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Abstract. We characterize cost-minimizing operating strategies for an energy
store over a given interval of time [0, T ]. The cost functional here can represent,
for example, a traditional economic cost or a penalty for time-variation of the
output from a storage-assisted wind farm or more general imbalance between
supply and demand. Our analysis allows for leakage, operating inefficiencies
and general cost functionals. In the case where the cost of a store depends
only on its instantaneous power output (or input), we present an algorithm
to determine the optimal strategies. A key feature is that this algorithm is
localized in time, in the sense that the action of the store at a time t ∈ [0, T ]
requires cost information over only some usually much shorter subinterval of
time [t, tk] ⊂ [t, T ].

1. Introduction. Over the coming decades, world energy-markets face significant
challenges as they strive to meet their climate-change targets. Renewable generation
is set to play a more dominant role in the future electricity-supply markets but the
availability of renewable energy is intermittent. This unreliability means that there
will always be a need for a quick-reacting back-up, in order to ensure that demand
is met. On the other hand, at off-peak demand times, supply may be curtailed
(often at a high cost) if the rest of the system is not flexible enough to respond.
On the demand side, future demand profiles are likely to look very different from
today. Electric heat pumps, for example, could create a marked seasonal peaking of
demand during the colder, winter months. Electric vehicle charging and new smart
technologies, on the other hand, could change our daily demand patterns. In this
introduction we pay particular attention to the British scene because it is the one
with which we are most familiar, but the issues apply world-wide.

Electricity storage is one potential option for improving the flexibility and reliabil-
ity of our electricity system. It could offer services such as peak-shaving, frequency
response, reactive-power regulation and the provision of reserve. In Great Britain
(GB), grid-scale electricity storage currently comes only in the form of pumped-
hydro power plants, which are implemented largely to meet peak demands. Their
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main source of revenue is through Short-Term Operating Reserve (STOR) and Fast
Reserve, which are funded by National Grid. The stores then replenish their supply
during the night, when electricity prices are at their lowest [1].

Much research has been dedicated to analyzing storage viability. Some papers
focus on the potential social benefits of storage (see, for example, [2, 3, 4, 5]). A
common approach here is to solve the unit dispatch problem, i.e. to select a cost-
minimizing combination of generators (including storage) to run at each time, in
order to ensure that demand is met (or that demand is met with a given prob-
ability). An advantage of this method is that it can incorporate the interactions
between all assets of the energy system into a single optimization problem, allowing
a comparison between the actions of storage against its competing options. A draw-
back, however, is that the system optimum does not necessarily coincide with each
individual firm’s most profitable strategy. In many cases, it is not even clear that
each firm would make a profit under these solutions. Therefore, a whole-system
approach of this kind is generally better suited to questions where the store is not
privately owned, but instead owned and operated by a central controller, such as
the system operator.

Other research focuses on the profits available to a store which faces stochastic
or probabilistic prices. Some of these papers restrict the behaviour of the store
to a pre-defined set of operating strategies (e.g. [6, 7]). Another approach is to
implement Dynamic Programming techniques (e.g. [8, 9]). One drawback of this
latter approach, however, is that it tends to be computationally heavy. A signif-
icant limitation is that it often requires information about prices over the entire
time horizon over which the store’s operation is to be optimized. Since electricity
wholesale prices contain significant idiosyncratic components, this requires a heroic
assumption regarding the foresight of its operator. Additionally, such methods do
not give much scope for mathematical insight into the dynamics of the solutions.

In this paper, we characterize cost-minimizing strategies of an electricity store, for
general cost functionals, in terms of the associated Karush-Kuhn-Tucker multipliers.
Further, for a certain natural class of cost functional (see Section 1.2), we present
an algorithm to determine these optimal strategies. A natural application here
would be to maximize the arbitrage profit available to an electricity store which
is operating in the wholesale electricity market. In doing so, we assume that the
store can predict an electricity price function p : [0, T ] → R where [0, T ] is the
period of time over which we wish to optimize. However, the method only actually
uses price information over a smaller time interval, except in special cases or near
T, thus reducing the required prediction horizon and the amount of computation
needed. It is worth commenting here that given the presence of future markets
at various maturities, which coalesce on the spot wholesale price as they approach
maturity (see e.g. [17]), the prediction of short-term future prices in this way is
not an unreasonable assumption. Another application, as discussed in Section 5.3,
is in the use of a store for “smoothing”. This could apply, for example, to cases
where an energy store is built in conjunction with a wind farm, with the intention
of smoothing the wind output from that farm. Such smoothing could be useful for
reducing short-term fluctuations of supply.

Our method is derived from standard Calculus of Variations techniques and is
intended as an extension to [10]. The main result is Proposition 2.1. Our work
differs from [10] in several respects. Firstly, we present our model in a continuous-
time setting, rather than the discrete setting employed in [10]. Even if prices (for
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example) are declared at discrete time intervals, in accordance with the current
market system, our approach allows for the input of piecewise constant prices but
with continuous variation in the operation of the store. Secondly, [10] allows only
for convex cost functions, whereas here we allow for much more general operating
costs and, in particular, we remove the convexity assumption. This is realistic:
there is little reason to believe that the cost of running a motor, for example, is a
convex function of the output power. Although these more general conditions do
not guarantee the existence of solutions, we prove that optimal operating strategies
of the form given in Proposition 2.1 exist if and only if the algorithm yields both a
strategy q∗ and its associated multiplier function µ∗. Finally, we allow the inclusion
of slightly more general operating constraints - namely, time-varying power and
capacity constraints.

The structure of the paper is as follows: Over the remainder of this section,
we introduce our storage model and its associated costs. In Section 2, we present
the main result, which characterizes the optimal strategies via a reference price
function (or multiplier). In Section 3, we present an algorithm which determines
both the optimal strategy and the reference price for the basic case where the store
is constrained by only its power ratings and its capacity constraints. We prove
that if an optimal strategy exists of the form of Proposition 2.1, then the algorithm
will find it. Section 4 contains a discussion of the time-localization property that
is inherent both in the algorithm and in the more general case of the standard
storage model (see Section 1.2). In Section 5, we present some applications of the
theory and the algorithm. Finally, the conclusions of the paper are summarized in
Section 6.

1.1. The storage model. Let [0, T ] be the interval of time over which we want
to optimize the actions of the store (with T > 0) and denote by U ⊂ R the set
of admissible power outputs associated with the store. The operator of the store
then chooses an operating strategy q : [0, T ] → U which allocates, at each time t,
the power q(t) that is to enter the store (using the convention that if q(t) < 0,
then the store discharges power −q(t) at time t). The power taken from the grid
may be larger than q, to allow for inefficiency of conversion to storage. Similarly,
if q is negative the power delivered to the grid may be between −q and 0. The
constraint set U could, if we wish, vary with time, therefore allowing the inclusion
of constraints such as planned closures or transmission congestion into the model.
All results presented in this paper generalise naturally to this case but, for simplicity
of notation, we will from now on refer only to a time-independent constraint set U.
Throughout this paper we insist that 0 ∈ U. Without this assumption, the store
would never be permitted to be at rest.

The level of stored energy at time t, associated with the strategy q, is denoted
`[q](t) and solves the differential equation{ ˙̀(t) = −α`(t) + q(t) ∀t ∈ [0, T ]

`(0) = `0,
(1)

where α ∈ [0, 1) is the leakage rate of the store and `0 is the initial level of stored
energy. The level of stored energy thus evolves as

`[q](t) = e−αt`0 + e−αt
ˆ t

0
eαsq(s)ds ∀t ∈ [0, T ]. (2)
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The capacity constraints of the store are characterized by two functions E+, E− :
[0, T ]→ R, so that any strategy q is constrained by the inequalities

E−(t) ≤ `[q](t) ≤ E+(t) ∀t ∈ [0, T ].

We assume that the initial and terminal levels of the store, denoted `0 and `T
respectively, are pre-specified, so that

`0 := E−(0) = E+(0) and `T := E−(T ) = E+(T ).

We also assume, without loss of generality, that {Ė−(t)+αE−(t), Ė+(t)+αE+(t)} ⊂
U for all t ∈ [0, T ], since otherwise E could be adjusted so that this is true, without
changing the set of admissible strategies (cf. Definition 1.1).

The set of possible levels of the store, at each time, is represented by the ad-
missible energy domain E ⊂ [0, T ] × R, which is the set of all pairs (t,m) ∈
[0, T ] × [E−(t), E+(t)]. Often, one may choose to replace the capacity constraints
E+ and E− with constants (except at the initial and final times), so that E+ > 0 is
the physical size of the store and E− ≥ 0 is the minimum technically feasible level
of the store. Choosing to represent E in this more general form allows the store, for
example, to participate in multiple markets (such as forward or futures markets).

The total cost associated with a strategy q is denoted C[q] ∈ R. One natural
interpretation is as a variable cost in the usual economic sense, which may incor-
porate factors such as running costs, warming-up costs and costs of conversion to
and from stored form, as well as the cost of purchasing power and the payments
received for providing power. Later, in Section 5.3, we will consider the use of a
store for smoothing the output of a wind farm and, in this case, C will be the
total variation of net wind farm output. The aim of this paper is to identify those
operating strategies q which minimize the total cost C[q], whilst adhering to all of
the physical constraints outlined above.

Definition 1.1 (Admissible and optimal strategies). We say that q : [0, T ] → U
is an admissible strategy if q is piecewise continuous and satisfies the capacity
constraints

`[q](t) ∈ [E−(t), E+(t)] ∀ t ∈ [0, T ]
and the terminal conditions `[q](0) = `0 and `[q](T ) = `T . We denote by X the set
of all admissible strategies and say that q∗ ∈ X is an optimal strategy if

C[q∗] ≤ C[q] ∀q ∈ X. (3)

1.2. The “standard storage model”. Our standard storage model, which will
be investigated in detail in Section 3 and in the examples of Sections 5.2 and 5.3,
is a store whose cost may be written in the general form

C[q] =
ˆ T

0
L(t, q(t)) dt (4)

for some cost rate function L : [0, T ] × U → R with L(t, 0) = 0 for all t ∈ [0, T ].
In a price-arbitrage model, for example, L(t, q(t)) may be the cost per unit time
of buying enough electrical power from the grid at time t in order to input power
q(t) into the store at that time (using the convention that if q(t) < 0, then this
corresponds to outputting power −q(t) from the store and selling). If the store
is profitable to run, then the minimal cost should, of course, be negative. There
may well be costs that are fixed or sunk and so do not vary with how the plant is
operating (e.g. paying employees, rent and utilities for the building, interest on loans
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etc.) but since these do not change the optimisation problem, we have subtracted
them off, without loss of generality.

For technical reasons we will require that, for each t ∈ [0, T ], the map λ 7→ L(t, λ)
is piecewise differentiable and that the associated partial derivative ∂L(t, λ)/∂λ
has a continuous inverse at almost every λ ∈ U. The piecewise differentiability
assumption allows for jumps in the cost which may relate, for example, to the cost
of switching on an additional motor in order to provide a higher power output.

2. Characterization of optimal strategies. The following proposition provides
a characterization of optimal strategies in terms of a multiplier function µ∗. Owing
to its relation to the arbitrage model outline in Section 1.2, we will often refer to
this as a “reference cost”.

Proposition 2.1 (Characterization of optimal strategies). Suppose there exists a
piecewise differentiable function µ∗ : [0, T ] → R and a strategy q∗ ∈ X with the
following properties:
(i) The strategy q∗ is a minimizer of

C[q]−
ˆ T

0
eαtµ∗(t)q(t)dt (5)

over all piecewise continuous functions q : [0, T ]→ U.
(ii) If µ∗ is differentiable at t ∈ [0, T ], then the following complementary slackness

conditions are satisfied:

µ̇∗(t) = 0 if E−(t) < `[q∗](t) < E+(t), (6)
µ̇∗(t) ≥ 0 if `[q]∗(t) = E+(t), (7)
µ̇∗(t) ≤ 0 if `[q∗](t) = E−(t). (8)

(iii) If µ∗ is not differentiable at t ∈ [0, T ], then the following “jump” complemen-
tary slackness conditions are satisfied:

µ∗(t+)− µ∗(t−) = 0 if E−(t) < `[q∗](t) < E+(t), (9)
µ∗(t+)− µ∗(t−) ≥ 0 if `[q∗](t) = E+(t), (10)
µ∗(t+)− µ∗(t−) ≤ 0 if `[q∗](t) = E−(t), (11)

where µ∗(t−) and µ∗(t+) are the left and right limits respectively of µ∗ at t.
Then q∗ is an optimal strategy.

Proof. Let q ∈ X and let 0 = a1 < . . . < an < an+1 = T be a partition such that
∪ni=1[ai, ai+1] = [0, T ] and q∗, q are continuous and µ∗ is differentiable over each
(ai, ai+1). Notice that (1) can be equivalently written as

d

dt

(
eαt`[q](t)

)
= eαtq(t) ∀t ∈ [0, T ].

Hence, (5) implies

C[q∗]− C[q] ≤
ˆ T

0
eαtµ∗(t)

(
q∗(t)− q(t)

)
dt

(1)=
n∑
i=1

ˆ ai+1

ai

µ∗(t)
{
d

dt

(
eαt`[q∗](t)− eαt`[q](t)

)}
dt
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=
n∑
i=1

[
eαai+1µ∗(a−i+1) (`[q∗]− `[q]) (ai+1)− eαaiµ∗(a+

i ) (`[q∗]− `[q]) (ai)
]

−
n∑
i=1

ˆ ai+1

ai

eαtµ̇∗(t) (`[q∗](t)− `[q](t)) dt

=
n∑
i=2

eαai
(
µ∗(a−i )− µ∗(a+

i )
)

(`[q∗]− `[q]) (ai)

−
n∑
i=1

ˆ bi

ai

eα(t)µ̇∗(t) (`[q∗]− `[q]) (t) dt.

The second equality follows from integration by parts and the final equality re-
sults from a rearrangement of the first sum on the previous line, together with
the condition that `[q](0) = `[q∗](0) = E−(0) and `[q](T ) = `[q∗](T ) = E−(T )
if q ∈ X. Applying the complementary slackness conditions (6)-(11) to the final
equality above, we obtain C[q∗]− C[q] ≤ 0.

In a simple price-arbitrage model, as discussed in Section 1.2, the multiplier
function µ∗ provides a reference cost per unit of energy. Roughly, if the cost per
unit of energy for operating the store is lower than the reference cost, then this
indicates the store should charge at that time (and similarly for discharging).

It is worth mentioning here that exactly the same result follows if we apply the
Karush-Kuhn-Tucker (KKT) conditions to the capacity constraints of the original
minimization problem (3). By following such an approach, one instead looks for
minimizers of the relaxed functional

C[q]−
ˆ T

0

(
λ1(t)

(
`[q](t)− E−(t)

)
+ λ2(t)

(
E+(t)− `[q](t)

) )
dt

over all piecewise-continuous q : [0, T ]→ U, where λ1, λ2 : [0, T ]→ R are piecewise-
continuous functions which satisfy the complementary slackness conditions

λ1(t)
(
`[q](t)− E−(t)

)
= λ2(t)

(
E+(t)− `[q](t)

)
= 0 ∀t ∈ [0, T ].

The relation between the two approaches is that the reference cost function µ∗ in
Proposition 2.1 can be expressed as an integral of the KKT functions:

µ∗(t) =
ˆ T

t

(λ1(s)− λ2(s)) ds,

and, in particular, µ̇∗(t) = −λ1(t) + λ2(t).

3. Optimal strategies for the standard storage model. In Section 1.2 we
introduced our standard storage model. We present here an algorithm to determine
µ∗, and consequently the optimal strategy q∗, in this case. Our algorithm relies on
Proposition 2.1 which we recall states that, if we can find the appropriate reference
price function µ∗, then the optimal strategy q∗ ∈ X solves

L[q∗, µ∗] ≤ L[q, µ∗] ∀ q : [0, T ]→ U, (12)

where

L[q, µ] :=
ˆ T

0

(
L(t, q(t))− eαtµ(t)q(t)

)
dt ∀ q, µ : [0, T ]→ R. (13)
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The regularity assumptions on L, q and µ imply that (12) reduces to a separate
minimization problem for each time. Specifically, the optimal strategy q∗ ∈ X
solves

L(t, q∗(t))− eαtµ∗(t)q∗(t) ≤ L(t, w)− eαtµ∗(t)w ∀w ∈ U, almost all t ∈ [0, T ].
(14)

Thus, as long as µ∗ is known, the problem has now simplified into a collection of
minimizations over bounded scalars, rather than the original minimization over a
set of constrained functions. The challenge therefore is to determine µ∗. This is the
objective of the algorithm.

An important result is Proposition 3.5, which states that if the algorithm does
not terminate early, then it does indeed provide an optimal strategy q∗.

3.1. Preliminary results and definitions. We aim to find a piecewise differen-
tiable µ∗ : [0, T ] → R such that the optimal strategy q∗ ∈ X solves (12). The
conditions of Proposition 2.1 state that µ∗ should be constant over intervals of
time where the level of the store is away from the capacity constraints. This corre-
sponds to intervals of the form [τk, σk) in the algorithm of Section 3.2 and, together
with (14), motivates the following construction:

Given t ∈ [0, T ] and λ ∈ R, we want to define a quantity u(t, λ) ∈ R as a solution
of

u(t, λ) = argminw∈U
(
L(t, w)− eαtλw

)
. (15)

If we know that µ∗ is constant over some interval [τ, σ] ⊂ [0, T ], then the task of
the algorithm reduces to finding the correct λ and setting q∗(t) = u(t, λ) for almost
all t ∈ [τ, σ]. Care needs to be taken, however, because there may be multiple
minimizers u(t, λ) associated with λ. With this in mind, we denote byMt ⊂ R the
set of λ which admit more than one minimizer in (15), and deal with this technicality
in the following lemma. Note that, if L is assumed to be strictly convex in its second
argument, then minimizers of (5) are of course unique, implying that eachMt = ∅.
The following lemma states the important result that u(t, λ) is monotone increasing
with λ. This property will be key to the algorithm.

Lemma 3.1 (Monotonicity and regularity properties). For each (t, λ) ∈ [0, T ]×R,
let u(t, λ) be any solution of (15). Then, at each t ∈ [0, T ], the mapping λ 7→ u(t, λ)
is monotone increasing and piecewise continuous. Moreover, the set Mt is finite
and discontinuities in λ→ u(t, λ) occur only at points inMt.

Proof. Let t ∈ [0, T ] and suppose that the map λ 7→ u(t, λ) is not monotone in-
creasing. Then, there exists λ1 < λ2 such that u1 := u(t, λ1) > u(t, λ2) =: u2. But
then,

L(t, u1)− eαtλ2u1 ≤ L(t, u2)− eαtλ1u2 − eαt(λ2 − λ1)u1 < L(t, u2)− eαtλ2u2.

The first inequality follows from the definition of u1 and u2 as solutions to (15),
and the second inequality follows from the supposition. However, the above contra-
dicts the definition of u2, and we conclude that the map λ 7→ u(t, λ) is monotone
increasing at all t ∈ [τ, T ].

The piecewise continuity of the map λ 7→ u(t, λ) follows immediately from the
regularity assumptions on L. Precisely, if for almost all λ ∈ R, the minimizers u(t, λ)
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lie away from discontinuities of L, then they must satisfy
∂L

∂w
(t, w)

∣∣∣∣
w=u(t,λ)

− eαtλ = 0 a.e. λ ∈ R.

The continuous invertibility assumption on the partial derivative of L therefore
implies the piecewise continuity of the map λ 7→ u(t, λ). If, on the other hand,
there is a non-degenerate subset W ⊂ R such that λ ∈ W implies u(t, λ) lies
at a discontinuity of L, then the above monotonicity property and the piecewise
continuity of L imply that the map λ 7→ u(t, λ) must be piecewise constant over W.
In either case, the map λ 7→ u(t, λ) is piecewise continuous.

Finally, we prove the finiteness of the setMt by supposing that the opposite is
true. To this end, let A ⊂ R be an infinite set such that, for each λ ∈ A, there
are two distinct local solutions x(λ), y(λ) ∈ U \ ∂U to (15), where ∂U denotes the
boundary of the set U. Let λ0 ∈ A be such that there exists a sequence (λn)n∈N in
R with limn→∞ λn = λ0, and set x(λ0) = x0 and y(λ0) = y0. Assume without loss
of generality that

Lu(t, x(λ)) = Lu(t, y(λ)) = eαtλ

is satisfied at λ = λ0, where Lu(t, ·) denotes the partial derivative of L with respect
to the second argument, and that x(λ) and y(λ) lie away from any discontinuity of
L. Setting g(λ) := L(t, x(λ))− λx(λ) and h(λ) := L(t, y(λ))− λy(λ), we obtain

g′(λ0) = Lu(t, x0)x′(λ0)− x′(λ0)λ0 − x0 = (Lu(t, x0)− λ0)x′(λ0)− x0 = −x0,

and similarly, h′(λ0) = −y0. Hence, if x0 and y0 are both global minimizers solving
(15) but x0 6= y0, then there exists N ∈ N such that g(λn) 6= h(λn) for all n ≥ N. In
particular, x(λn) and y(λn) cannot both be minimizers for n ≥ N. This contradicts
the assumption that there exists such a set A.

The definitions which follow will be employed in the algorithm and are written
under the assumption that there exists a pair (µ∗, q∗) which satisfies the condi-
tions of Proposition 2.1. Condition (6) and inequality (14) motivate the following
definition.

Definition 3.2 ((λ, τ)-admissibility). For any choice of λ ∈ R and τ ∈ [0, T ], we
say a piecewise continuous function q : [0, T ]→ U is (λ, τ)−admissible if q ≡ 0 over
[0, τ) and if

q(t) ∈ argminw∈U
(
L(t, w)− eαtλw

)
for almost all t ∈ [τ, T ]. (16)

We say that q is τ−admissible if there exists a λ ∈ R such that q is (λ, τ)−admissible.

Note that, in general, a (λ, τ)−admissible strategy q is not admissible: for a
general choice of λ, one of the capacity constraints is likely to be broken at some
time in (τ, T ]. The idea of the algorithm is to piece together (λ, τ)−admissible
strategies, adjusting λ at times when the store is full or empty, in order to construct
the optimal strategy q∗ ∈ X. The reference cost µ∗ attains the appropriate value of
λ over intervals of time when µ∗ is constant. In the special case that one can find
a (λ, 0)−admissible strategy which is also admissible, then of course we are done,
since we may set µ∗ ≡ λ. Such a strategy satisfies condition (6) at every t ∈ [0, T ].

The key feature of the algorithm is to determine: (i) the intervals of time (tk, σk)
over which µ∗ is constant and (ii) the value λk that µ∗ attains over these intervals.
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We may then set q∗ to coincide with a (λk, τk)-admissible strategy over these inter-
vals. The correct choice of µ∗ relies on the following characterization of strategies.

Definition 3.3 (Characterization of strategies). Let τ ∈ [0, T ],m ∈ [E−(τ), E+(τ)].
We characterize each τ−admissible q as follows:
(i) We write q ∈ X−(τ,m) if there exists e ∈ (τ, T ) and ε0 > 0 such that

E−(t′) ≤ m+ `[q](t′) ≤ E+(t′) ∀t′ ∈ (τ, e) (17)

and m + `[q](e + ε) < E−(e + ε) for all ε ∈ (0, ε0). We call e the exit time
associated with q.

(ii) Similarly, we write q ∈ X+(τ,m) if there exists e ∈ (τ, T ) and ε0 > 0 such
that condition (17) holds and m + `[q](e + ε) > E+(e + ε) for all ε ∈ (0, ε0).
Again, we call e the exit time associated with q.

We write λ ∈ Λ−(τ,m) if there exists a (λ, τ)−admissible q ∈ X−(τ,m), and
λ ∈ Λ+(τ,m) if there exists a (λ, τ)−admissible q ∈ X+(τ,m).

In particular, the set X−(τ,m) contains all τ−admissible q whose first violation
of the capacity constraints would occur at the lower boundary E− if the level of
the store at time τ were known to be m (and similarly for X+(τ,m)). The mono-
tonicity property of Lemma 3.1 implies that Λ−(τ,m) and Λ+(τ,m) are connected
subintervals of R satisfying

sup Λ−(τ,m) ≤ inf Λ+(τ,m) ∀(τ,m) ∈ [0, T ]× [0,M ]. (18)

3.2. The algorithm. We are now in a position to present the algorithm, which
will identify an N ∈ N and two increasing sequences of times {τi}Ni=1,{σi}Ni=1 such
that τi < σi < τi+1 for each i, and such that µ̇∗(t) = 0 whenever t ∈ (τi, σi).
The multiplier µ∗ is only allowed to jump in value at times τi or σi. Fixing τ ∈
[0, T ), we suppose that µ∗ and q∗ are known over [0, τ ] and that the algorithm
has already identified all of the times τ1, . . . , τk−1 and σ1, . . . , σk−1 which apply
over this interval, with τk < σk ≤ τ. We further assume without loss of generality
that m := `[q∗](τ) ∈ {E−(τ), E+(τ)} (otherwise, move τ backwards until this is
satisfied).
Step 1. Set λ = sup Λ−(τ,m) (Defn 3.3). If there exists a (λ, τ)−admissible q such
that q /∈ X−(τ,m) ∪ X+(τ,m), then set τk = τ, σk = ek = T and µ∗(t) = λ for
all t ∈ (τ, T ] and define the restriction of q∗ to (τk, T ] to be q. The algorithm is
complete.

If there is no such q, proceed to step 2.
Step 2. Again, set λ := sup Λ−(τ,m). There are three cases. For each case, we
either set τk = τ and define the pair (µ∗, q∗) restricted to an interval (τk, σk], or we
proceed to the next step in order to identify τk > τ .

a) If λ ∈ Λ−(τ,m)\Λ+(τ,m) : Consider the set Λ of (λ, τ)−admissible q such that
m + `[q](σ) = E+(σ) for some σ ∈ [τ, e), where e is the exit time associated
with q (cf. Definition 3.3). Select the latest such σ and let q ∈ Λ be the
(λ, τ)-admissible strategy associated with it.

If σ = τ, proceed to step 3a.
If σ > τ, then set τk = τ, σk = σ and ek = e. Set µ∗(t) = λ for all

t ∈ (τk, σk] and define the restriction of q∗ to (τk, σk] to coincide with q. If
σk < T, proceed to step 3b; if σk = T, proceed to step 4.
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b) If λ ∈ Λ+(τ,m) \ Λ−(τ,m) : Consider the set Λ of (λ, τ)−admissible q ∈
X+(τ,m) such that m + `[q](σ) = E−(σ) for some σ ∈ [τ, e), where e is the
exit time associated with q. Select the latest such σ and let q ∈ Λ be the
(λ, τ)−admissible strategy associated with it.

If σ = τ, proceed to step 3a.
If σ > τ, then set τk = τ, σk = σ and ek = e. Set µ∗(t) = λ for all

t ∈ (τk, σk] and define the restriction of q∗ to (τk, σk] to coincide with q. If
σk < T, proceed to step 3b; if σk = T, proceed to step 4.

c) If λ ∈ Λ−(τ,m) ∩ Λ+(τ,m) : Consider the set Λ of (λ, τ)−admissible q such
that either m+ `[q](σ) = E+(σ) or m+ `[q](σ) = E−(σ) for some σ ∈ [τ, e),
where e is the exit time associated with q. Select the latest such σ and let
q ∈ Λ be the (λ, τ)−admissible strategy associated with it.

If σ = τ, proceed to step 3a.
If σ > τ, then set τk = τ, σk = σ and ek = e. Set µ∗(t) = λ for all

t ∈ (τk, σk] and define the restriction of q∗ to (τk, σk] to coincide with q. If
σk < T, proceed to step 3b; if σk = T, proceed to step 4.

Step 3a. For each s > τ, let m(s) = E−(s) if m = E−(τ); and m(s) = E+(s) if
m = E+(τ). Select the first time s ∈ (τ, T ] such that, on relabelling m(s) as m, and
s as τ, and on determining the new associated σ from steps 1 and 2, we have σ > τ.
Set τk = s and return to step 1.
Step 3b. For each s > τ, let m(s) = E−(s) if m = E−(τ); and m(s) = E+(s) if
m = E+(τ). Select the first time s ∈ (τ, T ] such that, on relabelling m(s) as m, and
s as τ, and on determining the new associated σ from steps 1 and 2, we have σ > τ.
Set τk+1 = s and return to step 1.

If there is no such τk+1, then we have found all intervals (τi, σi) over which µ∗
is constant and have defined the restriction of q∗ over these intervals. Proceed to
step 4.
Step 4. Over each interval (σi, τi+1], corresponding to the times found in the steps
above, and for each t ∈ (σi, τi+1], define

q(t) =
{
Ė+(t) + αE+(t) if `[q∗](σi) = E+(σi)
Ė−(t) + αE−(t) if `[q∗](σi) = E−(σi).

Define the restriction of q∗ to the union of these intervals to coincide with q. We
have now constructed a strategy q∗ ∈ X.
Step 5. For each i ∈ {1, . . . , N}, check if there exists a piecewise differentiable
µi : (σi, τi+1)→ R such that the following conditions hold:
• q∗(t) is a minimizer of L(t, x)− µi(t)x over all x ∈ R.
• If `[q∗](σi) = E+(σi), then µi is non-decreasing over (σi, τi+1) and satisfies
µi(σ+

i ) ≥ µ∗(σ−i ) and µi(τ−i+1) ≤ µ∗(τ+
i+1).

• If `[q∗](σi) = E−(σi), then µ∗ is non-increasing over (σi, τi+1] and satisfies
µi(σ+

i ) ≤ µ∗(σ−i ) and µi(τ−i+1) ≥ µ∗(τ+
i+1).

If such a µi exists for each i ∈ {1, . . . , N}, then define the restriction of µ∗ to each
of the intervals (σi, τi) to coincide with µi. We have now constructed a pair (µ∗, q∗)
such that q∗ is optimal (see Proposition 3.4).

If, on the other hand, there exists i ∈ {1, . . . , N} with no such µi, then we have
constructed a strategy q∗ ∈ X but no corresponding multiplier µ∗ : [0, T ] → R. In
this case, q∗ may not be optimal, and we say the algorithm terminated early.
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End of algorithm

3.3. Optimality of the strategies generated by the algorithm. The follow-
ing result states that, whenever the algorithm yields a pair (µ∗, q∗), then q∗ is
an optimal strategy, according to Proposition 2.1. The converse is then given by
Proposition 3.5: if there is an optimal strategy which satisfies the conditions of
Proposition 2.1, then the algorithm will find it.

Proposition 3.4. If the above algorithm yields a pair (µ∗, q∗), then q∗ is optimal.

Proof. Let (µ∗, q∗) be the pair which is determined through the algorithm and let
{τi}Ni=1 and {σi}Ni=1 be the associated sequences of times, so that µ∗ is constant over
each interval (τi, σi). Assume that the conditions of Proposition 2.1 are satisfied up
until time τk ∈ [0, T ). At each i ∈ {1, . . . , N}, we have

sup Λ−(τi, `[q∗](τi)) ≤ µ∗(τ+
i ) ≤ inf Λ+(τi, `[q∗](τi)). (19)

If the conditions of step 1 are satisfied at τk, then q∗ is clearly admissible and
satisfies the properties of the proposition. Hence, q∗ is optimal and the algorithm
is complete.

Assume therefore that the conditions of step 1 do not hold at τk so that sup Λ−(τk,
m) = inf Λ+(τk,m). It is clear that the strategy defined by the algorithm is admis-
sible, and it remains to check that conditions (6)-(11) are satisfied by µ∗.

To this end, note that, the algorithm ensures that the conditions are satisfied
over the intervals (τk, σk) and (σk, τk+1], and it remains to check that the conditions
hold at σk. Suppose first that case a) of step 2 is satisfied at time τk, so that
`[q∗](σk) = E+(σk). Then, by construction, we have µ∗(σ−k ) ∈ Λ−(σk, E+(σk)).
Thus, if σk = τk+1 then, together with (19), this implies

µ∗(σ−k ) ≤ sup Λ−(σk, E+(σk)) ≤ µ∗(σ+
k ) (20)

and condition (10) is satisfied at σk. If, on the other hand, σk < τk+1, then the con-
struction of µ∗ through the algorithm immediately implies that µ∗(σ−k ) ≤ µ∗(σ+

k ).
Similarly, if case b) of step 2 holds at τk, then `[q∗](σk) = E−(σk) and µ∗(σk) ∈

Λ+(σk, E−(σk)). Thus, if σk = τk+1 then, together with (19), this implies

µ∗(σk) ≥ inf Λ+(σk, E−(σk)) ≥ µ∗(σ+
k ) (21)

and condition (11) is satisfied at σk. If, on the other hand, σk < τk+1, then the con-
struction of µ∗ through the algorithm immediately implies that µ∗(σ−k ) ≥ µ∗(σ+

k ).
Finally, if case c) holds at τ, then the above two cases together imply that the

conditions of Proposition 2.1 are satisfied.

Proposition 3.5. If there is a pair (µ, q) which satisfies the conditions of Propo-
sition 2.1, then the strategy q∗ ∈ X generated by the algorithm is optimal.

Proof. Let (µ, q) be a pair satisfying the conditions of Proposition 2.1 and let q∗
be the strategy generated by the algorithm. At the initial time t0 = 0, there exists
an interval [t0, s) ⊂ [0, T ] with two associated options: either (i) µ is constant over
this interval, or (ii) µ is varying over this interval, in the sense that µ̇(t) 6= 0 or
µ(t+)− µ(t−) 6= 0 for almost all t ∈ (t0, s). We will prove the following two claims:
Claim 1. If case (i) holds and [t0, s) is the largest connected interval over which µ
is constant, then the algorithm yields a constant µ∗ over this interval and `[q](s) =
`[q∗](s) ∈ {E−(s), E+(s)}. Moreover, we have µ(t) = µ∗(t) for all t ∈ [t0, s) (or,
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we may adjust µ so that this is correct, without violating the conditions of Proposi-
tion 2.1).
Claim 2. If case (ii) holds, then q(t) = q∗(t) for almost all t ∈ [t0, s). In particular,
we may set µ∗(t) = µ(t) for all t ∈ [t0, s) in step 5 of the algorithm and we have
`[q](s) = `[q∗](s).

This will complete the proof of Proposition 3.5 since, as long as `[q](s) = `[q∗](s),
we may re-set the start time as t0 = s and re-apply these claims to find another
interval [t0, s′) over which the above results hold. Since µ∗ coincides with µ over
[t0, s′), we conclude that the pair (µ∗, q∗) generated by the algorithm satisfies the
conditions of Proposition 2.1 over this interval (and consequently over all of [0, T ]
by iteration).

We will employ the notation λ ∼ λ′ if the set of (λ, t0)−admissible functions
coincides exactly with the set of (λ′, t0)−admissible functions over the interval (t0, s)
and we introduce the ordering λ ≺ λ′ if λ � λ′ and λ < λ′. We set m0 = `[q](t0)
and λ∗ = sup Λ−(t0,m0).

To prove Claim 1, suppose that case (i) holds. The monotonicity and continuity
properties of Lemma 3.1 imply for θ ∈ R the relations:

θ ≺ λ∗ ⇒ θ ∈ Λ−(t0,m0) \ Λ+(t0,m0) (22)
θ � λ∗ ⇒ θ ∈ Λ+(t0,m0) \ Λ−(tk,mk). (23)

Setting λ = µ(t) for all t ∈ [t0, s), suppose that λ ≺ λ∗. Then we can choose θ such
that λ ≺ θ ≺ λ∗. If `[q](s) = E+(s), then the left-hand inequality λ ≺ θ, together
with the continuity and monotonicity of the map u from Lemma 3.1, guarantees the
existence of a (θ, t0)−admissible q′ (cf. Definition 3.2) such thatm0+`[q′](t) ≥ E+(t)
for all t ∈ [t0, s], with strict inequality at t = s. This implies that θ ∈ Λ+(t0,m0),
which contradicts (22).

If, on the other hand, `[q](s) = E−(s), then Proposition 2.1 requires that µ(s+)−
µ(s−) ≤ 0. If µ is constant over an interval (s, t′) ⊂ (s, T ], then (22) implies that
the lower capacity constraint is broken by q, which contradicts the assumption that
q ∈ X. If µ is not constant over any such interval, then Proposition 2.1 requires
that q(t) = u(t, µ(t)) = Ė−(t) + αE−(t) for all t ∈ (s, t′), where u is the map of
Lemma 3.1. By the monotonicity of u, this is possible only if µ(t+) − µ(t−) > 0
at some t ∈ (s, t′), since otherwise the fact that λ ∈ Λ−(t0,m0) implies that q
will break the lower capacity constraint. However, this contradicts condition (8) of
the proposition. Hence, we must have λ ∼ λ∗ or λ � λ∗. If λ � λ∗, then similar
arguments as above lead us to analogous contradictions. We conclude that λ ∼ λ∗,
as stated in Claim 1 above.

The remainder of Claim 1 states that `[q](s) = `[q∗](s). Since λ ∼ λ∗ (and
therefore µ and µ∗ coincide over [t0, s)), this is always true if (16) admits a unique
minimizer at each t ∈ [t0, s). However, if this uniqueness does not hold, then there
are potentially two (or more) strategies q1, q2 ∈ X which satisfy the conditions of
Proposition 2.1, and we need to make sure that Claim 1 holds regardless of which
strategy we choose. Let x1, x2 be the corresponding (λ, t0)−admissible strategies
and relabel our previous value of s as s1, s2, so that qi(t) = xi(t) for all t ∈ [t0, si),
for i = 1, 2. Let e1 and e2 be the corresponding exit times for x1 and x2 respectively
(cf. Definition 3.3), with s1 < e1 and s2 < e2. As shown above, the corresponding
multipliers µ1, µ2 both satisfy that µi(t) ∼ λ∗ for all t ∈ [0, si), i = 1, 2, but
according to our definition for s, the value of each µi must change at time si, so
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that λi+ := µ((si)+) � λ. In particular, this means that if xi ∈ X−(t0,m0), then
we must have `[qi](si) = E+(si) and λi+ � λ, since otherwise Proposition 2.1 tells
us that `[qi](si) = E−(si) and λi+ ≺ λ, which would be a contradiction because,
by the monotonicity property of Lemma 3.1, this would mean that qi breaks the
lower capacity constraint. Similarly, if xi ∈ X+(t0,m0), then we conclude that
`[qi](si) = E−(si) and λi+ ≺ λ. Assuming for now that x1 ∈ X−(t0,m0), we consider
the following (exhaustive list of) cases: (a) x2 ∈ X+(t0,m0) and s1 ≤ e2 and
s2 ≤ e1; (b) x2 ∈ X+(t0,m0) and either s1 > e2 or s2 > e1; (c) x2 ∈ X−(t0,m0);
or (d) x2 /∈ X−(t0,m0) ∪X+(t0,m0).

If case (a) holds, then `[q1](s1) = E+(s1) and λ1
+ � λ. However, we can construct

a new (λ, t0)−admissible x which agrees with x1 over [t0, s1) and which agrees with
x2 over [s1, s2). By construction, x ∈ X+(t0,m0). Thus, the monotonicity property
of Lemma 3.1 implies that if λ1

+ � λ, then q1 must break the upper capacity
constraint at some time, which contradicts q1 ∈ X. A similar argument reveals an
analogous contradiction for q2. Thus, q cannot coincide with xi over [t0, si), for
i = 1, 2 but rather must coincide with some other (λ, t0)−admissible x over its
corresponding interval [t0, s).

If case (b) holds and s1 > e2, then `[q2](s2) = E−(s2) and λ2
+ ≺ λ. By construct-

ing another (λ, t0)−admissible x which agrees with x2 over [t0, e2) and agrees with
x1 over [e2, s1), we have x ∈ X−(t0,m0) and conclude that q2 must break the lower
capacity constraint at some time. Thus, q cannot coincide with x2 over [t0, s2).
Similarly, q cannot coincide with x1 over [t0, s1) if instead s2 > e1.

Similarly, if case (c) holds and s1 < s2, then `[q1](s1) = E+(s1) and λ1
+ ≺ λ.

Constructing a (λ, t0)−admissible x ∈ X+(t0,m0) which agrees with x1 over [t0, s1)
and agrees with x2 over [s1, s2), again implies that q1 must break the upper capacity
constraint at some time. Thus, q cannot coincide with x1 over [t0, s1). A similar
argument holds if s2 < s1.

Finally, if case (d) holds, we again have that `[q1](s1) = E+(s1) and λ1
+ ≺ λ,

and we can construct a (λ, t0)−admissible x ∈ X+(t0,m0) which agrees with x1

over [t0, s1) and agrees with x2 over [s1, T ]. Thus q1 must break the upper capacity
constraint at time T and we conclude that q cannot coincide with x1 over [t0, s1).

A unifying feature of the above cases (a)–(d) is that, if s1 < s2, then we arrive at
a contradiction. Thus, the pair (µ, q) can satisfy the conditions of Proposition 2.1
only if q agrees with the (λ, t0)−admissible x which has the latest corresponding
update time s. This means that, not only does the algorithm choose λ∗ ∼ λ over
the interval [t0, σ1) over which µ∗ is constant (with σ1 being the first update time,
as defined in the algorithm), but also that σ1 = s. Analogous results hold if we
assume instead that x1 ∈ X+(t0,m0). Thus, the only case not covered above (after
relabelling x1 and x2 if necessary) is where x1, x2 ∈ X are both admissible. However,
by definition and by step 1 of the algorithm, we here have s = σ1 = T, λ ∼ λ∗ and
`[q](T ) = `[q∗](T ) = `T . Thus, the same conclusions hold.

The only remaining issue now, to complete the proof of Claim 1, is to show that
`[q1](s1) = `[q2](s2) whenever s1 = s2. However, we can only have s1 = s2 in cases
(a) or (c), or if x1, x2 ∈ X are both admissible (in which case, s1 = s2 = T and
we have already shown that we are done). In case (a), we have shown that neither
q1 nor q2 are admissible, and so must search for a new (λ, t0)−admissible x with a
later update time s; whilst in case (c), we have by definition `[q1](s1) = `[q2](s2) =
E+(s2). This completes the proof of Claim 1.
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To prove Claim 2, suppose that case (ii) holds. Then, by Proposition 2.1, the
level of stored energy remains fixed at a capacity constraint throughout [0, s) and
we may assume, without loss of generality, that `[q](t) = E−(t) for all t ∈ [0, s)
and consequently that µ is decreasing over this interval. Suppose now that there
is a connected interval I ⊂ [t0, s), containing t0, such that q(t) 6= q∗(t) for almost
all t ∈ I. Then, the algorithm tells us that µ∗ attains a constant value λ∗ over all
of I and that there is a (λ∗, t0)−admissible x which coincides with q∗ over [t0, σ1).
Since q remains at the lower capacity constraint over [t0, s), we have q(t) ≤ x(t) and
µ(t) ≺ λ∗ for all t ∈ I∩[t0, s). (If, instead, µ(t) ∼ λ∗ for all t ∈ I∩[t0, s), then we have
already dealt with this case in Claim 1.) If x /∈ X+(t0,m0), then (22) together with
conditions (8) and (11), imply that q breaks the lower capacity constraint before
the exit time associated with µ∗, thus contradicting the assumption that q ∈ X.
If, on the other hand, x ∈ X+(t0,m0), then conditions (8) and (11) imply that q
breaks the lower capacity constraint before µ∗ changes value, again contradicting
the assumption that q ∈ X. This completes the proof of Claim 2.

Proposition 3.6. If the map x 7→ L(t, x) is convex for all t ∈ [0, T ], then there
exists a solution of the form of Proposition 2.1.

Proof. The proof is a direct analogue of that presented in [10], so we do not replicate
it here.

4. The time-localization property. Consider the standard storage model of Sec-
tion 1.2. The algorithm presented in Section 3.2 reduces the original problem - an
optimization over a constrained set of functions - to a series of new simpler opti-
mizations over a set of bounded scalars. Moreover, each of these new optimizations
are localized in time, in the sense that at each time τk from the algorithm, one needs
cost information only up to the associated exit time ek to know how to operate the
store over (τk, σk). Indeed, the same is true for each time t ∈ (τk, σk). We call this
property the “time-localization property”.

4.1. An intuitive illustration. As an illustration of both the algorithm and the
time-localization property, consider a simple arbitrage model of the standard storage
model form, with no leakage (α = 0) and with cost rate function

L(t, x) =
{
p(t)x/ε1 if x ≥ 0
ε2p(t)x if x < 0 ∀ t ∈ [0, T ], x ∈ U, (24)

where, for each t ∈ [0, T ], p(t) ∈ [0,∞) is the price of unit energy. Let U = [−q−, q+]
be the range of admissible powers, with q−, q+ ∈ (0,∞) denoting the discharge
and charge power ratings of the store respectively. ε1, ε2 ∈ (0, 1] are efficiency
factors: in order to put one unit of electrical energy into the store, the operator
must buy more than this to account for losses during the charging process; similarly,
when discharging one unit of energy from the store, some energy is lost during the
discharge process and the operator can only sell a fraction ε2 of this energy. We
also assume that the store starts and finishes empty so that `0 = `T = 0.

Both Proposition 2.1 and the algorithm say that the optimal strategy consists of
intervals of time over which the multiplier is constant. These intervals are each of
one of the following forms: F (the store is full at the end of the interval, without
touching the capacity constraints in between the start and end time of the interval);
and E (the store is empty at the end of the interval, again not touching the capacity
constraints in between the start and end times of the interval). Sometimes the
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algorithm may yield a multiplier which is constant over longer intervals of time, so
that a capacity constraint is attained somewhere away from the end-times, but the
same categorization holds on splitting such intervals up into smaller ones. In the
complement of these intervals of constant multiplier, the value of the multiplier is
allowed to vary but the level of stored energy must remain at one of the capacity
constraints. In the case of our simple arbitrage model above, a multiplier λ can be
interpreted as a reference cost which dictates whether the store should be charging,
discharging or doing nothing at any given time, according to (15), with

q∗(t) =

 q+ if p(t)/ε1 < λ
0 if ε2p(t) < λ < p(t)/ε1
−q− if λ < ε2p(t).

(25)

Proposition 2.1 states that the reference cost can increase only if the store is full.
In terms of (25), this can be interpreted as the operator waiting for prices to rise
to a high enough level that it is worth selling energy. Similarly, the reference cost
can fall only when the store is empty and the operator is waiting for low buying
prices. If λ = p(t)/ε1 or λ = ε2p(t), then we have to choose the appropriate
value for q∗(t) via the algorithm but, for simplicity, let us assume that the price is
always varying so that the set of times at which one of these conditions occurs is
of zero measure and therefore the choice of q∗ at these times does not matter. An
alternative approach is to make (24) strictly convex by appending a small strictly
convex function to L, e.g. replacing L(t, x) with L(t, x) + δx2 for some small δ > 0.
Then, the solution to (16) is unique for each multiplier λ and the optimal strategy
obtained with this modified cost rate function will converge to q∗ as δ tends to
zero. This approximation is useful for practical computations where p(t) might be
constant over intervals.

The purpose of steps 1–3b of the algorithm is to identify these intervals (which
are labelled (τk, σk)) of constant multiplier and to choose the correct value for the
multiplier over these times. To illustrate the time-localization property, suppose
that the multiplier attains a constant value λ over some interval (τ, σ) and that this
interval is of type E . Suppose now that we can accurately forecast prices up to some
time h̄ > σ. If, on keeping the multiplier constant and extending the associated
strategy (as defined by (25)) up to time h̄, we find that the store becomes full at
some time h ∈ (σ, h̄], then any price information beyond time h is irrelevant to the
actions of the store over (τ, σ) : if prices are relatively high after time h, then the
store is empty at time σ but is able to charge up at suitably low prices over the
interval (σ, h), in preparation for discharging after time h; if prices are relatively
low after time e, then the store can adjust its strategy over (σ, h) by waiting for the
cheapest prices at which to charge after time σ. In such a way, we can argue that
a store operator needs forecast prices only up to time h in order to determine the
optimal strategy over (τ, σ).

In a similar way, if instead the interval (τ, σ) is of type F , then we look for the
first time h at which the store would be empty if the multiplier were kept constant
and the associated strategy extended up to time h. As above, we find that price
forecasts over the interval (τ, e) provide enough information in order to optimally
operate the store over (τ, σ). Thus, in the case of either type E or type F , the
determination of the optimal strategy over (τ, σ) requires price forecasts up until
the first time that the store would have reached the opposite capacity constraint to
that attained at time σ, if the multiplier were kept constant from time τ onwards.
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Moreover, (τ, h) is the shortest interval of time over which we need to forecast
prices in order to optimally operate the store over (τ, σ). If, for example, (τ, σ) is
of type E but we could only forecast prices up to a time h < h, then prices beyond
time e might be exceptionally high but, as the store is not full at time h, we may
not be able to take full advantage of these high prices. In this situation, it would
have been better to increase the multiplier at time τ in order to charge the store
in preparation for the subsequent high prices. Similarly, if (τ, σ) is of type F , then
prices beyond time h might be very low, so that it would be best to choose a low
multiplier which allows us to empty the store in preparation for charging during
these times. However, if prices beyond h are very high, then it is better to maintain
a high-valued multiplier in order to ensure that the store is full prior to these high
prices.

We call h = h(τ) the “look-ahead time” associated with time τ. Price information
over (τ, h) suffices in order to determine the optimal strategy at time τ (and indeed
over the entire interval (τ, σ)). Moreover, (τ, h) is the shortest interval with this
property - price forecasts only up to an earlier time h < h will not be sufficient to
determine the best strategy for the store at time τ.

4.2. The look-ahead time associated with the algorithm and Proposi-
tion 2.1. For more general versions of the standard storage model, an alternative
viewpoint of the time-localization property comes directly from Proposition 2.1 and
the algorithm. If the optimal strategy q∗ is of the form of Proposition 2.1, then
steps 1-3 of the algorithm say that, over an interval (τ, σ) of constant multiplier
λ, we have λ = sup Λ−(τ,m), where m is the optimal level of stored energy at
time τ. To identify λ, choose any λ1 ∈ R and consider the set of corresponding
(λ1, t)−admissible q1 (cf. Definition 3.2). If each q1 breaks the lower capacity con-
straint of the store and does not hit the top of the store before doing so, as shown
in Figure 1, then λ1 is too small (by Lemma 3.1). On the other hand, if we choose
λ2 such that each corresponding (λ2, t)−admissible q2 breaks the upper capacity
constraint without hitting the bottom of the store beforehand, then λ2 is too large.
The correct choice is λ ∈ (λ1, λ2), with a (λ, t)−admissible q which either hits the
top of the store (at some time after t) before hitting the lower constraint, or vice
versa, at the look-ahead time h. Without changing the multiplier λ at some subse-
quent time, it is possible that the associated q may break a capacity constraint at
time h. Now notice that, to recognise that λ1 and λ2 are not the correct choice of
multiplier, we only need to determine the corresponding q1 and q2 up until the exit
times where the capacity constraints are first broken (labelled e1 and e2 respectively
in Figure 1). As we increase λ1 (or decrease λ2) to converge to λ, the corresponding
time horizons e1 and e2 also increase monotonically and are bounded from above by
h = h(τ). Step 4 of the algorithm corresponds to the case where the corresponding
look-ahead time is h = τ. In any case, [τ, h] is the shortest interval of time over
which cost information is required in order to decide how to optimally operate the
store at time τ.

4.3. The look-ahead time associated with the general standard storage
model. Even when the optimal solution is not of the form of Proposition 2.1,
time-localization still holds in the sense that the determination of the optimiser
q∗(t) at a time t is independent of the value of the cost function L(s, ·) for all times
s > H(t), for some identifiable time horizon H(t) (see Proposition 4.1). This time
horizon can be determined in the following way: supposing we know the optimal
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Figure 1. The thin solid line is the level of stored energy `[q](t),
plotted over times t ≥ τ, where q is the strategy associated with
the constant multiplier λ. The thick solid line represents the level
of stored energy associated with the optimal strategy q∗, where
q∗ agrees with q over (τ, σ). The look-ahead time associated with
time τ is h. The lower and upper dashed lines are respectively
`[q1](t) and `[q2](t). These correspond to λ1 and λ2, and only need
determining until times e1 and e2 respectively in order to discard
these as incorrect choices for the multiplier.

strategy q∗, then the time horizon H(t) is the first time at which the store either
(i) hits full capacity (at some time after t) then discharges to hit the lower capacity
constraint, or (ii) hits empty (at some time after t) then charges to hit the upper
capacity constraint. The assumption that we may need to know the entire strategy
q∗ before we can calculateH(t) is obviously not ideal, but as long as our optimisation
algorithm moves forwards in time (as it does in Section 3.2), we will know that we
have reached our time horizon H(t) as soon as we have met one of these criteria.
In a similar way to the look-ahead time, any cost information after time H(t) is
irrelevant to the action of the store not only at time t, but at all times within the
interval [t, σ(t)), where σ(t) denotes the final time prior to H(t) at which the store
is full in case (i) or empty in case (ii).

Even if we were to choose an algorithm which works backwards in time, this
property could still be useful since we may try solving the optimization problem
over some shortened interval of time [0, H ′] ⊂ [0, T ]. Applying our criteria will
then reveal whether or not H(0) ≤ H ′. If the inequality holds, then we know that
our solution is correct up to time σ(0). Relabelling H(0) as the initial time and
setting the level of the store at that time to agree with the level given by our
previous optimization, we repeat this procedure until the whole interval [0, T ] has
been covered. The efficiency of this precedure of course relies upon making good
guesses in advance for the value of each H(t).
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Proposition 4.1 (Time-localization). Let E : [0, T ]→ R be an admissible domain
and U ⊂ R be a set of admissible power outputs. Let C and C̄ be cost functionals
of the form (4), where the associated cost rate functions L, L̄ respectively satisfy
the conditions of Section 1.2. Assume that there exist optimal strategies q∗, q̄∗ ∈ X
associated with C and C̄ respectively and let t ∈ [0, T ) be such that `[q∗](t) = `[q̄∗](t).

If there exist times t1 = σ(t) and t2 = H(t) such that t < t1 < t2 ≤ T and
such that the pair of store energy levels (`[q∗](t1), `[q∗](t2)) coincides with either
(E−(t1), E+(t2)) or (E+(t1), E−(t2)) then, as long as L(s, ·) = L̄(s, ·) for almost all
s ∈ [t, t2], there exists an optimal strategy q̄ ∈ X, associated with the cost functional
C̄, such that q̄(s) = q∗(s) for all s ∈ [t, t1).

Proof. Suppose that there exist times t1, t2 with the required properties and that
L(s, ·) = L̄(s, ·) for almost all s ∈ [t, t2]. Assume first that `[q∗](t1) = E−(t1) and
suppose that the lemma is not true. By the continuity of the map s 7→ `[q](s) for
each admissible q ∈ X, there must exist at least one interval (a, b) ⊂ [t, t2] such that
`[q∗](a) − `[q̄∗](a) = `[q∗](b) − `[q̄∗](b) = 0 and `[q∗](s) 6= `[q̄∗](s) for all s ∈ (a, b).
However, this implies that both q∗ and q̄∗ must be minimizers of

´ b
a
L(t, q(s)) ds

over all admissible q : [a, b] → U such that `[q](a) = `[q∗](a) and `[q](b) = `[q∗](b).
In particular, we may adapt q̄∗ if necessary so that q̄∗(s) = q∗(s) for all s ∈ (a, b).
Repeating this argument for all such intervals (a, b), and letting b̄ be the supremum
of all such end-points b, implies that the optimal strategy associated with C̄ can
be chosen to coincide with q∗ over (t, b̄). The condition that `[q∗](t1) = E+(t1),
together with the continuity of each map s 7→ L[q](s), further imply that b̄ ≥ t1,
hence completing the proof for the case `[q∗](t1) = E−(t1). A similar argument
holds for the case where `[q∗](t1) = E+(t1).

4.4. A comparison of update times, exit times, look-ahead times and time
horizons. Consider again the algorithm of Section 3.2 and suppose that we have
identified an interval (τ, σ) of constant multiplier λ. Then σ can be chosen to be
the first time after τ at which the store is either full or empty (or the level of the
store is `T if σ = T ). As defined above, the look-ahead time h = h(τ) associated
with τ is such that (τ, h) is the shortest time-interval over which cost information
is required in order to operate the store optimally at time τ (and, in fact, over the
entire interval (τ, σ)). The look-ahead time has the property that the level of stored
energy at time h lies on the opposite capacity constraint to that at the update time
σ.

The time horizon H = H(τ) associated with τ serves a similar purpose to the
look-ahead time, in the sense that cost information over (τ,H) is sufficient to de-
termine the optimal strategy over (τ, σ). However, unlike with the look-ahead time,
there is no guarantee that (τ,H) is the shortest such interval. In fact, h = min(H, e),
where e = e(τ) is the exit time associated with τ (cf. Definition 3.2). This is the
first time after τ at which a capacity constraint would be broken if the multiplier
were not updated before this time. As with the look-ahead time h, both H and e
share the characteristic that the level of stored energy at times H and e lies on the
opposite capacity constraint to that at the update time σ.

Finally, consider extending the interval (τ, σ), if possible, to the maximum inter-
val (τ, σ̄) over which the multiplier is constant. We call σ̄ = σ̄(τ) the “update time”
associated with τ, since at this time the multiplier must be updated to a new value.
The level of stored energy at time σ̄ lies on the same capacity constraint as at time
σ. In order to evaluate the optimal strategy over (τ, σ̄), cost information is required
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up until the associated exit time e. Thus, whilst the look-ahead time indicates the
minimum amount of cost information required in order to operate the store at any
time t ∈ [τ, σ], the strategy actually remains completely determined by the mul-
tiplier λ over the (potentially) longer period of time [τ, σ̄]. On the one hand, the
look-ahead times provide a useful method for the real-time operation of the store
when uncertainty is introduced into the cost functions, as discussed below; on the
other hand, a deterministic optimisation benefits from the fact that the operation
of the store can be characterized by a simple rule, determined by λ, up until the
update time σ̄.

5. Examples.

5.1. Real-time stochastic optimization. Suppose that the cost rate function
L(t, ·) of Section 1.2 is not perfectly known in advance for all times t, but rather
that it is being frequently updated - at times 0 < s1 < s2 < . . . < T, say - as new
information becomes available. Then, at time t, having decided on the action of the
store over [0, t) and thus having determined the corresponding level of stored energy
`t at time t, we wish to choose q∗r : [t, T ] → U in order to minimise the expected
cost

E

[ˆ T

t

L(u, q(u)) du | `[q](t) = `t

]
(26)

over all piecewise continuous q : [t, T ] → U that satisfy the capacity constraints of
the store.

The look-ahead times h(t) associated with each time t suggest that a rolling
time-horizon approach should be an appropriate way of dealing with uncertainty of
this kind. Beginning at time t = 0, as long as cost predictions are good up until
the look-ahead time h(0), then the algorithm of Section 3.2 should provide a good
estimate of the best course of action qr : [0, s1)→ U for the store up until the first
information update time s1. One can then restart the algorithm at time t = s1, with
the level of stored energy at this new initial time given by `[qr](s1). Again, as long
as cost predictions are good from time s1 up until the look-ahead time h(s1), we can
apply the algorithm to extend the strategy qr into [0, s2]. Continuing in this way,
we can decide on an action for the store at each time t, with the action depending
only on cost information that is available from time t until the look-ahead time h(t).
This approach has a number of benefits:
(i) Cost information can be frequently updated. This is in contrast to some

other approaches in which the cost functions are assumed to follow a fixed
probability distribution over all future times.

(ii) Computations need to be carried out only over times [t, h(t)] in order to de-
cide on the best action for the store at time t. This method should, therefore,
compare favourably with other rolling time approaches, as well as with meth-
ods based on dynamic programming, in terms of the number of computations
needed to operate the store in real-time.

(iii) This method contrasts favourably with other rolling-time approaches which
explicitly introduce look-ahead times, perhaps based on an assumption of un-
derlying periodicity in the cost rate function L. With the algorithm of Sec-
tion 3.2, we can avoid making long-term predictions and save on computations
in a similar way, but we need not make an a priori periodicity assumption,
since the time horizons h(t) are implicit in the analysis.



20 LISA C FLATLEY, ROBERT S MACKAY AND MICHAEL WATERSON

5.2. Maximizing arbitrage profits. We consider here a compressed air energy
store (CAES) which operates purely within a single wholesale market. Currently,
there are only two commercially operating stores of this kind (one in Alabama USA,
and the other in Germany), both of which require an input of gas at the discharge
stage. Research into heat storage technology is striving to reduce or even remove
this reliance on gas, by replacing the energy provided by igniting gas at the discharge
stage with heat energy which is restored from charging the store. The case where
the heat of compression is reused and no gas is burnt is called “adiabatic”.

Our model of a compressed air store has charge and discharge power rates q+, q−

respectively and a fixed energy capacity M, so that the set of admissible powers is
U = [−q−, q+] and the admissible domain satisfies E−(t) = 0 and E+(t) = M for
all t ∈ (0, T ). We further assume that the store is constrained to start and finish
empty, so that E−(0) = E+(0) = E−(T ) = E+(T ) = 0. Typically, leakage from
stores of this type is considered to be very low, and we therefore set α = 0. The
cost functional C is of the “standard storage model” form introduced in Section 1.1,
with a cost rate function L (cf. (4)) defined by

L(t, x) :=
{
p(t)x if x ≥ 0
1
β (p(t)− γg(t))x if x < 0 ∀ x ∈ U, t ∈ [0, T ], (27)

where p(t), g(t) ∈ R is the price per unit energy at time t and β, γ is the amount of
electrical and gas power respectively required to generate and sell 1 unit of electrical
power. Setting γ = 0 and β > 1 gives us an adiabatic compressed air store with
round-trip efficiency 1/β. This model, with γ = 0 and β > 1, would also be a
suitable approximation for other storage types, including pumped hydro (assuming
that the effects of rainfall and seepage on stored energy in the upper reservoir is
negligible), thermal and liquid air energy storage. An additional multiplicative
factor can easily be incorporated into the charge side of the cost function if we wish
to model charge and discharge efficiencies separately, rather than a single round-
trip efficiency. We are assuming here that the store is a price-taker so that its
actions do not impact on the price of electricity. However, market impact could be
incorporated by replacing each p(t) with a suitable price of the form p̃(t, q(t)) (see
[10] and [12] for a further discussion of this). If the price of electricity is always low
enough that p(t)(1 − β) < γβg(t) for all t ∈ [0, T ], then the cost functional (27)
is convex and an optimal strategy exists. By Propositions 3.5 and 3.6, an optimal
strategy can therefore be determined via the algorithm of Section 3.2.

For a price-taking arbitrage situation, as we have here, the multiplier µ∗ can
be interpreted as a reference cost: the strategy of the store is to charge at full
power if the cost of electricity is sufficiently low that p(t) < µ∗(t); to discharge
at full power if the cost of electricity (or gas) is sufficiently high (or low) that
(1/β) (p(t)− γg(t)) > µ∗(t); and to do nothing if prices are not extreme enough to
satisfy either of these conditions. The reference cost should not change whilst the
store is neither full nor empty; intuitively, there is no incentive to do so. There are
analogies here with the literature on investment under uncertainty [18]. When the
store is full, however, the reference cost is permitted to increase. At these times,
the store operator is waiting until the price of electricity becomes high enough (or
the price of gas low enough, but in our illustration we have taken the price of gas
to be constant), that it is worth selling power. If the reference cost were instead
decreasing at these times, then this would indicate that the store should not have
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Look-ahead timelengths (h)
Gross Profit (£m) 10th perc. Av. 90th perc.

Huntorf 2.39 17.0 87.9 211.0
Adiabatic 75% 2.74 11.0 31.9 61.0
Adiabatic 85% 4.14 8.0 21.3 35.0

Table 1. The annual 2014 profits of each store (where Huntorf has
parameters β = 0.8 and γ = 1.6), together with the 10th percentile,
mean and 90th percentile of all look-ahead timelengths required in
order to determine the optimal strategy at each time of the year.

charged up so soon, but rather it should have waited for these more favourable
buying conditions. Similar arguments hold when the store is empty.

Figure 2 shows the optimal strategies for a compressed air store with parameters
modelled on those of the Huntorf store in Germany: M = 580MWh, q− = 290MW,
q+ = 72.5MW. The left-hand plot takes parameters β = 0.8, γ = 1.6, which coin-
cides with data available for Huntorf station [14]. The right-hand plot represents
two adiabatic stores with β = γ = 0 and with different efficiencies. We have cho-
sen here round-trip efficiencies 1/β of 0.75 and 0.85 which, according to [15] are
the lower and upper efficiencies to be expected from the recent adiabatic research
CAES plant, ADELE. The actions of the store are optimized over the course of one
year. Electricity prices are APX half-hourly 2014 mid-price index prices (the data
are available from [16]). These are a weighted average of all traded prices at any
given time and represent an approximation to the spot price at that time. We have
used a constant gas price throughout the year, which is set to the average 2014 gas
price of £17.56/MWh, as reported by DECC (the UK Department of Energy and
Climate Change).

An immediate observation is that each store follows a similar pattern of optimal
storage levels - charging at times of low prices and discharging at times of high
prices. As the round-trip efficiency of the adiabatic store increases, it operates over
longer periods as the lower energy losses mean that the store is able to take greater
advantage of price differences. The gas-fired CAES plant follows a strategy which is
more closely related to the adiabatic store with a 0.75 round trip efficiency and this
is further reflected in the similarity of the profits of these two stores (see Table 1).
The CAES plant is slightly less active than either adiabatic plant here since the
cost of discharging power is usually higher for the former than the latter. More
precisely, the cost L(t, x) associated with discharging x MW at time t is higher for
an adiabatic store with round-trip efficiency ε than our CAES plant if and only if
2g(t) < p(t) (1/0.8− ε) . With our chosen parameters of g(t) = 17.56 for all t and
ε = 0.75, this condition becomes p(t) > 70.24.

We highlight here that, although the price of electricity follows a reasonably
periodic pattern (with periods of roughly a day in length), it does not follow that the
level of the store is the same at the start and end of each day (see, for example, [13]
for a periodic setting in which the optimal solutions are not necessarily periodic).
This underlines point (iii) made in Section 5.1, that if we are interested in the
real-time operation of the store, then we are likely to obtain a better strategy by
implementing the implicit look-ahead times of the algorithm of Section 3.2, rather
than introducing explicit look-ahead times with extra constraints imposed at those
times at each stage of the optimization.
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Figure 2. Top row: electricity mid-index prices and the average
gas price over the first two weeks of 2014 (left) and over the entire
year (right). Middle row: Optimal stored energy levels over the first
two weeks of 2014 for a gas-fired CAES plant (left) and adiabatic
stores with round-trip efficiencies 0.75 and 0.85 (right). Bottom
row: the length of look-ahead time required to decide on the op-
timal strategy at each time over the first two weeks of 2014 for a
gas-fired CAES plant (left) and an adiabatic store with round-trip
efficiency 0.75 (right).
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The length of look-ahead times required in order to determine the best strategy at
each time is generally longer for the gas-fired CAES plant than for either adiabatic
store. In fact, Table 1 indicates that, on average, the operator of a CAES plant
needs to predict electricity prices over periods of 87.9 hours, as opposed to 31.9
hours or 21.3 hours for a 0.75 or 0.85 efficient adiabatic store respectively. The
lower look-ahead times for the higher efficiency adiabatic store can be explained in
a similar way to the difference in optimal strategies - a higher efficiency plant does
not need to look as far ahead in time as a lower efficiency plant since it is able to
take advantage of smaller price differences, thus resulting in quicker cycling times.
Similarly, as observed above, the gas-fired CAES plant is usually less able than
a 0.75 efficient adiabatic store to take advantage of smaller price differences, and
therefore needs to look further ahead in order to identify price differences which are
sufficiently great to encourage the store to cycle.

5.3. Storage for smoothing. Consider the same store that was introduced in
Section 5.2 but suppose now that the store operator wishes to “smooth” a supply
function g : [0, T ] → R. The supply here might be the power output of a wind
farm, or perhaps the difference between supply and demand at some location. Such
smoothing could be useful, for example, in controlling the variability of renewable
outputs or demand, thus potentially reducing balancing costs and the need for
peaking plants. For this example, we will assume no rate constraints, so that the
set of admissible powers for the store is U = R, and to simplify exposition we will
initially restrict attention to the case of a perfectly efficient store in which there are
no energy losses during operation.

In the perfectly efficient case, an optimal smoothing strategy q∗ ∈ X is now
defined as a minimizer of the total variation TV(y) over all functions y : [0, T ]→ R
of the form y(t) = q(t)− g(t), for all t ∈ [0, T ] and some admissible strategy q ∈ X,
where

TV(y) := min
P∈P

n(P )∑
i=1

ˆ ti+1

ti

|y(ti+1)− y(ti)| dt, (28)

and where P is the set of all partitions P of the form 0 = t1 < . . . < tn < tn+1 = T,
with n = n(P ). If y is differentiable (or absolutely continuous, thus differentiable in
a distributional sense and satisfying the fundamental theorem of calculus), then (28)
becomes

TV(y) :=
ˆ T

0
|ẏ(t)| dt. (29)

Alternatively, let G(t) =
´ t

0 g(s) ds be the accumulated supply output up until
time t ∈ [0, T ] and consider the diagram in Figure 3. Let T denote the tunnel
bounded by −G(t) and M − G(t). The curve through T represents the trajectory
Y ∗(t) := `[q∗](t)−G(t) associated with the optimal smoothing strategy q∗ and is the
same as the path taken by a string that is stretched taut through the tunnel, with
fixed start and end positions `0−G(0) and `T −G(T ) respectively (with `0 = `T = 0
in the diagram). In light of the taut string analogy, it is not difficult to see that q∗
is completely characterized by the following conditions:
(i) The net output y∗ is constant over intervals of time when the store is neither

full nor empty.
(ii) y∗ can increase only at times when the store is full.
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t σ(t) e(t)

-G(s)

M-G(s)

Time s

Figure 3. The exit time e(t) and update time σ̄(t) associated with y∗.

(iii) y∗ can decrease only at times when the store is empty.
Relabelling −G(t) as E−(t) and M −G(t) as E+(t), we see that the conditions (i)–
(iii) on y∗ coincide exactly with the conditions (6)–(11) on µ∗. Hence, the algorithm
of Section 3.2 can be used to determine y∗ and consequently the optimal smoothing
strategy q∗. In particular, even though the objective function (28) is clearly not
of the same form as the standard storage model of Section 1.2, the same time-
localization properties continue to hold here. In fact, the update time σ̄(t) and exit
time h(t) associated with a time t can now be illustrated clearly as in Figure 3.
The exit time e(t) corresponds to the latest point on the tunnel that can be seen
by projecting a straight line from (t, `t), where `t = `[q∗](t) is the level of stored
energy at time t, so that

e(t) = max
x∈R

{
s0 ≥ t : `t +

ˆ s

t

(x+ g(u)) du ∈ [0,M ] ∀ s ∈ [t, s0]
}
. (30)

The update time σ̄(t) is the latest time prior to e(t) at which the line coincides
tangentially with the boundary of the tunnel which is opposite to the boundary
through which the line exits at e(t). If the supply function g is known over the
interval [t, e(t)], then this straight line corresponds to x∗ over [t, σ(t)], and thus
uniquely determines the optimal strategy q∗ over that interval.

Consider now a more general case in which the store has a round-trip efficiency
ε ∈ (0, 1], in the sense that for each unit of energy discharged from the store,
only ε units are dispatched to the grid, due to operational losses. (For simplicity of
exposition, we assume no losses during the charging process, although our arguments
can be adjusted for more general cases.) As a direct analogue of the above, an
optimal smoothing strategy is now one which minimizes (28) over all functions
y : [0, T ] → R of the form y(t) = εq(t) − g(t) if q(t) < 0 and y(t) = q(t) − g(t)
if q(t) ≥ 0, for all t ∈ [0, T ] and some admissible strategy q ∈ X. Although it is
difficult to extend Figure 3 to this more general case, conditions (i)–(iii) still hold.
We omit a formal proof here for brevity of exposition, although some intuition can
be gained from the following discussion: If condition (i) does not hold, so that y∗
is varying at times when the store is neither full nor empty, then the local lack of
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Figure 4. Top row: 2014 wind energy half-hourly output (left)
and the half-hourly net wind energy output when using a 580MWh,
0.75 efficient store for smoothing the wind energy (right). Bottom
row: Optimal stored energy levels when using this store for smooth-
ing (left) and the length of look-ahead time required to decide on
the optimal strategy at each time over the year (right).

capacity constraints means that there is freedom for the storage operator to slightly
adjust the store’s power output in order to improve smoothing over these times. If
condition (ii) does not hold, so that the store is full over some period of time but
y∗ is decreasing over that time (so that q∗ is constant but g is increasing), then the
storage operator can improve smoothing by discharging a small amount of energy
at the start of this time interval and then refilling back to full by the end of the
time interval. (Similarly for case (iii).)

To illustrate, consider an adiabatic store with a capacity of 580MWh and round-
trip efficiency of ε =0.75, with no rate constraints. Suppose that the store is designed
to smooth the wind output of a wind farm whose capacity is approximately 1/500
of the total installed wind capacity for the UK. This corresponds to an installed
capacity of approximately 22MW. Taking 2014 half-hourly wind output data for our
supply function g (available from Elexon [16]) and using our algorithm to minimize
the total variation (28), we obtain a total variation of 14.0. This compares with a
total variation of 1515.9 associated with the wind farm output alone, with no storage
attached for smoothing. To achieve this level of smoothing, the store requires a
maximum charging rate of 7.6MW and a maximum discharging rate of 6.8MW.
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Figure 5. Half-hourly net wind energy output when using a
60MWh, 0.75 efficient store for smoothing 2014 wind energy (left)
and the length of look-ahead time required to decide on the optimal
strategy at each time over the year (right).

The strategy here is very different from the revenue-maximizing strategy of Sec-
tion 5.2. Firstly, the store no longer operates only at maximum powers but rather
continuously adjusts its power output in line with wind generation. Moreover, whilst
the prices in Figure 2 loosely follow a daily cycle, here the wind output displays
no such periodicity. As such, the optimal smoothing strategy loses the approxi-
mate diurnal cycling that was displayed in our arbitrage model of Section 5.2. The
average look-ahead timelength required over the course of the year is 1177 hours,
with 10th and 90th percentile look-ahead timelengths of 436 hours and 2084 hours
respectively. These durations are much higher than those indicated in Table 1. This
can be attributed to the large capacity of the store. As seen in Figure 4, the level of
stored energy rarely reaches full capacity - a similar level of smoothing could most
likely be attained with a smaller capacity store. Thus, for large intervals of time,
the store maintains the net wind-farm power output at a constant level, and there
is no incentive to change this level whilst the store is neither full nor empty. This
in turn means that the storage operator needs to look a long way into the future in
order to determine the next constant level of net wind output it needs to aim for.
Reducing the capacity of the store would in turn reduce the look-ahead timelengths.
Taking instead a 60MWh store, for example, we obtain an average look-ahead time-
length of 130 hours (approximately 5 and a half days). This order of timelength is
much better suited to the times over which we can currently make reasonable wind
forecasts and so, for practical purposes of real-time operation, a smaller store could
well be better here. The maximum charge and discharge rates required in this case
are 6.1MW and 4.7MW respectively. The disadvantage of using a smaller capacity
store, however, is a lower level of wind-smoothing, as seen in Figure 5.

6. Conclusions. We have presented a method to determine how to operate an
energy store in order to minimize a given cost functional. This method could apply,
for example, to revenue maximization or wind-power smoothing problems. Our
setting allows for leakage, inefficiencies, time-varying power constraints and general
operating costs which are functions of the power output.
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A significant benefit associated with this method is the implicit localization in
time of the solution, meaning that the operator of the store typically needs to have
only limited foresight of future cost information in order to decide on the optimal
real-time operation of the store. We have indicated that this property should render
our methods useful for stochastic optimization problems.

Another property of our method comes from the Karush-Kuhn-Tucker multipliers
associated with the optimization problem. We have shown that the solution can
be characterized entirely by the associated multiplier which, over intervals of time
when the store is filling or emptying, is constant. In terms of an arbitrage revenue
maximization problem, this multiplier may be interpreted as a reference price which
indicates whether the store should be charging or discharging energy at each time.

Software implementing the method will be available via http://estoolbox.org
An intended future publication [12] will report on extension to cases where the

store is large enough to influence prices or with multiple competing stores.
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