

warwick.ac.uk/lib-publications

Original citation:
Bunt, Richard A., Wright, Steven A., Jarvis, Stephen A., Street, Matthew and Ho, Yoon K.
(2016) Predictive evaluation of partitioning algorithms through runtime modelling. In: High
Performance Computing, Data, and Analytics (HiPC'16), Hyderabad, India, 19-22 Dec 2016.
Published in: Proceedings of High Performance Computing, Data, and Analytics (HiPC'16) (In
Press)

Permanent WRAP URL:
http://wrap.warwick.ac.uk/82079

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/82079
mailto:wrap@warwick.ac.uk

Predictive Evaluation of Partitioning Algorithms Through Runtime Modelling

R. A. Bunt, S. A. Wright and S. A. Jarvis
Department of Computer Science,

University of Warwick,
Coventry, United Kingdom

Email: rab@dcs.warwick.ac.uk

Y. K. Ho and M. J. Street
Design Systems Engineering,

Rolls-Royce plc,
Derby, United Kingdom

Abstract—Performance modelling unstructured mesh codes
is a challenging process, due to the difficulty of capturing their
memory access patterns, and their communication patterns at
varying scale. In this paper we first develop extensions to an
existing runtime performance model, aimed at overcoming the
former, which we validate on up to 1,024 cores of a Haswell-
based cluster, using both a geometric partitioning algorithm
and ParMETIS to partition the input deck, with a maximum
absolute runtime error of 12.63% and 11.55% respectively. To
overcome the latter, we develop an application representative of
the mesh partitioning process internal to an unstructured mesh
code. This application is able to generate partitioning data that
is usable with the performance model to produce predicted
application runtimes within 7.31% of those produced using
empirically collected data. We then demonstrate the use of the
performance model by undertaking a predictive comparison
among several partitioning algorithms on up to 30,000 cores.
Additionally, we correctly predict the ineffectiveness of the
geometric partitioning algorithm at 512 and 1024 cores.

Keywords-scientific computing; performance analysis; high
performance computing; modelling; fluid dynamics

I. INTRODUCTION

Supporting high-performance computing (HPC) resources
and applications is an expensive and complicated process.
The rise of petascale computing, and the push towards
exascale computing, has seen an increase not only in the
amount of intra-node parallelism, but also in the complexity
of interactions between hardware components. As a result
it is becoming increasingly difficult to relate the levels of
performance achieved by benchmark suites on small scale
evaluation hardware to that of production codes running on a
complete machine. Many HPC centres are therefore turning
to alternative tools and methodologies (e.g. predictive perfor-
mance modelling [1], [2], hardware simulation [3], [4] and
mini-applications [5], [6]) to facilitate system evaluation, to
aid in the comparison of multiple candidate machines, to
investigate optimisation strategies, and to act as a vehicle
for porting codes to novel architectures.

One use of high performance machines is to perform
computational fluid dynamics (CFD) simulations. These save
time, money and permit the fast exploration of design
spaces [7] without the cost of producing scale models and
purchasing wind tunnel time [8]. This class of code is
therefore vital to the aerospace industry. One such example

of this is HYDRA, a suite of applications in use by Rolls-
Royce to optimise engine designs (e.g. by reducing the
effects of high cycle fatigue [9]). The aim of our research
is to produce a suite of general tools that will support
Rolls-Royce with moving their applications onto new HPC
systems.

This paper builds upon previous work [10] – the devel-
opment of a performance model capable of predicting the
runtime of HYDRA. We focus on detailing extensions to this
model and the supporting suite of tools. While the existing
performance model was successful at identifying detrimental
communication behaviour, limitations prevented the model
from delivering runtime predictions across the desired range
of input parameters and scale: 1) the performance model
was lacking complete analytical support, which restricted
the set of tasks runtime predictions could be performed
for (e.g. different multigrid cycle types); 2) the dataset
coverage was limited due to the performance model only
being primed from a subset of HYDRA’s loops; and, 3) the
model was reliant on partitioning data, which could only be
collected empirically from HYDRA when running at scale.
Specifically, this paper makes the following contributions:

• We construct a general analytical runtime model for
multigrid applications. This model supports multiple
cycle types (e.g. V- and W-Cycles) and a variable
number of Runge-Kutta iterations;

• We identify and incorporate additional details in to the
performance model which are essential for modelling
the runtime of large unstructured mesh codes: buffer
pack/unpack costs, runtime costs from all 300+ loops
in the code base, and performance information for
different memory access patterns;

• We validate these additional details on up to 1,024
cores of a Haswell-based cluster, using both a geometric
partitioning algorithm and ParMETIS to partition the
NASA Rotor37 input deck, with a maximum absolute
error of 12.63% and 11.55% respectively. Additionally
we report the performance model’s accuracy on 1,008
cores of an Ivybridge-based cluster (ARCHER);

• We develop Moses, an application which is represen-
tative of the partitioning process internal to HYDRA.

This application is able to process the output from mul-
tiple partitioning algorithms/libraries (e.g. ParMETIS,
METIS and Scotch) at varying scale (up to 100,000
partitions) into data usable by our runtime performance
model. Runtime predictions made using this data have
an error in runtime of at most 7.31% over 512 pro-
cesses, when compared against predictions made with
empirically collected partitioning data;

• Finally, we demonstrate the use of Moses in conjunc-
tion with the runtime performance model to predictively
compare the relative effect on HYDRA’s runtime of
using Scotch, ParMETIS, METIS and a geometric
partitioning algorithm on up to 30,000 cores. We predict
and validate that the geometric partitioning algorithm
causes reduced performance in HYDRA at 512 and
1024 processes when compared with ParMETIS.

This paper is structured as follows: in Section II we briefly
discuss related work; in Section III we summarise the func-
tionality of HYDRA, OPlus (the proprietary library respon-
sible for abstracting communications) and the partitioning
libraries we use; in Section IV we show how the analytical
model presented previously is generalised; in Section V
we present the improvements to the performance model’s
dataset and cost coverage, and validate these changes; in
Section VI we describe our approach to collecting domain
size information at scale and we provide a demonstration of
how the data from Moses is used to compare partitioning
algorithms on up to 30,000 cores; finally, in Section VII we
summarise the work and discuss potential future work.

II. RELATED WORK

The use of analytical and simulation-based performance
models has previously been demonstrated in a wide range
of scientific and engineering application domains. The con-
struction of such models can augment many aspects of
performance engineering [2], including: comparing the ex-
pected performance of multiple candidate machines during
procurement [11]; improving the scheduling of jobs on a
shared machine, via walltime estimates [12]; identifying
bottlenecks and potential optimisations, and evaluating their
effect upon performance ahead-of-implementation [13]; and
post-installation machine validation [14].

One body of modelling work similar to our own is
described by Gahvari et al. [15]–[17], where an analytical
performance model is developed for algebraic multigrid ap-
plications executing on a range of architectures (including a
Blue Gene/P and a Blue Gene/Q). The focus of these papers
is on understanding the scalability of these applications
and the utility of hybrid OpenMP/MPI programming – in
this work we present a model of a geometric multigrid
application.

Another body of research which is similar to this work,
develops performance models of MPI-based wavefront [1]
and Adaptive Mesh Refinement (AMR) codes [18]. Despite

Term Parameter Definition
Dataset

ncyles Number of V- or W-Cycles.
nlevels Number of levels in the multigrid.
npre Number of pre-smoothing iterations.
npost Number of post-smoothing iterations.
nrk Number of Runge-Kutta iterations.
nstart Number of starting iterations.
ncrs Number of smoothing iterations to perform

at the coarsest level of the multigrid.

Table I: Description of dataset terms.

the similarities between these models and our own, sig-
nificant work would be required to prepare them for use
with geometric multigrid applications. Furthermore, we use
performance models to assess the suitability of different par-
titioning algorithms/libraries at varying scale, rather than to
examine different hardware and software configurations [1]
or to optimising AMR patch distribution [18].

Giles et al. have published several papers on the design
and performance of OPlus and its successor OP2 [19]–
[21]. One of these papers details the construction of an
analytical performance model of a simple airfoil benchmark
(≈2 K lines of code), executing on commodity clusters
containing CPU and GPU hardware [21]. The performance
model achieves high levels of accuracy, but does not support
multigrid execution. In this paper, we construct a perfor-
mance model for a significantly more complex production
application (≈45 K lines of code), and present model val-
idations for datasets with multiple grid levels and augment
the modelling process with data from a mini-application.

We additionally develop an application to be represen-
tative of the partitioning behaviours internal to HYDRA
using the experiences of mini-application developers. Our
approach differs from typical mini-applications which tend
to represent application behaviours when interacting with
hardware (e.g. computation, communication and synchroni-
sation) [22]–[24], rather than purely software behaviours. We
borrow the idea of creating a small but representative appli-
cation, but seek only to recreate the result of computation
to facilitate the collection of data for use with the runtime
performance model.

III. BACKGROUND

A. Multigrid

Multigrid methods are designed to increase the rate of
convergence for iterative solvers, and possess a useful com-
putational property – the amount of computational work
required is linear in the number of unknowns [25]. Multigrid
applications operate on a hierarchy of grid levels; in this
paper, we are concerned with geometric multigrid, wherein
each grid level has its own explicit mesh geometry, and the
coarse levels of the hierarchy are constructed based upon
the geometry of the finest level.

1 2 3 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

10

1 2
1

2
1 2

2
2

2

1 2
1

2
1 2

2
2

Multigrid Level

S
ol
ve
r
It
er
a
ti
on

E
ve
n
t

npre
npost
ncrs
nstart

additional

(a) V-Cycle

1 2 3 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10

1 2
1

2
1

2
2
1

2

22
1

2
1

2
2
1

2

2
2

2

1 2
1

2
1

2
2
1

2

22
1

2
1

2
2
1

2

2
2

Multigrid Level

S
ol
ve
r
It
er
at
io
n
E
ve
n
t

(b) W-Cycle

Figure 1: Trace of solver iteration events (ncycles = 3).

Starting at the finest level, multigrid applications use
an iterative smoothing subroutine to reduce high frequency
errors. Low frequency errors are then transferred to the
next coarsest level (restriction), where they appear as high
frequency errors and can thus be more rapidly smoothed by
the same subroutine. Error corrections from the smoothing
of coarse levels are then transferred back to finer levels (pro-
longation). Before each invocation of a restrict or prolong
a varying number of smooth operations are performed; the
exact number is defined by nstart, npre, npost, ncrs and
additional which are described in Table I. The order in
which prolongations and restrictions are applied is known
as a cycle, of which this paper considers two types: V- and
W-Cycles as these are both available in HYDRA. Figure 1(a)
and Figure 1(b) visualise two V-Cycles and two W-Cycles
respectively, for a grid with four levels.

B. HYDRA

Rolls-Royce use CFD codes to simulate the flow of fluids in
and around some of their commercial products. One of the
main codes employed in such simulations is HYDRA [26],
a suite of nonlinear, linear and adjoint solvers developed
by Rolls-Royce in collaboration with many UK universities.
We refer the reader to previous works for more informa-
tion [27]–[31].

We focus on HYDRA’s nonlinear solver, which we refer
to henceforth as “HYDRA” for brevity. Specifically we
examine HYDRA’s smooth loop; a skeleton of this loop
is provided in Listing 1 along with a description of each
function call. This loop contains the six most expensive
functions in terms of runtime: vflux, iflux, srcsa,

Listing 1: Pseudo-code for HYDRA’s smooth loop.
1 f o r i t e r = 1 to n i t e r do
2 i f i t e r == 1 then
3 c a l l j a c o b // Jacobian preconditioning
4 end i f
5

6 f o r s t e p = 1 to 5 do
7 i f d i s s i p a t i v e f l u x u p d a t e then
8 c a l l g rad // compute gradient
9 c a l l v f l u x // accumulate viscous fluxes

10 c a l l w f f l u x // modify viscous wall fluxes
11 c a l l wvflux
12 end i f
13

14 c a l l i f l u x // accumulate inviscid fluxes
15 c a l l s r c s a // Spalart-Allmaras source term
16 c a l l u p d a t e // update flow solution
17 end f o r
18 end f o r

Listing 2: A typical OPlus parallel loop.
1 do whi l e (p a r a l l e l l o o p (edges , i s t a r t ,
2 i f i n i s h))
3 c a l l a c c e s s (‘ read ’ , ewt , 3 ,
4 edges , 0 , 0 , . . .)
5 c a l l a c c e s s (‘ read ’ , x , 3 ,
6 nodes , ne , 2 , . . .)
7 . . .
8

9 c a l l a c c e s s (‘ upda te ’ , v r e s , 6 ,
10 nodes , ne , 2 , . . .)
11 do i e = i s t a r t , i f i n i s h
12 i 1 = ne (1 , i e)
13 i 2 = ne (2 , i e)
14 c a l l compute (ewt (1 , i e) ,
15 x (1 , i 1) , x (1 , i 2) ,
16 v r e s (1 , i 1) , v r e s (1 , i 2))
17 enddo
18 enddo

update, grad and jacob, along with wfflux and
wvflux; all of which are invoked approximately 1–5 times
per iteration. The smooth loop does not include the main
input/output (I/O) or setup routines.

C. OPlus

OPlus [19] was designed to allow a single source code to
be recompiled for serial or parallel execution, acting as a
middleware that completely hides other library calls and the
low-level implementation of a code’s parallel behaviour from
the programmer. Subroutines in the user source code (in this
case, HYDRA) are defined as operations over user-defined
data sets (e.g. nodes, edges, faces) and the OPlus library
schedules the computation accordingly. When running seri-
ally, OPlus uses a standard loop to execute the subroutine for
each set element; when running in parallel, the set elements
(and their computation) are partitioned over multiple nodes.
OPlus is also responsible for handling the halo exchanges
at the boundaries between processor domains, for which

it uses MPI. Due to these responsibilities, parts of OPlus
(e.g. buffer pack/unpack routines) must be captured in the
performance model. We note that as OPlus handles all inter-
node communication, there are no calls to MPI or any other
communication library within the HYDRA source code.

In order to schedule a loop for parallel execution, OPlus
requires that the programmer declare how each data array
will be accessed, via calls to access as demonstrated
in Listing 2. Firstly, they must declare an access type for
each array – read, write, or read/write (“update”). OPlus
then attaches a “dirty bit” to each array, based upon these
access modifiers; if an array is declared as being “write”
or “update”, then execution of the loop will invalidate any
copy of the data held on neighbouring processes. Secondly,
the programmer must specify whether the array is to be
accessed directly (i.e. the array index is the loop counter)
or indirectly (i.e. the array index is the result of a look-up,
based on the loop counter); such information allows OPlus to
reason about whether a given loop requires data only from
local set elements, or is likely to access data residing on
another processor.

When combined with the set partitioning, these access
descriptors permit OPlus to determine which iterations of
the inner loop:

1) Can be executed prior to communication;
2) Require communication with neighbouring processors

to ensure correctness; and
3) Should be executed redundantly on multiple proces-

sors to avoid additional communication steps.
The set elements corresponding to such iterations are re-
ferred to henceforth as independent, dependent and execute
set elements respectively.

The do while loop surrounding the computation en-
ables OPlus to iterate over the three distinct regions of
elements in a way that is transparent to the programmer. The
parallel_loop call returns true for a certain number of
calls (thus continuing the while loop) and sets the values
of istart and ifinish to different values each time
(thereby controlling the set elements executed by a given
iteration).

D. Experimental Setup

For the model validations in Sections V and VI we use the
Rotor37 dataset [32] (a mesh of ≈8 million nodes and ≈24.8
million edges representing an axial compressor rotor) as
the input deck. We collect the modelling data from Tinis,
a Haswell-based cluster (400×E5-2630 v3) with a QDR
Infiniband interconnect.

OPlus has been developed such that any unstructured
mesh partitioning algorithm can be integrated and used (e.g.
ParMETIS [33] and PT-Scotch [34]). In this paper we use
the geometric partitioning [35] algorithm built into OPlus
and ParMETIS 3.1 for all model validations; ParMETIS 3.1

Term Definition
Subscripts

g Grind time (loop time divided by total iterations)
p Process identifier
l Loop identifier
L Multigrid level
i Independent elements
h Dependent elements
e Redundant compute elements

Measured
Wg,p,l,L Grind-time per level, per set element in loop
Ni,p,l,L Number of independent set elements in loop.
Nh,p,l,L Number of dependent (halo) set elements in loop
Ne,p,l,L Number of redundant (execute) set elements in loop.

Derived
Rcalls Number of additional calls caused by restrict.
Pcalls Number of additional calls caused by prolong.
IpostL Calls caused by npost input parameter on level L.
IpreL Calls caused by npre input parameter on level L.
IcrsL Calls caused by ncrs input parameter on level L.
IstartL Calls caused by nstart input parameter on level L.
Wp,l,L Walltime per process, per loop, per level.
Wmg Total runtime of the multigrid solver.
Cl,L Communication cost for loop l per level.

Table II: Description of model terms.

for the simulated partitioning; and, METIS 5.1.0 and Scotch
6.0.4 for all serial partitioning.

IV. RUNTIME MODEL FOR MULTIGRID APPLICATIONS

We first present the construction of further analytical
equations, which describe HYDRA’s function invocations.
We then show how these new equations operate with the
original model. Additionally, we show how the new analyti-
cal equations can easily be adapted to allow for runtime pre-
dictions when using other types of multgrid cycle, thereby
increasing the applicability of the model. The modelling
terms used throughout this section and others are defined
in Table II.

A. Model of Solver Steps

HYDRA’s smooth routine invokes a number of solver iter-
ations. These depend on HYDRA’s current position in the
multigrid cycle (labelled in Figure 1) and directly affect the
total number of solver steps. To parameterise the model, we
work through HYDRA’s source code from both the solver
and Runge-Kutta loop bounds to the input deck, and in doing
so we identify the following parameters ncrs, npre, npost,
ncycles (see Table I) as influencing the loop bounds.

To aid the development of equations for the number
of solver iterations (per multigrid level) in terms of these
parameters, we collect a trace of solver iteration events
and the multigrid level they originate from. We plot this
trace in Figure 1(a) and use it as a guide for further code
inspection, by creating a mapping between events in the trace
and HYDRA’s source code.

The first feature we discuss from Figure 1(a) are the
initial 11 iterations on the first level of the multigrid (solver

iteration events 1 and 2). Through experimentation with the
input deck and code inspection, it was found that the first
10 of these events can be attributed to the nstart parameter.
The extra event is a separate feature, in which an additional
iteration of the inner loop is performed only when restricting.
This leads directly to Equation 1, where nstart is simply
multiplied by the number of inner loop iterations (nrk), and
to this, a single addition iteration is added.

Istart1 = nstart × nrk + 1 (1)

The second feature we discuss from Figure 1(a) is event
10. We single this feature out next as it does not appear
at the beginning of the previous V-Cycle (solver iteration
event 2). Code inspection reveals that these events are
dictated by npre. Given the information that these events
occur at the beginning of every V-Cycle, we can construct
Equation 2. The second half of the equation deals with
the single additional iteration while restricting – both ×1
terms, while unneeded, are left in to ensure a 1-to-1 mapping
between the two halves of Equation 2 for readability.

Ipre1 = ((ncycles − 2)× npre × nrk)

+((ncycles − 2)× 1× 1)
(2)

Next we examine the events which occur on levels 2 and 3
of the V-Cycle, for both prolongation and restriction. Code
inspection reveals that the number of iterations are dictated
by npost and as is the case with Equations 1 and 2, the
additional iteration which occurs while prolonging must be
accounted for.

Ipost2,3 = (((ncycles − 1)× npost × 2)× nrk)

+(((ncycles − 1)× 1)× 1)
(3)

Finally, we examine those events which occur on the final
level of the multigrid: events 7 and 16 in Figure 1(a). These
occur once per V-Cycle, therefore the equation is:

Icrs4 = (ncycles − 1)× ncrs × nrk (4)

It should be noted that Equations 1-4, given an input deck,
will predict the invocation count of iflux. The call count of
the other functions (e.g. vflux) is dealt with by modelling
their percentage of invocations relative to iflux.

B. Model Integration

We integrate Equations 1-4 bottom up, into the existing
model to provide a fully analytical description of HYDRA’s
computation. We refer the reader to the existing performance
modelling paper for the equations for communication time
(Cl,L), restrict (Rcalls) and prolong (Pcalls) as these equations
remain unchanged [10].

Equation 5 describes how the different types of compute
(independent, halo and execute) and the communication are

combined into a single walltime. To model communication-
computation overlap, the larger of the independent compute
and communication time is taken, and added to this, the
compute which cannot be overlapped at all. This equation
can easily be adjusted to produce a prediction where overlap
is not assumed to occur, by replacing the maximum function
with a summation.

Wp,l,L =max(Ni,p,l,L ×Wg,l,L, Cl,L)

+ (Nh,p,l,L +Ne,p,l,L)×Wg,p,l,L

(5)

Finally, the runtime of all the loops on each level of the
multigrid are summed to give the predicted runtime for the
solver (Equation 6).

Wmg =
∑
l

∑
L

max
p∈P

(Wp,l,L)× IL (6)

C. Generalisation to W-Cycles

V-Cycles are not the only pattern by which multigrid solvers
can transition between levels, and in this section we show
how to apply the process used in Section IV-A for W-Cycles,
lending weight to the processes applicability to arbitrary
cycle types. As before we plot a trace of the code, but while
performing W-Cycles (Figure 1(b)).

We first notice that the non-repeating features in Fig-
ure 1(b) (solver iteration event 1), and the frequency of
steps caused by npre are the same as for the V-Cycle case,
therefore we can reuse Equations 1 and 2. We then identify
where a single cycle terminates (solver iteration event 21 in
Figure 1(b) and construct equations for the remaining levels
of the multigrid.

We introduce Equations 7 and 8 which are similar to
Equations 3 and 4 but parameterised to allow operation with
multiple cycle types.

Ipost2,3 = (((ncycles − 1)×Opost
2,3 × npost)× nrk)

+(((ncycles − 1)×Oadditional
2,3 × 1)× 1)

(7)

Icrs4 = (ncycles − 1)×Ocrs
4 × ncrs × nrk (8)

Where Ocrs
4 , Opost

2 , Opost
3 , Oadditional

2 and Oadditional
3 equal

4, 3, 6, 2 and 4 respectively for a W-Cycle and 1, 2, 2, 1 and
1 respectively for a V-Cycle. By making these improvements
to the model it can support multiple cycle types (e.g. W-
Cycle and V-Cycle) and a variable number of Runge-Kutta
iterations. As a side effect of creating analytical equations
representing the multigrid cycles rather than relying on a
code skeleton, the model’s time to prediction has improved
by ≈22× when predicting for 504 cores, and will likely
improve the time to prediction at much larger scale.

16 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

10
24

0

1

2

3

4

·103

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

Actual compute

Prediction with loops, separate Wg

Prediction without loops,separate Wg

Prediction with loops, with average Wg

Prediction without loops, average Wg

Figure 2: Comparison of actual and predicted compute time
(Rotor37, 8 million nodes; geometric partitioning).

16 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

10
24

0

2

4

·103

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

Actual runtime

Predicted runtime

Predicted runtime without pack+unpack costs

Figure 3: Comparison of actual and predicted runtime (Ro-
tor37, 8 million nodes; geometric partitioning).

V. ADDITIONAL PERFORMANCE MODEL DETAIL

We first identify and extend the performance model to
include three additional runtime costs: the compute and
communication time for all 300+ loops in the code base,
the time taken to pack/unpack data from the MPI buffers
in OPlus, and separate performance data for each region
of compute. Second, we validate these changes to the
performance model over 1,024 cores by presenting the effect
each adjustment has on the model’s error. We further validate
the performance model when using ParMETIS, rather than
a geometric partitioning algorithm to partition the Rotor37
input deck. Finally, we report the performance model’s
accuracy over 1,008 cores when using data collected from
an Ivybridge-based cluster (ARCHER).

16 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

10
24

0

2

4

·103

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

Actual Runtime
Predicted Rutime
Actual Max Compute
Predicted Max Compute
Actual Pack+Unpack Time
Predicted Pack+Unpack Time

Figure 4: Comparison of HYDRA’s actual and predicted
runtime (Rotor37, 8 million nodes; ParMETIS).

A. Region Grind-time Data

OPlus partitions HYDRA’s compute into three different
regions, independent, halo and execute. For each of these
element types the access pattern varies, which is reflected
in the timing information. The compute time (per element)
for dependent elements compared to independent elements
is 60.72% and 142.45% larger for vflux and iflux re-
spectively. Without using separate timing information for the
different regions a consistent under-prediction in compute
time is observed (average of 19.12%). However, when the
performance model is primed with separate timing infor-
mation for each region then the model error is reduced (see
Figure 2) to a consistent average under-prediction of 12.69%.

The analytical model is generalised to support these re-
gional grind times by introducing three new terms: Wg,i,l,L,
Wg,h,l,L and Wg,e,l,L for the independent, halo and execute
regions respectively. After making this adjustment Equa-
tion 5 becomes Equation 9.

Wp,l,L =max(Ni,p,l,L ×Wg,i,l,L, Cl,L)

+ (Nh,p,l,L ×Wg,h,l,L +Ne,p,l,L

×Wg,e,l,L)

(9)

B. Complete Loop Coverage

HYDRA consists of over 300 nested loops of which a subset
are used by any given dataset; due to this large number
of loops, using automated instrumentation tools is essential.
We developed such tools to cope with the specifics of the
code base which existing tools were unable to deal with
(e.g. FORTRAN77 and nested loops). Naturally, full code
coverage gives us increased model accuracy because we have
a more complete view of HYDRA’s performance. Also, it
future proofs the performance model against new datasets
which may exercise other regions of the code.

With the addition of performance data from all loops in
HYDRA the runtime performance model’s under-prediction
reduces from an average of 12.69% to 4.79% (see Figure 2).
Both the complete loop coverage and the use of detailed
compute data, reduces the compute error by approximately
10% at all measured scales in Figure 2. Even with complete
loop coverage there is still an error in compute time; we
suspect this is due to the modelling assumption that compute
time per edges/node is the same across all processes which
is not often the case.

Additionally we incorporate buffer pack/unpack cost into
the performance model, after which the model’s total under-
prediction is reduced from an average of 24.76% to 8.56%
and at most 12.63% (see Figure 3).

We additionally validated the runtime performance model
with the aforementioned details on up to 1,008 cores of
ARCHER, an Ivybridge-based (E5-2697 v2) Cray XC30,
with a Cray Aires interconnect. This demonstrates the
model’s applicability across multiple generations of hard-
ware. We observed a maximum error of 4.72% but for
brevity we do not present a detailed validation here.

C. Performance Model Validation (ParMETIS)

In Figure 4 we plot the total runtime, max compute time and
pack/unpack time for both predicted and actual executions
when using ParMETIS as the partitioning algorithm. The
errors for total runtime, max compute time and pack/unpack
costs are on average 8.65%, 4.09% and 5.23% respectively.

The compute error consistently under-predicts and the
error is neither increasing or decreasing with scale, but fluc-
tuates between under-predictions of 8.37% and 1.43%. This
under-prediction and fluctuation can be partially explained
by a deviation from one of our modelling assumptions: the
Wg values are similar across all processes for a given OPlus
loop, multigrid level and compute region. This is not true
as different processes have different access patterns, due to
the nature of unstructured mesh codes.

This broken assumption manifests itself as a problem
in the performance model when an average, maximum or
minimum Wg is used to approximate the compute cost,
as the model will always predict that the most expensive
processes is the one with the most elements to process.
From Figure 5 we can see that this assumption leads to an
under-prediction (except for at 320 processes) when using
the average Wg and an over-prediction when using the
maximum Wg . For the predictions in this paper we use an
average over the top 50% largest Wg values as this is more
representative of the compute costs on the critical path.

The pack and unpack error fluctuates between under-
predicting and over-predicting. However, for the most part
the absolute error is very low (less than 3 seconds for runs
larger than 128 processes). Further investigation is required
to identify the remaining sources of error, specifically at

16 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

−20

−10

0

10

20

Number of Processes

Pe
rc

en
ta

ge
er

ro
r

(%
)

Max Wg

Average Wg

Average top 50% Wg

Figure 5: Percentage error of Wg calculation techniques for
max edge compute.

lower core counts, where the runtime prediction is over-
predicting 50.32 seconds and under-predicting 23.32 seconds
for runs with 16 and 64 processes respectively.

The compute under-prediction leads to an under-
prediction of the total runtime as this is the dominant cost.
We observe errors between 2.68% and 11.55%. This vali-
dation demonstrates the performance model’s effectiveness
at predicting runtime when using alternative partitioning
algorithms.

VI. SET AND HALO SIZE GENERATION

Typically in order for an analytical model to provide a
runtime prediction, the size of the dataset (i.e. number of
nodes, edges, cells) and message sizes must be known for
a given process count. In the case of a structured mesh
these sizes can be obtained using basic algebra, but for
unstructured meshes these sizes depend on the partitioning
algorithm (e.g. ParMETIS) and halo exchange strategies.

Previously this data was collected empirically from
HYDRA, but this approach becomes impractical for large
process counts as vast amounts of hardware are required.
This limits the performance model’s capacity to predict
HYDRA’s scaling behaviour. We develop and validate two
applications to solve this limitation: one for driving the
partitioning algorithm, and one for computing the set and
halo sizes (the latter will henceforth be referred to as
“Moses”). With these applications we can more readily
explore different approaches (e.g. simulation, alternative
partitioning algorithms, serialisation of code) to collecting
partitioning information for use in runtime predictions.

We continue this section by describing the purpose of
these applications, followed by validating the partitioning
data generated from Moses. Finally we use the data gener-
ated by Moses to predictively compare the effect of different
partitioning algorithms on HYDRA’s runtime.

16 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

0

2

4

·103

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

Actual

Prediction using Empirical Data

Prediction using Data from Moses

Prediction using a Structured Mesh Approximation

Figure 6: Impact of partitioning data source on model.

A. Partitioning Mini-Driver and Mini-Application

We develop a mini-driver (a framework for running specific
application routines with test data), which exists to perform
four tasks: 1) read in the mesh files used by HYDRA for
each level of the multigrid; 2) manipulate the mesh files into
a form usable by the chosen partitioning algorithm; 3) invoke
the partitioning algorithm; and, 4) store the resultant parti-
tioning in a standard form, so Moses, which is responsible
for computing the halo and set sizes, can operate with any
chosen partitioning algorithm. This standard form is a set
of tuples, which map nodes to the identifier of the partition
they belong to.

To ensure the mini-driver’s correctness we compare the
arguments to our chosen partitioning library (in this case
ParMETIS) when called from HYDRA against the argu-
ments used in the mini-driver and ensure they are identical.
Collecting usable partition data is only the start of the halo
and set generation process; OPlus uses this data to partition
the remaining sets and form the halos.

We develop Moses which mimics the process by which
OPlus uses the partitioning data to generate all other size
data: the size of all sets in use by the CFD simulation
(e.g. edges, nodes, faces); the number of elements which
can be updated before and after communication; and, the
size of the halos to communicate. To develop a fully rep-
resentative version would be prohibitively time consuming,
so we choose build a simplified version adding only the
major detail; we select this detail based upon the largest
contributors to runtime.

Using Moses and the mini-driver we are able to generate
partitioning information for up to 100,000 cores, which is
usable by the runtime performance model.

B. Validation

We first quantify the level of detail included in Moses by
performing a comparison between actual runtime, runtime

predictions made using partitioning data generated by Moses
and predictions made using partitioning data collected em-
pirically from HYDRA (Figure 6). Additionally, we plot a
runtime prediction using a variant of the partitioning model
used by Mathis et al. [36], where the set and halo sizes are
approximated to the structured mesh case. We use this plot
as a baseline for runtime accuracy that can be achieved when
using a simple partitioning model.

From Figure 6 we can immediately see the large er-
ror (46.94%) in runtime that using the structured mesh
approximation induces compared to using the empirically
collected partitioning data. Whereas the runtime prediction
made using the partitioning data generated by Moses differs
by at most 7.31%. If we also examine the predicted parallel
efficiencies when using both the structured mesh approxi-
mation and the data generated from Moses we find that the
former indicates a near perfect efficiency across all ranks,
but the latter is in line with the empirically predicted effi-
ciency: an average parallel efficiency of 0.70 when using the
empirically collected partition data and a parallel efficiency
0.69 when using the partitioning data generated by Moses.
These results would indicate that using the data generated
by Moses affords more runtime performance model accuracy
than using the structured mesh data.

From the breakdown of predicted runtime costs (compute,
communication, synchronisation, pack and unpack time) we
identify the two reasons why the structured mesh approxima-
tion fails to give an accurate prediction: 1) it underpredicts
the amount of data to be sent between ranks, resulting in
a lower predicted communication time and lower pack and
unpack times; and 2) the lack of load imbalance reduces the
cost of synchronisation on each process.

While the data generated using Moses is more represen-
tative than that from the structured mesh approximation,
there are still sources of error. To identify these we compare
the set and halo sizes generated by HYDRA directly with
those generated by Moses. We find that while the set sizes
generated for the first level of the multigrid are of low error
(0% for edges and ≈6% for nodes) this error increases up
the multigrid to ≈24% and ≈35% for nodes and edges
respectively. However, the upper levels of the multigrid
account for a diminishing amount of the total runtime and
therefore these errors have a minimal effect on predicted
runtime error. We reserve combating this remaining error
for future work.

C. Predictive Analysis of Partitioning Algorithms

Next we demonstrate the use of the runtime performance
model in conjunction with Moses to perform a predictive
comparison of the effect varying partitioning algorithms
have on HYDRA’s runtime, for a given dataset (Rotor37)
at varying scales (16-30,000 processes). Specifically we are
considering the trade-off between load balancing the sets
present in HYDRA (nodes and edges) and the amount of

Sc
ot

ch
(1

6)
M

E
T

IS
(1

6)
G

eo
m

et
ri

c(
16

)
Pa

rM
E

T
IS

(1
6)

Sc
ot

ch
(6

4)
M

E
T

IS
(6

4)
G

eo
m

et
ri

c(
64

)
Pa

rM
E

T
IS

(6
4)

Sc
ot

ch
(1

28
)

M
E

T
IS

(1
28

)
G

eo
m

et
ri

c(
12

8)
Pa

rM
E

T
IS

(1
28

)

Sc
ot

ch
(2

56
)

M
E

T
IS

(2
56

)
G

eo
m

et
ri

c(
25

6)
Pa

rM
E

T
IS

(2
56

)

Sc
ot

ch
(5

12
)

M
E

T
IS

(5
12

)
G

eo
m

et
ri

c(
51

2)
Pa

rM
E

T
IS

(5
12

)

Sc
ot

ch
(1

02
4)

M
E

T
IS

(1
02

4)
G

eo
m

et
ri

c(
10

24
)

Pa
rM

E
T

IS
(1

02
4)

Sc
ot

ch
(2

00
0)

M
E

T
IS

(2
00

0)
Pa

rM
E

T
IS

(2
00

0)

Sc
ot

ch
(4

00
0)

M
E

T
IS

(4
00

0)

Sc
ot

ch
(6

00
0)

M
E

T
IS

(6
00

0)

Sc
ot

ch
(8

00
0)

M
E

T
IS

(8
00

0)

Sc
ot

ch
(1

00
00

)
M

E
T

IS
(1

00
00

)

Sc
ot

ch
(2

00
00

)
M

E
T

IS
(2

00
00

)

Sc
ot

ch
(3

00
00

)

101

102

103

104

Partitioning algorithm (Number of processes)

R
un

tim
e

(s
ec

on
ds

)

Max compute

Max pack

Comms+sync

−40

−30

−20

−10

0

Sp
ee

du
p

(%
)

Max Compute
Max Pack
Comms+Sync
Actual
Predicted

Figure 7: Predicted effect of partitioning algorithm on HYDRA’s runtime and the speedup from using ParMETIS over a
geometric partitioning.

communication/pack and unpack costs. We prime the per-
formance model with compute data from a single scale (16
processes), as we are not considering memory behaviours.

Figure 7 contains a comparison of partitioning algorithms,
however due to several current limitations we are not able
to collect the complete range (16-30,000) of data for all
partitioning algorithms used in this work. We are only able
to collect data for up to 1,024 partitions for the geometric
partitioning algorithm as we currently lack an implementa-
tion outside of HYDRA with which to prime the mini-driver.
Additionally we are only able to collect partitioning data
from ParMETIS for up to 2,000 partitions as simulations
take in the order of weeks to complete. Finally, METIS is
unable to partition the dataset into 30,000 parts.

From Figure 7, we can see that the geometric parti-
tioning algorithm is able to produce a partitioning with a
comparable or lower predicted maximum compute when
compared to the other partitioning algorithms, however it
makes no consideration as to the communication time. This
omission manifests itself primarily as increased time spent
packing and unpacking elements for communication – 1.35×
and 1.92× larger at 16 and 1,024 processes respectively
when compared to ParMETIS (the next worst performing
partitioning algorithm in terms of these costs). However,
both the Scotch and METIS partitioning libraries manage the
trade-off between costs as they take into account the number

of edges cut, which is a proxy for communication time.
This leads to predicted runtimes which are at most 1.2×
better (predicted speedup of using METIS over a geometric
partitioning at 1,024 cores).

Also from Figure 7, we can see that METIS consistently
performs better than its parallel variant (ParMETIS) across
all scales for both max compute time, and pack and unpack
cost, this leads to a predicted performance improvement of
up to 1.1× (at 512 cores). This performance improvement
does not appear to diminish with scale.

This predictive analysis has delivered three observations,
1) Scotch and METIS are the better choice of partitioning
algorithm when compared to ParMETIS and the geometric
partitioning algorithm; 2) the serial variant of ParMETIS
produces consistently better partitions than ParMETIS itself;
and, 3) the geometric partitioning invokes reduced perfor-
mance in HYDRA runs of greater than 512 processes due
to increasing buffer pack and unpack costs. These predictive
observations will direct the authors to invest the time to
integrate the feature to read in pre-generated partitions into
HYDRA. Especially those from Scotch and PT-Scotch, the
former to see if the performance improvements at small
scale hold and the latter to determine if PT-Scotch is out
performed by its serial variant.

We validate observation 3) in Figure 7 by plotting
the predicted and actual percentage runtime speedup of

HYDRA when using the geometric partitioning algorithm
over ParMETIS to partition the input deck. Figure 7 shows
that the runtime performance model in conjunction with
Moses accurately predicts the downfall of the geometric
partitioning algorithm at 512 and 1024 processes. Indicating
that this partitioning algorithm is not suitable for anything
but small scale runs when using the Rotor37 dataset.

VII. CONCLUSIONS

In this paper we have developed a general analytical model
for a multigrid code which supports multiple cycle types, a
variable number of Runge-Kutta iterations and an arbitrary
number of loops. These additions have increased the number
of input decks the performance model is applicable to.

We have validated additional performance costs on up
to 1,024 cores of a Haswell-based cluster, using both a
geometric partitioning algorithm and ParMETIS to partition
the input deck, with a maximum absolute error of 12.63%
and 11.55% respectively.

We have developed Moses, which is able to convert
partitioning data from multiple algorithms (Scotch, METIS,
ParMETIS) at varying scale (up to 30,000 cores) into data
usable by our runtime performance model. We show that
runtime predictions made using this data have a runtime
error of at most 7.31% over 512 processes, when compared
against predictions made with empirically collected parti-
tioning data.

Finally, we have demonstrated the use of Moses in con-
junction with the runtime performance model by comparing
the effect of several different partitioning algorithms on
HYDRA’s runtime. We concluded from this analysis that
priming HYDRA with partitioning data from Scotch is worth
investigating due its consistent predicted performance advan-
tage (maximum of 1.21×) over ParMETIS. Additionally, we
predicted and validated the result that the geometric parti-
tioning algorithm caused reduced performance in HYDRA
at 512 and 1024 processes when compared with ParMETIS.

A. Further Work

We will seek to improve Moses and the performance model
by 1) decreasing Moses’ error in runtime (7.31%) by im-
proving the accuracy of the set and halo size predictions on
the highest levels of the multigrid; 2) increasing the scale at
which Moses is able to generate set and halo data (beyond
100,000 and towards 1,000,000 partitions); 3) extending
Moses to support other unstructured mesh applications; and,
4) increasing the scale (past 1024 processes) at which the
performance model has been validated.

Next, we intend to act upon the results from the predictive
analysis of a partitioning algorithm’s effect on HYDRA’s
runtime. First we shall extend HYDRA’s partitioning process
such that it is able to read in the mesh partitioning data from
serial algorithms, and second run a performance analysis

to determine if the effect of these partitions on HYDRA’s
runtime matches the predicted effect.

Lastly, we intend to predictively and empirically analyse
the effect of different partitioning algorithms on HYDRA’s
runtime when using a variety of datasets, as we plan to use
the runtime performance model to examine the continued
effectiveness of these algorithms as new datasets are brought
into use.

ACKNOWLEDGEMENTS

This research is supported by both Rolls-Royce through the
Cleansky project and by Bull through their PhD sponsorship
programme. The authors would like to thank Rolls-Royce
plc for the provided support and for granting permission to
publish this work. Access to Tinis is provided by the Centre
for Scientific Computing at the University of Warwick.
Additionally this work used the ARCHER UK National
Supercomputing Service (http://www.archer.ac.uk).

REFERENCES

[1] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis, “A Plug-
and-play Model for Evaluating Wavefront Computations on
Parallel Architectures,” in Proceedings of the 22nd Interna-
tional Parallel and Distributed Processing Symposium 2008
(IPDPS’08). Miami, Florida: IEEE Computer Society, Los
Alamitos, CA, April 2008, pp. 1–14.

[2] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. Sancho, “Using Performance Modeling to
Design Large-Scale Systems,” Computer, vol. 42, no. 10, pp.
0042–49, 2009.

[3] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis,
A. J. Herdman, and A. Vadgama, “WARPP: A Toolkit for
Simulating High-performance Parallel Scientific Codes,” in
Proceedings of the 2nd International Conference on Simula-
tion Tools and Techniques 2009 (ICSTT’09). Rome, Italy:
ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, Brussels, Belgium),
March 2009, pp. 1–10.

[4] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny,
A. Pinar, D. A. Evensky, and J. Mayo, “A Simulator for
Large-Scale Parallel Computer Architectures,” International
Journal of Distributed Systems and Technologies, vol. 1, no. 2,
pp. 57–73, 2010.

[5] M. Heroux and R. Barrett, “Mantevo Project,” https://
mantevo.org/ (accessed March 3, 2016), March 2016.

[6] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving Perfor-
mance via Mini-applications,” Sandia National Laboratories,
Albuquerque, NM, Tech. Rep. SAND2009-5574, 2009.

[7] D. M. Schuster, “NASA Perspective on Requirements for
Development of Advanced Methods Predicting Unsteady
Aerodynamics and Aeroelasticity,” NASA, Langley Research
Center, Tech. Rep. 20080018644, 2008.

[8] J. F. Wendt, Computational Fluid Dynamics: An Introduction.
New York City, New York: Springer, March 2013.

[9] M. C. Duta, M. B. Giles, and M. S. Campobasso, “The
Harmonic Adjoint Approach to Unsteady Turbomachinery
Design,” International Journal for Numerical Methods in
Fluids, vol. 40, no. 3-4, pp. 323–332, September 2002.

[10] R. A. Bunt, S. J. Pennycook, S. A. Jarvis, L. Lapworth, and
Y. K. Ho, “Model-led Optimisation of a Geometric Multigrid
Application,” in Proceedings of the 15th High Performance
Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing 2013
(HPCC&EUC’13). Zhang Jia Jie, China: IEEE Computer
Society, Los Alamitos, CA, November 2013, pp. 742–753.

[11] S. D. Hammond, G. R. Mudalige, J. A. Smith, A. B.
Mills, S. A. Jarvis, J. Holt, I. Miller, J. A. Herdman, and
A. Vadgama, “Performance Prediction and Procurement in
Practice: Assessing the Suitability of Commodity Cluster
Components for Wavefront Codes,” IET Software, vol. 3,
no. 6, pp. 509–521, December 2009.

[12] D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini, and G. R.
Nudd, “Local Grid Scheduling Techniques using Performance
Prediction,” IEEE Proceedings – Computers and Digital
Techniques, vol. 2, no. 150, pp. 87–96, April 2003.

[13] G. R. Mudalige, S. D. Hammond, J. A. Smith, and S. A.
Jarvis, “Predictive Analysis and Optimisation of Pipelined
Wavefront Computations,” in Proceedings of the Workshop on
Advances in Parallel and Distributed Computational Models
2009 (APDCM’09). Rome, Italy: IEEE Computer Society,
Los Alamitos, CA, May 2009, pp. 1–8.

[14] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman, “Use of
Predictive Performance Modeling During Large-scale System
Installation,” Parallel Processing Letters, vol. 15, no. 4, pp.
387–395, December 2005.

[15] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E.
Jordan, and W. Gropp, “Modeling the Performance of an
Algebraic Multigrid Cycle on HPC Platforms,” in Proceed-
ings of the International Conference on Supercomputing 2011
(ISC’11). Tucson, AZ: ACM, New York, NY, June 2011,
pp. 172–181.

[16] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M.
Yang, “Modeling the Performance of an Algebraic Multigrid
Cycle Using Hybrid MPI/OpenMP,” in Proceedings of the
41st International Conference on Parallel Processing 2012
(ICPP’12). Pittsburgh, PA: IEEE Computer Society, Los
Alamitos, CA, September 2012, pp. 128–137.

[17] ——, “Performance Modeling of Algebraic Multigrid on Blue
Gene/Q: Lessons Learned,” in 2012 SC Companion: High
Performance Computing, Networking, Storage and Analysis
(SCC’12). Salt Lake City, Utah: IEEE Computer Society,
Los Alamitos, CA, November 2012, pp. 377–385.

[18] D. A. Beckingsale, O. F. J. Perks, W. P. Gaudin, J. A. Herd-
man, and S. A. Jarvis, “Optimisation of Patch Distribution
Strategies for AMR Applications,” Computer Performance
Engineering, vol. 7587, pp. 210–223, 2013.

[19] D. A. Burgess, P. I. Crumpton, and M. B. Giles, “A Parallel
Framework for Unstructured Grid Solvers,” in Proceedings of
the 2nd European Computational Fluid Dynamics Conference
1994. Stuttgart, Germany: Wiley & Sons, Hoboken, New
Jersey, September 1994, pp. 391–396.

[20] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and
I. Reguly, “Designing OP2 for GPU architectures,” Journal
of Parallel and Distributed Computing, vol. 73, no. 11, pp.
1451–1460, November 2013.

[21] G. R. Mudalige, M. B. Giles, C. Bertolli, and P. H. Kelly,
“Predictive Modeling and Analysis of OP2 on Distributed
Memory GPU Clusters,” SIGMETRICS Performance Evalua-
tion Review, vol. 40, no. 2, pp. 61–67, October 2012.

[22] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A.
Jarvis, “Exploring SIMD for Molecular Dynamics, Using

Intel R© Xeon R© Processors and Intel R© Xeon Phi Coproces-
sors,” in Proceedings of IEEE 27th International Parallel
and Distributed Processing Symposium 2013 (IPDPS’13).
Boston, MA: IEEE Computer Society, Los Alamitos, CA,
May 2013, pp. 1085–1097.

[23] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz,
“XSBench-the Development and Verification of a Perfor-
mance Abstraction for Monte Carlo Reactor Analysis,” in
Proceedings of The Role of Reactor Physics toward a Sustain-
able Future (PHYSOR’14), Kyoto, Japan, September 2014,
pp. 1–12.

[24] A. C. Mallinson, S. A. Jarvis, W. P. Gaudin, and A. J.
Herdman, “Experiences at Scale with PGAS Versions of a
Hydrodynamics Application,” in Proceedings of the 8th In-
ternational Conference on Partitioned Global Address Space
Programming Models 2014 (PGAS’14). Eugene, Oregon:
ACM, New York, NY, October 2014, pp. 9–20.

[25] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid.
Elsevier Academic Press, 2001.

[26] L. Lapworth, “HYDRA-CFD: A Framework for Collabora-
tive CFD Development,” in Proceedings of the International
Conference on Scientific and Engineering Computation 2004
(IC-SEC’04), Singapore, June 2004.

[27] M. S. Campobasso and M. B. Giles, “Stabilization of a Lin-
earized Navier-Stokes Solver for Turbomachinery Aeroelas-
ticity,” in Proceedings of the 2nd International Conference on
Computational Fluid Dynamics 2002 (ICCFD’02). Sydney,
Australia: Springer-Verlag, Berlin, July 2002, pp. 343–348.

[28] ——, “Effects of Flow Instabilities on the Linear Analysis of
Turbomachinery Aeroelasticity,” Journal of Propulsion and
Power, vol. 19, no. 2, pp. 250–259, March 2003.

[29] P. Moinier, J. Müller, and M. B. Giles, “Edge-based Multigrid
and Preconditioning for Hybrid Grids,” AIAA Journal, vol. 40,
no. 10, pp. 1945–1953, October 2002.

[30] M. C. Duta, M. B. Giles, and M. S. Campobasso, “The
Harmonic Adjoint Approach to Unsteady Turbomachinery
Design,” International Journal for Numerical Methods in
Fluids, vol. 40, no. 3–4, pp. 323–332, September 2002.

[31] M. B. Giles, M. C. Duta, J. Müller, and N. A. Pierce,
“Algorithm Developments for Discrete Adjoint Methods,”
AIAA Journal, vol. 41, no. 2, pp. 198–205, February 2003.

[32] L. Reid and R. D. Moore, “Design and Overall Performance
of Four Highly Loaded, High Speed Inlet Stages for an Ad-
vanced High-Pressure-Ratio Core Compressor,” NASA Lewis
Research Center, Cleveland, OH, Tech. Rep. NASA TP 1337,
1987.

[33] G. Karypis and V. Kumar, “A Parallel Algorithm for Multi-
level Graph Partitioning and Sparse Matrix Ordering,” Journal
of Parallel and Distributed Computing, vol. 48, no. 1, pp. 71–
95, January 1998.

[34] F. Pellegrini, “Scotch and PT-Scotch Graph Partitioning Soft-
ware: An Overview,” Combinatorial Scientific Computing, pp.
373–406, 2012.

[35] J. R. Gilbert, G. L. Miller, and S.-H. Teng, “Geometric
Mesh Partitioning: Implementation and Experiments,” SIAM
Journal on Scientific Computing, vol. 19, no. 6, pp. 2091–
2110, 1998.

[36] M. M. Mathis and D. J. Kerbyson, “A General Performance
Model of Structured and Unstructured Mesh Particle Trans-
port Computations,” The Journal of Supercomputing, vol. 34,
no. 2, pp. 181–199, November 2005.

