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Abstract We give an elementary proof of existence and uniqueness of Gibbs states for
Holder weight systems on subshifts of finite type. This uses a notion of duality for such
subshifts. The approach of Paters@hif used to construct a measure with a prescribed
Jacobian and the duality is used to produce an invariant measure from this

1. Introduction
In this paper we give a novel and elementary proof of the existence and unigueness of
Gibbs states for Bltdler weight systems. A bonus of this approach is that it leads directly
to a decomposition of the measure as an integral of an explicitly given canonical ratio
function with respect to a measure which is dual to the Gibbs state. See the corollary to
Theorem 1 for the precise statement and Definition 3 for the definition of the canonical
ratio function which corresponds to the conditional measures along backward paths.

The novelty of our approach is to use a notion of duality and to combine it with the
approach to constructing measures pioneered by Pate?samthe context of the limit
sets of Fuchsian groups and used by Sullivdnd construct conformal measures for Julia
sets. This duality plays the central role in our approach through the following observations:
(i) given a Holder function/ on the shift spac& (or, equivalently, a ldider weight system)
there is a unigue measureon X~ whose Jacobian ig; (ii) the weight system determined
by v determines a unique measyrg on the dual space th which is invariant under the
dual mappingf, on ©*; and (iii) the measurg dual tou™* is the required shift-invariant
Gibbs state forJ and its Jacobian is explicitly given by our construction because it is
the reciprocal of the scaling function pf*. The Jacobian of the measuxé provides a
nice characterization of the Gibbs state and we deduce that there is a natural one-to-one
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correspondence between thelter Gibbs states ol and the Hider functionss (§) on
¥* which satisfy the simple matching condition given below in Definition 2.

The ratio decomposition is particularly useful in certain situations and can be used
to link certain Gibbs states with smooth structures. For example3]iit s used to
construct allc* Anosov diffeomorphisms and hyperbolic attractors on surfaces that have
an invariant measure that is absolutely continuous with respect to the two-dimensional
Lebesgue measure (in the case of Anosov systems) or the Hausdorff measure of the
attractor. In particular, for such systems, it allows us to introduce a notion of duality
between the induced affine structures on the stable and unstable foliations. For the Anosov
systems the SRB measure for the system is absolutely continuous if and only if one of
these structures is the dual of the other.

2. Gibbs states and statement of main theorem
Let us recall the definition of a one-sided subshift of finite type- 4. The elements of
¥ are all the infinite right-handed words = wow1 ... inthe symbols 1..., k such that
foralli > 0, Ay,u,,, = 1. HereA = (A;;) is any matrix with entries 0 and 1 such that
A" has all entries positive for some> 1. We writew ~ w' if the two wordsw, w’ € ¥
agree on their firsk entries. The metrid on X is given byd(w,w’) = 27" ifn > 0
is the largest such that A Together with this metri&@ is a compact metric space.
The shift f : ¥ — X is the mapping which sendsows ... to wiwz.... Itis a local
homeomorphism.

An n-cylinderz,,, w € ¥,, consists of all those words’ in X such thatw Awlifc
is ann-cylinder then we defing:C to be the(n — 1)-cylinder containingC and denote by
n(C) the depth: of C. A 1-cylinder is also called primary cylinder

Together withx we will consider the augmented spa®ewhich consists of both the
infinite right-handed words ix and their finite subwords. Léd5, denote the subset of
finite words. Then we can identif@si, with the set of cylinders irE via the association
w < X,,. This set has two natural oriented tree structures:
€) 7 in which all the oriented edges connect a cylindetio mC; and

fin
(b) @{ifn in which all the oriented edges are from the cylindeto fC.
An admissible backward path in either of these trees is a finite or infinite seq(&pjoef
cylinders indexed by eithef = 0,...,n0or j = 0,1,... and such tha€g is a primary
cylinder and such that there is an oriented edge fegmo C;_1 for all j > 0. Clearly the

infinite paths in®F. correspond to points dt.

Definition 1. The dualX* of T is the set of all infinite admissible backward paths in
@{{n together with the metric defined as follows ({C;}, {C;}) =2"ifC; = C} for

0 < j <nandC, # C,. The dual®* of ® is defined similarly except that both finite and
infinite admissible backward pathsdihffn are used.

Note that one can identify the elements®f with those infinite left-handed words
... wiwg in the symbols 1. .., k such thatd,,;,,;, , = 1.
We note that for bottE and X* a cylinder is given by prescribing a finite admissible

backward patHC; }’;;é (respectively in®g, and in @ﬁn), and it is then equal to the set
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of all infinite admissible backward patf®;} such thatD; = C; for 0 < j < n. Since
this finite path is determined b§,_1 there is a one-to-one correspondence between the
cylinders of ¥ andX*. Specifically, this is given as follows: i is ann-cylinder of X
then the cylindelC* of X* consists of all infinite admissible backward patﬁg}?‘;o in

@{{n such thatC,_1 = C. We also define duals te and f: if C* = {C; }’;;(1) is ann-
cylinder of X*, m,C* is the(n — 1)-cy|inder{fCl,~};?j of X* containingC* and f,.C* is

the(n — 1)-cy|inder{ij}’};}. Note how these translate under duality:

msC* = (fC)* and f.C* = (mC)*. (1)

2.1. Notation. Throughout, if¢(n) is some quantity depending upen € N and

L € R, we use the notatiop(n) € (1 £ O("))L to mean that there exists a constant
¢ > 0 depending only upon explicitly mentioned quantities such that for. alt 0,
1—-cv' <¢pm)/L <1+ cV".

2.2. The potential. Now consider a functiod defined on®s, and with the following
properties: there exists w < ' < 1 such that ifC is ann-cylinder then

O@") < £(C) < O(@™) (2)

and there exists & v < 1 such that the following two equivalent conditions hold:

(i) if Cisann-cylinderwithn > 0 theno,(C) = £(C)/£(mC) converges exponentially
along backward orbits, i.e¢(C) € (L + OW"))o, (fC);

(iiy if Cis ann-cylinder withn > 0thenJ,(C) = ¢(fC)/¢(C) converges exponentially
along nested sequences, ig(C) € (1 £ OW"))Je(mC).

We leave the proof of the equivalence to the reader, but note that it comes from the relation

oe(fC) _ Je(C)
oy (C) Je(mC)’

It also follows from these conditions that the limits defining the following functiens
and J, are reached exponentially fast and that consequently these function®laler H”
continuous: ifé = {C,};2, € T* whereC, is ann-cylinder andfC,+1 = C, and if

x = (,>0 Dn WhereD,, is an-cylinder withmD,,+1 = D, then

0¢(§) = lim 0¢(Cy) and Je(x) = lim Je(Dn).

Definition 2. Such a system of weightss called aHolder weight functionWe callo, the
scaling functiorof ¢ andJ, the Jacobian The Hilder weight function is said to satisfy the
matching conditioror to matchif for all £ € X*,

> oE)=1 3)
f*%—/:f

The matching condition is equivalent to the following: there is @ < 1 such that for
all n > 0 and alln-cylindersC, 3" o,(C’) = 1+ O(6") (sum over(n + 1)-cylindersC’
contained inC).
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Consider the sumg! = ) - £(C)e™" where the sum is over alt-cylindersC.
From (2), fors > O sufficiently largeZ? is bounded away from infinity uniformly in
n > 0. On the other hand, i is sufficiently negative theZ! diverges taco asn — oo.
Since if this divergence occurs for a particular values dhen it occurs for all smaller
values, there is a critical valuR given by P = inf{s : Z{ uniformly bounded im}. This
is called thepressureof £. It corresponds to the usual definitiolj.[

2.3. The ratio structure. Before proceeding we need to introduce some notation.
Consider a cylindeC in ¥ and letC1 denote the primary cylinder containi@ If C,
is ann-cylinder such thay”~1C, = C1 then byC(C,) we denote " *|¢,)~1(C).

Definition 3. Let ¢ be a Hilder weight system.
(i) We define the ratio, (C : D) between two cylinder§ andD by

L —n(C")s
re(C : D) = lim 2cicc UCe ;
s\ P ZD’cD £(D")e—n(D)s

where the sums are respectively over all cylinders contained in or eqGadina D.
Fors > P both numerator and denominator are finite and positive. As part of the
proof of the following theorem we will show that the limit as\, P is finite and
positive.

(i) If&=(&) e X leta(§) =Ilim,_oore(&, : m&y).

(i) If &€ € ¥* andC is contained in the primary cylindép then definery ¢ (C) =
im0 re(C (&) : &n).

The limits in (i), (ii) and (iii) exist and are finite and positive (use (9) and (10) to deduce
(i), and use the fact thdt, (C) = v(C) form a matching ldlder weight system to deduce
(i) and (iii) wherev is the probability measure constructed in Theorem 1). From (9), (10)
and (11), we also get bounds for(C : D) as presented in the following remark.

Remark 1.Suppose thaf' is anm-cylinder contained in the-cylinder D, then
re(C : D) = O(e~""MPy(C)/e(D)).

If ¢ satisfies the matching condition thén= 0 and for some 6< 6 < 1,

£(C
re(C:D)e(1x (’)(9”))% (4)

wheneveC andD are contained in a commancylinder. Therefore, for af = {£,}7°, €
*,

0(§) = 0¢(§) = lim £(5,)/L0m&y) andre e (C) = lim_ £(C(Ex))/€(En)-

Clearly in these cases the limits are reached exponentially fast@hplandr, ¢ (C) are
Holder in&.
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2.4. The Gibbs measure and its dual.

Definition 4. Suppose that is a f -invariant probability measure @b andv a f,-invariant
probability measure oiz*. Then the dualg* andv* respectively tou andv are the
probability measures defined &It andX by u*(C*) = u(C) andv*(C*) = v(C).

Remark 2.In the above definition we use the fact that is a probability measure
(respectively fi-invariant) if and only if u is f-invariant (respectively a probability
measure). Similarly fop. This is becaus¢C = D (respectivelyf,C* = D*) if and
only if m,.C* = D* (respectivelynC = D).

THEOREM 1. There exist a unique pair of Borel probability measuresn X andv* on
>* with the following property for som@ < 6 < 1: if C is ann-cylinder ofx,

v(fC) n p V(L)
(O e 1+ O0W"))Ji(C)e", O
and, if C and D are two cylinders, them(C)/v(D) = r,(C : D). Moreover, the weights
£,(C) = v(C) form a matching t8lder weight system angh, = o.
If the weight functior? satisfies the matching condition thehis f,-invariant and its
dual measureg: satisfies the following equivalent conditions:
(i) if C and D are two cylinders contained in the sameylinder thenu(D)/u(C) €
(1+ 0O"))E(D)/L(C);
(i) if Cisann-cylinder ands = (&) € X* has§, = C then

p(C)/m(mC) € (1+ OO"))oe(§);

(iif)  (ratio decomposition) i€ is ann-cylinder andCy is the primary cylinder containing
C then

e (L+ 0@ )o, H(CHe”

u(C) = /C ree(C)u™ (d§).

0
Here u* is the dual measure ta.
Moreover, for each of the conditions (i), (ii) and (iii} is the unique measure with the
given property.
If J, is the Jacobiand(u o f)/du andx = (),.oC, € X whereC, is ann-
cylinder withmC,11 = C, thenJ,(x) = lim,_ o« v*(m.C*)/v*(C*). The Jacobian
T () = d(v* o f)/dv*(&) is o, (&)

Remark 3.As part of the proof of the theorem we will prove that, if thelHér weight
system¢ matches and ifx is any f-invariant probability measure satisfying the ratio
decomposition (iii), then for all cylinders of X,

Zre,gn (CO)u*(D*) e A+ O0W"))u(C)

where the sum is over alt-cylinders D such thatC c f"~1D, and for eachD,
&p = {g,-}‘;ozo is an infinite backward path with the property that= D.

COROLLARY 1. (Existence and uniqueness of Gibbs stalé®re exist a unique pair of
Borel probability measureg on X and 1* on X* with the following properties for some
0<6 <1
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(i) wandu* are dual to each other and respectivelyinvariant and f.-invariant;
(i) if C and D are two cylinders contained in the sam&ylinder then

mw(C)/ (D) € L+ 0O )re(C : D;

(iii) (ratio decomposition) i€ is anr-cylinder andCo is the primary cylinder containing
C then
u(C) =/ ree ()™ (dx).
Co

Either of the conditions (ii) and (iii) characterize the measwei.e. it is the unique
measure with the given property.

If J,, is the Jacobia@ (uo f)/d andx = (),»o C» € T whereC, is ann-cylinder with
mCpy1=Cy then-]p,(x) =lim,— M*(m*cz)/_“*(c;':) Finally, d(u*o fi)/du* = oL

The measurew is the Gibbs state for the potential, in the sense of1], i.e.
it is the unique f-invariant probability measure which for all cylinderS the ratios
w(C)/e(C)e ™ OF are uniformly bounded away frofand co.

Remark 4.Note that the ratios, ¢ andrg can be different if the weights do not match, and
the logarithmic scaling functions lag and logo differ at most by a coboundary, i.e. there
is a Holder continuous function : £* — R such that logo(£)) = log(o (§)) +u( f:&) —
u(&). However, if the weight systethmatches then, : = r: ando; = 0.

COROLLARY 2. (Moduli space for Gibbs state$he correspondence betweenand u
given in Corollary 1 gives a natural one-to-one correspondence betwéddeHGibbs
states and Klder scaling functions on the dual spad which satisfy the matching
condition (3).

3. Proof of Theorem 1 and Corollary 1
Consider a Hdlder weight systend with pressureP. We omit the proof of the following
lemma because it closely follows that & Lemma 3.1].

LEMMA 1. There is a positive decreasing continuous functiomn [0, oo] with the

following properties:

() the sumsZ, = Y - k(£(C)L(C)e™©)s (sum over all cylinders”) converge for
s > P and diverge fos = P; and

(i) forall ¢ > Othereis ayp(¢) > Osuchthath=¢ < k(rAy)/k(y) < 1whenevei > 1
and0 < Ay < yop(e).

Proof of Theorem 1First, consider the sum, = Y- k(£(C))¢(C)e*"(©) where the sum
is over all cylindersC andk is the function given by Lemma 1. As we have seen above,
Zs < oo fors > P andZ, diverges ifs = P. We denotek(¢(C))¢(C) by £(C) and
£(C)e™"(©) by £,(C).

Note that the condition Lemma 1(ii) dnand the fact that( fC) = J,(C)-£(C) implies
thatforalle > O, if J,(C) > 1thenJ,(C)™¢ < k((fC))/k((C)) <landif/,(C) <1
then 1 < k(¢(fC))/k(C)) < J¢(C)~¢ provided maxl(C), £(fC)} < yo(e). Since
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J¢(C) is bounded away from 0 angb uniformly in C we deduce that for all > 0,

iffc) € 1£e)J(C) )

L(C)

provided¢(C) is sufficiently small. Similarly, one deduces that

E(mC)
1+ C 6
70 e (Lt ()t (6)

provided¢(C) is sufficiently small.

Fors > P let v, and v} be the probability measures o and ®* defined by
v = ZoY o £s(C)8, and v = Z;71 Yeor, £5(C)8s where s, and 8; are,
respectively, the Dirac measurescandé.

Now since® and®* are compact metric spaces there exist sequence® ands; > 0
converging to P a5 — oo so that the sequencg (respectivelyw?,) converges weakly to
a Borel probability measuneon © (respectivelyw* on ©*). SlnceZ andZ,+ diverge as
i — oo, v andv* are respectively concentrated Brandx*. Thusv andv* respectwely,
define measures an andx* which we also denote by andv*.

If wis a finite word, consider the cylindet,, in ¥ and also the subs&,, in ®*
consisting of all finite and infinite right-handed words agreeing withWe have

V() = 1(0y) & v, (Oy) = Z;1 Y E,(C)
CCZy

where the sum is over all cylindeiS contained inX,, and with the approximation
converging as — oo. Therefore, by (6), foe > 0

v(fXy) _ im ZDCwa Zs,-(D) _ jim chzu s,(f )

= _ € (1te)Jo(Tw)e’
V(Zy) =00 ZCCEwES,'(C) =0 ZCCEu SI(C)

providedthat(X,,) is sufficiently small. This implies thatthe Jacobianaftx mj‘;ocn
isJ,(x) =dwo f)/dv = lim,_ o Je(Cp)e’. Since this is l8lder continuous, we obtain
that if X, is ann-cylinder then

v(fZw)
V()

€ L+ 0@ Je(Zw)e’, 7

for some 0< 6 < 1. Thus, the weights, (Z,) = v(Z,,) form a Hilder weight system.

If w is a word consider the cylindét;, in ©* and also the subseét? in ©* consisting
of all admissible backward finite and infinite paths agreeing wittWe have

VIER) =IO, R (@) = 250 Y Ep(©) =2 Y 6 (0)
' il ect<s>u) >z

whereC — ¥,, means thaf*C = ¥,, for somek > 0 with the approximation marked
converging as — oo. The first sum in this equation is over all cylind€r$ contained in
or equal tox} and the second equals this because by duality(1)c =} if and only if
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fkc = =,,. Therefore, by construction of, we have that for alf > 0,

VEL) o Zrte=ms, b (©)
VRER)  ime Y ey, £ (O)
. kC= yf_*(mC)

= lim 2 rre=s, g € (Lt 6)o(Ty) Te”,

i—00 Zf‘\'C:Ew ZSI,*(C)

provided that(X,,) is sufficiently small. This implies that the Jacobiarvéfis J,«(§) =
d(v* o fy)/dv* = o¢(§)"1e”. Since this is t8lder continuous, we obtain that the weights
L(XF) = v*(X}) form a Holder weight system and indeed 3if, is ann-cylinder,

V(e (X))
VE(ZE)

€ (L+ 00" (Dy) tel, (8)

forsome 0< 6 < 1.
Now we consider the uniqueness wofand v*. Suppose that’ is another measure
satisfying (7). Then, iCC is ann-cylinder,

V(©) _ VIO VIO V(O gy pgnyy VSO

v(C)  V(fC) v(fC) v(C) v(fC)
because/(fC)/v'(C) = (1 £ O@))(w(fC)/v(C)) by (7). Thus ifé = (§,) € =*
whereég, is ann-cylinder andJ, ,(§) = lim,— o v'(§)/v(§,), the limit is achieved

exponentially fast and, ,, is H6lder continuous o *. Also, since

oo (f8) V(fE)  v(En)
“vLYASTS 1+ 9” . .
@ AEOOD e e

Jy v (fsE) = Jyy(§),1.e. Jy, IS fe-invariant. Therefore, it is constant on a dense set of
¥*, for example the full backward orbit of a single point. Since it @d€ir continuous it
must be constant everywhere and therefore equal to one everywherev Ehwsandv
is the unique measure satisfying (7). It follows that lim\ p vs. A similar argument
shows thab™ is the unique measure satisfying (8) arid= limg p v}

By the properties of the weight functidrand by (7) for allz-cylindersC we get

el+0®"),

v(C) _ v(f1C) n—1 v(f-jC) g(fj-l-lc) w(f1C) n—1 .

j=0
9)
Thus, the ratios (C)/£(C)e~"F are uniformly bounded away from 0 and. Similarly as

above, using (8) instead of (7), we obtain that the ratig€*)/£(C)e™" are uniformly
bounded away from 0 ansb. Therefore,

o0
lim 3" 6(C)e™ % > ¢1 lim 3" v(C)e O > 5 lim Y e
sN\P ; SN\ P ; S\ P ’;

diverges ak = P. The first sum is over all cylindesG.
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Therefore, since andvx are the unique probability measures satisfying respectively
(7) and (8), we deduce that = limy p p; andv® = lims p p; Wherep, andp; are
defined as); andv; above, but withk = 1. For all cylindersC andD, it follows that

VO _ S cree UC)e s
V(D) NP Y pyep (D)enP)s
which ends the proof of the first assertion of this theorem.

From now on in this proof we assume that the weight funciomatches. In this
casezcnccE(Cn)/ ZDHCcE(Dn,l) e (1 £ O®M) if the first and second sums
are, respectively, over all-cylinders and all(n — 1)-cylinders contained irC. Thus
> ¢, £(Cy) = O(1) and consequently” . £(C)e ™5 = O(3_2,e™") converges for
everys > 0 and diverges at = 0. This implies thatP = 0. Furthermore, we obtain that

re(C:D)ye (1t (’)(9”))% (11)
whereC and D are contained in a commancylinder. This implies (4).
For all cylinderz,,, we have the fact that

VETIEE) | pR(TYBE) | upeciptoes, (D) MPP

= r¢(C : D), (10)

V*(Z) ps(X5) > fkc=x, L(C)e™O)s
with the approximation converging as™, 0. Since the ratiog(C)/¢(mC) converge

exponentially fast along backward orbits there are continuous functi@ns and t2(s)
which converge to one as\ 0 such that for all cylinderx,,,

Z”1D=C:f"’C=2w e(D)e*n(D)s
kacz):w £(C)e—n(C)s

Thus we deduce that*(f,*C*) = v*(C*) for all cylinders and hence the fact that
v* is fe-invariant. It follows from this that if we defing on £ by u(C) = v*(C*) for
all cylindersC of X thenp is a f-invariant probability measure oB. The fact that it is
a measure follows from thé,-invariance ofv* and the fact that it igf-invariant follows
from the fact thav™* is a probability measure.

Now we consider the ratiog (C1)/u(C2) = v*(Cy)/v*(C3) whereC1 and C; are
cylinders and”; is contained inC2. Then there exists > 0 such thain” C1 = Ca. In this
case,f, C] = C5. Thus the ratio is approximated by

Zm’;C*=CI e(C)g_n(C)S _ kaC:Cl E(C)e—n(C)s
Zml,ﬁc*:f*rci UC)e™Cs 37 ko mr ey LC)e(O)s

with convergence as \, 0. To each summané(C) of the top sum there corresponds
a summand/(C’) of the bottom sum such that"C = C’, and the pair(C, C’) is
mapped by some power of onto the pair(Cy, C2). It follows that ¢(C)/£(C’) €
(1 £ O@O™CD))¢(C1)/L(C2) where the constant of proportionality in th@ term is
independent of”, C’, C; andC». Thus we deduce that the last term foe= 0 of (12)
is in the interval1 4+ O(0"))£(C1)/£(C2). We have proved that if2 is ann-cylinder then

n(C1) £(Cy)
1+ 00" . 13
w(Co <Py, (13)

71(5) < < 12(5).

12)
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Theorem 1(i) and (ii) follow from this.
It remains to prove Theorem 1(iii), the ratio decomposition. To do this recall the
meaning ofC(C,) given in §2.3. IfC, is a primary cylinder leC,(C,) denote the set
of n-cylindersC such thatf"~1C = C,. LetC, be the primary cylinder containing,,.
We have

[I=

w(Ey(Cr)) %

n(Zw) (e

cucCric,y  H(Cn)
L(Zy(Ch))
£(Cy)

u™

U*(C:)%/ re.s(Zw)v* (d§)
Cr€Ca(Cp) ¢

asn — oo. The equality markeé: follows from thef-invariance ofu and also by duality,

that markedé from (13) and the convergence from property (ii) of the potential, from the
definition ofr¢ (X)) in §2.3 and the comments in Remark 1.

The final point is to check uniqueness of invariant measures satisfying either (i), (ii)
or (iii). Since (i) implies (ii) it suffices to check (ii) to verify both. However, 4f is
another measure satisfying the condition in part (ii) then one can prove thaj: in a
similar fashion to the proof of the uniquenessvodbove, usingp* andv*, the fact that
f«C* = (mC)*, and condition (ii) of this theorem.

Suppose thagp is a measure satisfying the ratio decomposition (iii) of the theorem and
let p* denote its dual. First, we note thatéf,; is ann + 1-cylinder ands, = f&,+1
thenre(C(&,+1) : &nv1) = (L £ OO")re(C(&,) : &,). Moreover, since is f-invariant,
ZE"*H p*(&,,1) = p*(&;) where the sum is over &/ ; contained i, or equivalently
over all f-preimages, 1 of &,. Thus

D, re(CEn) tEDp En) = AL 0O Y re(CEn) : E)p™ )
(n+1)-cyls&,4+1 n-cyls&,
This with condition (iii) proves Remark 3.

Therefore, ifC and D are cylinders of contained in the cylindeE andé € ¥* has

E C & then, denoting b, (E) the set ofi-cylindersC’ such thatf”~1C’ containsk,

p(C) _ Xprecym "(CE) : £)p* ()

p(D) e cor e (DEn) t En)p* En)
 Xeeco i 7e(CED : DEDIF(DE) : E0)p* )
B Y e e, Tt (DEn) : En)p* (En)

£(C)
1+ 00")—— 14
€ (1+00") D) (14)
because HCED) “0)
CE):DE)) = —— e (1+00")——
re(C6n) : D(n)) 1D &) ( ( ))E(D)
sinceC andD are in then-cylinder E. Thus ifé = (§,)7° , € * then
LG ¢ (14 0@ )
p(mé&,)
by (14) and, consequently, like u, satisfies condition (ii) of the theorem. But we have
already shown that there is only one measure satisfying this. Heacga. |
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Proof of Corollary 1.First, we apply Theorem 1 to the weight systénto obtain the
measure. Then we consider the new weight systépiC) = v(C). By Theorem 1 this

is Holder and clearly, since is a probability measure, it satisfies the matching condition.
Now apply Theorem 1 to this to obtain measuvrgsv] andu = w1 (corresponding to,

v* andu of the theorem). It follows immediately from Theorem 1 thats the required

Gibbs state. As is well known, singehas a Hblder Jacobian it is ergodic. Therefore, it is

the unique invariant measure in its measure class and hence the unique invariant measure
for which the ratiog«(C)/£(C)e™"©* are uniformly bounded away from 0 and. O
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