

(

K1k
2
1 +K3k

2
3

)∣

∣ñ1(k)
∣

∣

2
+ 1

2

(

K2k
2
1 +K3k

2
3

)∣

∣ñ2(k)
∣

∣

2
. (1.8)

One can see that the first term is related to splay and bend (K1 and K3) and the

second term to twist and bend (K2 and K3) deformations. Equipartition of energy
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yields

〈

∣

∣ñ1(k)
∣

∣

2
〉

=
V kBT

K1k21 +K3k23
,

〈

∣

∣ñ2(k)
∣

∣

2
〉

=
V kBT

K2k21 +K3k23
. (1.9)

Here kB is the Boltzmann constant and T the temperature. Hence the Frank elastic

constants K1, K2 and K3 can be extrapolated directly from the equilibrium fluc-

tuations for small wave vectors (k → 0). The director fluctuations (n1, n2, 0) are

directly proportional to the elements Q13 and Q23

ñ1 =
Q̃13

3
2
S

, ñ2 =
Q̃23

3
2
S

. (1.10)

In Chapter 3 we apply Equations (1.9) and (1.10) to data of order tensor fluctuations

obtained from molecular simulations. The fluctuations were fitted to a range of small

wave vectors and the elastic constants were extrapolated.

1.5 Dynamical properties of nematic liquid crystals

A particularly interesting feature of liquid crystals are their flow properties. A first

full description of the dynamics of a nematic liquid crystal was proposed by Ericksen

[15], which was later completed by Leslie [16]. A purely hydrodynamic formulation

was given by Forster et al. [17]. Detailed descriptions and examples for application

of this so-called Ericksen-Leslie theory can be found elsewhere [6, 9, 18, 19]. In

the following a brief introduction into the hydrodynamics of nematics, commonly

referred to as nematodynamics, is given. To start with we consider an ordinary

isotropic fluid, which can be described by

∇ · (ρv) = −ρ̇ , (1.11)

where ρ is the density and v the velocity. For an incompressible fluid ρ(r, t) = const.

and hence the above expression leads to∇·v = 0. Newton’s law describes the motion

of the fluid elements due to a force f

ρ
dv

dt
= f . (1.12)

The total force f is a combination of the pressure gradient −∇ρ, viscous forces fvis

and external fields fext.

ρ

[

∂v

∂t
+ (∇ · v)v

]

= −∇ρ+ fvis + fext . (1.13)
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We now consider a fluid without any external fields. A stress tensor σ can be defined,

such that a force can be expressed as

fi =
∂

∂xj
σij . (1.14)

Summation over repeated indices is implied. Equation (1.13) can be reformulated

in terms of the stress tensor

ρ

[

∂vi
∂t

+ vj
∂vi
∂xj

]

= − ∂p

∂xi
+

∂σij
∂xj

, (1.15)

where p is the pressure. The stress tensor is proportional to the linear gradients of

the velocity

σij = η

(

∂vj
∂xi

+
∂vi
∂xj

)

, (1.16)

where η is the viscous coefficient. To describe the hydrodynamics of a nematic the

stress tensor has to be expanded to account for the orientation and rotation of the

director in addition the velocity gradients. Ericksen [15] and Leslie [16] derived

σij = α1nknlAklninj + α2ninj + α3njni + α4Aij + α5nkAkj + α6njnkAki , (1.17)

where Aij is defined as 1
2
(vj,i + vi,j). The fourth term α4Aij corresponds to the

isotropic contribution (see Equation (1.16)). The six α coefficients are referred

to as Leslie coefficients. Parodi [20] showed that α2 + α3 = α6 − α5 leaving five

independent coefficients. Similarly to Equation (1.12) conservation laws lead to the

balance equation

ρ1n̈i = gi + πji,j , (1.18)

where ρ1 is a material constant with the dimensions of moment of inertia density,

gi is the intrinsic director body force, πji the couple stress and ni the director.

Similarly to Aij it is is useful to define the vorticity Bij = 1
2
(vi,j − vj,i) and the

co-rotational time flux of the director

Ni = ṅi −Bijnj (1.19)
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Figure 1.5: Schlieren texture in a liquid crystal. Courtesy: National Science Foun-
dation [4].

We can separate σ and g into reactive and dissipative parts: σji = σR
ji + σD

ji and

gj = gRj + gDj , while π is purely reactive. Some derivation yields

σR
ji = −pδji −

∂f

∂nk,j
nk,i

gRi = γni − βjni,j −
∂f

∂ni

πji = βjni +
∂f

∂ni,j

gDi = λ1Ni + λ2njAji

where λ1 = α2 − α3 and λ2 = α5 − α6 and γ and βj are arbitrary constants. By

choosing the same coordinate system as in Section 1.4 these can be derived further

and simplified leading to the equations used in Chapter 4.

1.6 Topological defects

Topological defects can be points, lines or walls where the order parameter of interest

in a system is undefined. Topological defects can be observed in numerous areas

of physics; they are especially important in liquid crystals, because it is almost

impossible to have an entirely defect-free liquid crystal. Defects in liquid crystals

can significantly change the properties of the entire system and hence it is crucial to

understand the behaviour of these defects. In Fig. 1.5 the so-called Schlieren texture

of a LC sample between crossed polarisers is shown. The colour variation observed

is due to the variation of the birefringence throughout the sample. Additionally

one can see dark brushes across the sample. These brushes are black, because
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s = -1/2 s =1/2 

s = -1 s = 1

Figure 1.6: Sketch of nematic fields near disclination lines in 2D and their corre-
sponding winding number s.

the director in those regions is either parallel or perpendicular to the polariser

or analyser. In the region where the dark brushes intersect, the defect core, the

director is discontinuous. Within the defect core the LC is melted into the isotropic

phase and the molecules have no preferred orientation. At a molecular level this

corresponds to high fluctuations of the molecular orientation. This is commonly

referred to as ‘frustrated’ molecules. Within the defect region the order parameter

S drops significantly and biaxiality is observed [21]. This local perturbation of

the long-range orientational order is called a topological defect. Defects can arise

due to fast cooling, external perturbations or, at very low concentrations, thermal

fluctuations as well as the presence of particle inclusions.

In nematics two types of defects are found, namely point defects, also called

hedgehogs, and line defects, commonly referred to as disclinations. A point defect

can be characterised by a topological charge, which specifies the integer number

of times the unit sphere is wrapped by the director on any surface enclosing the

defect core [22]. Due to the −n̂ ↔ n̂ symmetry, we cannot distinguish between a

source and a sink. By convention the topological charge is chosen to be positive.

A disclination line can be characterised by a winding number s, which describes

the symmetry of the surrounding director field. It can be described as the ratio

s = α/(2π), where α is the angle, by which the director rotates along a closed loop

surrounding the disclination line [22]. All disclinations, where s is a half-integer,

are topologically equivalent and likewise all those, where s is a full integer. The

corresponding director fields are sketched in Fig. 1.6 for a variety of different defects
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in 2D. Note that lines in form of closed loops can shrink and convert into point

defects, and vice versa, so that there is a subtle topological interplay between them.

In Schlieren textures we commonly observe two or four dark brushes arising

from each defect core (see Fig. 1.5). Higher numbers, as long as they are multiples of

two, are possible. The number of brushes is directly related to the winding number

s. Because the analyser and polarisers directions are rotated by π/2 relative to each

other, each brush must corresponds to a director rotation of π/2. We can identify the

strength s by multiplying the number of brushes arising from a defect core by ±1/4.

To identify the sign one can rotate the polariser and observe the rotation of the

brushes. The sign is negative if the brushes counter-rotate and positive otherwise.

Low order defects are energetically favourable, because the energy associated with a

disclination line is proportional to s2. The energy is also proportional to the length

of the disclination line, i.e. stretching the line will result in an increase in energy.

A spherical particle inserted into a nematic liquid crystal induces the creation

of defects [13, 23–25] The defects are caused by the competition of the LC molecules

trying to ‘pack’ around the particle and trying to align along the director. Particle

inclusions effectively act as point defects. Their corresponding topological charge

is determined by the orientation of the director field along their surface. Since the

total topological charge in a closed system has to be zero, each particle inclusion is

accompanied by a defect in the liquid crystal. In experiments the particle inclusions

are often materials such as silica, glass, polystyrene microspheres or liquid droplets.

The surface of the inserted particle is chemically treated to control the anchoring of

the LC molecules around it. The major axes of the LC molecules often arrange either

perpendicular or parallel to the surface of the particle. These anchoring conditions

are referred to as homeotropic and planar anchoring respectively. Similarly, the

surfaces of the LC container can be treated to enforce different types of anchoring.

Consequently, in most real systems the direction of the director will be imposed by

the walls, even if its direction is generally arbitrary.

An interesting question is how exactly the director field deforms around the

inclusion. This depends on many different factors, for example the size of the par-

ticle, its surface anchoring strength, boundary conditions as well as external fields

[13, 24, 26]. Four different defect structures have been observed in experiments.

A sketch of their corresponding director fields in 2D is shown in Fig. 1.7. For

particles with homeotropic surface anchoring, the deformation is either of dipolar

or quadrupolar structure. The dipolar structure, often referred to as hyperbolic

hedgehog or satellite defect, is characterised by a hyperbolic point defect. The

quadrupolar defect, also called Saturn ring defect, consists of a -1/2 disclination

12



(b) Saturn ring(a) Satellite

(c) Surface-ring (d) Boojum

Figure 1.7: Sketch of director field around a particle inclusion: (a) satellite defect,
(b) Saturn ring defect, (c) Surface-ring defect and (d) boojum defect.

line looping around the equator of the particle with respect to the director. The

satellite and Saturn ring defect are topologically equivalent. One can think of the

Saturn ring being transformed to the satellite defect by moving the disclination line

away from the equator, until it collapses in one point. Theoretical and experimental

work as well as Monte Carlo simulations, suggest that satellite defects tends to be

stable for large particles and that the Saturn ring is stable for small particles [23, 27–

29]. Attempts were made to estimate the threshold for which the dipolar structure

becomes unstable as a function of particle size. However the description did not

account sufficiently for very strong surface anchoring and strong confinement. For

example Škarabot and Muševič [30] and Ryzhkova and Muševič [31] observed Satel-

lite defects for particles as small as 125 nm and 35 nm respectively due to very strong

surface anchoring. We address the question of satellite versus Saturn ring in Chapter

5 by employing molecular dynamics to study a range of particle sizes.

For particles with very weak homeotropic anchoring a Surface-ring defect is

predicted, which is very similar to the Saturn ring; however the core of the disclina-

tion line sits directly on the surface of the particle. Particles with planar anchoring

only have one known defect structure, which is quadrupolar and generates two −1/2

antipodal surface defects called ‘boojums’. Boojum defects have been studied using
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Landau-de Gennes free energy minimisation [32], which predicts that in 3D systems

one can distinguish three different types: the single, split and double boojum. The

single boojum, which is a -1 point defect, arises around small particles with weak

anchoring and is stable at high temperatures. For large particles with strong an-

choring the boojum defect splits into two +1/2 point defects, which are connected

by a disclination line. They usually arise at low temperatures. The double boojum

is an intermediate state where the defect core splits, but the disclination line is not

fully developed. The three types can be smoothly transformed from one to another

by varying the anchoring strength, temperature or particle radius.

So far we solely focused on topological defects due to single particles inserted

into a nematic host. In the following, we focus on pair interactions of particle inclu-

sions [33] as well as whole clusters of particles. Due to the anchoring of the liquid

crystal molecules at the surface of the inserted particle, the director field is distorted,

which induces long-range structural forces between particles. These structural forces

can be regarded as effective elastic forces, which try to minimise the perturbation of

the director field caused by the inclusion. When two dipoles are brought into close

vicinity, they can attract each other and it was observed experimentally as well as in

numerical calculations that they can form chains within the nematic. This attrac-

tion is due to the particles trying to share defect regions to minimise the total free

energy. Fig. 1.8 (a-f) shows the corresponding micrographs and sketches of the di-

rector fields for two dipoles. Two collinear dipoles attract each other and form linear

chains along the director [34, 35], if their dipoles are pointing in the same direction.

Otherwise they repel each other. It was shown that the binding energies for two

dipoles can be as strong as 1000kBT for micron-sized particles [28, 36, 37]. Two an-

tiparallel dipoles attract each other sideways with respect to the director. The total

free energy is minimised when the dipoles are tilted at an angle with respect to the

director. In contrast, parallel dipoles repel each other along this direction. Poulin

et al. [38] studied the inter-particle interactions for small water droplets, which ex-

hibit a dipolar structure, as a function of particle separation. These droplets form

chain-like structures inside nematics, with attractive interactions at long distance

and repulsive ones at short distances. This interaction behaviour was successfully

reproduced using Monte Carlo simulations [39]. The simulation results suggest that

the overall interaction strength increases with increasing particle size. Attempts

have been made to study the influence of the anchoring effects on the aggregation

of nanoparticles in nematics using simulations [40].

Two quadrupoles only have one stable configuration, shown in Fig. 1.8 (g-

i), in which the two quadrupoles prefer to sit at a fixed angle with respect to the
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Figure 1.8: Silica microspheres with homeotropic anchoring embedded in a nematic
host. Left column shows micrographs; Centre column shows micrographs under
crossed crossed polarisers; Right column shows sketches of the director field: (a-c)
Two parallel dipoles, (d-f) two antiparallel dipoles, (g-i) two quadrupoles and (l-n)
bubble gum defect. Reproduced from [5] with permission from the Royal Society of
Chemistry.
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director. Particles further than the equilibrium distance apart attract each other

[41]. These observations were successfully reproduced using continuum theory [27]

as well as molecular dynamics simulations [33]. The binding energies of elastic

quadrupoles are significantly weaker (≈ 100kBT ) [42, 43] than the ones of elastic

dipoles. In two-dimensional systems quadrupoles can assemble in form of zig-zag

chains. If two quadrupoles are forced together along a straight line perpendicular

to the director, both Saturn rings bend to minimise the total free energy.

Fig. 1.8 (l-n) shows the bubble gum structure, which can arise if two anti-

dipoles are forced into close vicinity [35]. This escaped -1 loop was found to be

highly metastable and has only been observed naturally arising in chiral nematic

cells [44]. Embedded in nematics the bubble-gum shows almost no interactions.

For two particles with planar anchoring only attractive structural forces are

observed; hence two boojums slowly approach each other. At very close distances

they are strongly bound due to the particles sharing their inner point defect. This

was observed in experiments and reproduced by simulations [32]. The forces between

two boojums as a function of angle show large discrepancies between theoretical and

experimental results and are not fully understood. Eskandari et al. [45] showed that

two particles, one with homeotropic and one with planar anchoring, attract each

other. Their interactions only become repulsive for very small particle separation.

In Chapter 5 we will present molecular simulation results of single particle

inclusions in nematics, as well as results of particle pair-interactions due to the

long-range structural forces inside the nematic.

The attractive long-range interactions between different inclusions can be

utilised for the self-assembly of three-dimensional colloidal liquid crystals [30, 37, 46–

49]. These clusters can be formed by dipoles or quadrupoles and they were also

observed for binary mixtures of quadrupoles and dipoles. The clusters formed by

dipoles seem to be somewhat more robust, whereas quadrupolar ones slowly de-

cay over time. Dipolar clusters are formed by one-dimensional chains of parallel

dipoles along the director, which are surrounded by neighbouring chains with their

dipoles pointing in the opposite direction. Apart from cluster formation, the struc-

tural forces can also lead to particle trapping at LC boundaries [50] as well as

colloidal lattice formations inside nematic LC droplets [51]. The interactions and

self-assembly of nanoparticles in nematic LC is still rather unexplored. The main

difficulty is the visualisation and tracking of such small particles.

For two quadrupoles in close vicinity entangled defect structures were ob-

served to arise spontaneously. Here a single defect line winds around both particles

leading to an effective binding energy. In Chapter 6 we show that such structures
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can be observed in molecular simulations and compare them to experimental obser-

vations and mean-field calculations.

Recent studies [52–55] have focused on anisotropic particle inclusion. Using

novel microfabrication methods, experimental work was carried out focusing on

anisotropic particles like micro-rods [56] and toroids [57] in nematic liquid crystals.

Experimental results suggest a strong dependence of the inter-particle interaction

on the shape [58–62] opening up a new route to design novel materials.

1.7 Scope of this thesis

In Chapter 2 we introduce the simulation methods used. The remaining chapters

are structured as follows.

Chapter 3: In this chapter we present molecular dynamics calculations of the

Frank elastic constants in nematic liquid crystals. We study two variants

of the Gay-Berne potential, and use system sizes of half a million molecules,

significantly larger than in previous studies of elastic behaviour. Equilibrium

orientational fluctuations in reciprocal (k-) space were calculated, to deter-

mine the elastic constants by fitting at low |k|. The importance of the system

size was investigated.

Chapter 4: In this chapter the dynamics of the Gay-Berne nematic were studied

by calculating time correlation functions of components of the order tensor,

together with associated components of the velocity field, for a set of wave

vectors k. We found exponential decay for splay and twist correlations, and

oscillatory exponential decay for the bend correlation. A comparison with

the predictions of nematodynamics reveals that propagating bend fluctuations

may be observable in some experimental systems.

Chapter 5: We studied the formation of topological defects caused by nanoparticle

inclusions in nematics and observed Saturn ring, boojums and satellite defects

arise. The effects of particle size and surface anchoring on the defect structure

were analysed. Furthermore nanoparticle interactions caused by the structural

elastic forces in the nematic were investigated.

Chapter 6: We present molecular dynamics simulations of nanoparticles in close

vicinity. Depending on the particles’ radii and their separation entangled de-

fects were observed, where two (or more) particles are surrounded by single

disclination line. The different entanglements were categorised and the dynam-

ics of the rearrangement from one configuration to another were investigated.

17



Chapter 7: A single disclination line was stabilised in a molecular simulation by

applying an external field near the boundaries of the simulation box. The ratio

of the line tension of the disclination line and the viscous drag of the liquid

crystal host were calculated from the relaxation times of the fluctuations of

the line in reciprocal space.

Chapter 8: In this chapter we studied the interactions of a single disclination line

with a nearby nanoparticle. When the position of the nanoparticle is fixed, we

observed the disclination line to bend towards it to minimise total free energy,

In addition, some nanoparticles became entangled by the defect line. Once

the particle was released it was strongly attracted towards the centre of the

simulation box allowing the defect line to be straight. This interaction was

found to be strongly depending on the nanoparticles position with respect to

the -1/2 director field of the defect. For two nanoparticles in close vicinity of

the disclination line attractive as well as repulsive interactions were discovered

depending on their initial positions.
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Chapter 2

Computer simulations

Most problems in statistical mechanics are not soluble; sometimes it is not even

possible to find an approximate analytical solution. This is where computers come

in useful to provide us with numerical approximations. A major advantage of simu-

lations compared to experiments is that, at all times, we have full information about

the system. Therefore simulations can give insight into experiments and can help

us understand the underlying dynamics; they also provide a powerful tool to test

theories.

One of the simplest computer simulations is based on lattice models. In-

troducing a lattice reduces the number of degrees of freedom, which leads to large

savings in computer time. The well known Ising model consists of a lattice of spins,

that can be in two states ‘up’ or ‘down’. Only nearest neighbours interact with each

other. The Ising model can be extended to the classical Heisenberg model, by replac-

ing the spin dipoles with freely rotating unit vectors. Both models have been widely

used to study phase transitions. The well known Lebwohl-Lasher lattice model [63]

is a modification of the classical Heisenberg model. The nearest-neighbour interac-

tion energy is given by Uij ∝ −(3
2
cos2(θij)− 1

2
), where θij is the angle between the

major axes of particle i and j. The Lebwohl-Lasher model has been successfully

used to study liquid crystal (LC) systems [64–67]. However, lattice models are often

too simplistic for more complex systems.

In hard particle models the particles are free to translate. To keep the inter-

actions simple, the particles have an infinitely repulsive core. Onsager [68] predicted

a nematic phase for extremely long hard rods. This was successfully reproduced in

simulations [69], which indicates that the molecular shape plays the main role in the

formation of liquid crystalline phases. Frenkel et al. [69] found the nematic phase

to be stable for hard prolate ellipsoids with a more realistic length to width ratio
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as small as three. For oblate particles the discotic phase forms, which is a nematic

phase formed by disk-like particles. Later studies [70] revealed that hard particle

models can also show biaxial phases. For hard spherocylinders with a length to

width ratio of five, Frenkel [71] observed the smectic phase in addition to the ne-

matic phase. The smectic phase appears because of the spherocylinders’ shape, as

well as its length.

Soft particle models tend to be more sophisticated by avoiding the infinitely

repulsive hard core and by adding attractive forces. The most commonly used soft

potential to simulate liquid crystals is the Gay-Berne potential [72], which will be

introduced later in this chapter. At a much higher computational cost (usually

compensated by reducing the number of molecules simulated to a few thousand)

even atomistic simulations of liquid crystals can be realised with today’s computer

power. This approach aims to predict mesophase behaviour for real systems based

on the knowledge of the molecular structure [73–77].

When modelling particle inclusions in nematic LC, molecular modelling has

several advantages compared to mean-field approaches (see Section 1.3). It gives

insight into the defect structure on a molecular level and shows the exact dynamics

of the formation and rearrangement of such defects. Furthermore, the impact of

thermal fluctuations can be observed in molecular simulations. Mostly, it was used

in this thesis to allow particle inclusions of the size of a few nanometer. At this scale

the phenomenological model becomes less reliable due to its mean-field character.

In the following Section 2.1 a brief account of computer simulations of liq-

uid crystalline systems is given. In Section 2.3, the Gay-Berne soft interaction is

introduced. All research presented in this thesis was simulated using Molecular Dy-

namics, which is introduced in Section 2.2. In Section 2.4 different visualisation

methods of defects in liquid crystals are described, which are used throughout this

thesis.

2.1 Computer Simulations of Liquid Crystals

Computer simulations have been widely used to study liquid crystalline systems.

They have been employed, amongst others, to investigate bulk elastic constants

[78–80], viscosities [81–83], phase transitions [84, 85], surface effects [86–90] and

nanodroplets in solution [91–94]. Furthermore simulations showed that chiral nanos-

tructures can impose chiral ordering in the bulk [95]. Molecular simulations suc-

cessfully modelled the properties of twisted nematic cells [96]. Recently atomistic

simulations [74] successfully reproduced liquid crystalline phase transitions and the
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formation of several smectic phases. All-atom simulations were used to reproduce

the aggregation of non-ionic chromonic liquid crystals in solution [76] and the for-

mation of biaxial liquid crystals [77]. In more recent years topological defects in

liquid crystals were studied using computer simulations. Several studies analysed

the structure of the defect core on a molecular level [21, 97]. Another research inter-

est is the effect of particle inclusions in nematics [98–100] as well as chiral LCs [101]

for various surface anchoring conditions. Recent simulations analysed the torque on

anisotropic particle inclusions [52] and the effect of flow on the defect created by

spherical inclusions [102, 103]. Many studies were devoted to investigate the struc-

tural forces between particle inclusions in a nematic as a function of particle size

and shapes, separation, angular distance and surface anchoring [33, 39–41, 104–107].

Molecular simulations were also used to investigate the trapping of nanoparticles in

disclination lines [67].

2.2 Molecular Dynamics (MD)

Molecular dynamics simulations are commonly used to study the equilibrium and

transport properties of classical many-body systems [108]. The main idea of MD

is that for any system with a fixed number of particles, with given initial positions

ri(0) and momenta pi(0) as well as a known force field, we can compute the particles’

trajectories [ri(t),pi(t)] over time t by solving Newton’s equation of motion

mir̈i = fi , (2.1)

where mi is the mass of the particle i, ri its position and fi the force acting on the

particle in Cartesian coordinates. So how does the system evolve over time? Firstly,

we have to calculate the force and torque acting on each particle for the given force

field [109]. Note that for this section only we deviate from our usual notation for

the orientation vector u and use e instead. In the following u denotes the time

derivative of e, i.e. ui = ėi The force on particle i due to j is

fij = −∂Uij

∂rij
(2.2)

and the torque on i due to j is

τij = −ei ×
∂Uij

∂ei
≡ −ei × gi , (2.3)
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where gi is referred to as ‘gorque’. Note that fij = fji, but that τij 6= τij . Secondly,

we have to numerically integrate Newton’s equation of motion (Eq. 2.1).

2.2.1 Integration of the equations of motion for linear molecules

In the following we describe the Velocity Verlet algorithm to integrate the transla-

tional and rotational equations of motion [110]. There are several other methods

for integrating the rotational equation of motion based on the rotation matrix [111]

or Quaternions [112]. In this description we restrict ourself to linear molecules with

two rotational degrees of freedom. Here the rotation occurs about the two axes per-

pendicular to e with the same moment of inertia I and there is no rotation about e

itself. The derivative of ui is given by

u̇i = g⊥
i + λei , (2.4)

where g⊥
i is the component of the gorque perpendicular to the molecular axis ei and

is given by

g⊥
i =

gi − (gi · ei)
Ii

, (2.5)

where Ii is the moment of inertia. For every position and momentum update, the

following few steps have to be repeated. The velocity vi and time derivative of the

orientation ui have to be advanced by a half-step ∆t/2

vi

(

t+
∆t

2

)

= vi(t) + ai(t)
∆t

2
, (2.6a)

ui

(

t+
∆t

2

)

= ui(t) +
(

g⊥
i + λiei

) ∆t

2
. (2.6b)

The Lagrange multiplier λi can be derived from the constraint ei · ei = 1. In the

next step, the velocity and orientation vector are advanced by a full time step

ei (t+∆t) = ei(t) + ui

(

t+
∆t

2

)

∆t , (2.7a)

ri (t+∆t) = ri(t) + vi

(

t+
∆t

2

)

∆t . (2.7b)

The forces and gorques (or alternatively the acceleration a and component perpen-

dicular to the gorque g⊥) can now be evaluated for the full time step. To complete
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the time step v and u are calculated for the second half-step

vi (t+∆t) = vi

(

t+
∆t

2

)

+ ai (t+∆t)
∆t

2
, (2.8a)

ui (t+∆t) = ui

(

t+
∆t

2

)

+
(

g⊥
i (t+∆t)− λ′

iei (t+∆t)
) ∆t

2
. (2.8b)

The Lagrange multiplier λ′
i can be derived from the constraints ei · ei = 1 and

ei · ui = 0.

The accuracy of the integration of Newton’s equation is important. The

more accurate the integration, the larger the time step that can be used and hence

the force has to be evaluated less often for a fixed simulation time. Several other

integration algorithms for Newton’s equation exist as well as some higher order

schemes, which include more terms of the Taylor expansion, if a higher accuracy is

desired [108].

2.2.2 Linking simulations and experiments

Due to small integration errors, the particles’ trajectories will diverge exponentially

from the real trajectories in every MD simulation. However macroscopic properties

are not affected by this divergence since they are ensemble averages. To assure cor-

rect averaging, the particles’ trajectories have to stay on a constant-energy hypersur-

face. Indeed, it can be shown that the trajectories conserve a ‘pseudo’-Hamiltonian,

which, for sufficiently small time steps, differs by only a small amount from the real

Hamiltonian.

In order to link experiments and simulations we have to be able to express

the macroscopic properties, e.g. viscosities (Leslie coefficients), orientational elas-

ticity (Frank elastic constants) or substrate-LC orientational coupling (anchoring

coefficients) in terms of the microscopic simulation details. By averaging over a

very long time we can obtain these macroscopic properties from simulation using

statistical mechanics. Because simulations are of finite length, the results are always

subject to a statistical error, which can be estimated [108, 113].

If we evolve the system over time, we simulate a so-called microcanonical

ensemble, where the total number of molecules N , the volume V and the total

energy E are conserved. This is also referred to as NV E simulation. Especially

when equilibrating a system, it might be desirable to control the temperature T .

This can be achieved by either periodically reselecting velocities at random from the

Maxwell-Boltzmann distribution [114], or alternatively the system can be coupled to

a thermal reservoir that heats or cools the system to reach the desired temperature
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[115, 116]. This ensemble is called the canonical, or NV T , ensemble. The extension

of the equations of motion for the NV T ensemble can be found elsewhere [110].

2.2.3 Improving efficiency

In the following, we will introduce several methods that are usually applied to re-

duce the computational cost of simulations without significantly affecting the re-

sults. Most MD simulations will only consider pairwise interactions and neglect any

higher-body interactions, because they are computationally very expensive. The

average three-body effect can be included in the pair potential as an ‘effective’ pair

potential. At this point it is important to note that the force calculations is the

most computationally expensive part of MD simulations. Since many potentials

are short-range, they can be truncated at a cutoff distance rc. The interaction po-

tential between two particles further apart than rc is set equal to zero and hence

does not have to be evaluated, i.e. the smaller the cutoff, the smaller the number

of force calculations. The appropriate size of the cutoff depends on how long-range

the potential is. To avoid fluctuations caused by the forces and pressure being dis-

continuous at the cutoff, potentials are often shifted vertically at the cutoff. The

potential Ucut for a truncated and shifted potential is described by

Ucut(r) =







U(r)− U(rc) if r ≤ rc

0 if r > rc .
(2.9)

The results will differ slightly with the cutoff and shift included, especially if the shift

is large. These differences can be minimised by calculating the tail contribution to

account for the long-range contributions [108]. The shifted potential is closer to the

real potential the larger the chosen cutoff. Hence the choice of the cutoff distance

is crucial. If it is too small, the system’s thermodynamic properties will change

significantly; if it is too large the force calculations will become very expensive. The

effect of different cutoff ranges as well as the shift are demonstrated in Fig. 2.1 for

a Lennard-Jones pair potential ULJ

ULJ(r) = 4ǫ0

[

(

σ0
r

)12

−
(

σ0
r

)6
]

. (2.10)

Here ǫ0 and σ0 can be used as units of energy and length respectively and hence can

be set to unity (see Section 2.2.4). Some systems are almost exclusively governed by

excluded volume effects, in which case the potential can be truncated at its minimum

and shifted upwards to obtain a purely repulsive potential, see Fig. 2.1. In some
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Figure 2.1: Lennard-Jones potential ULJ(r) with ǫ0 = σ0 = 1: unshifted (blue),
shifted with cutoff rc = 2.5 (orange), shifted with cutoff rc = 2.0 (green) and purely
repulsive (purple).

systems long-range interactions (e.g. Coulomb charge-charge or dipolar interactions)

are important; these have to be treated separately [108, p.291].

In simulations only a very small number of particles can be used compared

to the molecular number in real experiments, since pairwise interactions will lead

to a N2 scaling of the force calculations. The problem arises that the smaller

the simulation box size, the larger the fraction of molecules lying at the surface,

where they are experiencing different forces from the molecules inside the bulk. In

order to avoid these edge effects, the presence of an infinite bulk with the same

properties as the simulation box is mimicked around the box. This is realised by

treating the simulation box as the primitive cell of an infinite lattice; this method

is called periodic boundary conditions. The periodic images move in exactly the

same way as the molecules in the original box. Thus a molecule that leaves the box

will re-enter from the opposite side with the same velocity. Consequently the total

number of molecules in the primitive cell is conserved. Only the coordinates and

velocities of the molecules in the original box have to be stored, while all images

can be reconstructed geometrically. Each particle interacts with all other particles

in the simulation box as well as all particle images. A schematic sketch of periodic

boundary conditions is shown in Fig. 2.2. Care has to be taken since this approach

introduces artificial periodicity into the system. For example, first order transitions

often appear of higher order in small simulation boxes due to the suppression of

fluctuations. However, periodic boundaries usually have little effect on equilibrium
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Figure 2.2: Schematic sketch of periodic boundary conditions and minimum im-
age convention: Black particles are inside the original box coloured grey. All grey
particles are mirror images of the original particles. Only particles within the red
interaction radius of particle 1 interact with it, i.e. particle 3 and the mirror image
of particle 2.

thermodynamic properties as long as interactions are short-range.

Using periodic boundaries, particles near the surface interact across the

boundary. Here we introduce the minimum image convention, which states that

only the nearest image of a particle will contribute, when we calculate the forces.

This can be thought of as drawing a box of the same size as the original simulation

box size with the molecule of interest at its centre. Only particles that lie within

this box contribute to the interaction potential for the considered molecule. It can

be seen in Fig. 2.2 that particle 1 interacts with an image of particle 2 rather than

the particle itself, because the image is closer to particle 1. Within this limiting

box, a spherical cutoff can be used. As before, only molecules that lie within the

cutoff radius contribute to the potential. As a consequence of the minimum image

convention, the cutoff radius should never be bigger than half the box size L/2. The

impact of the periodicity of the artificially produced lattice on simulations has to be

considered carefully[113], see Section 5.3.3. As before, long-range interactions have

to be treated more carefully [108].

To calculate the forces, we have to loop over all particles to calculate the

minimum image separation, which will leave us with N2 calculations. However we

know that particles very far apart will not interact over the next few time steps.
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To increase efficiency we can keep a list for each particle of all nearby particles that

could enter their interaction radius over the next few time steps. To build the list,

we choose a cutoff radius rlist, which is larger than rc. Molecules that are closer than

rlist to a particle are added to their neighbour list. To calculate forces, we can loop

over the listed particles only. This avoids unnecessary calculations of the particles’

separation, which leads to significant savings of CPU time. The lists only have to

be updated every few time steps. In Fig. 2.3(a) we illustrate neighbour lists in two

dimensions. All white and grey particles are listed. White particles are already

inside the interaction radius and grey particles could enter the cutoff region over the

next few time steps. It is important to ensure that rlist is sufficiently large and that

the list is updated frequently enough. No particle should be able to move across

the annulus between two adjacent updates of the neighbouring list. For very large

systems, neighbour lists become memory heavy. Instead cell structures can be used

to exclude particles that are far apart from the force calculation. By dividing the

simulation box into small cells that are bigger than the cutoff radius, we can store

an index for each particle depending on the cell they are in. For force calculation

we only have to check particles within the surrounding cells. Checking an index is

faster than calculating the distance between two particles. A schematic sketch of

cell lists is shown in Fig. 2.3(b). Additional methods, e.g. linked lists or multiple

time step, can be used and are described elsewhere [113].

(a)

rlist

rc

(b)

Figure 2.3: (a) Schematic sketch of neighbour lists. All white particles are within
the cutoff radius rc of the particle of interest (red). All grey particles are listed on
the neighbour list, because they are likely to enter the cutoff radius over the next
few time steps. Black particles are not listed and should not enter the cutoff radius.
If they do, the list is not updated frequently enough. (b) Schematic sketch of cell
list in 2D. Box is divided into 16 cells. For each particle we store the cell index. For
the particle of interest (red), only particles within the surrounding (grey) cells are
checked for force contributions.

Simulations can take a very long time, or even too long, if very large system

sizes are needed. To speed up simulations many computing nodes can be used rather
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than a single one. A very effective way to divide the work amongst the processors

is to use domain decomposition. The simulation box is subdivided into regions and

each processor only updates positions and momenta for particles inside its assigned

region. Nodes have to share information about particles near the boundaries. Com-

monly the information is shared using mpi. In theory, there is no limit to how many

processors are used. However in simulations the computer time spent on the inter-

node communication increases significantly for very large numbers of processors.

The optimum number of processors depends on the precise system studied.

2.2.4 Reduced units

In molecular simulations reduced units are commonly used instead of SI units. For

example for the Lennard-Jones like potential, we can scale the energy by the factor

ǫ0 and the distance units by σ0. Without loss of generality we can choose these units

and the mass m to be unity. All quantities can be expressed in terms of these basic

units [113], e.g. the basic unit of time is τ0 = σ0
√

m/ǫ0. The results of a simulation

can always be converted back into SI units. This implies that many systems can be

described by just one simulation. The main advantage of reduced units is that most

numbers will vary in the range of 10−3 to 103 and therefore the error introduced by

floating point calculations is minimised and sometimes mistakes can be discovered

when the results of the simulation are far outside this range. All units in this thesis

are given in reduced units.

2.3 Equilibration of the Gay-Berne nematic LC phase

The potential originally suggested by Gay and Berne [72] is widely used to simulate

liquid crystals. It is a coarse-grained single-site potential that represents the inter-

action energies between two elongated or disk-shaped molecules. It can be regarded

as a shifted, anisotropic Lennard-Jones potential, i.e. it depends on the relative ori-

entation of the particles as well as their separation. For identical uniaxial particles

it can be written as [117, 118]

U(ûi, ûj , rij) = 4ǫ(ûi, ûj , r̂ij)
[

̺(ûi, ûj , rij)
−12 − ̺(ûi, ûj , rij)

−6
]

, (2.11)

where

̺(ûi, ûj , rij) =
rij − σ(ûi, ûj , r̂ij) + σ0

σ0
. (2.12)

ûi and ûj are unit vectors along the principal axes of the two particles i and j,

while rij = ri − rj is the vector connecting their centres of mass, rij = |rij |, and
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r̂ij = rij/rij . σ0 is a parameter representing the width of the particle. σ(ûi, ûj , r̂ij)

is the orientation-dependent range parameter

σ(ûi, ûj , r̂ij) = σ0






1− χ

2





(

r̂ij · ûi + r̂ij · ûj

)2

1 + χûi · ûj
+

(

r̂ij · ûi − r̂ij · ûj

)2

1− χûi · ûj











−1/2

.

(2.13)

Here χ is given by

χ =
κ2 − 1

κ2 + 1
, (2.14)

where κ is the length-to-width ratio of the particle. The strength anisotropy function

ǫ(ûi, ûj , r̂ij) used in Equation (2.11) is given by

ǫ(ûi, ûj , r̂ij) = ǫ0 ǫ
ν
1(ûi, ûj) ǫ

µ
2 (ûi, ûj , r̂ij) . (2.15)

ǫ0 is the well depth parameter determining the overall strength of the potential,

while ν and µ are two adjustable exponents which allow considerable flexibility in

defining a family of Gay-Berne potentials. ǫ1 and ǫ2 are given by

ǫ1(ûi, ûj) =
[

1− χ2(ûi · ûj)
2)
]−1/2

, (2.16)

ǫ2(ûi, ûj , r̂ij) = 1− χ′

2





(

r̂ij · ûi + r̂ij · ûj

)2

1 + χ′ûi · ûj
+

(

r̂ij · ûi − r̂ij · ûj

)2

1− χ′ûi · ûj



 . (2.17)

Here

χ′ =
κ′1/µ − 1

κ′1/µ + 1
, (2.18)

where κ′ = ǫS/ǫE is the ratio of well depths for the side-to-side configuration, ǫS,

and the end-to-end configuration, ǫE, of two molecules. Different versions of the

potential are identified by the GB(κ, κ′, µ, ν) notation of Bates and Luckhurst [119].

GB(3, 5, 2, 1) was the original suggestion of Gay and Berne [72], for which the phase

diagram has been well studied [11, 120, 121], and GB(3, 5, 1, 3), was later proposed

by Berardi et al. [117], which has the advantage of a wider nematic range. The

Gay-Berne potential has also been used to study discotic systems [122]. In Fig.

2.4 the Gay-Berne potential is plotted over particle separation for different particle

orientations, namely side-by-side, side-to-end (in a T-shape), side-cross-side (in an

X-arrangement, with the centre-centre vector perpendicular to both molecular axes)

and end-to-end. The ratio of the well depths for side-to-side and end-to-end κ′ =

ǫS/ǫE was chosen to be 5. The length of the molecules was set to ℓ = 3 and the
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width to d = 1, i.e. κ = ℓ/d = 3. σ0 and ǫ0 were set to unity. When comparing

the GB(3, 5, 2, 1) and GB(3, 5, 1, 3) in Fig. 2.4 it can be seen that for the latter

parameter set the well depth for side-by-side is significantly lower, which enhances

the nematic range.

-5

-4

-3

-2

-1

 0

 1

 0  1  2  3  4  5

U
/ε

r/σ

end-to-end

side-to-side

side-to-end

side-cross-side
-5

-4

-3

-2

-1

 0

 1

 0  1  2  3  4  5

U
/ε

r/σ

end-to-end

side-to-side

side-to-end

side-cross-side

Figure 2.4: Standard Gay-Berne potential scaled by ǫ0 plotted over particle separa-
tion scaled by σ0 for different orientations: side-to-side, side-cross-side, end-to-side
and end-to-end for κ=3 and κ’=5 (a) µ=2 and ν=1 (b) µ=1 and ν=3.

Another variation of the Gay-Berne potential is the purely repulsive GB

potential, which corresponds to a truncated and vertically shifted standard GB

potential. It can be thought of as the standard GB potential with µ = ν = 0.

This potential variation has two main advantages: the force calculation itself is

computationally cheaper and it allows the use of a shorter potential cutoff (see

Chapter 2.2.3), which leads to a significant speed-up of simulation runs. The purely

repulsive Gay-Berne potential can be written as

U(ûi, ûj , rij) =







4ǫ0
[

̺(ûi, ûj , rij)
−12 − ̺(ûi, ûj , rij)

−6
]

+ ǫ0, if ̺6 ≤ 2

0, else.
(2.19)

Note that ǫ0 is independent of the orientation in contrast to ǫ in Equation (2.11).

̺, σ and χ are unchanged (see Equations (2.12), (2.13) and (2.14)). In Fig. 2.5 the

purely repulsive Gay-Berne potential is plotted over particle separation for different

particle orientations for particles with elongation κ = 3 and κ = 5. We refer to these

systems as GB(3, 0, 0) and GB(5, 0, 0). One can see that the potential behaves very

similarly for different orientations; solely σ varies depending on the orientations.

Note that the potential for the side-by-side orientation is identical to the one for

the side-cross-side orientation. Because there are no attractive forces in this system,

the phase behaviour is not sensitively dependent on the temperature T .

Nematic Gay-Berne liquid crystals are equilibrated using the molecular dy-
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Figure 2.5: Purely repulsive Gay-Berne potential scaled by ǫ0 plotted over particle
separation scaled by σ0 for different orientations: side-to-side, end-to-side and end-
to-end for (a) κ=3 and (b) κ=5.

namics packages lammps [123] and gbmoldd [124]. Both these molecular dynamics

packages can be run in parallel using domain decomposition and parallel message

passing. To simulate one million Gay-Berne molecules, one can use up to 96 pro-

cessors to speed up the simulation significantly which allows the study of very large

systems within a reasonable time frame. For higher numbers of processors the inter-

processor communication increases drastically and hence efficiency is decreasing.

gbmoldd does not scale quite as well as lammps, but it has the advantage to be

focused on aspherical particles. Hence, it is straightforward to add orientation de-

pendent external potentials and the corresponding forces and torques. In chapter

3, 4 and 6 lammps was used due to its excellent scaling. In chapter 5, 7 and 8

gbmoldd was used, which allowed straight-forward implementation of the external

potentials required. Some simulations in lammps were repeated in gbmoldd and

no differences were detected. gbmoldd uses the Gay-Berne potential in its origi-

nal form [72], whereas lammps uses a generalised form of the Gay-Berne potential,

also suitable for biaxial ellipsoids, due to Berardi et al. [125] and reformulated by

Everaers and Ejtehadi [126]. Note that gbmoldd automatically shifts the potential

to remove the discontinuity at the (spherical) potential cutoff (See Section 2.2.3

for definition of potential cutoff.); In contrast lammps does not shift the potential.

Throughout this work we solely use a potential cutoff of 5.0σ0 for the standard

Gay-Berne potential, which is slightly larger than the commonly used 4.0σ0. The

larger cutoff (5.0σ0) keeps truncation errors minimal. At the cutoff distance the

potential energy for end-to-end interactions is small with 0.005ǫ0 and it is even less

for all other pairs of orientations. For much smaller cutoffs than 5.0σ0, the choice of

cutoff influences the results (e.g. bulk order parameter) significantly and the choice

between a shifted or unshifted potential becomes important. For the repulsive Gay-

31



Berne potential a cutoff of (κ+ 1)σ0 was found to be a suitable choice.

One method to quickly equilibrate a nematic monodomain is to prepare sim-

ulations by filling a cuboidal simulation box with the desired number of particles at

the specific density. The initial elongation is set at κ = 1 (spherical particles), the

positions are chosen to lie on a simple cuboidal lattice, and the initial orientation

vectors are all aligned along the axis of choice. Keeping the volume of the box

fixed, the MD simulation is initiated, and the particles are progressively elongated

along their axis of orientation, until they reached their desired ellipsoidal shape (e.g.

κ = 3). During the growth the particles are free to rotate and translate: positional

order is monitored and shown to disappear quite quickly, whereas it proves possible

to elongate the particles sufficiently rapidly to reach a nematic monodomain, with

the director closely aligned along the initially chosen direction, without the system

ever becoming orientationally disordered. This initial growth is followed by an equi-

libration run, which has to be sufficiently long, because the orientational order takes

a long time to equilibrate, especially when the system is large. A detailed study of

the relaxation dynamics of the Gay-Berne nematic LC is presented in Chapter 4.

In the work presented here, we focus solely on the nematic phase, hence positional

order is negligible i.e. very short-range.

2.4 Visualisation

In the analysis of nematic textures, especially in regions near the defects, data

visualisation of the nematic field plays an important role. In this section we will give

a short account of the different methods available, followed by a detailed description

of three methods used throughout this thesis.

Traditionally, the director orientation is used to visualise the nematic field.

Here the director n̂ can be represented by, for example, ‘nails’ or cylindrical glyphs

to visualise a two-dimensional cross-section. An alternative is to utilise the entire

order tensor. Each local order tensor Q can be represented by an ellipsoid with its

axes along the eigenvectors, and each axis being scaled by the corresponding eigen-

value. However both these methods are somewhat limited to two dimensions. To

locate and visualise defects in 3D isosurfaces of lower nematic order S are commonly

used [105, 127, 128]. Since S does not vary much within the bulk, but decreases sig-

nificantly around the defect, this approach is sufficient to reliably locate defects. It

has the advantages of giving a ‘clean’ picture even in 3D by avoiding unnecessary in-

formation. If the biaxiality of the nematic field is of interest, it can be superimposed

on the isosurface by the use of colour variations. In addition to these commonly used
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methods, more complex ones include the use of streamlines [129], Pontryagin-Thom

surfaces, which are based on points which share a common director orientation [130],

and splay-bend order parameter visualisation [131].

In molecular dynamics simulations it can be of interest to visualise an instan-

taneous snapshot of the system. Since each molecular position and orientation is

known, we can visualise the molecules as uniaxial ellipsoids. We used the open source

software qmga [132], which has a useful feature of colour coding the molecules de-

pending on their orientation. Molecules, which are parallel to the director are blue;

Molecules, which are perpendicular to the director are red and intermediate orienta-

tions are coloured green. (Not that we will use a different colour scheme in Chapter 7

and Chapter 8.) Three snapshots of a slice through a smectic, nematic and isotropic

Gay-Berne system are shown in Fig. 2.6. Note the absence of positional order in the

(a) (b) (c)

Figure 2.6: qmga snapshots of slices through the Gay-Berne system µ = 1, ν = 3
at density ρ = 0.3: (a) smectic (T = 2.0), (b) nematic (T = 3.4) and (c) isotropic
phase (T = 4.0). Molecular orientation is colour coded with respect to the director.
Blue molecules are parallel to the director, whereas red molecules are perpendicular
to it.

nematic and isotropic phase and the absence of orientational order in the isotropic

phase.

A commonly used approach to visualise defects in liquid crystals is to divide

the simulation box into small cubic bins. For each bin the local order tensor Q is

calculated. For a better resolution, i.e. smaller bins, we need to time average over a

longer time to ‘fill’ the bins. Ideally the bin size should be comparable to the defect

core size. For each bin we have full information of the local order tensor as well as

the density. Hence we can plot two-dimensional cross sections of these quantities in

the regions of interest. In the binning approach, line defects are tracked by analysing

planes parallel to the faces of the bins. Within one of these planes, the director n is

tracked around a square on the order parameter space sphere. If the final director

is on the different hemisphere a disclination line is cutting through the square. The

disclination line is perpendicular to the plane of the square [133, 134]. However,

33



there are many limitations inherent in this approach. Defect loops calculated this

way consist of straight lines joined by 90◦ angles, which is not smooth and does not

represent the nature of defects very well. For a high resolution, it is necessary to

time-average the data to fill each bin with a sufficient amount of molecules. However

this prevents us from seeing any short time-scale dynamics of the system.

Our main research focus here is to study the defects in liquid crystals. Since

we are particularly interested in the dynamics of these systems, we require a method

to visualise defects for instantaneous system snapshots. Callan-Jones et al. [135]

suggested an approach, which enables one to visualise defects for a single snapshot by

creating a quasi-continuous tensor field. Their method allows to locate disclination

lines and it also gives information about the defect core and the director field around

the core region. This visualisation process can be described in the following steps.

First, the order tensor Q is modified, so that all its eigenvalues are non-negative

by adding the identity matrix I. As mentioned earlier, this new diagonalised tensor

Ddiag

Ddiag = Qdiag +
1

3
I =









λ1 0 0

0 λ2 0

0 0 λ3









(2.20)

can be represented by a spheroid with the eigenvectors along the principal axes and

the corresponding eigenvalues being their respective length [136]. The eigenvalues

of Ddiag are labelled λ1 ≥ λ2 ≥ λ3 with λ1 + λ2 + λ3 = 1. The main limitation

is that Ddiag is only defined by averaging over a region of space containing non-

vanishing number of molecules. A weighting function w that interpolates Ddiag

within a certain volume is introduced to create a quasi-continuous tensor field

Dαβ(r) =
1

N(Vs)

∑

i∈Vs

w(|ri − r|)uimuim′ . (2.21)

Here N(Vs) is the number of molecules in the sampling volume Vs. ri is the position

vector of particle i and ui is the component of the orientation vector with mm′ =

x, y, z. w(|ri − r|) is a weighting function with the constraint

∑

i∈Vs

w(|ri − r|) = 1 . (2.22)

For the weighting we choose a cubic b-spline, see Fig. 2.7, which is a piecewise
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Figure 2.7: Cubic b-spline weighting function w with kernel radius rk = 7.3

continuous cubic polynomial approximation to a Gaussian function [137]

w(x) =















1
6
(3|x|3 − 6x2 + 4) 0 ≤ |x| ≤ 1

1
6
(2− |x|)3 1 ≤ |x| ≤ 2

0 else,

(2.23)

where x = 2|ri − r|/rk. w is zero if |ri − r| is greater than the kernel radius rk. rk

was chosen to be 7.3, which corresponds to having roughly 30 molecules inside the

sampling volume Vs. From the eigenvalues λ, the Westin metrics can be calculated

using

cl = λ1 − λ2 , cp = 2(λ2 − λ3) , cs = 3λ3 . (2.24)

The Westin metrics have the properties

0 ≤ cl, cp, cs ≤ 1 , cl + cp + cs = 1 . (2.25)

Regions of well ordered uniaxial nematic correspond to cl∼1, planar ordering cor-

responds to cp∼1 and isotropic regions correspond to cs∼1 [138]. Within the defect

core region cl falls below a certain threshold. The choice of this threshold may

seem somewhat arbitrary, however by starting at zero and gradually increasing cl

we reach a point where all defect lines merge, i.e. we have no ‘loose’ ends. The width

of the defect core is roughly the same everywhere, which is an indicator that the

defect region was determined correctly. The main advantages of this visualisation

approach are that time averaging is unnecessary and that there is no limit to the

resolution. We simply have to calculate more weighted order tensors if we choose

a smaller grid. The software ParaView [139] was used for the visualisation of the

isosurface corresponding to low nematic order with cl < threshold.
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2.5 Conclusions

In the research presented in the following chapters we employed molecular simula-

tions to model nematic liquid crystals to study their elastic and dynamical properties

and to investigate topological defects. The positions and orientations of the liquid

crystal molecules were updated using molecular dynamics for aspherical particles as

introduced in this chapter. Different variations of the soft Gay-Berne interaction

potential were employed. The simulations contained up to 1 million particles, which

is significantly larger than in previous studies. For such large systems the workload

was divided amongst ∼100 processors. Appropriate potential cutoffs were identified

and neighbour lists and periodic boundaries were employed to reduce computational

time and costs. We introduced various methods to visualise defects in liquid crystals,

which will be used in the following chapters.
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Chapter 3

Elastic constants in nematic

liquid crystals

3.1 Introduction

In a liquid crystal, the deviations of the molecular orientations from the director n̂

are caused by thermal fluctuations. These deformations lead to an energy penalty,

and hence elastic forces exist that tend to restore the undistorted state. Assuming

these deformations to vary slowly in space relative to the molecular distance scale,

the free energy response ∆F of the liquid crystal can be described using continuum

elastic theory [12, 140, 141]

∆F =
1

2

∫

drK1

(

∇·n̂(r)
)2
+K2

(

n̂(r)·∇∧n̂(r)
)2
+K3

∣

∣

∣
n̂(r)∧

(

∇∧n̂(r)
)

∣

∣

∣

2

, (3.1)

where K1, K2, K3 are the splay, twist and bend Frank elastic constants respectively.

Note that the elastic constants have to be positive for the free energy to increase

when the nematic is distorted. In addition, a fourth ‘surface-like’ elastic constant

term exists, accounting for saddle-splay deformations. However this term can be

omitted when studying liquid crystals in the bulk [142].

The elastic properties play a crucial role, for example, in liquid crystal dis-

plays [143], colloidal self-assembly [37, 46, 144] and the morphology of nematic

droplets [91, 92, 145]. Hence it is important to know the values of the elastic con-

stants, and their relation to molecular structure, since on a mesoscopic length scale

they almost exclusively determine the structural properties of the liquid crystal, and

together with the transport coefficients of nematodynamics [15–17, 20, 146], govern

the dynamical properties as well.
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Because in molecular simulations the positions of the molecules and their

orientations are known at all times, which allows accurate calculations of properties

such as the elastic constants. In contrast to experimental measurements, in simu-

lations it is more straightforward to distinguish between the different deformation

modes. On the downside, the elastic constants can only be measured in sufficiently

large simulation boxes, since Equation (3.1) is only valid for slowly varying n̂(r),

i.e. for fluctuations of long wavelength λ. Moreover, the relaxation times τ for

these fluctuations are expected to grow rapidly, τ ∝ λ2 ∝ k−2, as the wave number

k = 2π/λ decreases.

The earliest simulations of this kind, for hard-particle models, used rather

small system sizes [147, 148] of a few hundred molecules. Subsequent studies [80]

of the Gay-Berne model employed systems of size 1024 – 8000. Recently, hard

spherocylinders have been re-examined [149] using system sizes of order 18 000,

highlighting the care that needs to be taken in the fitting process, and the systematic

errors that may result from small system size. Other approaches to calculate the

elastic constants have been reported. Cleaver and Allen [150], as well as Gruhn

and Hess [151], used the Freédericksz transition to study elastic constants in the

Lebwohl-Lasher lattice model; however this approach is approximate, involving a

heterogeneous system with boundaries, and the fluctuation approach described here

gives more accurate results [150]. Joshi et al. [152] used direct calculations of the

free energy of perturbations of the uniform director field. As shown by Poniewierski

and Stecki [153] (see also [154, 155]), if the orientation-dependent direct correlation

function in the nematic can be calculated, the elastic constants may be obtained by

appropriate spatial integrations. Early attempts to calculate the elastic constants

in this way involved simplifying assumptions of orientational isotropy [79, 156]; the

exact calculation, avoiding these assumptions, has been accomplished [78] but is a

numerical tour de force.

In this chapter we present the elastic constant calculations for a Gay-Berne

nematic liquid crystal for two different parameterisations of the interaction potential,

and a total of six different state points with a particle length to width ratio of 3:1.

The system size chosen is almost two orders of magnitude larger than previous

studies, which allows us to pay attention to finite size effects. In addition, we

present the elastic constant calculations for a purely repulsive Gay-Berne potential,

for two different state points for an intermediate system size with a particle length

to width ratio of 5:1.

In Section 1.4 we present the theory of calculating the elastic constants from

the orientational fluctuations as a function of wave vector. Details of the simulation
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model used, and other simulation details, are given in Section 3.3. Simulation results

are presented in Section 3.4 and conclusions are drawn in Section 3.5.

3.2 Theoretical background

In the following we briefly recap how the elastic constants are calculated from the

equilibrium orientational fluctuations as a function of wave-vector k [80, 147, 148].

In a nematic phase we define an order tensor Q in reciprocal space (the Fourier

transform of the order tensor density) as

Q̃mm′(k) =
V

N

N
∑

i=1

(

3

2
ûimûim′ − 1

2
δmm′

)

exp(ik · ri) . (3.2)

Here δmm′ is the Kronecker delta, we define Cartesian components m,m′ = x, y, z,

N is the number of molecules, V is the volume and ûi and ri are the orientation

vector and the molecular position vector of each molecule i respectively and k is

the wave vector. (We restrict our interest to uniaxial molecules). Since the director

does not necessarily lie along one of the simulation box axes defining the x, y, z

coordinates, we define a new orthonormal Cartesian axis system (ê1, ê2, ê3), where

ê3 is along the director. In this system n̂ = (0, 0, 1); small fluctuations of the

director may be expressed (n1, n2, 0) and these are proportional to the elements Q13

and Q23. For simplicity the axes are chosen such that the wave vectors lie in the

ê1–ê3 plane, i.e. k = (k1, 0, k3). We derived in section 1.4 that the elastic constants

can be extrapolated from the Fourier-transformed order tensor fluctuations

〈

∣

∣Q̃mm′(k)
∣

∣

2
〉

=
〈

Q̃mm′(k)Q̃mm′(−k)
〉

,

where the angle brackets represent an ensemble average. These have the long-

wavelength behaviour

W13(k
2
1, k

2
3) ≡

9
4
〈S〉2V kBT
〈

∣

∣Q̃13(k)
∣

∣

2
〉 → K1k

2
1 +K3k

3
3 as k → 0 , (3.3a)

W23(k
2
1, k

2
3) ≡

9
4
〈S〉2V kBT
〈

∣

∣Q̃23(k)
∣

∣

2
〉 → K2k

2
1 +K3k

3
3 as k → 0 , (3.3b)

where kB is the Boltzmann constant and T the temperature of the system. These

quantities can be calculated in the simulation and to extract the elastic constants

we have to fit Equation (3.3) for various k21 and k23 and extrapolate to k1 = k3 = 0.
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3.3 Model and simulation details

For these simulations we used the Gay-Berne interaction potential for uniaxial

particles introduced in Section 2.3. We have simulated GB(3, 5, 2, 1) as well as

GB(3, 5, 1, 3). and a purely repulsive GB system to which we will refer as GB(5, 0, 0).

The particles with κ = 3 were treated as linear rotors, with a moment of inertia

chosen to correspond to a uniform distribution of mass within the ellipsoidal shape:

I = 1
20
m0σ

2
0(1+κ2). For the longer particles with κ = 5, we chose a higher moment

of inertia of I = 7.0.

For the GB(3, 5, 2, 1) and GB(3, 5, 1, 3) system each simulation was prepared

by filling a cubic simulation box with N = 512 000 particles at the specific density.

The system was equilibrated following the procedure described in Section 2.3. Po-

sitional order was monitored and found to disappear quite quickly and the rapid

particle elongation allows for the equilibration of a nematic monodomain. This

initial growth and short equilibration was followed by a longer equilibration run

of 4× 105 steps using a timestep of ∆t = 0.004τ0. We will show in the following

chapter (Chapter 4) that this period was sufficient by determining the time corre-

lation functions as a function of wave vector. Simulations were carried out in both

the canonical, constant-NV T , ensemble, using the Nosé-Hoover thermostat, and in

the microcanonical, constant-NV E, ensemble. The NV T production runs were of

length 1.9× 106 timesteps, ∆t = 0.004τ0. All molecular positions and orientations

were stored every 500 steps for later analysis. The standard deviations of the total

energy and the temperature over the entire length of the production run are as small

as 1% and 0.3% respectively. Simulation details including the temperature, density,

and average order parameter, are given in Table 3.1. We also report the standard

deviation
√

〈δθ2〉 of the angle δθ = cos−1(|n̂ · n̂0|) between the initial director n̂0

and the instantaneous director n̂. This quantity will increase with run length, as the

director undergoes rotational diffusion; the results simply indicate that, for these

system sizes, this motion is extremely slow on the timescale of our simulations,

amounting to no more than a few degrees over the full run in the worst case. For

this reason, constraints on the director motion [80] were considered unnecessary.

All runs were repeated with a much smaller system size of 8000 GB molecules to

investigate finite size effects.

The data obtained from these NV T runs was used to calculate the elastic

constants. For the GB(3,5,1,3) state point ρσ3
0 = 0.3, kBT/ǫ0 = 3.4, we repeated the

runs with a smaller timestep ∆t = 0.002τ0, simulating in the microcanonical NV E

ensemble to confirm that the thermostatting does not affect the results obtained.
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The total run length in this case was 106 timesteps with snapshots stored every 500

time steps. Indeed we find that the elastic constants only deviate by a few percent

from the ones calculated using the longer NV T runs.

The GB(5, 0, 0) system was prepared in the same fashion as the standard

Gay-Berne ones. The number of Gay-Berne particles was N = 125 000. For

these runs the constant-NV E ensemble was used. The equilibration run length

was 400 000, followed by a production run of 1 000 000 timesteps with a timestep

∆t = 0.002. A system snapshot was stored every 500 timesteps. Simulation details

for this system are given in Table 3.1.

Table 3.1: System details and elastic constants for eight different state points for
GB(3, 5, 2, 1), GB(3, 5, 1, 3) and GB(5, 0, 0) model. We tabulate density ρ ≡ ρσ3

0,
temperature T ≡ kBT/ǫ0, average order parameter 〈S〉 with estimated error in
parentheses, and standard deviation σθ =

√

〈δθ2〉 of the angle δθ = cos−1(|n̂ · n̂0|)
(in degrees) between the initial director n̂0 and the instantaneous director n̂, for the
constant-NV T runs. Elastic constants K1,K2,K3 are obtained from W13 and W23

surface fitting; the coefficients of determination R2 for each surface fit are given.
Error bars, in parentheses, are discussed in the text.

W13 fit W23 fit

ρ T 〈S〉 σθ (◦) K1 K3 R2 K2 K3 R2

GB(3,5,2,1)

0.32 0.9 0.576(2)0.5 0.61(5) 1.48(7) 0.96 0.69(6) 1.60(4) 0.98

0.33 1.0 0.658(1)0.4 0.91(7) 2.62(7) 0.97 1.01(8) 2.74(5) 0.99

0.35 2.0 0.580(7)1.2 1.54(6) 4.00(8) 0.99 1.28(4) 3.96(4) 0.99

0.38 3.0 0.643(5)0.7 3.9(3) 11.6(2) 0.99 3.1(2) 11.2(2) 0.99

GB(3,5,1,3)

0.3 3.4 0.614(2)0.7 3.16(6) 5.88(6) 0.99 2.79(6) 5.85(3) 0.99

0.3 3.45 0.577(3)1.9 2.79(6) 5.04(3) 0.99 2.45(6) 4.97(3) 0.99

GB(5,0,0)

0.125 1.0 0.577(4)0.6 0.63(1) 1.43(1) 0.97 0.36(1) 1.40(2) 0.98

0.15 1.0 0.824(2)0.4 1.64(1) 7.92(6) 0.99 0.98(1) 7.89(4) 0.99
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3.4 Data analysis and results

All of our results are calculated as functions of wave vector k. In cubic periodic

boundary conditions, this is restricted to

k =
2π

L
(κx, κy, κz) . (3.4)

Here κx, κy, κz are integers, and the box length L & 95σ0. In our calculations we

restricted interest to −5 ≤ κx, κy ≤ 5 and 0 ≤ κz ≤ 5, excluding k = (0, 0, 0).

The data analysis for the elastic constant calculations consists of three parts.

Firstly the instantaneous order tensor in reciprocal space is calculated from Equa-

tion (3.2) for the allowed set of wave vectors given by Equation (3.4). In the second

step, the order tensor is converted from the (x̂, ŷ, ẑ) frame to the (ê1, ê2, ê3) frame,

and hence Q̃13 and Q̃23 can be calculated as functions of k21 and k23 for each stored

configuration. Thirdly, the quantities |Q̃13|2 and |Q̃23|2 are averaged over the entire

run, and statistical errors on these quantities estimated by a blocking procedure.

To ensure that this did not underestimate errors at low k (when the fluctuation

timescales become very long) these error estimates were corrected by fitting them

to a simple function of k2 and extrapolating higher-k results to low k (see also

Ref. [80]). These results are used to compute W13(k
2
1, k

2
3) and W23(k

2
1, k

2
3) using

Equation (3.3), with associated statistical errors obtained by the standard error

propagation formula. The fact that director motion is very small simplifies the

analysis since Wmm′ can be measured on a fixed grid in k-space.

To calculate the elastic constants from Equation (3.3), each Wmm′ is fitted

to a low-order polynomial passing through the origin

p(k21, k
2
3) = p10k

2
1 + p01k

2
3 + p11k

2
1k

2
3 . (3.5)

The estimated errors on each data point were used to calculate weights for the fit.

The results for the fitted surfaces W13 and W23 are plotted for one of the state points

in Figure 3.1.

It can be seen that in this regime of very small wave vectors the data has

very little curvature. This was observed for all state points for all GB potential

variations, which confirms that our chosen wave vectors were sufficiently small for

Equation (3.3) to hold. The clustering of data points around specific values of k23,

apparent in Figure 3.1, is due to the minimal deviation of the director from its initial

orientation in the z-direction. The goodness of fit is very high, with the coefficient

of determination R2 ≥ 0.99 for almost all cases. To highlight the quality of the fit,
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Figure 3.1: Surface fitting results for W13 and W23 as a function of k21 and k23 at
temperature T = 3.0 and density ρ = 0.38 for the system GB(3, 5, 2, 1). Simulation
results are shown as blue points with error bars. Surface fits are shown from two
different angles.
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Figure 3.2: Slices through W13 and W23 results and fitted surfaces as a function of k21
and k23, at temperature T = 3.0 and density ρ = 0.38 for the system GB(3, 5, 2, 1).
For clarity only three out of six slices are plotted in each case. (a) W13 splay
fluctuations; (b) W13 bend fluctuations; (c) W23 twist fluctuations; (d) W23 bend
fluctuations.

we show edge-on views in Figure 3.1, and, in Figure 3.2, slices through the fitted

surface along the k21 and k23 axes. In each direction, six slices were chosen such

that roughly 1/6 of the data points lay within each slice. The slices perpendicular

to k3 correspond very closely to k3 ∼ kz = 2πκz/Lz with κz = 0, . . . , 5; the slices

perpendicular to k1 each contain a range of values (corresponding to combinations

of kx and ky in the box frame). Again, a good fit was observed for all six state

points.

The obtained fitting coefficients p01 and p10 correspond directly to K1, K3

respectively for the W13 fit, and to K2, K3 respectively for the W23 fit. The elastic

constants K1, K2, K3 obtained from the fits are given in Table 3.1. We observe
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that K3 values obtained from both fits are similar and that K3 ≫ K1 ≈ K2. This

agrees with observations that, in a nematic phase formed from elongated particles,

the splay and twist elastic constants are almost equivalent, whereas bend excitations

require most energy. For all GB parameterisations we observe an increase in the

elastic constants for denser state points.

A word is needed about the estimated errors on the elastic constants, reported

in Table 3.1. The fitting process yields 95% confidence limits on the fit parameters,

which reflect the statistical errors on the data points, but these do not tell the whole

story. There is an additional uncertainty due to the key choices of how many k-

points to include, and how high a polynomial to use for the fitting surface. These

choices are, of course, interconnected. The use of a very large system eliminates

most of the curvature in the Wmm′(k21, k
2
3) surfaces and the very high coefficients of

determination R2 justify the use of the low-order function, Equation (3.5). Having

done this, we systematically varied the range of (k21, k
2
3), and hence the number of

points, included in the fit, until R2 began to fall significantly below the level quoted

in Table 3.1. The spread in parameters determined across these fits gave an estimate

of the imprecision in elastic constants due to this choice, which was added to the

statistical error estimate. The results, given in Table 3.1, are reasonably consistent

with the difference in the K3 values between the independent fits to W13 and W23

surfaces. Without this correction, the error bars would be unreasonably optimistic,

typically by a factor of 2–3.

The simulations for GB(3, 5, 2, 1) and GB(3, 5, 1, 3) were repeated with 8000

Gay-Berne molecules, and other details unchanged, to analyse finite size effects.

Results are given in Table 3.2. As expected the order parameter is slightly higher

than for the large systems. The values of the order tensor fluctuations Wmm′ are

consistent for both system sizes in the regime of low k that we analysed for large

simulations. However, for the small system, only a relatively small number (20–30)

of data points lie in this regime. To obtain a fit with reasonable error bars on the

fitting parameters, it is necessary to extend to larger k and add higher order terms

to the fitting function, to account for the curvature observed in the data at higher

k-values. For the 8000-particle system, we added terms in k41 and k43 to the form of

Equation (3.5). However, the value of this approach is limited, in the sense that the

extra terms simply give a better fit to the higher-k points, and the elastic constants

are still determined by the relatively few points near the origin. This can be clearly

seen in the figures of Ref. [80], for the same-sized system. For the reasons discussed

above, we do not attempt to put error bars on the elastic constant estimates in

Table 3.2. We re-emphasise that discrepancies between the values in Tables 3.1 and
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Table 3.2: Results for 8000 Gay-Berne molecules. Notation as for Table 3.1. Coef-
ficients of determination R2 for the fits were 0.99 or better in all cases.

W13 fit W23 fit

ρ T 〈S〉 K1 K3 K2 K3

GB(3,5,2,1)

0.32 0.9 0.59(1) 0.46 1.27 0.54 1.34

0.33 1.0 0.67(1) 0.70 2.31 0.78 2.41

0.35 2.0 0.61(1) 1.36 3.83 1.11 3.90

0.38 3.0 0.72(1) 3.22 11.23 2.35 11.50

GB(3,5,1,3)

0.3 3.4 0.63(1) 2.92 5.32 2.60 5.43

0.3 3.45 0.59(2) 2.58 4.59 2.29 4.66

3.2 reflect difficulties of fitting the data in the latter case; the measured data points

themselves are fully consistent with those of the present study, when the very small

differences in order parameter are taken into account.

Our results do not compare so well with the original ones of Allen et al. [80];

in particular, their measured order parameters are different from ours. This turns

out to be due to the smaller cutoff of rcut = 4σ0 used in that work, in addition to

the use of a potential which was shifted to eliminate the discontinuity (see Section

2.2.3). Both potentials are illustrated in Figure 3.3 for the end-to-end configuration.

(The value of rcut was not made clear in the original paper, but was stated in

an accompanying paper by the same authors [157]; this value, or more generally

rcut = (κ+ 1)σ0, was quite standard at the time [117, 158, 159]). As can be seen in

Figure 3.3, the effect of truncation, particularly in configurations close to the end-

to-end arrangement, can be significant. It is important to realise that, because the

shift correction depends on the orientations of the particles and the direction of the

centre-centre vector, it does actually generate torques and forces in the simulation,

and therefore affects the dynamics and simulation averages. Using the MD package

gbmoldd [124], with the shorter cutoff, we have duplicated the order parameter

measurements of Ref [80], confirming that the chosen cutoff makes a significant

difference. Therefore, we do not attempt to make a close comparison with the

elastic constants measured in that paper. We found that our results are in moderate

agreement with the ones found by Joshi et al. [152] using free energy perturbation

measurements. At density ρ = 0.33 and temperature T = 1.0 (unknown rcut), for

GB(3,5,2,1), they obtained K1,2,3 = {0.958, 0.91, 2.44}, which may be compared
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Figure 3.3: Gay-Berne potential for the end-to-end configuration (ûi, ûj and rij
all parallel), for the GB(3, 5, 2, 1) and GB(3, 5, 1, 3) models. Solid lines show the
unshifted potential, which is cut at rcut = 5σ0 in this work. Dashed lines show the
potential cut at rcut = 4σ0 and shifted, as used in Ref. [80].

with our values in Tables 3.1 and 3.2. We note that Joshi et al. [152] used system

sizes 725 ≤ N ≤ 8910, and claimed to find no evidence of system-size effects in

the upper part of this range. Bearing in mind that they measured the free energy

associated with a single deformation mode in each case, it is not clear how significant

this finding is.

3.5 Conclusions

We have calculated the Frank elastic constants of the Gay-Berne fluid for three

different parameterisations at various state points using molecular dynamics. We

have shown that for a sufficiently large simulation box, the elastic constants can

be extrapolated from the equilibrium orientational fluctuations. We found that

K3 ≫ K1 ≈ K2 for all state points and parameterisations. This agrees with the

expectation that for elongated particles the bend excitation requires the most energy.

The elastic constants depend strongly on the density, showing an increase for higher

densities at roughly constant order parameter. In comparing with previous work,

we have highlighted the advantages of using a larger simulation box, so as to give a

larger range over which the asymptotic behaviour of the director fluctuations may
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be fitted. Our fluctuation measurements are consistent with those made on a much

smaller system; however the fitting process itself can be somewhat more robust for

the larger systems. A limitation, however, is the rapid increase in correlation times,

and associated statistical errors, for the lowest-k modes.
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Chapter 4

Dynamics in nematic liquid

crystals

In this Chapter we present the dynamics of Gay-Berne nematics by calculating the

time correlation functions of the director and velocity fluctuations. These results

were published [1, 2]. The theoretical analysis was contributed by M. P. Allen.

4.1 Introduction

Most of the interesting properties of nematic liquid crystals are determined by the

Frank elastic constants K1, K2 and K3 appearing in the static continuum theory

[12, 140, 141], and the various Leslie coefficients α1 . . . α6 (viscosities), which enter

the equations of nematodynamics [15–17, 20, 146]. The orientational relaxation of

the space- and time-dependent nematic director n(r, t), and its coupling to the hy-

drodynamic velocity field v(r, t), may be accessed experimentally at low wavenum-

ber k and frequency ω by dynamic light scattering. Ever since the first analysis

of such experiments, it has been argued on the basis of the relative orders of mag-

nitudes of the elastic and viscosity coefficients [160, 161], that these modes decay

exponentially, rather than oscillating in time. For example, the review of Stephen

and Straley [161] states: “The orientation fluctuations of the director are coupled to

the fluid velocity by viscous effects, and in fact are overdamped: the modes which

the elastic theory . . . predicts do not propagate”. Similar statements appear in the

textbook derivations [6, 9] and this view has been supported by experiment over

subsequent years [162–165].

Particle-based molecular simulations allow us to connect the values of the

coefficients of orientational elasticity and viscosity to molecular structure and in-
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teractions, and verify the assumptions of the continuum theory. In this chapter we

present the dynamics of the order tensor, which is coupled to hydrodynamic flow, as

a function of wave vector. We show how the director fluctuations decay with time,

and that the bend fluctuations unexpectedly decay in an oscillatory fashion. We also

report the time correlation functions for transverse velocity (momentum), showing

how these are also consistent with the equations of nematodynamics [15–17, 20, 146].

In Section 4.2 we summarise the relevant equations for the time correlation

functions. Details of the simulation model used, and other simulation details, are

given in Section 4.3. Simulation results are presented in Section 4.4 and conclusions

are drawn in Section 4.6.

4.2 Theoretical background

The dynamics in the nematic phase can be studied by calculating time correlation

functions of the components of the director, or equivalently the order tensor. Recall

that the order tensor Q in reciprocal space is given by

Q̃mm′(k) =
V

N

N
∑

i=1

(

3

2
ûimûim′ − 1

2
δmm′

)

exp(ik · ri) . (4.1)

Here δmm′ is the Kronecker delta, we define Cartesian components m,m′ = x, y, z,

N is the number of molecules, V is the volume and ûi and ri are the orientation

vector and the molecular position vector of each molecule i respectively and k is

the wave vector. (We restrict our interest to uniaxial molecules). We define a

new orthonormal Cartesian axis system (ê1, ê2, ê3), where ê3 is along the director.

In this system n̂ = (0, 0, 1); small fluctuations of the director may be expressed

(n1, n2, 0) and these are proportional to the elements Q13 and Q23. Without loss of

generality the axes are chosen such that the wave vectors lie in the ê1–ê3 plane, i.e.

k = (k1, 0, k3). To analyse the dynamics we calculate the time correlation functions

of components of the director, or equivalently the order tensor

cnm(k, t) =

〈

ñm(k, t)ñm(−k, 0)
〉

〈

∣

∣ñm(k)
∣

∣

2
〉 =

〈

Q̃m3(k, t)Q̃m3(−k, 0)
〉

〈

∣

∣Q̃m3(k)
∣

∣

2
〉 , m = 1, 2 (4.2)

where it is understood that, in finite-time simulations, the dynamical variables have

their average values subtracted off: Q̃mm′ → Q̃mm′ − 〈Q̃mm′〉. Here, the separate
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splay, twist and bend fluctuations are of interest, defined by

cnsplay(k, t) = cn1 (kê1, t) , (4.3a)

cntwist(k, t) = cn2 (kê1, t) , (4.3b)

cnbend(k, t) = cn1 (kê3, t) = cn2 (kê3, t) . (4.3c)

We also calculate Fourier components of the velocity field v(r), denoted ṽ(k) =

(ṽ1, ṽ2, ṽ3)

ṽm(k) =
V

N

N
∑

i=1

vim exp(ik · ri) , (4.4)

and their time correlation functions

cvm(k, t) =

〈

ṽm(k, t)ṽm(−k, 0)
〉

〈

∣

∣ṽm(k)
∣

∣

2
〉 , m = 1, 2, 3 . (4.5)

In the regime of interest, it is possible to assume that the fluid is incompressible,

∇ · v = 0. In Fourier space, this becomes ik · ṽ = 0, or, in the coordinate system

defined above, k1ṽ1 + k3ṽ3 = 0. For the pure splay, twist and bend deformations

above, either k1 or k3 is zero, and so this condition may be used to eliminate one of

the velocity components. It turns out that the following modes couple to director

fluctuations as follows:

cvsplay(k, t) = cv3(kê1, t) , (4.6a)

cvtwist(k, t) = cv2(kê1, t) , (4.6b)

cvbend(k, t) = cv1(kê3, t) = cv2(kê3, t) . (4.6c)

These are all transverse (shear) modes, i.e. the velocity component is per-

pendicular to the wave-vector.

These calculations are simplified if the director can be arranged to lie along

one of the box Cartesian axes, for instance ê3 = ẑ, so that the desired wave vec-

tors are compatible with the cubic periodic boundary conditions. In this case, in

Equations (4.3a) and (4.3b), it is possible to choose (at least) two perpendicular

wave vector directions ê1 (e.g. ê1 = x̂, ŷ) for each value of k, thereby improving

statistics and giving an additional error estimate. In Equation (4.3c), combining the

two equivalent expressions for cnbend(k, t) fulfils a similar function, and corresponding

arrangements can be made for Equations (4.6a–4.6c).

At low-k, we expect these correlation functions to be consistent with ne-
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Table 4.1: Basic relations for velocity coefficients

Basic relation Definition

γ1 = α3 − α2 Rotational or twist viscosity

η1 =
1
2

(

α3 + α4 + α6

)

Miesowicz viscosity along flow direction n ‖ v

η2 =
1
2

(

α4 + α5 − α2

)

Miesowicz viscosity along gradient direction n ‖ ∇v

η3 =
1
2
α4 Miesowicz viscosity along vorticity direction n ‖ (v ×∇v)

matodynamics: the coupled equations in Fourier space for hydrodynamic flow and

director reorientation [19, 160, 161]. The link between microscopic time correla-

tion functions, and macroscopic transport equations, is a standard exercise in linear

response theory, which may be tackled through the projection operator formalism

[166–169]. We consider the twist, splay, and bend modes separately. The basic

relations for several viscosity coefficients [160, 161] used in the following derivation

are given in Table 4.1.

For the twist deformation, k1 = k, k3 = 0, and incompressibility implies

that the velocity component ṽ1 ≡ 0. The relaxation equations involve the pair of

variables {ñ2, ṽ2}:

(

γ1 ∂t +K2k
2
)

ñ2 = 0 , (4.7a)
(

ρ ∂t + η3k
2
)

ṽ2 = 0 , (4.7b)

where ∂t denotes the time derivative; ρ is the mass density. In Equation (4.7) the

director twist ñ2 and the transverse velocity ṽ2 are decoupled, and relax indepen-

dently:

ñ2 ∝ exp(−νntwistt) , νntwist = λn
twistk

2 , λn
twist = K2/γ1 ,

ṽ2 ∝ exp(−νvtwistt) , νvtwist = λv
twistk

2 , λv
twist = η3/ρ ,

where the rotational viscosity ηtwist ≡ γ1. For typical values of the transport coef-

ficients, elastic constants, and mass densities, these relaxation rates are well sepa-

rated:
νntwist

νvtwist

=
λn
twist

λv
twist

=
ρK2

η3γ1
≪ 1 . (4.8)

The equilibrium time correlation functions cntwist(k, t) and cvtwist(k, t) are predicted

to decay exponentially, with corresponding decay rates νntwist and νvtwist respectively.

For the splay deformation, again k1 = k, k3 = 0, so ṽ1 ≡ 0, and the relaxation
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equations in the variables {ñ1, ṽ3}, are

(

γ1 ∂t +K1k
2
)

ñ1 + ikα3 ṽ3 = 0 , (4.9a)

−ikα3 ∂t ñ1 +
(

ρ ∂t + η1k
2
)

ṽ3 = 0 , (4.9b)

where η1 is another Miesowicz viscosity, and α3 is a Leslie coefficient. These equa-

tions may be solved in standard fashion as a matrix eigenvalue problem. A secular

equation for the decay rates is obtained by substituting ∂t → −ν = −λk2:

∣

∣

∣

∣

∣

∣

∣

−νγ1 +K1k
2 ik α3

ik να3 −νρ+ η1k
2

∣

∣

∣

∣

∣

∣

∣

= 0

⇒ λ2ργ1 + λ
(

α2
3 − γ1η1 − ρK1

)

+K1η1 = 0 . (4.10)

If the timescale separation still applies, the two roots will be real, and will obey

λ ≪ λ′, in which case

λ′
splay ≈ η1 − α2

3/γ1 + ρK1/γ1
ρ

,

λsplay ≈ K1

γ1 − α2
3/η1 + ρK1/η1

≡ K1

ηsplay
,

where ηsplay = γ1 − α2
3/η1 + ρK1/η1 ≈ γ1 − α2

3/η1. Director splay fluctuations are

expected to be dominated by this slow mode λsplay, relaxing exponentially

ñ1 ∝ exp(−νnsplayt) , νnsplay = λn
splayk

2 , λn
splay = K1/γ

′
1 γ′1 = γ1(1− χ)

ṽ3 ∝ exp(−νvsplayt) , νvsplay = λv
splayk

2 , λv
splay = η′1/ρ , η′1 = η1(1− χ) .

The factor χ = (α2
3 − ρK1)/η1γ1, where we expect |χ| ≪ 1, slightly modifies the

rotational and Miesowicz viscosities. The timescale separation becomes

νnsplay
νvsplay

=
λn
splay

λv
splay

=
ρK1

η′1γ
′
1

≪ 1 . (4.11)

For bend fluctuations, k1 = 0, k3 = k, and ṽ3 ≡ 0 by incompressibility. The

coupled relaxation equations for the pair {δñ1, ṽ1} (and similarly for {δñ2, ṽ2}) are

(

γ1 ∂t +K3k
2
)

δñ1 + ikα2 ṽ1 = 0 , (4.12a)

−ikα2 ∂t δñ1 +
(

ρ ∂t + η2k
2
)

ṽ1 = 0 , (4.12b)
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where K3 is the bend elastic constant. Substituting ∂t → −ν = −λk2 gives the

secular equation

∣

∣

∣

∣

∣

∣

∣

−νγ1 +K3k
2 ik α2

ik να2 −νρ+ η2k
2

∣

∣

∣

∣

∣

∣

∣

= 0

⇒ λ2ργ1 + λ
(

α2
2 − γ1η2 − ρK3

)

+K3η2 = 0 . (4.13)

A similar argument to the splay case would give well-separated real roots

λ′
bend ≈ η2 − α2

2/γ1 + ρK3/γ1
ρ

,

λbend ≈ K3

γ1 − α2
2/η2 + ρK3/η2

≡ K3

ηbend
,

where ηbend = γ1−α2
2/η2+ρK3/η2 ≈ γ1−α2

2/η2. This leads to the usual prediction

that bend relaxation is overdamped, occurring at a rate νbend = K3k
2/ηbend. How-

ever, our simulation results clearly do not conform to this: instead they correspond

to complex roots (and hence a propagating mode)

λbend = λr
bend + iλi

bend .

The conditions for which complex roots arise are discussed in detail in the later

discussion section.

4.3 Simulation details

The time correlation functions were calculated for a cubic system of 512 000 Gay-

Berne molecules for the state point ρσ3
0 = 0.3, kBT/ǫ0 = 3.4 with at the GB(3,5,1,3).

The system was prepared as described in Section 3.3 with two modifications. Firstly,

the timestep was reduced to ∆t = 0.002τ0 and secondly the production run was sim-

ulated in the microcanonicalNV E ensemble to confirm that the thermostatting does

not affect the results obtained. We also calculated the time correlation functions of

the director fluctuations cnm(k, t) for the NV T data described in Section 3.3. The

elastic constants (see Chapter 3) were recalculated using these shorter, NV E, runs

to ensure that none of the changes described influence the results. Indeed we find

that the elastic constants only deviate by a few percent from the ones calculated

using the longer NV T runs. The equilibration run was 400 000, followed by a pro-

duction run of 1 000 000 time steps with snapshots stored every 500 time steps. All
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time correlation functions were calculated over the whole length of the production

run from the stored configurations.

4.4 Data analysis and results

All of our results are calculated as functions of wave vector k. In cubic periodic

boundary conditions, this is restricted to

k =
2π

L
(κx, κy, κz) . (4.14)

Here κx, κy, κz are integers, and the box length L & 95σ0. In our calculations we

restricted interest to −5 ≤ κx, κy ≤ 5 and 0 ≤ κz ≤ 5, excluding k = (0, 0, 0).

The time correlation functions of the director cnm(k, t) were calculated from

the components of the order tensor Q̃13 and Q̃23, defined in Equation (4.3), which

are proportional to the director fluctuations ñ1 and ñ2. In Figure 4.1 we can see that

these time correlation functions cn(k, t) follow an exponential decay for the splay

and twist mode with the decay rates increasing with increasing wave number k. For

the bend mode we observe an oscillation in addition to the exponential decay, i.e.

it is a propagating mode. Although this possibility had always been allowed by the

nematodynamic theory [166], it had not (to our knowledge) been observed before

in experiment, or simulation. A detailed description that places these findings into

context can be found in the next Section 4.5.

We also calculated the time correlation functions of the velocity fluctuations

cv(k, t), defined in Equation (4.6). The results are plotted in Figure 4.2. Similar to

the director fluctuations they follow an exponential decay for splay and twist modes,

and an oscillatory exponential decay for the bend mode. However both the splay and

twist velocity fluctuations decay faster than their corresponding director correlation

functions, while the two decay rates for the bend mode are almost identical. All

these observations are consistent with the equations of nematodynamics, described

in Section 4.2. We estimated the decay rates by fitting the time correlation functions

in Figure 4.1 and Figure 4.2 to the function ℜ exp(−νt) allowing complex ν (ℜ stands

for “real part”).

For the splay and twist mode the decay rates νsplay and νtwist were real

with a negligible complex part; whereas for the bend mode we found an oscillatory

decay rate corresponding to complex νbend. In Figure 4.3 the decay rates νsplay

and νtwist are plotted against k2 for the director and velocity fluctuations. Errors

were estimated from repeating the fits independently for four equally long subruns of
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Figure 4.1: Time correlation functions of the director fluctuations cn(k, t) plotted
versus time t in units of τ0 at ρσ3

0 = 0.3, kBT/ǫ0 = 3.4, for GB(3,5,1,3). (a)
cnsplay(k, t) (b) c

n
twist(k, t) (c) c

n
bend(k, t). Points with error bars are simulation results.

Continuous lines correspond to fitted curves c = ℜ exp(−νt), where ν is a complex
number. Different curves correspond to different wavenumbers k = κ2π/L where L
is the simulation box length: κ = 1 (squares, green); κ = 2 (circles, blue); κ = 3
(up-triangles, grey); κ = 4 (down-triangles, red); κ = 5 (diamonds, cyan).

250 000 timesteps. All four relaxation rates calculated are accurately proportional to

k2. There is no significant difference in gradient between the splay and twist for the

director fluctuations; whereas for the velocity fluctuations the two gradients differ.

We estimate the gradient of the decay rates versus k2 by calculating a linear fit

through the origin for the set of points corresponding to different wave vectors. The

proportionality factors λn and λv are listed in Table 4.2. For the lowest values of k,

the decay times are in the order of magnitude of 100 000 time steps. This confirms

the need to take care in assessing errors in the elastic fluctuations in Chapter 3,

where elastic constants are calculated, because the decay times become comparable

with the run length.

56



 0

 0.5

 1

c
v s
p

la
y
(k

,t
)

(a)

 0

 0.5

 1

c
v tw

is
t(
k
,t

)

(b)

-0.5

 0

 0.5

 1

 0 10 20 30 40

c
v b

e
n

d
(k

,t
)

t

(c)

Figure 4.2: Time correlation functions of the velocity fluctuations cv(k, t) plotted
versus time t in units of τ0 at ρσ3

0 = 0.3, kBT/ǫ0 = 3.4, for GB(3,5,1,3). (a)
cvsplay(k, t) (b) c

v
twist(k, t) (c) c

v
bend(k, t). Notation as in Figure 4.1.
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Figure 4.3: Relaxation rates ν as a function of k2 obtained from fitting exp(−νt)
to (a) director time correlation functions cnm(k, t) in Figure 4.1; (b) velocity time
correlation functions cvm(k, t) in Figure 4.2. The state point is ρσ3

0 = 0.3, kBT/ǫ0 =
3.4, for GB(3,5,1,3). Circles and squares correspond to the splay and twist mode
respectively. Straight lines are linear regression through origin.
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Table 4.2: Proportionality factors λ relating the relaxation rates of the director and
velocity correlations to k2 for GB(3,5,1,3) and ρ = 0.3, T = 3.4. Values are obtained
from the gradients of the linear fits through the origin in Figures 4.3 and 4.4.

λn λv

λsplay λtwist λr
bend λi

bend λsplay λtwist λr
bend λi

bend

0.7(1) 0.76(15) 1.97(7) 4.95(16) 2.43(9) 6.60(10) 2.11(4) 5.54(12)

For the splay and twist mode it is notable that the decay rates of the velocity

fluctuations are almost an order of magnitude larger than for the director fluctu-

ations. For the chosen state point the timescale separation for the twist mode is

most prominent with λv
twist/λ

n
twist ≈ 9. For the splay mode the timescale separation

is still significant with λv
splay/λ

n
splay ≈ 3.5. This separation of timescales is expected

from nematodynamics, Equations (4.8) and (4.11). For the bend mode the real and

imaginary parts of the relaxation rate ν are plotted against k2 in Figure 4.4. Once

again we find that both decay rates are exactly proportional to k2 for both the real

and the imaginary part. In contrast to the splay and twist modes, the velocity and

director bend correlation functions relax and oscillate on almost exactly the same

timescales, which we will explain in the discussion. Qualitatively similar dynamics
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Figure 4.4: Relaxation rates νbend for bend fluctuations of the director (squares) and
the velocity (circles) with (a) the real part (b) the imaginary part. These parameters
were obtained from the fits to cnm(k, t) in Figure 4.1(c) and cvm(k, t) in Figure 4.2(c).
The state point is ρσ3

0 = 0.3, kBT/ǫ0 = 3.4, for GB(3,5,1,3). Straight lines are linear
regression through origin.

were observed for all other state points analysed in Chapter 3. The proportionality

factors of the relaxation rates to k2 for these are reported in Table 4.3. Note that

the run time for these simulations was roughly twice as long as the NV E ones and

that the time step used was ∆t = 0.004.
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Table 4.3: Proportionality factors relating the relaxation rates of the director cor-
relations to k2 for all state points analysed in Chapter 3. Estimated errors in the
last quoted digit are given in parentheses.

ρ T λsplay λtwist λr
bend λi

bend

GB(3, 5, 2, 1)

0.32 0.9 0.15(1) 0.17(1) 1.4(1) 1.5(1)

0.33 1.0 0.15(1) 0.17(1) 1.6(1) 2.5(1)

0.35 2.0 0.17(1) 0.16(1) 2.1(1) 2.4(1)

0.38 3.0 0.22(1) 0.21(1) 2.9(1) 4.9(1)

GB(3, 5, 1, 3)

0.3 3.4 0.66(1) 0.64(1) 1.96(2) 4.81(3)

0.3 3.45 0.70(1) 0.70(1) 2.11(6) 4.08(6)

4.5 Discussion

In this Section we will argue that some experimental systems might have transport

coefficients, which obey an inequality necessary to exhibit the propagating behaviour

observed. To see how these arise, it is helpful to define two dimensionless quantities

µ =
ρK3

γ1η2
, α = 1− α2

2

γ1η2
.

We expect µ ∼ 10−2 like the similar quantities defined above for twist and splay.

Certainly, in both experiment [19, Table D.3], and simulation [81], typically η2 & γ1,

but also K3 & K2, so µ = ρK3/γ1η2 ≈ ρK2/γ
2
1 . The discriminant of the quadratic

equation (4.13) gives complex roots if

(α+ µ)2 < 4µ ⇒ |α| . 2
√
µ ,

assuming that µ ≪ 1. This is quite possible, depending on how close the viscosities

γ1, η2, and α2 happen to be to each other. We already know that γ1 = α3−α2 ≈ |α2|,
since α3 is typically small, so if η2 ≈ |α2|, a small value of α will indeed result.

If µ ∼ 10−4, then complex roots will only result if |α| < 0.02; however, if

µ ∼ 10−2, complex roots will arise if |α| < 0.2. To put this in context, Table D.3

of Ref. [19] gives typical experimental values of α = 0.18, 0.19, 0.23 for MBBA near

25 ◦C, 5CB near 26 ◦C, and PAA near 122 ◦C, respectively. Wang et al. [170] have

estimated the Leslie coefficients for the standard mixture E7, from which α = 0.06
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near 20 ◦C. Even smaller values come from theories, and from molecular simulation

measurements of viscosities [81, 171–174]. The simulation results of Wu et al. [82],

for the model GB(3.0, 5.0, 1, 2) [175], at T = 2.5, ρ = 0.295, give α ≈ 0.01. The the-

ory of Kuzuu and Doi [176] for rod-like molecules predicts a value of α < 0.004 over

the entire nematic range. An affine transformation theory [177, 178] predicts values

α < 0.1 for molecules of elongation κ ≥ 3 at modest nematic order parameters, and

α ≡ 0 in the perfectly aligned limit.

The parameter α appears in the continuum theory of switching phenomena,

such as the homeotropic to planar-bend Freedericksz transition (see e.g. Chapter 5

of Ref. [19]). The influence of small values of α on backflow and kickback effects in

such cases is well understood, but the generation of oscillatory director fluctuations

in the bulk at low k seems to have been overlooked. Our results show that these

are easily observed in computer simulations of a range of coarse-grained molecular

models. Moreover, they suggest that, even though overdamped decay is the norm

in experiments, real-life examples might be found for which the secular equation

(4.13) has complex roots, and the bend mode propagates. In this event, the roots

are given by

λr
bend = (α+ µ)

(

η2
2ρ

)

,

λi
bend =

√

4µ− (α+ µ)2
(

η2
2ρ

)

,

both the prefactors being significantly smaller than 1. From the ratios λi
bend/λ

r
bend

measured in our simulations we can estimate 0.5 . µ/(µ + α)2 . 2, which is com-

pletely consistent with α ∼ √
µ. The velocity field, of course, will be governed by

the same dynamics as the director: there is no separation of timescales.

4.6 Conclusions

In conclusion, we have observed that the time correlation functions of the director

and the velocity fluctuations decay exponentially for the splay and twist modes,

but show oscillatory decay for the bend mode. The decay rates were found to be

accurately proportional to k2. The analysis of the separation of timescales between

the director fluctuations and the velocity fluctuations showed that the separation is

most prominent for the twist mode and reasonably large for the splay mode. For the

bend mode the velocity field is expected to be governed by the same dynamics as

the director and, indeed, we did not observe a significant separation of timescales.
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We have shown that all these observations are consistent with the equations of

nematodynamics [15–17, 20, 146]. In particular we have shown that the propa-

gating modes may occur without violating the (traditionally assumed) condition

µ = ρK3/γ1η2 ≪ 1. Values of µ ∼ 10−2 may be sufficient to generate such modes,

and seem to be quite typical in coarse-grained particle-based simulations, probably

because the viscosities of such molecular models are somewhat smaller than in re-

alistic systems. At this point it is worth noting that there are several unrealistic

features of the Gay-Berne potential. For example an increase in molecular length

makes an unrealistic difference to the density range for which a nematic phase is

stable. This in turn has large effects on bulk properties as shown for the rotational

viscosities by Cuetos et al. [83]. It would be interesting to analyse the fluctuations

in a non-Gay Berne simulation to confirm that the observations are not simply an

artefact of the Gay-Berne potential.

The key requirement is that the dimensionless viscosity combination α =

1− α2
2/γ1η2 satisfies α . 2

√
µ. This may still be attainable, even for the somewhat

smaller values of µ typically seen in experiment, depending on the precise values of

the viscosities α2, γ1, and η2. Therefore, it may not be out of the question to observe

such propagating bend modes in real-life experimental systems. Similar conditions

are unlikely to be satisfied for the splay modes, because the analogous key quantity

is 1 − α2
3/γ1η1, and the Leslie coefficient α3 is typically quite small compared with

the others.
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Chapter 5

Topological defects around a

nanoparticle inserted into a

nematic

5.1 Introduction

A spherical particle in a nematic host induces the creation of topological defects.

A profound understanding of how such defects form and behave is important, since

they significantly change the properties of the surrounding liquid crystal (LC). Sev-

eral types of defects have been observed around spherical particle inclusions. The

particular type of defect depends on many different factors. Amongst others the

size of the particle, its surface anchoring strength and the boundary conditions are

important. In Fig. 5.1 director maps of the different defects observed are shown.

For more details refer to Section 1.6.

In this chapter we study defects induced by nanoparticle inclusions with

strong surface anchoring using molecular simulations. Here the size of the nanopar-

ticle is comparable to the size of the liquid crystal molecules. Interestingly very

small particles with strong surface anchoring create distortions over macroscopic

distances, similar to larger particles with weak surface anchoring [46]. The aim of

this study is to gain insight into the formation of these defects on a molecular level

and to study the properties of the defect core. There are numerous reasons to use

computer simulations in addition to experimental and theoretical work. Theoret-

ical predictions have proven to be successful for simple problems; however finding

analytical expressions becomes more and more complex the more parameters are

considered and the higher the number of particles in the system. For the majority
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Figure 5.1: Sketch of director field around a particle inclusion: (a) satellite, (b)
Saturn ring, (c) Surface-ring and (d) boojum.

of complex systems only approximations can be found. Even though defects can be

observed in experiments using crossed polarisers, microscopes cannot provide true

real-time 3D imaging. Furthermore defects are extremely difficult to observe for

very small particle inclusions or for very high densities of particle inclusions. Nu-

merical calculations using elastic theory are a very powerful tool to study defects.

One limitation is that the defect core is treated as an isotropic inclusion, where the

energy associated with the defect region is used as an adjustable parameter. How-

ever this energy is, in fact, unknown. Moreover the elastic theory treats the liquid

crystal as purely uniaxial, however it has been shown that the defect core is biaxial

throughout [21, 179]. These difficulties are avoided in molecular simulations and

hence they are a valuable additional approach to study defects in liquid crystals.

The major limitation of simulations is the system size. Only a small fraction of the

LC molecules found in a real experiment can be simulated. In summary, computer

simulations provide us with a tool to investigate details of the LC structure that are

difficult to study experimentally or using phenomenological theories.

Previous attempts have been made to simulate defects around particles in liq-

uid crystals on a molecular level. Billeter and Pelcovits [98] simulated a small spher-

ical inclusion with homeotropic anchoring embedded in 2048 Gay-Berne molecules

(see Section 2.3 for Gay-Berne potential), which induced a Saturn ring. Later An-

drienko et al. [25] showed that finite size effects are important. For a purely repulsive

Gay-Berne system with a spherical inclusion, they found the Saturn ring to be stable

for all inclusions with radii ranging from 3− 15σ0. In addition they discovered that

the satellite defect is metastable (on the timescale of the simulations) for the largest

particles investigated. Here the particle was embedded in 1 million Gay-Berne host

molecules, which allows for the far field deformations of the director field necessary
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to stabilise a dipolar defect (see Fig. 5.1 (a)). They also observed an off-centre ring

defect structure, which is an unstable intermediate structure between the Saturn

ring and the satellite. This defect structure has not been observed in experiments

[46] and numerical LdG free energy minimisations do also not predict a stable off-

centre ring. Recently Ilnytskyi et al. [107] studied defects induced by soft colloids

using molecular dynamics simulations. Here a soft colloid is not a particle itself;

instead it consists of a spherical region in which the LC molecules are exposed to an

external ordering field. As for hard colloids a Saturn ring or a boojum defect were

observed depending on the orientation of the anchoring field.

Both theoretical work and Monte Carlo simulations suggest that the satellite

defect tends to be stable for large particles and that the Saturn ring is stable for small

particles [23, 27, 28]. Attempts were made to estimate the threshold, for which the

dipolar structure becomes unstable, as a function of particle size. However analytical

calculations and experiments seem to contradict each other. On the one hand,

theoretically the Saturn ring is predicted to be the only stable defect for particle

radii of less than a few hundred nanometers [29]. On the other hand, dipoles were

observed in experiments with particles as small as 125 nm [30] and even 35 nm [31].

In addition, Gu and Abbott [180] and Mondain-Monval et al. [181] observed Saturn

rings around solid microspheres, although theory suggests a satellite for particles

this size. A possible explanation is the strong confinement due to the cell thickness.

As discussed in Chapter 1 two particles in a nematic interact due to the elastic

forces trying to minimise the deformation of the LC, which can lead to the formation

of complex networks [37, 43, 48, 49, 182]. These systems have mostly been studied for

micron-sized inclusions, for which the surrounding defects can be observed under the

microscope and the interaction forces can be measured accurately using dual beam

laser trapping [36, 183]. Only few experiments have studied the interactions of

nanoparticles in nematics. Poulin et al. [184] and Raghunathan et al. [185] observed

the formation of chains and clusters of latex particles of size 60 – 120 nm in lyotropic

liquid crystals and Koenig et al. [186] found weak long-range interactions for gold

nanoparticles of radius 85 nm. During the self-assembly of micron-sized particles, the

particles often become trapped in states of higher energy, since the thermal energy is

too low to overcome the barrier towards the lowest energy state. Koenig et al. [186]

showed that the interactions of nanoparticles are reversible allowing the assembly of

well-ordered nanoparticle structures. Tomar et al. [106] studied pair interactions of

nanoparticles with both homeotropic and planar anchoring. Both showed attractive

interactions, which are stronger for homeotropic anchoring in comparison to planar

anchoring.
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Table 5.1: Simulation parameters of simulations of nanoparticle inclusions in a ne-
matic host. #GB and #NP correspond the the number of Gay-Berne molecules
and number of nanoparticles respectively. UGB describes the version of GB poten-
tial used (see text). T , I and ρ are the temperature, the moment of inertia and the
bulk density respectively in GB units ǫ0 = σ0 = 1. 〈S〉 is the time averaged bulk
order parameter. RNP denotes the radius of the nanoparticle and SA indicates the
surface anchoring used.

ID #GB #NP UGB T I ρ 〈S〉 RNP SA

(1) 512 000 1 GB(3, 5, 1, 3) 3.0 2.5 0.3 0.75 3-15 homeo

(2) 512 000 1 GB(3, 5, 1, 3) 3.0 0.5 0.3 0.75 13 planar

(3) 1 000 000 1 GB(3, 0, 0) 1.0 2.5 0.35 0.81 15 homeo

(4) 1 000 000 1 GB(3, 0, 0) 1.0 2.5 0.354 0.835 20 homeo

(5) 1 000 000 1 GB(5, 0, 0) 1.0 7.0 0.15 0.86 15 homeo

(6) 588 000 2 GB(3, 5, 1, 3) 3.0 2.5 0.31 0.80 15 homeo

In this chapter we investigate the behaviour of nanoparticle inclusions in

a nematic host and study the interactions of two nanoparticles using molecular

simulations. For particles in very close vicinity entanglement of the particles by a

single defect line was observed. These results are discussed in detail in Chapter 6.

5.2 Model and simulation details

Molecular simulations were carried out over a range of different interaction poten-

tials, surface anchoring conditions and sizes of nanoparticle inclusions. The corre-

sponding simulation details for the various simulation runs are listed in Table 5.1.

The nematic host was simulated using the Gay-Berne (GB) potential (see Section

2.3). The notation GB(κ, κ′, µ, ν) is used to refer to different versions of the stan-

dard potential and GB(κ, 0, 0) for the purely repulsive one. For all simulations the

time step was set to ∆t = 0.004. The GB-GB potential cutoff was chosen to be

5.0σ0 for the standard GB potential and 6.0σ0 for the purely repulsive one. At the

cutoff distances the energy is negligibly small even for the end-to-end interactions.

For simulation (1)-(5) a cubic simulation box was used, whereas for simulation (6)

the ratio was 1.7:1:1 to accommodate for the second particle. Simulation (1) was

repeated with nanoparticle inclusions of radii 3, 5, 10 and 15σ0. The different de-

fect structures were visualised using the various methods described in Section 2.4.

In the following the potential used for the interaction of the nanoparticle with the

GB molecules is introduced. For simulations (1)-(5) the nanoparticles’ position was
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fixed at the origin, whereas for simulation (6) the particles were allowed to move

freely throughout the production run.

Homeotropic and planar surface anchoring potential

Homeotropic

Instead of using a specific anchoring potential, a simple variation of the standard

Lennard-Jones (LJ) 12-6 potential is used. Here the anchoring is entirely induced

by the packing effects of the LC particles near the surface of the nanoparticle. For

the homeotropic surface anchoring the GB molecules are allowed to penetrate the

nanoparticles’ surface. To prevent GB molecules from entirely entering the particle,

a shifted purely repulsive LJ interaction potential Uhomeo

Uhomeo(r) =











4ǫ0
(

̺−12 − ̺−6
)

+ ǫ0 if ̺6 < 2

0 else
(5.1)

is used. ǫ0 is an energy parameter chosen to be unity and ̺ is given by

̺ =
|r| − σc + σ0

σ0
. (5.2)

Here r is the vector connecting the positions of the nanoparticle and the GB molecule

and r̂ is the corresponding unit vector. σ0 is a size parameter and defined as the

smallest diameter of the GB molecule; in this system σ0 = 1. σc is the distance of

the closest approach between the GB molecule and the nanoparticle and is set to

σc = RNP + σ0/2 , (5.3)

where RNP is the radius of the spherical nanoparticle. For this interaction potential

the potential cutoff is chosen to be RNP + 1.

Planar

The potential used to induce planar surface anchoring is very similar to Uhomeo.

However σc is defined to be orientation dependent, such that the GB molecules are

repelled when they overlap with the nanoparticle. The potential Uplanar is given by

Uplanar(r, ûi) =











4ǫ0
(

̺−12 − ̺−6
)

+ ǫ0 if ̺6 < 2

0 else .
(5.4)
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Figure 5.2: Schematic to illustrate notation x, y and θ used in the derivation of the
closest approach distance σc for planar surface anchoring.

r, r̂ and ǫ0 are defined as before, ûi is the orientation vector of the GB molecule i

and ̺ is given by Equation (5.2). If the minor axis of the GB molecule is defined as

a = σ0/2 and the major axis as b = κσ0/2, the distance of closest approach σc can

be defined as

σc(ûi) = RNP +
√

a2(1− (r̂ · ûi)2) + b2(r̂ · ûi)2 . (5.5)

This can be derived as follows. Consider the plane defined by the ellipsoid’s axis

and the surface normal of the nanoparticle, see Fig. 5.2, where x, y, θ and σc are

defined, then the equation describing the shape of the GB molecule centred at the

origin and rotated by θ in 2D is given by

(x cos θ + y sin θ)2

a2
+

(x sin θ − y cos θ)2

b2
= 1 . (5.6)

By evaluating dy/dx and equating the numerator to zero the horizontal tangents of

the ellipse can be found. The distance of the closest approach can alternatively be

expressed in terms of θ

σc(θ) = RNP +
√

a2 sin2 θ + b2 cos2 θ , (5.7)

the angle enclosed by r and ûi. For this interaction potential the potential cutoff is

chosen to be RNP + κ.

External potential favouring the satellite or Saturn ring defect struc-

ture

As discussed earlier a spherical particle inclusion in a nematic distorts the surround-

ing director field. For large particles with homeotropic anchoring the director shows

a dipolar structure and for smaller particles it usually shows a quadrupolar struc-
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ture (see Fig. 5.1). Here analytical expressions for the surrounding director field are

introduced for both, the satellite and the Saturn ring. Spherical polar coordinates

are used and the nanoparticle is assumed to be centred at the origin.

Satellite

Theoretical studies by Shiyanovskii and Kuksenok [24] proposed a trial function for

the distortion angle β for the satellite defect

β(r, θ) = θ − arctan

(

sin θ

1/f(r) + cos θ

)

. (5.8)

Here r and θ are the radial component and azimuthal angle respectively. f(r) is

introduced later. Note that Equation (5.8) was modified by removing the factor of

0.5 in front of the arctan function. With the factor the director field has a -1/2

disclination around the defect, instead of the expected -1. Furthermore the total

defect strength is +1/2 instead of the zero. For a given distortion function β the

theoretical director orientation n̂(r) can be calculated. For given angles φ and β,

n̂(r) is given by a combination of a clockwise rotation by β around the y-axis and

a clockwise rotation by φ around the z-axis

n̂(r) =













cosφ · sinβ
sinφ · sinβ

cosβ













. (5.9)

The function f(r) in Equation (5.8) has to fulfil two boundary conditions that (1)

1/f(∞) = 0 hence β = 0 corresponding to the absence of distortion in the director

far field and (2) that f(a) = 1, where a is the distance between the centre of the

defect core and the centre of the particle inclusion. Kuksenok et al. [26] proposed

f(r) = (r/a)3 . (5.10)

Theoretical calculations suggest a ∼ 1.46RNP [24], a ∼ 1.23RNP [13] and a ∼
1.19RNP [28] for the satellite defect. Far away from the particle inclusion the director

distortion behaves as

β ∼
(

R

r

)2

sin θ . (5.11)
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Saturn ring

For a quadrupolar defect the distortion angle β can be described by

β = θ − 0.5 arctan

(

sin(2θ)

1/f(r) + cos(2θ)

)

. (5.12)

The core of the defect is predicted to be closer to the surface than for the dipole with

a ∼ 1.25RNP [26]. For the quadrupole the distortion of the surrounding director field

decays significantly quicker with

β ∼
(

R

r

)3

sin 2θ . (5.13)

An external field can be applied to the Gay-Berne molecules to favour a

dipolar or quadrupolar defect structure around the nanoparticle. The field induces

an energy penalty if the orientation of the molecules û deviates from the theoretical

director field n̂. The external potential for a molecule i can be written as

Ui(r, θ, φ, ûi) = −ǫsat(n̂ · ûi)
2 , (5.14)

where ǫsat is the strength of the external field.

gbmoldd was modified to include the homeotropic and planar interaction

potential as well as the external potential favouring the satellite or Saturn ring defect

as described in this and the previous section.

5.3 Data analysis and results

5.3.1 Saturn ring defect

System (1) (Table 5.1) was equilibrated over 3× 105 time steps in the absence of

a nanoparticle inclusion with a final bulk order parameter S = 0.750 ± 0.001. A

nanoparticle was gradually grown in size over 1× 104 time steps to radii ranging

from 3 to 15σ0. Once the particle had reached the desired size, the system was

equilibrated (NV T ensemble) over 6× 105 time steps, followed by a production

run (NV E ensemble) of 4× 105 time steps with system snapshots stored every

2500 time steps. For particles with radii of RNP = 3σ0 and 5σ0 a surface-ring

defect can be seen and for radii 10σ0 and 15σ0 a Saturn ring was observed. In

Fig. 5.3 the time averaged order parameter, biaxiality, director field and density

are plotted in the x-z plane with the particle at the origin for a bin size of ∼ 1σ0.

In addition a qmga snapshot of the simulation is shown for a single snapshot and
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the corresponding defect regions of low uniaxial order (cl < 0.12) are visualised. In

the qmga snapshots blue molecules are parallel to the director and red molecules

are perpendicular with intermediate orientations corresponding to green molecules.

The local order parameter maps show that the uniaxial order drops significantly in

the region of the defect core. Simultaneously the biaxiality defined by the lowest

(S3) and intermediate (S2) eigenvalue of the order tensor

α = 1
3
(S2 − S3) (5.15)

increases in the defect region. One can also see that larger particles induce longer

ranged distortions, which is in agreement with Equation (5.13). The surrounding

nematic shows strong oscillations in density near the particle. Each oscillation re-

flects one molecular layer that can be seen in the qmga system snapshot. Larger

particle inclusions induce more oscillations. Note that the oscillations appear to be

damped near the defect core. The Westin visualisation shows the defect region for

a single time step. A Saturn ring can be seen for nanoparticles of size 5σ0, 10σ0 and

15σ0 confirming that this visualisation method is very useful for extracting infor-

mation about an instantaneous snapshot. Furthermore thermal fluctuations can be

resolved, which usually disappear in the averaging process. We see that for larger

particles the distance of the defect from the particle increases. For each nanopar-

ticle size the distance of the defect core from the nanoparticle’s surface a− RNP is

calculated by fitting a circular function to all bins with S < 0.3. In Fig. 5.4 the

average distance of the defect region from the surface of the particle is plotted over

different radii.

From Fig. 5.4 we can deduce that the distance of the defect core from the

surface of the nanoparticle is a−RNP ∼ 0.13RNP+0.8σ0. Note that this is likely to

be subject to a larger error due to the low number of points; the gradient obtained

should be regarded as an indicator only. The estimate compares well with Andrienko

et al. [25]’s simulation, which estimated a − RNP ∼ 0.16RNP − 0.33σ0 . Here the

difference is likely to be caused by the choice in locating the core region and the

choice of state point. The results compare well to theoretical predictions leading to

values of a ∼ 1.25RNP [26] and a ∼ 1.08RNP [28] as well as Landau-de Gennes free

energy minimisation estimating a ∼ 1.15RNP.

5.3.2 Boojum defect

System (2) (Table 5.1) was equilibrated (NpT ) over 10× 106 time steps, followed

by a production run (NpT ) of 6× 104 time steps with snapshots stored every 100
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(i)

(ii)

(iii)

Figure 5.3: Analysis for single nanoparticle inclusion in a nematic host with (i)
RNP = 5σ0, (ii) RNP = 10σ0 and (iii) RNP = 15σ0. Left shows time averaged maps
correspond to (a) local order parameter S, (b) local biaxiality α, (c) local director
n̂ and (d) local density ρ. Right shows qmga snapshot for a single time step. It
also shows the Westin defect region corresponding to cl < 0.12.
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Figure 5.4: Distance of the defect region from the surface of the nanoparticle a−RNP

plotted versus the radius of the nanoparticle.

Figure 5.5: Left: local order S plotted in the x-z plane with the nanoparticle at the
origin. The director orientation is indicated by the black two-headed arrow. Centre:
regions of low uniaxial order S < 0.3 (red) are plotted for time-averaged simulation
results. Right: qmga snapshot of nanoparticle with planar anchoring.

time steps. In Fig. 5.3 the time averaged local order parameter map is plotted. Note

that in this simulation the director is not parallel to z; its orientation is indicated by

the two-headed arrow. In addition, Fig. 5.3 shows the time averaged defect regions

corresponding to S < 0.3 visualised in 3D. One can see the two boojums defect

regions, in which the uniaxial order drops significantly. The defects are positioned

directly on the surface at opposites poles with respect to the director.

5.3.3 Satellite defect

In the following we describe the attempts made to stabilise the satellite defect around

a nanoparticle inclusion for several Gay-Berne systems. System (3) was equilibrated

over 2× 105 time steps using the purely repulsive GB potential and a molecule

length-to-width ratio κ = 3. A spherical nanoparticle of radius RNP = 15σ0 was

placed at the centre of the simulation box. Throughout the 4× 105 time steps long

production run (NV T ) the external potential, given in Equation (5.14), was applied
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Figure 5.6: Visualisation of defect regions (cl < 0.1) for different time steps with
fixed nanoparticle at the centre. Time steps shown correspond to 0.5× 104 (blue),
2× 104, 2.5× 104, 3.5× 104, 5× 104, 10× 104, 20× 104, 50× 104 (green).

to support the satellite defect. Throughout the production run the strength of the

external field was steadily reduced from ǫsat = 1 → 0. Initially (ǫsat = 1) a small

disclination loop can be observed below the pole of the nanoparticle with respect

the director. Note that the position could equally be above the opposite pole due to

symmetry; however it is determined by our choice of Equation (5.8). The radius of

the loop is comparable to the length of the GB molecules. When the external field is

weak (ǫsat . 0.3), the disclination loop rapidly (within a few thousands time steps)

increases in size and its centre shifts towards the equator of the nanoparticle. The

simulation was continued for 5× 105 time steps in the absence of the external field.

Fig. 5.6 shows the disclination lines for different time steps. Since the dynamics

are fast at the start and then decelerate significantly, snapshots are shown more

frequently for earlier time steps. To quantify the dynamics of the transition, Fig. 5.7

shows the average z position of the defect line versus time, as well as the z position

versus the average radius of the defect ring. It can be seen that the defect moves

towards the equator of the nanoparticle. Initially the transition dynamics are very

fast and follow an exponential behaviour. These dynamics are in agreement with

observation made by Andrienko et al. [25]. The speed of the transition explains why

off-centre rings are not observed in experiments. The average z position versus R

shows that the defect line closely follows the contours of the spherical nanoparticle.

Fig. 5.7 suggests that once the absolute z position of the defect is smaller than

the radius of the nanoparticle, the z position can be estimated accurately with

a = 1.123RNP, see blue fitted curve, to calculate the distance of the defect from the
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Figure 5.7: Left: average z position of the defect line obtained by averaging all z
coordinates with cl < 0.1 for each time step respectively. The first ten points are
in 5× 103 time step intervals, the next five in 1× 104 and all remaining points are
2× 104 time steps apart. Right: average z position versus the average radius of the
ring defect calculated by fitting all x and y values with cl < 0.1 to a circle. The
blue circle corresponds to the radius R = 16.845.

centre of the particle.

The simulation was repeated with more elongated LC molecules with κ =

5. System details are given in Table 5.1 system (5). As before the external field

favouring the satellite structure was continuously applied with ǫsat = 1 → 0 over

3× 105 time steps and the simulation was continued in the absence of an external

field. 5× 104 time steps after the field was switched off the defect ring had moved

towards the equator and the radius of the defect ring had increased significantly.

The structural changes in the defect and the time scale of this transition were very

similar to the previous simulation with κ = 3.

Since the size of the nanoparticle is a crucial factor to determine the stability

of the satellite defect structure, the runs were repeated with a larger nanoparticle

of radius RNP = 20σ0, see system (4). When the external field was applied with

ǫsat = 1, the small disclination loop collapsed into a single point defect. However,

once again, the satellite defect was found to be unstable once the external field is

removed and the defect expands into a small disclination loop that increases in size

over a few thousand time steps. Here the axis of the loop (normal to the loop) is

perpendicular to the director direction (north-south). In Fig. 5.8 the defect regions

are shown in intervals of 1× 104 time steps. One can see that the point defect

initially expands to a small disclination loop. The defect ring continues to increase in
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Figure 5.8: Transition from the satellite to the Saturn ring defect for system (4) with
κ = 3 and RNP = 20σ0 in intervals of 1× 104. Dark blue defect region corresponds
to cl < 0.1.
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size and rotates around the axis of the director (z axis). Once the defect loop reaches

a critical size a ‘kink’ was observed, where the bottom half of the loop remains in

the original plane and the top half bends to follow the contours of the nanoparticle.

The ‘kinked’ loop continues to rotate around the axis of the director. Quantitatively

similar behaviour was observed for the transitions in previous simulations.

The simulation was repeated with a modified trial function for β. The trial

function depends on the distance of the defect core from the centre of the nanopar-

ticle a. For the satellite defect we used a = 1.46RNP in all simulations as suggested

by theoretical predictions by Shiyanovskii and Kuksenok [24]. Andrienko et al. [25]

found that in molecular simulations layers of GB molecules form near the surface

with large fluctuations in the local density and order. The effective radius of the

nanoparticle could hence differ from the radius itself affecting the distance of the

defect from the surface of the particle. This in turn affects the arbitrary function

used in Equation (5.8). Hence a was reduced to a = 1.4RNP in this simulation as

measured in molecular simulations [25]. The elongation was set to κ = 3 and the

radius to RNP = 20σ0. As before, when the external field was switched off, the

satellite was observed to quickly transform into a Saturn ring.

In summary, the satellite defect is neither stable nor metastable for the sys-

tem and nanoparticle sizes studied here. In all four simulations the initial small

disclination loop starts moving towards the equator and its radius increases. Once

it is in close vicinity of the nanoparticle its shape closely follows the contours of

the nanoparticle’s surface. The dynamics of the transition are in agreement with

the observations made by Andrienko et al. [25]. However they found the satellite

structure to be metastable for a particle radius of RNP = 15σ0, which we did not

observe. To further investigate the satellite defect, the size of the nanoparticles

should be increased, which would require a significant increase in system size to

accommodate the long-range director deformations, see Fig. 5.1 (a). Due to the

periodic boundaries the director is restricted along the edges of the simulation box

mimicking the presence of walls. If these edges/walls are in close proximity to the

nanoparticle, there can be a significant mismatch between the director field orien-

tation induced by the nanoparticle and the surface anchoring. The mismatch can

be seen in Fig. 5.1 (a) and (b): Near the edges the director field does not align with

the director field at the opposite edge of the box. Therefore the simulation box size

has to be sufficiently large, so that the confinement has no influence on the defect

type formation. Another interesting subject of future investigations is the impact of

the elastic constants. In our model the bend elastic constants are much higher than

the splay and twist ones, which differs from most values obtained in experiments.
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Figure 5.9: Snapshots shown for the first (top row) and last (bottom row) time step
of the production run with two nanoparticles (grey) of RNP = 15σ0 with an initial
surface-to-surface distance 10σ0. Left column shows qmga snapshots of the simula-
tion. The major axes of blue liquid crystal molecules are parallel to the director and
red molecules are perpendicular to it. Green indicates intermediate orientations.
Right column shows the defect regions (blue) corresponding to isosurface with low
uniaxial order with cl < 0.12.

Future work should address how different ratios influence the defect formation.

5.3.4 Nanoparticle pair interactions

System (6) (Table 5.1) was equilibrated over 4× 105 time steps with two nanopar-

ticles of radius RNP = 15σ0 and mass m = 50 separated by 40σ0 perpendicular to

the director, i.e. a surface-to-surface distance of 10σ0. This was followed by a pro-

duction run of length 11× 105, in which the nanoparticles moved freely and their

positions were recorded every 2500 time steps. Fig. 5.9 shows qmga snapshots of

the first and last time step of the production run and their corresponding Westin

visualisation. For the first time step the Saturn rings are strongly bent to minimise

free energy. This structure is the stable configuration for two particles with fixed

positions separated perpendicular to the director. Throughout the run the direction

of the bend did not change. Once the particles were released, they moved towards

each other and sat at an angle to each other with respect to the director. This shift

allows the Saturn rings to be straight, which minimises the surrounding distortions
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Figure 5.10: Dynamics of two nanoparticles in close proximity. Left shows separation
∆R and right shows the angle α with respect to the far field director versus time.

of the director field and hence the free energy. These observations are in agreement

with mean-field Landau-de Gennes calculations [144]. To quantify the dynamics,

the separation ∆R and their angle with respect to the director α are plotted over

time in Fig. 5.10. After the initial approach the separation remains constant at

an equilibrium value ∆R = 38.17 ± 0.22. This corresponds to roughly three layers

of Gay-Berne molecules in between the particles as one can see in Fig. 5.9. The

separation equilibrates on the order of a few hundred τ . In contrast the angle α

approaches its equilibrium slowly on the order of a few thousand τ comparable to

the length of the simulation. From the simulation results we estimate α = 75◦ ± 3◦.

This is in reasonable agreement with observations in the Landau-de Gennes free

energy framework, which showed an equilibrium angle α = 79◦ [13].

5.4 Conclusions

In conclusion, we have successfully simulated nanoparticle inclusions in nematic

liquid crystals using molecular simulations. For particle inclusions with homeotropic

anchoring the Saturn ring was observed with a defect distance a = 1.13RNP+0.8σ0,

which is in agreement with theoretical predictions and experimental observations.

For very small particles (< 6σ0) the defect ring sits directly on the surface of the

nanoparticle. For particle inclusions with planar surface anchoring the boojum

defect was observed with two point defects at the top and bottom of the particle with

respect to the far field director. Attempts were made to stabilise the dipolar satellite

defect; however for the particle sizes investigated here, with up to RNP = 20σ0, it was

found to be neither stable nor metastable. The structural transition from a Saturn

ring to a satellite defect was reported. To further investigate this defect structure
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larger system sizes (≫ 10× 106) are necessary, which would allow the study of larger

particle inclusions. Finally the pair interactions between two nanoparticle inclusions

were analysed. Particles were observed to attract each other until they reached an

equilibrium separation. The particles, which were surrounded by a Saturn ring

each, prefer to sit at an angle with respect to the director to minimise the free

energy. Such molecular simulations could be used in future investigations to study

the aggregation of clusters of nanoparticles inside a nematic. In experiments dense

clusters are difficult to observe in 3D and in mean-field approaches calculations get

increasingly more complex with more inclusions. In contrast, in simulations a larger

number of nanoparticles does not present a problem.
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Chapter 6

Entangled defect structures

around nanoparticles in

nematics

6.1 Introduction

From theory and experiments we know that nanoparticles with homeotropic an-

choring behave as quadrupoles. Even particles of several orders of magnitude

larger can form a quadrupole, if confined to a thin nematic cell. [187]. For two

quadrupoles in close vicinity entangled defects were found to spontaneously arise

when the surrounding nematic is distorted by thermal quenching or laser beam

manipulation. Here ‘entangled’ means that both particles are surrounded by a

single disclination line. Using laser tweezers, which allow easy manipulation with

great precision, a range of reproducible different entangled objects have been found

[39, 43, 105, 128, 144, 188, 189]. Namely the three different structures are the figure

of eight, the figure of omega and the figure of theta. Micrographs of these entan-

gled defect structures produced by Tkalec and Muševič [5] are shown in Fig. 6.1.

For the figure of eight defect a single strength -1/2 disclination line winds around

the particles forming a figure of eight (∞). The figure of omega consists of one

disclination line that surrounds both particles near the equator with respect to the

director. The disclination line escapes into the space in between the particles where

it shapes like the Greek letter omega Ω. Note the spontaneous symmetry breaking

with both these defect structures being chiral. The two states are degenerate and

hence left-handed and right-handed structures occur with the same frequency. The

only non-chiral entangled defect observed is the figure of theta (Θ), which consists of
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Figure 6.1: Micrographs of particles in a nematic entangled by disclination lines and
their respective schematic: (a-c) Micrographs of the initial quenching process with
a laser and the equilibration phase. (d,g,j) Figure of eight, (e,h,k) figure of omega,
(f,i,l) figure of theta. Reproduced from Ref. [5] with permission from The Royal
Society of Chemistry.

a disclination line surrounding both particles and an additional second defect loop

in the plane in between the particles. The smaller ring in fact is a -1 hyperbolic

point defect with an escaped core. These entangled defects were observed in exper-

iments and predicted numerically using phenomenological mean-field calculations

based on Landau-de Gennes free energy minimisation [13, 144]. Interestingly, the

figure of omega and figure of theta were predicted by Landau-de Gennes free energy

minimisation first and were later observed in experiments [188].

In experiments with micron-sized particles in strong confinement two sepa-

rate quadrupoles are the only stable structure. They were observed in 48% of all

laser tweezers manipulations. For entangled structures the figure of eight was found

most frequently (36%), followed by the figure of omega (13%). The figure of theta

was observed rarely (3%) [188]. All three entangled structures were found to be

metastable with a free energy ∼1% higher than the energy of two well-separated

particles each surrounded by a Saturn ring [188]. The binding energy for entangled

pairs of particles was calculated to be an order of magnitude stronger than the un-

bound pair and several thousand times stronger than particles dispersed in water

[188].

Čopar and Žumer [189] showed that the director field of these entangled
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defects only differs in the region where the lines initially cross, see in Fig. 6.1 (j-

l). Theoretically, by rotating the tetrahedron shown, one entangled state can be

transformed into another. In practice, this is equivalent to cutting and reconnecting

the disclination lines. In experiments, this rewiring is achieved by locally applying

laser tweezers to heat the region of the tetrahedron. An interesting question arises:

two particles with homeotropic anchoring have a topological charge q = +2. Hence

a single disclination line entangling both particles must have a topological charge

of q = −2. Čopar and Žumer [189] explained this by considering the three fold

symmetry of the disclination line. Rather than a simple line, a disclination line

should be thought of as a ribbon. The ribbon is defined by the centre of the defect

core and a curve that follows the orientation of the director field in the cross section

of the disclination. The amount of twist of the ribbon around its own axis can be

described by a self-linking number sl. One can write a generalised conservation of

topological charge q including sl and the linking number lk for loops Ai [189]
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+ n = q (mod 2) . (6.1)

Čopar and Žumer [189] showed that the figure of theta has sl = 0, whereas the

figure of eight and the figure of omega show sl = ±2
3
.

The system of two entangled particles can be thought of as a building block

for more complex systems. For example a one-dimensional chain of particle was

found to be entangled by defect lines. Here the disclination line winds around all the

particles: a chiral sequence of figure of eight as well as a non-chiral series of figures

of theta were observed in experiments [188]. Theoretically the assembly of two-

dimensional colloidal crystals was predicted [190, 191]. However in experiments this

was found to be somewhat more challenging. Only in chiral nematic cells particles

were found to spontaneously aggregate in 2D [192]. Here the chirality allows easier

interlinking of defect loops, because the director can point out of plane.

Nikkhou et al. [193] recently showed that entangled defect structures can also

be observed around a microsphere and a microfibre in a nematic liquid crystal in

experiments. Note that a fibre is topologically equivalent to a sphere. By locally

heating the LC surrounding the fibre an arbitrary number of pairs of ring defects can

be created with opposite charges and winding numbers [194]. When a microsphere

is brought into close vicinity of the -1/2 ring defect on the fibre, entanglement was

observed. The probability of creating a figure of eight was highest (57%), followed

by the figure of theta (42%). The figure of omega was unstable and observed rarely
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(1%) [193].

When bringing many particles into close vicinity and applying laser tweezers,

knotted structures can be created [192, 195, 196]. Here several disclination lines are

knotted showing a variety of different knots: Trefoil knot, Solomon link, Pentafoil

knot and the Star of David. As before, this can be modified by locally applying

laser tweezers, which corresponds to a rotation of the tetrahedron. By applying the

laser tweezers in unknotted regions, additional knots can be created and vice versa.

The systems can be manipulated not only by the use of laser tweezers, but

also by using strong local electric fields, hydrodynamic flow, temperature changes

and the use of different boundary conditions and confined geometries. This allows

to create and modify defects in liquid crystals in a rather controllable way and by

tuning these parameters a variety of complex systems can be designed. For example,

Wood et al. [197] show that liquid crystals with a high number of colloidal inclusions

can be used to synthesise a soft solid with high rigidity. The rigidity is caused by the

particle entanglement in the network of defect lines. These materials have important

features for the potential use in biosensors [198].

Molecular studies of two quadrupoles in close vicinity showed a three ring

structure for particle inclusions of nanometre size [39, 41, 105]. This structure is

similar to the figure of Θ; however the inner loop connects with the outer loop at

two nodes. Two possible explanations have been proposed to why the structure

differs from the ones observed in experiments. In earlier studies it was declared as

a transient state, before it reaches the final entangled structure [128]. Later studies

proposed that the size of the particles is crucial and that the three ring structure

appears for particles of nanometre scale, whereas micron-sized particles form the

three different entangled defects (∞, Θ and Ω). In this chapter we study entangled

defect structures around nanoparticles and analyse how they rearrange from one

configuration to another. Furthermore we propose an explanation for the three ring

structure.

6.2 Model and simulation details

Five different systems were studied with particle radii of 10σ0, 15σ0 and 20σ0 and

several different particle separations. Simulation details are given in the following

subsections.
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Nanoparticles of radius RNP = 10σ0

To simulate the nematic host the GB(3, 5, 1, 3) variation of the Gay-Berne potential

was used with a cutoff of 5σ0. The initial director orientation was chosen along the

z direction. Two spherical particle inclusion of radius RNP = 10σ0 were placed in

the box interacting via a purely repulsive LJ potential (see Section 5.2) with a cutoff

of (RNP + 1)σ0. Throughout the simulation their position was fixed. The system

was simulated for particles separated along x with a surface-to-surface separation of

∆ = 2.94σ0 as well as ∆ = 10.3σ0. The temperature was set to T = 3.0 leading to

a bulk density of ρ∼0.3 in the cubic simulation box of length ∼120σ0. The system

was equilibrated over 1.6× 106 time steps using an NpT ensemble, followed by a

production run (NpT ensemble) of 2.5× 105 time steps with a time step ∆t = 0.004.

Molecular positions and orientations were stored every 500 time steps. The total

number of GB molecules was 512 000. Their moment of inertia was set to I = 0.5

and their mass to unity.

Nanoparticles of radius RNP = 15σ0

The simulation was repeated with particles of size RNP = 15σ0 separated along x

from surface-to-surface by ∆ = 5σ0 as well as ∆ = 10σ0. Other simulation details

were unchanged. Two modifications were made to reduce computational cost. The

simulation box length Lx was reduced to 2RNP+∆ and one nanoparticle was placed

at (−Lx,0,0). With periodic boundaries along x (and y) this represents an infinite

chain of nanoparticles along the x direction. This allows to reduce the total number

of Gay-Berne molecules by over 50%, with N = 182 000 for ∆ = 5 and N = 210 000

for ∆ = 10. Furthermore walls were introduced at the z boundaries using a simple

Lennard-Jones 12-6 potential with ǫ = σ = 1 and a potential cutoff of 2.5σ0. This

has the advantage that Lz can be chosen to be smaller than, for example, in the

system described above without the danger of long-range interactions across the

boundaries. The length was chosen sufficiently long to accommodate for the density

and order parameter fluctuations near the walls ensuring bulk behaviour in the

centre of the simulation box. The simulation box dimensions were ∼(35 × 136 ×
136)σ3

0 and ∼(40 × 136 × 136)σ3
0 for the larger separation. The bulk density for

both was ρ∼0.3 with 210 000 Gay-Berne molecules. The system was equilibrated

over 7.5× 105 time steps (∆t = 0.004) using an NV T ensemble, followed by a

production run (NV T ensemble) of 4× 105 time steps. Molecular positions and

orientations were stored every 500 time steps.
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Figure 6.2: qmga snapshot of the setup from two different angles. The nanoparticle
and one of its images are coloured blue. Liquid crystal molecules are colour coded
depending on their orientation. Blue molecules are parallel to the director and red
molecules are perpendicular to it and green indicates intermediate angles.

Nanoparticles of radius RNP = 20σ0

In this simulation the nanoparticles’ radii was increased to RNP = 20σ0. Other sys-

tem parameters were chosen as for the system with RNP = 15σ0. No wall potential

was applied and instead periodic boundaries were used across z. The total number

of Gay-Berne molecules was 214 000 with a moment of inertia of I = 2.5. The box

dimension was chosen to be ∼(50 × 120 × 120)σ3
0; hence the separation between

neighbouring nanoparticles was ∆ = 10σ0. qmga snapshots of the setup are shown

in Fig. 6.2. This system was equilibrated over 8× 105 time steps (∆t = 0.004) using

an NV T ensemble, followed by a production run (NV E ensemble) of 6.5× 105 time

steps. Molecular positions and orientations were stored every 500 time steps.

6.3 Data analysis and results

To analyse the defect structures formed around the nanoparticles, the Westin metrics

were calculated on a regular 3D grid with a spacing of 0.25σ0 and regions of low

uniaxial order corresponding to cl < 0.05 were determined. Five different structures

were observed: two separate Saturn rings, figure of eight, figure of omega, figure

of theta as well as a structure that resembles the three ring figure with one node.

For each of these structures a typical example is shown in Fig. 6.3. The only non-

entangled structure found was two nanoparticles surrounded by a Saturn ring each

shown in Fig. 6.3 (a). The Saturn rings are strongly bent away from each other

to minimise the distortion of the director field, which minimises free energy. The
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Figure 6.3: Defect structures observed for two nanoparticles of radius RNP = 10σ0
in close proximity (∆ = 2.94σ0). Some are shown from two angles for clarity. (a)
two separate Saturn rings, (b) figure of eight, (c) figure of omega, (d) figure of theta
and (e) three ring defect with one node.
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bending effect was also observed for Landau-de Gennes free energy minimisations

[199]. Fig. 6.3 (b-d) show typical snapshots of the figure of eight, the figure of omega

and the figure of theta from two different angles. The shape of the defect line is

in good agreement with the observations for micron-sized particles in experiments.

Fig. 6.3 (e) shows an intermediate structure, where two segments of the disclination

line are linked. To rearrange from one entangled structure to another the linked

structure has to form. We expect this phase to be high in energy for micron-sized

particles and hence it cannot be observed on real timescales. Since we avoided time

averaging thermal fluctuations of the disclinations are visible. With the exception

of the intermediate defect structure all other defect structures were also observed

in experiments and using Landau-de Gennes minimisation for micron-sized particles

[199].

To calculate the frequencies with which the five structures occur and to

gain a better understanding of the dynamics of the system the defect structure was

determined for each system snapshot. Especially interesting is how defects rearrange

from one configuration to another. Due to the high number of snapshots this process

was automated and the defects classified as follows.

• All grid points of the defect core corresponding to cl < 0.05 were identified

and stored. Note that we did not distinguish between different values of cl

and hence only the positions were stored. All data points with values above

the threshold were ignored.

• To identify data points that belong to the same disclination line, the flood fill

algorithm was used: An arbitrary starting point is chosen and added to an

empty list. In the next step all neighbours of this starting point were added to

the list, whereas the starting point itself was removed. Note that only defect

regions were stored, hence there might not be a neighbour in all six directions.

The process was repeated, by adding all neighbours of all particles inside the

list to the list and by removing the points itself, until the list is empty. All

points removed form a continuous object.

• Since disclination lines can only exist in the form of closed loops (or lines

across periodic boundaries), each defect line was checked for this criterion.

• For each disclination line the length was approximated using a ‘sphere-tracking’

algorithm. This is particularly interesting, because the energy associated with

the disclination line is proportional to its length. Firstly, two arbitrary start-

ing points were chosen, that were close to each other. We defined the unit
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Figure 6.4: Disclination lines around two nanoparticles (grey). Blue dots correspond
to data points with cl below the threshold and red points correspond to points
calculated using the ‘sphere-tracking’ (see text).

vector connecting these points as our direction of travel. For each step we

moved a short distance along the direction of travel. At the new point the

average position of the defect line was calculated by averaging the positions

of the nearest 10 neighbours. This method proved itself as very accurate and

reliable. The process is finished once the initial starting point is reached. The

length was estimated by adding the distances between neighbouring averaged

positions. In Fig. 6.4 the red points indicated the average positions calculated

using this method for an example snapshot.

• To accurately distinguish between the different defect types the connections

between the red regions in Fig. 6.5 were evaluated using the flood fill algorithm.

Here the boundaries were treated as fixed. The connections in conjunctions

with the number of disclinations and their respective length allow to deter-

mine the defect structure. For the figure of eight we further distinguished the

direction of the twist, depending on which path crosses on top of the other

one. In over 99.9% of the snapshots this automated analysis was conclusive.

Exceptions were inspected visually.

The different defect structures over time are plotted for all five simulations in Figs.

6.6–6.10. For nanoparticles with radius RNP = 10σ0 the defect transitions fre-

quently between different structures. No structure persists for more than ∼250τ

(∼62 500 time steps). It appears, at least for the time simulated, that two separate

Saturn rings are the most frequent structure. The figure of eight can be seen occa-

sionally, whereas the figure of theta and omega are very rare. The exact frequencies

are given in Table 6.1 for all five simulations. The intermediate structure with one

node formed frequently. This is interesting as this structure is not observed in ex-

periments suggesting it is unstable. This suggests that the particle size does indeed

88



Figure 6.5: Schematic of two nanoparticles (grey) and the surrounding disclination
lines (black) in the x-y plane. Red regions show the starting areas for the flood
fill to distinguish different defect structures. Depending on which red regions are
connected the defect type was determined.

Figure 6.6: Defect structure versus time for RNP = 10σ0 and a surface-to-surface
separation ∆ = 2.94σ0.
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Figure 6.7: Defect structure versus time for RNP = 10σ0 and a surface-to-surface
separation ∆ = 10.3σ0.

Figure 6.8: Defect structure versus time for RNP = 15σ0 and a surface-to-surface
separation ∆ = 5σ0.
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Figure 6.9: Defect structure versus time for RNP = 15σ0 and a surface-to-surface
separation ∆ = 10σ0.

Figure 6.10: Defect structure versus time for RNP = 20 and a surface-to-surface
separation ∆ = 10σ0.
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have a significant impact on the entanglement. For particles with radius RNP = 15σ0

and a surface-to-surface separation of ∆ = 5σ0 the defect structures formed and the

frequency of transitions are very similar to the ones for smaller particles. With

the separation increased to ∆ = 10σ0 no transitions were observed throughout the

production run and the only structure seen was the two separate Saturn rings. For

particles with radius RNP = 20σ0 and a surface-to-surface separation of ∆ = 10σ0

two Saturn rings were observed most frequently. For ∼150τ the figure of eight with

a right-hand twist forms.

Table 6.1: Frequency of observations of different entangled defect structures for a
different particle radii and separations given in %. RNP and ∆ are the particle radii
and their surface-to-surface separation respectively. ∞left and ∞right correspond to
the figure of eight with left- and right-handed twist respectively. ‘Saturn rings’, ‘Fig.
Θ’ and ‘Fig. ω correspond to two well-separated Saturn rings, the figure of theta
and the figure of omega. ‘Linked one node’ includes all structures where separate
line segments of the disclination were connect forming a three ring structure with
one node.

∆(σ0) ∞left ∞right Saturn rings Fig. Θ Fig. ω Linked one node

RNP = 10σ

2.94 5.9 16.8 31.7 1.0 2.0 42.6

10.30 3.6 13.4 71.9 0.0 0.0 11.2

RNP = 15σ

5.0 22.2 9.0 24.3 0.0 5.2 39.2

10.0 0.0 0.0 99.88 0.0 0.0 0.12

RNP = 20σ

10.0 3.6 0.0 94.5 0.0 0.0 1.8

The results suggest that the entanglement for nanoparticles of sizes studied

here are too small to observe stable entangled defects and that they frequently

transition between different states and often intermediate structures are formed

that we expected to be highly unstable. Future work should address larger particle

inclusions to generate more stable defect structures. This could be possible using

the simulation box of a infinitely long chain to reduce the total number of particles

as described earlier. The question remains whether a molecular simulation could

access the longer length scales necessary to observe stable entangled defects.

We tried to analyse the relation between the length of the disclination line

and the occurrence of a transition and the state the defect structure is in. However
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Figure 6.11: Disclination line (red) corresponding to S < 0.4 time-averaged over
entire production run for RNP = 10σ0 and ∆ = 2.94σ0

we found no significant relation. This is partially due to the high fluctuations in

length, where the line stretched or shrank by a few σ0 within 500 time steps and

also due to the inaccuracy of the measurement that only provides estimates within

±5σ0. Nonetheless it would be an interesting feature to study more stable entangled

defects.

Finally we address the three ring structure that was observed in previous

molecular simulations [39, 41, 105]. In Fig. 6.11 the isosurface corresponding to

S < 0.4 was plotted for the time-averaged results for the entire production run for

RNP = 10σ0 and ∆ = 2.94σ0. The time-averaged disclination line forms the three

ring structure with two nodes previously observed. It appears that it is a product

of the frequent transitions and not a stable defect structure itself. For none of our

simulations did we observe such structure with two nodes form. Furthermore the

visualisation technique here is important: the common approach using small bins is

inadequate to capture the fast fluctuations. Using a weighted order tensor including

roughly 30 neighbouring molecules with a spacing of 0.25σ0 has proven itself as a

very accurate method to locate defect regions.

Our results are in good agreement with calculations by Araki and Tanaka

[128]. In addition we have observed the figure of omega and figure of theta for the

first time in molecular simulations. These structures formed very rarely.

6.4 Conclusions

Molecular simulations were successfully used to simulate defects around two spher-

ical nanoparticle inclusions in close vicinity. In our exploratory simulations we

studied three different radii and five different surface-to-surface separations. Five

different different defect structures formed: two well-separated Saturn rings, figure
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of eight, figure of omega, figure of theta and an intermediate structure with one

node. These are qualitatively similar to observations made for micron-sized parti-

cles; however for the particle sizes studied here the transitions are very fast and none

of the entangled structures persist for more than a few hundred time steps. This

suggests that very small particles cannot be effectively bound together by entangled

lines and that thermal energies are higher than the energy barriers between differ-

ent entangled defect structures. To further explore this phenomenon we suggest

a significant increase in nanoparticle size to possibly find more robust structures.

However one has to keep in mind that this would require much longer simulation

times to study transitions.
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Chapter 7

Dynamics of a single

disclination line

7.1 Introduction

In Chapter 5 and 6 we have shown that disclination lines play a major role in

liquid crystals with particle inclusions, because the particles distort the surround-

ing director field inducing defects. However even in pure liquid crystalline systems

disclinations arise naturally, especially near boundaries. The static properties of

disclinations are well understood. More recent studies have focused on their hy-

drodynamic properties [200–206]: the movement of disclinations through a liquid

crystalline medium, the annihilation of defect pairs, the collapse of disclination

loops, the response to local distortion and thermal fluctuations. The time scales

of these phenomena were shown to be governed almost entirely by the line tension

associated with the disclination and the viscous drag of the medium.

In this chapter we study the fluctuation dynamics of a single disclination

stabilised by an appropriate choice of boundaries. Although single disclinations

are technically not observed in experiments, the separation between lines is often

large enough that the surface anchoring effects, for example on the cell walls, screen

the interactions between disclinations. Therefore we can think of them as separate

disclinations with independent dynamics.

Mertelj and Čopič [207] recorded the equilibrium fluctuations of disclinations

spanning between two glass plates and used these to estimate the line tension and

viscous drag. Osterman et al. [208] used laser tweezers to stretch a disclination.

From the relaxation dynamics the line tension and viscous drag were estimated.

Smalyukh et al. [209] used nanoparticles and laser tweezers to pull the disclination
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line. We will show in Chapter 8 that nanoparticles can become entangled by a discli-

nation and hence we can indirectly control the movement of a disclination by moving

the nanoparticle with laser tweezers. For a range of pulling forces they evaluated

the equilibrium position of the particle and extracted the line tension. Theoretical

descriptions of the disclination line motion were evaluated by Tóth et al. [202] as

well as Svenšek and Žumer [201] based on the tensor order parameter description.

To our knowledge simulations of the dynamics of disclinations on a molec-

ular level have received limited attention. Jose et al. [67] used a lattice Lebwohl-

Lasher simulation to study the dynamics of disclinations and their interactions with

nanoparticles. This is a computationally very inexpensive approach, but may suffer

from inaccuracy due to the lattice site limitation.

In this study we chose an off-lattice simulation based on the soft Gay-Berne

potential to stabilise a disclination. This approach complements Landau-de Gennes

calculations by allowing access to smaller length scales and by omitting the one-

elastic-constant approximation. Furthermore molecular simulations can reveal full

information about the defect core and lets us identify possible density variations

and biaxiality.

In this chapter a wedge disclination was simulated and its equilibration pro-

cess and its defect core structure were analysed. Furthermore the equilibrium fluc-

tuations and the relaxation times were measured, which provide a direct route to

calculate the line tension of the defect line and the effective viscous drag.

7.2 Theoretical background

The elastic energy per unit length associated with a straight disclination line in the

bulk can be approximated by [6]

F0 = πKs2 ln
(

r1/r0
)

+ Fcore , (7.1)

where K is the one-elastic-constant, s the strength of the disclination and Fcore

the energy of the defect core. r1 and r0 are the size of the sample and the size

of the defect core respectively. Here small inaccuracies in the values r0 and r1 are

insignificant due to the logarithm. Note that each deformation of the disclination

increases its length and hence its energy. The theoretical prediction for the effective

friction coefficient of a disclination line moving slowly in a nematic was derived as

[205]

R = πγ1s
2 ln

(

r1/r0
)

, (7.2)
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where γ1 is the rotational viscosity.

The dynamics of the disclination can be described in analogy with a mass-

less, damped, vibrating string. Here we consider a straight wedge disclination in the

centre of the simulation box along z with deformations described by the displacement

distance in the x-y-plane u(z, t). In addition we assume that a restoring force of

strength γ is acting on the disclination, which effectively attracts each line segment

towards the origin. By combining these forces the equation of motion can be written

as

Λ
∂2u(z, t)

∂z2
−R

∂u(z, t)

∂t
− γu(z, t) = 0 , (7.3)

where Λ and R are the line tension and the viscous drag respectively. The discrete

fluctuations may be expanded in Fourier components

ũ(k) =
Lz

N

N
∑

z=1

u(z) exp (ikz) , (7.4)

where Lz is the length of the straight disclination. Substituting ũ(k) into Equa-

tion (7.3) with ∂2/∂2
z → −k2, we obtain

ũ(k, t) = ũ(k, 0) exp

(

−γ + Λk2

R
t

)

. (7.5)

Hence the inverse of the decay rate 1/τ

1

τ
=

γ

R
+

Λ

R
k2 (7.6)

is expected to be a linear function of k2 and from the gradient and intercept the

ratio of line tension Λ and viscous drag R and the strength γ can be extrapolated.

The decay rates can be obtained from the normalised time autocorrelation function

of the Fourier components of the displacement

c(k, t) =
〈ũ(k, t)ũ(−k, 0)〉

〈|ũ(k)|2〉 , (7.7)

where the angular brackets denote an ensemble average. Due to the finite-time

constraint in simulations the average value was subtracted ũ → ũ− 〈ũ〉. c(k, t) can
be fitted to an exponential for each allowed wave vector k to extrapolate the decay

rates, see Equation (7.6).
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The effective Hamiltonian of the disclination is given by

F [u] =

∫

dz 1
2
γu(z)2 + 1

2
Λu′(z)2 . (7.8)

Applying Parseval’s theorem leads to

F =
1

2L

∑

k

(

γ + Λk2
)∣

∣ũ(k)
∣

∣

2
. (7.9)

By applying the equipartition theorem, that states that the average energy of each

mode is equal to 1
2
kBT , we can derive

〈

|ũ(k)|2
〉

=
LkBT

γ + Λk2
⇔ 1

〈

∣

∣û(k)
∣

∣

2
〉 =

γ

LkBT
+

Λ

LkBT
k2 , (7.10)

where kB and T are the Boltzmann’s constant and temperature respectively. Hence

the line tension Λ and the strength γ can be directly calculated from the gradient

of the inverse square amplitude of the fluctuations versus k2.

7.3 Model and simulation details

Initially a nematic mono-domain was equilibrated using 125 000 Gay-Berne molecules

in a cubic box of length L with periodic boundaries. The molecules of length κ = 5

were interacting via the purely repulsive GB potential, described in Section 2.3, with

a cutoff of 6.0σ0. As in previous chapters, reduced units were used throughout. The

mass of the molecules was set to unity and the moment of inertia to I = 7.0. Initially

κ was set to unity with all molecules orientated along the z-axis. The molecules were

slowly elongated along their major axes until they reached the desired elongation

κ = 5. The initial director orientation remained close to the z axis. The density

was chosen to be ρ = 0.15 and the temperature T = 1.0. For this state point, the

bulk order parameter 〈S〉 ∼ 0.82. Note that the purely repulsive GB potential is not

sensitively dependent on the temperature, due to the absence of attractive forces.

After the initial growth an external field is applied near the edges of the box, which

supports a stable half-integer strength disclination. This potential, introduced in

the next section, was implemented in gbmoldd. The system was equilibrated over

8× 106 time steps with ∆t = 0.002 using a NV T ensemble. The equilibration run

was followed by a 6× 106 time steps long production run (NV E ensemble) with

snapshots of the molecular positions and orientations stored every 2500 time steps.
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Figure 7.1: Left shows a sketch of the x-y plane of the simulation box and right
shows a 3D sketch of the simulation box. The field is non-zero inside the dark grey
ring region and zero outside of the region. The dashed line corresponds to the virtual
cylinder wall (R = Rcyl), where the external field reaches its maximum. Towards
the boundaries it smoothly decays to zero.

External field to stabilise disclination line of strength -1/2

To stabilise a single disclination line an external field was applied near the boundaries

of the simulation boxes, that favours molecules to lie in the x-y plane following the

ideal director field of a -1/2 defect in that plane. In Fig. 7.1 the dark grey region

illustrates the cylinder region, in which the external field was applied. Cylindrical

polar coordinates were used with R, φ and z being the radial, azimuthal and height

coordinate respectively. The potential reaches its maximum at the cylinder walls

where R = Rcyl and decays smoothly to zero at the boundaries of the region R =

Rcyl ±∆. It was applied along the entire height of the simulation box.

The potential induces an energy penalty, if particles are not aligned along

the theoretical director field of a -1/2 defect in the x-y plane. For a particle j it can

be expressed as

Uj(R,φ, ûj) = −f(R)
[

ûj · n̂(φ)
]2

, (7.11)

Here the energy is minimised when the orientation of a molecule ûj is parallel to

the theoretical director field n̂(φ). f(R) is a strength function. The director field of

a -1/2 defect in the x-y plane can be described by

n̂(φ) = (cos(−1
2
φ), sin(−1

2
φ), 0) . (7.12)
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Figure 7.2: Strength function f plotted vs. s. s = 0 corresponds to the virtual
cylinder wall. s = ±2 corresponds to R = Rcyl ∓∆.

The strength function f(R) was given by

f(R) = f0



































(s+ 2)2/2 if − 2 ≤ s ≤ −1

(2− s2)/2 if − 1 < s ≤ +1

(s− 2)2/2 if + 1 < s ≤ +2

0 else,

(7.13)

where s(R) = 2(Rcyl−R)/∆. The potential parameters were chosen to be f0 = 2.0,

Rcyl = 40.0σ0 and ∆ = 7.0σ0 and hence Rcyl +∆ = 47σ0, which is slightly smaller

than half the box length. For these parameters we observed the intended disclination

line of strength -1/2 as we will show later. We expect that for other parameters,

system sizes or elastic constants a defect escaped into the third dimension could be

observed, where the centre molecules align along the z axis [210]. Note that the

external field effectively acts as a restoring force on the disclination line attracting

it towards the centre.

7.4 Data analysis and results

In Fig. 7.3 the dynamics of the formation of the disclination line are shown in the

two dimensional cross-section of the simulation box in the x-y plane. The colour

coding of the molecules is based on the azimuthal coordinate φ. One can see that

initially the molecules were orientated along z (out of the plane). Near the virtual

cylinder walls the molecules slowly started to rotate into the x-y plane and their

averaged orientations followed the director field determined by Equation (7.12). The

change in orientation propagated throughout the entire system due to the nematic

elasticity until the average orientation of the molecules was in the x-y plane. Several

molecules near the centre of the simulation box are frustrated and have no preferred
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Figure 7.3: Two dimensional cross-section of the simulation box in the x-y plane.
The colour coding is chosen depending on the azimuthal coordinate φ. The top
row shows a snapshot for the first time step, followed by time steps in intervals of
1× 104. The bottom two rows show consecutive time steps in intervals of 1× 105.

orientation. This region corresponds to the cross-section of the disclination.

For all system snapshots shown in Fig. 7.3 the Westin metrics were calculated

with a grid spacing of 0.5 and a kernel radius rk = 7.3. Regions of low uniaxial order

corresponding to cl < 0.12 are visualised in 3D in Fig. 7.4. Initially a zoo of defect

lines forms in the regions where the external field is applied. These shrink over

time and smaller loops vanish entirely. Very similar networks of disclinations can

be seen in experiments in regions where laser tweezers were applied. After ∼ 1000τ

a single defect line has stabilised at the centre of the simulation box surrounded

by a defect-free nematic phase. Some defects are observed near the edges of the

boundary box. In Fig. 7.5 the total number of Westin grid points with cl < 0.12

are plotted as a function of time. Here the number of defect regions N is expected

to be proportional to the total length of disclinations in the system. Initially N

decreases, following an exponential decay, until it plateaus to its final equilibrium

value. The final value corresponds to the single disclination in the centre and the

defects seen near the edges. Note that the number N itself has no physical meaning

and depends on both the chosen spacing and the threshold for cl. Similar relaxation

behaviours were observed in experiments for the annihilation of defect loops [204]

and annihilation of pairs of disclinations [203].
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Figure 7.4: 3D visualisation of disclination lines for the system snapshots of Fig. 7.3.
The defect regions correspond to low uniaxial order with cl < 0.12. The intervals
are chosen as in Fig. 7.3. Note only the first ten time steps are shown, for which the
changes are most prominent. The top two rows show the side view of the simulation
box and the bottom two rows show the corresponding view from the top.
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Figure 7.5: Number of Westin grid points with cl < 0.12 versus time throughout the
equilibration of the single disclination. The external field was switched on at t = 0.
The green line corresponds to a vertically shifted exponential fit.

In Fig. 7.6 order parameter, biaxiality, director field and density maps are

shown for the 2D cross-section of the disclination line. The maps were obtained by

time-averaging over 1× 106 time steps with cubic bins of length 0.8σ0. Inside the

defect core region the order parameter drops significantly and simultaneously the

biaxiality increases, see Fig. 7.6 (a) and (b) respectively. This is in agreement with

calculations in the Landau-de Gennes framework [179] and molecular simulations

[21]. Fig. 7.6 (c) shows that the local director field clearly follows a defect structure

of strength -1/2 as intended by the external field. It is noticeable that the order

parameter and the density are higher in the regions, where the external field is

applied, than inside the bulk. Outside the regions the order and density quickly

decay to their bulk equilibrium value.

The study of the equilibrium fluctuations of the disclination divides into

several parts. Firstly, the Westin metrics were calculated on a regular grid with a

kernel radius rk = 7.3. The grid spacing was chosen to be ∼ 0.5σ0 leading to exactly

188 points along z between the periodic boundaries. For the x and y direction the

Westin metrics were calculated for −20σ0 ≤ x, y ≤ 20σ0 corresponding to 80 data

points each. We consider all points with cl < 0.12 to belong to the disclination. For

each z grid point, the displacement u(z, t) was calculated by averaging all x and y

coordinates. We tried to resolve fluctuations in the x and y direction separately;

however these were degenerate and hence we combined them to improve statistics.

In Fig. 7.7 the disclination line is shown for snapshots in 1× 106 time step intervals.

By visual inspection one can already see that the fluctuations are highly correlated
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Figure 7.6: Two-dimensional cross-section of the disclination line in the x-y plane.
Data was time averaged over 1× 106 time steps with a bin size of 0.8σ0. Maps show
(a) order parameter S, (b) biaxiality α, (c) director field n̂ (Black lines corresponding
to Rcyl ±∆.) and (d) density.

Figure 7.7: Visualisation of the defect line at intervals of 1× 106. Isosurfaces shown
correspond to Westin metrics cl < 0.12.
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Figure 7.8: Inverse of decay times τ and inverse of square amplitudes of the fluctu-
ations versus k2.

and that the lowest eigenmodes decay slowly on the order of several million time

steps. For each stored configuration snapshot the spatial Fourier components of

the fluctuations were evaluated using Equation (7.4) for a range of wave vectors

(Equation (7.14)) and their time correlation function c(k, t) were calculated using

Equation (7.7). Due to the periodic boundaries the wave vector k was restricted to

k =
2π

Lz
m . (7.14)

Here m is an integer and the box length along z Lz ∼ 94.1σ0. We limited our

interest to 1 ≤ m ≤ 20.

Decay coefficients τ were obtained from exponential fits and are plotted over

k2 in Fig. 7.8. In addition the inverse of the square amplitudes of the fluctuations

are shown versus k2. The statistical errors on these quantities were estimated by a

block averaging procedure with 10 blocks. The error on the decay times (±0.005) was

obtained from the observed variations when varying our choices of the origin of u or

the fitting range for c(t). The lowest three eigenmodes (k = 1 → 3) were neglected,

since their relaxation times are long compared to the length of the simulation. In

both graphs the intercept is marginally small and we therefore argue that γ = 0.

In other words the external field chosen here has no impact on the fluctuation

dynamics. The inverse of the decay rates 1/τ is directly proportional to k2, as

we expected from theoretical predictions (Equation (7.6)). The gradient obtained

from the linear fit corresponds directly to the ratio of line tension and the viscous
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drag Λ/R = 0.20 ± 0.01. From Equation (7.1) and Equation (7.2) we evaluated a

crude theoretical estimate for the ratio giving Λ/R = 0.68. Our measure value is

∼ 71% less than the theoretical predicted one. This observation is in agreement with

[201, 202, 207], who observed deviations ranging from 50% to 85%. This confirms

that Equation (7.2) does not estimate the viscous drag adequately and the coupling

of the director to the flow field is indeed important.

For inverse amplitudes of the fluctuations we do not observe the expected

linear relation of k2. In addition they appear to depend on the higher order term k6.

This is not captured in our theoretical description and will require further analysis.

7.5 Conclusions

A single -1/2 disclination line was stabilised in a molecular simulation by apply-

ing an external field. The equilibration process of the disclination was presented

showing the single disclination develop out of a network of disclinations similar to

observations made in experiments in regions where laser tweezers are applied. The

total lengths of disclinations in the system followed an exponential decay until it

plateaus to its equilibrium value. We have confirmed that there is significant de-

crease in uniaxial order in the defect core region and that the defect core is strongly

biaxial. The equilibration fluctuation dynamics of the disclination were analysed in

reciprocal space allowing to estimate the ratio of the line tension and the viscous

drag. We obtained Λ/R = 0.2 ± 0.01. This differs from the theoretical prediction,

that does not consider the backflow confirming that the coupling is important and

has to be incorporated. Future work is required to understand the dependence of

the inverse amplitudes of the fluctuations on k6, which was not captured in our the-

oretical model. The cylindrical external field perturbs the local director fluctuations

out of the x-y plane and within it, which might have an effect on the fluctuation

amplitudes. To analyse the impact of surface anchoring a nanoparticle could be

pinned at the centre of the boundary to fix the ends of the disclinations.
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Chapter 8

Interaction of nanoparticles

with a single disclination line

8.1 Introduction

In recent years the interactions of particles with disclination lines have attracted

great research interest. Particles placed in close vicinity of a -1/2 defect line were

shown to experience attractive non-radial forces, which move the particle towards

the disclination line [211–213]. The forces strongly depend on the particle size, its

surface treatment and the separation r between the particle and the line. This

interaction can be utilised to control the motion of particles inside a liquid crystal

as well as to trap particles in defect sites. Here the trapping occurs, because the

disclination line is trying to minimise the effective volume of its disordered defect

core. While small particles are trapped in the defect line itself, large particles were

also shown to be trapped in particular points in between lines [214]. The trapped

particles can easily be controlled with the laser tweezers [208, 209] and therefore one

has indirect control of the movement of the disclination line.

Pires et al. [211] studied the trajectories of micron sized particles near a single

defect line under the microscope and observed that the particles slowly approach

the defect line in a curved motion. The measured trajectories were found to be in

good agreement with hydrodynamics predictions. The interaction potential appears

to be proportional to ∼ r−3 for dipoles and ∼ r−5 for quadrupoles [211]. Their

work suggests that the motion is initially driven by Brownian motion, until the

attraction by the defect line dominates. Due to the deformation of the disclination

line caused by thermal fluctuations obscuring the view under the microscope, the

dynamics could not be studied, when the particles were in very close proximity of
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the line. The study was limited to micron sized particles that are accompanied by

a dipolar defect.

Experimental work by Škarabot et al. [43] and Gharbi et al. [215] also showed

strong attraction of small particles towards the Saturn ring of a larger particle. Once

the particles reach the disclination line, they became trapped with energies several

orders of magnitude higher than thermal fluctuations. Again, during the approach

the nanoparticle was observed to follow a bent trajectory, when it was allowed to

move freely. Using laser tweezers an energy barrier of several 100kBT was measured

for particles which were forced to move towards the Saturn ring in a straight line,

underlining the highly non-linear interactions. In addition, trapping of particles was

observed for nanoparticles in defects in smectic LC [216].

Landau-de Gennes free energy minimisation confirms that the migration of

nanoparticles into the defect line minimises the total free energy [199]. Here anchor-

ing strength and particle size were identified as key properties for the possibility

of trapping. The trapping can be utilised to form superstructures with a mixture

of large particles and small particles, where the small particles are trapped in the

defect lines of the large particles forming strongly-bound networks [217]. This opens

a new pathway to design colloidal liquid crystal materials with controllable proper-

ties. A profound understanding of the mechanism is required in order to utilise it

for potential applications.

Engström et al. [218] have recently exploited the trapping mechanism of

nanowires in defects in chiral nematics. Since the axes of the wires spontaneously ori-

ent along the director, they can provide nondestructive visualisation of the changes

in the director field over space and time. Other experiments have successfully as-

sembled fixed chains of colloids by trapping them in disclination lines and joining

them permanently by the use of electropolymerization [212]. Sengupta et al. [219]

explored the possibility of using liquid crystals in microfluidic devices; the disclina-

tion line forming inside the channel can act as a guide for the trapped particles and

Y junctions can be used to switch between different targets.

Another area of interest are colloidal liquid crystal blue phases, which can

occur in strongly chiral nematics. Blue phases have a characteristic periodic network

of disclination lines. To understand the impact of nanoparticle inclusions in blue

phases Ravnik et al. [220] used Landau-de Gennes free energy minimisation. They

observed that the defects act as trapping sites with strong binding energies of up to

several thousands kBT between the defect lines and the trapped particle.

Although particle interactions with defects are reasonably well understood

for micron sized particles, little has been researched about particles of nanometre
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size [31, 186, 221, 222]. The tracking of small particles in experiments is rather chal-

lenging. Jose et al. [67] recently attempted to simulate the trapping of nanoparticles

in a disclination line on a molecular scale using Monte Carlo and the Lebwohl-Lasher

model. The -1/2 disclination line was stabilised by confining the LC to a prismatic

nanochannel. They qualitatively studied the deformation of the defect line caused

by particles in close vicinity and measured the force on the nanoparticle to estimate

the line tension. Such lattice simulations have the advantage of being computation-

ally inexpensive. The question arises however whether the lattice restriction has

a significant impact on the results. Especially the movement of the nanoparticle,

which is large compared to the lattice site, is somewhat abrupt and nonphysical.

In this chapter the trapping mechanism is studied for nanoparticles on a

molecular level using the off-lattice Gay-Berne interaction potential to simulate a

bulk nematic. The defect structures arising due to particles in the close vicin-

ity of the defect line and the forces acting upon them are analysed. Furthermore

the trajectories of particles near a disclination line are studied to aid understand-

ing the interactions between defect lines and nanoparticles. In the last part the

particle-particle interactions are investigated for two particles trapped in the same

disclination line.

8.2 Model and simulation details

A simulation box filled with 125 000 GB molecules of elongation κ = 5.0 and a

moment of inertia I = 7.0 was equilibrated at a density ρ = 0.15 and T = 1.0.

The interaction potential is the purely repulsive Gay-Berne potential with a poten-

tial cutoff of 6σ0 (see Section 2.3). A nanoparticle was inserted into the nematic

that interacts via the purely repulsive LJ potential inducing homeotropic surface

anchoring (see Section 5.2). The size of the nanoparticle was set to RNP = 10σ0

with a mass m = 50. A single defect line is stabilised by applying the external field,

described in Chapter 7, near the boundaries of the simulation box. The boundary

region is defined by a cylinder with its axis along z and a radius of Rcyl = 40.0σ0.

The external field with maximum strength f0 = 2.0 is applied within the region

Rcyl ± ∆, with ∆ = 7.0σ0. As shown in Chapter 7 this external field stabilises a

single disclination line, which follows the direction of the cylinder axis undergoing

thermal fluctuations. The simulation was repeated for eight different initial posi-

tions of the nanoparticle, which are indicated in Fig. 8.1 to account for the varying

structure of the -1/2 defect for varying φ = atan(y/x), We will refer to these runs as

setup0, setup30, setup60, setup90, setup120, setup150, setup180 and setupC, where
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Figure 8.1: Sketch of the director field corresponding to a -1/2 defect in the x-y-
plane. The circles indicate the initial position of the nanoparticle (x, y, 0) in the
simulation box with setupC (black), setup0 (green), setup30 (blue), setup60 (grey),
setup90 (red), setup120 (cyan), setup150 (orange) and setup180 (purple).

the number corresponds to the angle φ and the C indicates the positioning at the

centre of the box. In Chapter 7 we have shown that the dynamics of the system

evolve slowly; hence the equilibration run (NV T ensemble) had to be sufficiently

long. For each setup it was chosen to be 3× 106 steps with a time step ∆t = 0.002.

This was followed by a NV E production run of 2× 106 time steps with system snap-

shots stored every 2500 time steps. For these runs the position of the nanoparticle

was fixed. In a second production run (NV T ensemble) of length 12× 106 steps

the nanoparticles were allowed to move freely and their position was recorded every

2500 time steps.

In addition three systems were studied with two nanoparticle inclusions in

close vicinity of a defect line. For the first one, the simulation box was duplicated

twice along z giving a total of 375 000 GB molecules and a simulation box ratio of

1:1:3. Two nanoparticles were placed in the centre of the box separated by ∼ 94σ0

along z. The system was equilibrated over 3.5× 106 time steps (NV T ensemble),

followed by a production run (NV T ensemble) of length 3.5× 106 steps storing

a snapshot every 2500 time steps. The other two simulations were conducted in

the previous setup with 125 000 GB molecules with two nanoparticles separated
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Figure 8.2: Maps of the local order, biaxiality, director field and density in the x-y
plane with the nanoparticle at z = 0 for setup0. Data was accumulated over 2× 106

time steps with intervals of 2500. The bin size was chosen to be 0.6σ0 giving an
average of over 180 molecules per bin.

perpendicular and parallel to the defect line. The initial positions of the nanopar-

ticles are given by r1 = (−15σ0, 0, 0), r2 = (15σ0, 0, 0) and r1 = (0, 0,−15σ0),

r2 = (0, 0, 15σ0) respectively. The production run length was 12× 106 steps.

8.3 Data analysis and results

Interactions of disclinations with fixed nanoparticles in close vicinity

A nanoparticle inserted into a nematic distorts the surrounding director field. Com-

plex defect structures arise due to the competition between the director field en-

forced by the external field and the distortion around the particle. In Fig. 8.2 the

time-averaged maps of the order parameter, biaxiality, director field and density are

shown in the x-y plane with the nanoparticle at the origin (setup0). Three distinct

defect regions can be seen near the surface of the nanoparticle with a ∼ 1.15RNP.

Inside the defect core region the order parameter drops and the biaxiality increases

significantly. The defects are equally spaced around the nanoparticle maximising

the distance between each other. 3D analysis confirms that the two defects further

away from the origin correspond to a Saturn ring surrounding the nanoparticle and

the third defect is the cross-section of the disclination line in the centre of the simu-

lation box induced by the external field. Interestingly the Saturn ring is positioned

off-centre; shifted roughly 5σ0 away from the equator. The cylinder region where
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Figure 8.3: 3D visualisation of defect lines (blue) for setup0 from the x-z perspective
(left) and the x-y perspective (right) for a single time step. Defect corresponds to
regions of low uniaxial order (cl < 0.12).

the external field is applied is visible showing a higher order than inside the bulk as

well as lower biaxiality and higher density. These effects do not propagate into the

bulk.

In Fig. 8.3 a typical defect structure, corresponding to cl < 0.12, is shown in

3D for setup0. The shifted Saturn ring surrounding the nanoparticle can clearly be

seen. Furthermore the disclination line is strongly bent and ‘touches’ the surface of

the nanoparticle. The distance of the defect line from the surface of the nanoparticle

is comparable to the distance of the Saturn ring from the nanoparticle’s surface.

Thermal fluctuations are visible in the disclination line as well as the Saturn ring.

For setup0 this defect configuration was the only one observed for the duration of

the production run.

What defect structures arise when the nanoparticle is placed in the centre

of the simulation box? In Fig. 8.4 time-averaged order parameter and director field

plots are shown as well as a 3D visualisation of defect regions for a single time step.

As before, in the 2D maps three defect regions were observed near the surface of

the nanoparticle. However the 3D visualisation shows that these correspond to an

entangled defect structure, where the line closely follows the contours of the par-

ticle. It appears that the distance between different segments of the defect line is

maximised. For the duration of the production run the entangled defect structure

persists and no other configuration was observed. A stable entangled defect struc-

ture was only observed for setupC. Note that for the entangled defect the symmetry
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Figure 8.4: Defect visualisation for setupC. Notation as in Fig. 8.2 and Fig. 8.3.

is spontaneously broken. Throughout the duration of the production run the de-

fect did not change handedness, suggesting an energy barrier higher than thermal

energies. These observations are in qualitative agreement with the off-lattice sim-

ulations by Jose et al. [67], who observed the same entanglement. They reported

occasional transformation between different entanglements. A possible explanation

is the difference in particle size in their simulation. Fig. 8.5 shows the time-averaged

isosurface corresponding to low uniaxial order with S < 0.5. One can see that the

structure remains unchanged throughout the production run and that its shape

closely follows the contours of the nanoparticle.

In Fig. 8.6 the time-averaged local order maps and director fields are shown

for the remaining systems setup30 → setup180 and Fig. 8.7 shows the defect regions

in 3D for a single time step. For all setups the defect region closest to the origin is the

cross-section of the single disclination line and the remaining two defects correspond

to a Saturn ring defect. The orientation of the Saturn ring strongly depends on the

orientation of the surrounding -1/2 defect. The plane described by the Saturn ring,

is perpendicular to the ideal director orientation at the position of the nanoparticle.

For setup60 and setup180 one can observe a strong bending of the single defect line

away from the Saturn ring. Both left and right bends occur equally often confirming

that the two states are degenerate. For setup60 and setup180 only, entangled as well

as non-entangled defect structures were observed with several transitions between

the different states. We suspect that the strong bending of the disclination associ-

ated with the non-entangled state increases the total length and hence the energy
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Figure 8.5: Disclination line (red) corresponding to the isosurface of low uniaxial
order with S < 0.5 for time-averaged production run for setupC.

associated with it, making it a less stable state and allowing transitions to the entan-

gled structure. For setup60 and setup180 a variety of intermediate defect structures

were observed during the transitions. Snapshots of these as well as entangled defect

structures are shown in Fig. 8.8. No entangled or intermediate defect structures

were observed for setup0, setup30, setup90, setup120, setup150 suggesting that the

bent single disclination line and a Saturn ring perpendicular to the direction of the

director field is the only stable configuration.

Dynamics of nanoparticles in close vicinity of a disclination line

In the following the trajectories of the freely moving nanoparticles are studied. Fig.

8.9 shows the trajectories of the nanoparticles for each setup in the x-y plane over

the entire length of the production run. The initial positions of the nanoparticles are

indicated by a grey circle. Translations in the z direction were neglected, because

they are energetically degenerate since the director field surrounding the disclination

line is nearly identical everywhere along z. Two different mechanisms seem to drive

the nanoparticles: (1) all particles move towards the centre of the simulation box

remaining at a distance of roughly 10σ0 from the origin. This distance is equivalent

to the radius of the nanoparticle RNP and hence minimises the bending of the

disclination line, which minimises the free energy associated with the defect line.

The nanoparticles reach this position after roughly 1× 106 time steps. (2) particles

appear to have an angular preference. Their final average positions correspond to

φ = 0 and φ = 2π/3. φ = 4π/3 was not observed due to our choice of initial

positions, but is degenerate due to the the three fold symmetry of the disclination

line. At their final equilibrium positions the particles undergo thermal fluctuations.
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Figure 8.6: 2D time-averaged local order parameter and director field maps. From
top left to bottom right: setup30, setup60, setup90, setup120, setup150 and
setup180. Notation as in Fig. 8.2.
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Figure 8.7: 3D visualisation of typical defect structures observed for setup30 →
setup180 from the x-y perspective (topview). Colour scheme used as introduced in
Fig. 8.1.
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Figure 8.8: Six examples of entangled and intermediate defect structures observed
for setup60 (grey) and setup180 (purple). All examples are shown from two different
angles.
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Figure 8.9: Trajectories of nanoparticles for all setups in the x-y plane. Left shows
the trajectories over the entire length of the production run. Right only shows the
trajectories for the last 2× 106 time steps. Grey circles indicate the initial positions.

Throughout the length of the run no translations to a different equilibrium position

were observed. For all setups the particles remain connected to the disclination line

at all times. The nanoparticle placed at the centre of the box, moves outwards and

the defect disentangles suggesting that the entangled structure is of higher energy

for the system studied here.

In the following the net forces on the fixed nanoparticles due to the inter-

actions with the liquid crystal molecules were analysed. The forces, time-averaged

over the entire length of the production run, are plotted in Fig. 8.10. Again the

theory is supported that there are two main mechanism: (1) all particles experience

a strong attractive force towards the disclination line. Only the particle placed at

the origin is exposed to a weak repulsive force. (2) the forces have a non-radial

component and show an angular tendency towards φ = 0 and 2π/3.

Interactions of two nanoparticles in close vicinity of a disclination

Three different setups were studied with two nanoparticles in close vicinity of a

disclination varying their separation and their relative positions with respect to the

disclination. The systems were equilibrated with the positions of the nanoparticles

fixed. Throughout the production run the nanoparticles were moving freely and

their positions were tracked. To analyse their trajectories the vector connecting the

positions of the nanoparticles r12 = r2 − r1 was calculated for each snapshot.

For the first simulation two nanoparticles were placed at the centre of the
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Figure 8.10: Time-averaged forces acting on the nanoparticles due the interactions
with the liquid crystal molecules plotted for all setups.

disclination line separated by ∼ 94σ0 along the z axis. Within a few thousand

time steps both nanoparticles became entangled by the defect line. In Fig. 8.11 the

x, y and z component of r12 are plotted for the entire duration of the production

run, in which the nanoparticles were allowed to move freely. Both particles undergo

diffusion around the centre of the defect line. The separation along z suggests that

there is no significant interaction between the particles; at least not on the short

time scales accessible in simulations.

The simulation was repeated in a smaller simulation box with 125 000 Gay-

Berne molecules and a smaller separation of 30σ0 along z. In Fig. 8.12 the defect

lines are shown for the first and the final time step of the production run. One

can see that both particles are initially entangled by the defect line and for the

length of the simulation they were never observed to become disentangled. As for

the larger system the x, y and z component of r12 are plotted for the entire duration

of the production run, see Fig. 8.13. The separation along x and y increases over

the first 5× 105 time steps suggesting that the particles prefer to sit slightly shifted

with respect to each other. Afterwards these components do not change for the

remainder of the production run and they solely fluctuate around their equilibrium

value. To further investigate the separation between the particles in the x-y plane

Rxy (see red line) was identified. Rxy = 7.0σ0 ± 1.8σ0 for the last half of the
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Figure 8.11: The x (blue), y (green) and z (grey) components of the vector r12
connecting the positions of the two nanoparticles over time. The particles were
initially placed in the centre of a simulation box with 375 000 Gay-Berne molecules
separated by 94σ0 along z.

Figure 8.12: Two nanoparticles initially placed at centre of disclination line sepa-
rated along z by 30σ0. Left shows disclination line (blue) for the first time step of
production run and right shows the last time step.
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Figure 8.13: The x (blue), y (green) and z (grey) components of the vector
r12 = r2 − r1 connecting the positions of the two nanoparticles over time. The
two nanoparticles were initially placed in the centre of simulation box with 125 000
Gay-Berne molecules separated by 30σ0 along z. The red line corresponds to the
separation of the particles in the x-y plane Rxy.

run. Referring back to Fig. 8.12 one can see a possible explanation. The short

disclination line segment between the two particle can be straight, only if one particle

is slightly shifted sideways. This in turn reduces the total length of the line and

the surrounding distortions. In contrast to the larger system, the separation along

z decreases significantly corresponding to the particles attracting each other. After

the initial approach the average separation along z remains constant at 24.4±0.5σ0.

We turn our focus to the same system but with the two nanoparticles sepa-

rated along x. In Fig. 8.14 the disclination lines are visualised for the first and last

time step of the production run. Initially the disclination line induced by the exter-

nal field entangles one of the nanoparticles, while the other particle is surrounded by

an off-centre Saturn ring. As before the shift was away from the single defect line.

Shortly after the particles were released the entangled particle became disentangled,

while the defect structure around the second particle remained unchanged. Similar

to the observations for a single nanoparticle, the disclination line ‘touches’ both

nanoparticles. In Fig. 8.15 the trajectories of the nanoparticles are plotted. The

separation of the nanoparticles along z suggests that the particles repel each other

and reach their equilibrium position after 6× 106 time steps (half the production run

length). Afterwards the average z separation stays constant with rz12 = 49.4 ± 2.7.

In addition, one can see that the separation along z across the periodic boundary

is comparable with Lz −
∣

∣rz12
∣

∣ = 44.6 ± 2.7, which suggest that the particles are

trying to maximise the distance between each other. For the second half of the run

the distance between the two particles in the x-y plane was Rxy = 19.9σ0 ± 6.6σ0.

Referring back to Fig. 8.14 one can see that the particles both moved into one of the
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1.5cm

Figure 8.14: Two nanoparticles initially placed at centre of the simulation box
separated along x by 30σ0. Left shows disclination lines (blue) for the first time
step of production run and right shows the last time step. Inset shows the first time
step viewed from the top.

Figure 8.15: The x (blue), y (green) and z (grey) components of the vector r12 =
r2 − r1 connecting the positions of the two nanoparticles are plotted over time.
The two nanoparticles were initially placed in the centre of simulation box with
125 000 Gay-Berne molecules separated by 30σ0 along x. The red line corresponds
to the separation of the particles in the x-y plane. The thin grey line indicates the
separation along z across the periodic boundary Lz −

∣

∣rz12
∣

∣.
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three equilibrium positions we identified for a single nanoparticle. Hence we would

expect a separation of ∼17.3σ0 between two equilibrium positions, which is consis-

tent with our measurement. It is interesting that in this simulation the particles’

equilibrium positions correspond to different angles φ. It seems possible that for

different initial conditions the particles could move towards positions corresponding

to the same angle; however favouring different positions could be related to smaller

distortions of the liquid crystal. This angular dependency would be an interesting

topic for further investigations.

When comparing these two simulations with the same setup but different

initial conditions, it is surprising that the final defect structures are entirely different.

For one system both particles approached each other and remained entangled for

the duration of the run. This is somewhat surprising since we observed the particle

in setupC to quickly disentangle. It appears that the second particle supports the

entanglement. For the second system the particles repel each other maximising

the distance between them. Entanglement was only observed at early time steps,

while later two separated Saturn rings were the only stable structure. It would be

interesting to extend these exploratory simulations to identify all possible stable

defect structures and to analyse the impact of the initial conditions.

8.4 Conclusions

To conclude, we have observed attractive interactions between a single disclination

line and a nanoparticle in close vicinity. When the nanoparticle’s position was fixed,

the nearby disclination line was bending towards the particle to minimise elastic free

energy; the particle itself was surrounded by an off-centre Saturn ring. When the

particle was released, it moved towards the centre of the simulation box. This al-

lowed the disclination line to become straight, which minimised its length and hence

the energy associated with it. The particles trajectories were non-linear and highly

dependent on the structure of the surrounding director field. Three equilibrium po-

sitions were identified reflecting the three-fold symmetry of the director field. For a

range of simulations with fixed nanoparticle positions the particle became entangled

by the disclination line. When the particles were released, they rapidly disentangled

suggesting that the entangled state is unstable for nanoparticles of the size studied

here. In addition, intermediate defect structures were observed during transitions

from the entangled to non-entangled structure and vice versa.

Furthermore we have shown that two nanoparticles can strongly interact in

the presence of a nearby disclination line, if their surface-to-surface separation is
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comparable to their diameter. For two different initial nanoparticle positions two

entirely different structures were observed. For one simulation both particles stayed

entangled and attracted each other until they reached an equilibrium separation. It

appears that the presence of the second particle supported the entanglement with

both particles staying entangled throughout the simulation. For the other structure

the particles repelled each other and maximised the separation between them. The

entangled particle quickly disentangled and both particles were surrounding by an

off-centre Saturn ring.

We have successfully shown that molecular simulations can be exploited to

study single disclination lines in liquid crystals and their interaction with nearby

particles. The results are in quantitative agreement with experiments and theory.

By increasing the size of the simulation box and hence the size of the bulk ne-

matic region in the simulation larger particle inclusions could be studied. This is

beyond the scope of this study; however it would be an interesting topic for further

investigations.

124



Chapter 9

Conclusions

We have shown that molecular simulations are a useful additional tool to study

liquid crystals complementing theoretical predictions and experimental results and

aid understanding the underlying dynamics on a molecular level.

Chapter 3: A nematic was simulated using the soft Gay-Berne potential. The

Frank elastic constants corresponding to splay (K1), twist (K2) and bend

(K3) deformations of the liquid crystal can be calculated from the equilibrium

director fluctuations. The fluctuations in reciprocal (k-)space were calculated

and fitted for low k to extrapolate the elastic constants. For the two Gay-

Berne parameterisations and total of six state points studied, we obtained

K3 >> K1 ≈ K2, i.e. bend fluctuations require most energy. Our results

indicate that small system size may be a source of inaccuracy in previous

work; large systems are necessary to obtain a sufficient amount of data points

in the low k regime.

Chapter 4: The dynamics of various Gay-Berne nematics were investigated by

calculating the time correlation functions of the director and velocity fluctu-

ations. The splay and twist modes showed exponential decay, whereas the

bend modes followed an oscillatory decay. All decay rates were accurately

proportional to k2. The analysis of the separation of timescales between the

director fluctuations and the velocity fluctuations showed that the separa-

tion is most prominent for the twist mode and reasonably large for the splay

mode. For the bend mode no significant separation was observed. We have

successfully shown that these observations are consistent with nematodynam-

ics and that indeed one could see bend propagating modes in experiments, if

µ = ρK3/γ1η2 ∼ 10−2. This result is particularly exciting since this possibil-
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ity has so far been overlooked and instead all three modes are traditionally

assumed to be overdamped.

Chapter 5: Topological defects caused by nanoparticle inclusions were investigated

using molecular simulations. For all particles with homeotropic anchoring the

Saturn ring defect was found to be stable for radii ranging from 3σ0 to 15σ0.

For smaller radii a surface-ring defect arises. For larger radii the distance of the

defect from the centre of the particle was measured to be a = 1.13RNP+0.8σ0,

which is in agreement with theoretical predictions and experimental observa-

tions. Attempts were made to stabilise a metastable satellite defect by the

use of an external field. However we have found for particles up to 20σ0 that

the satellite defect was unstable. This is in agreement with theory and ex-

periments that suggest the Saturn ring to be the one stable configuration for

particles of nanometre size. However, it disagrees with the previous simula-

tions of Andrienko and Allen, and we have been unable to discover the reason

for the discrepancy. In addition, pair interactions of nanoparticles in nematics

were investigated. The particles attracted each other until they reached an

equilibrium separation corresponding to a few layers of Gay-Berne molecules.

As predicted in mean-field calculations the particles preferred to sit at an angle

with respect to the director.

Chapter 6 : Molecular simulations of two nanoparticles in close vicinity showed a

variety of entangled defect structures arise: the figure of eight, the figure of

theta and the figure of omega. These are the same structures seen in experi-

ments for micron-sized particles. The simulation results show that for nanopar-

ticles the transitions between different defect types occur frequently and that

no entangled structure persists for more than a few hundred time steps. Inter-

mediate linked defect structures form in-between transitions. These are not

seen in experiments; possibly due to high energy associated with them. We

explained the origin of the three-ring structure observed in previous molecu-

lar simulations as a result of time-averaging over times much longer than the

transition rates.

Chapter 7: Molecular simulations were used to stabilise a -1/2 disclination by

applying an external field. When the field is applied, a network of disclinations

forms, which shrinks over time and disclination loops vanish entirely until a

single disclination forms. The total length of all disclinations in the network

followed an exponential decay. The defect core region showed a significant drop

in uniaxial order and was found to be biaxial. Furthermore the equilibrium
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fluctuations of the disclination were studied in reciprocal space and we found

that the inverse decay rates were accurately proportional to k2. Although the

amplitudes of these modes did not follow the form expected on the basis of

the line tension alone, we found the gradient provided a good estimate for the

ratio of line tension and viscous drag.

Chapter 8: The interactions of disclinations and nanoparticles were investigated.

For a fixed nanoparticle in close vicinity of a -1/2 disclination two defect

structures were observed: (1) The nanoparticle was surrounded by an off-

centre Saturn ring and the disclination line bends ‘touches’ the surface of the

nanoparticle. (2) Entangled defect structures formed for certain nanoparticle

positions, where the nanoparticle was entangled by the disclination. Once

the nanoparticles were released, they became disentangled. Furthermore they

experienced highly non-radial forces that attracted them towards the centre

of the simulation box allowing the disclination to become straight. For two

nanoparticles in close vicinity of a disclination two different scenarios occurred

depending on their initial position: (1) Both particles became entangled by

the disclination and stayed entangled throughout the simulation. (2) Both

particles became disentangled and two off-centre Saturn ring formed.
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[207] A. Mertelj and M. Čopič. Observation of thermal fluctuations of disclination
lines in a nematic liquid crystal. Phys. Rev. E, 69:021711, 2004.

[208] N. Osterman, J. Kotar, E.M. Terentjev, and P. Cicuta. Relaxation kinetics
of stretched disclinatlion lines in a nematic liquid crystal. Phys. Rev. E, 81:
061701, 2010.

[209] I.I. Smalyukh, A.N. Kuzmin, A.V. Kachynski, P.N. Prasad, and O. Lavren-
tovich. Optical trapping of colloidal particles and measurement of the defect
line tension and colloidal forces in a thermotropic nematic liquid crystal. Appl.
Phys. Lett., 86:021913, 2005.

[210] P. Chaikin and T.C. Lubensky. Principles of condensed matter physics. Cam-
bridge University Press, 1995.

[211] D. Pires, J.-B. Fleury, and Y. Galerne. Colloid particles in the interaction field
of a disclination line in a nematic phase. Phys. Rev. Lett., 98:247801, 2007.

[212] J.-B. Fleury, D. Pires, and Y. Galerne. Self-connected 3D architecture of
microwires. Phys. Rev. Lett., 103:267801, 2009.

[213] P. Kossyrev, M. Ravnik, and S. Žumer. Branching of colloidal chains in
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