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Abstract: 
This paper presents a simple and effective approach for kinematic calibration of a 3-DOF spindle head developed for 

high-speed machining. This approach is implemented in three steps, (i) error modelling that allows the geometric errors 

affecting the compensatable and uncompensatable pose accuracy to be classified; (ii) identification of the geometric 

errors using a set of distance measurements acquired by a double ball bar (DBB) with a single installation; (iii) design 

of a linearized error compensator for real-time error implementation. Experimental results on a prototype machine show 

that the compensatable pose accuracy can significantly be improved by the proposed approach. 
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1. Introduction 
Machining large structural components with high metal removal rates is a challenging issue in the aircraft industry 

[1]. Conventionally, it requires a huge gantry 5-axis machine tool, weighing many tons and having a large footprint. A 

promising alternative is to use one or more machining stations moving along a long reference track that forms the base 

of a manufacturing system, where each station is a parallel kinematic machine (PKM) configured as a multiple-axis 

spindle head. This has been demonstrated by the very successful application of the Sprint Z3 head [2]. Motivated by this 

idea, a new spindle head, named the A3 head, has been designed and developed [3,4] (see Fig.1); its topological 

structure is a 3-RPS parallel mechanism having movement capabilities of one translation and two rotations (1T2R). 

Geometric accuracy is one of the important performance specifications of the PKM based spindle heads as the high 

rigidity and high accuracy are the essential requirements [5]. It is well recognized that, provided that the manufacturing 

and assembly processes ensure sufficiently repeatability, a practical and economical way for enhancing pose accuracy is 

the kinematic calibration by software [5-7], a process by which the actual kinematic parameters can be estimated so as 

to modify the inverse kinematic model residing in the CNC controller. The critical step in such a calibration is to 

effectively and accurately estimate the measurement residuals, i.e., the discrepancies between the measured and the 

computed poses of the cutting tool. 

In comparison with self or autonomous calibration in the joint space that minimizes the discrepancies between the 

measured and computed values of the active, passive and/or redundant sensors in the joint space, external calibration in 

the task space has been intensively investigated in the past decades. The approaches can be basically classified into two 

categories, i.e., the coordinate-based approach and the distance-based approach, heavily dependent upon the type of 

acquirable data. The coordinate-based approach deals with the identification problem by minimizing the discrepancies 

between the measured and computed values of the full/partial position and orientation of the end-effector directly, or the 

absolute coordinates of three or more reference points fixed on the end-effector. For example, Masory [8] and Zhuang 

[9] used a theodolite to measure the positions of three points on the platform of a Stewart platform and extracted the 

position and orientation information from these coordinate measurements. Vischer [10] measured the position errors of 

a Delta robot by attaching the end-effector to the probe of a 3D coordinate measuring machine, and the orientation 

errors by using three perpendicularly placed linear digital probes. Fan [11] investigated the calibration of a 3-RPS 

parallel mechanism by measuring the orientation errors using an inclinometer and the positioning errors of a reference 

point using an X-Y table. Huang [12,13] studied the same problem by measuring the orientation errors of the 

end-effector using a specially designed fixed angle gauge and the positioning errors of a reference point using three 

perpendicularly placed dial indicators. The distance-based approach deals with the identification problem by 

minimizing the discrepancies between the measured and computed values of a set of distances between two or more 

points. This approach is more cost-effective than the coordinate based approach because it directly uses a contact 

1-dimemsional measurement system such as a linear variable differential transducer or a DBB. Then, the partial pose 

information can be recorded when the end-effector moves along several prescribed paths within the workspace. The 

distance measurements can also be extracted indirectly from the absolute coordinates of one or more reference points on 

the end-effector at different configurations. For example, Ota [14] investigated the calibration problem of a 6-DOF 

parallel kinematic machine (PKM) known as HexaM using the data acquired by a DBB. Yukio [15] proposed an 

effective approach that employed a lower band FFT filter to improve the signal/noise ratio of circular measurements 

acquired by a DBB. Patel [16] presented a new calibration method that uses extra "legs", e.g., a simple length 

measuring device or a string potentiometer, to identify the kinematic parameters of a hexapod-type PKM. Nubiola 
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[17,18] proposed a novel measurement system comprising a single DBB and two custom-made fixtures. One fixture is 

attached to the base and the other to the end-effector, and each having three magnetic cups. It is possible to use the DBB 

to measure six distances between the magnetic cups on the tool fixture and the magnetic cups on the base fixture, and 

thus calculate the pose with high accuracy. However, the process of the measurements is manual and labor intensive, 

and only suitable for small industrial robots, particularly if a relatively small workspace is of interest. Many other 

researches also have been carried out using distance-based approach [19-22]. Compared with the coordinate-based 

approach, the advantages of the distance-based approach are that the obtained data is independent on the selection of 

reference frame and it is unnecessary to identify the errors describing the rigid body motion of robot frame relative to 

the world frame because robot localization can be carried out afterwards according to the environmental context. 

Driven by the practical need to ensure machining accuracy, this paper presents a distance-based approach for 

kinematic calibration of the A3 head. It concentrates upon three key issues: 1) formulation of an error model that is able 

to distinguish the geometric errors affecting the compensatable pose accuracy from those affecting the uncompensatable 

pose accuracy; 2) identification of a full set of errors using distance measurements acquired by a DBB; and 3) 

development of a linear error compensator for real-time implementation. Experiments carried out on a prototype 

machine verify the effectiveness of this approach. 

 

2. Error Modelling 

2.1. Inverse displacement analysis 
Fig.1 shows the 3D model of the A3 head, which consists of a moving platform, a base, and three identical RPS 

limbs. Here, R, P and S represent revolute, actuated prismatic and spherical joints, respectively. Driven by three 

independent servomotor lead-screw assemblies, the platform achieves three degrees of freedom: one translation along 

the z axis and two rotations about the x and y axes. A spindle can be mounted on the platform to implement high-speed 

milling. For more information about mechanical design of the A3 head, please refer to [4]. 

 

 
Fig.1. 3D model of the A3 head. 

 

 
Fig.2. Schematic diagram of the A3 head. 

 

Fig.2 shows the schematic diagram of the A3 head. In order to implement geometric error modelling, attach the 

reference frame B xyz to the base with Bat the centre of the equilateral triangle
1 2 3B B B , its z axis perpendicular to

1 2 3B B B , and its x axis parallel to 2 3B B . Then, place a body fixed frame i i i iB x y z on the ith ( 1,2,3i  ) limb with the
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ix and
iz axes coincident with the nominal axes of the revolute and prismatic joints, and iBB 

ix . The body-fixed 

frame A uvw  is attached to the platform using rules similar to those for B xyz . 

In B xyz , the nominal position vector  
T

p x y zr of the point P representing the cutting tool point (TCP) 

can be expressed as 

2,p i i iq  
i

r b s a ,
0i ia Ra , 1,2,3i          (1) 
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where  
T

0 cos sini i ia a c  a is the nominal position vector pointing from P  to
iA evaluated in A uvw , 

 
T

cos sin 0i i ib  b  is the nominal position vector pointing from B to
iB evaluated in B xyz , with ia AA ,

ib BB , c AP  and 2π( 1) / 3 π/2i i    ;
iq and 2,is are the nominal limb length and unit vector pointing from 

iB to

iA ; R is the orientation matrix of A uvw  with respect to B xyz with  ,  and being the Euler angles of 

precession, nutation and body rotation, respectively. Taking ,  and z as three generalized coordinates, the other 

three dependent coordinates (also referred to as the parasitic motions) can be obtained by solving the constraint 

equations  
T

1, 0i i r a s ( 1,2,3i  ) imposed by the revolute joints 

 1 cos sin2 sin sin
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where  
T

1, sin cos 0i i i  s denotes the unit vector of the 
ix axis. Therefore, two independent motions along the

x and y axes should be added to compensate the parasitic motions, which in conjunction with the A3 head forms a 

5-axis machine tool. 

Given three independent motions  ,   and z , R  and pr  can be determined using Eqs.(1) and (2). Then, by 

Eq.(1), the inverse position problem can be solved as 
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2.2. Formulation of a linearized error model 
We here draw on screw theory to develop a linearized error model that can readily be employed for the geometric 

error identification and pose error compensation. Taking small perturbations on both sides of Eq.(1) leads to 

 2, 2, 1, 2, 1, 2, 0p i i i i i i i i i i i i i iq q q             r b s s s s s s α a R a , 1,2,3i     (4) 

where  
T

p x y z    r and  
T

x y z      α denote the positioning error vector of P, the TCP, and the 

angular error vector of the platform;
ib  and 

0ia denote the position error vector of
iB evaluated in B xyz and the 

position error vector of 
iA evaluated in A uvw ; 

iq and 1,is  are the length error and the nominal unit vector of the 

ix axis of limb i; and 
i and

i are the angular errors of limb i about the 
ix and the

iy axes, respectively. Taking dot 

products on both sides of Eq.(4) with each of 2,is and 1,is then leads to 
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where d is the nominal distance between 1 2 3A A A and
1 2 3B B B at the initial (home) configuration. Writing it in this form, 

all the geometric errors to be identified become dimensionally homogeneous. Rewriting Eq.(5) in matrix form now 

provides the geometric error model of the A3 head with respect to B xyz . 
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where
3E is an identity matrix of order 3. It can be seen that p  contains 24 independent geometric errors, including 

the home errors (the encoder offsets) of the limbs, the position errors of the base and the platforms, and the orientation 

errors of the prismatic and revolute joint axes. 

 

3. Error Identification using a DBB 
The geometric error model developed in Section 2.2, is now used to build a method for error identification using a 

double ball bar (DBB). To do this, Eq.(6) is partitioned into the form 

p r  r A p ,   α A p      (7) 

As shown in Fig.3, the DBB connects the spindle and the work table with two precision chrome steel balls and two 

magnetic tri-hedral cups, which can usually provide a very high accuracy of 0.1 μm. One end of the DBB is attached to 

the spindle (P) using a magnetic cup while the other end is mounted on the work table (S). The machine is programmed 

to moving along circular paths, and the radial errors between the actual travel path of the tool and its nominal path are 

measured and recorded by the DBB.  

 

 
Fig.3. Pose error measurement of the A3 head using a DBB. 

 

Let 
sr  be the nominal position vector of the centre S of the stationary magnetic cup, and , ,p j kr  be the nominal 

position vector of the centre P of the movable magnetic cup at the thk configuration in the thj circle. Thus, the loop 

closure equation gives 

, , ,
ˆ

j k p j k sl  n r r , 1,2, ,j m , 1, 2, ,  k n       (8) 

where l and ,
ˆ

j kn are the nominal length of the DBB and the nominal unit vector pointing from S to P . 

By considering the geometric errors, the actual positions of point S and point P  are expressed by point S  and 

point P  (see Fig. 4(a)). Let s s s
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j kn  and l l l    be the variation of DBB length, then , ,p j k s r r shown in Fig.4(b) can be 

expressed as 
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Fig.4. Geometric errors of DBB system. 

 

Taking dot products on both sides of Eq.(9) with ,
ˆ

j kn and noticing that T
, ,

ˆ ˆ 0j k j k n n leads to 
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s
r , is caused by the geometric errors 

of the mechanism itself; and the second term, s , is induced by the installation error of the stationary cup. Also, by using 

Eq.(7), 
s
r and , ,p j kr can be expressed as  
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Substituting Eq.(11) into Eq.(10), leads to 
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The pose error of the cutting tool with respect to the workpiece frame O XYZ can be decomposed into two 

components: the first component is the pose errors of the cutting tool relative to B xyz ; and the second component is 

the rigid body misalignments of B xyz relative to O XYZ . Then, the geometric errors can be identified by using 

either of the two following approaches, depending upon different ways of specifying B xyz .  

Approach 1: Let A uvw be parallel to B xyz at the initial (home) configuration. Then, the rigid body 

misalignments of B xyz relative to O XYZ  can be specified by measuring the rotational misalignments of 

A uvw relative to O XYZ , and by assigning the translational misalignments of A uvw relative to O XYZ to be 

zero since the home positions along the x and y axes can be set arbitrarily. These considerations result in six constraint 

equations 
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Combining Eq.(13) with Eq.(12) leads to  6 m n  linear algebraic equations. 
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According to [23], the necessary conditions for ρ  to be identifiable are: (i) the A3 head must experience all 

controllable DOF, i.e. the translation along the z axis and rotations about the x and y axes, meaning that the distance 

measurements between S and P must be made along at least two testing circles parallel to the x y plane; (ii) the 

number of measurements along the two circles must satisfy  6 dim( )m n   ρ . Then, the geometric errors defined 

in the O XYZ can be estimated by means of linear least square algorithm. 

+  ρ H l ,  
1

+ T T


H H H H         (15) 

Approach 2: It should be pointed out that not all of geometric errors are identifiable using a DBB since the 

metrology cannot provide the information necessary to describe the rigid-body transformation between the workpiece 

frame O XYZ and the reference frame B xyz . Nevertheless, this problem can be solved by presenting the 

O XYZ  and B xyz  in such a way that: (i) 
1B , 

2B  and 
3B  lie in the x y  plane; (ii) the x  axis is parallel to 

2 3B B ; (iii) the y  axis contains 
1B . In this way, the rigid body motions of B xyz relative to O XYZ  could be 

eliminated by specifying B xyz such that 

1Δ 0xb  , 2 3Δ Δ 0y yb b  , 
1 2 3Δ Δ Δ 0z z zb b b          (16) 

Note that other choices can also achieve this condition. This treatment allows the number of geometric errors being 

identified to be reduced from 24 to 18, i.e. 

 
T

T T T

1 2 3 0y x xb b b d    p q a β        (17) 

Consequently, Eq.(15) becomes 

+  ρ H l           (18) 
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The geometric errors defined in this specifically defined B xyz can be estimated if the above mentioned conditions are 

fulfilled and   dim( )m n  ρ is satisfied. Note that once the pose errors with respect to B xyz  are compensated, 

the frame A uvw  at the initial (home) configuration is parallel to B xyz . Hence, the rigid body misalignments of 

B xyz relative to O XYZ can be eliminated or minimized during the assembly process by measuring the angular 

misalignments of A uvw relative to O XYZ . 

 

4. Pose Error Compensation 
In this section we develop a linearized error compensator for the three compensatable pose errors. Here, we choose 

the translational error along the z axis, and the precession and nutation angular errors as the compensatable pose errors 

of the A3 head. This is because the angular error about the spinning axis of the cutting tool does not affect the accuracy 

in the 5-axis machining, and the translational errors along the x and y axes can be compensated by the corresponding 

drives.  

It is easy to prove that there is a linear map between the angular errors of the cutting tool evaluated in B xyz  

and those evaluated by the “z-x-z” Euler’s angle conventions, 

  α ε           (19) 
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where  ,  and   denote the angular errors of the precession, nutation and body rotation. Clearly, there are 

infinite combinations of  and  that satisfy
z       when 0  , or when 0x  and 0y  , where 

x

and y represent the orientation angles of the cutting tool about the x and y axes. Therefore, we may set 0  when

0  in order to obtain a unique solution. This requirement can by fulfilled by assigning
01Δ 0xa  .  

Substituting Eq.(19) into Eq.(5), yields a particular form of Eq.(6) as 

p  x A p           (20) 
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px has two partitions associated respectively with the compensatable and uncompensatable pose errors of the cutting 

tool, i.e.  

pa

p

pc

 
   

 

x
x

x
,  

T

pa z      x ,  
T

pc x y     x      (21) 

Then, performing matching elementary row transformations on T
W and partitioning the resultant T gives the form 

TElementary row operation: 
aq apa

cq cpc


  

    
   

T TT
W T

T TT
      (22) 

Now, we modify the nominal limb lengths q by
m m q q q such that Eq.(21) can be written as  

pa aq apa m

pc cq cpc

       
              

x T TT q
B p

x T TT 0
       (23) 

Hence, an error compensator
mq can be designed by forcing the compensatable pose error vector to be zero, namely,

pa
 x 0  

1

m aq a

   q T T B p           (24) 

Furthermore, the uncompensatable errors of the A3 head after error compensation can be predicted by 

 1

pc c cq aq a

   x T T T T B p          (25) 

 

5. Experimental Validation 
In order to validate the approach proposed in this article, calibration experiments were carried out on a test bed 

(see Fig.5) which is composed of anA3 head and an X-Y table driven by an IPC+PMAC CNC controller. The 

orientation movement capability of the A3 head is 0 40    and 0 360    and the stroke is 0 200 mms 

along the z axis. The translational ranges of the X-Y table are 0 800 mmX  and 0 800 mmY  , respectively. 

The nominal dimensions of the A3 head are given in Table 1. 
 

Table 1 Dimensional parameters of the A3 head. 

a b d c 

250 mm 250 mm 540 mm 526 mm 

 



 
Fig.5. The test bed of the 5-axis hybrid machine tool. 

 

5.1. Test trajectory planning 
To obtain the best signal/noise ratio, it is preferable to place the test configurations as near as possible to the task 

workspace boundary, because the pose errors are more sensitive to the errors there than when nearer to the centre of 

workspace [24]. Thus, a DBB with nominal length of 300 mm and measuring accuracy of 0.5 μm was used so as to 

measure the distance errors between the TCP and the stationary magnetic cup mounted on the X-Y table when the 

cutting tool moves along circular paths having large nutation angles.  

In order to determine adequate distance measurements for kinematic identification, let m  be the number of the 

selected testing circles, evenly distributed along the stroke range of 0 200 mms  .Also, let n be the number of 

testing points evenly spaced around each circle. Then, the condition number  of the identification matrix H was used 

as an index to minimize the total number of distance measurements.Fig.6plots versus 2 ~ 5m   and 12 ~ 20n  . It 

shows that   varies only slightly with m , but decreases rapidly up to 15n  and nearly keeps unchanged when 

15n  . So, it is reasonable to choose 2m  and 15n  as the minimum set of distance measurements without affecting 

the identification accuracy, leading to the locations and orientations for the prescribed two testing circles given in Table 

2.  

 

 
Fig.6. Variations of ( ) H vs. m and n. 

 
Table 2 The locations and orientations of two testing circles. 

 z      

Testing circle1 80 mm 28.41°~32.85° 0~360° 

Testing circle2 200 mm 32.18°~38.34° 0~360° 

 

5.2. Calibration strategy 

Considering that the pose errors caused by the home errors, q , are usually much larger than those caused by the 

other errors, the kinematic calibration was conducted in two steps so as to reduce the cut-off errors arising from the 

linearization. In the first step known as rough (home) calibration, pa
x given in Eq.(23) was assumed to be merely 

caused by the home errors (encoder offsets) q . Hence, q was roughly identified by
+  q H l and pa

x was 
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compensated by assigning m  q q in an iterative manner until the estimated q converged to within a specified 

threshold. Then, the fine calibration was carried out by taking into account the full set of errors.  

 

5.3. Implementation 
Fig.7 shows the machine undertaking distance measurements with the DBB according to the optimized testing 

circles given in Table 1 and two-step strategy addressed in Section 5.2. Prior to the measurement, the machine was run 

for an hour to achieve a relatively stable thermal status. The environment temperature fluctuation was controlled within 

22.9 0.6 C   during the experiment. In the measurement, the TCP moved with a feed rate of 300 mm/min around a 

testing circle and the length error at a testing point on the circle was measured six times, three times clockwise and three 

times anticlockwise. The mean value was then retained. In practice, the calibration process ran three times for the home 

errors to converge to
1 7.812 mmq  ,

2 9.237 mmq  ,
3 6.690 mmq  . This was followed by the full set errors 

identification using Eq.(18), leading to the results presented in Table 3.  

 

 
Fig.7. Distance measurements using a DBB. 

 
Table 3 The identified geometric errors. 

 

Errors Limb 1 Limb 2 Limb 3 

iq (mm) −1.0104 −1.4540 −0.7043 

ixb (mm) --- −0.7453 −0.0949 

iyb (mm) −0.8735 --- --- 

0ixa (mm) --- 0.0833 0.1023 

0iya (mm) 1.0215 1.0750 0.9646 

0iza (mm)
 

0.7907 1.5004 −0.4216 

i (deg) −0.4485 −0.7084 −0.5500 

xs (mm)
 0.0144 

ys (mm)
 −0.0104 

zs (mm)
 −0.0097 

 

In both the rough and fine calibration, the nominal limb lengths, q, at a given configuration was modified by mq , 

determined by Eq.(24). This allows  ,  and z to be compensated, and x , y and  to be estimated at the same 

time by Eq.(25). Fig.8 shows the length errors measured on the DBB before and after error compensation for three 

circles located at 0 mmz  , 100 mmz   and 200 mmz  , respectively. The length errors are dramatically reduced 

after the home calibration, particularly as the z coordinate of the TCP takes large values. However, due to the existence 

of the uncompensatable pose errors x and y , the length errors, although further reduced, did not vanish even after 

 ,  and z  had been fully compensated. Fig.9 shows the length errors of the DBB (in red) caused by x and y

after fine calibration predicted by Eq.(25) when assuming that  ,  and z were fully compensated by Eq.(24), and 

the measured length errors acquired by the DBB (in blue). The maximum discrepancy between the predicted and 

measured values is 28.6 μm, meaning that  ,  and z  have indeed been compensated to a great extent. It should 

be noted that effects caused by s have been removed in all the results discussed above. 

 



 
Fig.8. Length errors of the DBB before and after calibration. 

 

 
Fig.9. Discrepancy between the predicted and measured length errors of the DBB after fine calibration. 

 

5.4. Verification using a laser tracker 

As an independent test of the effectiveness of the distance-based calibration, a reference frame m m m mO x y z was 

generated at the home position via curve fitting using the data acquired by a laser tracker at six evenly spaced points on 

the platform, as shown in Fig.10. The measurement uncertainty and maximum resolution of the laser tracker are 0.005 

mm and 0.001 mm, respectively. A body fixed frame m m m mO x y z    was placed coincident with m m m mO x y z at the 

home position. Given 0 ~ 360    , 35    and 100 mmz  , Fig.11 shows the positioning errors of mO along the 

z axis and the orientation errors of the mz axis measured by the laser tracker before and after calibration, and Table 4 

shows their absolute maximum and mean values. These show that the compensatable pose errors were indeed 

compensated, further confirming the effectiveness of the proposed calibration method. 

 
Table 4 The absolute maximum and mean values of the compensatable pose errors before and after calibration. 

 

Pose errors 
Abs.Max. values Mean values 

Before After Before After 

z ( mm ) 1.465 0.032 0.582 0.018 

 ( deg ) 0.759 0.018 0.385 0.011 

 ( deg ) 0.178 0.021 0.052 0.013 
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Fig.10. Experimental verification by a laser tracker. 

 

 
Fig.11. The compensatable errors before and after calibration. 

 

6. Conclusions 
This paper investigates the geometric error modelling and kinematic calibration of the A3 head for high-speed 

machining. The following conclusions are drawn: 
(1) The error model of the A3 head is formulated in a way that enables the separation of the geometric errors 

affecting the compensatable and uncompensatable pose errors. 

(2) A distance-based approach is proposed for error identification and pose error compensation using a DBB with a 

single installation. Experimental results obtained by a DBB and by a laser tracker show that compensatable pose 

accuracy throughout the entire task workspace can significantly be improved by the proposed approach.  

(3) It remains to be seen how this formal calibration relates to practical improvements in machining accuracy. 

Investigations using the A3 head based 5-axis hybrid machine are being carried out and will be reported in a separate 

article. 
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