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Abstract. We give an elementary proof of existence and uniqueness of Gibbs states for
Hölder weight systems on subshifts of finite type. This uses a notion of duality for such
subshifts. The approach of Paterson [2] is used to construct a measure with a prescribed
Jacobian and the duality is used to produce an invariant measure from this

1. Introduction
In this paper we give a novel and elementary proof of the existence and uniqueness of
Gibbs states for H¨older weight systems. A bonus of this approach is that it leads directly
to a decomposition of the measure as an integral of an explicitly given canonical ratio
function with respect to a measure which is dual to the Gibbs state. See the corollary to
Theorem 1 for the precise statement and Definition 3 for the definition of the canonical
ratio function which corresponds to the conditional measures along backward paths.

The novelty of our approach is to use a notion of duality and to combine it with the
approach to constructing measures pioneered by Paterson [2] in the context of the limit
sets of Fuchsian groups and used by Sullivan [4] to construct conformal measures for Julia
sets. This duality plays the central role in our approach through the following observations:
(i) given a Hölder functionJ on the shift space6 (or, equivalently, a H¨older weight system)
there is a unique measureν on 6 whose Jacobian isJ ; (ii) the weight system determined
by ν determines a unique measureµ∗ on the dual space to6 which is invariant under the
dual mappingf∗ on 6∗; and (iii) the measureµ dual toµ∗ is the required shift-invariant
Gibbs state forJ and its Jacobian is explicitly given by our construction because it is
the reciprocal of the scaling function ofµ∗. The Jacobian of the measureµ∗ provides a
nice characterization of the Gibbs state and we deduce that there is a natural one-to-one

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 09 Jun 2009 IP address: 137.205.202.8

534 A. A. Pinto and D. A. Rand

correspondence between the H¨older Gibbs states on6 and the H¨older functionsσ(ξ) on
6∗ which satisfy the simple matching condition given below in Definition 2.

The ratio decomposition is particularly useful in certain situations and can be used
to link certain Gibbs states with smooth structures. For example, in [3] it is used to
construct allC1+ Anosov diffeomorphisms and hyperbolic attractors on surfaces that have
an invariant measure that is absolutely continuous with respect to the two-dimensional
Lebesgue measure (in the case of Anosov systems) or the Hausdorff measure of the
attractor. In particular, for such systems, it allows us to introduce a notion of duality
between the induced affine structures on the stable and unstable foliations. For the Anosov
systems the SRB measure for the system is absolutely continuous if and only if one of
these structures is the dual of the other.

2. Gibbs states and statement of main theorem
Let us recall the definition of a one-sided subshift of finite type6 = 6A. The elements of
6 are all the infinite right-handed wordsw = w0w1 . . . in the symbols 1, . . . , k such that
for all i ≥ 0, Awiwi+1 = 1. HereA = (Aij ) is any matrix with entries 0 and 1 such that

An has all entries positive for somen ≥ 1. We writew
n∼ w′ if the two wordsw,w′ ∈ 6

agree on their firstn entries. The metricd on 6 is given byd(w,w′) = 2−n if n ≥ 0

is the largest such thatw
n∼ w′. Together with this metric6 is a compact metric space.

The shiftf : 6 → 6 is the mapping which sendsw0w1 . . . to w1w2 . . . . It is a local
homeomorphism.

An n-cylinder6w, w ∈ 6n, consists of all those wordsw′ in 6 such thatw
n∼ w′. If C

is ann-cylinder then we definemC to be the(n − 1)-cylinder containingC and denote by
n(C) the depthn of C. A 1-cylinder is also called aprimary cylinder.

Together with6 we will consider the augmented space2 which consists of both the
infinite right-handed words in6 and their finite subwords. Let2fin denote the subset of
finite words. Then we can identify2fin with the set of cylinders in6 via the association
w ↔ 6w. This set has two natural oriented tree structures:
(a) 2m

fin in which all the oriented edges connect a cylinderC to mC; and

(b) 2
f

fin in which all the oriented edges are from the cylinderC to f C.
An admissible backward path in either of these trees is a finite or infinite sequence{Cj } of
cylinders indexed by eitherj = 0, . . . , n or j = 0, 1, . . . and such thatC0 is a primary
cylinder and such that there is an oriented edge fromCj to Cj−1 for all j > 0. Clearly the
infinite paths in2m

fin correspond to points of6.

Definition 1. The dual6∗ of 6 is the set of all infinite admissible backward paths in
2

f

fin together with the metric defined as follows:d∗({Cj }, {C′
j }) = 2−n if Cj = C′

j for
0 < j < n andCn 6= C′

n. The dual2∗ of 2 is defined similarly except that both finite and

infinite admissible backward paths in2f

fin are used.

Note that one can identify the elements of6∗ with those infinite left-handed words
. . . w1w0 in the symbols 1, . . . , k such thatAwiwi−1 = 1.

We note that for both6 and6∗ a cylinder is given by prescribing a finite admissible
backward path{Cj }n−1

j=0 (respectively in2m
fin and in2

f

fin), and it is then equal to the set
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of all infinite admissible backward paths{Dj } such thatDj = Cj for 0 < j < n. Since
this finite path is determined byCn−1 there is a one-to-one correspondence between the
cylinders of6 and6∗. Specifically, this is given as follows: ifC is ann-cylinder of6
then the cylinderC∗ of 6∗ consists of all infinite admissible backward paths{Cj }∞j=0 in

2
f

fin such thatCn−1 = C. We also define duals tom andf : if C∗ = {Cj }n−1
j=0 is ann-

cylinder of6∗, m∗C∗ is the(n − 1)-cylinder{fCj }n−1
j=1 of 6∗ containingC∗ andf∗C∗ is

the(n − 1)-cylinder{mCj }n−1
j=1. Note how these translate under duality:

m∗C∗ = (f C)∗ and f∗C∗ = (mC)∗. (1)

2.1. Notation. Throughout, if φ(n) is some quantity depending uponn ∈ N and
L ∈ R, we use the notationφ(n) ∈ (1 ± O(νn))L to mean that there exists a constant
c > 0 depending only upon explicitly mentioned quantities such that for alln ≥ 0,
1 − cνn < φ(n)/L < 1 + cνn.

2.2. The potential. Now consider a functioǹ defined on2fin and with the following
properties: there exists 0< ω < ω′ < 1 such that ifC is ann-cylinder then

O(ωn) < `(C) < O(ω′n) (2)

and there exists 0< ν < 1 such that the following two equivalent conditions hold:
(i) if C is ann-cylinder withn > 0 thenσ`(C) = `(C)/`(mC) converges exponentially

along backward orbits, i.e.σ`(C) ∈ (1 ±O(νn))σ`(f C);
(ii) if C is ann-cylinder withn > 0 thenJ`(C) = `(fC)/`(C) converges exponentially

along nested sequences, i.e.J`(C) ∈ (1 ±O(νn))J`(mC).
We leave the proof of the equivalence to the reader, but note that it comes from the relation

σ`(f C)

σ`(C)
= J`(C)

J`(mC)
.

It also follows from these conditions that the limits defining the following functionsσ`

andJ` are reached exponentially fast and that consequently these functions are H¨older
continuous: ifξ = {Cn}∞n=0 ∈ 6∗ whereCn is ann-cylinder andfCn+1 = Cn and if
x = ⋂

n≥0 Dn whereDn is an-cylinder withmDn+1 = Dn then

σ`(ξ) = lim
n→∞ σ`(Cn) and J`(x) = lim

n→∞ J`(Dn).

Definition 2. Such a system of weights̀is called aHölder weight function. We callσ` the
scaling functionof ` andJ` theJacobian. The Hölder weight function is said to satisfy the
matching conditionor tomatchif for all ξ ∈ 6∗,

∑
f∗ξ ′=ξ

σ`(ξ
′) = 1. (3)

The matching condition is equivalent to the following: there is 0< θ < 1 such that for
all n ≥ 0 and alln-cylindersC,

∑
σ`(C

′) = 1 ± O(θn) (sum over(n + 1)-cylindersC′
contained inC).
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Consider the sumsZn
s = ∑

C `(C)e−sn where the sum is over alln-cylindersC.
From (2), fors > 0 sufficiently largeZn

s is bounded away from infinity uniformly in
n ≥ 0. On the other hand, ifs is sufficiently negative thenZn

s diverges to∞ asn → ∞.
Since if this divergence occurs for a particular value ofs then it occurs for all smaller
values, there is a critical valueP given byP = inf{s : Zn

s uniformly bounded inn}. This
is called thepressureof `. It corresponds to the usual definition [1].

2.3. The ratio structure. Before proceeding we need to introduce some notation.
Consider a cylinderC in 6 and letC1 denote the primary cylinder containingC. If Cn

is ann-cylinder such thatf n−1Cn = C1 then byC(Cn) we denote(f n−1|Cn)
−1(C).

Definition 3. Let ` be a Hölder weight system.

(i) We define the ratior`(C : D) between two cylindersC andD by

r`(C : D) = lim
s↘P

∑
C ′⊂C `(C′)e−n(C ′)s∑
D′⊂D `(D′)e−n(D′)s

where the sums are respectively over all cylinders contained in or equal toC andD.
For s > P both numerator and denominator are finite and positive. As part of the
proof of the following theorem we will show that the limit ass ↘ P is finite and
positive.

(ii) If ξ = (ξn) ∈ 6∗ let σ(ξ) = limn→∞ r`(ξn : mξn).
(iii) If ξ ∈ 6∗ and C is contained in the primary cylinderξ0 then definer`,ξ (C) =

limn→∞ r`(C(ξn) : ξn).

The limits in (i), (ii) and (iii) exist and are finite and positive (use (9) and (10) to deduce
(i), and use the fact that̀ν(C) = ν(C) form a matching H¨older weight system to deduce
(ii) and (iii) whereν is the probability measure constructed in Theorem 1). From (9), (10)
and (11), we also get bounds forr`(C : D) as presented in the following remark.

Remark 1.Suppose thatC is anm-cylinder contained in then-cylinderD, then

r`(C : D) = O(e−(m−n)P `(C)/`(D)).

If ` satisfies the matching condition thenP = 0 and for some 0< θ < 1,

r`(C : D) ∈ (1 ±O(θn))
`(C)

`(D)
(4)

wheneverC andD are contained in a commonn-cylinder. Therefore, for allξ = {ξn}∞n=0 ∈
6∗,

σ(ξ) = σ`(ξ) = lim
n→∞ `(ξn)/`(mξn) andr`,ξ (C) = lim

n→∞ `(C(ξn))/`(ξn).

Clearly in these cases the limits are reached exponentially fast andσ`(ξ) andr`,ξ (C) are
Hölder inξ .
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2.4. The Gibbs measure and its dual.

Definition 4. Suppose thatµ is af -invariant probability measure on6 andν af∗-invariant
probability measure on6∗. Then the dualsµ∗ andν∗ respectively toµ and ν are the
probability measures defined on6∗ and6 by µ∗(C∗) = µ(C) andν∗(C∗) = ν(C).

Remark 2.In the above definition we use the fact thatµ∗ is a probability measure
(respectivelyf∗-invariant) if and only if µ is f -invariant (respectively a probability
measure). Similarly forν. This is becausefC = D (respectivelyf∗C∗ = D∗) if and
only if m∗C∗ = D∗ (respectivelymC = D).

THEOREM 1. There exist a unique pair of Borel probability measuresν on 6 andν∗ on
6∗ with the following property for some0 < θ < 1: if C is ann-cylinder of6,

ν(f C)

ν(C)
∈ (1 ±O(νn))Jl(C)eP ,

ν∗(f∗C∗)
ν∗(C∗)

∈ (1 ±O(θn))σ−1
` (C∗)eP

and, ifC andD are two cylinders, thenν(C)/ν(D) = r`(C : D). Moreover, the weights
`ν(C) = ν(C) form a matching Ḧolder weight system andσ`ν = σ .

If the weight functioǹ satisfies the matching condition thenν∗ is f∗-invariant and its
dual measureµ satisfies the following equivalent conditions:
(i) if C andD are two cylinders contained in the samen-cylinder thenµ(D)/µ(C) ∈

(1 ±O(θn))`(D)/`(C);
(ii) if C is ann-cylinder andξ = (ξi) ∈ 6∗ hasξn = C then

µ(C)/µ(mC) ∈ (1 ±O(θn))σ`(ξ);
(iii) (ratio decomposition) ifC is ann-cylinder andC0 is the primary cylinder containing

C then

µ(C) =
∫

C∗
0

r`,ξ (C)µ∗ (dξ).

Hereµ∗ is the dual measure toµ.
Moreover, for each of the conditions (i), (ii) and (iii),µ is the unique measure with the
given property.

If Jµ is the Jacobiand(µ B f )/dµ and x = ⋂
n≥0 Cn ∈ 6 where Cn is an n-

cylinder with mCn+1 = Cn then Jµ(x) = limn→∞ ν∗(m∗C∗
n)/ν∗(C∗

n). The Jacobian
Jν∗(ξ) = d(ν∗ B f )/dν∗(ξ) is σ−1

` (ξ).

Remark 3.As part of the proof of the theorem we will prove that, if the H¨older weight
system` matches and ifµ is any f -invariant probability measure satisfying the ratio
decomposition (iii), then for all cylindersC of 6,∑

r`,ξD (C)µ∗(D∗) ∈ (1 ±O(νn))µ(C)

where the sum is over alln-cylinders D such thatC ⊂ f n−1D, and for eachD,
ξD = {ξj }∞j=0 is an infinite backward path with the property thatξn = D.

COROLLARY 1. (Existence and uniqueness of Gibbs states)There exist a unique pair of
Borel probability measuresµ on 6 andµ∗ on 6∗ with the following properties for some
0 < θ < 1:
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(i) µ andµ∗ are dual to each other and respectivelyf -invariant andf∗-invariant;
(ii) if C andD are two cylinders contained in the samen-cylinder then

µ(C)/µ(D) ∈ (1 ±O(θn))r`(C : D);
(iii) (ratio decomposition) ifC is ann-cylinder andC0 is the primary cylinder containing

C then

µ(C) =
∫

C∗
0

r`,ξ (C)µ∗ (dx).

Either of the conditions (ii) and (iii) characterize the measureµ, i.e. it is the unique
measure with the given property.

If Jµ is the Jacobiand(µBf )/dµ andx = ⋂
n≥0 Cn ∈ 6 whereCn is ann-cylinder with

mCn+1 = Cn thenJµ(x) = limn→∞ µ∗(m∗C∗
n)/µ∗(C∗

n). Finally, d(µ∗Bf∗)/dµ∗ = σ−1.
The measureµ is the Gibbs state for the potentialJ` in the sense of [1], i.e.

it is the uniquef -invariant probability measure which for all cylindersC the ratios
µ(C)/`(C)e−n(C)P are uniformly bounded away from0 and∞.

Remark 4.Note that the ratiosr`,ξ andrξ can be different if the weights do not match, and
the logarithmic scaling functions logσ` and logσ differ at most by a coboundary, i.e. there
is a Hölder continuous functionu : 6∗ → R such that log(σ`(ξ)) = log(σ (ξ))+u(f∗ξ)−
u(ξ). However, if the weight system̀matches thenr`,ξ = rξ andσ` = σ .

COROLLARY 2. (Moduli space for Gibbs states)The correspondence betweenσ and µ

given in Corollary 1 gives a natural one-to-one correspondence between Hölder Gibbs
states and Ḧolder scaling functions on the dual space6∗ which satisfy the matching
condition (3).

3. Proof of Theorem 1 and Corollary 1
Consider a H¨older weight system̀ with pressureP . We omit the proof of the following
lemma because it closely follows that of [2, Lemma 3.1].

LEMMA 1. There is a positive decreasing continuous functionk on [0,∞] with the
following properties:
(i) the sumsZs = ∑

C k(`(C))`(C)e−n(C)s (sum over all cylindersC) converge for
s > P and diverge fors = P ; and

(ii) for all ε > 0 there is ay0(ε) > 0 such thatλ−ε ≤ k(λy)/k(y) ≤ 1 wheneverλ > 1
and0 < λy < y0(ε).

Proof of Theorem 1.First, consider the sumZs = ∑
C k(`(C))`(C)e−sn(C) where the sum

is over all cylindersC andk is the function given by Lemma 1. As we have seen above,
Zs < ∞ for s > P andZs diverges ifs = P . We denotek(`(C))`(C) by ˜̀(C) and
˜̀(C)e−sn(C) by ˜̀

s (C).
Note that the condition Lemma 1(ii) onk and the fact that̀(f C) = J`(C)·`(C) implies

that for allε > 0, if J`(C) ≥ 1 thenJ`(C)−ε ≤ k(`(fC))/k(`(C)) ≤ 1 and ifJ`(C) < 1
then 1 ≤ k(`(fC))/k(`(C)) ≤ J`(C)−ε provided max{`(C), `(f C)} < y0(ε). Since
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J`(C) is bounded away from 0 and∞ uniformly in C we deduce that for allε > 0,

˜̀(f C)

˜̀(C)
∈ (1 ± ε)J`(C) (5)

provided`(C) is sufficiently small. Similarly, one deduces that

˜̀(mC)

˜̀(C)
∈ (1 ± ε)σ`(C)−1 (6)

provided`(C) is sufficiently small.
For s > P let νs and ν∗

s be the probability measures on2 and 2∗ defined by
νs = Zs

−1 ∑
x∈2fin

˜̀
s (C)δx and ν∗

s = Zs
−1 ∑

ξ∈2∗
fin

˜̀
s(C)δξ where δx and δξ are,

respectively, the Dirac measures atx andξ .
Now since2 and2∗ are compact metric spaces there exist sequencessi > 0 ands∗

i > 0
converging to P asi → ∞ so that the sequenceνsi (respectivelyν∗

s∗
i
) converges weakly to

a Borel probability measureν on2 (respectivelyν∗ on2∗). SinceZsi andZs∗
i

diverge as
i → ∞, ν andν∗ are respectively concentrated on6 and6∗. Thusν andν∗, respectively,
define measures on6 and6∗ which we also denote byν andν∗.

If w is a finite word, consider the cylinder6w in 6 and also the subset2w in 2∗
consisting of all finite and infinite right-handed words agreeing withw. We have

ν(6w) = ν(2w) ≈ νsi (2w) = Z−1
si

∑
C⊂6w

˜̀
si (C)

where the sum is over all cylindersC contained in6w and with the approximation
converging asi → ∞. Therefore, by (6), forε > 0

ν(f 6w)

ν(6w)
= lim

i→∞

∑
D⊂f 6w

˜̀
si (D)∑

C⊂6w
˜̀
si (C)

= lim
i→∞

∑
C⊂6w

˜̀
si (fC)∑

C⊂6w
˜̀
si (C)

∈ (1 ± ε)J`(6w)eP

provided that̀ (6w) is sufficiently small. This implies that the Jacobian ofν atx ∈ ∩∞
j=0Cn

is Jν(x) = d(ν B f )/dν = limn→∞ J`(Cn)e
P . Since this is H¨older continuous, we obtain

that if 6w is ann-cylinder then

ν(f6w)

ν(6w)
∈ (1 ±O(θn))J`(6w)eP , (7)

for some 0< θ < 1. Thus, the weights̀ν(6w) = ν(6w) form a Hölder weight system.
If w is a word consider the cylinder6∗

w in 6∗ and also the subset2∗
w in 2∗ consisting

of all admissible backward finite and infinite paths agreeing withw. We have

ν∗(6∗
w) = ν∗(2∗

w) ≈ ν∗
s∗
i
(2∗

w) = Z−1
s∗
i

∑
C∗⊆6∗

w

˜̀
s∗
i
(C) = Z−1

s∗
i

∑
C→6w

˜̀
s∗
i
(C)

whereC → 6w means thatf kC = 6w for somek ≥ 0 with the approximation marked≈
converging asi → ∞. The first sum in this equation is over all cylindersC∗ contained in
or equal to6∗

w and the second equals this because by duality (1),C∗ ⊆ 6∗
w if and only if
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f kC = 6w. Therefore, by construction ofσ`, we have that for allε > 0,

ν∗(f∗6∗
w)

ν∗(6∗
w)

= lim
i→∞

∑
f kC=m6w

˜̀
s∗
i
(C)∑

f kC=6w
˜̀
s∗
i
(C)

= lim
i→∞

∑
f kC=6w

˜̀
s∗
i
(mC)∑

f kC=6w
˜̀
s∗
i
(C)

∈ (1 ± ε)σ`(6w)−1eP ,

provided that̀ (6w) is sufficiently small. This implies that the Jacobian ofν∗ is Jν∗(ξ) =
d(ν∗ B f∗)/dν∗ = σ`(ξ)−1eP . Since this is H¨older continuous, we obtain that the weights
`∗(6∗

w) = ν∗(6∗
w) form a Hölder weight system and indeed, if6w is ann-cylinder,

ν∗(f∗(6∗
w))

ν∗(6∗
w)

∈ (1 ±O(θn))σ`(6w)−1eP , (8)

for some 0< θ < 1.
Now we consider the uniqueness ofν and ν∗. Suppose thatν′ is another measure

satisfying (7). Then, ifC is ann-cylinder,

ν′(C)

ν(C)
= ν′(C)

ν′(f C)
· ν′(fC)

ν(f C)
· ν(f C)

ν(C)
∈ (1 ±O(θn))

ν′(fC)

ν(f C)

becauseν′(f C)/ν′(C) = (1 ± O(θn))(ν(fC)/ν(C)) by (7). Thus ifξ = (ξn) ∈ 6∗
whereξn is an n-cylinder andJν ′,ν(ξ) = limn→∞ ν′(ξn)/ν(ξn), the limit is achieved
exponentially fast andJν ′,ν is Hölder continuous on6∗. Also, since

Jν ′,ν(f∗ξ)

Jν ′,ν(ξ)
∈ (1 ±O(θn)) · ν′(f ξn)

ν′(ξn)
· ν(ξn)

ν(f ξn)
∈ 1 ±O(θn),

Jν ′,ν(f∗ξ) = Jν ′,ν(ξ), i.e.Jν ′,ν is f∗-invariant. Therefore, it is constant on a dense set of
6∗, for example the full backward orbit of a single point. Since it is H¨older continuous it
must be constant everywhere and therefore equal to one everywhere. Thusν = ν′ andν

is the unique measure satisfying (7). It follows thatν = lims↘P νs . A similar argument
shows thatν∗ is the unique measure satisfying (8) andν∗ = lims↘P ν∗

s .
By the properties of the weight functioǹand by (7) for alln-cylindersC we get

ν(C)

`(C)e−nP
= ν(f nC)

`(f nC)
·
n−1∏
j=0

ν(f jC)

ν(f j+1C)e−P
· `(f j+1C)

`(f jC)
∈ ν(f nC)

`(f nC)

n−1∏
j=0

(1 ±O(θj )).

(9)

Thus, the ratiosν(C)/`(C)e−nP are uniformly bounded away from 0 and∞. Similarly as
above, using (8) instead of (7), we obtain that the ratiosν∗(C∗)/`(C)e−nP are uniformly
bounded away from 0 and∞. Therefore,

lim
s↘P

∑
C

`(C)e−n(C)s ≥ c1 lim
s↘P

∑
C

ν(C)e−n(C)(P−s) ≥ c2 lim
s↘P

∞∑
n=1

e−n(P−s)

diverges ats = P . The first sum is over all cylindersC.
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Therefore, sinceν andν∗ are the unique probability measures satisfying respectively
(7) and (8), we deduce thatν = lims↘P ρs andν∗ = lims↘P ρ∗

s whereρs andρ∗
s are

defined asνs andν∗
s above, but withk ≡ 1. For all cylindersC andD, it follows that

ν(C)

ν(D)
= lim

s↘P

∑
C ′⊂C `(C′)e−n(C ′)s∑
D′⊂D `(D′)e−n(D′)s = r`(C : D), (10)

which ends the proof of the first assertion of this theorem.
From now on in this proof we assume that the weight function` matches. In this

case
∑

Cn⊂C `(Cn)/
∑

Dn−1⊂C `(Dn−1) ∈ (1 ± O(θn)) if the first and second sums
are, respectively, over alln-cylinders and all(n − 1)-cylinders contained inC. Thus∑

Cn
`(Cn) = O(1) and consequently

∑
C `(C)e−n(C)s = O(

∑∞
n=0 e−ns) converges for

everys > 0 and diverges ats = 0. This implies thatP = 0. Furthermore, we obtain that

r`(C : D) ∈ (1 ±O(θn))
`(C)

`(D)
(11)

whereC andD are contained in a commonn-cylinder. This implies (4).
For all cylinder6w, we have the fact that

ν∗(f −1∗ 6∗
w)

ν∗(6∗
w)

≈ ρ∗
s (f −1∗ 6∗

w)

ρ∗
s (6∗

w)
=

∑
mD=C:f kC=6w

`(D)e−n(D)s

∑
f kC=6w

`(C)e−n(C)s

with the approximation converging ass ↘ 0. Since the ratios̀(C)/`(mC) converge
exponentially fast along backward orbits there are continuous functionsτ1(s) andτ2(s)

which converge to one ass ↘ 0 such that for all cylinders6w,

τ1(s) <

∑
mD=C:f kC=6w

`(D)e−n(D)s

∑
f kC=6w

`(C)e−n(C)s
< τ2(s).

Thus we deduce thatν∗(f −1∗ C∗) = ν∗(C∗) for all cylinders and hence the fact that
ν∗ is f∗-invariant. It follows from this that if we defineµ on 6 by µ(C) = ν∗(C∗) for
all cylindersC of 6 thenµ is af -invariant probability measure on6. The fact that it is
a measure follows from thef∗-invariance ofν∗ and the fact that it isf -invariant follows
from the fact thatν∗ is a probability measure.

Now we consider the ratiosµ(C1)/µ(C2) = ν∗(C∗
1)/ν∗(C∗

2) whereC1 and C2 are
cylinders andC1 is contained inC2. Then there existsr ≥ 0 such thatmrC1 = C2. In this
case,f r∗ C∗

1 = C∗
2. Thus the ratio is approximated by∑

mk∗C∗=C∗
1
`(C)e−n(C)s

∑
mk∗C∗=f r∗ C∗

1
`(C)e−n(C)s

=
∑

f kC=C1
`(C)e−n(C)s

∑
f kC=mrC1

`(C)e−n(C)s
(12)

with convergence ass ↘ 0. To each summand̀(C) of the top sum there corresponds
a summand̀ (C′) of the bottom sum such thatmrC = C′, and the pair(C,C′) is
mapped by some power off onto the pair(C1, C2). It follows that `(C)/`(C′) ∈
(1 ± O(θn(C2)))`(C1)/`(C2) where the constant of proportionality in theO term is
independent ofC, C′, C1 andC2. Thus we deduce that the last term fors = 0 of (12)
is in the interval(1±O(θn))`(C1)/`(C2). We have proved that ifC2 is ann-cylinder then

µ(C1)

µ(C2)
∈ (1 ±O(θn))

`(C1)

`(C2)
. (13)
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Theorem 1(i) and (ii) follow from this.
It remains to prove Theorem 1(iii), the ratio decomposition. To do this recall the

meaning ofC(Cn) given in §2.3. IfCp is a primary cylinder letCn(Cp) denote the set
of n-cylindersC such thatf n−1C = Cp. Let Cp be the primary cylinder containing6w.
We have

µ(6w)
1=

∑
Cn∈Cn(Cp)

µ(6w(Cn))

µ(Cn)
ν∗(C∗

n)

2≈
∑

Cn∈Cn(Cp)

`(6w(Cn))

`(Cn)
ν∗(C∗

n) →
∫

C∗
p

r`,ξ (6w)ν∗ (dξ)

asn → ∞. The equality marked
1= follows from thef -invariance ofµ and also by duality,

that marked
2≈ from (13) and the convergence from property (ii) of the potential, from the

definition ofrξ (6w) in §2.3 and the comments in Remark 1.
The final point is to check uniqueness of invariant measures satisfying either (i), (ii)

or (iii). Since (i) implies (ii) it suffices to check (ii) to verify both. However, ifρ∗ is
another measure satisfying the condition in part (ii) then one can prove thatρ = µ in a
similar fashion to the proof of the uniqueness ofν above, usingρ∗ andν∗, the fact that
f∗C∗ = (mC)∗, and condition (ii) of this theorem.

Suppose thatρ is a measure satisfying the ratio decomposition (iii) of the theorem and
let ρ∗ denote its dual. First, we note that ifξn+1 is ann + 1-cylinder andξn = f ξn+1

thenr`(C(ξn+1) : ξn+1) = (1 ± O(θn))r`(C(ξn) : ξn). Moreover, sinceρ is f -invariant,∑
ξ∗
n+1

ρ∗(ξ∗
n+1) = ρ∗(ξ∗

n ) where the sum is over allξ∗
n+1 contained inξ∗

n or equivalently
over allf -preimagesξn+1 of ξn. Thus∑

(n+1)-cyls.ξn+1

r`(C(ξn+1) : ξn+1)ρ
∗(ξn+1) = (1 ±O(θn))

∑
n-cyls.ξn

r`(C(ξn) : ξn)ρ
∗(ξn).

This with condition (iii) proves Remark 3.
Therefore, ifC andD are cylinders of6 contained in the cylinderE andξ ∈ 6∗ has

E ⊂ ξ0 then, denoting byCn(E) the set ofn-cylindersC′ such thatf n−1C′ containsE,

ρ(C)

ρ(D)
≈

∑
ξn∈Cn(E) r`(C(ξn) : ξn)ρ

∗(ξn)∑
ξn∈Cn(E) r`(D(ξn) : ξn)ρ∗(ξn)

=
∑

ξn∈Cn(E) r`(C(ξn) : D(ξn))r`(D(ξn) : ξn)ρ
∗(ξn)∑

ξn∈Cn(E) r`(D(ξn) : ξn)ρ∗(ξn)

∈ (1 ±O(θn))
`(C)

`(D)
(14)

because

r`(C(ξn) : D(ξn)) = `(C(ξn))

`(D(ξn))
∈ (1 ±O(θn))

`(C)

`(D)

sinceC andD are in then-cylinderE. Thus ifξ = (ξn)
∞
n=0 ∈ 6∗ then

ρ(ξn)

ρ(mξn)
∈ (1 ±O(θn))σ`(ξ)

by (14) and, consequently,ρ, like µ, satisfies condition (ii) of the theorem. But we have
already shown that there is only one measure satisfying this. Henceρ = µ. 2
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Proof of Corollary 1.First, we apply Theorem 1 to the weight system` to obtain the
measureν. Then we consider the new weight system`ν(C) = ν(C). By Theorem 1 this
is Hölder and clearly, sinceν is a probability measure, it satisfies the matching condition.
Now apply Theorem 1 to this to obtain measuresν1, ν∗

1 andµ = µ1 (corresponding toν,
ν∗ andµ of the theorem). It follows immediately from Theorem 1 thatµ is the required
Gibbs state. As is well known, sinceµ has a H¨older Jacobian it is ergodic. Therefore, it is
the unique invariant measure in its measure class and hence the unique invariant measure
for which the ratiosµ(C)/`(C)e−n(C)P are uniformly bounded away from 0 and∞. 2
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