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ABSTRACT 

This thesis studies the modelling and characterisation of underwater optical 

wireless communication links, particularly short-range diffuse links, by using 

numerical Monte Carlo (MC) simulation. MC simulation provides a flexible, 

intuitive and accurate modelling of the underwater channel, which is severely 

affected by absorption and scattering processes. In diffuse Underwater Optical 

Wireless Communication (UOWC) links, scattering is expected to have a larger 

impact on communication link performance due to the wider beam divergence 

compared to collimated beams. Thus, this thesis will investigate the 

characterisation of path loss, spatial, temporal and angular dispersions of 

diffuse links in various types of water. 

Firstly, a detailed investigation on the path loss performance of diffuse beam in 

three types of water is presented. This includes the study on the contribution 

of unscattered and scattered components of light to the total received power 

and how they are attenuated. From the percentage of unscattered light that 

contributed to the total power reception, the distance at which the unscattered 

component drops to zero can be estimated. This distance is used to predict the 

transition point from minimal scattering to multiple scattering regime for 
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diffuse beams in coastal and turbid water. In addition to this, the spatial 

dispersion effect is also studied at off-axis locations. 

To further understand the behaviour of scattering in diffuse links, the 

scattering order probability is evaluated for various beam sizes in various 

types of water. Currently, this kind of information cannot be obtained either 

analytically or experimentally. The information on the scattering order is used 

as the parameter to classify the links into three scattering regimes, namely 

minimal, intermediate and multiple scattering regimes. Further investigations 

into the transition regimes are conducted by investigating the impulse 

response and frequency response performance for temporal dispersion effects. 

From the impulse response and frequency response analysis, the bandwidth 

that can be supported by the channel can be predicted, which provides some 

insight into the potential and limits of the links. 

In addition to temporal dispersion, the angular dispersion performance is also 

evaluated. It is shown through the angle of arrival (AOA) distribution that 

diffuse beams exhibit significant angular dispersions, implying that a large 

receiver field of view (FOV) is needed for optimum power performance. The 

information on the AOA distribution is then used to study the impact of 

receiver FOV on the bandwidth. Finally, the effect of aperture on the power 

received and scattering order histogram is evaluated. 
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 As a conclusion, the numerical results presented in this thesis will  provide an 

improved understanding of the effect of scattering on path loss, spatial, 

temporal and angular dispersions along with their relationships with each 

other.  
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Introduction 

1.1 Overview 

Optical wireless communications (OWC) or free space optics (FSO) has become 

a very promising technology as a complementary technology to radio 

frequency (RF) technology in terrestrial communication. It has demonstrated 

several advantages, such as a huge unlicensed bandwidth, low power and high 

data rate [1]. In atmospheric channel, laser beams operating at wavelengths 

850 nm and 1550 nm are used to establish line-of-sight (LOS) links for various 

ranges of distance (from 50 m to a few kilometres range) [2]. Apart from that, a 

unique method using deep ultraviolet (UV) wavelengths (200 nm-300 nm) has 

shown significant potential in establishing a non-line-of-sight (NLOS) 

communication channel in scenarios where LOS links are not possible [3].  

Inspired by the attractive features and performance in those environments, 

OWC is now seen as a potential technology for underwater applications. This is 

due to the fact that the current underwater technology utilising acoustic waves 
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is fundamentally limited by its low bandwidth (~kHz), large delay and severe 

multipath fading despite its long range performance ( ie; 1-10 km) [4]. 

Specifically in underwater applications, wavelengths in the blue/green region 

are used as they experience the lowest attenuation underwater. Despite the 

high bandwidth (>GHz) that can be provided by optical links, they are limited 

to several hundred metres only due to strong attenuation caused by absorption 

and scattering [5]. Thus, UOWC is seen as a complementary technology rather 

than alternative to the existing technology in underwater wireless 

communications. 

Generally in UOWC, either laser or light emitting diode (LED) sources are used 

as the transmitter depending on the application. Laser-based systems are 

preferred for power efficient and high data rate links. Recent work by Oubei et 

al. demonstrated that 4.8 Gbps can be achieved at a distance of 5.4 m using 

QAM-OFDM [6]. Despite the high data rates achieved by laser based links, they 

face considerable challenges to maintain accurate pointing and tracking since 

laser beams are highly collimated.  

In order to relax this pointing requirement, a diffuse source such as LED is 

used. Additionally, LED-based systems are also favoured due to their low 

power consumption, low operating voltage, long lifetime and low cost [7]. To 

increase the power of LED based system, normally array configuration is used. 

The comparison of laser and LED is summarised in Table 1.1. 
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From the literature survey conducted in Chapter 2, it can be said that most 

UOWC systems are still at the research stage. However, there are a few 

commercial products that are available on the market. Penguin Automated 

System Inc. developed a tele-submarine built using 70 LEDs providing 120 

field-of-view (FOV) and data rates up to 100 Mbps [8]. Another product called 

BlueComm, also based on LEDs, was developed by Sonardyne International is 

capable of transmitting a maximum of 20 Mbps over a range of 200 m [9]. 

Ambalux Corporation also uses an array of high power LEDs with highly 

sensitive receivers in the design of their product. The device is capable of 

transmitting at 40 Mbps over a 40 m range. They used an external power 

supply of

Table 1.1: Laser and LED characteristics. Adapted from [11]. 

Characteristics Solid-state Laser Laser diode LED 

Optical spectral 
width 

Narrow 0.1-50nm 25-1000nm 

Modulation 
bandwidth 

~kHz to ~GHz ~kHz to ~GHz ~kHz to ~MHz 

Power 
High power 
>1 W 

Low power <1 W  
(unless arrayed) 

Low power <1 W 
(unless arrayed) 

Beam divergence Narrow (<10) Narrow (<10) Broad (>15) 
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1.1.1 Areas of applications 

The unseen underwater world is an important source to all living organisms. 

Thus, communication underwater is believed to be an essential medium for 

ocean explorations and observations. One main example of applications is in 

the underwater wireless sensor network (UWSN). UWSN consists of a large 

number of statics and mobile sensor nodes.  These nodes communicate and 

collaborate with each other to perform a specific task, such as sensing, 

measuring, transmitting and collecting data. The mobile nodes can also be used 

to locate and hover above the static nodes for data muling and to perform 

network maintenance functions, such as deployment, relocation, and recovery 

[12]. Figure 1.1 illustrates this concept. 

Other than that, remotely-operated vehicles (ROVs) and autonomous 

underwater vehicles (AUV) are used in various fields in subsea operations, 

such as in real-time data transfer, surveillance, maintenance and inspection of 

underwater equipment.  Listed below are some areas where UOWC can be 

applied. 

 Ocean biology ⇒ Observing and monitoring underwater biological 

changes, such as the effect of human generated pollutants and global 

warming on marine biology.   

 Environmental monitoring and sensing ⇒ Monitoring and collecting 

data  (water, temperature, pH, turbidity, pressure, etc.). 
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 Ship hull  and equipment monitoring ⇒ Maintenance and repair work. 

 Military ⇒  Coordinating missions, controlling assets and transferring 

data.    

 Disaster prevention ⇒ Measuring seismic activity, providing tsunami 

warnings and investigating seaquakes. 

 Underwater mining ⇒ Teleoperation and determining positions 

accurately. 

  

Figure 1.1: Illustrations of underwater vehicles’ communication with sensor nodes. 
Picture taken from [13] . 

 

1.2 Motivations and aims 

Motivated by the tremendous benefits that UOWC can offer, researchers in 

academia and industry have contributed significantly in exploring the 

underwater domain. Various aspects of work have focused on understanding 
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and developing UOWC systems, which will be detailed in Chapter 2. Despite the 

fact that diffuse sources such as LEDs have low efficiency compared to laser 

based transmitter, they are widely used in building the prototype for UOWC 

since they require less pointing and tracking accuracy. Furthermore, this kind 

of transmitter is suitable for broadcast-type links where a zone of 

communication can be established. In such scenarios, high bandwidth 

communication is achieved as long as the receiver is located within the 

coverage area defined by the illumination area of the light beam.  

Even though a considerable amount of experimental work on diffuse systems 

has been reported, little has been done in characterising diffuse links 

comprehensively. While there are several works on channel modelling and 

characterisation for both collimated and diffuse links, a more detailed 

understanding of how diffuse links are different to collimated links is needed. 

For example, a method to predict the transition between minimal scattering 

region and multiple scattering region for collimated beam has been presented 

in [14] but little has been discussed regarding diffuse links. This transition 

region is used to predict the bandwidth performance which is useful for 

system designers in optimising the link. Thus, the study on parameterising the 

transition regime for diffuse links is expected to fill this gap. Apart from that, 

little is known about the angular dispersion of diffuse links in various types of 

water as most of the studies use small angle approximation (SAA) to model the 

behaviour of light underwater. Due to the wide beam divergence of diffuse 

beams, the angular dispersions are expected to be more significant. 
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Information about angular dispersions is believed to be useful for  the  receiver 

FOV design. 

Thus, comprehensive and accurate channel modelling and characterisation for 

diffuse beams are needed to maximise their potential. As such, the primary aim 

of this thesis is to investigate the performance of the diffuse link in various 

types of water with the main emphasis being on the characterisation of path 

loss performance, and spatial, temporal and angular dispersion. Additionally, a 

method to classify the diffuse links into three scattering regimes is explored 

and investigated. This will serve as a general guide for system designer in 

predicting the power and bandwidth performance. 

1.3 Contributions 

As a result of this research, the following contributions have been made 

1. Development of a simulation model for diffuse LOS communications 

links where analysis of on-axis and off-axis scenarios can be evaluated. 

The additional ability of the simulation model is that it is built with the 

purpose of investigating a zone of communication area at the receiver 

plane. Additionally, a different source distribution is introduced to the 

model to simulate diffuse beams, namely Lambertian distributions 

apart from Gaussian distributions. 
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2. An individual analysis of the path loss performance of unscattered light 

and scattered light is presented for diffuse beams, showing different 

behaviour in the attenuation rate. This results in the prediction of the 

distance at which the unscattered light drops to zero, as the transition 

point for minimal scattering regimes and multiple scattering regimes.  

3. A more accurate path loss performance using MC simulation for coastal 

and turbid water compared to the link budget equation, which 

underestimates the path loss performance due to the inability to 

incorporate the scattering effects. 

4. The analysis of scattering order probability for various beam 

divergences is presented and used in the characterisation of the 

scattering regime. As a result, the classification of the scattering regime 

for diffuse links is parameterised based on the link distance. From the 

scattering regime parameterisation, a better way of understanding link 

behaviour is understood. This classification will help the link designer 

to identify the potential and limitations of different operating schemes 

in order to optimise performance. 

5. The evaluation and analysis of impulse response, frequency response 

and scattering order probability are presented showing the correlation 

between them. The 3 dB bandwidth supported by the underwater 
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channel for various link locations is calculated to establish the 

performance limit of such systems. 

6. For the first time, the AOA for diffuse links at a wide range of distance 

and types of water is presented. This information will be beneficial to 

system designers in optimising the receiver FOV design. Several 

observations at off-axis locations are highlighted to show how AOA 

distribution is used to optimised the bandwidth performance. 

1.4 Outline of the thesis 

The rest of the thesis is structured as outlined below. 

Chapter 2 presents an overview of the UOWC, including a discussion on the 

different technologies that can be used to communicate wirelessly underwater. 

Then, some related works and contributions by other researchers are 

highlighted. The subsequent section presents an introduction to the physics of 

light in underwater environments, which includes a discussion on absorption 

and scattering as the two main cause of light attenuation. In addition to that, 

the radiative transfer equation (RTE), which is the main equation that governs 

the behaviour of light underwater, is introduced, highlighting its complexity in 

solving it analytically. Then, the widely used channel model, Beer Lambert’s 

law, is presented along with its limitations.  
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Chapter 3 focuses on the numerical modelling technique that is used in this 

thesis: MC (MC) simulation. Firstly, the theory and the principles of the MC 

method are discussed, highlighting its advantages and disadvantages 

compared to the experimental method and analytical method. The details of 

the sampling method and mathematical equations used in modelling the UOWC 

channel are described. A preliminary simulation is conducted to simulate 

different techniques used to model diffuse beams.  

Chapter 4 presents a detailed analysis of path loss performance and 

characterisation. The path loss performances for three beams divergences 

sizes are presented. By simulating the path loss performance for various 

ranges in three types of water and comparing the performance with reference 

to the attenuation length, a better picture of the attenuation performance can 

be obtained. A detailed investigation of how unscattered light and scattered 

light attenuate when using a diffuse beam is also explored. This leads to the 

identification of the transition point between the minimally scattered region 

and multiply scattered region for diffuse links. 

Chapter 5 investigates the effect of scattering on the temporal and angular 

dispersions by first exploring the scattering order probability for various beam 

divergences.  The scattering order is used as a parameter to classify the diffuse 

links into three regimes. From this classification, the temporal and angular 

dispersions effect are evaluated. Further investigation is done on studying the 
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impact of reducing receiver FOV on the bandwidth and scattering order 

histograms. 

Chapter 6 investigates the impact of receiver aperture sizes on the the 

scattering order histogram to evaluate the validity of using it as the parameter 

in classifying the scattering regime. Then, the impact of receiver aperture and 

FOV on the power received are also studied. Finally the chapter ends with the 

discussion of the performance trade-off in optimising the bandwidth 

performance by incorporating the effect of receiver FOV and aperture as a 

whole. 

Finally, Chapter 7 summarises the main contributions of this thesis and 

highlights several extensions for future work. 
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Background Research and Related Work  

2.1 Introduction  

Underwater wireless communication has attracted significant interest due to 

its wide-ranging applications in marine research, offshore industry, 

oceanography and the military. Currently, most underwater communications 

are based on acoustic waves and cabled systems. However, both acoustics and 

cabled technology have several limitations in terms of performance and 

maintenance.  As an alternative, optical and radio waves can also be used to 

communicate underwater. This chapter will provide a background on UOWC. A 

brief introduction to acoustic and radio underwater communication is 

presented to highlight its advantages and disadvantages. Then, recent research 

developments are presented. A background on the theory of light properties 

underwater is also discussed in detail as this is the foundation principle of the 

modelling and simulation work.  
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2.1.1 Acoustic communication  

Acoustic technology is a mature and robust technology currently used in 

underwater communication. Apart from being used in communication systems, 

acoustic technology is also used in imaging, positioning and navigation. The 

main advantage of acoustic technology is that it can send data at long range 

over several tens of kilometres with minimum attenuation. However, it suffers 

from multipath propagation due to reflections from the sea floor and surface 

and refractions resulting from varying sound speed, especially in shallow 

water [15]. Another disadvantage is that it is also prone to large Doppler shift 

resulting from relative mo ttion between the transmitter and receiver. It also 

has a large propagation delay (hundreds of symbols) due to the slow speed of 

sound and the attenuation is higher for higher frequencies. As shown in Table 

2.1, the highest bandwidth that can be provided by acoustic technology is 

several hundred Khz which is obviously not sufficient for video transmissions. 

Further discussion on the challenges of acoustic communication can be found 

in [16,17]. 

Table 2.1: The bandwidth supported for different ranges in typical acoustic 
communication system [18]. 

Range  Range (km) Bandwidth (kHz) 

Very long 1000 <1 

Long 10-100 ~2-5 

Medium 1-10 ~10 

Short 0.1-1 ~10-100 

Very short <0.1 >100 
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2.1.2 Radio frequency  communication 

Radio frequency (RF) waves are defined as waves with a frequency of less than 

300 GHz. The propagation of RF waves in water is different from RF waves in 

air because of the high water electrical conductivity at high frequency. Thus, 

most of the commercial radio equipment in the MHz and GHz range cannot be 

used in  an underwater environment due to this high attenuation. For example, 

the attenuation for 2.4 GHz radio waves in seawater is around 1685 dB/m 

when the average conductivity of seawater is 4 S/m [19] . Lloret has done 

some experimental measurements by using 2.4 GHz in the unlicensed ISM 

(industrial, scientific and medicine) band in an underwater environment 

where they managed to cover a distance of 16-17 cm at frequency 2.4 GHz 

using BPSK and QPSK modulations [20] . 

 In [15], the optimum frequency range (3-100 MHz) was identified for light 

transmission from air into water for depths less than 5 m. Due to this, it is only 

suitable for very short range applications, such as control and telemetry, for 

example in the oil and gas industries, and oceanographic research. Table 2.2 

depicts the data rates achievable with respect to the communication range. 

Further details on RF communication underwater can be found in [21] .  
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Table 2.2: Data rates and ranges of underwater RF communications.Table adapted 
from [21]. 

Range  Seawater Freshwater Applications 

< 10 m >8 kbps > 3 Mbps AUV docking,  diver’s personal 
network 

50 m 300 bps 150 kbps Networks, diver conversation 

200 m 25 bps 9 kbps AUV Control, networking 

> 1 km <1 bps <350 bps Deep water telemetry 

2.1.3 Optical communication 

A special characteristic of visible light underwater is that it can travel through 

water with significantly lower attenuation than the rest of the electromagnetic 

(EM) spectrum. Figure 2.1 depicts the absorption coefficient of the EM wave 

from 100 nm-1 mm. As can be seen, most of the EM wave is highly absorbed by 

water except a small window in the visible light range. The lowest attenuation 

of pure seawater occurs at wavelength in the 430 nm range [22]. The red 

wavelengths can penetrate to approximately 15 m in the ocean while blue can 

penetrate only a few hundred metres in the clearest waters and much less as 

turbidity increases. Thus, optical waves are suitable for short range 

applications (<200 m) and will be a complementary technology to the acoustic 

technology rather than competitive. Table 2.3 provides the comparison for the 

main parameters for the three types of technology while Table 2.4 summarises 

their advantages and disadvantages. 



16 

 

 

Figure 2.1: Absorption coefficient for wavelength from 100nm-1 mm [23]. 

 

Table 2.3: Properties of optical, acoustic and RF technology. 

Carrier/Features Acoustic  Radio  Optical wireless 

Bandwidth ~KHz ~100Hz ~ GHz 

Speed  1.5103 m/s 2.24108 m/s 2.24108 m/s 

Attenuation Depends on 
frequency 

High Depends on 
turbidity 

Range 20 km 10m <200 m 

Antenna /receiver 
size  

0.1m 0.5m 0.1m 

Power consumption High Low  High for laser 
Low for LED 

Latency High Low Low 

Multipath  High Low Low 
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Table 2.4: Comparisons of different communication carriers underwater [21] . 

Technology  Advantage  Disadvantage  
 
Acoustic  

 
 Mature technology 
 Range up to 20 km 
 Energy efficient 

 
 Limited bandwidth 
 High propagation delay 
 Impact on marine life 
 Multipath and fading  
 Poor performance  in 

shallow water 
 Temporary losses of 

connectivity due to 
shadowing  

 High cost 
 Prone to failures due to 

corrosion 

 
RF  

 
 Immune to acoustic noise 
 No multipath effect 
 Unaffected by turbidity 

 
 Limited range through 

water 
 Antenna size is very 

large 
 Require high power 
 Susceptible to 

electromagnetic 
interferences 

 
Optical  

 
 Ultra-high bandwidth 
 Low system cost 
 Very secured 
 System size is very small 

and power efficient 

 
 Range is short 
 Need precise alignment 
 Susceptible to water 

turbidity 
 Susceptible to 

background illumination  
 

2.2 Related research  

Historically, research on using lasers for undersea communications started as 

early as the 1970s and 1980s pioneered by Karp  for submarine to satellite 

communication using laser in the blue/green range [24, 25]. Since then, there 

has been extensive work done to explore optical wireless communication 
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underwater. This is especially motivated by the advancement of semiconductor 

laser and LED technology in developing high power, high bandwidth sources 

and high sensitivity receivers. Recently, a group of researchers reported blue 

and green GaN-based LED with modulation bandwidths of 225 and 463 MHz 

respectively [26]. Generally, research interest in UOWC can be classified into 

three major areas; namely channel modelling and characterisation, system 

design and development and modulation and networking study. The next 

section will present the works in the first two areas. 

2.2.1 Work on channel modelling and characterisation 

The modelling and characterisation of UOWC is the main step towards 

understanding the behaviour of the channel in order to implement the UOWC 

system successfully. There has been a significant amount of work conducted 

over the years in this area, experimentally, analytically or numerically 

(simulation). In terms of experimental work in characterising the underwater 

channel, the pioneering work has been conducted by a team in Naval Undersea 

Warfare Centre, USA [27, 28].  From the laboratory test conducted, the 

feasibility of the system operating in MHz range was demonstrated. At Naval 

Air Systems Command (NAVAIR), Cochenour and his team have been doing 

extensive experiments since 2006. Initially, they conducted an experiment 

based on a 3.66 m water tank for measuring temporal dispersion. From the 

preliminary results obtained from the experiment, they managed to prove that 

multiple scattering are not significant when the data rate is 1 Mbps. However 
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they highlighted that their observations were limited to a short distance of 

3.66 m and the pointing inaccuracies were only 5 [29]. Next in [18, 30] they 

investigated the spatial distribution and temporal dispersion and measured 

the beam spread function (BSF). They proposed a theoretical model for BSF 

which is accurate to 12 attenuation length (AL). In 2013, further effort was 

taken in conducting an experiment to characterise the temporal dispersion 

using a high dynamic range and high sensitivity equipment. The work was then 

expanded to study the effect of transmitter and receiver misalignment, 

receiver FOV and scattering particles on temporal dispersion. 

Apart from experimental work, there is also a considerable amount of work 

reported in modelling the UOWC using the MC method. This technique of 

modelling the underwater channel is preferred as it is simpler when the 

difficulties and high cost experimental setup can be avoided [31, 32]. This also 

solves the limited propagation distance issues and limited freedom in varying 

system parameters [33]. 

An early work pioneered by Jarutanawadilok used vector RTE that includes the 

polarisation effect in modelling the UOWC channel. In his work, MC simulation 

was used to quantify the effect of scattering by investigating the bit-error-rate 

(BER) performance [34]. Hanson and Radic also used MC simulation to 

measure the temporal dispersion in UOWC links apart from their experimental 

work [35]. They concluded that for moderate ranges a data rate of more than 1 

Gbps can be achieved. In [36], the impulse response of the underwater channel 
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was investigated by using semi-analytic MC to improve the efficiency of the MC 

simulation. His  simulation results were compared with the experimental data 

obtained in [37] where reasonable agreement was achieved. 

In [38] the path loss and frequency response of UOWC were studied in various 

types of water. The effect of receiver aperture and receiver FOV are 

investigated. They demonstrated that the FOV significantly affects the path loss 

and bandwidth. It was concluded that for a collimated beam several GHz 

bandwidth can be achieved for on-axis locations. Similarly, in [39], MC method 

was used to investigate the performance of diffuse channel. In their model, 

they incorporated several system variables such as transmitter (Tx) and 

receiver (Rx) characteristics. They studied the delay spread of the channel and 

concluded that it was negligible except in turbid water. In addition to that, the 

path loss performance and the bandwidth performance of reflective NLOS links 

were also investigated in [40, 41].  

 A closed form double Gamma function to model the impulse response for 

coastal and turbid water was proposed by Tang et al. in [42]. He used MC 

simulation to compare the results and observed agreement between them.  A 

further step was taken in [43, 44] in which a weighted Gamma function was 

proposed to model the impulse response of the UOWC multiple-in-multiple-out 

(MIMO) links.  
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In addition to the simulation works, few mathematical models have been 

developed in understanding UOWC. Doniec et al. proposed a signal strength 

model where he considered the source effects in the equation [45]. However, it 

is limited to clear water only. A mathematical formulation of MC model was 

proposed by Dalgleish et al. to calculate the impulse response over a wide 

range of operational and environmental scenarios. They also proposed a 

stochastic process detector noise model that shows good agreement with the 

experimental validation [31, 32 and 44]  .  

Contrary to most of the work done to model the channel horizontally, a vertical 

link is considered by Johnson et al. in channel modelling where a mathematical 

model to calculate the variations of the attenuation coefficient due to the water 

depth is proposed [47]. Recently, a stochastic model was proposed in [48] that 

can be used to study the spatial and temporal distributions of photons. This 

model includes ballistic photons, single scattering and multiple scattering in 

their derivations where it it can be treated as a generic model for UOWC. Table 

2.5 summarises the work done in channel modelling and characterisation 

highlighting their contribution. 

 

 

 



22 

 

Table 2.5: Summary of works on channel modeling and characterisation. 

 

Year Author Method Links 
Contributions 

(Parameter 
studied) 

2008 Hanson [35] 
MC 

Experiment 
Collimated 

LOS 
Impulse Response 

Path Loss 

2008 Jarutanawadilok [34] Vector RTE 
Collimated 

LOS 
Path Loss 

BER 

2012 Cox [38] MC 
Collimated 

LOS 

Path Loss 
Frequency 
Response 

2012 Cochenour [14] Experimental 
Collimated 

LOS 
Diffuse NLOS 

Frequency 
Response 

Beam spread 
Function 

2013 Gabriel [39] MC Diffuse NLOS 
Path Loss 

Impulse response 

2013 Li [36] 
Semi analytic 

MC 
Collimated 

LOS 
Impulse response 

2013 Doniec [45] 
Experimental 

Analytical 
Diffuse NLOS Signal Strength 

2013 Tang [40] MC Diffuse NLOS Impulse response 

2013 Johnson [47] 
Analytical  
Numerical  

Experimantal 
Collimated 

Path Loss 
(vertical) 

2014 Dalgleish [31] 
Analytical 

MC 
Experimental 

Collimated Impulse response 

2014 Dong [44] MC Diffuse MIMO Impulse response 

2015 Zhang [48] Statistical General model 
Path loss 

AOA 
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2.2.2 Work on system and hardware design 

Apart from the research work dedicated to understanding the channel 

described previously, there are also several experimental works that have 

been conducted in developing UOWC systems with the aim of understanding 

the channel or designing a system prototype for specific applications. 

Normally, the experiments are conducted in laboratory water tanks due to the 

difficulty of performing experiments in the ocean [49].  

The first experimental work on laser-based systems was reported in [28]. In 

their work, green wavelength (514-532 nm) was used to achieve a data rate of 

100 MHz with a 45 m range. In [35], Hanson and Radic successfully established 

1 Gbps error free transmissions at 2 m path using a 532 nm laser diode. 

Recently, a team of researchers from the University of Yamanashi successfully 

transmitted a 1.45 Gbps intensity modulation/direct detection – orthogonal 

frequency division multiplexing (IM/DD–OFDM) signals over a 4.8 m range 

[50]. A higher data rate of up to 4.8 Gbps has been demonstrated by Oubei et al. 

by using quadrature amplitude modulation – orthogonal frequency division 

multiplexing (QAM-OFDM) signals for a slightly longer range of 5.4 m [6, 51].  

Generally, there are several large research groups that have contributed to the 

development of UOWC experimentally. The next section will briefly highlight 

their published works with Table 2.2 summarising some of the work done by 

these groups. At Woods Hole Oceanographic Institution (WHOI), several works 
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have been published since 2004.  By using easily available technology, Schill et 

al. developed an optical communication transceiver using an Infrared Data 

Association (IrDA) physical layer for communication between a swarm of 

robots [19]. The infrared LED was substituted with high power green or blue 

LED to suit underwater applications. In 2006, Farr et al presented the design of 

an optical modem based on an omnidirectional source and receiver. The 

omnidirectional source consisted of 6 LEDs in a hemispherical orientation with 

FET used in the driver circuits while the receiver used PMT [13]. 

At the University of Genoa, Italy, a series of research on UOWC was conducted 

by Anguita and team. In [7] a prototype of underwater OWC systems was 

developed by adapting the current technology available for Underwater 

Wireless Sensor Network (UWSN). Transmission at a range of 1.8 m was 

achieved at 100 kbps . Further work was taken by this group in implementing 

the UOWC by building an omnidirectional transmitter using LED and designing 

the hardware architecture using Hardware Description Language (HDL). The 

system was tested for point-to-point communication but will be further 

developed to pave the way for omnidirectional transmitters [52]. Apart from 

that, they also proposed a simulation model as a theoretical model for the 

underwater system. The simulation model focused on two aspects, namely the 

light distribution and propagation in water and the communication 

characteristics [53]. 
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At Massachusetts Institute of Technology (MIT), a prototype of a modem called 

AquaOptical has been developed for three different ranges, namely short 

range, long range and hybrid. From the evaluation of the modems, a maximum 

data rate of 1.2 Mbps is achieved in clear water [54]. Further work was carried 

out by Doniec et al on the design and implementation of an underwater data 

muling system. An underwater robot and a high bandwidth optical underwater 

system, which is integrated with existing acoustic communications systems, 

was demonstrated [55]. In [49],  an integrated system of optical wireless and 

acoustic systems was built to perform several functions for underwater 

navigation and focuses on sensing, data collection and data retrieval. They 

have successfully demonstrated the implementation of their design. They also 

developed the first prototype for an underwater sensor network which has 

been successfully tested [12]. 

At North Carolina University, several researchers have conducted experiments 

in developing an underwater system based on LED and laser and investigated 

the performance of underwater links under different water conditions. Initial 

work was conducted by Chancey in building an UOWC system using a 1 W LED 

as the transmitter and a PD as the detector [56]. In [57], a system using a 

combination of laser and PMT as the transmitter and receiver that can achieve 

1 Mbps using NRZ format was developed. A similar data rate was achieved by 

Simpson in  , by using LED as the transmitter and PD as the receiver, which is 

smaller and cheaper than the previous systems [58]. Later, Simpson developed 

compact smart transmitters and receivers for underwater optical wireless 
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communications where a smart receiver was designed to have a segmented 

large FOV and has the ability to estimate the angle of arrival  [59].  

To summarise the work presented by all the researchers, Table 2.6 highlights 

the achievements in terms of range and data rate that are obtained from their 

work. From the table, it is evident that bandwidths higher than several MHz 

can be achieved in most of the systems designed. Several GHz is also possible 

by using a laser source with a shorter distance. 
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Table 2.6: Summary of experimental works in UOWC syatems. It indicates the maximum data rate achieved, distance, source, modulation 
and turbidity level. 

Year Name Data Rate Distance Source/Receiver 
Signal Type/ 
Modulation 

Turbidity / types of water 

1992 Snow [28] 50 Mbps 9 m Laser/ APD & PMT Pseudo random signal 
c= 0.6 m-1 

e-folding =2.7 m 

1995 Bales [60] 10 Mbps 20m LED/APD Unknown 
Clear water 

Unknown coefficient 

2000 Tivey [61] 14.4 kbps 5m LED/PIN PD IrDA 75% transmission 

2004 Schill [19] 57.6 kbps 1.71 m LED/PD IrDA 
Clear water 

Unknown coefficient 

2005 Chancey [56] 
 

10 Mbps 
12 m LED/PD Square wave  

Clear water 
Unknown coefficient 

2006 Farr [13] 5Mbps 91 m LED/PMT Square wave 
c=0.027 

e-folding = 36 m 

2008 Hanson [35] 1 Gbps 2m Laser/APD 
Externally modulated 

Laser 
e-folding = 8.3 m 

2008 Pontbriand [62] 5 Mbps 200m unknown Digitized waveform e-folding = 40m 

2008 Cox [57] 1 Mbps 3.66 m Laser/PMT NRZ 
Clear water 

Unknown coefficient 

2008 Simpson [63] 5Mbps 7.7 m LED/PMT & PD Square wave 
Clear water 

Unknown coefficient 



28 

 

*e-folding = the distance over which light intensity decreases by 1/e~0.37 [68]. 

2009 Brundage [64] 3 Mbps 13 m LED/PD TTL Fresh water 

2009 Anguita [7] 100 Kbps 1.8 m LED/APD DPIM 
Clear water 

Unknown coefficient 

2010 
 

Doniec [65] 
 

2.28 Mbps 50 m LED/ APD DPIM 
Clear water  

 e-folding =36 

2011 Baiden [66] 40 Mbps 10 m LED Uknown 
 

Clear water 
Unknown coefficient 

2013 Cossu [67] 58 Mbps 2.5 m LED/APD DMT 
Clear water 

Unknown coefficient 

2015 Nakamura [50] 1.45 Gbps 4.8 m 405 nm laser/APD IM/DD-OFDM 
Clear water 

Unknown coefficient 

2015 Oubei [51] 4.8 Gbps 5.4 m 450 nm laser diode QAM OFDM 
Clear water 

Unknown coefficient 
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2.3 Light properties in water  

The underwater world can be seen as a complex and dynamic environment 

which consists of water molecules, impurities such as suspended particles, 

dissolved particles, organic and inorganic matter [69]. All these underwater 

particles interacts with light and can be described using the optical properties 

of seawater.  This optical properties varies according to location, time of day, 

and organic and inorganic content, as well as temporal variations can be 

divided into two classes: inherent and apparent [22].             

2.3.1 Inherent optical properties 

The inherent optical properties (IOPs) of water are properties that depend 

only on the material properties of the medium itself and are independent of the 

ambient light field within the medium [70]. For example, IOPs are dependent 

upon the dissolved and suspended material in the water and the 

electromagnetic properties of the medium and independent of how a sample is 

illuminated. The main IOP includes attenuation coefficient c(), absorption 

coefficient, a(), scattering coefficient b(),  single scattering albedo O, index 

of refraction n, and volume scattering function (VSF). 

Figure 2.2 shows a diagram to illustrate the method used in defining the IOPs.  

It consists of a small volume V of water of thickness r where a collimated 
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beam with radiant power i() is directed at it. Some of the power is absorbed 

a(),  some is scattered s() at an angle  and the remaining power is 

transmitted through the mediumt(). 

 

 

 

 

 

 Figure 2.2: Geometry used to define inherent optical properties [22]. 

The spectral absorptance is defined as the ratio of the power that is absorbed 

to the total power incident . 
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Similarly the spectral scatterance B()  is the ratio of the scattered power to 

the incident power. 
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The spectral absorption coefficient a() can be defined as  

  1
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( )
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a m
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

  (2.3) 

and the spectral scattering coefficient b(), is 
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  (2.4) 

The spectral beam attenuation coefficient c(), is defined as  

𝑐(𝜆) = 𝑎(𝜆) + 𝑏(𝜆) (2.5) 

The angular scatterance per unit distance and unit solid angle, (,) is defined 

as  

𝛽(𝜓, 𝜆) = lim
Δ𝑟→0

lim
ΔΩ→0

𝐵(𝜓,𝜆)

Δ𝑟ΔΩ
= lim

Δ𝑟→0
lim

ΔΩ→0

Φ𝑠(𝜓,𝜆)

Φ𝑖(𝜆)Δ𝑟ΔΩ
   (𝑚−1𝑠𝑟−1)  (2.6) 

Where B(, ) is defined as the fraction of power that is scattered out of the 

beam through an angle   into a solid angle  centered on  as illustrated in 

Figure 2.1. s is the spectral power scattered into the given solid angle  and 

is defined as s(,)=Is(,). The incident irradiance is defined as 

Ei()=i()/A. Substituting V=rA, which is the volume of the water , gives 
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This equation is called the volume scattering function (VSF) and can be 

interpreted as the scattered intensity per unit incident irradiance per unit 

volume of water. 

The total scattered power per unit incidence irradiance and unit volume of 

water can be obtained by integrating (,) over all directions. This parameter 

is called the scattering coefficient. 

𝑏(𝜆) = ∫  (𝜓, 𝜆)dΩ = 2𝜋 ∫ 𝛽(𝜓, 𝜆) sin  𝑑𝜓
𝜋

0
   (2.8) 

The forward (bf) and backward (bb) scattering coefficients can be defined as  

𝑏𝑓(𝜆) = 2𝜋 ∫ 𝛽(𝜓, 𝜆) 𝑠𝑖𝑛 𝜓 𝑑𝜓
𝜋 2⁄

0
 (2.9) 

𝑏𝑏(𝜆) = 2𝜋 ∫ 𝛽(𝜓; 𝜆) 𝑠𝑖𝑛 𝜓 𝑑𝜓
𝜋

𝜋 2⁄
  (2.10) 

The scattering phase function 𝛽(,), is found by normalizing the VSF with the 

scattering coefficient. 

𝛽(𝜓, 𝜆) =  
𝛽(𝜓;𝜆)

𝑏(𝜆)
 (𝑠𝑟−1) (2.11) 
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The scattering phase function can be physically understood as the probability 

that the photon will be scattered in the angular direction . 

2.3.2 Apparent optical properties 

The apparent optical properties (AOPs) are properties that depend on both the 

geometrical structure of the light field and the inherent optical properties of 

the medium [22]. AOPs also depend on the distribution of light used to 

measure them. Examples include the system attenuation coefficient ksys, 

radiometric quantities such as irradiance reflectance, radiance reflectance, and 

attenuation coefficients for upwelling and downwelling irradiance. AOPs are of 

particular importance when considering the penetration of radiant energy to 

depths in ocean waters. 

2.4 Absorption 

Absorption is an irreversible process during which the photon energy is lost 

due to interaction with water molecules and particulates. The absorption 

process is highly dependent on the concentration and composition of the 

particles in the water and the absorption coefficient a() can be expressed as 

the combination of the absorption coefficient of various components given as 

[22]. 

W chl CDOM det( ) ( ) ( ) ( ) ( )a a a a a         (2.12) 
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Where aw() is the absorption coefficient of pure water, achl() is the 

absorption coefficient of chlorophyll,  aCDOM () is the absorption coefficient of 

colour dissolved organic material (CDOM) and adet() is the absorption 

coefficient due to detritus. Previously, Figure 2.1 shows the absorption 

coefficient in water for 100 nm to 1 mm. 

2.4.1 Absorption by pure seawater 

Absorption by pure seawater can be considered as the sum of absorption of 

optically pure water and absorption by the salts present in seawater. Water 

molecules heavily absorb red spectrum and infrared (IR) by ionisation, 

electronic excitation, or vibrational or rotational excitation of water molecules 

[56]. Figure 2.3 shows the absorption coefficient of pure water where it can be 

seen that pure water has the lowest absorption coefficient in the region 

between 400 nm and 500 nm.  

 
Figure 2.3: Absorption coefficient of pure water for 340-700 nm. Picture  taken from 

[11]. 
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2.4.2 Absorption by chlorophyll from phytoplankton  

Chlorophyll in phytoplankton absorbs a lot of visible light, especially the blue 

and red wavelengths (=430 nm and 665 nm) with very little absorption in the 

green, as illustrated in Figure 2.4 [22]. The concentration of chlorophyll 

depends on the concentration of phytoplankton, which varies with geographic 

locations, water type and water depth. 

 

Figure 2.4: Absorption coefficient due to phytoplankton. Picture taken from [71]. 

2.4.3 Absorption by coloured dissolved organic matter (CDOM) 

CDOM is also known as gelbstoff and is composed of decaying organic marine 

matter and primarily contains humic and fulvic acid. There are quite high 

concentrations in coastal water and low concentrations in oceanic water. It 

mainly absorbs the blue wavelength and its absorption decreases 

exponentially with wavelength, as illustrated in Figure 2.5. A model to describe 
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this phenomena for wavelength range 350 nm<<700 nm is given by the 

equation 

 ( )exp 0.014( )CDOM CDOM O Oa a         (2.13) 

Where aCDOM() is the absorption due to CDOM at reference wavelength often 

chosen to be 440 nm [22]. 

 

Figure 2.5: Absorption coefficient due to CDOM. Picture taken from [71]. 

2.4.4 Absorption by organic detritus 

Detritus is organic waste produced by dead plants and animals and has a peak 

absorption in the blue region of the visible spectrum. Similar to absorption by 

CDOM, the model to describe absorption by detritus is given as  
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 det det ( )exp 0.011( )O Oa a        (2.14) 

Where adet() is the absorption due to detritus at reference wavelength, O in 

this case is chosen to be 400 nm [22]. 

In general, the total absorption coefficient is high in the blue wavelength due to 

absorption by phytoplankton pigments and high in the red wavelength because 

of absorption by the water. 

2.5 Scattering 

Scattering happens when a photon’s path is deviated due to interaction with 

particulate matter in water. There is no change in energy but there is a change 

in the direction of propagation. Scattering in ocean water is peaked in the 

forward direction and can also have significant back scattering. Mobley divides 

the scattering in natural waters into three categories; molecular scattering, 

scattering by large particles and turbulent scattering [22]. 

The scattering coefficient b()  is defined as the fraction of energy dispersed 

from a light beam per unit of distance travelled in a scattering medium. The 

scattering coefficient of seawater b() is calculated as the sum of the scattering 

coefficient due to pure water, small particles and large particles. 

s( ) ( ) ( ) ( )w s l lb b C b C b       (2.15) 
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Where bw() is the scattering coefficient of pure water , bs()is the scattering 

coefficient of small particles , bl()is the scattering coefficient of large particles, 

Cs and Cl are the total concentrations of small and large particles.  

2.5.1 Molecular scattering in pure seawater  

Scattering in pure seawater is caused by the random nature of the molecular 

motion, such as due to varying local concentrations of sea salts in pure 

seawater. Figure 2.6 shows the scattering coefficient of pure water and pure 

seawater. The slightly larger value in scattering coefficient of pure seawater is 

due to the scattering of light with salt ions. From Figure 2.6, it can be concluded 

that scattering in pure seawater has insignificant effect to the total attenuation 

[11]. 

 

Figure 2.6: The scattering coefficient for pure water and pure seawater. Picture taken 
from [11]. 
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2.5.2 Scattering by large particles )(   

Generally, the scattering in seawater is dominated by the scattering caused by 

organic and inorganic particles. These particles are typically 10 times larger 

than the wavelength of the light [22]. 

2.5.3 Turbulence scattering 

Turbulence scattering is caused by the random change in refractive index, n of 

seawater which depends on temperature, salinity, pressure and wavelength 

[72]. This causes the the light beam to fluctuates temporally and spatially; a 

condition which is usually known as scintillations [73].  

Unlike the effect of turbulence in atmospheric environment which has been 

studied extensively, the investigation on the effect of turbulence on the optical 

beams in underwater environment is still at its infancy. In [74] it is found that 

the refractive index in seawater does not fluctuate much especially in very 

short range (~10 m) links; thus turbulence can be neglected in such links. 

However, for longer ranges, the effect of turbulence has shown to be significant 

as reported in [74, 75]. A more detailed study on turbulence in underwater 

environment can be found in [76-78]. 
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2.5.4 Single scattering albedo, ωO 

It is defined as the ratio of the scattering coefficient to the attenuation 

coefficient as 

  
)(

)(






c

b
o     (2.16) 

In water where scattering dominates, the value of  albedo, o will be  near one 

and when absorption dominates, the value will be near 0. It can also be 

understood as the probability of the photon to be scattered rather than 

absorbed. 

2.5.5 The effect of scattering on  underwater communication 

The impact of scattering on UOWC links can be explained by three mechanisms 

namely spatial, temporal and angular dispersions [80]. 

 Spatial dispersion is caused by the spreading of the beam due to the 

multiple scattering process. This causes the photon density to decrease 

at the receiver position. For a diffuse beam, photons that arrive at the 

receiver are spatially dispersed due to its initial distribution and also 

due to the underwater environment [30, 80].  
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 Temporal dispersion is caused when the light beam reaches the 

receiver at different times. Due to this, there will be a path difference 

and time delay which can limit the bandwidth [30, 80 and 81].  

 Angular dispersion is the spread of the angle of arrival of the photons 

due to scattering underwater. In seawater, scattering normally occurs at 

small forward angles which resuts in small angular dispersion as will be 

shown in the next section. However, in turbid water where scattering 

dominates, angular dispersion will show significant effects [83]. 

2.6 Volume scattering function 

As presented in section 2.3.1, VSF is an important parameter that determines 

scattering in seawater. Several researchers have conducted measurements of 

VSF. The next section describes the VSF measured by Petzold and two 

analytical equations to model VSF. 

2.6.1 Petzold scattering function 

Petzold phase function is the most cited and frequently used in modelling 

scattering underwater. In [70], it is regarded as a representation of typical 

ocean water. It is based on measurements conducted in the early 1970s for 

three types of water; namely turbid water, coastal water and clear water [84]. 

The turbid water measurement was conducted at San Diego Harbour, 

California, the coastal water measurement was obtained from the coastal water 
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in San Pedro Channel, California and the clear water from the Tongue of the 

Ocean, Bahamas Islands. Figure 2.7 depicts the VSFs for the  three types of 

water along with the VSFs for pure sea water and Maalox antacid which is used 

as the scattering agent in laboratory experiment. It can be seen clearly that the 

VSFs are peaked in the forward direction indicating that most of the light will 

scatter at small forward angles. 

 

Figure 2.7: The VSFs of various types of water measured by Petzold.  Picture taken 
from [11]. 

2.6.2 Analytical phase functions 

Several analytical phase functions have also been proposed with two of them 

are discussed in the next section. 
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 Henyey-Greenstein (HG) function  

Historically, this function was proposed in 1941 to be used in describing the 

scattering angles caused by interstellar dust clouds in astrophysics [85]. Due to 

its simplicity, it is also used widely in approximating angular scattering in 

biological tissues [86]. Some researchers also use it in underwater 

environments but highlighted the fact that it is not accurate at small angles less 

than 20 and large angles larger than 130 [39, 86]. 

The HG phase function is given by the equation 

2

2 3/2

1 1
( , )

4 (1 2 cos )
HG

g
p g

g g


 




 
    (2.17) 

Where  is the scattering angle, g is the HG assymmetry parameter that 

depends on the characteristics of the medium and is equal to the average 

cosine of the scattering angle  over all scattering directions. The value of g 

can be understood as the amount of light that is scattered in the forward 

direction [88]. If g=0, it indicates scattering is isotropic and if g=1, it indicates 

very forward scattering [89]. The effect of different g is illustrated in Figure 

2.8.  
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Figure 2.8: Comparison of Petzold phase function with HG phase function for various g 
values. Picture taken from [71]. 

 

 Two-Term Henyey-Greenstein (TTHG) phase function 

This phase function is modified from the original HG function by Haltrin [90]. It 

is more accurate than the original HG model but it is not as accurate as the 

phase function that is measured by experiment which is conducted by Petzold. 

The TTHG function is given by 

( , , , ) ( , ) (1 ) ( , )TTHG FWD BKWD HG FWD HG BKWDp g g p g p g           (2.18) 

Where  is the weight of the forward-directed HG phase function, gFWD and 

gBKWD are the asymmetry factors for the forward and backward-directed HG 

phase function respectively.  
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2.7 Attenuation length  

The product of attenuation coefficient, c and transmission distance, z is called 

attenuation length (AL) and it is a unitless term . Note that AL is the argument 

of the exponential component in BL law . At 1 AL the received power would be 

decreased by a factor of 1/e, or 63%.  Several publications use this term in 

order to compare different system performance especially at various water 

turbidities and transmission distance [91] .  

2.8 Channel model 

2.8.1 Radiative Transfer Equation (RTE) 

Radiative Transfer equation is used to describe the energy conservation of 

light that is propagating through inhomogeneous media. In this theory, 

radiance is treated as a ray of light where the wave properties of light are not 

considered . In general RTE relates the IOPs to the radiance distribution and is 

given in equation 2.19 [11]. 
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Where v is the speed of light, c is the beam attenuation coefficient , t is time, n 

is the direction vector, r is the position vector, and  is the divergence 

operator with respect to position r, I is the radiance,  is the VSF and E is the 
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source radiance. In general the left hand side (l.h.s) of the equation describes 

the change of intensity over a differential length. The first term on the right-

hand side (r.h.s) describes the losses due to absorption and scattering over a 

path. The second term on the (r.h.s) is the gain due to the contribution of any 

scattered intensity from other directions [92]. 

Technically, the RTE is linear integrodifferential equation because it involves 

both an integral and derivative of the unknown radiance. Besides that, the 

nonlinear scattering phase function adds the complexity in solving this 

equation. Due to this fact, it is quite difficult to solve the equation analytically 

without making several approximations and simplification [93].  

Several researchers use various methods in solving the RTE such as using 

small angle approximation (SSA) or even neglecting scattering totally. However 

the assumption made will limit its applicability to a certain simple condition 

[94]. Due to this, numerical techniques such as  MC simulation is a preferred 

choice in solving RTE for realistic situations. Compared to solving the RTE 

analytically, less simplifying approximations are required using MC 

simulations. The details of the MC method used to solve RTE is discussed in 

Chapter 3. 
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2.8.2 Beers-Lambert (BL) law 

Most of the works on underwater wireless optical communication (UOWC) use 

a simple model for beam propagation where the effect of scattering and 

temporal dispersion are ignored. In this simple model light is attenuated by 

water where its intensity decreases due to absorption and scattering caused by 

water molecules and dissolved particles. The power received can be calculated 

by using Beer-Lambert (BL) law as  [11] 

exp( ( ) )oP P c z 
 (2.20) 

where Po is transmitted power, z is the path length and c() is the beam 

attenuation coefficient.  

The beam  attenuation coefficient, c() is the ratio of energy absorbed or 

scattered from an incident power per unit distance as described in section 2.3 . 

It is the measure of the light loss from the combined effects of scattering and 

absorption in an attenuating medium. The beam attenuation coefficient c() is 

calculated as the sum of the absorption coefficient a() and scattering 

coefficient b() as shown in equation (2.5). 
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2.8.3 Limitations of BL law 

1. It only considers the effect of absorption and single scattering. It 

assumes that photons that undergo scattering are lost and not counted 

in the received energy. In other words, multiple scattering is ignored  

[80, 90]. 

2. It is only valid for collimated LOS links when the transmitter and 

receiver are  perfectly aligned so it cannot be used for misalignment 

conditions or any other geometry [30]. 

2.9 Water types 

There are several standards on how to classify water. In this thesis, the water 

types used are the ones reported by Petzold in [84]. Table 2.7 shows the 

various water types with its coefficients. 

Table 2.7: Various water types with the coefficients. Table is reproduced from [22] . 

Water type a(m-1) b(m-1) c(m-1) Albedo 

Pure sea water 0.0405 0.0025 0.043 0.058 

Clear ocean 0.114 0.037 0.151 0.25 

Coastal ocean 0.179 0.219 0.398 0.55 

Turbid harbour 0.366 1.824 2.190 0.83 
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2.10 System configurations 

Generally UOWC links can be classified as line-of-sight (LOS) or non-line-of-

sight (NLOS) which are based on the existence of a direct path between the 

transmitter and the receiver. In addition to that, the transmitter and receiver 

can be arranged in several other topologies depending on the requirement of 

the systems. The next section will describe these configurations. 

2.10.1 Line-of-sight (LOS) links 

For UOWC links the point-to-point collimated LOS link is the most energy 

efficient because the power is concentrated in a narrow beam as shown in 

Figure 2.9(a). Due to the nature of the source, laser is normally used in LOS 

links where a very high bandwidth can be achieved. However the flexibility of 

the LOS system is restricted because accurate alignment of the transmitter and 

receiver are required which complicate the implementation. In clear water 

accurate pointing and tracking is very crucial for LOS links as misalignment can 

cause a huge loss in the communication link [95]. However, the LOS links in 

turbid water are less prone to misalignment as the multiple scattering in turbid 

water will cause the collimated beam to be broadened and communication 

links can still be established. Recently several experimental works have 

demonstrated bit rates in the Gbps range using laser beams [50, 51]. However, 

the range is limited to less than 10 m due to the limitation in the experimental 

setup. 
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2.10.2 Non-line-of-sight (NLOS) links 

NLOS links can be achieved by intentionally diverging the transmit beam or by 

using arrays of high divergence sources like LED as depicted in Figure 2.9(b). 

The advantage of the NLOS system is in the increase of link robustness because 

the need for aiming and tracking mechanisms is reduced. Several works on 

using omnidirectional transmitters and receivers have been produced. The 

longest distance of 200 m at 5 Mbps was reported by Pontbriand in very clear 

water (c=0.025) and in turbid water (c=1.25) they managed to transmit at 

1Mbps at 30 m [62]. A spherical transmitter built using 100s of LEDs with 120 

FOV was developed by Baiden which is able to transmit video data at 1.5 Mbps 

at 15 m in a turbid lake. However the exact turbidity level is not reported [96]. 

A comparison between diffuse NLOS and collimated LOS link were investigated 

experimentally in [5]. It is demonstrated that a diffuse NLOS link requires more 

than 30 dB of optical power than collimated LOS links to achieve a similar 

signal level at the receiver. An interesting finding was observed when the 

transmitted power is the same for both collimated and diffused channel for AL 

greater than 15. In [97], the power distribution and frequency response of both 

types of links are discussed. 

2.10.3 Retro-reflector links 

Retroreflector links are suitable for small devices or sensors where power is 

limited. In modulating retroreflective links, the interrogating system provides 
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the optical source and associated pointing hardware. It will target small 

devices such as a small passive optical retro-reflector which will modulate the 

reflected light back to the receiver. The geometry of this link is shown in Figure 

2.9(c). This type of link is prone to the unwanted backscattered light that will 

increase the noise level at the receiver [98]. In [99] a polarisation 

discrimination technique is used to solve the interference problem in retro-

reflecting geometry. In [100] a performance analysis of different link types was 

conducted and they observed that the modulating retroreflector is the most 

affected by the turbidity of the water . 

2.10.4 Reflective NLOS links 

A unique method of NLOS communication has been proposed by Arnon in 

[101] for situations where there are an obstacle blocking the path between the 

transmitter and the receiver. The geometry of this link is shown in Figure 

2.9(d). They found out that the number of photons received in a reflective 

NLOS links is too low compared to LOS links for a depth of 20 m. However, a 

reasonable BER of 10-4 can be obtained for NLOS links when the node is 

separated by 40 m. In [40], the path loss of reflective NLOS links is investigated 

by considering the effects of a random sea surface in clear water and coastal 

water. It is found that the path loss performance degraded severely as the 

speed of the wind increased. In clean ocean, the path loss in reflective NLOS 

links is approximately -40 dB and dramatically reduced to -70 dB when 

considering wind blown surface waves of 3 m/s. In [41], the 3 dB channel 
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bandwidth is estimated to be at approximately 20 MHz in  clear water for 20 m 

communication range. 

 

Figure 2.9: Types of link configuration. 
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2.11 Conclusion 

This chapter started with a brief introduction on various technologies that can 

be used in UWC, highlighting their advantages and disadvantages. Then, a 

literature review of the research in UOWC was presented with emphasis on the 

latest advancements and achievements. The background theory and principles 

of light propagation underwater was discussed in detail as this will be the 

underlying concept for the channel modelling and characterisation. The 

existing channel model for UOWC was presented and its applicability and 

limitations were highlighted. The different system configurations that can be 

implemented in UOWC were also presented.   
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Modelling of the Underwater Optical 

Wireless Communications Channels 

This chapter discusses MC method in modelling light transport in underwater 

environment. Firstly an introduction to the concept, advantages and 

applications of MC method are highlighted. Then the principles, theories and 

mechanics of the MC simulation are presented along with the mathematical 

equation and probability theory that are used in modelling the underwater 

channel. Then, the simulation parameters and simulation geometries used in 

this thesis is presented. 

3.1 Overview of Monte Carlo numerical simulation  

Historically MC method was first reported in 1949 by a group of researchers 

from Los Amos laboratories [102]. Interestingly there is no exact definition of 

MC simulation that is well established [89]. In general, this technique uses 

statistical modelling where random sampling and probability theory are used 

to estimate mathematical equations. In other words, MC simulation uses the 
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known probability of an individual event to predict the probability of the entire 

event. Since then, it has been widely used in solving various problems in 

mathematics, physics, engineering, biological science, finance, economics and 

computer graphics.   

In the field of OWC, MC methods are used extensively in solving RTE. Most of 

the MC simulations in communication are adapted from the MC simulation in 

biomedical applications. Several researchers use MC simulation in modelling 

outdoor channels in various types of environments [103], in indoor infrared 

(IR) communication channels [104] and also in ultra-violet (UV) NLOS 

communications [105]. In UOWC, MC method is used to simulate the 

interactions of photons with the sea water and the random sea surface to 

determine the exact photon trajectories and distribution. The first use of MC 

method in UOWC was presented by Hanson et.al [35]. 

In general MC simulation is known for its simplicity and versatility in 

implementation using a computer either in two dimensions (2D) or three 

dimensions (3D) scenario. This is especially beneficial in simulating scattering 

underwater which is a complex process. It also does not require complex 

mathematical knowledge. Most importantly, it is the best choice when 

experimental method is too expensive, time consuming and difficult to handle 

[31]. Moreover, the parameters can be varied easily according to real 

configurations. Specifically in UOWC, it can be used to estimate the temporal 

effect and impulse response which is difficult to measure. The time delay for 
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short ranges is normally less than 1 ns and the sensitivity of PMT is slightly 

larger  than 1 ns [33]. Compared to analytical method which is more complex 

in solving RTE, MC is a preferred choice as it is the most intuitive to 

understand . In the field of light transport in turbid media, MC method is 

considered the gold standard model which has the capability to provide exact 

solutions to the RTE [106]. 

Despite the advantages described above, MC simulation also has some 

drawbacks. Firstly, it is a very rigorous technique where a large number of 

samples must be generated as the accuracy is proportional to 1/√𝑁 where 𝑁 is 

the number of samples [88]. Since it has to trace millions individual photons 

for a better accuracy, it is quite slow and computationally inefficient. Moreover, 

the probability that the generated photons will reach the receiver is quite low  

causing a lot of photons that are being traced did not reach the receiver [107]. 

It is also not suitable for very small detector area as very few photons will 

reach the receiver. In terms of solving RTE, it does not provide the physical 

meaning relating to the RTE and there are no output equations from the 

simulations. In some cases, MC is not suitable where the wave nature (i.e. 

coherence or interference) of light is investigated [33]. 
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3.2 Assumptions in simulations 

Several assumptions have been made in implementing MC simulations. 

 Monochromatic light source - the light is assumed to be single 

wavelength.   

 Random scattering events - a pseudo random number generator 

generates random numbers which in turn generate random and 

independent scattering events. 

 Homogeneous medium - the scattering and absorption are uniform 

throughout the medium that results a constant attenuation coefficient. 

 Uniform index of refraction - the effect of turbulence that is caused by 

different index of refraction is ignored. 

3.3 Monte Carlo algorithm 

In MC simulation, light is modelled as the propagation of large group of   virtual 

photons or photon packets. However for simplicity, the term photons instead 

of photon packets is used in this thesis.  Each photon will be identified by its 

position, weight and direction. Once the photon is emitted, the photon will 

repeatedly move until it is lost or reach the receiver. This process will be 

repeated until sufficient photons are received at the receiver. The history of 

each photon will be recorded to be used in calculating the received power, 

impulse response and other parameters. It is interesting to note that this MC 
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simulation is not a simulation of real physical particles, as it is just a 

mathematical way to solve RTE [106]. Figure 3.1 shows the flowchart of the 

MC algorithm whose details are summarized in the following section [108]. 

 

Figure 3.1: Flowchart of the MC simulation algorithm 

Firstly the simulation starts by initializing all the parameters to the required 

value. Then the photon is launched according to the source distribution profile 

where the photon emission angle is generated by using probability distribution 
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function (pdf) of the radiation pattern of the source. The initial position of the 

photon is defined by its coordinate, x, y and z and the direction vector 𝜇𝑥 , 𝜇𝑦 

and  𝜇𝑧. Then it will move by a step size, s where it may be absorbed or 

scattered. The distance the photon travel between successive events, s  is 

determined based on the attenuation coefficient of the water. If the photon 

travelled outside the boundary, it is considered lost. When the photon interacts 

with other particle, some of the energy is absorbed and some is scattered into 

different direction. This is determined by the albedo 𝜔 of the water that can be 

viewed as the probability of the photon being scattered. The new direction of 

the photon after scattering can be calculated using the scattering phase 

function. If the photon reaches the receiver, its location, weight and total 

distance travelled are recorded. The process is repeated until all the photons 

have been launched. 

3.3.1 Coordinate system 

In this simulation, Cartesian coordinate (xyz) system is used. The transmitter 

and receiver are located at the xy plane, and the direction of propagation is in 

the z-axis. At the same time, spherical coordinate system is also used especially 

in modelling the source polar angles and scattering angles  and . For each 

photon propagation, the position and direction of the photon will be first 

defined locally and then transformed to the global coordinate system. Figure 

3.2 shows the trajectory of the photon propagation path in underwater 

environment. Any representation of direction must be made with respect to 
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this coordinate system where it is referred as absolute coordinate  system or 

global coordinate system. 

 

Figure 3.2: Illustrations of a photon propagation path in an underwater environment. 

3.3.2 Spherical coordinate system 

A moving spherical coordinate system is also used since it is easy to describe 

the scattering directions of photons in terms of polar and azimuthal angle. The 

z-axis is dynamically aligned with the direction of photon propagation. 

Figure 3.3: Spherical coordinate system. 
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3.3.3 Initial photon position 

A photon is represented by its 𝑥, 𝑦 and 𝑧 coordinates and also the directions 

cosines. Figure 3.4 shows the photon direction vector which is projected onto 

the 𝑥, 𝑦 and 𝑧 axis. The direction cosines are specified as 

xx  cos   (3.1) 

yy  cos  (3.2) 

zz  cos  (3.3) 

Where 𝜃𝑥 , 𝜃𝑦 and 𝜃𝑧 are the angles between the direction vector and the 𝑥, 

𝑦 and 𝑧 axis respectively. The direction cosines must satisfy  

1222  zyx   (3.4) 

 

 

 

 

Figure 3.4: Photon direction vector shown in Cartesian coordinate system. 
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3.4 Source modelling 

Modelling different types of sources involves modelling the polar angle and 

azimuthal angle of the source. Both angles are independent of each other and 

can be modelled separately. The azimuthal angle can be easily found as it is 

uniformly distributed on [0,2] whereas the polar angle must be generated 

according to the pdf that follows specific distribution. In this thesis, Gaussian 

and  Lambertian source distributions are used as the source emission pattern. 

The sampling rules for different beam profiles will be presented in the 

following sections. 

3.4.1 Gaussian source 

The intensity of Gaussian beam at the origin as a function of r is given as [109]. 
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Where 𝐼𝑂  is Gaussian beam optical intensity at the beam center,  𝑏 is the waist 

radius (1/e radius) of the Gaussian beam and 𝑟 is the radial distance from the 

beam centre. By normalizing the intensity profile,  
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The pdf describing the Gaussian beam profile as a function of 𝑟 is given in 

equation 3.7 

 r
b

b

r

rp 2

)exp(

)(
2

2

2

   (3.7) 

The cumulative density function (cdf),  𝑃(𝑟) is obtained by integrating 𝑝(𝑟) as 

follows 
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   (3.8) 

In order to find the radial distance, r of the beam, the cdf is evaluated to R 

where R is a random number that is uniformly distributed on the interval [0,1]  

 𝑃(𝑟) = 𝑅  (3.9) 

Rearranging the equation to solve for 𝑟 as a function of R yields 

 )1ln( Rbr   (3.10) 

Since the laser beam is modelled to have a very narrow divergence, a diverging 

lens is used to diverge the beam [38]. Thus the focal length 𝑓1 of the lens that is 

used to diverge the light is calculated based on the equation 
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b
f


1  (3.11) 

Where b is the beam waist radius, and div  is the divergence half angle. 

The polar angle of the generated photon can be defined as 

 
1

0
f

r
  (3.12) 

The azimuth 𝜙𝑂 is randomly chosen based on the uniform distribution [0,2] 

The starting point of the photon is 

𝑥𝑂 = 𝑟𝑂 cos 𝜙𝑂  (3.13) 

𝑦𝑂 = 𝑟𝑂 sin 𝜙𝑂 (3.14) 

The starting direction cosines  

𝜇𝑥𝑂 = 𝑠𝑖𝑛𝜃𝑂 cos 𝜙𝑂  (3.15) 

𝜇𝑦𝑂 = 𝑠𝑖𝑛𝜃𝑂 sin 𝜙𝑂  (3.16) 

𝜇𝑧𝑂 = cos 𝜃𝑂 (3.17) 
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Figure 3.5: Diagram showing the generation of Gaussian beam with a divergence. 

3.4.2 Lambertian source 

The radiation pattern of an LED can be generally modelled using the 

Lambertian pattern or also known as power cosine distribution where the light 

intensity of the LED has a cosine dependence on the angle of emission from the 

surface normal. The intensity of Lambertian source is given as  

 𝐼(𝜃) = 𝐼𝑂𝑐𝑜𝑠𝑚𝜃  (3.18) 

Where 𝜃 is the angle of irradiance from the normal of transmitter surface, IO is 

the intensity at the centre and m is the order of Lambertian emission that is 

defined as 
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Where 1/2 is the semi angle at half illuminance of an LED and m can be 

interpreted as the directivity of the beam pattern.  

Each ray has a polar angle generated with the pdf that follows Lambertian 

emission pattern of a source [109,110].  

The pdf of the polar angle is given as 

 𝑝(𝜃) = (𝑐𝑜𝑠𝜃)𝑚𝑠𝑖𝑛𝜃  (3.20) 

And the cdf is calculated as  

 𝑃(𝜃) = 1 − (𝑐𝑜𝑠𝜃)𝑚+1  (3.21) 

And by using inversion method , the polar angle can be calculated using the 

equation  

 𝜃 = cos−1( √𝑅
𝑚+1

 )  (3.22) 

Similar to Gaussian source, the azimuth angle is chosen randomly from a 

uniform distribution [0,2]. 

From the azimuthal angle, the starting coordinates for the photons can be 

calculated as (3.16) and (3.17). 
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3.4.3 Modelling elevated source : coordinate transformations 

In order to model a source whose z-axis is not aligned to Earth frame of 

reference, some transformations are needed in representing the direction 

cosines of the source with respect to the absolute coordinate system. It is easy 

if the source y-axis is aligned along the Earth’s x-y plane so that the initial 

direction cosines of the photon are related to the direction cosines of the 

source z-axis.  First, the direction angles of the source z-axis are defined as 𝜃𝑥𝑠, 

𝜃𝑦𝑠 and 𝜃𝑧𝑠  and the corresponding directions cosines are 𝜇𝑥𝑠 , 𝜇𝑦𝑠 and  𝜇𝑧𝑠 . The 

polar angle of the photons with respect to the source z-axis is defined as   and 

the corresponding azimuthal angle is . Note that these two angles are 

calculated from the source distribution described in section 3.4. Thus the 

direction cosines of the photon,  𝜇𝑥 , 𝜇𝑦 and  𝜇𝑧  with respect to the Earth frame 

of reference can be calculated as [70]. 
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The equation can be simplified as shown below when 𝜇𝑧𝑠 is very close to 1 
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3.5 Photon propagation 

After the photon is generated, the photon is moved by a distance defined by its 

step size and then scattered according to the VSF. 

3.5.1 Photon step size 

The photon step size is calculated by sampling the probability of the photon’s 

free path [89]. The photon step size is determined by the attenuation 

coefficient, c. The pdf for the attenuation of light with respect to the optical 

distance travelled is given by  

 0,)(   lelp l
  (3.25) 

The cdf is given by 
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l
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'
  (3.26) 

By using inversion sampling to sample the path length l  , let 𝑃(𝑙) = 𝑅  where 

𝑅 is a random  number from the uniform distribution over [0,1]. Solving for l , 

this becomes 

 RRl ln)1ln(    (3.27) 
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The photon path length is defined as csl  , where c is the attenuation 

coefficient and 𝑠 is the geometric distance between optical events, which can 

be calculated as  

 R
c

s ln
1

   (3.28) 

3.5.2 Photon weight 

A weight of 1 is assigned to each photon as it enters a medium. After each 

propagation step, the photon packet is split into two parts: a fraction is 

absorbed and the rest is scattered [112]. Thus the weight of the photon will 

change based on the percentage of energy being absorbed. By using albedo 

which is explained in Section 2.5.4, the fraction of the packet that is absorbed is 

1 − 𝜔. The new photon weight 𝑤 is given by 𝑤′ = 𝜔𝑤 which represents the 

fraction of the packet that is scattered. 

3.5.3  Terminating photons 

The energy of the photon will decrease to a very small value after going 

through absorption and scattering. Sometimes, in simulation the energy is too 

low to be calculated at the receiver. To speed up the simulation time, a 

minimum energy is set as a threshold value to determine whether the photon 

should be terminated or not. The photon is considered lost when the weight of 

the photon is below a certain threshold level. The value of the threshold level 
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must be chosen carefully because the simulation time will be too long if the 

value of threshold is too small and the accuracy will be low if the value is big. 

Different researchers chose different value of the threshold level. In [33], the 

threshold level is set to 10-10, in both [38,42]  it is set to 10-6 and  in [39] the 

threshold is set to 10-4. 

However the photon cannot be terminated just like that because it will violate 

the conservation of energy. Thus a method called Roulette is used to ensure 

that conservation of energy is obeyed and also to reduce the simulation time 

[38].  A parameter called roulette threshold, 𝛼 is defined to be any integer (i.e. 

10). Then the photon is given one chance in 𝛼 of surviving with a weight of 𝛼𝑤 

by using a random number R. If the random number is greater than the inverse 

of the rouletting threshold, the photon will be terminated. Otherwise, the 

photon will continue to move with a weight define by 𝛼𝑤.  
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3.5.4 Scattering directions 

The scattering angle is chosen from the VSF. There are several VSFs that are 

widely used as discussed in Section 2.6. In this thesis the VSF used is 
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determined experimentally by Petzold. In this method, the  polar scattering 

angle is obtained from the interpolation of the tabulated values in [84]. Since 

the scattering process is symmetry, the radial or azimuthal scattering angle ’ 

is chosen from the equation  

𝜙′ = 2𝜋𝑅  (3.30) 

Where R is a random number chosen on the interval [0,1]. The random number 

used in finding  ’  𝑖s be different from the random number used to find 𝜙′  to 

make sure that they both are independent random variables. 

3.5.5 Updating the direction cosines 

The new direction cosines must be updated with the chosen polar, 𝜃′ and 

azimuth 𝜙′ scattering angles. This process is transforming the local direction of 

scattering to global direction of scattering. The new direction cosines when 

rotated by ’ and ’ are defined as [70] 
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 (3.31) 

Where 𝜇𝑠 = 𝑐𝑜𝑠𝜃′  and when 𝜇𝑧 is very close to 1, the equaton reduces to 
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3.5.6 Updating the photon propagation 

After scattering process, the position and the direction cosines of the photon 

must be updated. The new position of the photon is defined as  

 sxx x

'

0'    (3.33) 

 syy y

'

0'   (3.34) 

 szz z

'

0'   (3.35) 

Where 𝜇𝑥
′

 ,
𝜇𝑦

′  and  𝜇𝑧
′  are the current direction cosines and 𝑠 is step size.  

3.6 Photon reception 

Once the photon reaches the receiver, it will be selected based on the receiver 

characteristics i.e. its aperture and FOV. Photon which is received outside the 

aperture and has angle of arrival greater than FOV is considered lost. The 

important parameters of received photon such as xyz coordinate of the final 

positions , direction cosines, weight and distance travelled are recorded for 
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further analysis. In this simulations, the receiver noise is ignored as the focus is 

to investigates the channel characteristics. 

3.6.1 Power loss calculation 

The power received is obtained through summing the weight of all arrived 

photons and then normalised by the total transmited weight as shown by  

 𝑃𝑟 =
𝑁𝑅

𝑁𝑇
  (3.36) 

Where 𝑁𝑅 is the numbers of the received photons and 𝑁𝑇 are the number of 

photons transmitted. 

3.7 Calculation of impulse response 

Figure 3.6 illustrates the effect of multiple scattering on the light pulses in 

underwater environment. As can be seen, the propagation path of photons will 

change due to multiple scattering and this cause it to be longer than the 

distance between the transmitter and the receiver. These photons will arrive at 

a certain time delay after the first received photons.  In MC simulation, the total 

distance of propagation of individual photon can be measured thus enabling 

the calculation of the total transit time of each photon. The maximum data rate 

can be estimated from the impulse response and the rms delay spread. The 
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details of the calculation of impulse response and frequency response are 

explained next. 

 

 

 

Figure 3.6: Diagram showing multiple scattering effects to the impulse response. 

Firstly, the difference  in path length is calculated as  

 ddd photon    (3.37) 

Where d is the distance from transmitter to receiver, 𝑑𝑝ℎ𝑜𝑡𝑜𝑛 is the distance 

travelled by the photon. 

The time delay can be calculated by using the speed of light in water. 

 
waterv

d
t


  (3.38) 

Where waterv  is the speed of light in water and can be calculated as 
water

water
n

c
v   

From this information, the histogram of the time delay, 𝛥𝑡 is plotted. The 

normalised histogram is calculated by dividing the total histogram with the 
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weight of the photons received . The normalised histogram can be regarded as 

the pdf of the discrete impulse response [38,107]. The frequency response can 

be calculated by taking the Fourier transform of the impulse response. From 

the frequency response the channel capacity can be estimated as the frequency 

at which it drops to half or 3 dB. It is important to note that the size of the 

measurement bin in plotting the histogram will determine the frequency 

response that can be estimated. The maximum frequency that can be estimated 

is related to the bin size as shown in equation 3.39 [38]. 

 max

1

2 bin

f
T

    (3.39) 

Where Tbin is the bin size in seconds. In this case the bin is the time resolution 

is set to 110-10 s in order to have a maximum bandwidth estimation around 5 

GHz.  

3.8 Simulation setup  

This section presents the simulation setup used in this thesis to model the 

short-range diffuse non-line-of-sight (NLOS) link. Figure 3.7 shows the 

configuration where the receiver is located z m away from the transmitter. At 

the receiver plane, the zone of communication is defined to be a square area of 

10 m  10 m centred at the coordinate (0,0). The interest in this configuration 

is mainly to investigate the range of power that is received and channel 
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bandwidth supported over the area defined as the desire to find the limitations 

imposed by the system and environmental parameters. Even though the main 

aim is to study diffuse links, simulations for collimated links are conducted in 

addition for comparison purposes.  

The collimated beam is modelled to have full angle divergence of 1.5 mrad.  

Two sizes of diffuse beams are used, namely 15 and 30 full angle and these 

are modelled using Gaussian distributions for their beam shapes. Additionally 

three sizes of Lambertian sources are also included in the simulation with the 

purpose of investigating any significant impact by using the two different 

distributions. Two of the Lambertian sources are chosen with divergences that 

are of approximately size to the diffuse Gaussian beams; sources with semi-

angles of 7.5 (m=81) and 15 (m=21). A third Lambertian source with a semi-

angle of 60 (m=1) is also included as it provides wider divergence. 

 The receiver size is modelled to have lense aperture diameter of 10 cm (4 

inch) which is considered as common lens sizes [38]. This value is then 

reduced to 5 cm in order to study its effect. Initially the receiver FOV is set to 

have a maximum full angle value of 180 and later this receiver FOV is made 

smaller to study the effects. In this case the FOV is defined as the maximum 

angle at which the incoming light can be accepted by the receiver. It should be 

noted that the maximum FOV (i.e. 180) is used to collect all the received 

photons in order to investigates the channel characteristics. Table 3.1 

summarizes the simulation parameters used in this section. 
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Figure 3.7: Link Geometry. 

 

Table 3.1: Simulation parameters. 

Parameter Values 

Wavelength 514 nm 

Beam width 3 mm 

Collimated source beam  divergence 1.5 mrad 
Diffuse source beam divergence 
(full-angle) 
 

15, 30 

Lambertian source (semi  angle) 7.5, 15, 60 

Receiver lense aperture diameter 10 cm and 5 cm,  

Receiver FOV 10, 20, 40, 120, 180 

3.8.1 Simulation parameters 

Table 3.2 shows the summary of input and output  parameters that are used in 

the simulation, Table 3.3 shows the absorption, scattering and attenuation 

coefficients of three types of water and Table 3.4 presents the published 

simulation parameter values by other researchers for comparison. 
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Table 3.2: Input and output parameters used in simulations. 

Input parameters Channel  Output 
parameters 

 Beam width, b 
 Beam 

divergence, div 
 Receiver FOV 
 Receiver 

aperture size 
(lense 
diameter) 
  

 
Types of Water 

 Clear water 
 Coastal water 
 Harbour water 

  

 
 Path loss 
 Scattering order 
 Impulse response 
 Frequency 

response 
 Angle of arrival 

  

 

Table 3.3: Coefficients for three types of water. Table taken from [38]. 

Water type a(m-1) b(m-1) c(m-1) Albedo, 

Clear ocean 0.114 0.037 0.151 0.25 

Coastal ocean 0.179 0.219 0.398 0.55 

Turbid harbour 0.366 1.824 2.190 0.83 
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Table 3.4: Published simulation parameters used in MC simulation. 

Author Beam 
divergence 

Beam 
width 

Aperture 
size 

Receiver 
FOV 

Phase 
Function 

Water types LInks Distance Threshold 

Li [33] 0 
0.01  

unknown 50 mm 
 

 10 mrad 
8  
 

HG (g=0.9) Clear  
Coastal 
Harbour 

LOS  
 

103m, 
39m, 
7m 
(cz=15.4) 
 

10-10,10-4 

Cox [38]  0.0015 
mrad 

1 mm 8 mm, 
1 inch, 
2 inch 
3 inch 
4inch 
 

1, 2, 4,  
8,16,45, 
90,180 

Petzold Clear 
Coastal 
Harbour 

 LOS 5-120 m 10-6 

Gabriel [39]  0 
20, 
45 

 
0.3 cm,  
3 cm, 
30 cm 

5 mm,  
20 cm,  
50 cm 
 
 

180 TTHG Pure, 
Clear,  
Coastal 

LOS 10 m, 20 m, 
50 m  

10-4 

Tang [42] 10  unknown 50 cm  20 
40 
180 
 

Petzold 
HG 

Coastal 
Harbour 

LOS 10 m, 30m  10-6 

Dong [44] 10 unknown 50 cm 20 
40 
180 
 

HG Coastal 
Harbour 

MIMO LOS 12-30 
(coastal) 
5-12m 
(turbid 
water) 

~ 
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3.9 Simulation of diffuse sources 

In this section, the effect of the beam divergence modelled using both Gaussian 

source distribution and Lambertian source radiation pattern is studied in three 

types of water. In previous simulations by other researcher as summarized in 

Table 3.3, different sizes of beam divergences are used. A collimated laser 

beam with Gaussian distribution was employed by [38]. However, many other 

papers did not explicitly describe the  radiation pattern of the source.  

3.9.1 Power distribution 

In this section, the received power distribution is obtained by placing the 

receiver at different positions as shown in Figure 3.7. The distance between 

the transmitter and receiver is set to be 15 m.  Figures 3.8 (a) to (c) show the 

cross sectional view of the power distribution at the receiver plane in three 

types of water for different size of beam divergence. The x-axis is the radial 

distance centred at (0,0) at the receiver plane and the y-axis represents the 

normalised received power. 

 Using this configuration , the maximum lateral distance to be measured is 5 m 

corresponding to a maximum of angular offset of 18.43. In clear water and 

coastal water, a collimated beam shows a sharp reduction in the power 

received as the receiver is moved away from the centre so that 5 m away from 

the centre (off-axis) there is approximately more than 50 dB loss of power in 

clear water and more than 30 dB of loss in coastal water. However for all 
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diffuse sources in both types of water, there is relatively little loss of power as 

the receiver is moved away from the beam centre. The variations of power 

received by using diffuse sources are quite small with maximum dynamic 

range of 20 dB if a source of 15 is used. For the Lambertian source with semi-

angle of 60 (m=1), it is observed that the power is almost uniformly 

distributed over the area with a value of approximately -60 dB. It is also 

apparent from Figure 3.8 that the choice of source distribution profile between 

Gaussian or Lambertian for the same beam divergence has little effect on the 

power distribution. Thus, it is reasonable to say that a Gaussian distribution 

can be used to approximate the radiation patterns of the diffuse sources which 

are commonly provided by using an LED. 

Now, by comparing two diffuse sources, namely 15 and 30 for the entire 

radial distance in clear water, it is possible to say that the latter has a slightly 

more uniform power distribution compared to the former, where the dynamic 

range for diffuse source of 30 over the specified area is less than 10 dB. This 

can be seen in Figure 3.8(a) where at a distance of 5 m from the centre, the 

power that is recorded using diffuse source of 30 is almost 10 dB higher than 

the sources with a smaller divergence. However, in coastal water as shown in 

Figure 3.8(b), there is little distinguishable effect between all the diffuse 

sources as the dynamic range is less than 10 dB for all of them. 

Figure 3.8(c) shows the power distribution in turbid water. An interesting 

behaviour is observed in this case where it can be seen that the power received 
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by using collimated source is almost equal to the power received by other 

diffuse sources except the Lambertian source of mode number 1(m=1). This 

signifies that the collimated nature of the beam was lost due to high multiple 

scattering in turbid water. So in highly turbid water, the choice of source is a 

less significant in determining the amount of power received. 

 

Figure 3.8: Power distribution for various beam divergences in (a) clear water, 
(b) coastal water and (c) turbid water. 
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3.9.2 Frequency Response 

In this section, an example of a frequency response plot is presented to 

illustrate the effect of bin sizes and the number of samples on the accuracy and 

smoothness of the curve. For this purpose, a diffuse source of 15° is used at the 

transmitter and a receiver with aperture size of 10 cm and FOV of 180° is 

placed 30 m from the transmitter. A relatively high scattering environment 

(coastal water) is chosen in this case. 

3.9.3  The effect of bin sizes to the frequency response  

Figure 3.9 depicts the frequency responses that is plotted by using three 

different bin sizes, namely 110-8 s, 110-9 s and 110-10 s. It is apparent that 

the larger bin sizes (i.e. 110-8 s) is unable to predict the 3 dB frequency in the 

GHz range as described by equation 3.39. Thus, the bin size is chosen to be 

1×10-10 s in all the simulations. This also means that a large number of samples 

are required in order to plot a high resolution frequency response.  
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Figure 3.9: Frequency response for diffuse beam of  15° in coastal water (c=0.4) at 30 
m for various bin sizes. 

3.9.4 The effect of number of samples on the frequency response 

In one simulation trials, the number of photons transmitted are 1×106 photons. 

This amount is sufficient to generate a smooth frequency response in cases 

when there are less scattering or shorter distance as the attenuation is less. 

However, when the attenuation increases either due to longer distance or 

higher scattering environments, the number of photons collected at the 

receiver reduces significantly. This causes the number of photons collected for 

each bin to be too small which eventually causes the frequency response 

curves to be noisy. Thus, more trials are needed to increase the number of 

photons to obtain a smoother curve. For example, Figure 3.10 shows the 

frequency response for diffuse beam of 15° at 30 m in coastal water for various 

samples sizes. It is evident that the frequency response curve generated using 
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large samples shows a smoother curve. However, larger samples  will increase 

the the simulation time. Thus, in such cases, it is decided that the simulations 

will be repeated until at least 100 photons are collected. This technique is also 

used when a smaller receiver FOV or aperture is used as the number of 

photons collected is too small for one trial. A similar observations is also 

reported in [33, 92]. 

 

Figure 3.10: Frequency response for diffuse beam of 15° in coastal water (c=0.4) at 30 
m for various samples sizes. 

3.10 Conclusion 

In this chapter, the principles of MC modelling for the simulation of UOWC 

were presented. It can be said that MC is a powerful tool in solving problems 

and equations that are difficult to solve analytically due to many variables. The 

advantages and disadvantages of MC simulation were also highlighted. Then 
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the details of the sampling method for different types of sources, step size and 

scattering angles were discussed. The technique to calculate the received 

power and impulse response from MC simulation was also presented. Next, the 

summary of the published values of the simulation parameters was  

highlighted for comparison. Finally, the simulation to compare two techniques 

of generating diffuse sources distributions was presented along with the 

discussion on factors that affect the frequency response smoothness and 

accuracy. 
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Path Loss: Performance Analysis 

This chapter introduces the important components within link budget 

calculation. This includes the channel path loss which is normally estimated 

using BL law.  Due to several limitations of BL law in predicting path loss, MC 

simulation is used to simulate the channel with greater accuracy. Thus, the 

path loss performance analysis for various source divergences in various types 

of water along with the discussion on impact of scattering are presented. A 

detailed analysis on attenuation of the unscattered and scattered component of 

the received light are also highlighted leading to a method to characterise the 

transition between minimally scattered and multiply scattered regimes for 

diffuse beams. Then the study is extended to explore the spatial spreading 

effect as distance is increased which will be useful for system designers to 

estimate the region where uniform received power can be achieved or to 

estimate pointing accuracy required. The contribution of unscattered light to 

the total power received in off-axis locations is also presented to gain insights 

on how scattering impacted the spatial spreading. 
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4.1 Link budget 

Before designing and building a system to operate underwater, a detailed 

investigation must be made to understand and predict the link performance 

and limitations depending on the channel environment. In link budget 

calculation, output power is represented as a function of the input power with 

the incorporation of various types of losses and gains. These include system 

loss, geometric loss, misalignment loss, attenuation loss due to water channel 

and ambient noise. However the largest losses are contributed by the 

geometric loss and exponential path loss due to the underwater channel [114]. 

The received power is given by  

 R T T W Geo pointing RP P G L L L G   (4.1) 

where PT is the transmitted optical signal, GT is the transmitter gain that 

includes the beam aperture and divergence, LW is the loss due to absorption 

and scattering, LGeo is the geometric loss , Lpointing is the loss due to angular and 

spatial mismatch and GR is the receiver gain that includes the receiver aperture 

and FOV. The transmitter and receiver gain can be obtained from the device 

characterisation of both transmitter and receiver. In this chapter, the focus is 

on the investigation of channel path loss particularly for diffuse links along 

with collimated links for comparison purposes. 

 



89 

 

4.2 Path loss modelling 

Channel path loss is one of the important parameter in link budget analysis 

where it directly affects the bit-error-rate (BER) of the links as the signal-to-

noise ratio (SNR) in optical links are proportional to the square of the average 

received optical power [2]. Generally, BL law is used in the prediction of path 

loss performance as presented in Chapter 2. For convenience, the BL law is 

given again as 

exp( )oP P cz   (4.2) 

where Po is the transmitted power, z is the path length and c  is the beam 

attenuation coefficient.  

However, it is understood that BL law is only applicable to a very limited 

situation where it is only valid for on-axis path loss using collimated beam in 

low turbidity environment. Additionally, it only considers unscattered light 

and ignores any contribution from the scattered light.  Due to this, it 

significantly underestimates the link range in highly scattering environment 

such as coastal and turbid water or at high attenuation length where scattering 

is significant [11]. 

Considerable amount of work has been reported on the path loss modelling of 

UOWC by experimental, analytical and numerical investigations. The most 
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extensive numerical investigation was conducted by [38]  where the effect of 

receiver aperture and FOV on the path loss performance were thoroughly 

investigated using MC simulation. In their work, a collimated source of 1.5 

mrad is used. An experimental investigation on path loss for different turbidity 

of water has been conducted by [14] by using a 7.66 m water tank. In his work, 

he observed two distinct regions in the path loss performance where the 

behaviour of path loss match BL law or deviated from it. Since the attenuation 

coefficient, c is varied for a fixed distance, it can be said that the results 

presented are limited by the physical distance and are not accurate for longer 

distances.  

In another earlier study in [18], the spatial spreading of a collimated beam in a 

highly scattering environment is also studied and an equation to represent the 

spatial spreading attenuation was proposed. BL law is modified to incorporate 

the effect of scattering by introducing a new term; system attenuation 

coefficient ksys  and is defined as  

(1 )sysk a b     (4.3) 

 where   is scattering factor (01) to account for the collection of multiply 

scattered light, a is the absorption coefficient and b is the scattering coefficient. 

Thus the received power can be expressed as  

( ) exp( )O systP z P k z     (4.4) 
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The value of ksys is obtained from the simulation results specifically from the 

the slope of the attenuation plot where it can be used to calculate the 

percentage of scattered light, . It is assumed in this equation that the 

scattering factor is constant for a range of propagation distances which may 

not be accurate as the amount of scattered light varies with distance. 

In [45], a generic model to predict the signal strength in underwater links was 

proposed which is then compared with experimental results. This model 

includes the components in the systems such as light sources, detectors, 

amplifier and detector circuitry. While this model is comprehensive, it is 

limited only to clear water where scattering is not significant. The signal 

strength model is given as 

2

exp( )
( , , ) ( ) ( ) cos( ) (W)d

cz
P d I S A

z
    


   (4.5) 

where I() is the source radiant intensity function, S() is the detector relative 

angular sensitivity function, d is the distance,  is the transmission angle 

relative to the optical axis,  is the incident signal relative to the detectors 

optical axis,  Ad is the detector area and z is the distance.  

From the discussions above, it can be seen that numerous attempts in 

mathematically modelling the UOWC channel have been conducted. However, 

it is apparent that a universal model valid for all situations is difficult to 

achieve due to the complexity of the underwater channel. Since most of the 
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works focus on collimated beams, it is believed that this work will fill the gap 

by presenting the simulations of the path loss for diffuse beams in various type 

of water. While it is understood that the amount of received power is much 

smaller by using diffuse source, the extent at which this affect the 

communication links has not been quantified. Thus, this chapter will address 

this issue. 

4.2.1 Diffusion length, LD  

Diffusion length, LD is defined as the distance from the source at which the light 

beam is propagating forward; it also can be understood as the distance where 

the average number of photons have lost their initial forward directionality 

due to multiple scattering [14, 38]. It can be used to estimate the transition 

between unscattered and multiply scattered dominated region in underwater 

environment for collimated links that are perfectly aligned and is given by. 

)cos1(

1




b
LD  (4.6) 

where b is the scattering coefficient and cos  is the average cosine of the 

scattering angle  where it is given by  





0

sincos)(
~

2cos dg  (4.7) 
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where 𝛽 is the scattering phase function. It was previously shown that the 

average cosine of the scattering angle is close to one (1), showing that 

photons are mostly scattered to small angles in forward direction as have been 

presented in Section 2.6. 

From equation 4.6, the diffusion length, LD for each types of water is calculated 

as shown in Table 4.1. The longest diffusion length is 205 m for clear water, 

followed by 75 m for coastal water and 6.8 m for turbid water. When the 

propagation distance is less than the diffusion length LD, unscattered light and 

minimally scattered light dominate whereas when the distance is more than LD, 

multiply scattered light dominate. In [115], it is highlighted that most of the 

photons still have forward propagation at one diffusion length while in [116], it 

is stated that the beam will become completely diffuse after two or three 

diffusion length, LD. From this prediction, it can be seen that collimated beams 

will maintain their collimated nature for a long range before it starts to diffuse 

completely which is an advantage for light propagation in several hundreds of 

meters. 

Besides the study on diffusion length, LD, a slightly earlier study in [117] has 

proposed a categorisation of the energy transport region for blue-green pulsed 

laser through fog in the atmosphere. Mooradian proposed that the variation of 

average received energy with respect to AL can be divided into three regions 

as presented in Table 4.2.  
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Table 4.1: Optical properties of the ocean water types with the corresponding 
diffusion length.    

 a b c  g LD C*LD 

Clear 0.114 0.037 0.151 0.247 0.87 205 31 

Coastal 0.179 0.219 0.398 0.551 0.94 75 30.24 

Turbid 0.355 1.824 2.19 0.833 0.92 6.8 14.89 

 

Table 4.2: The three regions of energy transport [117] . 

Region Range Description 

Region 1 0<AL<13 
The unscattered beam dominates with 
exponential path loss decay of -4.34 dB/cz 

Region II 13<AL<32 

The region is dominated by the multiply 
forward scattered component. This 
component exhibits an exponential decay less 
severe that the unscattered beam but does 
possess slightly larger spatial,angular and 
temporal spreading. 

Region III AL>32 

This region is characterized by diffusion type 
multiple scattering. It is non exponential in 
decay and exhibits large angular, spatial and 
temporal spreading.  

Corresponding to that, experimental work in [14] has verified the relationship 

between Mooradian regions and the attenuation length (AL) at which the 

transition between minimally scattered region and multiply scattered region 

occurs. From the experimental results obtained, the transition points between 

these two regions tallies with the Mooradian regions which is approximately 

13 AL in turbid water (c=1.7). However, this is only valid for collimated links 

where the transmitter and the receiver are perfectly aligned. Thus it is believed 

that further work on parameterizing the transition points for the diffuse links 



95 

 

is needed and the diffusion length LD values can be used as the baseline for 

comparison. 

4.3 Spatial distribution effects  

One of the main effects of scattering is that it will cause a highly collimated 

light source to spread laterally. The discussion in Section 2.5 has presented 

that the scattering in ocean waters is highly peaked in small forward angles. 

However, due to multiple small angle scattering events which increases with 

propagation distance, a collimated beam will be spatially broadened beyond 

the predicted amount by divergence alone [37]. For diffuse sources, an 

additional spread is also observed due to its wide divergence angles.  In order 

to understand this effect, a beam spread function (BSF) is derived from RTE 

that is introduced in Section 2.8. BSF is defined as the lateral irradiance 

distribution of a uni-directional source on a plane that is located at  r distance 

away from the source [118]. It can also be understood as the total scattering 

profile of a collimated laser beam as a function of range and water turbidity 

[18]. 

Several works studying the BSF have been reported, where historically the BSF 

is obtained through experiments and empirical models which in some cases 

have limitations in providing an understanding of the physical meaning of the 

situation [118, 119]. Several works have attempted to solve BSF analytically by 

making several approximations such as small angle approximation (SAA). In 
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this technique, any scattered light with large angles is ignored which makes 

cos()=1 and sin()= tan()=, where  is the scattering angle [121]. As the 

result, the time dispersion effect is omitted from the calculation. Additionally, 

any light that has travel beyond the receiver locations is not considered. 

Besides that, it is also assumed that the irradiance distribution is symmetric 

about the beam axis. Since SAA only considers scatterings which occur at small 

angles, it is good approximation for collimated source in low turbidity 

environment and in locations with small pointing accuracies [122]. 

In [18], a mathematical model for BSF was derived from RTE  based on SAA as   

S( , ) ( , ) E ( , )rec NS rec recBSF r z E r z r z    (4.8) 

where ENS(r,zrec) is the unscattered component given as  

0( , ) E ( , ) exp(- )NS rec recE r z r z cz   (4.9) 

and ES(r,zrec) is the scattered component of light given as 
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where EO(r,zrec) and EO(,zrec) is the initial irradiance of the laser source in 

spatial coordinate system and spatial frequency domain, respectively. b and c 

are the scattering and attenuation  coefficient, p() is the scattering phase 

function and  JO() is the Bessel function.  It is highlighted that the equation is 

only valid for maximum receiver FOV (180) and it requires a complex 

integration to consider finite FOV, detector area and angular orientation 

between receiver and transmitter. 

From equation 4.8 it can be seen that both unscattered and scattered 

components of light are considered in the BSF calculations. From equations 4.7 

and 4.8, it is observed that the unscattered light decays exponentially 

according to the beam attenuation coefficient, c while the scattered light 

attenuates as a function of beam attenuation coefficient, c and also the phase 

function of the scattered light which cannot be solved explicitly [122]. The 

proposed BSF equations displayed a good agreement with the experimental 

results conducted in [18]. 

 Due to the SAA approximation, equations 4.9 and 4.10 cannot be used to 

model the spatial spreading effect of diffuse beam accurately. Moreover, the 

maximum offset distance to be studied is 4 m which will defy the SAA 

assumption. Thus the most suitable method to investigate the spatial spreading 

effect of a diffuse source at large offset distance is by using MC simulation. 

 



98 

 

4.4 Path loss performance analysis  

In this section, the path loss performance for the various source divergences 

are investigated as the distance is varied from 5 m to 50 m for clear and coastal 

water and from 1 m to 20 m for turbid water. As shown previously by other 

works, the propagation of light in turbid water is limited to several tenths of 

meters only. As described in Chapter 3, three different sources are used with 

full angle divergence of 0.0015 rad, 15 and 30. The receiver is set to have 

180 full angle FOV and 10 cm aperture diameter.  

Figures 4.1(a) and (b) depict the path loss performance in clear, coastal and 

turbid water. A separate plot is obtained for turbid water because the range is 

shorter compared to the former where the maximum distance studied for 

turbid water is up to 20 m only. Firstly it is illustrated that the collimated beam 

path loss performance is accurately predicted by BL law as expected especially 

for clear water, as shown in Figure 4.1(a). In coastal water, the power received 

is slightly higher than the prediction by BL law as in simulation, multiply 

scattered light is collected. This observation will be verified in the next section.  

By using wider source divergences, namely 15 and 30, the power received in 

clear water is less compared to collimated beam by approximately 20-45 dB as 

the distance is increased. A similar observation can be seen in coastal water 

where around 10-25 dB of power is lost compared to collimated beam. The 

huge loss of power is mainly due to the lower power density and geometric 
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loss where a lot of photons were not captured by the receiver. This shows that, 

in clear and coastal water, the size of the transmitter beam divergence 

significantly affects the power received. In [5] the power needed for 20 source 

divergence to be able to produce the same received power as collimated beam 

in clear water is found to be more than 30 dB. 

However, a different behaviour is observed for turbid water, as shown in 

Figure 4.1(b). It can be seen clearly that both curves predicted a larger 

received power compared to the BL law. Besides that, the simulated received 

power shows a similar performance when the distance is more than 10 m. This 

is because, in turbid water where scattering is more significant, more photons 

begin to scatter out of the main path and the collimated nature of the beam is 

lost. Thus it can be said that in high turbidity water, the type of source does not 

significantly affect the power received at greater distances. An experimental 

measurement made by Cochenour in [14] shows a similar results at the same 

AL with different propagation distance.  

In order to compare the path loss performance with the same reference 

parameter, the path loss is plotted as a function of AL as shown in Figure 4.2. 

From this plot the behaviour of how the path loss for various beam 

divergences varies can be compared. It can be seen that different source 

divergences have a different path loss performance albeit the same AL, which 

signifies that a careful interpretation of the plot must be made to avoid wrong 

analysis. For example, by referring to Figure 4.2, the path loss performance  in 
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turbid water is better compared to the path loss performance in other types of 

water for all ranges of AL. This is completely misleading if one just make such 

comparison without considering the types of water and distance. In other 

words, it can be said that AL cannot be used as the only parameter in 

determining the path loss performance. This is because, even though the AL is 

common for three types of water, the distance is totally different due to 

different attenuation coefficients, c values. 

This fact has been raised by Cochenour in his experimental studies where in 

his experiments, the results were obtained at a fixed propagation distance with 

various attenuation coefficients, c. It was highlighted that the path loss 

performance of a link in clear or coastal water may not be the same as the 

performance of the link in turbid water even at the same AL [14].  Thus, the 

results presented by simulations in this section confirmed this fact. 
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Figure 4.1: Normalised received power versus distance in (a) clear and coastal water 
and (b) turbid water 

 

Figure 4.2: Normalised received power versus attenuation length in clear, coastal and 
turbid water. 
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4.4.1 Percentage of unscattered light 

Further investigations are conducted to study the contributions of unscattered 

and scattered light on the total received power. Figure 4.3 shows the 

percentage of the unscattered light that contributed to the total power 

reception as the distance is varied. It is understood that the percentage of the 

scattered light will be the remaining percentage of the unscattered light.  For 

collimated light in clear water, almost 100% of the light collected at the 

receiver consist of unscattered light which signifies that the amount of 

scattered light is negligible (<1%). For both diffuse sources, the percentage of 

unscattered light dropped gradually as the distance is increased where at 50 m 

only 50-70% of the light collected is the unscattered component of light. 

For collimated beam in coastal water, there is still significant amount of 

unscattered light that is collected up to a distance of 40 m where, beyond that, 

the percentage of unscattered light dramatically reduced to zero. For both 

diffuse beams in coastal water, the percentage of unscattered light collected is 

less than 50% even for short distance (10 m). As the distance is increased 

beyond 30 m all the light collected at the receiver consists of scattered lights 

only. In turbid water, the percentage of unscattered light that contributes to 

the total received power is very small for all source divergences, where less 

than 40% of unscattered light is collected for distance up to 1 m and there is no 

unscattered light collected for ranges more than 10 m. This is obviously due to 

high scattering environment as expected. 
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From this observation, it can be seen how the sizes of the source divergences 

influence the percentage of unscattered light  that contributed to the received 

power. In general, by using diffuse source, most of the light collected by the 

receiver consists of scattered light especially in coastal and turbid water. 

Additional useful information can be gained from Figure 4.3 where it can be 

used to predict the transition point between minimally scattered region and 

multiply scattered region especially for diffused beams as the previous two 

methods discussed in section 4.2.1 were shown to be valid for collimated 

beam. From this plot the distance at which the unscattered light ceased to be 

collected is proposed to be used as the transition point between the minimally 

scattered and the multiply scattered region. 

 

Figure 4.3: The percentage of the unscattered light that contributes to the total power 
reception  
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Since the simulation is conducted up to 50 m only, the transition point for 

minimally scattered and multiply scattered region for clear water cannot be 

obtained as it is predicted that the transition point will occur at a distance 

greater than 100 m. At this range the received power is expected to be 

attenuated by more than 150 dB which means that very large numbers of 

photons (1015) need to be simulated and it is not practical in this case. Thus, 

this section will only discuss the proposed transition point for coastal and 

turbid water. 

In coastal water, the distance where the percentage of unscattered light is 

reduced to zero is estimated to be around 50 m. This is shorter compared to 

the theoretical calculation where the LD is predicted to be 75 m. For both 

diffuse beams, the transition point is much shorter, where the percentage of 

unscattered light drops to zero at approximately 22 m. 

In turbid water it is found that the distance where the percentage of 

unscattered light is reduced to zero occurs at 7 m for collimated beam. This 

result matched the diffusion length,  LD predicted in section 4.2.1 where the 

transition point is predicted to be 6.8 m. For both diffuse beams, no 

unscattered light is collected beyond 3 m indicating that most of the light 

collected are multiply scattered light. The summary of this transition points is 

summarised in Table 4.3 for convenience. 
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Table 4.3: The proposed transition point between minimally scattered region and 
multiple scattering region. 

 c=0.15 C=0.4 C=2.2 

Div 0.0015 rad - 50 m 7 m 

Div=15 - 22 m 3 m 

Div=30 - 22 m 3 m 

 

4.4.2 Path loss of unscattered and scattered light  

This section analyses the path loss performance of the unscattered and 

scattered component of the light that contributed to the total power received. 

The aim is to investigate how the unscattered and scattered component for 

various beam divergences is attenuated with propagation distance. This will 

provide a better understanding on the nature of unscattered and scattered 

component of the light and how it contributed to the total received power. 

Figures 4.4(a) and (b) show the plot of the normalised power of the 

unscattered component for various beam divergences and water types. Firstly, 

it should be noted that the power received by the unscattered component from 

the collimated beam accurately match BL law for all types of water. This 

observation is predicted by equation 4.9 as presented in Section 4.3. However 

for larger source divergences, the power received by the unscattered 

component is much lower due to geometrical loss. Similar to the previous 

section, the power received by the unscattered light in all types of water are 
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plotted against the same axis as a function of AL as depicted in Figure 4.5 for 

comparison purposes. In general, it can be seen that the attenuation rates of 

unscattered components for the larger source divergences are similar to BL 

law with several magnitude lower due to geometrical loss. The following 

section will present mathematical equation that describe geometrical loss 

which fairly matches the results of the unscattered light attenuation. 

 

 

Figure 4.4: Normalised received power for (unscattered component) versus distance 
in (a) clear and coastal water and (b) turbid water 
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Figure 4.5: Normalised received power (unscattered component) versus attenuation 
length (AL) in clear, coastal and turbid water. 

 

Figures 4.6(a) and (b) show the path loss performances for the scattered 

components of the light in three types of water. As discussed previously, the 

contribution of scattered light to the total received power is less significant as 

unscattered light dominates in clear water. This is illustrated in Figure 4.6(a), 

where the power received due to scattered light which uses collimated beam 

that contributed to the total received power is smaller by 20 dB compared to 

the total received power.  

However in coastal water, the power received by the scattered component 

from collimated beam is relatively the same and as predicted by BL law 

indicating that more scattered light is collected. The power received due to 
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scattered light collected in turbid water for collimated beam is slightly high 

compared to BL law. One observation to be highlighted is that the collection of 

scattered light significantly impacts the received power in turbid water and 

causes a longer range of operation by more than 15 m at -70 dB compared to 

the prediction by BL law. 

In order to compare how the scattered light from different sources attenuates, 

the path loss curves of the scattered components are plotted with respect to 

the AL as shown in Figure 4.7. In general, it can be seen that the attenuation 

rate of the scattered light can be classified into two regions based on 

Mooradian classification which is presented in Section 4.2.1. The first region is 

the minimally scattered region where the scattered light attenuates at the 

same rate as BL law.  

The second region is the multiply scattered region where the scattered light 

attenuates at a slower rate compared to BL law. For example, the transition 

point for diffuse beam in coastal water is predicted to be 22 m as presented in 

Table 4.3. This value corresponds to AL of 8.8.  By referring to Figure 4.7, at 

lower AL (AL< 8.8 ), it can be seen that the scattered light in coastal water 

attenuates at the same rate as BL law and at  higher AL (AL>8.8), the scattered 

light in coastal water attenuates with slightly slower rate compared to BL law. 

A relatively similar behaviour is also observed in the attenuation rate of 

scattered light in turbid water as shown in Figure 4.7. 
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Figure 4.6: Normalised received power (scattered component) versus distance in (a) 
clear and coastal water  and in (b)  turbid water. 

 

 Figure 4.7: Normalised received power (scattered component) versus attenuation 
length (AL) in clear, coastal and turbid water. 
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4.5 Geometric loss 

It should be noted that the simulations result for the path loss performance in 

the previous sections have included both loss due to the channel and also 

geometrical loss. The geometrical loss for a diffuse beam is much greater than 

the loss due to collimated beam as the beam spot size due to diffuse source is 

much greater than the aperture of the receiver. This fact has been 

demonstrated by the simulation of the diffuse beam in the previous section. 

Thus, in this section, the interest is to compare the results obtained by 

simulation and the mathematical equations used to calculate geometrical loss. 

For a well aligned point to point link, the geometric loss is calculated as the 

ratio of receiver area to the transmitter beam spot area at the receiver

[59]. The area of the beam spot size at the receiver location can be calculated 

as                                 

2( . tan( ))
2

div
TXA z


    (4.11) 

where div is the full angle beam divergence, z is the perpendicular distance 

between the transmitter and receiver. The area of a receiver with aperture 

diameter DRX is  
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RX
RX

D
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Thus the geometrical loss can be calculated as 
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Combining the BL law path loss and geometrical loss equation results in the 

received optical power as 
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Next, equation 4.14 is used to plot the path loss performance to be compared 

with the simulations results for diffuse beams as illustrated in Figure 4.8. 

Notably, the path loss predicted by simulation fairly matches the path loss 

predicted by the equation 4.14 in clear water. However, in coastal and turbid 

water, the mathematical equation fails to predict the attenuation of the diffuse 

beams for longer ranges. For example in Figure 4.8(b), the equation accurately 

predicts the path loss for both diffuse beams up to distance 10 m. This is 

mainly because the effect of multiple scattering is not considered in the 

equation resulting inaccuracy in path loss calculation in high scattering 

environment and long distance. Thus, it is concluded that the incorporation of 

the geometrical loss to calculate the path loss performance of diffuse links in 

the widely use link equation is only able to predict the path loss in clear and 

coastal water where scattering is not significant.  



112 

 

 

Figure 4.8: Path loss performance for diffuse beam along with theory incorporating 
geometrical loss in (a) clear water, (b) coastal water and (c) turbid water. 
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4.6 Spatial dispersion versus distance 

The previous section presented the path loss performance for a perfectly 

aligned transmitter and receiver.  In order to accurately describe the 

attenuation of light, the spatial dispersion effect due to beam spreading must 

also be considered.  Thus, in this section the analysis is extended to study the 

attenuation rate of the spatial dispersion effect as the distance is increased.  

Figures 4.9 to 4.11 show the normalised received power as a function of 

distance for various lateral positions (off-axis) in clear, coastal and turbid 

water. First of all, one common behaviour of the extreme off-axis (r = 4m) 

power reception is that there is a slight increase in the power received when 

the distance is varied from 5 m to 15 m in all types of water. This is due to the 

fact that at relatively short distance, less power is received at the off-axis (r = 4 

m) location due to less spreading of the light beam. As the distance is 

increased, the beam spreading becomes more significant and causes an 

increase in off-axis power reception and subsequently decreases due to 

attenuation. 

The information presented in this section is useful for link designers in two 

ways. First, it provides some insight into the effect of misalignment on the 

power reception specifically for collimated beams. Secondly, it can be used to 

predict the region where a uniform power distribution can be achieved. This is 
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especially useful for broadcast type links using diffuse beam where a zone of 

communication or a certain coverage area is to be established. 

For example, it is shown in Figure 4.9(a) that the effect of misalignment for 

collimated beam in clear water is quite severe as a 1 m misalignment cause a 

reduction of power at approximately more than 30 dB depending on distance. 

In coastal and turbid water as shown in Figure 4.10(a) and 4.11(a), the 

misalignment effect for collimated beam is smaller as more light is scattered 

into the off-axis locations, thus increasing the power received. As the distance 

increases, the effect of misalignment is reduced to a point where there is no 

power penalty for any pointing mismatch. In coastal water, this point is 

approximately 50 m and in turbid water it occurs much earlier at 

approximately 15 m.  

A similar observation in [123] where there is no region of uniform power 

distribution observed from 5 m till 50 m. This result can be explained by the 

fact that the onset of multiply scattered region occurs at 50 m as predicted by 

the simulation in Section 4.4.1. Thus it can be said that transmitter and 

receiver alignment is less critical at high scattering environment or large 

propagation distance. A similar result is obtained in [32] where the received 

irradiance is less sensitive to misalignment in higly turbid water (c=2) in the 

experimental measurement using a 12.48 m test tank. 
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As illustrated in Figures 4.9(b) and (c) to 4.11(b) and (c) , the impact of 

misalignment on diffuse beam is less significant than the collimated beam  due 

to the higher spatial spreading caused by its wide beam divergence. The initial 

wider beam divergence has caused more light to be scattered to off-axis 

locations.  The effect of misalignment is only significant for short ranges due to 

less beam spreading. In clear water, a uniform power distribution is reached 

when the distance is approximately 40 m and 30 m  for 15 and  30 diffuse 

beam respectively. In coastal water, the distance is even shorter and found to 

be approximately 30 m  and 20 m for 15 and  30 diffuse beam respectively.  

It is also interesting to highlight that in turbid water, the same behaviour is 

observed irrespective of the size of beam divergence used as illustrated in 

Figure 4.11. This shows that in turbid water, the choice of beam divergence has 

little effect to the power received for the entire distance indicating that the 

multiple scattering is severe.  

In short, it can be said that diffuse sources can be used to alleviate the pointing 

and tracking requirement at the expense of lower received power. For 

example, in clear water almost 40 dB is lost for transmission range up to 50 m 

if 15 diffuse source is used. In addition to that, the link designer can use this 

information to predict the sensitivity and the dynamic range required in the 

design of the UOWC system. 
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Figure 4.9: Normalised received power as a function of distance for various lateral 
positions in clear water for (a) collimated beam, (b) 15 diffuse beam and (c) 30 

diffuse beam. 
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Figure 4.10: Normalised received power as a function of distance for various lateral 
positions in coastal water for (a) collimated beam, (b) 15 diffuse beam and (c) 30 

diffuse beam. 
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Figure 4.11: Normalised received power as a function of distance for various lateral 
positions in turbid water for (a) collimated beam, (b) 15 diffuse beam and (c) 30 

diffuse beam. 
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4.6.1 Percentage of unscattered light: off-axis 

This section provides further analysis of the contribution of unscattered light 

to the off-axis power reception. Figures 4.12 to 4.14 show the percentage of 

unscattered light collected at the receiver for various beam divergences at 

different lateral positions (off-axis) in clear water, coastal water and turbid 

water. In general, it can be seen that the percentage of unscattered light 

collected in clear water is still significant for the distance specified. One 

important observation to highlight is the percentage of unscattered light for all 

off-axis locations for 30 diffuse beam is higher compared to both smaller 

source divergences. This is intuitive as it is understood that more unscattered 

light can reach the off-axis locations due to the wider beam divergence. 

In coastal water, it is clear from Figure 4.13(a) that, when collimated beam is 

used, unscattered light is collected for on-axis case only. This shows that the 

power received by all off-axis locations in this case is contributed by scattered 

light. For both wider source divergences, there is small amount of unscattered 

light collected at off-axis locations as shown in Figure 4.13 (b) and (c). For 

turbid water, no unscattered light is collected at off-axis locations for all beam 

divergences due to very high scattering environment as illustrated in Figure 

4.14. 

In short, the plot provides some insights in understanding how unscattered 

and scattered light contributes to the off-axis power reception. It can be said 



120 

 

that scattered light plays a major role as the vehicle that enables the 

communication at long range and at off-axis locations.   

 

Figure 4.12: The percentage of the unscattered light that contributes to the total 
power reception for various lateral positions in clear water for (a) collimated beam 

(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 4.13: The percentage of the unscattered light that contributes to the total 
power reception for various lateral positions in coastal water for (a) collimated beam 

(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 4.14: The percentage of the unscattered light that contributes to the total 
power reception for various lateral positions in turbid water for (a) collimated beam 

(b) 15 diffuse beam and (c) 30 diffuse beam. 
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4.7 Conclusion 

This chapter presents the important components in link budget calculations; 

path loss modelling and characterisation. It has been shown that BL law has 

limited applicability as it is not accurate for all water environments. Few other 

analytical equations that have been proposed by other researchers are 

highlighted as well and have shown to be valid for a certain range due to the 

complexity of the signal propagation in underwater channel. Therefore, path 

loss modelling using MC simulation is considered as the best method to aid in 

link budget calculations as they provide more accurate description of the 

influence of scattering and other system parameters on the UOWC link 

performances. 

Firstly, it has been demonstrated that path loss performance for diffuse beam 

can be predicted numerically since an exact mathematical equation is quite 

complicated to solve. From the simulations results presented, it is highlighted 

that there is an inaccuracy of characterising the path loss performance,  if one 

just makes decisions based on  AL as the determining parameter, without 

considering the propagation distance and attenuation coefficient, c of the water 

environment. Thus a plot of path loss as a function of distance will provide an 

accurate prediction compared to path loss as a function of AL only.  

Several interesting observations have been made for the first time through 

simulations where a quantitative analysis of contributions from unscattered 
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and scattered component of light is demonstrated. This information is used to 

propose the transition point between minimally scattered and multiply 

scattered region for diffuse beam by plotting the fraction of the unscattered 

light collected by the receiver.  At the same time, the transition point for 

collimated light in turbid water has been proven to match the prediction of 

diffusion length, LD equation. 

 Further investigations on the attenuation of unscattered light and scattered 

light show the different behaviour between them where the former attenuate 

according to BL law as predicted and the latter attenuate at a slower rate as 

distance is increased. By incorporating the geometrical loss to BL law, it is 

shown that the mathematical equation is only valid to be applied to minimal 

scattering region where unscattered light dominates. 

Next the spatial distribution attenuation is presented to highlight how the 

beam spreading attenuates with distance. It is shown that for diffuse beam, a 

zone of uniform power distribution can be achieved at a much shorter distance 

compared to collimated beam, except in turbid water where the distance is 

found to be the same. It is also discussed that, even though scattering seems to 

cause higher attenuation, it has some benefit by providing some range of 

flexibility as the signal still can be recovered when misalignments happen. The 

simulation results can also be used to understand the range of pointing 

accuracy that can be tolerated in establishing a robust communication link. 

Finally the impact of scattering to spatial spreading is clearly seen by plotting 
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the percentage of unscattered light that contributed to the light reception in 

off-axis locations. It is concluded that, while scattering causes adverse effects 

to the underwater links, it is also seen as the vehicle that enables a more 

flexible communication links. 
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Temporal and Angular Dispersions: 

Performance Analysis  

5.1 Introduction 

In the previous chapter, the path loss modelling and characterisation for 

various source divergences in different types of water were presented. 

Discussion on how unscattered and scattered components of light impact the 

path loss and spatial dispersion were also analysed. It was also shown that 

despite the fact that scattering contributed to the loss of power; it also 

provides some flexibility in pointing and tracking where a link can still be 

maintained at a lower received power. However, no information about 

temporal dispersion was investigated in the previous chapter. Thus this 

chapter will analyse the effect of scattering on the temporal dispersion and 

angular dispersion by first introducing the concept of scattering order 

probability. Then, a method used to characterise the scattering regimes in 

turbid media is introduced to be applied in UOWC. Based on the scattering 

regimes, the impulse response of the link is presented along with frequency 
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response which is used to predict the bandwidth that the channel may support. 

Then, further investigations into the angular dispersion are studied by 

exploring the angle of arrival (AOA) distributions. The AOA distributions will 

be shown as one of the important tool in receiver FOV design for optimising 

the performance.  

5.2 Scattering order 

This section investigates the nature of scattering behaviour of the photons that 

are collected at the receiver for various types of water. Specifically, the focus is 

on scattering order which is defined as the number of times the received 

photons have been scattered along their propagation path. This is one of the 

unique features of MC simulation which can provide the statistical information 

regarding the individual scattering order.  The investigations on scattering 

order for collimated links have been reported in [31, 38]. It is shown that the 

number of scattering events increases gradually with attenuation length and 

rapidly after AL = 15. Thus, it is interesting to explore the scattering order 

behaviour of diffuse beams and study how it differs from collimated beam in 

various water turbidity levels. The number of scattering order can be 

calculated by using the weight of each photon as 

log( )
,

log( )

Rw
Scattering order n


   (5.1) 
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Where wR is the weight of the received photon and  is the albedo of the water 

type. The probability of occurrence can be obtained by dividing the normalised 

received power for each scattering order with the total power of the received 

photons. 

5.2.1 Scattering regimes 

In the study of light scattering in turbid media; particularly within 

inhomogeneous polydisperse turbid media such as spray systems, the 

scattering order information is used in classifying the scattering environment 

into 3 regimes as shown in Table 5.1 [124]. Based on this concept, the same 

technique is proposed to be applied to UOWC channel as scattering order 

probability can be obtained from MC simulation.  

 

Table 5.1: Classification of scattering regimes as a function of scattering order  

Regimes Scattering 
order, n 

Description 

I 

Single scattering regime 

n  1 This region is dominated by 
unscattered and single scattering 
photons. 

II 

Intermediate scattering regime 

n=2-9 Average number of scattering events 
is between 2 and 9. One dominant 
scattering order is clearly defined. 

III 

Multiple scattering regime 

n>9 In this region, the average number of 
scattering events is greater than 9. 
The amount of each scattering order 
is relatively the same. 
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Now, in order to evaluate the scattering order probability of various beam 

divergences in each type of water, four different distances are chosen as shown 

in Table 5.2 . The information on the transition point proposed in Chapter 4 

where the percentage of unscattered photons drop to zero  is considered in the 

distance selection. In order to capture all the photons that reach the receiver, 

the receiver FOV is set to 180 with 10 cm aperture diameter. A similar 

simulation parameters as Chapter 4 are used in this section. 

Table 5.2: Select distance in various types of water. 

Types of water  Distance 

Clear water 15 m, 30 m, 50 m and  70 m  

Coastal water 15 m, 22 m, 50 m and 70 m 

Turbid water 1 m, 3 m, 7 m and 15 m 

Figure 5.1 to 5.2 show the scattering order histogram for the three types of 

water as discussed in Chapter 4. For each distance, the scattering order 

histogram is plotted for three beam divergence sizes showing both the 

scattering order at on-axis and off-axis (4 m offset) locations. 

 On-axis 

It can be seen from Figures 5.1 to 5.4 that in clear water, collimated beam 

shows high probability of unscattered photons for the entire range up to 70 m. 

In contrast, both diffuse beams show a slightly lower probability of unscattered 

photons with small probability of higher scattering orders up to distance of 70 

m. In coastal water, there is still high probability of receiving unscattered 
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photons when collimated beam is used up to distance 50 m where at that 

distance no more unscattered photons are received. On the other hand, both 

diffuse beams show higher contributions from the multiple scattered photons 

(n>1) compared to the unscattered photons where at 22 m, the probability of 

unscattered photons is reduced to less than 5%. At 50m, both diffuse beams 

are dominated by multiple scattered photons (i.e; n=5-20). Thus, it can be 

deduced that this distance corresponds to the intermediate scattering regime 

for both diffuse beams.   

An interesting observation can be noticed at 70 m, where a relatively similar 

scattering order probability is shown irrespective of the sizes of beam 

divergences. It is illustrated that most photons have been scattered at least 12 

times indicating that this region can be classified as multiple scattering 

regimes. It should be noted that this distance matched the prediction of the 

diffusion length, LD for collimated beam in coastal water which is estimated to 

be at 76 m as presented in Section 4.2.  

In turbid water, more scattering occurs which is illustrated by high probability 

of multiple scattering events even at short distance.  For both diffuse beams, 

the percentage of unscattered and single scattered photons is less than 10% at 

3 m. As the distance is increased to 7 m, all the photons have been scattered at 

least 5 times. A consistent behaviour as Figure 5.8 is observed at 15 m where 

the scattering behaviour for all beam divergences are relatively the same. It 

can be seen that all of the photons that reach the receiver have been scattered 
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at least 12 times. Thus it can be said that this distance can be classified as 

multiple scattering region for turbid water. 

 Off-axis 

For collimated beam in clear and coastal water, most light that reaches off-axis 

locations consist of the scattered components as shown in Figures 5.1(a) to 

5.8(a). On the other hand, for both diffuse beams in clear and coastal water, 

there are high probabilities of receiving unscattered photons at the off-axis 

locations. This is evidently due to the wide divergence beam that causes large 

spread in the distribution of light that reach the off-axis locations which cause 

the scattering order probability to be relatively the same with on-axis locations 

as expected. In turbid water, at distances 1 m and 3 m  a distinct behaviour of 

the scattering order can be seen where the off-axis locations  show higher 

order scattering events. This is apparently due to the fact that the off-axis 

locations are not situated within the area where the light beam illuminates. 

Briefly, this section illustrates the comparison of scattering behaviour in 

collimated and diffuse links in various types of water for both on-axis and off-

axis locations. It can be said that both diffuse beams exhibit more scattering at 

a certain distance compared to collimated beam which is expected to cause 

more temporal dispersions and angular dispersions. This will be discussed in 

the next section.   
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From the analysis of the scattering order probability in this section, the 

parameterisation of the scattering regime for diffuse beam based on distance is 

proposed in Table 5.4. However, several modifications were made to the 

description of the scattering regime. Instead of classifying the scattering 

regime based on the average number of scattering events, a more suitable 

description for UOWC is to use the minimum scattering events as the   

determining factor. This means that if the minimum scattering exhibited by the 

link is less than 1, the link can be classified as minimal scattering regime and if 

the minimum scattering is between 2 to 9, the link can be classified as 

intermediate scattering and so forth. 

However, the transition point for off-axis scattering regime cannot be obtained 

since the scattering at off-axis locations also depends on the offset distance 

from the beam center. Besides that, it should be noted that the scattering 

regimes for clear water cannot be identified as the transition point is predicted 

to be more than 70 m which is beyond the maximum distance simulated in this 

thesis. The next section will investigate temporal dispersions and angular 

dispersion based on the scattering regimes proposed. 
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5.2.2 Scattering order histogram  : Clear water 

 

Figure 5.1: Scattering order histogram in clear water at 15 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.2: Scattering order histogram in clear water at 30 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.3: Scattering order histogram  in clear water at 50 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 5.4: Scattering order histogram  in clear water at 70 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

5.2.3 Scattering order histogram  : Coastal water 

 

Figure 5.5: Scattering order histogram in coastal water at 15m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 5.6: Scattering order histogram in coastal water at 22 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.7: Scattering order histogram  in coastal water at 50 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.8: Scattering order histogram in coastal water at 70 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 
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5.2.4 Scattering order histogram : Turbid water 

 

 Figure 5.9: Scattering order histogram in turbid water at 1 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.10: Scattering order histogram in turbid water at 3 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

 
Figure 5.11: Scattering order histogram in turbid water at 7 m for (a) collimated beam 

(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 5.12: Scattering order histogram in turbid water at 15 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Table 5.3: Modified scattering regime description. 

Regimes Scattering 
order, n 

Description 

I 

Minimal scattering regime 

n  1 The minimum scattering events is 
less than or equal to 1. 

II 

Intermediate scattering regime 

n=2-9 The minimum number of scattering 
events is between 2 and 9.  

III 

Multiple scattering regime 

n>9 The minimum number of scattering 
events is greater than 9.  
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Table 5.4: Proposed transition points. 

Types of 

water 

Beam 

divergence 

Scattering Regimes 

I 

Minimal 

Scattering 

Regime 

II 

Intermediate 

Scattering 

Regime 

III 

Multiple 

Scattering 

Regime 

Clear water 
(c=0.15) 

0.0015 rad ~ ~ ~ 

15 ~ ~ ~ 

30 ~ ~ ~ 

Coastal 
water 
(c=0.4) 

0.0015 rad  50 m ~ ~ 

15  22 m 22 m < z < 70 m z  70 m 

30  22 m 22 m < z< 70 m z  70 m 

Turbid 
water 
(c=2.2) 

0.0015 rad  7 m 7 m < z < 15 m z 15 m 

15  3m  3 m < z < 15 m z  15 m 

30  3m  3 m < z < 15 m z  15 m 

 

5.3 Impulse response 

The channel impulse response is one of the key parameters that is necessary in 

understanding the channel performance and has been studied by several 

researchers to characterise UOWC links. Due to the complex nature of solving 

RTE analytically, MC numerical simulation is widely used to model the channel 

impulse response. One main advantage of using MC simulation is it can be used 

to predict the temporal dispersion effects at a very high resolution in which is 

difficult to measure experimentally due to the limitation of the receiver 
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sensitivity [35]. In [39], by using a diffused beam of 20, it is found that in clear 

water, the channel can still be considered as frequency nonselective for 

distances up to 50 m. In [31], an experiment is conducted to measure the 

impulse response of collimated beam in a water tank of length 12.48 m which 

is then used to validate the simulation results. 

Apart from using MC simulation and experimental work, an effort to develop a 

closed form expressions using double Gamma functions to model the impulse 

response has been conducted in [42]. They concluded that the double Gamma 

functions model is valid for wide configuration systems, defined as systems 

with a large beam divergence and a large receiver FOV. However, for narrow 

communication system which consist of narrow source divergence and narrow 

FOV, the impulse response can be approximately modelled by ideal delta 

function. It is also highlighted that the exact region where the double Gamma is 

valid is unknown.  

Thus, it is believed that the transition regimes proposed in this thesis will 

provide some insights on how to classify the region where the model can be 

applied. In [42], the double Gamma function is evaluated for coastal link 

(c=0.4) at 30 m and 40 m and in turbid water (c=2.2) at 10 m and 12 m 

respectively which matches the intermediate scattering regimes proposed in 

this thesis for diffuse beam. 
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5.3.1 Impulse response: Analysis 

This section discusses the impulse response for each case corresponds to the 

distance chosen in the previous section where scattering order probability  is 

presented. The largest receiver FOV, i.e. 180 is considered because the aim is 

to investigate the temporal dispersion that is caused by all the photons that 

reach the receiver. Figures 5.13 to 5.15 depict the impulse responses for both 

on-axis and off-axis locations using different beam divergences in the three 

types of water. The vertical coordinate represents the normalized received 

power and the horizontal coordinate represents the time delay relative to the 

time of arrival of the first photon (i.e. the time at which the first photon reaches 

the receiver is set as the origin.  

5.3.2 On-axis 

By comparing the scattering order histogram in Section 5.1 and the impulse 

response in Figures 5.13 to 5.15, the correlations between them can be 

understood clearly. Thus it is helpful to discuss the impulse response 

behaviour based on the three scattering regimes proposed in Section 5.2. 

Firstly, in minimal scattering regimes, the impulse response shows a dominan 

peak implying higher percentage of unscattered photons. As the number of 

unscattered photons reduce, the impulse response peak decreases and shows 

larger spread primarily due to collection of high delays photons which 

undergoes multiple scattering. This can be seen in Figure 5.14(c) that depicts 



141 

 

the impulse response at 22 m in coastal water. It should be noted that at this 

distance, the contributions of unscattered component to the power received is 

less than 5% for both diffuse beams. In intermediate scattering regime 

(Regime II), such as at 50 m in coastal water and 7 m in turbid water, the 

impulse response still shows a dominant peak but at a smaller magnitude due 

to the high probability of multiple scattering events. In the third regime 

(Regime III), where multiple scattering dominates, the impulse response 

shows longer ‘tail’ signifying the collection of high delay multiple scattered 

photons. For example, by referring to Figure 5.14(g) and Figure 5.15(g) which  

illustrates the impulse response at  70 m  in coastal water and 15 m in turbid 

water, the impulse responses show large spread due to the fact that all of the 

photons have been scattered by at least 12 times in coastal water and 13 times 

in turbid water. It is also apparent from those figures that the behaviour of the 

impulse responses for different beam divergences are not very distinguishable 

from each other.  

5.3.3 Off-axis 

At off-axis locations in clear water, the high contribution of scattered photons 

results in a very large spread impulse response for collimated beam. As 

expected, the impulse response due to both diffuse beam show high peak 

indicating the high contributions from unscattered photons. A similar 

behaviour is also observed in coastal water up to distances of 22 m where 

beyond that, the peak diminishes and the impulse response shows larger 
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spread. In turbid water, the impulse response shows no dominant peak due to 

the fact that most photons have undergone at least 5 scatterings events. 

 

Figure 5.13: Channel impulse response in clear water for on-axis(left column) and off-
axis(right column), with increasing distance . (a) and (b) 15 m, (c) and (d) 30 m, (e) 

and (f) 50 m, (g) and (h) 70 m.  
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Figure 5.14: Channel impulse response in coastal water for on-axis (left column) and 
off-axis (right column), with increasing distance . (a) and (b) 15 m, (c) and (d) 22 m, 

(e) and (f) 50 m,  (g) and (h) 70 m.  
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Figure 5.15: Channel impulse response in turbid water for on-axis (left column) and 
off-axis (right column), with increasing distance: (a) and (b) 1 m, (c) and (d) 3 m, (e) 

and (f) 7 m, (g) and (h) 15 m.  
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5.4 Frequency response 

From the impulse response generated in section 5.3, the frequency response is 

calculated to estimate the channel bandwidth supported by the links. This is 

achieved by estimating the frequency at which the signal drops to half in the 

plot (i.e. drops by 3 dB). It should be noted that the bandwidth calculated in 

this section will be the minimum bandwidth that can be supported by the 

channel since the impulse response is calculated by setting the receiver FOV as 

180. 

5.4.1 On-axis and off-axis 

Figures 5.16 to 5.18 show the frequency responses that correspond to the 

impulse responses calculated in the previous section for various types of 

water. In clear water, irrespective of the size of beam divergence, more than 1 

GHz bandwidth can be supported by the links except at off-axis locations for 

collimated beam. The fact that more than 1 GHz bandwidth can be supported 

by all source divergences in clear water is apparent from the scattering order 

histogram (Figure 5.1 to 5.4) where it can be seen that the links are dominated 

by the unscattered photons. Additionally this can be related to the impulse 

response shown in Figure 5.13 where the impulse response exhibit a dominant 

peak signifying small delays photons are received .  
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On the contrary, at all off-axis locations for collimated beam, the bandwidth is 

limited to several hundreds of MHz ( i.e. : 170-415 MHz). This is quite small 

compared to the bandwidth that can be supported by both diffuse beams at off-

axis locations.  This is because, for collimated beam, most of the light received 

at off-axis locations consist of scattered light with high delays as shown by the 

scattering order and impulse response in Figure 5.1 and 5.13 whereas for both 

diffuse beam, there is high probability of unscattered photons that  contributes 

to the power received.  

In coastal water, collimated beam can still supports high bandwidth (>1 GHz) 

up to distances 50 m where at 70 m the bandwidth is reduced to 44 MHz.  

However for larger beam divergences, the channel bandwidth is slightly 

smaller at approximately several hundreds of MHz ( 360 MHz-730 MHz) up to 

distances 22 m.  As the distance is increased to 50 m and beyond, the 

bandwidth supported by both diffuse beams is reduced to less than 100 MHz. 

Due to the high scattering environment in turbid water, collimated beam can 

only support more than 1 GHz up to distance 7m.  One interesting observation 

that can be seen in turbid water is that at all off-axis locations, the frequency 

response is the same irrespective of the beam divergence sizes which results 

the same  3 dB bandwidth.  Another observation to highlight is that at 15 m, the 

on-axis bandwidth performance is degraded significantly until it matches the 

performance at off-axis locations at approximately 55 MHz . This indicates that  

the scattering is so severe that the scattering behaviour is relatively the same 



147 

 

at on-axis and off-axis. Table 5.5 summarizes the 3 dB bandwidth supported by 

various links in the three types of water. 

To conclude, this section analyses the bandwidth supported by various source 

divergences at on-axis and off-axis locations at the specified distance. It can be 

concluded that more than 1 GHz can be supported in clear water by all source 

divergences at on-axis locations. However for off-axis locations, the bandwidth 

supported by the collimated links is limited to several hundreds of  MHz.  On 

the other hand, in higher scattering environments such as coastal and turbid 

water, the bandwidth is limited to several tens to hundreds of MHz depending 

on distance.  
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Figure 5.16: Frequency response in clear water (c=0.15)  for on-axis and off-axis (4 m 
offset) locations using various source distributions at (a) 15m (b) 30 m (c) 50 m and 

(d) 70m. 
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Figure 5.17: Frequency response in coastal  water (c=0.4)  for on-axis and off-axis (4 
m offset) locations using various source distributions at (a)15 m (b) 22 m (c) 50 m 

and (d) 70m.. 
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Figure 5.18: Frequency response in turbid water (c=2.2)  for on-axis and off-axis (4 m 
offset) locations using various source distributions at (a) 1 m (b) 3 m (c) 7 m  and (d) 

15 m . 
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Table 5.5: 3 dB bandwidth for  various select distances in (a) Clear water (b) Coastal 
water and (c) Turbid water for three sizes of beam divergences. 

(a) Clear water (c=0.15) 

 Div=0.0015 rad Div= 15 Div=30 

Distance On-axis Off-axis On-axis Off_axis On-axis Off-axis 

15 m  > 1GHz 190 MHz > 1GHz > 1GHz > 1GHz > 1GHz 

30 m > 1GHz 170 MHz > 1GHz > 1GHz > 1GHz > 1GHz 

50 m > 1GHz 270 MHz > 1GHz > 1GHz > 1GHz > 1GHz 

70 m  > 1GHz 415 MHz > 1GHz > 1GHz > 1GHz > 1GHz 

       

(b) Coastal water (c=0.4) 

 Div=0.0015 rad Div= 15 Div=30 

 On-axis Off-axis On-axis Off_axis On-axis Off-axis 

15 m > 1GHz 150 MHz > 1GHz 230 MHz > 1GHz 450 MHz 

22 m > 1GHz 170 MHz 730 MHz 260 MHz 360 MHz 260 MHz 

50 m > 1GHz 93 MHz 100 MHz 64 MHz 64 MHz 50 MHz 

70 m 50 MHz 50 MHz 50 MHz 25 MHz 16 MHz 25 MHz 

       

(c)Turbid Water (c=2.2) 

 Div=0.0015 rad Div=15 Div=30 

 On-axis Off-axis On-axis Off_axis On-axis Off-axis 

1 m > 1GHz 110 MHz > 1GHz 110 MHz > 1GHz 110 MHz 

3 m > 1GHz 120 MHz > 1GHz 120 MHz > 1GHz 120 MHz 

7 m  > 1GHz 98 MHz 366 MHz 98 MHz 264 MHz 98 MHz 

15 m 55 MHz 55 MHz 55 MHz 55 MHz 55 MHz 55 MHz 
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5.5 Angle of arrival (AOA) distribution 

The need to investigate the angle of arrival (AOA) distribution was motivated 

by several observations in previous works when the receiver FOV is varied to 

optimise the performance of the link[14, 38] . There is a very limited range of 

work that studying the AOA distribution in UOWC, where only quite recently, a 

closed form expression for AOA distribution was proposed in [83]. A good 

agreement is observed between the proposed expression and the MC 

simulation for collimated links with no misalignment. It should be noted that 

this expression is not valid for intermediate and multiple scattering regimes 

since their model only considers ballistic and single scattering components of 

the received photons. Thus, this section will address this issue. 

In most of the analytical studies on light underwater, SAA approximation is 

used to model light scattering as light underwater undergoes small angle 

scattering in forward directions as described by the phase scattering functions 

discussed in Section 2.6. However, as distance increases, more scattering 

occurs causing  the AOA to spread to larger angles. This is particularly obvious 

if wide beam divergence is used where light is spread into a larger initial 

angles. 

Thus in this thesis, the AOA distribution is explored for various sizes of the 

beam divergences in different types of water. To do this, the FOV of the 

receiver is maximized to 180 to collect all the photons that reach the receiver. 
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The rest of the simulations parameters are the same as previous section. 

Figures 5.19 to 5.21 shows the AOA distribution in various types of water.  

5.5.1 On-axis 

In regime I where unscattered and single scattered photons dominate, the AOA 

distributions are confined to small angles. However, the AOA for diffuse beams 

show larger angle spread with strong peak at smaller angles. In regime II, 

where there are moderate scattering events, the peak at smaller angles 

vanishes but the AOA is still distributed at small moderate angles. In regime III, 

where there are high number of multiple scattering, the AOA distribution 

shows significant spread at larger angles  as shown in Figure 5.21(g). 

5.5.2 Off-axis 

It can be seen that at off-axis locations, the peak of the AOA distribution is 

displaced by a certain angle with respect to the origin. This angle is equal to the 

misalignment angle,   that can be calculated as  = tan-1(doffset/z) where z is the 

distance between the transmitter and receiver. As the distance is increased, 

this angle become smaller. This is why the peak of the AOA distribution shifts 

to smaller angles as the distance is increased. 

One important observation to highlight in clear water; the AOA for collimated 

beam is spread at larger angles compared to diffuse beam due to the fact that 

most of the light that reaches off-axis locations are contributed by the 
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scattered photons as shown in the scattering order histogram in Figures 5.1 to 

5.4.  The AOA distribution for both diffuse beams show a high peak with 

smaller spread as a  result of high unscattered photons received. Similar to on-

axis locations, the AOA distribution shows larger spread when it is dominated 

by multiple scattered photons.  

To summarise, this section presents the AOA distribution for both collimated 

beam and diffuse beam. Several important observations that can be highlighted 

are; diffuse beam shows larger AOA distribution compared to collimated beam 

even they are operating in regime I. It is also observed that the AOA 

distribution is significantly affected by the geometry or the locations of the 

receiver with respect to the transmitter. This is shown by the AOA at off-axis 

locations where the AOA are significantly displaced depending on the 

locations. Thus, it can said that this kind of information is useful in optimising 

the receiver design. 
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Figure 5.19: AOA distribution in clear water for on-axis (left column) and off-
axis(right column), with increasing distance: (a) and (b) 15 m, (c) and (d) 30 m, (e) 

and (f) 50 m, (g) and (h)  70 m.  
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Figure 5.20: AOA distribution in coastal water for on-axis (left column) and off-
axis(right column), with increasing distance : (a) and (b) 15 m, (c) and (d) 22 m, (e) 

and (f) 50 m, (g) and (h) 70 m.  
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Figure 5.21: AOA distribution in turbid water for on-axis (left column) and off-
axis(right column), with increasing distance : (a) and (b) 1 m, (c) and (d) 3 m, (e) and 

(f) 7 m, (g) and (h) 15 m.  
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5.6 Effect of receiver FOV 

There are several previous studies on the impact of receiver FOV on the UOWC 

as an effort to understand how to optimize the receiver design for optimum 

performance. In [38], the impact of varying the receiver FOV from 1 to 180 

on the power received and the frequency response for collimated beam was 

presented. It is observed that the receiver FOV has significant impact on the 

received power and bandwidth. Experimental work using collimated beam in  

[14] also studied how varying the FOV from 1 and 7 affects the UOWC 

performance .It is concluded that by varying the FOV, two situations can occur. 

Firstly, by using a wider receiver FOV the amount of light collected by the 

receiver can increase. Secondly, a wider FOV may also result in more multiple 

scattered light being collected which can affect temporal dispersion. It is also 

observed that receiver FOV has significant impact to the temporal dispersion 

near the beam axis but not off-axis locations. Additionally it is also observed 

that receiver FOV has little effect on the temporal dispersion at longer distance.  

However the impact of receiver FOV on the performance of diffuse beam for 

both on-axis and off-axis locations has not previously been investigated. Thus, 

in this section further investigations into the effect of FOV on the bandwidth 

performance will be conducted specifically for diffuse beams at on-axis and off-

axis locations.  
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5.6.1 Effect of receiver FOV on bandwidth : On-axis 

Based on the Table 5.5 that summarised the 3 dB bandwidth supported by 

various links in clear  water, it is observed that more than 1 GHz can be 

achieved in the worst case scenario as the receiver FOV is set to be 180. Thus 

the effect of FOV is not going to be investigated for clear water. The focus is on 

improving the bandwidth in coastal and turbid water by reducing the receiver 

FOV to 40 and 20. This receiver FOV is chosen based on the AOA distribution 

presented in Section 5.5 where the most of the AOA distribution in coastal 

water is found to be within this range (AOA<20). 

 Coastal water 

In coastal water, the effect of FOV is investigated at 22 m, 50 m and 70 m as at 

this distance the bandwidth is less than 1 GHz for diffuse beam. Figure 5.22 

shows the frequency response of all source divergences in coastal water at the 

select locations. At 22 m, by reducing the receiver FOV to 20, a bandwidth of 

more than 1 GHz can be achieved for both diffuse beams. However at 50 m and 

70 m, the bandwidths supported by diffuse beams are limited to several tens to  

hundreds of MHz only when the receiver FOV is reduced to 20. 
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 Turbid water 

Similarly, the effect of receiver FOV is studied in turbid water for distance 7m 

and 15 m as more than 1 GHz can be supported by diffuse links up to 3 m. At 7 

m, by reducing the receiver FOV to 20, more  than 1 GHz bandwidth can be 

achieved for 15  diffuse beam but not 30 diffuse beam. However, at 15 m, the 

receiver FOV has minimal effect to the bandwidth performance as there is 

relatively little  increase of bandwidth from 55 MHz to 100 MHz as the receiver 

FOV is decreased from 180 to 20. Table 5.6 and 5.7 summarises the finding 

obtained in this section. 
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Figure 5.22: Frequency response in coastal water at (a) 22 m, (b) 50 m and (c) 70 m. 
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Figure 5.23: Frequency response in turbid water at (a) 7 m and (b) 15 m. 
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Table 5.6: 3 dB bandwidth for various receiver FOVs at (a) 22 m (b) 50 m and (c) 70 m  
for three sizes of beam divergences in coastal water. 

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad > 1GHz > 1GHz > 1GHz 

Div= 15 730 MHz > 1GHz > 1GHz 

Div=30 360 MHz 480 MHz > 1 GHz  

(a) 22 m     

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad > 1GHz > 1GHz > 1 GHz 

Div= 15 100 MHz 200 MHz 290 MHz 

Div=30 60 MHz 150 MHz 150 MHz 

(b) 50 m     

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 50 MHz 100 MHz 150 MHz 

Div= 15 50 MHz 100 MHz 150 MHz 

Div=30 16 MHz 40 MHz 45 MHz 

(c) 70 m 

 

  

Table 5.7: 3 dB bandwidth for various receiver FOVs at (a) 7 m and  (b) 15 m for three 
sizes of beam divergences in turbid water. 

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad > 1GHz > 1GHz > 1GHz 

Div= 15 370 MHz 670 MHz > 1GHz 

Div=30 260 MHz 400 MHz 570 MHz 

(a) 7 m     

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 55 MHz 100 MHz 100 MHz 

Div= 15 55  MHz 100  MHz 100  MHz 

Div=30 55 MHz 100 MHz 100 MHz 

(b) 15 m     
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5.6.2 Effect of receiver FOV on bandwidth :  Off-axis 

Similarly, this section investigates the effect of receiver FOV on the bandwidth 

at off-axis locations in all types of water with the main aim in optimising the 

bandwidth.   

 Clear water 

Figure 5.24 shows the frequency response for various receiver FOV for 

collimated beam in clear water. It can be seen that there is increase in the 3 dB 

bandwidth as the receiver FOV is reduced. However, this is contrary to the 

results obtained in [14], where it is concluded that the FOV has minimal effect 

to the temporal dispersions at off-axis locations. It is believed that such 

observations are. obtained due to the fact that the size of receiver FOV used 

their experimental work is limited to 1 and 7. It is predicted that a wider 

range of FOV will (more than 7) will show significant effects to the temporal 

dispersions. 

 Coastal water 

Figures 5.25 and 5.26 show the effect of reducing the receiver FOV in coastal 

water for all beam divergences. An interesting observation can be seen at 15 m 

where the bandwidth achieved by reducing the receiver FOV to 40 is higher 

compared to the bandwidth achieved by reducing the receiver FOV to 20 
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irrespective of the beam divergence size. This is contrary to the conventional 

understanding that bandwidth will be maximum at a smaller FOV due to 

collection of less scattered light. By referring to the AOA distribution illustrated 

in Fig 5.20(b) previously, this can be explained by the fact that smaller receiver 

FOV than 40 cannot capture enough of the small delay photons as the peak of 

the AOA distribution occurs at 15 as shown in Figure 5.20(b). It should be 

recalled that a receiver FOV of 40 implies that the receiver is able to capture 

photons with maximum AOA of 20, as 40 is the FOV full angle value. At 22 m 

and 50 m, the bandwidth can be increased by reducing the FOV to 20 as 

expected. However, at 70 m there is only little increase when the FOV is 

reduced. 

 Turbid water 

Figures 5.27 and 5.28 show the frequency response for various receiver FOVs 

in turbid water. For short distance ( z=1 m and 3 m), a larger receiver FOVs is 

chosen (120) since the AOA distribution in Figure 5.21 (b) and (d) show large 

spread compared to the longer distance (z=7 m and 15 m). It can be said that 

the receiver FOV has little impact to the bandwidth performance at off-axis 

locations. Thus it can be said that at off-axis location, the bandwidth is limited 

to several tens of MHz irrespective of receiver FOV sizes. 
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Figure 5.24: Frequency response in clear water at off-axis (4 m offset) locations : (a) 
22 m, (b)50 m and (c) 70 m. 

 

Table 5.8: 3 dB bandwidth for various receiver FOVs in clear water for collimated 
beam at off-axis locations. 

Distance FOV =180 FOV =40 FOV =20 

15 m 185 MHz 760 MHz 460 MHz 

30 m 170 MHz 350 MHz 1 GHz 

50 m 270 MHz 320 MHz 700 MHz 

70 m 410 MHz 430 MHz 680 MHz 
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Figure 5.25: Frequency response in coastal water at off-axis (4 m offset) locations:  (a) 
15 m and (b) 22 m.  
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Figure 5.26: Frequency response in coastal water at off-axis (4 m offset) locations :  (a) 
50m and  (b) 70 m.  
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Figure 5.27: Frequency response in turbid water at off-axis (4 m offset) locations :  (a) 
1 m and  (b) 3 m. 
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Figure 5.28: Frequency response in turbid water at off-axis (4 m offset) locations :  (a) 
7 m and  (b) 15 m. 
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Table 5.9: 3 dB bandwidth for various receiver FOVs in coastal water for off-axis (4 m 
offset) locations at (a)15 m, (b) 22 m, (c) 50 m and (d)70 m. 

 

 

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 150 MHz 510 MHz 250 MHz 

Div= 15 230 MHz 670 MHz 310 MHz 

Div=30 450 MHz 1 GHz 500 MHz 

(a) 15 m    

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 170 MHz 380 Hz 250 MHz 

Div= 15 260 MHz 460 MHz 760 MHz 

Div=30 260 MHz 500 MHz 500 MHz 

(b) 22 m    

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 93 MHz 160 MHz 230 MHz 

Div= 15 64 MHz 120 MHz 260 MHz 

Div=30 50 MHz 83 MHz 100 MHz 

(c) 50 m    

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 50 MHz 100 MHz 100 MHz 

Div= 15 25  MHz 50 MHz 50 MHz 

Div=30 25 MHz 63 MHz 25 MHz 

(d)70 m    
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Table 5.10: 3 dB bandwidth for various receiver FOVs in turbid water for off-axis (4 m 
offset) locations at (a)1 m, (b) 3 m, (c) 7 m and (d)15 m. 

Beam divergence FOV =180 FOV =120  

Div=0.0015 rad 110 MHz 100 MHz  

Div= 15 110 MHz 100 MHz  

Div=30 110 MHz 100 GHz  

(a) 1 m     

Beam divergence FOV =180 FOV =120  

Div=0.0015 rad 120 MHz 100 MHz  

Div= 15 120 MHz 100 MHz  

Div=30 120 MHz 100 MHz  

(b) 3 m     

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 98 MHz 78 MHz 150 MHz 

Div= 15 98 MHz 110 MHz 170 MHz 

Div=30 98 MHz 50 MHz 50 MHz 

(c) 7 m    

Beam divergence FOV =180 FOV =40 FOV =20 

Div=0.0015 rad 55 MHz 60 MHz 60 MHz 

Div= 15 55  MHz 60 MHz 60 MHz 

Div=30 55 MHz 60 MHz 60 MHz 

(d) 15 m    
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5.7 Effect of receiver FOV on  the scattering order histogram 

The results in previous section show that reducing the receiver FOV has 

different effects in different situations. Thus, it is interesting to investigate the 

effect of reducing the receiver FOV on the scattering order histogram. Similar 

to section 5.6, the receiver FOV is reduced to 20°. In order to show this clearly, 

a histogram of the ratio of the received power by the smaller FOV, i.e. 20°  to 

the power received by the larger FOV, i.e. 180 is calculated instead of the 

absolute probability. This histogram is plotted in the same axis with the 

absolute probability histogram of the scattering order of 180°. By doing this, a 

better picture on how the individual scattering order changes can be 

compared. Since the interest is to investigate how this relates to the 

improvement in bandwidth, only coastal and turbid water are considered.  

Figures 5.29 to 5.36 show the effect of reducing the receiver FOV from 180 to 

20 in coastal water. By examining all the plots, it is observed that in the 

minimal and intermediate scattering regime; (coastal water : 15 m, 22 m and 

50 m) and turbid water (1 m, 3 m and 7 m) the magnitude of the higher order 

scattering is reduced when the receiver FOV is reduced. This implies that less 

multiple scattered photons are collected which results in a higher bandwidth. 

However in the multiple scattering regime, (coastal water :70 m) and (turbid 

water : 15 m) , the reduction of receiver FOV does not specifically reduce the 

magnitude of the higher order scattering but reduce all the scattering order 
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randomly. Thus, this explains why there is no change in bandwidth as the 

receiver FOV is reduced. This shows that in the multiple scattering regime, 

most photons that have been multiple scattered have a wide range of AOA.  

 

 

Figure 5.29: Scattering order histogram in coastal water at 15 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.30: Scattering order histogram in coastal water at 22  m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 
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 Figure 5.31: Scattering order histogram in coastal water at 50 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 
Figure 5.32: Scattering order histogram in coastal water at 70 m for (a) collimated 

beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.33: Scattering order histogram in turbid water at 1m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 5.34: Scattering order histogram in turbid water at 3 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.35: Scattering order histogram in turbid water at 7 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 5.36: Scattering order histogram in turbid water at 15m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 



177 

 

5.8 Conclusion 

In this chapter, the concept of scattering order probability was introduced to 

understand the scattering behaviour of diffuse beams in three types of water. 

This kind of information is only achievable through MC simulation which 

provides valuable insights on how photons from different beam divergences 

scatter. This concept was further used in the characterisation of the scattering 

regime for diffuse links. From the simulations results, the transition point for 

each scattering regime was proposed for coastal water and turbid water. 

Based on this scattering regime classifications, the temporal dispersion effect 

was evaluated by investigating the impulse response and frequency response 

to determine the supported channel bandwidth. Besides that, the angular 

dispersion that results from scattering was also demonstrated by exploring the 

AOA distribution which is beneficial in studying the effect of FOV on the 

bandwidth performance. Thus, it is believed that the AOA distribution will be 

one of the tools in understanding the angular behaviour of the received 

photons and aid system designers in optimizing the receiver FOV performance. 

To conclude the findings obtained in this chapter, it is useful to present the 

summary based on the three scattering regimes as presented next. 
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 Regime  I : Minimal scattering regime 

It is observed that for diffuse beams, apart from  the unscattered and single 

scattered components that exist,  higher order multiple scattering also present 

at a higher  probability due to the wider nature of the beam divergence. Thus in 

this regime, it can be concluded that as long as the unscattered component and 

single scattering exist, the link can be considered less affected to temporal 

dispersions as bandwidth more than 1 GHz is possible to be supported.  The 

AOA distribution of the diffuse beam in this region shows that the AOA  is 

distributed at a small angular dispersion. From this information, it can be said 

that a smaller receiver FOV (<30) can be used to capture all the photons 

which is also preferred as narrow FOV receiver will limit the amount of 

ambient light that enters the receiver. 

 Regime II : Intermediate scattering regime 

It is found that due to the absence of unscattered and single scattering photons, 

the bandwidth of the links is limited to several hundreds of  MHz. However, the 

bandwidth can be increased  by reducing the receiver FOV as discussed 

previously. The AOA distribution shows  slightly larger spread at larger angles 

(~ 40-80) as now, more photons have been multiple scattered indicating a 

large receiver FOV is needed. 
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 Regime III : Multiple scattering regime 

In this regime, the scattering is so severe that it cause very large delays that 

limit the bandwidth to several tenth of MHz. The AOA distributions shows  

angular dispersion that spread to very large angles (~60-90) signifying a 

very large receiver FOV is needed to collect most of the photons. Reducing the 

receiver FOV has little effect to the bandwidth as all the photons exhibit higher 

number of scatterings (n>9). It is also observed that the source distribution 

size has indistinguishable effect on the scattering order, impulse response and 

bandwidth. Another interesting observation to highlight is the  bandwidth 

performance for on-axis and off-axis performance is relatively the same . This 

shows that this region can be characterised by diffusion type multiple 

scattering [117]. The summary of this analysis is shown in Table 5.11. 

On the other hand, the temporal and angular dispersions performance for off-

axis locations are quite complex to be quatified in terms of scattering regimes 

as geometrical factors (i.e. offset distance)  do influence their behaviour. Suffice 

to say that, at off-axis locations, high bandwidth significantly depends on the 

collection of unscattered and single sacttered photons. In cases where only 

multiple scattered photons are collected, very limited bandwidth is supported 

even by reducing the receiver FOV.  

Finally,  it was also believed that the proposed transition point in this chapter  

can be useful in determining the regime where the analytical model developed 
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in [42] can be used. In their work, two types of impulse response model 

namely ideal delta function and double Gamma function was proposed to 

represent the system studied. However, the exact region as to where the model 

is valid is unknown. Thus, the information on the transition points and 

scattering regimes in this chapter will provide some insight into the issue. 
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Table 5.11: Summary of the characteristics of the scattering regime for diffuse beam (on-axis). 

Parameters Regime I Regime II Regime III 

Types of water and the 
corresponding 
transition points 

Coastal water : z  22 m 
Turbid water : z  3 m 

Coastal water : 22 m <z< 70m 
Turbid water : 3 m <z< 15 m 

Coastal water : z 70 m 
Turbid water : z 15 m 

Scattering order  
(minimum n) 

n1  1<n9 
 

n>9 

Impulse response Strong peak Moderate peak with large spread Large spread  
 

Bandwidth and Impact 
of FOV on bandwidth  

Can support high bandwidth. 
Bandwidth can be improved to 
more than 1 GHz by reducing the 
receiver FOV. 

The bandwidth is limited to several 
hundreds of MHz, but can be 
increased by reducing the receiver 
FOV. 

The bandwidth is  limited to several 
tens of MHz. 
The reduction of FOV has minimal 
effect on the bandwidth as a small 
increase is observed. 

AOA distribution and 
receiver FOV 
requirement 

Small range of AOA. 
Small receiver FOV is needed to 
capture most of the photons i.e.  
(FOV: 20-40) depending on 
water types. 

Medium range of AOA. 
Medium receiver FOV is needed to 
capture most of the photons. i.e. 
(FOV: 40 -60) depending on water 
types. 

Large range of AOA. 
Wide receiver FOV is needed to 
capture most the photons  i.e. (FOV :  
80 -90) depending on water types. 
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Impact of Receiver Aperture and 

Performance Trade-Off 

6.1 Introduction 

In this chapter, the impact of receiver aperture size on the scattering order will 

be analysed to assess how this change will influence scattering order 

histogram behaviour. In addition to that, the investigation on the impact of 

receiver FOV and aperture on the received power is also presented. 

Subsequent section discusses the performance trade-off between the power 

and  bandwidth by utilising the scattering regime proposed in Chapter 5. 

6.2 Impact of receiver aperture size  

The investigation on the effect of receiver aperture size has been conducted by 

several authors . In [125], the effect of aperture to the impulse response was 

investigated by increasing the aperture from 5 mm to 50 cm. It was shown that 

there is an increase in the peak of the impulse response signifying higher 
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power received. Besides that the impulse response became more spread which 

cause an increase in delay spread but still negligible for 1 GHz transmissions 

for 50 m distance in clear water. A similar observation is also reported by Cox, 

where it is found that the size of aperture has significant effect on the received 

power but little effect on the bandwidth of the system. It was also shown that 

at lower AL, the aperture has little effect on the received power due to the 

small beam spreading which cause the beam to be restricted to small area at 

the centre of the receiver aperture [38]. Thus in this section, the effect of 

receiver aperture on the scattering order histogram and received power will 

be presented. 

6.2.1 Impact of receiver aperture size on scattering order histogram 

It should be recalled that the scattering order probability introduced in 

Chapter 5 was calculated by using the largest receiver FOV, i.e. 180 to 

consider all the photons that reach the receiver while the receiver aperture is 

set to be 10 cm. Thus in this section the impact of reducing the receiver 

aperture size on the scattering order histogram is investigated.  

Figures 6.1 to 6.11 show the scattering order histogram when the receiver 

aperture diameter is reduced to 5 cm. Similar to Section 5.7, instead of 

calculating the absolute probability of the scattering order for smaller 

aperture, the ratio of the power received by smaller aperture to the power 
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received by larger aperture is calculated. Then the histogram of this ratio is 

plotted on the same axis as the original histogram obtained in section 5.2.  

By observing all the plots, it can be seen clearly that the reduction of aperture 

size significantly reduces the magnitude of the individual scattering order but 

maintains the same behaviour of the scattering order. This signifies that, by 

reducing the aperture, the amount of photons collected is decreased due to a 

smaller collection area. However the distribution of the scattering order 

behaviour is not affected implying that, the particular scattering order 

histogram can  still be classified to the same scattering regime. From this 

observation, it can be said that the scattering order histogram is a valid 

indicator to be used in the classification of the scattering regime. 

 Clear water 

 

Figure 6.1: Scattering order histogram in clear water at 30 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 6.2: Scattering order histogram in clear water at 50 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

 
Figure 6.3: Scattering order histogram in clear water at 70 m for (a) collimated beam 

(b) 15 diffuse beam and (c) 30 diffuse beam. 

 Coastal water 

 
Figure 6.4: Scattering order histogram in coastal water at 15m for (a) collimated beam 

(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 6.5: Scattering order histogram in coastal water at 22 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 6.6: Scattering order histogram in coastal water at 50 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

 

 

Figure 6.7: Scattering order histogram in coastal water at 70 m for (a) collimated 
beam (b) 15 diffuse beam and (c) 30 diffuse beam. 
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 Turbid water 

 

Figure 6.8: Scattering order histogram in turbid water at 1 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam.  

 

Figure 6.9: Scattering order histogram in turbid water at 3 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 

 

Figure 6.10: Scattering order histogram in turbid water at 7 m for (a) collimated beam 
(b) 15 diffuse beam and (c) 30 diffuse beam. 
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Figure 6.11: Scattering order histogram in turbid water at 15 m for (a) collimated 

beam (b) 15 diffuse beam and (c) 30 diffuse beam. 

6.2.2 Impact of receiver  aperture size on the received power 

Having seen how the scattering order histogram is impacted by the reduction 

of aperture, it is interesting to see how the reduction of the receiver aperture 

affects the received power. In this section, the receiver aperture is reduced 

from 10 cm to  5 cm and 2.5 cm to investigate its effect on the received power.  

Figures 6.12(a) to (c) show the percentage of the received power when the 

receiver aperture is decreased to 5 cm and 2.5 cm in three types of water.  The 

percentage of the received power is calculated by taking the ratio of the 

received power of the smaller aperture to the received power when the 10 cm 

aperture is used. Overall, it can be seen that a distinct behaviour is observed 

for collimated beam and both diffuse beams in all types of water. From Figure 

6.12(a) , it can be seen that the reduction of receiver aperture size has little 

effect on the received power for collimated beam at short distance. This can be 

explained by the fact that at short distance, most of the light from collimated 
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beam is concentrated at the centre of the beam axis; a similar scenario is also 

observed in [38]. 

However, in contrast to collimated beam, both diffuse beams show a similar 

reduction of received power irrespective of the distance and turbidity level. 

This is due to the large beam spreading that cause a large beam spot to be 

formed at the receiver location. As a results, the percentage of the received 

power can be calculated as proportional to the area of receiver. This is shown 

by the constant percentage of received power for both diffuse beam; the power 

is reduced to 25 %  and 6% when the receiver aperture diameter is reduced to 

5 cm and 2.5 cm respectively.  

Another interesting observation to highlight is the point at which the reduction 

of power for collimated beam in turbid water becomes insensitive to the 

distance can be related to the diffusion length of the collimated beam. This is 

shown clearly in turbid water where at 7 m, the power received when using  

collimated beam is reduced to the same percentage as both diffuse beams 

indicating that at this distance, the beam has been spread at a larger area due 

to multiple scattering.  
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Figure 6.12: Percentage of received power for various receiver aperture in (a) clear 
water (b)coastal water and (c) turbid water. 
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6.3 Impact of receiver FOV on the received power 

Based on the AOA distribution presented in Section 5.5, it can be seen that a 

smaller receiver FOV than 180 can be used to collect all the photons in most of 

the cases. Thus, in this section, the size of the receiver FOV is varied to 

investigate the impact of FOV on the received power for both on-axis and off-

axis positions by calculating the percentage of the received power. This is done 

by taking the ratio of the received power at the smaller receiver FOV  to the 

received power when receiver FOV is 180. 

 Figures 6.13 to 6.15 show the percentage of the received power in various 

types of water for various beam divergences at on-axis locations . For 

collimated links in clear water, it can be said that a receiver FOV of 1 is 

sufficient to collect 95% of the photons. For both diffuse beams, a larger 

receiver FOV at approximately 30 is needed to collect 90% the photons.  

In coastal water, for collimated beam, it is apparent  that except at 70 m,  a 

smaller receiver FOV (i.e. 10) is needed to collect 90% of the photons. At 70 m 

where multiple scattering dominates, it can be seen that more than 90% of 

power is lost if receiver FOV of 10 is used. In contrast, for both diffuse beams,  

it can be seen that larger receiver FOV are needed as shown in Figure 6.14. 

In turbid water, at shorter range (<5m), a larger receiver FOV of 40 is needed 

by both diffuse beams to capture more than 70% of the photons, compared to 



192 

 

collimated beam that only requires FOV of 20. On the other hand, at 10 m and 

beyond, a larger receiver FOV of approximately 80 is needed to collect 80% of 

the photons irrespective of the beam divergences sizes. 

 Off-axis 

It should be recalled that the AOA distribution for all off-axis locations depicted  

in Figure 5.13 to 5.17 showed an angular displacement due to the lateral 

position of the receiver with respect to the center of the beam. Thus, most of 

the peaks of the AOA distribution occur at a certain angle as discussed in 

Section 5.5.2. Therefore, a wider receiver FOV is needed to collect all the 

photons. This is particularly apparent for shorter distance where the angular 

displacement is larger. As a results, it can be seen from Figures 6.16 to 6.18 

that reducing the receiver FOV significantly affects the received power at 

shorter distance. For off-axis locations in clear water, as the distance increases, 

a smaller FOV is sufficient to collect all the photons as now most of the photons 

have smaller AOA distribution. On the contrary, for all off-axis locations in 

coastal and turbid water, a larger FOV is needed as shown in Figure 6.17 and 

6.18. 
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Figure 6.13: Percentage of received power for various receiver FOV in clear water at 
on-axis location using (a) collimated beam, (b) 15 diffuse beam and (c) 30 diffuse 

beam. 
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Figure 6.14: Percentage of received power for various receiver FOVs in coastal water 
at on-axis location using (a) collimated beam, (b) 15 diffuse beam and (c) 30 diffuse 

beam. 
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Figure 6.15: Percentage of received power for various receiver FOVs in turbid water at 
on-axis location using (a) collimated beam, (b) 15 diffuse beam and (c) 30 diffuse 

beam. 
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Figure 6.16: Percentage of received power for various receiver FOVs in clear water at 
off-axis location using (a) collimated beam, (b) 15 diffuse beam and (c) 30 diffuse 

beam 
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Figure 6.17: Percentage of received power for various receiver FOVs in coastal water 
at off-axis location using (a) collimated beam, (b) 15 diffuse beam and (c) 30 diffuse 

beam. 
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Figure 6.18: Percentage of received power for various receiver FOVs in turbid water at 
off-axis location using (a) collimated beam, (b) 15 diffuse beam and (c) 30 diffuse 

beam. 
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6.4 Performance trade-off : Power and bandwidth 

In the previous section, the impact of receiver FOV on the received power 

performance has been evaluated for both collimated and diffuse beams, at both 

on-axis and off-axis locations. It should be recalled that in Section 5.6, the 

receiver FOV has also shown to affect the bandwidth in various ways 

depending on the scattering regime and geometry of the links. Thus, the aim of 

this section is to evaluate the performance trade-off between power and 

bandwidth in three types of water. It is useful to discuss this based on the 

scattering regime introduced in Chapter 5. Besides that, the information on the 

3 dB bandwidth tabulated in Tables 5.5 to 5.10 are also referred to aid the 

discussion. To simplify the discussion, the diffuse beam of 15 is referred to.  

6.4.1 Clear water  

Diffuse links in clear water for range (5-70 m) is classified as regime I.  From 

the bandwidth performance analysis in Section 5.4, it can be seen that diffuse 

links are able to support bandwidth of 1 GHz at both on-axis and off-axis 

locations. Thus, in clear water, the main aim is to choose the receiver FOV that 

can optimised the power. By referring to Figure 6.13, it can be concluded that   

receiver FOV of 30 can be used to collect most of the photons. At the same 

time a smaller FOV will reduce the amount of ambient light which ultimately 

reduces noise.  
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 This is better compared to collimated beam that offers superior bandwidth  

performance at on-axis but not at off-axis locations. A slight bandwidth 

improvement can be obtained at off-axis locations for collimated links at an 

expense of a lower power. By referring to Table 5.8, a bandwidth of more than 

500 MHz can be obtained by reducing the receiver FOV to 40 and 20 and this 

causes the received power to decrease by approximately 30-60% depending 

on distance. 

Thus, diffuse links are considered as a better choice for systems that aim to 

provide a higher bandwidth with a wider coverage area. However, the 

drawback of using diffuse beam in this case is the low received power 

compared to collimated beam. It is shown in Figure 4.1 previously that the 

received power when diffuse beam is used is 30-40 dB less that the power that 

can be delivered by collimated beam at on-axis location. 

6.4.2 Coastal water 

In coastal water, diffuse links can only supports high bandwidth when it is 

operating in regime I (5 m-22 m). For regime II (22 m-70 m), the on-axis 

bandwidth performance can be improved by reducing the FOV from 180  to 

20  at an expense of 20% - 50% power lost. At regime III (z=70), the link has 

very limited bandwidth as a reduction of FOV from 180 to 20 results in 

minimal increase in bandwidth.  At the same time, a significant amount of 

power is lost (>60%) . Thus, in regime III, a wider FOV is needed to maximized 
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the received power. Figure 6.19 shows the trade-off between power and 

bandwidth as a function of FOV for three locations in coastal water. 

 

Figure 6.19: Trade-off between power and bandwidth as a function of FOV for diffuse 
beam of 15 in coastal water at (a) 22m (b) 50 m and (c) 70 m. 
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6.4.3 Turbid water 

In turbid water, an interesting scenario is observed where the power 

performance for all source divergences are relatively the same for both on-axis 

and off-axis locations except for collimated beam that shows better power 

performance at distance less than 10 m (Figure 4.11). Not only that, the overall 

bandwidth performance are comparatively the same except that collimated 

beam is able to support more than 1 GHz up to 7 m but both diffuse beams are 

able to support 1 GHz only when the receiver FOV is reduced to 20. This will 

reduce the received power by more than 60%.  

Interestingly, for distance longer than 15 m the size of the beam divergences 

has negligible effect on power and bandwidth performance indicating that a 

cheaper diffuse source such as LED is more economical in such application. 

Figure 6.20 shows the trade-off between power and bandwidth as a function of 

FOV for two locations in turbid water. 
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Figure 6.20: Trade-off between power and bandwidth as a function of FOV for diffuse 
beam of 15in turbid water at (a) 7m and (b) 15 m. 

 

6.5 Conclusion 

This chapter investigates the effect of reducing the receiver aperture size on 

the scattering order histogram to evaluate any changes in the behaviour . It 

was shown that the behaviour of scattering order histogram remain the same 

signifying that,  the method proposed in Section 5.2 to characterise the 
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scattering regimes was valid to be applied to UOWC links. In addition to that, 

the effect of reducing the receiver aperture and FOV on the received power 

were also studied.  

Overall, it can be concluded that the bandwidth limitation imposed by diffuse 

links were only significant in coastal water and turbid water where high 

bandwidth (>1 GHz) can only be achieved at limited distance. In clear water, 

diffuse links  can support high bandwidth at a wider coverage area but at a 

lower received power compared to collimated beam. In other words, it can be 

concluded that communication links using a diffuse links is more power 

limited rather than bandwidth limited as shown by the analysis. 
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Conclusions & Future Work 

7.1 Conclusions 

There have been significant efforts in establishing a universal analytical model 

to predict the performance of UOWC links. However, due to the complexity and 

high variability of the light properties underwater, this is not possible.  Thus, a 

more flexible method utilising MC simulation was used to model and 

characterise the underwater channel, as presented in this thesis.  Particularly, 

the aim was to model and characterise the performance of diffuse links along 

with the use of a collimated beam, for comparison. 

The thesis started with the introduction to UOWC, highlighting its importance 

in underwater applications. The motivation and the objectives of this thesis 

were presented in Chapter 1. Then, in Chapter 2, a brief introduction to various 

technologies used in underwater applications was presented, highlighting its 

advantages and disadvantages. Due to its limited operating range, UOWC was 

seen more as a complementary technology to acoustic technology, rather than 

alternative as it can support high bandwidths, but only over short ranges. The 
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subsequent section presented a review of the literature on channel modelling 

efforts and experimental works. Then, the background theory on the light 

properties underwater was discussed, with the main emphasis on the 

absorption and scattering processes. The main equation used to describe the 

light underwater, RTE, was introduced, highlighting its complexity, and 

signifying the necessity of using a numerical MC method in solving it. 

Chapter 3 presented the MC simulation method in modelling light in the 

underwater environment. The details of the simulations, including the theory, 

mathematical equations and algorithm were discussed. Then, a simulation to 

compare two techniques in modelling diffuse beams was also presented, 

showing minimal differences between them. Finally, the description of the 

simulation setup and parameters used in this thesis, were presented. 

 Chapter 4 presented the path loss performance analysis, for both collimated 

and diffuse beams, which led to several important contributions. Firstly, by 

plotting the path loss performance for various types of water with respect to 

the same parameter, namely the AL, a more accurate picture of how different 

links attenuated as the AL was varied, was obtained.  This observation showed 

that the AL cannot be used as the only parameter in characterising an 

underwater links, as the performance of underwater links significantly 

depends on water types, distance and system parameters. 
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Next, a detailed investigation of the individual analysis of the path loss 

performance of unscattered and scattered light led to a better understanding of 

how diffuse beam attenuate with distance.  For the first time, the distance at 

which the unscattered component drops to zero was predicted, using MC 

simulation. This distance is useful, as it serves to estimate the transition point 

from the minimally-scattered region to the multiple-scattered region. As 

shown in the analysis, in the minimally scattered region, the rate of the 

attenuation can be approximated by the BL law, and, for the multiple-scattered 

region, the attenuation rate is slower. 

Additionally, it was also shown that the link budget equation employing the BL 

law, which includes geometrical loss, can only predict the path loss 

performance in clear water, but not in coastal and turbid water, due to highly 

scattering events. Thus, the MC simulation is the best way to model accurately 

the path loss performance of the diffuse beam in coastal and turbid water.  

Further investigation of the power reception at the off-axis locations was also 

presented, which is believed to be useful for a link designer. The plot 

illustrated the range at which a uniform power could be obtained at off-axis 

locations.  

Next, in chapter 5, the concept of scattering order probability was introduced, 

together with a method to classify the links into three scattering regimes. One 

of the contributions in this chapter was the characterisation of the diffuse links 

into three scattering regimes, based on their scattering probability profile. To 
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evaluate the characteristics of each scattering regime, the temporal and 

angular performances were investigated for several cases in the scattering 

regimes. Apart from that, the AOA distribution for a collimated beam and a 

diffuse beam were evaluated for the first time, for a wide range of distances, 

and in three types of water. It was shown that diffuse beams exhibit larger 

angular dispersion effects compared to collimated beams, as expected. Based 

on the AOA distribution, the receiver FOV was varied to investigate its effect to 

bandwidth performance. Several observations, particularly at off-axis 

locations, illustrate how AOA distributions are used to optimise the bandwidth 

performances. 

In the subsequent chapter, the scattering order histogram was evaluated for 

smaller receiver apertures, so as to find the limitation of this technique. It was 

observed that the reduction of the size of the aperture had little effect on the 

scattering order histogram behaviour, as it only reduced the magnitude of the 

individual scattering order due to the reduction of the photons collected.  Thus, 

it can be said that the method used in classifying diffuse links, based on 

scattering order information, is generally valid for various sizes of aperture. 

Besides that, the impact of reducing the receiver aperture and FOV on the 

power received were also investigated. Finally, the performance trade-off in 

optimising the bandwidth and power were evaluated, based on the scattering 

regime, providing some insights into how receiver FOV affect the bandwidth 

and power at different scattering regimes. On the whole, it can be concluded 

that the scattering regime proposed for diffuse links can be useful as a general 
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guide for link designers, in order to predict the power and bandwidth 

performance for diffuse links. 

7.2 Future research 

There are several future works that can be done as extensions to the work 

documented in this thesis. 

 Improvement of the MC simulation efficiency. 

One of the main disadvantages of the MC simulation is the long simulation time 

due to tracking millions of photons propagating through the channel. Typically, 

the simulation time can range up to several tens of hours. Thus, a method to 

improve the simulation time is needed to boost the performance of an MC 

simulation. Various techniques that have been used in accelerating MC 

simulation in biomedical applications. can be interesting technique to be 

applied in UOWC [126]. 

 Off-axis study : Fixed angular offset. 

The off-axis locations studied in this thesis were set at a fixed distance of 

maximum 5 metres away from the centre of the diffuse beam. As the 

propagation distance increases, the angular offset decreases from the largest 

angular offset value, namely 79, which corresponds to the propagation 

distance of 1 metre, to the smallest angular offset of 4 which corresponds to 
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the propagation distance of 70 metres. This implies that, as the propagation 

distance increases, most of the off-axis location defined in this thesis is situated 

within the illuminated area predicted by the divergence of the source. Thus, it 

is expected that the performance at off-axis locations at a fixed angular offset 

will show some variations. 

 Using an attenuation coefficient that varies with wavelength. 

In the simulations, the diffuse source was assumed to be monochromatic, 

which may not be very accurate, as typical diffuse sources, such as LEDs, have a 

very wide spectral linewidth. Due to this, the MC simulation could be modified 

to include this effect for more accurate results. This could be done by using the 

attenuation coefficient, c that is a function of for different wavelengths.  

 Effect of turbulence and fading 

In this thesis, the effect of turbulence and fading were not considered. It would 

be interesting to investigate how turbulence and fading influence the 

performance of the links. Recently, several research that investigate the effect 

of oceanic turbulence have been reported  in [127,128,129]. 

 

. 
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 Evaluation of full system parameters (eg: BER) 

The MC channel model obtained in this thesis specifically the impulse response 

can be used as the channel model to evaluate other system performance 

parameters such as BER. This can be done by finding a method to convolve the 

impulse response of the channel with an input signal to the full system. 

Recently, in [130] the impulse response generated by MC simulaton has been 

used to evaluate the BER performance of MIMO UOWC links. 
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