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Abstract 
The structures of lithium and lead tellurite glasses (Li2O-TeO2 and PbO-TeO2) are studied using 

the combinations of neutron diffraction, isotope substitution neutron diffraction, and 

synchrotron X-ray diffraction. Additional complementary methods such as density 

measurement, thermal analysis and Raman spectroscopy show that the tellurite networks in 

lithium and lead tellurite glasses exhibit similar behaviour as a function of composition. From 

the diffraction data, real-space interatomic information on the glasses was extracted. The 

local environments of Te remain largely unchanged in both glasses if the second content is 

less than 15 mol%, as reported earlier for K2O-TeO2. For Li2O or PbO contents greater than 15 

mol%, however, the average Te-O coordination number changes with composition and 

differently for the two oxides. A TeO2 Model, which has been successfully applied to K2O-TeO2 

glasses, is extended to Li+ and Pb2+. By comparing the total correlation functions of the glasses 

to relevant crystal phases, the short-range parameters of the crystals can be used to optimise 

the model for Li+ and Pb2+ and explain the value of the average coordination number of Te. 

The environments of Li+ and Pb2+ were extracted using isotope substitution neutron diffraction 

(Li) and complementary neutron–X-ray diffraction (Pb). In the glasses studied (10, 15, 20, 25 

and 30 mol% Li2O and 10, 12.5, 15, 17.5 and 20 mol% PbO), both Li+ and Pb2+ behave as 

modifiers with the average nLiO = 4 – 5 and nPbO = 8 with the distances rLiO and rPbO comparable 

to crystal phases of similar composition. 

The structures of lithium and potassium borogermanate glasses are studied using the 

combinations of neutron diffraction, isotope substitution neutron diffraction, and 11B MAS 

NMR. From the complementary methods such as density measurement, and Raman 

spectroscopy, changes are seen to occur in both borate and germanate networks. From 11B 

NMR, the average B-O coordination number, nBO, in lithium borogermanate glasses is different 

from nBO in potassium borogermanate glasses of the same stoichiometry and resembles the 

behaviour of Li+ and K+ in in borosilicate glasses, as described by the Zhong’s lithium 

borosilicate model and Dell and Bray’s sodium borosilicate model. From neutron diffraction 

data (null isotope neutron diffraction for lithium borogermanate), the average Ge-O 

coordination number nGeO is extracted and, like nBO, nGeO in lithium borogermanate is different 

from potassium borogermanate. In the former, nGeO increases as a function of Li2O, whilst in 

the latter, nGeO shows a maximum at about 20% K2O. For Li+, the average Li-O coordination 

number nLiO can be obtained using the difference technique (using diffraction data from 

samples made with natural and null-scattering lithium isotopes). For the limited samples 

examined, nLiO was found to have a value of 4 to 5 with two distinct Li-O distances which can 

be assigned to Li-OB and Li-OGe distances. 
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Chapter 1 – Introduction 

 

1.1 Thesis introduction 

1.1.1 Introduction 

This thesis is entitled “Advanced Techniques for Extracting Structural Information from 

Neutron Diffraction of Glasses”. Its aim is to study the structure of complex oxide glasses by 

means of diffraction (neutron and/or X-ray) techniques and to apply various contrast 

techniques (null and natural isotope neutron diffraction (ND) difference technique, neutron 

and X-ray diffraction complementary technique, and isostructural neutron diffraction 

technique). These contrast techniques simplify the data obtained and thereby extract 

information about specific atom environments. Other techniques, such as nuclear magnetic 

resonance (NMR) and Raman scattering (RS), are also used as complementary probes of the 

glass structure. 

 

1.1.2 Objectives 

In this study, two series of binary tellurite glasses (Li2O–TeO2 and PbO–TeO2), and two series 

of ternary alkali borogermanate glasses (Li2O–B2O3–GeO2 and K2O–B2O3–GeO2) are studied.  

In the binary tellurite glasses, the focus of the study is to probe the environments of 

Te(IV) atom in terms of: 

a) The change in the Te environment as a function of the composition of the 

second oxide of Li2O (univalent, alkali metal oxide, typical modifier), or PbO 

(divalent, heavy metal oxide, typical intermediate) and deduce a TeO2 model for 

each case. 

b) The stereochemical activity of the lone-pair (LP) cation on Te (one 5s2 lone-pair) 

in the presence of the second oxide of Li2O (with no lone-pair) or PbO (with one 

6s2 lone-pair). 

This involves the: 

I. Study of the environment of Te and Li in Li2O–TeO2 glasses using isotope 

substitution neutron diffraction (ISND) technique, which is to: 

a. Measure the average Te–O and Li–O coordination numbers, nTeO and 

nLiO. 

b. Measure the average Te–O and Li–O bond distances, rTeO and rLiO. 

c. Probe the [TeOn] and [LiOn] species/units present in the glasses. 
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d. Compare with the TeO2 Model for alkali metal oxides. 

II. Study of the environment of Te and Pb in PbO–TeO2 glasses using a combination 

of neutron and X-ray diffraction techniques, which is to: 

a. Measure the average Te–O and Pb–O coordination numbers, nTeO and 

nPbO. 

b. Measure the average Te–O and Pb–O bond distances, rTeO and rPbO. 

c. Probe the [TeOn] and [PbOn] species/units present in the glasses. 

d. Compare with the TeO2 Model for alkali metal oxides. 

In the ternary borogermanate (M2O–B2O3–GeO2, M = Li, and K) glasses, the focus of 

the study is to probe the environments of B and Ge in a mixed glass former system in terms 

of: 

a) The effect of different alkali metal (Li and K) on the B environment in the ternary 

borogermanate glasses. 

b) The effect of different B environment on the Ge environment in both M = Li and 

K systems. 

This involves the study of alkali borogermanate (M2O–B2O3–GeO2, M = Li and K) glasses using 

the combination of standard neutron diffraction, isotope substitution neutron diffraction 

and 11B nuclear magnetic resonance techniques, which is to: 

a. Measure the average B–O coordination number, nBO for M = K and Li 

b. Measure the average Ge–O coordination number, nGeO for M = K and Li 

c. Measure the average B–O bond distance, rBO for M = K and Li 

d. Measure the average Ge–O distance, rGeO for M = K and Li 

e. Probe the [BOn] and [GeOn] species present in the glasses for M = K and 

Li 

f. Deduce a B2O3 (in ternary borogermanate) model for M = K and Li 

g. Deduce a GeO2 (in ternary borogermanate) model for M = K and Li 

h. Compare with the alkali borosilicate models 

 

1.1.3 Thesis structure 

Chapter 1 discusses the introduction of the thesis, including the objectives of the study, and 

the thesis structure. A brief introduction of the glass theory and the glass systems of interest 

in this study (tellurite and borogermanate) is also included. 

  The theory of the main probe used in this study (diffraction) is discussed in Chapter 

2. Two sources of diffraction (neutron and X-ray) are considered. The chapter also discusses 
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the specific approaches used in this study, for instance, the null neutron diffraction 

technique, the isostoichiometric technique, and the neutron and X-ray complementary 

diffraction technique. The methods for extracting structural information from the diffraction 

data are discussed, which includes interpretation in terms of short range analysis of the glass 

structure. 

 Chapter 3 discusses the methods used in acquiring and processing the data in this 

study. The methods include density measurement, thermal analysis, Raman scattering, 

neutron and X-ray diffraction, as well as nuclear magnetic resonance.  

Chapter 4 describes the local environments in pure TeO2, Li2O-TeO2 and PbO-TeO2 

crystals, in terms of average distances and coordination numbers as a function of 

composition and type of modifier. Important approximation parameters are obtained from 

these crystal structures which are later used in the glass short-range structure analysis. The 

literature on tellurite glass structure is then reviewed. This includes the structure of pure 

TeO2 glass and alkali tellurite glasses. The mechanism of TeO2 network changes as a function 

of a modifier is also discussed, which later serves as a basis for understanding the Li2O-TeO2 

and PbO-TeO2 glasses. The chapter later describes the lone-pair activity of Te in pure TeO2, 

lithium TeO2, and lead TeO2 crystals. 

Chapter 5 describes the preparation of the null and natural lithium tellurite glass 

samples and their general characterisations, including determination of the isotopic ratio of 

6Li/7Li. Raman scattering is used to identify species in the glasses and derive a semi-

quantitative estimate of the average Te-O coordination number nTeO. In the neutron 

diffraction section, the total correlation functions T(r) for the null glasses are used to obtain 

the  rTeO distribution and average nTeO as a function of the modifier Li2O content, x, which are 

compared with pure TeO2 and the related lithium tellurite crystals to highlight the 

differences and similarities in both Te and O environments. As will be described in the 

chapter, the average nTeO(x) values obtained are discussed based on two regions, plateau 

(x<15 mol%) and post-plateau (x>15mol%). The lithium environment is obtained from the 

natural – null difference T(r).   

Chapter 6 describes the preparation method of the PbO-TeO2 glass samples and 

their general characterisation. Raman scattering is used to identify species in the glasses and 

the information used to derive a semi-quantitative estimate of nTeO. The neutron total 

correlation functions TN(r) for the glasses are compared with TN(r) for pure TeO2 (glass and 

crystal phases) and PbTe5O11 crystal to highlight the differences and similarities in Te, Pb, 

and O environments. Using both TN(r) and the X-ray diffraction total correlation function, 
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TX(r), the Te-O distance distributions and average nTeO are extracted as a function of the 

modifier PbO content, x. The average nTeO(x) values are again discussed based on two 

regions, plateau (x<15 mol%) and post-plateau (x>15mol%). The lead environment is later 

considered in conjunction with the tellurium environment to obtain a consistent description 

of the glass structure.  

Chapter 7 presents preliminary results and discussion for alkali borogermanate 

glasses (lithium and potassium). Density analysis is initially used to observe the anomalous 

change (if any) in the borate-germanate glass network and the trend is compared with the 

alkali borate and germanate glasses. Raman scattering is used to compare the vibrations of 

various species present in the ternary alkali borogermanate glasses with respect to the 

binary borate and germanate glasses. The difference in the vibrations (species) formed in 

the lithium and potassium borogermanate glasses are also discussed to infer that the 

changes occur in both borate and germanate network. From 11B MAS NMR analysis on these 

two samples, B environments in lithium and potassium borogermanate glasses are revealed 

follow the lithium and sodium borosilicate models by Zhong et al. [1] and Dell and Bray [2], 

respectively.  

Chapter 8 concludes the study on these glass systems based on the knowledge 

obtained and recommends some contexts for further study. 

 

1.2 Glass definition: Structure and kinetics 

The strict definition of a glass is, a material (solid) that has no long-range order (non-

crystalline/amorphous) and exhibits a glass transition temperature [3]. 

 

Figure 1.1: 3-dimensional ~5 Å thick slices of crystalline (LEFT) and amorphous (RIGHT) SiO2 [4-5]. 

 

From the definition, structurally, a glass is regarded as a solid, which lacks long-

range order but possesses short-range order, as shown in Fig. 1.1. In both crystalline and 

amorphous SiO2, a silicon atom (blue) is coordinated to 4 oxygen atoms (red) in a tetrahedral 

shape. In crystalline SiO2, both short and long-range orders are present whereas in 

          
    Crystalline SiO2 (Quartz)                Amorphous SiO2 (Silica glass) 
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amorphous SiO2, only the short-range order of the tetrahedral [SiO4] unit is preserved while 

disorder is introduced in terms of connectivity and bond angle distribution. 

Goldschmidt stated that glasses with formula RnOm form more easily when the ratio 

of the ionic radius of R to O is from 0.2 to 0.4. This mostly corresponds to R coordinated to O 

in tetrahedral units, as in SiO2 and GeO2. This idea was later expanded by Zachariasen [6] 

who stated that: (1) oxygen cannot be connected to more than 2 cations, (2) the 

coordination of the cation is small, 3-4, (3) oxygen polyhedra must share corners, not edges 

or faces, and (4) for a continuous random network, at least 3 corners must be shared. These 

characteristics, in general, imply that glass formation is more likely to happen for open 

structures with a low packing density of polyhedra. These rules can be used to identify the 

role of oxides in glass network formation: glass network former (conventional or 

conditional), glass modifier, or intermediate between these two. Apart from his structural 

theory of glass formation, Zachariasen also stated that to form glasses, the melt must be 

cooled under proper conditions.  

This leads to the kinetic theory of glass formation. In theory, any material can be 

made into a glass if the melt can be held in a supercooled state (maintaining its liquid form 

below the melting point). This can be done by preventing nucleation and crystal growth 

during the cooling process. One of the ways of doing this is by rapidly quenching a melt. The 

kinetics of glass formation diagram is shown in Fig. 1.2. 

 

Figure 1.2: Physical properties of glass-forming melts as a function of temperature. 

 

In the figure, if the melt is held at Tm long enough so the molecules can rearrange 

and the disorder, S decreases to a specific value at a certain enthalpy, H or volume, V, solid 
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crystalline phase of that melt would form. To form the glass, the melt should be quickly 

cooled. The glass molecules are “frozen” at the fictive temperature Tf. Higher Tf 

(consequently higher Tg) would mean higher entropy, enthalpy, or volume (structure 

resembles more the liquid phase rather than the crystal). The concept of Tf was introduced 

by Tool [7] and is often used synonymously with the Tg term, even though they are defined 

differently. Tg is the experimentally measured glass transition temperature, a temperature 

where its instantaneous viscosity is about 1012 Pa s whilst Tf is the actual temperature of the 

metastable supercooled liquid above the glass transition range (instantaneous temperature 

of the melt). 

An important parameter, when describing or probing glass structure, is the range. 

For the short range, the parameters are the polyhedral units [ROn] present, the average 

coordination number nRO, bond length rRO, and associated bond angles. These parameters 

can be obtained by experiment and simulation. The parameters for the intermediate range 

(including neighbouring polyhedra) such as connectivity, bond angle, and bond torsion angle 

are more difficult to determine experimentally but can be obtained by simulation. In a glass, 

there is no long-range order. 

 

1.3 Oxide glass structures 

1.3.1 Tellurite glasses 

Glasses are widely used in daily life because of the specific qualities they possess 

(transparency, hardness, thermal, optoelectronic, etc.). In communication applications, 

increasing traffic demand of information transmission is more likely to be supported by light 

transmission using optical fibre than by the current conventional electrical transmission. 

Most optical fibres are drawn from silicate glass because it is cheap, chemically stable and 

the forming technology is straightforward. However, the transmission window of silica glass 

fibre is limited; it is used at 1550 nm but, at wavelengths greater than 2000 nm (in the mid-

infrared region) it becomes opaque, unlike tellurite glass [8-9]. The mid-infrared region is 

particularly interesting for various applications including material processing, spectroscopy, 

medicine, military and communications [10]. Tellurite glass is a better candidate than silica 

glass not only because of its wider transmission range but also higher linear and nonlinear 

refractive indices, and lower dispersion [11].In order to successfully engineer tellurite glass 

fibres with the desired properties, a thorough understanding of the structural and chemical 

origins of these properties is crucial. The high nonlinearity of the glass has been attributed to 

(a) the polarisability of the [TeO4] unit (where tellurium is coordinated to 4 oxygen atoms in 
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a trigonal bipyramidal arrangement) [12] ; (b) the empty 5d orbital in Te [13-15] ; and (c) the 

presence of the lone-pair of electrons in Te [16]. Part of this thesis examines the changes to 

the local environment of tellurium with a change in the modifier content. The results will 

then be used to try to explain the effect of tellurium environment on its high nonlinearity. 

 

1.3.2 Borogermanate glasses 

Like tellurite glasses, borogermanate glasses also possess desired critical properties (such as 

density and refractive index) suitable for uses in waveguide systems [17]. These properties 

depend on the structure of the glass, mainly from the constituent borate and germanate 

networks.  

In pure borate glass, the structure is made up of [BO3] units [18]. The addition of 

alkali oxide will transform [BO3] to [BO4]–  until a saturation point at ~30 mol% [19-

20].Beyond this point, further addition of alkali oxide creates [BO3]– with non-bridging 

oxygen NBO. From the point of view of the average boron-oxygen coordination number nBO, 

this will, therefore, increase the nBO to a maximum value at ~30 mol% and later decrease nBO 

[3, 21]. In accordance with the behaviour of nBO, anomalies in the physical properties of the 

glasses are observed [22-23]. In alkali borate glasses, many borate superstructural units are 

formed and destroyed, which are used to successfully describe the borate anomaly [3].  

In alkali germanate glasses, as a function of alkali content, a germanate anomaly in 

the physical properties is also observed [23-24]. This anomaly is caused by the conversion of 

[GeO4] units to charged higher coordinated [GeO5]– or [GeO6]2– units [25]. Similarly with the 

borate anomaly, further addition of alkali content converts the higher coordinated units and 

forms [GeO4]–  with an NBO and the glass structure will experience an overall decrease in the 

average Ge-O coordination number [26-27].  

The structure of ternary borogermanate glasses is complicated because boron and 

germanium can have more than one stable coordination. Therefore, this could cause 

unexpected changes in the structural/superstructural species formed in the glass. This thesis 

examines the borate and/or germanate anomaly in ternary lithium and potassium 

borogermanate glasses and compares the results with related models. 
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Chapter 2 – Diffraction 

 

2.1 Introduction 

This chapter discusses the theory of diffraction which is the main method used in this 

structural study of glasses. Both neutron and X-ray diffraction are discussed, including the 

theory and practice of null neutron diffraction and isostoichiometric neutron diffraction. In 

addition, the theory and practice of the complementary method of neutron and X-ray 

diffraction are discussed. Some of the practical problems regarding neutron resonance and 

absorption are described. The chapter is then concluded by discussing the quantification of 

the structural information obtained from the diffraction experiments. 

 

2.2 Diffraction theory: Neutron and X-ray 

Diffraction is a powerful method for probing atomic or molecular structure in materials. 

Neutron diffraction has the advantage of the neutral charge of the neutron which allows it 

to penetrate deeper into an atom and interact with the nucleus, compared to X-rays which 

interact with the electron cloud of the atom. In elastic scattering, neutrons / X-rays are 

scattered by the sample at an angle of 2θ and the momentum transfer vector Q is obtained 

from the initial and final wave vectors, k, of the neutron / X-ray as shown in Fig. 2.1. In the 

figure (3D diagram for the collision),  and 2 are the angles between the scattered beam to 

the y-axis (y-plane, blue) and z-axis (z-plane, orange), respectively. The solid angle in Fig. 2.1 

is given by 

 Ω sin2θ 2θ φd d d  (2.1) 

Total cross section σ over the solid angle Ω is the differential cross section I(Q) and is defined 

as  

 



   -( ) ( ) ( ) ( )

Ω Ω
sdσ dσ

I Q Q dω I Q i Q
d d dω

 (2.2) 

Where ω is the angular momentum of the energy transferred (E = ħω), IS(Q) is the self-

scattering, and i(Q) is the distinct scattering and IS(Q) and i(Q) are represented as  

 
2( ) ( )(1 ( ,θ, ,..))

n
s

i i l
i

I Q c f Q P Q T   (2.3) 

  ( ) ( ) ( )( ( ) 1)
n n

i j i j ij
i j

i Q c c f Q f Q S Q  (2.4) 
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Figure 2.1: Schematic of elastic neutron / X-ray diffraction with neutron / X-ray of initial parameters 

(Ei, ki) scattered off of the sample with 2 angle from the initial path with final parameters of Ef and kf. 
Momentum transfer vector Q is obtained from the wave vectors k as shown in the figure on the right. 

Scattered neutron wave / X-ray into a solid angle of  (from y-axis) and 2 (from z-axis) 

 

Where Pl is the Placzek [1] corrections as a function of Q, , T, and etc, and fi(Q) is either the 

atomic form factor (for X-ray) or the coherent neutron scattering length (for neutron) for the 

element i as in 

 

4
2

1

; ( ) exp( )

; ( )

i j j
j

i i

X ray f Q a b Q c

Neutron f Q b



   




 (2.5) 

Where a, b, and c are in the X-ray case the parameters from the International Tables for 

Crystallography (1992), Vol. C [2] whilst b in the neutron case is the coherent neutron 

scattering length [3]. Eqn 2.3 is calculated and Eqn. 2.4 is obtained experimentally from the 

GEM diffractometer [4]. The structure factor term Sij(Q) as Sij(Q)-1 as in (Eqn. 2.4) is defined 

as 

 
2

0

sin( )
( ) 1 4 ( ( ) 1)ij O ij

rQ
S Q πρ r g r dr

rQ



    (2.6) 

which contains the real-space function gij(r) and can be obtained by taking the Fourier 

transform of (Eqn. 2.6). The term gij(r) – 1 in Eqn. 2.6 is given in (Eqn. 2.7) and used to 

determine the coordination number of atom i by j as in (Eqn. 2.8) 

 
2

2

0

1 sin( )
( ) 1 ( ( ) 1)

2
ij ij

O

rQ
g r Q S Q dQ

π ρ rQ



    (2.7) 
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1

2
1 2 1 2( , ) 4 ( ) ( , )

r

j

ij j O ij ji

ir

c
n r r πc ρ r g r dr n r r

c
   

(2.8) 

This equation later reduces to Eqn 2.9 for neutron diffraction. 

 '
(2 )

N
ij ij

ij

ij i i j

r A
n

δ c bb



 (2.9) 

where AN
ij is the area in TN(r) arising from the i-j pair. The more common expression, the 

total correlation function T(r) (Eqn. 2.10), is used in this chapter. It is a parameter containing 

all atom pair distribution functions, and is obtained by taking a Fourier transform of Eqn. 2.6  

 
0

0

2
( ) ( ) ( ) ( ) sin( )T r T r Q i Q M Q rQ dQ

π



    (2.10) 

Where T0(r) is the average density contribution to the calculated correlation function 

 
0

0( ) 4 i i
i

T r πrρ c b
 

  
 
  (2.11) 

Where o is the density (units per cubic Å). 

The neutron diffraction data were obtained using the GEneral Materials 

Diffractometer, GEM [5] at ISIS Oxford. GEM has the capability of taking high momentum 

transfer values, which lead to high real-space resolution (60 Å-1) and, therefore, accurate 

coordination numbers. It has 8 detector banks covering a wide range of 2θ from 1.2o to 

171.4o as shown in Fig. 2.2. 

 

Figure 2.2: GEneral Materials GEM diffractometer at ISIS, RAL, Oxford UK. 
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Glass samples, in the form of fragments from 1 to 3 mm across, were packed in an 

8.3 mm internal diameter, cylindrical vanadium can with either 40 microns or 25 microns 

thick walls, with the packing density from 40 to 50 %. A total current of about 1500 

microamps for each sample was collected to give good signal-to-noise ratio. Data were 

corrected and normalised for multiple scattering, inelasticity, as well as absorption 

correction using measurements made on the empty instrument, empty vanadium can, and 

vanadium (or latterly vanadium-niobium) rod using the GudrunN program [6]. For systems 

containing tellurium atoms, Qmax was limited to 35 Å-1 to avoid the 123Te resonance at about 

2.2 eV whereas for the other systems it was extended to 40 Å-1. 

 

2.3 Diffraction techniques 

2.3.1 Introduction 

This section discusses the methods of extracting structural information from neutron and / 

or X-ray diffraction data. These cover null neutron diffraction, isostoichiometric neutron 

diffraction, and complementary neutron and X-ray diffraction. 

 

2.3.2 Null neutron diffraction technique 

2.3.2.1 Neutron scattering length, b 

The T(r) term in Eqn 2.10 for neutron diffraction can also be identified as a sum of all partial 

correlation functions for i–j  pair of atoms as in 

 ( ) ( )N
i i j ij

ij

T r c b b t r  (2.12) 

Here, a parameter b (which is a complex number) is introduced and is defined as  

 Ψ eikrb

r
   (2.13) 

Where Ψ is the S-wave function (spherically symmetrical) of the scattered neutrons and b is 

the unique coherent neutron scattering length of any nucleus which can be a positive or a 

negative value.  

In order to understand the origin of the negative scattering length, the neutron 

interaction with the nucleus (nuclear potential) has to be discussed. Depending on the 

isotope (Fermi pseudopotential depth and other parameters), during a collision, neutrons 

could be scattered positively or negatively. Having a positive scattering length value would 

mean that the neutrons will be subjected to the repulsive potential of the nucleus, making it 

impenetrable. Therefore, the scattered wave will experience a negative phase shift because 
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scattered neutron waves will have its phase shifted by 180o from the incident wave when 

scattered by a hard (impenetrable) sphere. Conversely, a negative scattering length would 

mean that the incident neutrons will experience an attractive potential and will yield a 

positive phase shift. The choice of the minus sign in this equation is to ensure that most 

isotopes will have a positive b value [7]. 

 

Figure 2.3: b values for some isotopes of the elements of the periodic table. 

 

A suitable combination of positive and negative scattering isotopes of an element can 

therefore produce effectively null neutron scattering. The scattering length values for 

certain isotopes are shown in Fig 2.3. 

 

2.3.2.2 Null neutron diffraction 

Systematic studies on lithium tellurite glasses using null-scattering isotope substitution 

neutron diffraction have not previously been reported. By combining the appropriate 

proportions of 7Li (b = -2.22 barns) and 6Li (b = 2.00 barns) the average scattering length of 

lithium atoms 𝑏̅𝐿𝑖 can be adjusted to zero and lithium partial correlation functions are 

removed from the total correlation function T(r) leaving only tellurium and oxygen partials in 

the total correlation function. T(r) is the sum of all the partial correlation function and can be 

expanded as; 

 

( ) ( ) ( ) ( )

( ) ( )( )

( )

( )

( )

( ) ( ) ( )

( )

N
Te Te Te TeTe Te Te O TeO Te Te Li TeLi

O O Te OTe O O O OO O O Li OLi

Li Li Te LiTe Li Li O LiO Li Li Li LiLi

Natu

N

N r l

N

a

T r c b b t r c b b t r c b b t r

c b b t r c b b t r c b b t r

c b b t r c b b t r c b b t r

T r

T r

T r T r

   

  

 




 (2.14) 

In null samples, the average coherent neutron scattering length for lithium, 𝑏̅𝐿𝑖 is 

approximately zero and Eqn 2.14 can be reduced to; 

 Null 2( ) ( ) ( ) ( ) ( )Te Te Te TeTe Te O Te O TeO O O OOT r c b b t r c c b b t r c b t r     (2.15) 
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which contains only tellurium and oxygen pairwise combinations. In lithium tellurite glasses, 

𝑟𝑇𝑒𝑂 does not overlap with either 𝑟𝑂𝑂 or 𝑟𝑇𝑒𝑇𝑒. This means that the Li partials can be easily 

extracted from the total correlation function, 𝑇𝑁(𝑟) by taking the difference 

between 𝑇𝑛𝑎𝑡𝑢𝑟𝑎𝑙(𝑟) and 𝑇𝑛𝑢𝑙𝑙(𝑟) 

 Nat-Null 2( ) ( )( ( ) ( ) ( )O Li O Li LiO LiLi LiLi LiLi Li Li Te LiTeT r c c b b t r c b t r c b b t r     (2.16) 

which contains only lithium and oxygen pairwise correlation functions and short rLiO does not 

overlap with longer 
LiTer  in the total T(r).  ( )LiX Li X LiXc b b t r  is equivalent to  ( )LiXT r . The negative 

sign indicating a negative area in the total correlation function arising from the negative 

value of 
Lib  in natural abundance Li. 

 

2.3.2.3 Neutron absorption and resonances 

Two of the problems when dealing with thermal neutron diffraction are neutron absorption 

and resonance in certain nuclei, for instance in Li(6Li), B(10B), and Te(123Te). 6Li and 10B are 

atoms that have high neutron absorption cross-section. 10B has an absorption cross section 

value of 3835 barns and for 6Li it is 940 barns [3]. In the case of B containing samples, the 

problem is reduced (but not eliminated) by using 11B-enriched samples (typically >99 %). 6Li 

however is used deliberately to create a null neutron scattering sample as discussed, 

therefore the neutron absorption is problematic in samples containing 6Li isotope. 

Neutrons of lower energy (low Q value) have the greater probability of being 

captured by the nucleus because they have lower momentum. As a consequence of this, the 

problem with absorption can be seen from the baseline of I(Q) at lower Q values as seen in 

Fig. 2.4 especially the red curve (eff_1) as well and can be translated to the negative peak in 

the low r region in T(r) as in Fig. 2.5. Corrections can be performed by adjusting the DCS 

value (can be done by changing the effective density value and/or the composition of the 

glass). The DCS level can be defined as: 

 

2( )

4

i i
i

c b
DCS level

π

 




 
(2.17) 

Where ci and bi are the concentration and neutron scattering values of atom/nuclei i in the 

beam. The concentration c depends on density ρ and composition x. For the analyses 

performed in this study, for convenience, glass nominal composition is used and only the 

(effective packing) density is optimised accordingly. In samples containing Te, however, the 

average DCS value is meaningless due to the large resonance peaks of 123Te. In this study, 

the nominal glass composition is used and the effective density (depends on the packing 

efficiency in the sample can) is changed accordingly to mitigate the problem with the 
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absorption. This is justified by the non-uniform size of the glass bits packed into the 

container. As seen in the figure, changing (in this case, increasing) the effective density 

value, the problem due to the absorption is reduced greatly. 

 

Figure 2.4: The effect of correcting the effective density on the absorption correction in I(Q) for each 
bank. ρeff_1 is the measured effective (packing) density whilst ρeff_2 and ρeff_3 are adjusted effective 

packing densities. 

 

Figure 2.5: The effect of correcting the effective density on the total correlation function T(r). 

(a) 

(b) 

(c) 
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Samples with neutron absorbing isotopes will usually show negative peaks near r = 0 

in the T(r) as Fig. 2.5. As seen in the figure, the negative peaks are reduced as a function of 

the effective density used where (a) was processed using the (under-estimate) calculated 

effective density, (b) was processed using optimally estimated (increase of about ~20%) 

effective density and (c) was processed using an overly estimated (increase of about ~50%) 

effective density. The structural information from the T(r) is however, robust to analysis 

error. As seen in the inset of the figure and the integral area under the curve (1.6 – 2.36 Å), 

the T(r) obtained in the region of interest (r > 1.5 Å) is fairly unaffected by the correction. 

Absorption correction (in the effective density value) was however still done to obtain a 

cleaner T(r). 

 

Figure 2.6: The effect of bank angles on resonance range. 

 

Another problem with neutron diffraction is neutron resonance. In this process, 

neutrons are also captured, but at a certain energy, rather than at the low energy. 128Te for 

example has a neutron resonance at about 2.2 eV [8]. From the GEM, the data are collected 
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over 180o using 8 banks positioned at different angle . This therefore will mean that the 2.2 

eV absorption will produce a decrease in the scattered intensity in I(Q) at different Q 

positions depending on the angle  of the bank as shown in Fig. 2.6 (blue shaded squares), 

according to this equation 

 
4

sinθQ



  (2.18) 

The implication of this resonance energy is the limitation of the Qmax value which can be 

used, which will affect the resolution of T(r). ISIS’s GEM is a state of the art instrument that 

is capable of taking high resolution data to up to Qmax = 40 Å-1 in SiO2, GeO2, and B2O3 

systems for example. However, this range is reduced to 35 Å-1 in TeO2 systems due to this 

resonance problem. In this study, only banks 2 to 5 were used in merging because bank 0 to 

1 contain little information. In theory, by including banks 6 to 7, a higher Qmax value could be 

used because the resonance is out of the range of interest, however, to avoid unnecessary 

noise, these banks were not included in the merging. 

 

2.3.3 Isostoichiometric neutron technique 

In a series of binary oxide systems (for example, Li2O-TeO2, Na2O-TeO2, and K2O-TeO2) where 

the Te environment in each system is iso-structural (similar at the same content of R2O (R = 

Li, Na, and K)), the environment of Li, Na, and K can be extracted by removing the 

contribution of the Te environment from each system. This method is called the iso-

stoichiometric neutron diffraction technique. Using this method, Barney et al. [9] have 

successfully extracted the environment of Li, Na, and K in x = 10, and 20 mol% R2O-TeO2 

glasses. In the case of glass structure analysis, the method is best used where the glass 

network is independent of the modifier cation type but can also be useful where network 

differences are minor. 

 

2.3.4 Neutron and X-ray complementary technique 

In general, the distinct scattering i(Q) which contains the experimentally obtained structural 

information is defined as 

  ( ) ( ) ( ) ( ) 1
M M

i j i j ij
i j

i Q c c f Q f Q S Q   (2.19) 

Where the form factor, f(Q), is defined differently in the case of neutron or X-ray diffraction, 

as follows 
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 (2.20) 

 

Figure 2.7: Q-dependence of f(Q) in neutron and X-ray diffractions for Pb, Te, and O. 

 

 

Figure 2.8: TN(r) and TX(r) for PbTe5O11. 
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In the case of neutron diffraction, the form factor is the scattering length constant b, whilst 

in the case of X-ray it is a function dependent on Q. The difference in magnitude of the form 

factors provides contrast in the T(r) obtained specific to certain atomic pairs. The magnitude 

of the contrast in a system containing Pb, Te, and O, for example is shown in Fig. 2.7. It can 

be seen that the f(Q) for the O atom in X-ray diffraction is negligible whilst the value in 

neutron diffraction is not. Consequently, the partial T(r) for the O-O pair is negligible in X-ray 

diffraction. In the study of most glasses, the O-O distance overlaps with most modifier-

oxygen, R-O, distances. For a simple illustration, Fig. 2.8 compares the simulated TN(r) and 

TX(r) for the PbTe5O11 crystal. From the comparison, the Pb-O distance is clearly revealed in 

the system. Due to the different nature of neutron and X-ray interactions in the sample as 

discussed, the i(Q) for neutron and X-ray obtained are weighted differently as below. 
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(2.21) 

Consequently, the T(r) for each case is defined differently as follows. 
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(2.22) 

Where M(Q) is the Lorch modification function [10], used to reduce the termination ripples 

due to the truncation effect from the Fourier Transform. 

 

2.4 Direct structural information from total correlation function 

2.4.1 Peak position and shape 

The total correlation function is made up of a sum of well-defined delta functions. Due to 

static and dynamic disorders, the spike-shape delta functions are therefore broadened 

resulting in Gaussian peak shapes [11]. Therefore, the peak, convoluted with a sinc function 

to compensate for the termination ripples from the Fourier transform, would contain the 

width, shape, and position reflecting the real atomic probability distribution. 

In B2O3 glasses for example, by using the bond-valence calculation [12] , the B-O 

peak can be resolved into two distances (by using Gaussian peaks) appropriate for B atom 
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coordinated to 3 and 4 oxygen atoms. In GeO2 glasses, the presence of the higher 

coordinated [GeO4+] units can be seen in the T(r) [13]. In these two cases, the peak 

parameterisation is simple due to the symmetric distribution of the distance which reflects 

the nature of bonding in the glasses.  In more complex systems, for example TeO2 glass 

where Te-O distance distribution present is asymmetric, the peak parameterisation is rather 

difficult as the asymmetry could arise from multiple symmetrical function peaks and/or one 

or more asymmetrical distribution peak. For simplicity, the asymmetric Te – O distance 

distribution is often represented by an arbitrary combination of Gaussians [14]. 

 

2.4.2 Peak integrated intensity 

For a well-defined peak where the T(r) consists of only the partial correlation function for i-j 

atom pair, the coordination number of atom i to atom j , and vice versa can be calculated by 

integrating the area of the peak (Eqn. 2.9). This parameter is one of the most important 

parameters when quantifying a glass structure since it describes directly the local 

environment of a specific atom. 
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Chapter 3 – Experimental and analytical techniques 

 

3.1 Introduction 

This chapter describes the theory and working principles for each of the experimental 

techniques used for data acquisition in this study. The data analysis procedures, in terms of 

the corrections made to the data and the interpretation of the results, are also included. In 

characterising a glass structure, these methods are typically used in combination with one or 

more others do derive short-range information which is often compared with the 

corresponding crystal structures [1-3]: density measurement [4], thermal analysis [5-7], 

Raman spectroscopy [8-13], conventional laboratory X-ray diffraction [5, 14-15], energy 

dispersive X-ray spectroscopy [16], secondary ion mass spectroscopy [17], neutron 

diffraction [1, 18-24], high energy X-ray diffraction [18, 25-26], and nuclear magnetic 

resonance [23, 27-29]. Details of neutron diffraction were covered in Chapter 2 and the 

remaining techniques are described briefly in this chapter. 

 

3.2 Glass–crystal structure comparison 

The crystallographic information (cif) files used in this study were obtained from the Royal 

Society of Chemistry’s National Chemical Database Service [30]. The neutron and X-ray 

(partial and total) correlation functions were simulated from the cif files using the XTAL 

program [31]. In a glass, where the system is metastable, the internal energy of the glass is 

likely to be minimised by having cations in a similar environment to that in the related 

crystal [32]. Therefore, the short-range environment of the experimental total correlation 

function, T(r) can be comparable to the simulated crystal T(r). As will be discussed in Chapter 

4, the short-range parameters of the tellurite crystals (TeO2, lithium tellurite, and lead 

tellurite) can be used to partially describe the short-range environment in the lithium and 

lead tellurite glasses. The crystal structure of potassium borogermanate glasses is discussed 

briefly in conjunction with the neutron diffraction analysis in Chapter 7. 

 

3.3 Density measurement 

The density values were measured using a helium gas pycnometer, model Micro-meritics 

Accupyc II 1340 Helium Pycnometer at the Department of Physics, the University of 

Warwick. The gas pycnometer measures the volume (V cm3) of a sample using the gas 

displacement method as dictated by the Boyle’s Law volume-pressure relationship which 
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states that “for a fixed mass of gas, at a constant temperature, the product (pressure x 

volume) is a constant”:  

 PV = nRT 3.1 

Where P is the pressure (atm), V is the volume (cm3), n is the number of moles (mol), R is the 

gas universal constant (82.06 cm3 atm K-1 mol-1), and T is the temperature (K). By using a 

known mass input (m ±0.001 g), the density (ρ g cm-3) is calculated from this relationship: 

 ρ = m / V 3.2 

The setup has a capability of measuring sample volume with an accuracy of ±0.001 

cm-3. A gas chamber of 3.5 cm3 was used for all the samples. The volume of the sample was 

measured in a pre-calibrated helium gas chamber until 5 measurements were consistent 

within a certain error. The known density of a vitreous SiO2 rod (2.20±0.01 g cm-3) was 

measured in each session to check the accuracy of the readings.  

The density values measured were averaged (typically 2 samples, 5 measurements 

for each sample) and the error was calculated from their standard deviation. The density 

values were used to derive the molar volume (Vm cm3 mol-1), and the number density (N 

atoms cm-3) as in Eqn. 3.3 and 3.4. The density value is used to estimate the composition of 

the glasses by comparison with the values obtained from the SciGlass database [33], whilst 

its derivatives (Eqn 3.3 and 3.4) are used to study contributions from constituent 

units/atoms present in the glass. Feller et al. [4] directly related the glass structures of 

borates, silicates, germanates, vanadates, and thiborates glasses with the trend in average 

coordination number change. 

 Vm = MW / ρ 3.3 

 Ni = NA ρ ci / MW 3.4 

 

1

n

i i
i

MW c A


 
3.5 

Where Vm is the molar volume, MW (g mol-1) is the molecular weight of the glass, ρ (g cm-3) 

is the density of the glass, Ni (atoms cm-3) is the number density for atom i, NA is the 

Avogadro’s number (6.022 x 1023 atoms mol-1), ci is the fraction of atom i in the glass, and Ai 

is the mass number of atom i.  

 

3.4 Thermal analysis [34-35] 

Thermal events in the glasses were identified using a differential thermal analyser (DTA), 

model Stanton Redcroft DTA 673-4 at the Department of Physics, the University of Warwick. 

The DTA measures the temperature of the sample with respect to the reference material as 
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a function of temperature. About 100 mg of powdered glass was placed in a platinum-

rhodium crucible and heated in static air at 10 oC/min to about 100 oC above the liquidus for 

each glass. The sample was then allowed to cool to room temperature. Alumina Al2O3 is 

used as a reference standard due to its high melting point (2050 oC) and stability over the 

temperature range used (room temperature to 1500 oC available). An increase in sample 

temperature with respect to the reference would denote that heat is released from the 

sample (exothermic) and a decrease in the temperature would mean that the heat is being 

absorbed by the sample (endothermic reaction). The change of temperature is then 

recorded as a function of temperature. A typical sequence of thermal events in a glass is 

shown in Fig. 3.1. Various thermodynamic events in the glass were extracted: glass transition 

temperature (Tg), crystallisation onset temperature (Tx), crystallisation peak temperature 

(Tc), and melting temperature (Tm). This information can be used to confirm the glass 

amorphicity, the phases present during the thermal reaction, and to estimate the glass 

stability towards devitrification (temperature window between Tx and Tg; Tx – Tg). Like 

density, Tg can also be used to probe for structural changes by using topological constraint 

theory [36]. Barney et al. [22] used the Tg values of alkali tellurite glasses to describe the 

glass structures. 

 

Figure 3.1: Differential thermal analysis curve typical of a glass showing glass transition temperatures 
Tg, crystallisation temperatures TX and TC, and melting temperature Tm. 

 

3.5 Raman spectroscopy [37] 

Raman spectra of the glasses (intensity as a function of wavenumber / Raman shift ( ) in cm-

1) were obtained using a Raman InVia Microscope, equipped with a 514 and 532 nm laser 

source courtesy of the Diamond Research Group, Milburn House, the University of Warwick.  

Raman spectroscopy measures the energy (frequency) of a molecule that is in inelastic 

interaction with the laser beam. As seen in Fig. 3.2, there are 3 types of collision: Stokes, 
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Rayleigh, and Anti-Stokes. In the Stokes and Rayleigh processes, the molecule is excited from 

the ground state SG to a virtual state. In the Stokes process, the excited molecule relaxes into 

an excited state SE, however, in the Rayleigh process, it relaxes back to the ground state SG 

(and is, therefore, elastic). In the anti-Stokes process, a molecule in an excited state SE is 

stimulated to transition to a virtual level, then, relaxes to the ground state SG. Under 

ambient conditions, (the case for all the Raman spectra in this study), most molecules are in 

the ground state SG, hence, the frequencies detected are within the Stokes region. A 

Rayleigh peak at 19455 cm-1 or 18796 cm-1 (corresponding to 514 nm or 532 nm laser 

sources respectively) is blocked by a filter, though the maximum wavenumber recorded in 

this study was only 3000 cm-1. 

 

Figure 3.2: Stokes, Rayleigh, and anti-Stokes transitions in Raman spectroscopy.  

 

In (Raman) spectroscopy, the Raman shift or wavenumber   is defined as the frequency 

divided by the speed of light. This is particularly convenient when measuring the atomic / 

molecular spectra where the wavenumber is the reciprocal of its wavelength. 

 1( ) 11( )
1 ( )( )

s
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
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
 3.6 

Each vibration of a pair of bonded atoms produces (depending on selection rules) a unique 

Raman shift ( ) corresponding to its moment of inertia that can be used to fingerprint the 

molecular species present in the sample by referencing the frequency of the species to the 

frequency of a known similar species found in a reference material. The spectrometer was 

operated at a laser power of about 10 mW to avoid any thermal damage to the glass sample. 

The beam was focused on bulk samples for 5 acquisitions for each spot. Data were collected 
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for a minimum of 5 spots with the precision of at least 4 out of 5 spectra being identical 

once normalised. Raman spectra were collected from a minimum of ~200 cm-1, (limited by 

the notch filter) to a high wavenumber (~3000 cm-1). A baseline for each spectrum was 

subtracted by a (exponential) spline within this region. The spectrum of a glass is 

characterised by the Boson peak at low wavenumber (to up to 500 cm-1) which arises due to 

phonon vibration in the glass as described by Bose-Einstein statistics. The Boson peak is 

often fitted with a Rayleigh peak and is known as a Rayleigh wing. In the glasses where the 

region of interest is close to / included within the Boson peak, the spectrum has to be 

reduced to remove the Boson peak for accurate quantification. The reduction factor used is 

defined as 

 

1 1
( ) 1 ( )

4( )

exp 1

reduced experimentalI I

L
k TB

  
 

 
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   
   
           

 3.7 

Where vL is the frequency of the laser, ( L –  )-4 is the usual correction for the wavelength 

dependence of the scattered intensity and n( ,T) = [exp(  /kBT)-1]-1 is the mean number for 

phonon occupation,  is the Plank’s constant divided by 2,    is the Raman wavenumber, kB 

is the Boltzmann constant, and T is the temperature. The description of the low-frequency 

region treatment regarding the Bose-Einstein statistics is discussed herein [10]. After the 

spectrum is baseline-corrected and reduced, it is normalised to the total area under the 

curve. The spectrum is then fitted with Gaussian peaks assigned to certain species present in 

the glass. The area of each peak was calculated and the average coordination number of ij 

pair of atoms were calculated based on the ratio of the peaks associated with the different 

species. Fig. 3.3 illustrates the reduction process. 

 

Figure 3.3: Reduction of the Raman spectra to remove the Boson peak at low wavenumber. 
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3.6 X-ray powder diffraction 

A powder X-ray diffractometer model Bruker D5005 with Cu Kα X-ray wavelength of 0.154 

nm at the Department of Physics, the University of Warwick was used to obtain the 

diffraction patterns of the samples in this study. The diffractometer measures the intensity 

(I(2θ)) of the diffracted X-ray beam according to Bragg’s law as in Eqn 3.8 and shown in Fig. 

3.4. 

 2d sinθ  = nλ 3.8 

Where d is the d-spacing between planes, 2θ is the diffraction angle (an angle between the 

diffracted and transmitted beams), λ is the X-ray wavelength, and n is the order of reflection 

(usually 1). 

 

Figure 3.4: X-ray diffraction process according to Bragg’s law. 

 

The X-ray beam is reflected at the 2θ angle as a function of the d-spacing and the intensity of 

the reflected beam is collected. The X-ray diffraction pattern is compared to a the built-in 

powder diffraction database (PanAnalytical XRD software) and the ICSD crystal database 

[30]. The glass samples were powdered and compacted in a sample holder of diameter ~2.5 

cm. The X-ray diffraction pattern was collected for 2θ angle between 5o and 90o taken with 

0.02o steps. The amorphicity of the glass samples was confirmed by the presence of the 

broad halo peak, and in the case of partially crystallised samples, the crystal phase present 

in the glass was determined.  

 

3.7 Energy dispersive X-ray spectroscopy 

Elemental analysis of the samples was carried out using a field emission gun scanning 

electron microscope, FEGSEM (Zeiss SUPRA 55-VP) at 20 kV, courtesy of the Microscopy 

Group, Department of Physics, the University of Warwick, with help from Mr Steve York. 

Pulverised glass sample was dabbed onto a sticky carbon pad on a metal holder. This 

provides sufficient conductivity to avoid surface charging of the sample. Measurements 

were taken from 6 different spots for 100 s of exposure for each spot. The relative amounts 

of elements in the sample are quantified by the detection of the characteristic X-rays 
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emitted by elements after ZAF (Z: atomic number, A: X-ray absorption, and F: X-ray 

fluorescence) correction was performed using the EDAX Genesis software to correct the 

background-subtracted integrated intensities. 

 

3.8 Secondary ion mass spectroscopy SIMS 

For SIMS analysis, a depth profiler model Atomika 4500 was used, courtesy of Dr Richard 

Morris. SIMS analysis was done to verify the isotopic abundances of 6Li : 7Li  and 10B : 11B 

isotopes in the glass samples. For the Li isotope measurement, a mineral spodumene 

LiAl(SiO3)2 courtesy of Dr Ian Farnan of the University of Cambridge was used to optimise the 

SIMS condition for the measurements. SIMS determines the relative abundance of 

elements/isotopes in a sample by bombarding its surface with a primary ion beam and 

separating the ejected secondary ions according to their masses and then measuring them. 

In depth profiling, the secondary ions are emitted from below the initial surface. To measure 

the relative abundance of 6Li and 7Li in NatLi2O-TeO2 and NullLi2O-TeO2, and 10B and 11B in K2O-

B2O3-GeO2, 3 scans per sample using an O2
+ primary ion beam at 1 keV and 20 nA were taken 

within the suitable mass ranges; 5 to 9 a.m.u for 6Li and 7Li, and 9 to 12 a.m.u for 10B and 11B. 

The incident angles and the scan sizes are 30o and 400 microns, and 45o and 200 microns for 

the lithium and boron systems respectively. As for the depth profiling analysis, all 

parameters were kept similar except for the primary beam current and scan size for the 

lithium system which were changed to 80 nA and 350 microns, respectively. The samples 

were depth-profiled for about 35 minutes ignoring the signals for the first 10 minutes to 

avoid any SIMS transient effects. From the profiles obtained, the average count of mass for 

each isotope was determined to find the relative isotope abundance. The relative 

abundances of 6Li and 7Li were used to confirm the null average neutron scattering length of 

the null samples and, for the 10B and 11B, it was used to improve the neutron diffraction data 

processing by correcting the absorption due to the 10B isotope. 

 

3.9 Synchrotron X-ray diffraction [38] 

The high energy X-ray total scattering data were collected at the Argonne National 

Laboratory APS Beamline 6-ID-D by Dr Chris Benmore (Magnetic Materials Group, Advanced 

Photon Source, Argonne, Chicago USA) and Dr Oliver Alderman (Materials Development Inc 

Chicago). An X-ray wavelength of 0.14349 Å (86.406 keV), just below the 88keV Pb K-edge, 

was used on the lead tellurite (PbO–TeO2) glass samples. The synchrotron was in continuous 

top-up mode during the data collection and therefore normalisation was only required to 
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the exposure time, not the monitor counts. The glass samples were ground to a fine powder 

in an agate pestle and mortar, in air, on the day of the experiment to avoid water attack. The 

powdered sample was loaded into 1mm inner diameter Kapton tubes (wall thickness of ~100 

microns) and held vertically in the sample changer. An area detector of Tl-doped CsI 

scintillator, with the dimensions of 2048 x 2048 pixels, where each pixel has 200 micron x 

200 micron square, and 500 microns deep was used. A programme called Fit2D [39] was 

used to average out and integrate the diffraction data. Corrections were then applied to the 

output for the absorption of the scattered beam between the sample and the detector, and 

the detector’s oblique angle of incidence. The output was then processed using GudrunX 

(variation of GudrunN [40], for X-ray) with the standard procedures in Gudrun as described 

in Chapter 2. 

 

3.10 Nuclear magnetic resonance (NMR) [41] 

In NMR, a population of nuclear spins becomes distributed between a series of energy levels 

whose degeneracy has been removed by placing the sample in a magnetic field (B, typically 

1 to 20 T). The energy levels depend on characteristics of the nucleus which must possess a 

magnetic moment (nuclear spin I > 0). The number of levels (2I + 1) is determined by the 

nuclear spin I, which has a value 3/2 for 11B, the nucleus of interest to this study; the extent 

of their (Zeeman) splitting (ħB) depends on the strength of the magnetic field and on the 

gyromagnetic ratio, , of the nucleus (Fig. 3.5). This energy separation can be equated to the 

Larmor frequency, L = B.   For I > ½, the separations of the energy levels are also modified 

by the quadrupolar interaction.  

 

Figure 3.5: Zeeman splitting and quadrupolar interaction of 11B isotope in B. 
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The distribution of the nuclear spins is then perturbed by application of an L rf pulse for a 

few microseconds and, as the distribution re-equilibrates, the change in magnetisation 

which occurs (the free induction decay, FID) is measured. The NMR spectrum is then 

obtained by taking a Fourier transform of the FID which converts the time domain of the 

signal to the frequency domain.  The resulting spectrum is plotted as intensity against 

chemical shift, , which is defined as:   = (sample - ref)/ref where sample and ref are the 

frequencies of the sample and of a reference material which is either the recognised 

standard for that nucleus (primary standard) or a material which is easier to obtain/use 

(secondary standard) but whose chemical shift with respect to the primary standard is well 

known and can be corrected for. The chemical shift is an indicator of the extent to which the 

applied field B is modified locally by the chemical environment in comparison with the local 

environment in the primary reference. It gives information about the number and type of 

nearest and next-nearest neighbours of a nucleus. The ability to obtain this local information 

on a specific nucleus is of particular value in a glass. However, this depends on being able to 

resolve the contributions to the spectrum from different sites, which in turn requires the 

elimination/reduction of various broadening mechanisms. Many of these can be largely 

eliminated by the use of magic-angle spinning (MAS) where a rotor containing the powdered 

sample is spun rapidly (typically 5 to 30 kHz and even up to 100 kHz) around its cylindrical 

axis which is set at the magic-angle  to the applied field (Fig. 3.6) where  takes the value 

54.73o such that the expression 3cos2 - 1 goes to zero.  

 

Figure 3.6: Magic-angle spinning (54.73o) MAS NMR setup. 

 

11B NMR spectra were collected using a 14.1 T Bruker Avance II+ 600 MHz spectrometer 

tuned to 192.3 MHz using a Bruker 4 mm probe (lithium borogermanate system) or a 14.15 

T Varian spectrometer using a 4 mm Varian T3 probe tuned to 193.1 MHz with magic angle 

spinning (MAS) frequency 12 kHz in both cases. BPO4 was used as a secondary reference 

material with chemical shift -3.3 ppm with respect to the primary reference boron trifluoride 

ether (BTE). Fig. 3.7 shows a typical 11B NMR spectrum; the contributions from boron 

coordinated to 3 and 4 neighbours can be clearly seen. The area of [BO3] is scaled by a factor 
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of 1.04 to compensate for loss of intensity into the sidebands. The average coordination 

number for boron is then calculated based on the integrated peak intensities. The 

coordination number nBO = 3 + N4 where 

 [ ]4N4
(1.04* [ ]) [ ]3 4

Area BO

Area BO Area BO



 3.9 

The [BO4] peak is narrow and symmetric because the [BO4] unit is near-spherically 

symmetric and hence has only a small field gradient. The [BO3] unit is only axially symmetric 

and hence has a significant field gradient which interacts with the quadrupole moment of 

the 11B nucleus leading to a broad, complex lineshape. 

 

Figure 3.7: Typical NMR spectrum for 11B in borogermanate glass. 
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Chapter 4 – Tellurites  

 

4.1 Introduction 

This chapter describes the cation M environments in TeO2, lithium tellurite (IV) and lead (II) 

tellurite (IV) crystals, in terms of average M-O distances (rMO) and average M-O coordination 

numbers (nMO). Important local environment information is obtained from these crystal 

structures to be used in the glass short-range structure analysis. The literature on tellurite 

glass structure is then reviewed and the mechanism by which the tellurite network changes 

as a function of modifier content is discussed. This later serves as a basis for tellurite glass 

structural models, including the tellurite model (for pure tellurite glass), and the alkali 

tellurite model (based on potassium tellurite glasses), and a description of aluminium 

tellurite and boron tellurite glasses. The chapter concludes with a summary of the Te, Li, and 

Pb environments in crystals and the likely implications for the glasses. 

 

4.2 TeO2 crystal structures 

4.2.1 α, β, γ, and δ polymorphs of TeO2 

There are 4 known TeO2 crystal polymorphs: α-TeO2, β-TeO2, γ-TeO2 and δ-TeO2. The alpha 

phase (tetragonal, paratellurite) is the most stable form. This phase transforms into the beta 

phase (orthorhombic, tellurite) at high pressure [1-2]. This beta phase also irreversibly 

transforms to the alpha phase at high temperature (600 oC) [3]. The other two phases are 

metastable phases found during re-crystallisation of rich TeO2-containing glasses [4-8].  

 

Figure 4.1: The basic [TeO4] unit as in α-TeO2 crystal. Te (gold) is bonded to O (red) atoms with two 
short equatorial bonds (<2.00 Å) (grey cylinder) and two long axial bonds (<2.00 Å) (striped cylinder). E 
is the stereo-chemically active lone-pair of electrons of the Te atom. 

 

Crystal structure data are available for α-TeO2 [9], β-TeO2 [3], and γ-TeO2 [4] , but not δ-TeO2. 

However, Gulenko et al. [10] studied its structure (when synthesised with small modifier 

content, i.e,  5 – 10 mol%)  by neutron diffraction and simulation. The structural unit of -

TeO2 is shown in Fig. 4.1.  
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4.2.2 Tellurium (IV) environment 

In α, β, and γ-TeO2 phases, the average Te-O coordination number (nTeO) is 4 for rTeO < 2.2 Å 

and there is only 1 Te site in each phase. The tellurium atom (Te) in α-TeO2 (Fig 4.1) is 

connected to 4 bridging oxygen atoms (BO) in a distorted trigonal bipyramidal (tbp) 

geometry. There are two short equatorial Te-Oeq bonds (1.879 Å) and two longer axial Te-Oax 

bonds (2.121 Å) in the polyhedron. The distortion is caused by the steric effect of the 

stereochemically active lone-pair of electrons (E) which occupies the third equatorial site of 

the polyhedron. The symmetry (present in the α-TeO2 phase) is absent in both β-TeO2 and γ-

TeO2 phases with the presence of 2 non-equal short and 2 non-equal long bonds as shown in 

Table 4.1. In δ-TeO2, Gulenko et al. [10] used molecular dynamics simulation to show the 

presence of [TeO3] units with one terminal oxygen TO (Te=O) atom in addition to the [TeO4] 

units which implies that the average nTeO in δ-TeO2 is less than 4. 

 

Table 4.1: The short range order parameters as observed in α-TeO2, β-TeO2, γ-TeO2, and δ-TeO2 
phases. All oxygen atoms shown are bridging oxygen (On/2) atoms. Long (> 2 Å) axial bonds are 
represented by the striped cylinder and shorter equatorial bonds are represented by the solid cylinder. 
The TeO2 connectivity in γ-TeO2 is similar to α-TeO2 but with a different torsion angle. rmax is defined by 
the upper limit of the first coordination sphere from the T(r) as in Fig. 4.2 

 

TeO2 polyhedra in α-TeO2 and γ-TeO2 are corner-sharing whilst face-sharing occurs in β-

TeO2. γ-TeO2 is a metastable form but its structure is more similar to that of the stable α-

TeO2 and not to β-TeO2 which is a high pressure / temperature polymorph. The close 

similarity of the structures of pure TeO2 glass and γ-TeO2 is evident in thermal analysis of 

TeO2 glasses where pure TeO2 glass transforms to γ-TeO2 on heating [11]. Based on this, the 

local environments in TeO2 glass are therefore likely to be similar to those of γ-TeO2 as will 

later be discussed. The simulated neutron total correlation functions (T(r)) for all of the 

phases are shown in Fig. 4.2. The Te-O separations (rTeO) <2.4 Å, in all the phases, appear to 

consist of two distributions centred at 1.85-1.95 Å and 2.1-2.2 Å. The peak width of the 

 α-TeO2 β-TeO2 γ-TeO2 δ-TeO2 

Structural unit TeO4/2 TeO4/2 TeO4/2 [TeO4] and [TeO3] 

Average nTeO 
(rTeO_max=2.36 Å) 

nTeO = 4 nTeO = 4 nTeO = 4 nTeO < 4 

Te site 1 1 1 N/A 

Short bond / Å 1.879, 1.879 1.879, 1.972 1.859, 1.946 N/A 

Long bond / Å 2.121, 2.121 2.070, 2.196 2.019, 2.197 N/A 

TeO2 connectivity Corner Edge Corner N/A 
 

N/A 
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second distribution is seen to decrease as a function of the crystal stability (α > β > γ). The 

oxygen-oxygen (rOO) distributions in α-TeO2 and β-TeO2 are similar, and can be approximated 

as a single peak centred at ~2.8 Å. In γ-TeO2 however, there is a shorter rOO at ~2.5 Å. This 

short distance plays an important role in indicating the stereo-chemical activity of the Te 

lone-pair as will discussed later in this thesis.  

 

Figure 4.2: Simulated total correlation function T(r) of α-TeO2, -TeO2, and γ-TeO2 crystals. T(r) for Te-
O and O-O pairs are shown in solid red and dotted blue lines respectively. The sum of all pairs is the 
thicker black line. The T(r) for Te-Te starts at > 3 Å. Lorch modification function is used for simulating 
the T(r). 

 

4.3 Lithium tellurite crystals 

4.3.1 General structure 

There are 3 known lithium tellurite (Te(IV)) crystals: α-Li2Te2O5 [12], β-Li2Te2O5 [12] (high 

temperature phase [13]), and Li2TeO3 [14]. α-Li2Te2O5 and β-Li2Te2O5 (33.33 mol% of Li2O) 

contain four-coordinated distorted trigonal bi-pyramidal tbp [TeO3+1] units. Subscript: 3+1 

means 3 short bonds (r < 2.0) and 1 longer bond (2.0 < r < 2.2). The unit is similar to the 

trigonal bi-pyramidal shape of the [TeO4] unit found in TeO2 crystals but with one Te-O bond 

extended. Li2TeO3 (50 mol% Li2O) contains only three-coordinated trigonal pyramidal tp 

[TeO3]2- units. [TeO3+1] polyhedra in α-Li2Te2O5 are connected via corners, similar to α-TeO2, 

whereas, in β-Li2Te2O5, they are connected via both corners and edges. Li atoms are 
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arranged in distorted tetrahedral [LiO4] units in all of the crystals within the rLiO limit of 2.60 

Å and the next nearest oxygen atom is at ~2.70 Å which is found only in α-Li2Te2O5. These 

short range structural parameters are summarised in Table 4.2. 

 

Table 4.2: Local order structural parameters in the lithium tellurite crystals. 

 

 

Figure 4.3: Simulated T(r) for the lithium tellurite crystals showing the total (Null Li) correlation 
function (thick black), Te-O pair correlation (red), Li-O pair correlation (dashed blue), and O-O pair 
correlation (dotted green). T(r) for (Nat Li) Li-O shows a negative distribution due to the value of 
average scattering length <b> for the Li at the natural abundance (-1.90). 

 

 α-Li2Te2O5 β-Li2Te2O5 Li2TeO3 

Structural units 
Distorted tbp [TeO3+1], 
distorted tetrahedral 

[LiO4] and [LiO4+1] 

Distorted tbp [TeO3+1] 
and distorted 

tetrahedral [LiO4] 

Trigonal pyramidal tp 
[TeO3]2- and distorted 

tetrahedral [LiO4] 

Average nXO 
(rTeO_max=2.36 Å, 
rLiO_max=2.60 Å) 

nTeO = 4 
nLiO = 4 

nTeO = 4 
nLiO = 4 

nTeO = 3 
nLiO = 4 

Te sites 2 2 1 

Li sites 2 2 2 

TeO2 connectivity Corner Corner, edge 
None (All non-

bridging O) 

Si
m
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Fig. 4.3 shows the simulated null T(r) for the lithium tellurite crystals (null scattering is 

described in Chapter 2, Section 2.3.2). The contribution due to the [TeO3+1] units is clearly 

seen in the T(r)TeO for α-Li2Te2O5 and β-Li2Te2O5 (the peak at 1.879 Å comprises the “3” short 

bonds, and the peak at 2.350 Å comprises the longer “+1” bond). In Li2TeO3 there is only 1 

peak at 1.879 Å denoting the presence of solely three-coordinated units (the [TeO3]2– 

resonance unit would have an rTeO value of 1.8706 Å, from the bond valence calculation 

[15]). The Li-O partials show no clear difference between the crystals giving only 1 (negative) 

peak at ~2 Å. This corresponds to all [LiO4] units found in the crystals regardless of the 

average nTeO. 

 

4.3.2 Tellurium (IV) environment 

 

Figure 4.4: Partial Te-O pair distributions in TeO2, Li2Te2O5, and Li2TeO3 crystals for each Te site. The 
distances can be parameterised with 2 peaks (3 for α-Li2Te2O5) according to the definition of short(r1), 
long(r2), and longer(2.35)  bonds as shown by the vertical lines. 
 

Comparing the Te environments in the TeO2, α-Li2Te2O5, β-Li2Te2O5, and Li2TeO3 crystals, the 

most striking feature observed is the evolution of the long axial Te-O bond. Fig. 4.4 shows 
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the simulated ‘partial’ T(r) for each Te site, arranged according to the Li2O content and the 

polymorphic stability. High temperature polymorphs (β phases of the crystals) have longer 

“long” rTeO bonds compared to their respective α phases while the “short” rTeO bonds remain 

approximately unchanged. The same trend is observed as a function of composition with 

more [TeO4] units being transformed into [TeO3+1]– until at 50 mol% of Li2O, where all units 

are [TeO3]2– units. This trend gives a good indication of how the Te environment might 

change with composition in the glassy state. 

 

4.3.3 Non-bridging oxygen environments 

Table 4.3: Te–NBO environments in alkali tellurite crystals. (O - red; Te – gold; Li – blue) 

 

α-Li2Te2O5 and β-Li2Te2O5  Li2TeO3 

  

 

 

 

Te 

site(s) 

 

TeO3/2O– 

  

TeO3
2– 

TeO(O–)2 

 

 

    

Te–NBO 

 

Te–O–(O1b) 

(Te–O1b) 

 

 

Te=O ↔ Te+–O– 

(Te–O1c) 

 

Te–O– ↔ Te=O 

(Te–O1c) 

 

The tellurium - non-bridging oxygen (Te–NBO) environments in [TeO4]– and [TeO3]2– 

units in lithium tellurite crystals, Li2Te2O5 and Li2TeO3 , respectively (Table 4.3) have different 

Te–NBO distances.  The [TeO4]– unit in Li2Te2O5 can be more accurately represented by 
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TeO3/2O– (3 BOs and 1 NBO) whereas the [TeO3]2– unit in Li2TeO3 is TeO(O–)2
 (3 NBOs: a 

resonance between 2 NBO and 1 double bond oxygen). For simplicity, the NBOs in [TeO4]– 

and [TeO3]– are represented as O1b and O1c, respectively. The nomenclature of these units 

is explained in Appendix A.  The bond parameters of the Te-O1b and Te-O1c, derived from 

the crystal structures, are shown in Table 4.4. The average rTe–O1b is shorter than rTe–O1c by 

0.034 Å which lowers the Te–O bond valence and consequently affects the average number 

of Li atoms which can be provided with coordination: on average, 2.48 lithium atoms bond 

to O1b and 2.77 lithium atoms to O1c. The average number of lithium atoms around the 

NBO shown in Table 4.5 is calculated based on the bond distances of Te–O pairs in each 

crystal phase for the cases of nLiO = 4, 4.5, and 5 (relevant to later results). 

 

4.3.4 Lithium environment 

In lithium tellurite crystals, a lithium atom is coordinated to an average of 4 oxygen atoms in 

a distorted tetrahedral [LiO4] unit (cut-off value of 2.5 Å, defined by the upper limit of the 

first coordination sphere as shown in the T(r) in Fig. 4.5). From Fig. 4.5, the Li-O distances 

range from 1.92 to 2.21 Å. For 4-coordinated Li, the principal Li-O distance in all the crystal 

phases can be fitted with a Gaussian at 1.96 Å (from bond valence calculation, the value is 

1.98 Å [15]).  

 

Table 4.4: Bond parameters of Te–O and Li–O pairs in lithium tellurite crystals. 

Crystal r(Te-O1b) / Å 
r(O1b-Li) / Å 

Li1 Li2 Li3 

α-Li2Te2O5 
1.841 1.974 2.041 2.041 
1.850 1.942 2.006 2.018 

β-Li2Te2O5 
1.849 1.960 1.969 1.922 
1.856 1.930 1.943 2.217 

Average 
1.849 Å  

(1.41 v.u.) 
1.997 Å (0.24 v.u.) 

 
r(Te-O1c) / Å 

r(O1c-Li) / Å 

 Li1 Li2 Li3 

Li2TeO3 
1.929 1.932 1.993 2.003 
1.848 1.896 1.975 2.024 
1.871 1.995 1.938 - 

Average 
1.883 Å  

(1.29 v.u.) 
1.970 Å (0.26 v.u.) 

 

Higher coordinated Li is not uncommon, as 5 and 6 coordinated Li is also observed in other 

crystals [16]. However, in the α-Li2Te2O5 phase, one Li site has 1 additional O atom at 2.727 Å 

(0.03 v.u.). If this oxygen is considered as bonding, the unit can be labelled as [LiO4+1] unit. 
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However, this distance is not included in the first coordination sphere as clearly seen in Fig. 

4.5, which shows the T(r) for the Li-O pairs in the tellurite crystals.  

 

Table 4.5: Average number of Li atoms bonded to O1a, O1b, and O1c for the cases of nLiO = 4, 4.5, and 
5, and the calculated values from the crystal phases 

 

NBO site Average nLiO Average Li atoms Case 

O1b 

4 2.36 I 
4.5 2.66 II 
5 2.95 III 

Crystal site 2.48 - 

O1c 

4 2.84 IV 
4.5 3.20 V 
5 3.55 VI 

Crystal site 2.77 - 

O1a 
Te=O 

(Te – terminal oxygen, 1.5 v.u.) 

4 2.00 VII 
4.5 2.25 VIII 
5 2.50 IX 

Crystal site - - 

 

 

Figure 4.5: T(r) for Li-O pair in the lithium tellurite crystals. Average nLiO of 4 is represented by the peak 
at ~2 Å. The peak at ~2.7 Å is the next nearest Li-O distance found in α-Li2Te2O5 

 

The area from the Li-O peak for each crystal gives an average lithium coordination number 

of 4 (cut-off 2.6 Å). As seen in the figure, the average Li-O distances in the crystals are similar 
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at about 2 Å. This average distance can be parameterised with two peaks: one fixed at 1.96 

Å to represent the tetrahedral Li-O distance; and the second peak at 2.15 Å, arbitrarily 

positioned to enable a fit the total Li-O peak. The area of the second peak at 2.15 Å is an 

indirect measure of the degree of asymmetry in the tetrahedral [LiO4] unit. The rLiO 

distribution in α-Li2Te2O5 is more distorted than that in β-Li2Te2O5. However, since it contains 

contributions from 2 Li sites in the crystals, it may not reflect the actual Li site in the crystal. 

Individual Li site parameters will be discussed later in this section.  

 

Table 4.6: Running bond valence sum for Li-O bonds in the lithium tellurite crystals. 

 From site To site Distance, r / Å BV / v.u. Running sum BV / v.u. 

α-Li2Te2O5 

Li(1) 
O 

1.974 0.25 0.25 
2.006 0.23 0.49 
2.008 0.23 0.72 
2.040 0.21 0.93 

Li 2.621 - - 

Li(2) 
O 

1.942 0.28 0.28 
2.018 0.22 0.50 
2.031 0.22 0.72 
2.040 0.21 0.93 
2.726 0.03 0.96 

Li 2.761 - - 

β-Li2Te2O5 

Li(1) 
O 

1.922 0.29 0.29 
1.938 0.28 0.57 
1.960 0.26 0.83 
2.217 0.13 0.97 

Li 2.724 -  

Li(2) 
O 

1.932 0.28 0.28 
1.933 0.28 0.57 
1.943 0.28 0.84 
1.969 0.26 1.10 

Li 2.867 -  

Li2TeO3 

Li(1) 
O 

1.896 0.31 0.31 
1.955 0.27 0.58 
1.993 0.24 0.82 
2.004 0.23 1.05 

Li 2.553 -  

Li(2) 
O 

1.932 0.28 0.28 
1.938 0.28 0.56 
1.975 0.25 0.81 
2.024 0.22 1.03 

Li 2.559 -  
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Figure 4.6: Simulated T(r) for Li–O pairs in lithium tellurite crystal for individual Li sites 

 

The contribution of bond valence from O atoms to Li is shown in Table 4.6. The limit of rLiO is 

often taken to be less than the shortest rLiLi. The total bond valence for Li ranges from 0.93 to 

1.10 based on the rLiO in the table, with 4 bonding oxygen atoms. The bond valence sum is 

however slightly lower in α-Li2Te2O5 unless the fifth oxygen atom at 2.726 Å is considered 

giving the sum of 0.96 instead of 0.93. The simulated T(r) for the individual Li sites are shown 

in Fig. 4.6. The shape of the Li-O distance distribution for all Li sites in α-Li2Te2O5 and Li2TeO3 

are similar but with different centre of the peak. Whilst the Li2 site in β-Li2Te2O5 has a similar 

distribution and peak centre as the Li sites in Li2TeO3, the Li1 site is remarkably different due 

to the longer rLiO at 2.217 Å. The average nLiO is however still 4. The Li1 site (β-Li2Te2O5) is 

therefore a suitable visualisation of the distorted tetrahedral [LiO4] unit and possibly the Li 

environment in lithium tellurite glasses. This is in accordance with the general knowledge 

that the structure of a glass is more similar to that of the high temperature crystal 

polymorph of the same composition rather than the stable crystal polymorph. 
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4.4 Lead tellurite crystals 

4.4.1 General structure 

There are 3 lead tellurite crystals within the composition range of these studies: PbTe5O11 

[17], Pb2Te3O8 [18], and PbTeO3 [19]. These crystal phases are selected from the literature 

based on the (smallest) R-value. Compared to lithium tellurite crystals, the Te environments 

in lead tellurites are more complex. In PbTe5O11 (16.67 mol% PbO) and Pb2Te3O8 (40 mol% 

PbO), there are 5 and 4 Te sites respectively, comprising both [TeO4] and [TeO3] units. In 

PbTeO3 (50 mol% PbO), there are 3 [TeO3] sites. In lithium tellurite crystals, [TeO3] units only 

exist at 50 mol% Li2O with intermediate [TeO3+1] units being found at 33.33 mol% Li2O, 

whereas in lead tellurite, the [TeO3] units exist in lead tellurite crystal with PbO content of as 

low as 16.67 mol%. 

 

Table 4.7: Local order structural parameters in lead tellurite crystals. *the next rTe-O is at 2.644 Å. 

In lithium tellurites, the average nLiO is 4 in all compositions; in lead tellurites, Pb-O 

polyhedra with 2 to 8 oxygen atoms are present, leading to differences in average nPbO. The 

short-range order parameters of the lead tellurite crystals are shown in Table 4.7.The cut-off 

values are shown in parentheses. From the table, for example, nTeO = 3.70 (max 2.35 Å) 

means that 3.70 was obtained by integration, with the max r of 2.35 Å and nPbO = 1.95 (2.27 

Å) mean that 1.95 was obtained by the area of a peak with the r value of peak value is 2.27 

Å. Integration is often used when the peak of interest is not well resolved. With increasing 

PbO content, both average nTeO and nPbO decrease within the selected cut-off distances. At 

40 and 50 mol% PbO, Pb2+ has an average coordination number typical of a glass network 

former whereas it resembles a modifier in 16.67mol% lead tellurite crystal. 

Fig. 4.7 shows the total correlation functions for the lead tellurite crystals of 

PbTe5O11 [17], Pb2Te3O8 [18], and PbTeO3 [19]. The Te environment shows the same trend 

(evolution of the longer long bond) as a function of modifier content as previously discussed 

 PbTe5O11 Pb2Te3O8 PbTeO3 

Structural 
units 

Distorted tbp [TeO4], tp 
[TeO3], and distorted[PbO8] 

units 

Distorted tbp [TeO3+1], 
[TeO4], tp [TeO3], 

distorted [PbO7] and 
[PbO8] units 

Trigonal pyramidal tp 
[TeO3+1], distorted [PbO5] 

and [PbO7] units 

Average 
coordination 
number, nXO  

nTeO = 3.70 (max 2.35 Å) 
nPbO = 6.35 (max 3.00 Å) 
nPbO = 8.00 (max 3.30 Å) 

nTeO = 2.93 (max 2.35 
Å) 

nPbO = 3.19 (2.44 Å)  

nTeO = 3.00 (max 2.35 Å)  
nPbO = 1.95 (2.27 Å) 

Te sites 5 4 3 

Pb sites 1 2 3 

TeO2 
connectivity 

Corner and edge Corner None* 
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in the lithium tellurite crystals. The Pb environment is more variable but, in general, the 

average rPbO (and consequently nPbO) decreases with increasing PbO content. The O-O 

distance however is seen to be roughly similar in all the three phases. From a glass structural 

point of view, the lower average nPbO value at higher compositions means that if the melt of 

that particular composition could be quenched into a glass, Pb would behave as a glass 

former rather than a modifier. O-O pairs in these crystals also show a wide distribution as 

seen in the figure. 

 

Figure 4.7: Simulated T(r) for the lead tellurite crystals, selected for comparison with the glass 
structure. Te-O pair (red area), Pb-O pair (blue area), and O-O pair (green dotted). 

 

4.4.2 Tellurium (IV) environment 

As shown in Fig. 4.8, the Te environment in the 16.67 mol% PbO tellurite crystal, PbTe5O11, is 

very similar to γ-TeO2. Based on the similarity of the Te environment in PbTe5O11 and γ-TeO2, 

PbTe5O11 could be a suitable crystal structure for comparison with the lead tellurite glasses. 

However PbTe5O11 was not mentioned in slowly cooled PbO-TeO2 glasses which yield γ-TeO2, 

Pb2Te3O8, and PbTeO3 [20]. Fig. 4.9 shows the tellurium environment in the lead tellurite 

cystals. In general, as previously mentioned, nTeO decreases as a function of PbO content. In 
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PbTe5O11, the average nTeO value is 3.70 (as represented by the orange coloured area). 

Having this average nTeO value of less than 4 indicates that in this crystal phase, there are 

[TeO4] and [TeO3] units. In Pb2Te3O8, the first Te‒O coordination shell gives an average nTeO 

value of 2.93, or 3.50 if the second coordination shell is included, while in PbTeO3, the 

average nTeO value is 3.00 with an average distance reflecting the resonance Te‒O distance in 

a [TeO3]2‒ unit. 

 

Figure 4.8: Te environments in tellurite, lithium tellurite, and lead tellurite crystals. rTeO is compared to 
the short and long bonds of 1.879 and 2.121 Å found in α-TeO2 (vertical lines). The evolution of the 
longer long bond of Te-O is a function of composition, regardless of the modifier cation type. 
 

Table 4.8 shows the running bond valence sum for Te-O bonds in each site of all the crystal 

phases related to this study. From the table, the Te-O bond valence sum for Te(IV) in [TeO4] 

and [TeO3] units range from 3.95 to 4.27 v.u. The average Te-O bond valence in PbTe5O11, 

Pb2Te3O8, and PbTeO3 is 4.08, 4.21, and 4.20 v.u, respectively. Closer examination of each 

tellurium site is important in order to understand all the possible Te-O polyhedral 

environments in lead tellurite glasses. Collectively, there are 11 Te sites in these crystals, 

however, only the sites from PbTe5O11 are considered due to its formation in devitrified 

glass, and its composition being similar to the glasses in this study. The partial simulation of 

each Te site in PbTe5O11 is as shown in Fig. 4.10. As seen in the figure, the Te1, Te4, and Te5 

sites are the [TeO4] type (TeO2short + 2long), similar to the unit in α-TeO2, whereas the Te2 and 
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Te3 sites are the [TeO3+1] type, similar (but slightly longer distance of the long “+1” bond) to 

the units in the β-Li2Te2O5 phase. 

 

Figure 4.9: Simulated T(r) for Te‒O pairs in the selected lead tellurite crystals. Orange area marks the 
sum of Te‒O peaks due to Te‒O pairs within the first coordination shell.  

 

Figure 4.10: Partial T(r) for each Te site in PbTe5O11. 
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Table 4.8: Bond valence calculation of the Te‒O bonds in lead tellurite crystals. 

Crystal Te site r / Å BV / v.u. Running BV sum  

PbTe5O11 

Te1 

1.875 1.3902 1.3902 
1.937 1.1764 2.5666 
2.100 0.7580 3.3246 
2.117 0.7224 4.0470 

Te2 

1.835 1.5502 1.5502 
1.890 1.3357 2.8859 
1.956 1.1127 3.9986 
2.445 0.2976 4.2962 

Te3 

1.908 1.2709 1.2709 
1.913 1.2566 2.5275 
1.964 1.0942 3.6217 
2.411 0.3265 3.9482 

Te4 

1.865 1.4291 1.4291 
1.904 1.2847 2.7138 
2.080 0.7988 3.5126 
2.177 0.6149 4.1276 

Te5 

1.854 1.4722 1.4722 
1.901 1.2973 2.7695 
2.105 0.7460 3.5155 
2.107 0.7428 4.2583 

PbTe3O8 

Te1 

1.852 1.4806 1.4806 
1.852 1.4806 2.9612 
2.160 0.6437 3.6048 
2.160 0.6437 4.2485 

Te2 
1.859 1.4532 1.4532 
1.859 1.4532 2.9064 
1.883 1.3616 4.2680 

Te3 

1.856 1.4643 1.4643 
1.868 1.4156 2.8799 
2.008 0.9712 3.8511 
2.338 0.3983 4.2494 

 2.984 0.0694 4.3188 

Te4 
1.857 1.4615 1.4615 
1.900 1.3001 2.7616 
1.900 1.3001 4.0617 

 2.798 0.1147 4.1763 

PbTeO3 

Te1 

1.870 1.4114 1.4114 
1.875 1.3891 2.8005 
1.887 1.3480 4.1485 
2.745 0.1324 4.2810 
2.934 0.0794 4.3604 

Te2 

1.859 1.4536 1.4536 
1.879 1.3768 2.8304 
1.883 1.3620 4.1923 
2.762 0.1264 4.3187 

Te3 

1.848 1.4951 1.4951 
1.860 1.4489 2.9440 
1.899 1.3050 4.2490 
2.912 0.0843 4.3333 
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4.4.3 Non-bridging oxygen environments 

Table 4.9: Bond parameters of Te–O and Pb–O pairs in lead tellurite crystals. 

 

Table 4.9 shows the bond distances and bond valence values of Te-O bonds obtained from 

the related crystal structures. These parameters are categorised into two: related to O1b 

connected to a [TeO4] unit, and related to O1c connected to a [TeO3] unit. From the table, 

the bond valence for Te-O1b has values of 1.40, 1.39, and 1.36 v.u. whilst Te-O1c has values 

 
Crystal 

 r(Te-O1b) / 
Å 

r(O1b-Pb) / Å 

  Te Pb1 Pb2 Pb3 Pb4 

[TeO4] 

Te–O–(Pb) Pb2Te3O8 
1.852 (Te1) – 2.374 – – – 

1.852 (Te1) – 2.374 – – – 

ΣBVO=1.89  BVO-Te=1.40  0.54    

#Te–O–(Pb,Te) PbTe5O11 

1.875 (Te1) 2.411 2.739 – – – 

1.908 (Te3) 2.080 2.710 – – – 

2.411 (Te3) 1.875 2.739 – – – 

2.177 (Te4) 1.901 3.078 – – – 

2.080 (Te4) 1.908 2.710 – – – 

1.901 (Te5) 2.177 3.078 – – – 

ΣBVO=1.90  1.25 0.52 0.14    

Te–O–(Pb,Pb) PbTe5O11 1.854 (Te5) – 2.509 2.634 – – 

1.97  1.39  0.34 0.24   
#Te–O–(Pb,Pb,Te) Pb2Te3O8 2.338 (Te3) 1.900 2.732 2.859   

ΣBVO=2.08  0.38 1.23 0.19 0.28   

Te–O–(Pb,Pb,Pb) 

PbTe5O11 1.865 (Te4) – 2.472 2.648 2.884  

Pb2Te3O8 
1.856 (Te3) – 2.470 2.556 2.934  

1.868 (Te3) – 2.372 2.636 3.032  

 ΣBVO=2.13  1.36  0.41 0.26 0.10  

         

[TeO3] 

Te–O–(Pb) 

Pb2Te3O8 
1.859 (Te2) – 2.440 – – – 
1.859 (Te2) – 2.440 – – – 

PbTeO3 
1.869 (Te1) – 2.750 – – – 
1.879 (Te2) – 2.294 – – – 

ΣBVO=1.70  1.34  0.36    

Te–O–(Pb,Pb) PbTeO3 

1.887 (Te1) – 2.335 2.528 – – 

1.875 (Te1) – 2.245 3.022 – – 

1.859 (Te2) – 2.758 3.057 – – 

1.883 (Te2) – 2.264 2.628 – – 

1.848 (Te3) – 2.471 2.813 – – 

1.860 (Te3) – 2.504 3.062 – – 

ΣBVO=1.90  1.34  0.42 0.14   

#Te–O–(Pb,Pb,Te) Pb2Te3O8 
1.900 (Te4) 2.338 2.732 2.859 – – 

1.900 (Te4) 2.338 2.732 2.859 – – 

ΣBVO=1.93  1.23 0.38 0.19 0.13   

Te–O–(Pb,Pb,Pb) PbTeO3 1.899 (Te3) – 2.371 2.471 2.960 – 

ΣBVO=2.21  1.23  0.50 0.38 0.10  

Te–O–
(Pb,Pb,Pb,Pb) 

Pb2Te3O8 1.857 (Te4) – 2.439 3.069 3.069 3.080 

ΣBVO=1.96  1.46  0.41 0.08 0.08 0.07 
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of 1.34, 1.34, 1.23, and 1.32 v.u. (not including those marked with superscript #, because the 

O is a bridging oxygen; connected to another Te). For convenience, these values are rounded 

to 1 decimal place and averaged out as shown in Table 4.10. As previously discussed for the 

Te-O1b and Te-O1c in the lithium tellurites, these numbers could be used to partially 

characterise the short range order in the lead tellurite glasses (Chapter 6) 

 

 Table 4.10: Bond parameters of Te–O1b, Te–O1c, and Te–O2 in lead tellurite crystals. 

  rTeO (bv) 

[TeO4] 

Te–O–(Pb) 1.85 (1.4) 

Te–O–(Pb,Te) 1.89 (1.3) 

Te–O–(Pb,Pb) 1.85 (1.4) 

Te–O–(Pb,Pb,Te) 1.90 (1.2) 

Te–O–(Pb,Pb,Pb) 1.86 (1.4) 

Average Te–O(O1b) 1.4 

Te–O(O2) 1.3 

[TeO3] 

Te–O–(Pb) 1.87 (1.3) 

Te–O–(Pb,Pb) 1.87 (1.3) 

Te–O–(Pb,Pb,Te) 1.90 (1.2) 

Te–O–(Pb,Pb,Pb) 1.90 (1.2) 

Te–O–(Pb,Pb,Pb,Pb) 1.88 (1.5) 

Average Te–O(O1c) 1.3 

Te–O(O2) 1.2 

Te–O–(nTe) n ≥ 1 – 

 

4.4.4 Lead (II) environment 

Fig. 4.11 shows the simulated partial T(r)PbO for PbTe5O11, Pb2Te3O8, and PbTeO3 crystal 

phases. The total T(r) are shown as the dashed line, the partial T(r) for PbO pairs are shown 

in blue line and the area shaded in orange represents the contribution of PbO pair for the 

total average PbO coordination number of about 8. The actual number calculated is shown 

in the figure. The blue dashed lines represent the distance for the average Pb-O coordination 

number (labelled in the top parentheses) calculated based on the bond-valence parameters 

by Brese and O’Keefe [15]. The line labelled r-cutoff (8) represents the cutoff radius where 

the integral of the T(r)PbO gives the average nPbO value of 8. As seen in the figure, the PbO 

distance decreases as a function of PbO content. In PbTe5O11, the partial T(r)PbO has a 

principal peak centred at a value corresponding to the average nPbO value of 8. In Pb2Te3O8, 

the partial T(r) could be parameterised with a minimum of 2 peaks where the first peak is 

centred at a distance corresponding to the average nPbO value of 5. In PbTeO3, the presence 

of even shorter PbO distances (corresponding to the average nPbO = 3) is obvious. A general 

trend is seen that in the crystalline form, as more PbO is added to the TeO2, the shortest 

PbO distance decreases to corresponding to nPbO value of 8 to 5 and 3. In glasses, this trend 
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would describe the behaviour of Pb2+ as being a modifier, intermediate, and a glass former 

respectively. 

 

Figure 4.11: Simulated T(r) Pb-O for the lead tellurite crystals. Orange area is the sum of the average 
nPbO of about 8. 
 

Table. 4.11 shows the Pb-O bond distances and bond valence sums of the crystal phases. For 

PbTe5O11, there is only 1 Pb site present and the [PbO8] polyhedron is made up of 4 short 

and 4 long Pb-O bond distances. In this crystal, the bond valence sum for Pb is less than 2. 

The selection of short and long Pb-O bond limit is subjective since Pb-O distance distribution 

is highly asymmetrical. For convenience, all PbO polyhedra in the crystals are mostly all 8-

coordinated within about 3.3 Å. 

From the calculated bond valence values, in total listed in Table 4.11 (marked bold), 

the values are not all 2. This is because the bond valence approximation for Pb2+ is less 
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accurate, due to its lone pair of electrons which causes the PbO distances to be highly 

distorted. 

Table 4.11: Bond parameter for Pb-O pair in lead tellurite crystals. 

Crystal Pb site r / Å BV / v.u. Running sum BV 

PbTe5O11 Pb1 

2.471 0.3787 0.3787 

2.509 0.3420 0.7207 

2.634 0.2439 0.9646 

2.647 0.2354 1.2000 

2.710 0.1988 1.3988 

2.739 0.1839 1.5827 

2.883 0.1244 1.7071 

3.078 0.0735 1.7806 

PbTe3O8 

Pb1 

2.3716 0.4958 0.4958 

2.4395 0.4127 0.9084 

2.4698 0.3802 1.2887 

2.6359 0.2427 1.5313 

2.8588 0.1329 1.6642 

2.9342 0.1084 1.7726 

3.032 0.0832 1.8558 

3.0688 0.0753 1.9311 

Pb2 

2.3736 0.4931 0.4931 

2.4386 0.4137 0.9068 

2.5555 0.3016 1.2084 

2.5555 0.3016 1.5100 

2.7323 0.1870 1.6970 

2.7323 0.1870 1.8840 

3.0795 0.0732 1.9572 

3.3414 0.0361 1.9933 

PbTeO3 

Pb1 

2.372 0.4959 0.4959 

2.471 0.3790 0.8749 

2.504 0.3471 1.2220 

2.628 0.2483 1.4703 

2.813 0.1503 1.6205 

2.960 0.1011 1.7217 

3.057 0.0778 1.7995 

3.108 0.0677 1.8672 

3.151 0.0603 1.9275 

3.855 0.0090 1.9365 

Pb2 

2.294 0.6111 0.6111 

2.335 0.5475 1.1586 

2.528 0.3246 1.4832 

2.758 0.1745 1.6577 

3.062 0.0768 1.7345 

3.108 0.0678 1.8023 

3.125 0.0648 1.8671 

3.238 0.0476 1.9147 

Pb3 

2.245 0.6988 0.6988 

2.264 0.6640 1.3628 

2.471 0.3792 1.7420 

2.750 0.1783 1.9203 

3.022 0.0855 2.0058 

3.231 0.0486 2.0544 
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 Fig. 4.12 shows the simulated partial T(r)PbO for Pb sites in PbTe5O11 and Pb2Te3O8. 

For simulation of alkali tellurite crystals, the thermal parameters for Te-O and M-O pairs (M 

= Li, Na, and K) were obtained from Barney et al. [21]. For lead tellurite crystals, the thermal 

parameter for Te-O is available in the literature [21], but not for Pb-O pairs. Therefore, the 

value of RMS bond length variation <u> (0.2) as calculated by XTAL from the crystallographic 

(cif file) was used. As shown by the black line, due to the large value used, the partial T(r)PbO 

is highly broadened to the point where the Pb-O peak for PbTe5O11 can be fitted with just 

one Gaussian. Peaks for Pb2Te3O8 however are still resolvable into multiple Gaussians. The 

shape of the T(r) Pb-O from simulation however can be simulated with a much lower value 

(0.05), so that the shape of simulated T(r) is similar to that observed by experiment (Chapter 

6, Section 6.5, using the difference technique with the null lithium tellurite neutron data). 

 

Figure 4.12: Partial T(r) PbO simulated using thermal parameters from the crystal structure and a 
value similar to the experimental results. 

 

4.5 Glass structures and models 

4.5.1 Pure TeO2 glass 

Traditionally, the pure TeO2 glass network is thought to resemble the -TeO2 crystal, i.e. 

consisting only of corner-sharing [TeO4] polyhedral units connected by –Te–axOeq–Te– 

bridges (average nTeO = 4) (ax = axial, eq = equatorial) as in Fig. 4.1 [22]. This is analogous to 

the relationship between SiO2 and GeO2 crystals and their pure glasses. nTeO values of 
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tellurite glasses with low modifier contents were measured, using neutron diffraction, to be 

close to 4 in K2O-TeO2 [23]. These values were thought to decrease linearly from nTeO = 4 in 

pure TeO2 as modifier is added where the [TeO4] units change to [TeO3] via the intermediate 

unit [TeO3+1], as previously discussed. However, the value of nTeO in pure TeO2 glass was 

recently experimentally measured by Barney et al. [24] who found a value of 3.68 instead of 

4.00. This suggests that there are [TeO3] units already present in TeO2 glass. Based on a 

Raman study, Tatsumisago et al. [25] suggested that, in the melt, [TeO3] and [TeO4] units 

could be in equilibrium according to the model shown in Fig. 4.13. 

 

↔ 

 

Figure 4.13: [TeO4/2] ↔ [TeO2/2O] equilibria. Units taken from McLaughlin et al. [26]. 

 

Therefore, when molten TeO2 is quenched fast enough (roller-quenching), some of the 

[TeO3] units may be retained in the glass amongst the [TeO4] units found in stable TeO2 

crystals. The structure of pure TeO2 glass can be compared to the δ-TeO2 crystal phase which 

has both [TeO4] and [TeO3] units with non-bridging oxygen atoms [10]. The terminal oxygen 

atoms (non-bridging, and non-charged, later described as O1a type of oxygen) associated 

with the [TeO3] units present in pure TeO2 glass can provide additional coordination sites for 

modifier cations added to the glass, at least at lower concentrations. This will increase the 

critical modifier oxide content where further [TeO3] units with non-bridging oxygen atoms 

need to be created. 

 

4.5.2 Tellurite glasses 
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Figure 4.14:  Upper and lower limits of second oxide MaOb in binary xMaOb-(100–x)TeO2 glasses [27]. 
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Fig. 4.14 shows the lower and upper content limits of the second oxides which have been 

studied in binary TeO2 glasses. Group I elements have a range of 5 to 20 mol% but this 

increases for some transition elements.  

 

4.5.3 Te-O bond breaking processes 

In the presence of a modifying oxide MaOb, the Te–eqOax–Te bridge is broken in order to 

create non-bridging oxygen atoms to accommodate the M+ cations. This process is similar to 

the creation of non-bridging oxygen atoms in SiO2-based glasses. The process is illustrated 

for the case of lithium tellurite glasses in Fig. 4.15 where one [TeO4]– unit is produced for 

each Li+ unit present in the glasses. 

 

↔ 

 

Figure 4.15: [TeO4/2] ↔ [TeO3/2O–] equilibrium for 2Li+ + O2– + 2[TeO4] ↔ 2([TeO4]– Li+). McLaughlin et 
al. [26]. 

 

As shown in Fig. 4.15, the bridge breaking process introduces non-bridging oxygen atoms 

without changing the tellurium coordination number. In a situation where the modifier 

cation coordination cannot be satisfied by the number of non-bridging oxygen atoms 

present, a further means of creating non-bridging atoms is achieved by the mechanism 

involving charged units which involves the transformation of the [TeO4]–  to [TeO3]– as shown 

in Fig. 4.16. As this process transforms [TeO4] to [TeO3] units, the average nTeO of the system 

will decrease. 

 

↔ 

 

Figure 4.16: [TeO3/2O–] ↔ [TeO1/2O2
–] equilibrium. Units taken from McLaughlin et al. [26]. 

 

During these transformation processes, [TeO4] changes to [TeO3] via [TeO3+1], units as in Fig. 

4.17, which may be similar to those found in TeO2, Li2Te2O5, and Li2TeO3. 
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Figure 4.17:  Transformation of [TeO4] unit to [TeO3] unit via intermediate [TeO3+1] unit. [TeO4] unit is 
represented by the TeO2 polyhedron in α-TeO2 crystal. This intermediate unit is drawn with the longest 
bond as found in α-Li2Te2O2 (longest r > 2.2 Å). The resonance structure is not shown in the [TeO3] unit. 
This unit is represented by a TeO3 polyhedron found in Li2TeO3. 
 

4.6 TeO2 structural models [28] 

4.6.1 Pure TeO2 glass 

The model derivation is taken from the work of Dr Emma Barney, Dr Diane Holland, and Dr 

Alex Hannon [28]. In TeO2 there are 2 O atoms for every Te atom. 

 . .n c n cTeO Te OTe O  (4.1) 

where nij is the average coordination number of atom i to atom j, and ci is the atomic 

fraction of atom i. nOTe can be calculated for known nTeO (experimental), using cTe (=1/3), and 

cO (=2/3). Assuming that the only species present are 3-coordinated Te (Te3), 4-coordinated 

Te (Te4), oxygen bonded to 1 Te (O1) and oxygen bonded to 2 Te (O2), nOTe can be 

represented by:  

 

(2* ) (1* )2 1 ( )

21 ( )

12 ( )

N NO On aOTe
NO

NOn bOTe
NO
NOn cOTe
NO




 

 

 (4.2) 

Rearranging Eqn. 4.2 (a), the fractions of O2 and O1 units can be calculated for known nTeO. 

In pure TeO2 glass (cTe = 1/3 and cO = 2/3), the experimental nTeO of 3.68 leads to an average 

nOTe value of 1.84 (from Eqn 4.1), which gives the O1 and O2 fractions units as 0.16 and 0.84, 

respectively. Using similar relationships, the fractions of Te3 and Te4 can be calculated as 

 

(3* ) (4 * )3 4 ( )

34 ( )

43 ( )

N NTe Ten aTeO
NTe

NTen bTeO
NTe

NTen cTeO
NTe




 

 

 (4.3) 
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The fractions of various units are shown in Fig. 4.18 as a function of the average nTeO . It is 

seen that in a system of nTeO = 3.68, there are 33% of Te3 units, 67% of Te4 units, 13 % of O1 

unit and 83% of O2 units. In fractions, these units can be represented as: 

 51 2 13 4 1 22 3 3 3 3
Pure TeO glass Te Te O O     (4.4) 

The nTeO obtained by simulation studies [29-30] including [TeO3], [TeO4], and [TeO5] units 

give similar values to experiment [24] if [TeO5] is excluded (unobserved in known Te-O and 

Li-Te-O crystals). The fractions of all the units in Eqn 4.4 are unique to the nTeO value of 3.68 

and affect the threshold modifier content (Fig. 4.18). The number of non-bridging oxygen 

(NBO) and the average boron-oxygen coordination number nBO in borate systems [31] are 

affected by the cooling rate (hence Tg and Tf). Therefore the value nTeO could depend on the 

melting and quenching processes. The model of Barney et al. is derived for a roller quenched 

glass sample. 

 
Figure 4.18: The fractions of [TeO3], [TeO4], NBO(O2), and BO(O1) units as a function of nTeO as derived 
in Eqn 4.4 The dotted shows the fractions of the units found in the roller-quenched pure TeO2 glass 
corresponding to the nTeO value of 3.68 [24]. 

 

4.6.2 Alkali tellurite glasses 

When N’ units of K2O are added to N units of TeO2 (N’/(N’+N) = x mol% of K2O), the bridge 

breaking process will decrease the number of O2 units by N’ and increase the number of O1 

type by 2N’ and give the number of units present according to the equation: 

 
'2 2

523 4 2 ' 1 ' 2 [2 ']
3 3 3 3

N unit of TeO N unit of K O

NN N NTe Te N O N O N K



             
       

 (4.5) 

K+ has a preferred coordination number of 6 and therefore a K–O bond will have a bond 

valence of 1/6: a K+ ion needs a total of 6 K–O bonds to fully complete its bond valence 

requirement. From related known crystal structures, O1–Te has a bond valence of 1.5 v.u., 

[24] leaving the remaining 0.5 v.u. on O1 available to provide 3 K-O bonds  (0.5 / (1/6)). From 

these conditions, all bonds are used up when when ( indicates “are balanced by”) 
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 6(number of K units)↔3(number of O1 units) (4.6) 

and by substituting the values of K and O1 units from Eqn 4.5 into Eqn 4.6, the maximum N’ 

unit of K2O that can be incorporated before any [TeO4] units need be transformed to [TeO3] 

units is obtained as in Eqn 3.4. This corresponds to 14.28 mol% of K2O indicating that from 0 

to 14.28 mol% of K2O, nTeO remains constant at 3.68. 

 ' 1
6

N
N
 ≡ 14.28 mol% (4.7) 

In the case of Li2O-TeO2 glasses, the coordination number of Li+ (nLiO) is expected to be 4 

(though see Section 5.4.5), giving the condition for exhaustion of pre-existing [TeO3] as 

4(number of Li units)↔2(number of O1 units) which leads to the same composition as in 

Eqn. 3.4. This composition is specific to the ratio of units obtained from the average nTeO 

value of 3.68, it should be noted that different average nTeO value leads to different fractions 

of O1 and consequently a different composition at N’/N. The model is true based on the 

assumptions that there are only Te4, Te3, O2, and O1 units present and that K, and any M in 

general, is bonded to only O1. This threshold composition is called the deviation 

composition (xD) for simplicity. The average nTeO is therefore constant (3.68) up to this xD 

(14.28 mol%) for the case of K2O-TeO2. At xD (N’/N = 1/6), the total units in the glass are: 

 
 

     

2 26

523 4 2 1 2 [2 ]
3 3 3 6 3 6 6

NNTeO K O

NN N N N N NTe Te O O K



            
       

 (4.8) 

Adding 1 unit of K2O will produce another 2 units of O1 from the bridge-breaking process. 

However 2 K+ ions need a total of 12 K–O1 bonds to satisfy their bond valences, therefore, 

the simple bridge-breaking process produces insufficient O1 sites to satisfy the bond valence 

of the modifier cations. Therefore, [TeO4] units need to be transformed to [TeO3] unit by the 

process of bond-breaking to create more NBO atoms. In general, by adding M further K2O 

units, Mb Te–O bonds are broken in addition to the normal bridge breaking process (b is the 

number of bonds being broken during transformation of [TeO4] to [TeO3] units, which can be 

determined experimentally). Hence the total number of Te4 units will decrease by Mb and 

the total number of Te3 units will increase by Mb and Eqn. 4.8 becomes 

 

 

   

 

2 26

23 4
3 3

52 1 2
3 6 3 6

[2 2 ]
6

NNTeO M K O

N NMb Te Mb Te

NN N NMb O Mb O

N M K

  
 

      
   

        
   

 

 (4.9) 
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and from Eqn. 4.9, nTeO of the system becomes 

 11
3

MbnTeO N
   (4.10) 

and the total K2O content M’ would be 

 6' 100 %
7

6

N M
M mol

M





 (4.11) 

Rearranging Eqn. 4.11, the further unit added M can be expressed as 

 
(7 ' 100)

6(100 ')

N M
M

M





 (4.12) 

and putting Eqn. 4.12 into 4.10, nTeO of the system as a function of K2O content beyond the 

maxima would be 

 
(7 ' 100)11

3 6(100 ')

b M
nTeO

M


 


 (4.13) 

From the definition in Eqn. 4.9, for every unit of K2O added, NO1 increases by 2 + b where 2 

and b come from the bridge-breaking and bond-breaking processes respectively. A b value of 

1 generates values of nTeO which are close to the experimental values of nTeO (Fig. 4.19). 

 

Figure 4.19: The average nTeO model for TeO2 glass based on K2O-TeO2 glasses. For x < 14.3 mol%, nTeO 
is constant at 3.68. This is based on the nTeO value of 3.68 which was experimentally obtained for pure 
TeO2 glass. 14.3 mol% is the deviation point determined by the fractions of [TeO3] and [TeO4] units 
from nTeO. For x > 14.3 mol%, nTeO is fitted with the b value of 1 [28], revealing 25% of the bond valence 
contribution from O2 (bridging oxygen) sites. 

 

This would mean the number of NO1 increases by (2+b) = 3 hence providing 3(2+b) = 9 K – O1 

bonds. This is insufficient since 2 K+ needs 12 K – O1 bonds. This suggests that the remaining 

bonds must be contributed by O2 sites. The average nTeO model beyond xD can also be 
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formulated by fitting the data points and the value of b (1.6) obtained would be closer to 

ideal (2). This however would indicate that the bond valence for Te–O1 is different than 

calculated. 

Model for K 

 

3.68 ; 14.3 %

( ) ( 14.3)
3.68 ; 14.3 % ; 1

100

x mol

n K x bTeO
x mol b

x

 
 

  
   

 

 (4.14) 

Where M is the further K2O unit added above 14.3 mol% and N is the total unit of TeO2. 

 

4.6.3 Non-alkali tellurites  

In aluminium tellurite and tellurium borate glasses, the average nTeO decreases linearly 

without the presence of the plateau and post plateau regions observed in the alkali tellurite 

glasses. In these particular systems, Al3+ and B3+ exist as glass formers with shorter cation-

oxygen distance. The shorter cation-oxygen bonds will have larger bond valence 

requirement, limiting the number of bonds which can be provided by O1-Te. In pure TeO2 

glass, there are various O sites. 

 

Figure 4.20: nTeO values for the alkali (Li2O and K2O), divalent (PbO and ZnO) and trivalent (B2O3 and 
Al2O3) tellurites. 

 

The coordination change of Te is driven by the availability of the O sites for bonding 

with the second oxide cation. In alkali tellurites where the second oxide cation behaves as a 

modifier (similar longer cation-oxygen distance), there is no preferential oxygen site for 

bonding, hence the oxygen cages could be filled with a more flexible (bonding-wise) modifier 
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cations. In the case where the second oxide is a glass former, the flexibility of the TeO2 

network is constrained by the glass former oxide network in contrast to the situation 

observed in alkali TeO2 glasses where the network is highly dominated by TeO2. It is 

therefore possible that a glass former/intermediate, nTeO will not produce the plateau region 

in the average nTeO value (see Fig 3.24 for the behaviour of Al3+ (Barney et al., to be 

published) and B3+ [32].  
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Chapter 5 – Lithium tellurite (IV) glasses 

 

5.1 Introduction 

This chapter describes the preparation method of the null and natural glass samples and the 

general characterisations that include density measurement, thermal analysis, and 

secondary ion mass spectroscopy. These initial characterisations are used to confirm the 

glass nominal composition, the amorphicity (as well as the crystal phases present during 

heat treatment), and the isotopic ratio of 6Li/7Li of the glasses, respectively. Subsequently, 

Raman scattering is used to probe the presence of various units or species in the glasses and 

the information is used to derive a semi-quantitative estimate of the average Te-O 

coordination number nTeO. In the neutron diffraction section, the total correlation functions 

T(r) for the null and natural glasses are presented. The null T(r)’s are compared with pure 

TeO2 and the related lithium tellurite crystals to highlight the differences and similarities in 

both Te and O environments. From the related crystals, the Te-O distances are extracted and 

used to parameterise the Te-O interatomic distance rTeO in the glasses. From the 

parameterisation, the average nTeO is calculated as a function of the modifier Li2O content, x. 

The average nTeO(x) values obtained are discussed based on two regions, plateau (x<15 

mol%) and post-plateau (x>15mol%). The lithium environment is later considered in 

conjunction with the tellurium environment to obtain a consistent description of the glass 

structure. The chapter is concluded by summarising the experimental method and general 

findings, followed by presentation of the short and intermediate range structural 

information deduced from the study (species/unit presents, average coordinaton number 

and distances). 

 

5.2 Sample preparation and general characterisation 

5.2.1 Sample preparation 

Lithium tellurite glasses, with nominal composition xLi2O.(100-x)TeO2 for x = 10, 15, 20, 25, 

and 30 mol%, were prepared in two series; natural (using Li2CO3 at natural Li isotope 

abundance and reagent grade TeO2) and null (using null Li2CO3, i.e., an appropriate mixture 

of natural and 6Li-enriched Li2CO3, and reagent grade TeO2). Details of the null neutron 

scattering formulations are discussed in Section 2.3.2.2. Each 10 g batch of glass was 

appropriately weighed and intimately mixed in a pestle and mortar before being heated 

from room temperature to 800 oC at 10 oC/min in a Pt/Rh or Pt/Au crucible and then held at 
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that temperature for 30 minutes to homogenise the melt. The melting temperature was 

chosen to be approximately 100 oC above the highest liquidus in the composition range (Fig. 

5.1) and was fixed for all the samples to provide a similar thermal history. The melt was then 

quenched by immersing the crucible base in water at room temperature.  

 

Table 5.1: Glasses appearance by visual observation. The x = 35 mol% glass sample was made to 
confirm no amorphous material is obtained at this composition using this method. aMade using a 
Pt/Rh crucible, bMade using a Pt/Au crucible. *Made in a small batch of approximately 1 g for the 

purpose of Raman analysis. 

Nominal composition / 
mol% 

Appearance 

Natural glasses Null glasses 

5 Crystallinea,  Amorphous* N/A 
10 Amorphousb (with separable crystalline bitsa) Amorphousb 

15 Amorphousa,b Amorphousb 
20 Amorphousa Amorphousb 

25 Amorphousa Amorphousb 
30 Amorphousb (with separable crystalline bitsa) Amorphousb 

33 Amorphous with crystalline inclusionsa* N/A 
35 Crystallinea N/A 

 

 

Figure 5.1: Phase diagram for the Li2O-TeO2 system [2]. There is a eutectic composition at about 22.5 
and a peritectic at 30 mol% Li2O. Two lithium tellurite phases (Li2Te2O5 and Li2TeO3) are shown in the 
figure. The 5 glass compositions in this study are marked by the dotted lines. 

 

The glasses were judged to be amorphous by visual inspection (later confirmed by neutron 

diffraction). The physical appearance of the glasses is as summarised in Table 5.1. As seen in 

the table, glasses with compositions at the higher and lower Li2O contents have crystalline 

inclusions in them when made using the Pt/Rh crucible, but not when made using the Pt/Au 

non-wetting crucible. It should be noted that the Pt/Au crucible has a slightly thinner wall 

than the Pt/Rh crucible which will increase the heat transfer rate, helping to avoid 

TeO2 + Li2Te2O5 

TeO2 + liq 

 
Li2Te2O5 

+ 
Li2TeO3 

Li2TeO3 + liq 

Li2Te2O5 + liq 
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crystallisation. The formation of crystalline inclusions in the glasses at the lower and higher 

limits is consistent with the limits of glass formation range as reported in the literature 

(SciGlass database [1]). 

 

5.2.2 Density measurement 

The measured density values are reported in Table 5.2. Fig. 5.2(a) compares the density 

values for both natural and null glasses, as a function of Li2O content (mol%), with those 

obtained from the SciGlass database [1]. As indicated in Table 5.2, the difference between 

the natural and null glass molecular weights, due to different 6Li/7Li isotope contents, is 

small (about 0.1 to 0.2 %) and is negligible since the mass contribution comes mostly from 

the heavier Te atoms (the mass difference between NatLi2O and NullLi2O is 2%). The 

differences in the experimental densities are within the experimental error of up to ~0.03 g 

cm-3. 

 

Figure 5.2: (a) The measured densities for the Li2O-TeO2 glasses: natural glasses (blue, left-pointed 
triangle) and null glasses (red, right-pointed triangle) compared to SciGlass data (grey circle) and pure 
amorphous TeO2 from Barney et al. [3] (b) Molar volumes of the glasses (symbols as in (a) compared 
with the SciGlass data. Error bars for the natural and null glasses are within the points shown. 

 

In general, the density decreases almost linearly as a function of Li2O content as the 

heavier TeO2 is replaced by lighter Li2O. However, the curve of the glass (data) fit in Fig. 

5.2(a) diverges from the linear crystal (data) fit. The density values can be fitted with two 

linear equations intersecting at x ≈ 15 mol%. The rate of decrease for x < 15 mol% region is 

less than for x > 15 mol%. The measured densities are consistent with the values compiled in 

SciGlass for the same system, indicating that the glass compositions used in this study are 

close to the nominal compositions. Fig. 5.2(b) shows the molar volume of the glasses as a 
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function of x. In general, as more Li2O is added, the molar volume decreases, meaning that, 

the glass molecular structure experiences an overall shrinkage associated with the formation 

of one or more structural moieties with smaller volume occupation per mole or which 

occupy pre-existing empty space in the network. 

The molar volume versus composition plot also shows the same behaviour as 

observed in the density plot. For x < 15 mol%, the rate of change is greater than for the x > 

15 mol%. A better impression of the actual packing of atoms is gained by examining number 

density plots for the system. These are shown in Fig. 5.3. That for Li atom is linearly related 

to x, however the plots for Te and O atoms show a change in slope at ~15 mol%, indicating 

that it is the tellurite network which is undergoing a change at this composition, consistent 

with the neutron diffraction analysis as will be discussed later. However, a coordination 

number change for Te atom cannot be concluded solely from the density data, since Te-O 

polyhedra could change shape and volume without a change in the coordination number. 
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Figure 5.3. Calculated number density for constituent atoms as a function of Li2O composition for both 
natural and null glasses (red triangles). The number density plots for O and Te atoms in the glasses 
show the deviational behaviour compared with the crystals (linear fit, dashed black line). 
 

Comparison of the behaviour of the glass density, molar volume, and number density values, 

as a function of Li2O content (Fig. 5.2 and Fig. 5.3), with that observed for the corresponding 
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lithium tellurite crystal phases (γ-TeO2, Li2Te2O5 and Li2TeO3) shows that the change in 

gradient reflects the deviation of the tellurite network structure of the glass from the 3D 

repeating structure of crystalline TeO2. The overall decrease in both density and molar 

volume with increasing Li2O content reflects the small size and mass of the lithium ion.  

 
Table 5.2: Molecular weight MW, density , and molar volume MV values for natural and null xLi2O-
(100-x)TeO2 glasses 

x Li2O 
(mol%) 

MWNat 
(g mol-1) 

MWNull 
(g mol-1) 

ρNat 
(g cm-3) 

ρNull 
(g cm-3) 

MVNat 
(cm-3 mol-1) 

MVNull 
(cm-3 mol-1) 

10 146.63 146.54 5.32 5.34 27.6 27.5 
15 140.14 140.01 5.18 5.20 27.0 27.0 
20 133.65 133.48 5.02 5.03 26.6 26.6 
25 127.17 126.95 4.83 4.83 26.3 26.3 
30 120.68 120.41 4.63 4.66 26.1 25.9 

 

5.2.3 Thermal analysis 

Fig 5.4 shows the DTA heating and cooling curves for the (natural) lithium tellurite glasses 

between room temperature and 700 oC. The glasses with x = 10, 15, and 20 mol% Li2O show 

similar, simple heating curves with one exothermic and one endothermic peak in addition to 

the Tg ”step”. The glasses with x = 25 and 30 mol% show more complex curves with three 

exothermic peaks, plus one endothermic peak for x = 25 and two endothermic peaks for x = 

30. The curve for x = 35 is included as a comparison of the thermal events occurring in the 

partially devitrified sample.  

On heating, after the glass network relaxes into the supercooled liquid state, 

thermodynamics will drive the liquid state to crystallise according to its current local 

structure. Since there is just one exothermic crystallisation peak observed for x = 10, 15, and 

20 mol% of Li2O (from this point forward called the lower Li2O contents), and three peaks 

were observed for x = 25 and 30 (from this point forward called the higher Li2O contents), 

this suggests that the glass structures in the lower Li2O contents group are closely related, 

and similarly for the higher Li2O contents group, based on their readiness to crystallise 

similarly as heat is applied. In order to minimise the internal energy, tellurium atoms in Li2O-

TeO2 glass would likely adopt their short-range order environments as in tellurium-oxygen 

and/or lithium-tellurium-oxygen crystal phases, e.g., α-TeO2, β-TeO2, γ-TeO2, α-Li2Te2O5, β-

Li2Te2O5, and/or Li2TeO3 [4]. 

A crystallisation kinetics study on a lower Li2O contents sample (x = 20 mol%) [5] 

revealed the formation of γ-TeO2, α-TeO2, and α-Li2Te2O5. An earlier study on a higher Li2O 

contents sample (x = 30 mol%) [6] found that an unknown lithium tellurite crystal (LTX)  was 

formed, which later transformed to α-Li2Te2O5 phase and then into β-Li2Te2O5 phase. At the 
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same temperature where LTX formed, pure TeO2 glass also formed, which then later 

transformed into α-TeO2. This study reported no formation of the γ-TeO2 crystal phase. 

Studies [7-9] on crystallisation of vitreous TeO2 found that the γ-TeO2 phase was formed first 

followed by the transformation into α-TeO2. It can be inferred that, in Li2O-TeO2 glass, 

metastable γ-TeO2, α-TeO2, and Li2Te2O5 are therefore closely related to the glass structure 

for both (higher and lower) groups but with different crystallisation kinetics, these being 

determined by the activation energy needed to rearrange local structure. This is consistent 

with the crystal phases as labelled in the phase diagram (Fig. 5.1). α-Li2Te2O5 is more stable 

than β-Li2Te2O5 with the latter being the high temperature phase which is closer to glass 

phase [10]. Particular emphasis will be placed on γ-TeO2, α-TeO2, and β-Li2Te2O5 when 

discussing the glass structure though without ignoring the other phases, e.g., β-TeO2, β-

Li2Te2O5 and Li2TeO3. 

 

Figure 5.4: Figs. (a) to (f) show the thermal analysis curves for xLi2O.(100-x)TeO2 glasses for x = 10, 15, 
20, 25, 30 and 35* mol% showing the heating curve (black, top) and cooling curve (red, bottom) lines 
for each glass composition. *x = 35 mol% is a glass partially-crystallised with Li2Te2O5. The glasses 
were heated at a rate of 10 oC/min and Newtonian cooled. (g) Stack plot of heating curves showing 
two compositional regions of similar crystallisation behaviour; lower Li2O compositions, x = 10, 15, and 
20 mol% with just one exothermic peak, and higher Li2O compositions, x = 25, and 30 mol% with three 
exothermic peaks. x = 35 mol% is made up of mostly Li2Te2O5 crystal phase (33.33mol% of Li2O). Close 
resemblance between x = 30 and 35 mol% reflects the proximity of the x = 30 mol% glass to the α/β-
Li2Te2O5 phase field.  
 

The glass transition temperatures (Tg) and crystallisation temperatures (Tx) are 

extracted from the DTA curves and tabulated as in Table 5.3 and shown in Fig 5.5. The Tg 

values are compared to those obtained from the SciGlass database [1] and, in general, they 

show a similar trend (decreasing, as a function of x). As Tg is partially related to the cooling 
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rate [11-13], the Tg in the figure can be grouped into two (higher and lower Tg) groups to 

represent rapidly cooled and slowly cooled glasses, respectively. The Tg values measured by 

Tatsumisago et al. [11] are higher than those prepared in similar melting environment but 

different cooling rate. Apart from that, Tg is also a function of bond strength [14]. 

 

Table 5.3: Temperatures, Tg, Tx, and Tc extracted from the differential thermal analysis curve as well as 
calculated glass stability (towards devitrification) parameter for each glass 

x / 
mol% 

Glass transition 
temperature, Tg / 

OC 

Crystallisation temperature 
Glass stability,  

TX - Tg 
Onset, 
TX / OC 

Peak, TC / OC 

TC1 TC2 TC3 TC4 

10 275 308 315 - - - 32 
15 262 318 328 - - - 56 

20 254 324 334 - - - 69 
25 249 294 310 341 357 - 45 

30 244 279 288 327 349 - 35 
35 243 279 287 317 345 363 36 
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Figure 5.5: The values of Tg for the glasses at different nominal compositions. Tg can be linearly fitted 
with two lines to highlight the intersection at x ~ 15 mol%, similar to the behaviour observed in the 
density values. Inset shows the glass stability, Tx-Tg. The data are fitted with a spline interpolation 
showing the behaviour of the glass stability as a function of Li2O content with a maximum stability 
towards devitrification at x ~ 20 mol%. This is supported by the cooling curve for this glass in Fig 5.4 
where negligible crystallisation was observed upon cooling. Black circles are the the Tg values for the 
Li2O-TeO2 glasses prepared using silica crucible for splat-quenching method and a roller-quenched 
series. The red circles are the Tg values from the glasses prepared using a similar environment as for 
the studied glass; using a platinum crucible and splat quenching method. 

 

A general trend is observed from the database with glasses prepared in silica crucibles 

having Tg values higher than those prepared in platinum/gold crucibles at a similar cooling 

rate. This is possibly due to contamination by SiO2 from the crucible. Tg is partly a measure of 

disorder as it is a temperature at which the supercooled liquid ‘freezes’ to form the glass. 
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Glasses in which the molecules are ‘locked’ at higher energies (temperature) are probably 

more disordered (having the molecular arrangement more similar to the liquid state 

compared to the solid state). The glass stability towards devitrification parameter is taken as 

the temperature gap between Tg and the onset crystallisation temperature and is shown as 

the inset in Fig. 5.5. The glass with x = 20 mol% is the most stable towards devitrification as 

also evidenced by the Newtonian cooling curve where no crystallisation peak is seen. 

 
Table 5.4: Melting environments of the same glass system taken from the SciGlass database 

 
Melting environments 

Tg group 
Cooling 
method Crucible Tm / oc 

Tatsumisago ‘94 Silica/Platinum 700-900 Higher RQ 
Heo ‘92 Silica 800-850 Higher SQ 

Zhang ‘92 Silica 750-850 Higher SQ 
Inoue ‘92 Platinum 650-750 Lower SQ 

Lee ‘94 Platinum 800 Lower SQ 
Mochida ‘78 Gold 700-900 Lower SQ 

RQ is roller-quenched, and SQ is splat quenched. 

 

5.2.4 Secondary ion mass spectroscopy 

To ensure that the glass samples which should contain null lithium isotope are of the correct 

isotopic composition, secondary ion mass spectroscopy (SIMS) analysis was done on the null 

samples and also on the natural and enriched Li2O-TeO2 glasses courtesy of Dr Richard 

Morris of the Department of Physics. The enriched Li2O-TeO2 glasses were made using only 

6Li-enriched  Li2CO3 as a part of the SIMS study to verify the 6Li/7Li isotope ratio and this glass 

was not used in the neutron diffraction study. The SIMS setup was optimised using the 

mineral spodumene, LiAl(SiO3)2, courtesy of Dr Ian Farnan of the University of Cambridge. A 

glass sample with x = 20 mol% Li2O was chosen to represent the series and the results are 

presented in Table 5.5 and Fig. 5.6. 

 

Table 5.5: Isotopic ratios of 6Li and 7Li isotopes in the natural, enriched, and null lithium glasses and 
natural lithium aluminosilicate mineral crystal. The glass samples (2, 3, 4, and 5) of x = 20 mol% were 
selected for the SIMS analysis. Sample 4 represents clear glass whereas sample 5 represents the 
cloudy glass with small crystalline regions of the same composition. 
 

Sample % 6Li % 7Li <b> 

LiAl(SiO3)2 (1) 8.6 ± 0.6 91.4 ± 0.6 -1.857 
xNatLi2O-TeO2 (2) 7.5 ± 0.1 92.5 ± 0.1 -1.904 
xNullLi2O-TeO2 (3) 52.4 ± 0.2 47.6 ± 0.2 -0.008 
xEnrLi2O-TeO2 (4) 95.0 ± 0.3 5.0 ± 0.3 1.789 
xEnrLi2O-TeO2 (5) 95.1 ± 0.2 4.9 ± 0.2 1.793 
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From the analysis, the natural and enriched glasses have the quoted abundance value of 

6Li/7Li, i.e., 7.5% 6Li and 92.5% 7Li, and 95% 6Li and 5% 7Li within the errors respectively. The 

null glass was also confirmed to be null with 52.4% 6Li and 47.6 % 7Li having a total neutron 

scattering value, <b> of -0.008 to 3 decimal places, i.e. effectively zero. 

 

 

Figure 5.6: Graphical representation of 6Li and 7Li isotopic percentages in the samples of 1(mineral 
spodumene). 2(natural glass), 3(null glass), 4(enriched glass), and 5(enriched glass with glass and 
crystal inclusions). Similar isotope distribution in glassy and glassy/crystalline state is confirmed from 
SIMS analysis on samples 4 and 5. NB – the spread in values for spodumene indicates the progress of 
the set-up process. 

 

5.3 Raman spectroscopy 

Figs 5.7 (a) and (b) show the measured and reduced intensities respectively of the Raman 

spectra from 100 cm-1 to 1000 cm-1. The reduced Raman spectra were obtained by 

multiplying the experimental intensity with the correction factors for the wavelength-

dependent scattered intensity and temperature-dependent mean number for phonon 

occupation in the glass as discussed in Section 3.5. The reduction was done so that the main 

features of the Te–O vibrations in the glass can be highlighted for study. 

 
Figure 5.7: Raman spectra for the Li2O-TeO2 glasses. The y-axes are (a) normalised measured intensity, 
(b) normalised reduced intensity. (a) was normalised to the maximum intensity, (b) was reduced by 
elimination of the Boson peak [15] and (c) is the area-normalised reduced intensity in the region of 
interest encompassing the Te-O vibrations. 
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The Raman spectra show a broad continuous peak manifold from approximately 500 to 900 

cm-1, characteristic of Te–O vibrations as typically observed in tellurite glasses [15-16] 

encompassing the vibrations in various Te environments, e.g., 3, 3+1, and 4 coordinated Te. 

As Li2O content is increased, a major change was observed in the shape of the manifold, i.e., 

the peak at 600 cm-1 decreased whilst the peak at about 800 cm-1 increased (Fig. 5.7 (c)). In 

the literature, the region from 500 to 900 cm-1 is typically resolved into 4 peaks assigned to 

the vibrational modes of either a 4-coordinated pseudo-trigonal bipyramidal (tbp) unit or a 

3-coordinated trigonal pyramidal (tp) unit as shown in Table 5.6 [15-16]. These peaks were 

determined from the vibration modes of [TeO3], [TeO3+1] and [TeO4] units in various TeO2 

polymorphs [17] and M2O–TeO2 crystals (M = Li, Na, K, Rb, Cs, and Tl) [16]. The Raman shifts 

covering the lower wavenumbers in the broad peak (620 to 670 cm-1) for the [TeO4] unit are 

derived from the paratellurite (-TeO2) crystal whereas the higher region is attributed to 

two peaks from 720 to 780 cm-1 for the [TeO3] units found in M2TeO3 crystal phases.  

 

Table 5.6: Peak assignment for Raman vibration of Te-O species in TeO2 glasses 

Raman shift / cm-1 Mode of vibration Assignment 

430 
Bending 

-Te–O–Te- or 
-O–Te–O- 490 

626 
Stretching [TeO4] tbp 

667 

720 
Stretching [TeO3] tp 

771 

 

As previously discussed in Section 5.2.3, the thermal analysis shows that the lower Li2O 

contents (x = 10, 15, and 20 mol% of Li2O) and higher Li2O contents (x = 25 and 30 mol% of 

Li2O) undergo different crystallisation behaviour, suggesting that they have a different local 

glass structure. This is reflected in the Raman spectra by the change in the relative peak 

heights at about 650 cm-1 and 780 cm-1. Since the peak at 650 cm-1 is attributed to the [TeO4] 

unit found in α-TeO2, and the 780 cm-1 is attributed to the [TeO3] unit found in Li2TeO3, the 

Raman spectra suggest that for the lower contents group, the short-range order in the 

glasses more closely resembles those structures with [TeO4] units such as α-TeO2 and γ-TeO2 

as shown in Fig. 5.8(a). The peak at 780 cm-1 is only found in α-Li2Te2O5, β-Li2Te2O5 and 

Li2TeO3 where there are [TeO3+1] and [TeO3] units present. It could therefore be inferred 

that, in general, [TeO4] units (short-range order similar as in α-TeO2 and γ-TeO2) transform to 

[TeO3] (as in Li2TeO3 or TeO2 in liquid state) [18] via intermediate [TeO3+1] units (as found in 

α-Li2Te2O5) with increasing Li2O content. From the DTA analysis in the previous section, it 

was shown that, in this particular order, Li2O-TeO2 glasses crystallise to form TeO2 crystal 
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(from metastable γ-phase transforming to stable α-phase) and Li2Te2O5 (from α-phase to 

high temperature β-phase) as shown in Fig 5.8(a). From this, it can also be inferred that 

these glasses have a short range structure comparable to γ-TeO2. This is also supported by 

the similarity of the Raman spectra of the pure TeO2 glass and the  Li2O-TeO2 glasses with 

low Li2O contents. The region of interest in the Raman spectra for the Te–O vibrations can 

be resolved into 4 peaks as given in Table 5.6, where the peaks at the two lowest (626 and 

667 cm-1) and two highest (720 and 771 cm-1) energies are assigned to the stretching modes 

of the [TeO4] and [TeO3] units, respectively and the peak at about 490 cm-1 is attributed to 

the bending modes of –Te–O–Te– bridges and not included in determining the average 

coordination number of Te in the glass [16]. From the fits shown in Fig. 5.8(b), the central 

Raman shift and area of individual peaks were extracted and the average Te-O coordination 

number for each glass composition was calculated and listed in Table 5.7. Similar peak 

widths were used for the individual peaks in the figure. The sum of the fits gives good 

agreement with the experimental spectra. The average Raman shifts of the peaks from the 

fits are consistent with the expected values from the literature [15-16].  
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Figure 5.8: (a) Comparison of the Raman peak manifold shape from the 10 mol% and 30 mol% glasses 
with the Raman spectra of the related crystals. (b) Peak de-convolution of the Te-O vibrations 
according to the peak assignment as in Table 5.6 

 

The peak area contributed by the vibrations from –Te–O–Te– or –O–Te–O– bridges seems to 

decrease as more Li2O is added, because more bridges are broken by the Li+ ions (creation of 

non-bridging oxygen atoms). In the case of [TeO4] units, the area for Peak B (593 cm-1) 

remains roughly constant at a very low value but Peak C (671 cm-1) shows a steady decrease 



72 
 

across the compositions denoting the transformation of [TeO4] units to other unit(s). The 

peaks contributed by the [TeO3] units show rather a random pattern as represented by Peak 

D (736 cm-1) and Peak E (786 cm-1) (Fig 5.9(a)). Peak D (736 cm-1) has a maximum area at x = 

20 mol% meanwhile Peak E (786 cm-1) has the maximum area at about x = 15 mol%. 

 

Table 5.7: Peak parameters obtained from fitting of the Raman spectra 

 Central Raman shift ± 1 / cm-1 Area ± 1 / % 

x / mol% 10 15 20 25 30 Av ± σ 10 15 20 25 30 

Peak A 476 477 475 479 479 477 ± 2 27 24 21 17 11 
Peak B 590 592 591 593 600 593 ± 7 16 24 19 19 22 

Peak C 670 667 667 672 678 671 ± 7 26 23 19 18 14 
Peak D 735 730 737 739 740 736 ± 6 8 18 30 23 21 

Peak E 780 780 790 789 789 786 ± 4 18 23 18 20 20 

    Average nTeO (±0.2 max) 3.62 3.51 3.45 3.45 3.40 

 

Based on this, it could be inferred that, as Li2O is added to the TeO2 network, –Te–O–Te– 

bridges are broken to accommodate the Li+ ions and at the same time transforming the 

[TeO4] unit to a [TeO3] unit via the intermediate [TeO3+1] unit. In general, if the -TeO2 model 

of a-TeO2 is accepted, the average coordination number of tellurium to oxygen, nTeO will 

therefore decrease from a value close to 4 at x = 0 mol % to a value close to 3 at x = 50 mol 

% as shown in Fig 5.9 (b). However, the average nTeO obtained from the Raman data, once 

extrapolated to x = 0 mol% intercepts at 3.68, the value which was experimentally measured 

by neutron diffraction for nTeO of the pure TeO2 glass [3]. 

 Peak B (593 cm-1), [TeO
4
] unit

 Peak C (671 cm-1), [TeO
4
] unit

 Sum [TeO
4
] unit

 Peak D (736 cm-1), [TeO
3
] unit

 Peak E (786 cm-1), [TeO
3
] unit

 Sum [TeO
3
] unit

0 10 20 30

0

20

40

60

80

100

 K
2
O-TeO

2
 (Kalampounias et al.)

 Li
2
O-TeO

2
 (Kalampounias et al.)

 K
2
O-TeO

2
 (Barney et al.)

 Li
2
O-TeO

2
 (Non-corrected I)

 Li
2
O-TeO

2
 (Corrected I)

0 10 20 30 40

3.2

3.3

3.4

3.5

3.6

3.7

(a)

x / mol% of Li
2
O

P
ea

k 
a

re
a

 /
 %

ND (K
2
O-TeO

2
)

TeO
2
 Model (Barney et al.)

n
TeO  = 0.0136x + 3.68

(b)

A
ve

ra
g

e 
Te

-O
 c

o
o

rd
in

a
ti

o
n

 n
u

m
b

er
, n

Te
O

x / mol% of M
2
O

 

Figure 5.9: (a) showing the peak areas from the fits for each composition and (b) showing the nTeO 
calculated. 
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In Fig. 5.9 (b), the average nTeO decreases almost linearly as a function of x. Contrary to the 

TeO2 Model (solid black line), the constant average nTeO for x less than 15 mol% is not 

observed. The Raman average nTeO values in this study were obtained by two means; using 

corrected-intensity (Fig. 5.7(b)) and using non-corrected-intensity (Fig. 5.7(a)). As seen in Fig. 

5.9(b), the correction produces little effect on the average nTeO values obtained (within the 

error). The average nTeO value for the Li2O-TeO2 (this study) and K2O-TeO2 [3] show similar 

behaviour compared to the values reported by Kalampounias et al. [15]. They follow a 

similar trend with composition, with the absence of the constant average nTeO plateau 

shown by the average neutron nTeO data used by the TeO2 Model. In Raman scattering 

analysis, similar Te–O vibrational modes (approximate bond distance) in α-TeO2 and β-TeO2 

appear at two different Raman shifts because of the localisation of the vibrations [16] since 

the [TeO4] units are shared corner-wise and edge-wise in α-TeO2 and β-TeO2 respectively. 

The effect of localisation is also observed between α-Li2Te2O5 and -Li2Te2O5. This adds to 

the difficulty of analysing Raman spectra quantitatively in a glass (where there are various 

species of [TeO4], [TeO3+1], and [TeO3] with different bond distances and connectivity), but 

qualitatively, it can be stated that, as a function of a modifier, the [TeO4] units are 

transformed into the [TeO3] units. 

 

5.4 Neutron diffraction 

5.4.1 Null and natural samples 

Figs 5.10(a) and 5.11(a) show the distinct scattering, i(Q), data from the null and natural 

samples respectively. As discussed in Chapter 2, the presence of the 123Te resonance limits 

Qmax to 35 Å-1 for Fourier transformation and neutron absorption by 6Li reduces the signal-to-

noise ratio. Figs 5.10(b) and 5.11(b) show the total scattering, T(r), for both null and natural 

glasses. The T(r) plots for the null glasses (Fig. 5.11(b)) contain solely the tellurium and 

oxygen partials, since the lithium partials have been eliminated as a consequence of the NullLi 

zero average neutron scattering length, <b> = 0 as discussed in Section 2.3.2.2. The first peak 

in T(r) shows the asymmetric distribution of first neighbour tellurium-oxygen distances in 

TeO2 glasses and the second peak contains a complex manifold of oxygen-oxygen 

correlations superimposed on longer tellurium-oxygen distances. The negative T(r) for the 

lithium partials (due to the negative <b> value of NatLi) is contained in the first peak with the 

asymmetric Te-O distance distribution.  
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Figure 5.10: Distinct scattering (i(Q)) and total correlation function (T(r)) for the null lithium tellurite 
glasses. An offset is used between each plot for clarity. i(Q) with a Q maximum value of 35 Å-1 (a) was 
Fourier-transformed to T(r) (b) for each glass composition. 
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Figure 5.11: Distinct scattering, i(Q), and total correlation function, T(r), for the natural lithium 
tellurite glasses. An offset is used between each plot for clarity. i(Q) with a Q maximum value of 35 Å-1 
(a) was Fourier-transformed to T(r) (b) for each glass composition. 
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5.4.2 Comparison with a-TeO2 and relevant crystal phases 

The T(r)’s in Fig 5.12(a) and Fig 5.12(b) are normalised by the tellurium-oxygen and oxygen-

oxygen pair weighting factors (wTeO and wOO) to focus on the short-range tellurium-oxygen 

and oxygen-oxygen environments, respectively (to up to 2.36 Å). wij for atoms i and j is given 

by  

 wij = (2-δij)cibibj 5.1 

where δij, c, and b are the Kronecker delta (δij =1 for i = j, and δij = 0 for i ≠ j), atomic fraction, 

and average neutron scattering length, respectively. These normalised T(r)/wTeO and 

T(r)/wOO plots of the null glasses for x = 10, 15, 20, 25, 30 mol% are each compared to the 

T(r) of pure TeO2 glass to highlight the difference in the tellurium and oxygen environments 

in the glasses with respect to the pure TeO2 glass.  

 

Figure 5.12: T(r)/wTeO and T(r)/wOO for the null glasses, stacked and compared with amorphous TeO2 
for each x giving a qualitative comparison of the evolution of the tellurium-oxygen environment in 
glasses on addition of Li2O to a-TeO2. T(r) for the glasses are weighted to the coefficient of (2-δij)cibibj . 
*a–TeO2 data taken from Barney et al. [3]. 

 

As was previously concluded from analysis of their Raman spectra, the x = 10, 15, 

and 20 mol% glasses are thought to be more similar to pure TeO2 glass (a-TeO2) and the 

other compositions to β-Li2Te2O5. However, as seen in Fig 5.12 (a), only the x = 10 and 

possibly 15 mol% Li2O glasses have short range tellurium environments similar to those 

found in pure TeO2 glass and hence could also be compared to γ-TeO2. For the x = 25 and 30 
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mol% glass T(r), in each plot, the area contributed by the shorter Te-O bond distance(s) is 

larger than in a-TeO2 and the distributions are similar to that found in the high temperature 

β-Li2Te2O5 phase [10], whilst for x = 20 mol%, the short-range of Te-O bond distance 

distribution is in between these two groups. This suggests that the short-range Te 

environments in these glasses are similar to γ-TeO2 and β-Li2Te2O5 but in different 

proportions, depending on composition, with γ-TeO2 being the most in x = 10 mol% and the 

least in x = 30 mol%. This is consistent with the finding that, upon cooling from the melt, 

lithium tellurite glasses first crystallise into two crystal forms; γ-TeO2 and Li2Te2O5 (α and β 

phases) [5-6, 18], as well as from the Li2O–TeO2 binary phase diagram (Fig. 5.1).  

The comparison of the oxygen environments in the glasses to those in γ-TeO2 is 

however more complicated due to the stronger steric effect of the Te lone-pair in γ-TeO2 

compared to the other polymorphs, which causes rOO to be shorter in γ-TeO2 as shown in Fig 

5.13 (a) where the magnitude of the lone-pair vector is the largest compared to other crystal 

phases relevant to this study. The lone-pair vector is defined as; 

 |E|= –|r|= –|rTe-O(x) + rTe-O(x) + rTe-O(x)| 5.2 

The shorter rOO distance in γ-TeO2 can be seen in its T(r) at about 2.5 Å (Fig. 5.13 (b)). In Fig. 

5.12(b), the leading edges of the weighted T(r) for the glasses shift to higher r with 

increasing x. This short O-O distance is apparent in both a-TeO2 and γ-TeO2 (this region 

contains no Te-O peaks) and corresponds to the Oeq-Oax distance shortened due to the steric 

effect of the lone pair LP, which is most active in γ-TeO2 and probably in a-TeO2 glass (Fig. 

5.13 (a)). The lone pair activity, measured by the magnitude of the lone pair vector |E|, 

depends on Te-O distance (r) and the angles (θ) between each each Te-O bond. In the 

crystals, both r and θ can be obtained and the lone pair acitivity can be studied. In the 

glasses however, not enough information can be extracted to study the lone-pair activity 

since r can only be estimated (whilst θ can only be obtained by simulation). From the point 

of view of r, the decrease of the O-O peak contribution at 2.5 Å is merely a reflection of the 

change of the [TeO4] geometry upon transformation to a [TeO3] unit. 

 As mentioned in Section 5.4.2, upon cooling from the melt, the lithium tellurite 

glasses crystallise into two crystal phases; γ-TeO2 and Li2Te2O5 (α-phase) therefore the 

structure of the glasses might be close to that of these crystals. Fig. 5.14 shows a 

comparison of the T(r) for the null glasses with the T(r) of γ-TeO2 and β-Li2Te2O5. β-Li2Te2O5 is 

chosen over α-Li2Te2O5 because it is the high temperature polymorph [10] and therefore 

likely to have a structure more similar to the glasses. These T(r)’s were simulated using XTAL 

[19] using the atomic displacement parameters herein [20]. The leading edge for T(r) of the 

null glasses for the lower Li2O contents is similar to that in γ-TeO2 and, as more Li2O is added, 
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it moves to fit the leading edge of T(r)Te-O in β-Li2Te2O5. This supports the Raman and DTA 

results regarding the formation of these two crystal structures and the proximity of the glass 

structures to them. These T(r)’s were then scaled according to the equation 

 xLi2O.(100-x)TeO2 → x(β-Li2Te2O5)+(100-3x)(γ-TeO2) 5.3 

Reasonable fits were achieved for the shorter average distances but not for the longer Te-O 

distances. This is expected since it should be noted that the longer (> 2 Å) Te-O average 

 

Figure 5.13: (a) Te-O and O-O distances, and the magnitude of lone-pair vectors found in α-TeO2, β-

TeO2, γ-TeO2, α-Li2Te2O5, β-Li2Te2O5, and Li2TeO3 crystal phases; (b) Comparison of T(r) for a-TeO2 

(green solid line) to the simulated T(r)’s for the TeO2 polymorphs [Barney et al., to be published]. 

 

distance in the glasses (with maximum 30 mol% modifier) is much shorter than the value in 

β-Li2Te2O5 (with the value of 33.33 mol% modifier) (Note: The average long rTeO distance 

increases from α-TeO2 (2.125 Å) to β-TeO2 (2.135 Å) to γ-TeO2 (2.142 Å) to α-Li2Te2O5 (2.197 

Å) to β-Li2Te2O5 (2.353 Å) and then it goes way beyond 3 Å in Li2TeO3) 

(a) (b) 
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Figure 5.14: Approximation of NullT(r) to γ-TeO2 and β-Li2Te2O5. T(r)Te-O partials for the glasses, γ-TeO2 
crystal, and β-Li2Te2O5 crystals are shown in open circle, blue, and dashed green respectively. 
Simulated T(r)Te-O  for the glasses (red), simulated from the mixture of the crystals. 

 

5.4.3 Parameterising complex Te-O distances 

When measuring the average nTeO of the glasses using integration, the difficulty in 

determining a proper cut-off radius for the first coordination sphere of tellurium to oxygen 

arises. This is due to the asymmetric distribution of tellurium-oxygen distances and the 

overlap between the upper limit of the first Te-O coordination sphere and the lower limit of 

the second Te-O coordination sphere which is enveloped within the oxygen-oxygen distance 

distribution centred at about 2.8 Å. In pure TeO2 glass, Barney et al. arbitrarily fitted the first 

peak using the leading edge, took the residual from the first peak, and then fitted a second 

peak from the leading edge of the residual. The residual from the first and second peaks 

were fitted simultaneously with two Lorch-modified Gaussians to represent a third Te-O 

peak and the combined O-O peaks [3].  

Fig. 5.15 shows an example of the fitting process for the 10NullLi2O-90TeO2 sample. 

The same process was applied for the rest of the samples. The fitting, by manual alteration 

of parameters, uses three Lorch-modified Gaussian peaks to represent 3 arbitrary Te-O 

distances. In the figure, the cut-off radius for the third peak was at 2.36 Å, consistent with 

the value found in crystalline TeO2. These same three Te-O peaks can be used to fit the T(r) 

for the lower Li2O contents (x = 10 and 15 mol%) because the environment of tellurium in 
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these glasses (i.e. the r = 1.70 to 2.25 Å region) seems largely unchanged compared to the 

T(r) from the amorphous TeO2. The three and four-coordinated tellurium species in these 

glasses are present in the same approximate proportions as they are in pure TeO2 glass. This 

is consistent with the TeO2 Model which states that, at these compositions, there are 

enough terminal oxygens present to satisfy the bond valence requirement of the modifier 

cations without the need for transforming a [TeO4] unit to a [TeO3] unit to create a non-

bridging oxygen [3].  
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Figure 5.15: Peak fitting of the correlation function for x = 10 mol% (null Li2O-TeO2 glass) with three 
(arbitrary) Gaussians convoluted with the Lorch modification function [21]. For simplicity, O-O 
distribution is represented by a Gaussian of which also contains longer Te-O distances. 

 

The change in the tellurium environment, as a result of adding Li2O, is evident from 

the change of the peak shape of the Te-O correlation showing systematic increase in the 

proportion of shorter Te-O distances (centred at 1.82 Å) and decrease in the proportion of 

longer distances (centred at 2.02 Å) with respect to the amorphous TeO2 total correlation 

function. The shorter and longer distances are consistent with the distances of the three and 

four coordinated tellurium species found in Li2TeO3 (1.85 Å, 1.87 Å, and 1.93 Å) or α-Li2Te2O5 

(1.84 Å , 1.85 Å, 1.87 Å, 1.88 Å, and 1.97 Å)  and γ-TeO2 (1.86 Å, 1.95 Å, 2.02 Å, and 2.20 Å) 

respectively. This suggests that, when modifier is added and the bond valence of the 

modifier cation is unsatisfied, the 2.02 Å long bond (in γ-TeO2) in four coordinated tellurium 

is broken leaving a three-coordinated tellurium with a shorter 1.82 Å bond (as in Li2Te2O5 or 

Li2TeO3). The formation of the three-coordinated tellurium was also reported in sodium 

tellurite (125Te NMR) [22] and potassium tellurite (neutron diffraction) [3] glasses. We have 
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previously established that, at low Li2O contents, the TeO environment in those 

compositions is very similar to each other up to r = 2.33 Å. This r-cut-off is in fact, the 

minimum point of T(r) between the first and second coordination peaks in pure TeO2 glass. 

The minimum points are however at slightly longer distances in Li2O-TeO2 glasses, ranging 

from 2.36 to 2.37 Å. This is consistent with the trend observed in the evolution of the long r 

from [TeO4], to [TeO3] via [TeO3+1] units in lithium tellurite crystals (Section 4.3.2). In other 

words Li2O is affecting the Te environment by increasing its average long TeO distance. 

The value of average nTeO is obtained by integration of  T(r) since fewer errors are 

introduced into the process. However, the distribution of Te-O distances in the first 

coordination shell (area marked green in Fig. 5.15) overlaps with the average O-O distance 

distribution and the longer Te-O distance distribution (in second coordination shell) giving 

rise to uncertainty in determining rcut-off for the integral limit. The peak at r ~ 2.8 Å is often 

fitted with one symmetric Gaussian to represent one broad average oxygen-oxygen distance 

distribution (which also includes the second coordination sphere Te-O distances) and 

information obtained from this peak was used to refine the cut-off radius for integration. As 

seen in Fig. 5.15, the integral limit is set at 2.36 Å. In Fig 5.16, the trend in average nTeO 

values obtained for the melt-quenched lithium tellurite glasses is consistent with the model 

based on a series of roller-quenched potassium tellurite glasses [3]; the average nTeO is 

constant for x ≤ 15 mol% and decreases linearly for x > 15 mol% as a function of x. However 

the value of the average nTeO in the lithium tellurite glasses is slightly (but measurably) 

greater than that reported in the potassium tellurite glasses.  
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Figure 5.16: Average tellurium to oxygen coordination number (nTeO) as a function of Li2O content, 
obtained by integration, compared to the values obtained in K2O-TeO2 glasses [3]. The error for the 
average nTeO(Li) is shaded in grey. 
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According to the TeO2 Model (assuming only three and four-coordinated tellurium species 

present in the system), the value of the average nTeO in a-TeO2 of 3.68(4) corresponds to 

about one-third (32 ± 6%) of three-coordinated tellurium and two-thirds (68 ± 6%) of four 

coordinated tellurium. This value does not change until x is about 15 mol%. In the lithium 

tellurite glasses the aforementioned constant average nTeO for x ≤ 15 mol% is 3.70(4), which 

is within the error of 3.68(5). This value however, corresponds to a slightly different 

percentages of 30% of three-coordinated tellurium atoms and 70% of four-coordinated 

tellurium atoms. A difference in the average nTeO values may possibly be explained by 

reference to the Raman study on lithium tellurite glasses by Tatsumisago [18] which 

concluded that the proportion of three-coordinated tellurium units increases with 

temperature and for a lithium tellurite in the liquid state, three-coordinated tellurium units 

are present at a much higher proportion, relative to the four-coordinated tellurium units, 

compared with glass of the same composition. The more slowly cooled, melt-quenched 

lithium tellurite samples of the current study show greater reversion of [TeO3] to [TeO4] and 

hence a higher value of the average nTeO. The effect of quenching rate on the coordination 

number is also reported in other glass systems [23-25]. 

 
5.4.4 Extension of the TeO2 model 

In the K2O-TeO2 model, the O1 unit represents an oxygen atom bonded to one tellurium 

atom, regardless of (a) whether it is a charged NBO or a neutral terminal TO atom and (b) 

the nature of the telllurium environment, i.e. [TeO4] or [TeO3] polyhedron. For example the 

O1 in TeO3/2O–, TeO1/2OO–, TeO2/2O, and TeO1/2(O2–) are treated as similar and having the 

same bond valency of 1.5 v.u. – a value consistent with K2Te4O9 and K2TeO3 (TeO3/2O–, and 

TeO1/2OO–) and gaseous TeO2 (for the TeO2/2O unit).  

 

Table 5.8: Approximated bond parameters of Te-O1 in the lithium tellurite glasses as in related phases 
of liquid TeO2 and lithium tellurite crystals. 

Unit Bond 
Te-O bond 
valence / 

v.u 

Average number of bonds to Li 
Taken from 

For nLiO = 4 For nLiO = 5 

O2 --Te–O--Te– - - - - 
O1a –Te=O 1.5 2 2.5 Gaseous TeO2 [26-27] 

O1b --Te–O– 1.4 2.36 3 [TeO4] in Li2Te2O5 [10] 
O1c –Te=O 1.3 2.84 3.5 [TeO3] in Li2TeO3 [28] 

 

In lithium tellurites (as discussed in Chapter 4) however, the Te-O1 bond lengths (and hence 

the bond valence) do differ in [TeO4]– and [TeO3]– units and therefore 3 types of O1 must be 

considered: O1a, similar to O1 as in the K2O-TeO2 Model, attributed to the terminal oxygen 
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(Te=O) present in pure TeO2 glass which is retained from the melt; O1b, an NBO bonded to a 

Te in [TeO4]– as found in Li2Te2O5 crystals; and O1c, a resonance of NBO↔TO type of oxygen 

atom, bonded to a Te in [TeO3]2– as found in Li2TeO3 crystal, as summarised in Table 5.8. 

Adjusting the bond valence values of Te-O1 accordingly, can affect the average number of 

modifying cation (in this case Li+) around each of them. 

 

5.4.4.1 Plateau region: x < 15 mol% 

In Fig. 5.17, by closely examining the plateau region, the average nTeO value for x < 15 mol% 

could either be 3.68 (blue), 3.70 (red), or 3.71 (green) depending on which datapoints are 

used for the linear fitting. The average nTeO value of 3.68(4), (blue) corresponds to the fit of 

a-TeO2 and xK2O.(1-x)TeO2 (x = 5, 10, and 15 mol%) glasses (Fig. 5.16); the average nTeO value 

of 3.70(4) (red) corresponds to the fit of a-TeO2 and xLi2O.(1-x)TeO2 (x = 10 and 15 mol%) 

glasses; and the average nTeO value of 3.71(4) (green) corresponds to the fit of xLi2O.(1-

x)TeO2 (x = 10 and 15 mol%).  

 

Figure 5.17: The selection of the average nTeO for x < 15 mol% (plateau region) and its effect on the 
average nTeO fit quality for x > 15 mol% (post-plateau region).  

 

Since the average nTeO (plateau) affects the fractions of the Te3, Te4, O1(O1a, O1b, 

and O1c), and O2 units present in the glasses (Section 4.6.1), the selected average nTeO value 

would also affect the determination of the deviation composition (xD). The agreement 

between xD and the quality of the average nTeO fit for x > 15 mol% can be used to estimate 

the reliabilty of the chosen average nTeO value for x < 15 mol% region. 
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For all the fits, the xD (composition in mol% at N’/N = 0.18 (0.18Li2O–1TeO2)) is achieved 

when all O1a, and O1b are used up for providing coordination to Li, as discussed in Section 

4.6.2. xD is obtained at 15.5 mol% of Li2O (Section 4.6.2) as shown in Fig. 5.17. xD is used in 

determining the average nTeO fit for x > 15 mol% according to this equation 

 
( ) ( ) *

100 100
D

TeO TeO
D

xx
n x post plateau n x plateau b

x x

  
     

    
  

5.4 

As seen in the figure, the average nTeO = 3.70 gives the most reasonable fits for both regions 

of x < 15 and x > 15 mol% whereas the average nTeO = 3.68 does not agree with the 

experimental data for both regions. The average nTeO for the Li2O-TeO2 glasses for x < 15 

mol% is therefore selected to be 3.70(4). This value is within the experimental error of the 

value of 3.68(4) which was reported in the TeO2 Model. However, if it is taken as being 

correct, the value of nTeO in a system with R unit of Li2O and 1 unit of TeO2 (RLi2O–1TeO2) of 

3.70 corresponds to 
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 

 

 5.5 

and, according to these fractions of [TeO4] and [TeO3] units, the maximum value of x before 

any [TeO4] unit need be converted to [TeO3] would be about 15.5 mol% (R = 0.18). This is 

based on the assumption that the deviation composition is achieved when 

 4(units of Li) ↔ 2(units of O1a) + 2.36(units of O1b) 
“All bonds are used up in the system when (LEFT SIDE) 1 Li+ is 
coordinated to 4 oxygen atoms and (RIGHT SIDE) Each of the O1a and 
O1b units are connected to an average of 2 and 2.36 Li+ ions 
respectively) 

5.6 

i.e. where a lithium is coordinated to 4 oxygen atoms, and the terminal oxygen (O1a) and 

non-bridging oxygen in [TeO4]– unit (O1b) types of oxygen can, on average, coordinate 2 and 

2.36 lithium atoms respectively (Table 5.8). This is based on the bond valence calculation of 

the O1 type of oxygen found in α-Li2Te2O5 and β-Li2Te2O5. 

As seen in Eqn 5.6, it is assumed that only O1 type of oxygen is providing 

coordination to Li+ for the deviation composition xD to be at such value. Bonding to O2 type 

of oxygen is not uncommon as evidenced in the lithium tellurite crystals of α-Li2Te2O5 and β-

Li2Te2O5, therefore a more appropriate representation of the equality in Eqn 5.6 is 

 4(units of Li)↔ 2(units of O1a) + 2.36(units of O1b) + p(units of O2) 5.7 

where p is the average number of Li atoms bonded to O2 type of oxygen. The constant p can 

be determined experimentally from the post-plateau nTeO(x) (x = 20, 25, and 30 mol%). 

 



84 
 

5.4.4.2 Post-plateau region: x > 15 mol% 

The deviation composition of 15.5 mol% of Li2O corresponds to the value of R ≈ 0.18 (RLi2O–

1TeO2). Therefore, at any composition in the plateau region, the total nominal composition 

of the system would be 

 2 2(0.18 )Li O 1TeOM   5.8 

where M is the further unit of Li2O added to the glass network. The M term in x 

corresponding to xLi2O-(100 – x)TeO2 is 

 
0.18

100

x
M

x
 


 

5.9 

In addition to the existing [TeOn] units present as in Eqn. 5.5, every addition of M Li2O unit 

increases the [TeO3] units by Mb and decreases the [TeO4] units by Mb as in 

    0.3 0.7
3 4

N Mb MbTe N NTe Te
     5.10 

And from this, nTeO can be simplified as  

 3.70n MbTeO    5.11 

As shown in Fig. 5.18, a b value of 0.8 fits the experimental data. This can be compared with 

the value of b = 1 used by Barney et al. [3] in discussing the potassium tellurite glasses. From 

Eqn 5.6, the number of bonds which O1 could take can be written as 

 NO1 ↔ 2*(0.3)O1a+2.36*(2)O1b+2.84*(Mb)O1c 5.12 

The factor of 2.84 represents the average number of lithium atoms bonded to the O1c, 

derived from the bond valence calculation of O1c found in Li2TeO3 as discussed in Section 

4.3.4. The fit of the average nTeO values for x  > 15 mol% from Eqn. 5.12 is shown in Fig. 5.18  

 

Figure 5.18: The TeO2 Model for Li2O-TeO2 system for plateau (x < 15 mol%) and post-plateau (x > 15 
mol%) regions. 
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Eqn 5.13 describes the average nTeO(x) for Li2O-TeO2 system. The average nTeO is divided into 

two regions: plateau (x < 15.5 mol%) and post-plateau (x > 15.5 mol%). 15.5 mol% is called 

the deviation composition, xD, the composition where the number of available Li-O bonds 

from O1 type of oxygen matches the number of required bonds for Li atoms. In the plateau 

region, nTeO(x) is constant at the value of 3.70 whilst in the post-plateau region, nTeO(x) 

changes as a function of x and a constant b (b = 0.8). 

 

3.70 ; 0 15.5 %

( )
3.70 0.18 ; 15.5 %, 0.8

100

x mol

n x xTeO b x mol b
x

  
 

          

 5.13 

Where (x/(100 – x) – 15.5 mol% is M minus the further number of units added after xD (15.5 

mol%), and total unit of TeO2 is always unity in the system. According to Eqn 5.12, the 

number of available Li-O bonds would be 2.36(2) + 2.84(0.8) = 6.992 Li-O bonds which is still 

insufficient since the total number of required bonds is 8 Li-O bonds. This indicates that 

some contribution of bonds from O2 is required. 

 
Figure 5.19: The number of required Li-O bonds in both plateau and post-plateau regions and the 
contribution from O1 (O1a, O1b, O1c) and O2 type of oxygen atoms as a function of R unit of Li2O in 1 
unit of TeO2. 

 
In Fig. 5.19, in the plateau region, the number of bonds available for bonding to lithium from 

O1a and O1b (O1 = O1a +O1b) exceeds the number of required bonds. This means that there 

is sufficient O1 sites for bonding with Li+ ion without the necessity to create more O1 sites. 

At 15.5 mol%, the O1 line and the “required Li-O bonds” line intercept, indicating that at this 

composition, the number of bonds provided by O1 sites matches the number of the required 

bonds for the Li+ ions. After this composition, the number of available bonds is no longer 

sufficient, hence O1c must be created by transformation of [TeO4]– → [TeO3]– units. This 

causes the average nTeO to decrease beyond 15.5 mol%. The average nTeO values 

experimentally obtained are consistent with a b value of 0.8, b being the rate of 
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transformation of [TeO4]– to [TeO3]– unit. This value is, however, still not sufficient to supply 

the number of bonds, meaning that the remainder must come from O2. In the plateau 

region it is not possible to mathematically determine the presence of this O2 species since 

O1b is highly excessive from the bridge-breaking process which occurs upon the introduction 

of Li2O into the TeO2 network. Therefore it is assumed that, up to 15.5 mol%, 59% of the 

bonds come from O1b and 41 % come from O1a (assumed based on the known contribution 

of bonds at 15.5%). Beyond this composition, the percentage of each unit starts to vary 

accordingly as O1c units are created. However the number of available bonds from O1c is 

insufficient therefore Li has to be bonded to O2. Taking the difference between the number 

of bonds required and the available bonds from O1, the contribution from O2 type of oxygen 

is obtained as follows 

 8RLi ↔ 2(0.3)O1a+2.36(2R)O1b+2.84(Mb)O1c+1.02(Mb)O2 

Where for every R unit of Li2O added, 2x4 Li-O bonds are required” 

5.14 

This equation suggests that the number of bonds from O2 is a funtion of b, as in O1c. This 

would therefore mean that, in x < 15 mol%, O2 provides no contribution, hence the p 

constant as in Eqn. 5.7 is zero. Since M = R – 0.18 units then, from Eqn. 5.14, it can be said 

that the third and fourth terms contribute no value for x < 15.5 mol% and only contribute for 

x > 15.5 mol%. The number of available Li-O bonds in both regions can be represented as in 

Eqn. 5.15 
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Where R = x / (100 +x) and M = R – 0.18 

 

5.4.5 Lithium environment 

The lithium ion, Li+, takes various coordination numbers in crystals: 3, 4, 5, 6, and 8 (within 

2.7 Å, arbitrarily chosen). Whilst nLiO = 4 is the most common coordination number 

(generally tetrahedral, with mean Li-O distance of 1.96(3) Å), the higher coordination of 5 is 

seen in LiBO2 [29]. Lithium has a weak disposition to form its preferred coordination 

polyhedron and often adopts the coordination number governed by the environment of the 

neighbouring groups with higher order of rigidity [30]. In zeolites, where there are various 

oxygen cages of different sizes, Li is free to adopt its preferred 4-coordination [30]. 

From Raman scattering studies, alkali metals have been reported to behave 

differently in SiO2 and GeO2 glass systems where Li has greater preference for associating 

with Q(2) species in germanates (where nGeO changes with x rather than in silicates (where 
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nSiO is maintained at 4 regardless of x) [31-33]. This simply suggests that the environment of 

a modifier cation is influenced by the environment of the glass former cation. 

As shown in Fig. 5.20, in SiO2, nLiO values were reported to be between 2.16 and 4 

within 1.97 Å, [34-36] the lower nLiO was reported by Hannon et al. suggesting clustering of Li 

in the silicate network [36]. In B2O3 systems, nLiO values were reported to be between 4.2 

and 4.9 with two distances of 1.97 and 2.03 Å and the Li atom was suggested to be in a 

distorted tetrahedral site [34, 37-39]. In phosphate glasses, nLiO values were obtained by 

molecular dynamics and reported to be between 4 and 5 [40]. The average nLiO has not been 

determined experimentally in tellurite glasses and is usually assumed to be 4 to enable the 

extraction of nTeO [41-44]. M = Li, Na, and K were reported to have respective nMO values of 

4, 5, and 6 by Barney et al. for x < 20 mol% xM2O.(100-x)TeO2 systems where Te was found 

to have a constant coordinaton number [20]. 
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Figure 5.20: nLiO in various glass formers. Legend: a [34], b[35], c[36], d[40], e[37], and f[38]. Ref: a, b, 
c, and f were obtained by isotope substitution neutron diffraction, d was obtained by molecular 
dynamics and e was obtained by the combination of natural neutron diffraction combined with 
molecular dynamics. Spline fits are included as guides to the eye. 

 

 Figure 5.11 shows the total correlation functions T(r) for the natural glasses which 

contain lithium partials (of negative intensity with the exception of tLiLi). The first Li-O partial 

is clearly seen by the reduction in total T(r) intensity at about 2 Å. Correlation functions for 

the null glasses do not contain any information on the lithium environment, natural glasses 

however preserve this information and the lithium environment can be obtained by taking 

the difference between these two sets of data.  
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Fig. 5.21 shows the plot of T(r) for both null and natural samples for all compositions 

with their respective difference plot (nat – null), which corresponds to the partial correlation 

function of lithium-oxygen in Li2O-TeO2 glasses.  

 

Figure 5.21: T(r) of null (black) and natural (red) glasses and the difference (blue) representing the 
lithium partial correlation functions. 

 

The region of interest including the Li-O distances is shown in Fig 5.22. The T(r)Li,O 

obtained can be fitted with two Gaussians covering the range from r = 1.5 to as high as 2.5 

Å. Fit quality is guided by the residual’s consistency with the noise in the signal. The peak 

parameters of the fit are shown in Table 5.9 along with the values for nLiO  obtained by 

integration of the two peaks, which are also plotted in Fig. 5.23.  

Table 5.9: Peak parameters for Li-O pair correlation functions 

x 
/mol% 

Peak 1 Peak 2 

nLiO 
r / Å 

BV / 
v.u. 

<uLiO>1/2 
/ Å 

nLiO r / Å 
BV / 
v.u. 

<uLiO>1/2 
/ Å 

nLiO 

10 1.982(2) 0.25 0.278(4) 3.94 2.291(4) 0.11 0.177(7) 1.24 5.18 
15 1.968(3) 0.26 0.254(5) 3.94 2.224(8) 0.13 0.202(14) 1.11 5.05 
20 1.954(3) 0.27 0.257(5) 3.96 2.184(7) 0.14 0.135(13) 0.62 4.58 
25 1.976(3) 0.25 0.317(5) 3.99 2.385(31) 0.08 0.100(60) 0.08 4.07 
30 1.954(2) 0.27 0.297(3) 3.99 2.195(10) 0.14 0.122(18) 0.18 4.17 

Average 1.967(13) 0.26 0.281(27) 3.96(3) 2.233(53) 0.13 - - - 
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The value of nLiO generally decreases as a function of Li2O content in the glass; for x = 10, and 

15 mol% of Li2O, nLiO is constant at ~5.0(5), at 20 mol% it decreases to nLiO = 4.5(5) and 

becomes ~4.0(5) at x = 25, and 30 mol% of Li2O. As seen in the figure, the first peak in all 

compositions, can be fitted with a principal peak (red peak, fixed position) centred at about 

1.967(13), to contribute to the nLiO value of 4. This distance is consistent with the mean rLiO = 

1.979 Å for tetrahedral [LiO4] as observed in Li2Te2O5 (α and β phases) and Li2TeO3 crystals 

Fig. 5.24. 

 

Figure 5.22: Difference plots stacked with fits. Dotted lines are the T(r) for Li,O partials, red and green 

peaks are the fitted peaks, and solid black lines are the residuals of the fit. The red peak contributes to 
the nLiO value of 4. nLiO was obtained from the area of the Li-O peak(s). 

 

In the lower Li2O compositions (x = 10, 15, and 20 mol%), there is a significant contribution 

from another peak at an average value of about 2.223(6) Å (Table 5.9). The position of the 

second peak decreases slightly as x increases (for x = 10, 15, and 20 mol%). The average 

distance (2.223 Å) does not correspond to nLiO = 5 (2.061 Å), however it is found in the 4-

coordinated Li-O polyhedron in the β-Li2Te2O5 phase (~2.25 Å). This indicates that at low Li2O 

contents, the Li environment (up to the second coordination sphere) may be similar to that 

found in β-Li2Te2O5.  
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Figure 5.23: nLiO obtained by means of peak fitting with two Gaussians at 2.00 and 2.25 Å. Higher nLiO 
observed in x = 10, 15, and 20 mol% Li2O is due to the contribution from the peak at 2.25 Å (rLiO as seen 
in β-Li2Te2O5 phase) Error bars are large due to poor signal to noise ratio because of the 6Li absorption. 

 

Figure 5.24: Comparison of rLiO found in various lithium tellurite crystals as well as in Li2O. Slight shift is 
observed. 

 

The peak however is not seen in the higher Li2O content group (compositionally more similar 

to Li2TeO3 crystal phase). This may support the previous inference that the glass structure is 
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similar to γ-TeO2 and β-Li2Te2O5. This second peak contributes values of approximately 1, 1, 

and 0.5 to nLiO in x = 10, 15, and 20 mol% of Li2O respectively. More accurate representation 

of nLiO = 5 would be 4 + 1 and 4 + 0.5 for 4.5 (i.e. a mixture of 4 and 4+1. (NB - 6-coordination 

is dominant for Li in Te(VI) crystals – i.e. lithium tellurates). The rather large error associated 

with nLiO (±0.5) results from taking the difference between two datasets where the signal-to-

noise ratio is compromised by both the presence of the Te resonance and the neutron 

absorption due to 6Li (which is particularly troublesome for the null scattering samples). 

 

5.5 Conclusions 

Two series of lithium tellurite glasses, xLi2O.(100-x)TeO2 for x = 10, 15, 20, 25, and 30 mol% 

were prepared with natural and null lithium and these glass compositions were confirmed to 

be consistent with the nominal values by comparing the experimental density values with 

the ones in the literature. The average neutron scattering lengths of the null lithium tellurite 

glasses were calculated from compositions obtained using SIMS. A change in Te local 

environment can be inferred from the deviation in the property versus composition plots for 

density, molar volume and number density at 15 mol% Li2O. 

Differential thermal analysis revealed two compositional regions of crystallisation 

for (a) x = 10, 15, and 20 mol%) and (b) x = 25, and 30 mol%). Literature reports of 

crystallisation studies on x = 20 and 30 mol%, representing a member from each group, 

indicate crystallisation to give γ-TeO2 → α-TeO2, and β-Li2Te2O5 respectively. Both γ-TeO2 

and α-TeO2 have only [TeO4] units and β-Li2Te2O5 has only the TeO3+1 unit; an intermediate 

unit in the transformation of TeO4 to TeO3 (as found in Li2TeO3). The readiness of these 

glasses to form these phases indicates that they share similar local environments to the 

crystals formed. Therefore, in the lower Li2O content glasses, the TeO4 species of α-TeO2 or 

γ-TeΟ2 dominate whilst, in the higher Li2O contents group, the lower co-ordinated TeO3+1 as 

in α-Li2Te2O5/β-Li2Te2O5/Li2TeO3 becomes more important. This is also supported by the 

similarity of the Raman peak manifolds of the lower Li2O glasses to γ-TeO2 and α-TeO2, and 

the higher Li2O glasses to α-Li2Te2O5 and Li2TeO3. Based on the total area of peaks assigned 

to Te-O vibrations from TeO4, compared to peaks from TeO3, the average coordination of 

number of tellurium to oxygen RamannTeO was obtained and found to decrease linearly as a 

function of Li2O content and, extrapolation to x = 0 mol% gave an nTeO value close to that 

reported for amorphous TeO2 [3]. However, the RamannTeO behaviour as a function of Li2O 

content did not replicate that observed for the K2O system reported in that study. Raman 
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scattering is not necessarily directly quantitative and therefore cannot determine nTeO with 

the precision obtainable from neutron diffraction.  

Null lithium isotope neutron diffraction was employed to measure nTeO accurately in 

the glasses. It was found that the Te environment in the lower lithium-content tellurite 

glasses are similar to the pure TeO2 glass, whereas in the higher content, the shorter rTeO 

corresponding to [TeO3] units becomes more apparent. This alone suggests that there is a 

change from [TeO4] to [TeO3] unit in the glasses as Li2O is added. The T(r) of γ-TeO2 and β-

Li2Te2O5 were combined to achieve a reasonable approximation of the Te environments in 

the glasses as a mixture of those found in the crystals.  

The average nTeO values found are largely consistent with the model proposed by 

Barney et al. [3]; i.e. constant nTeO for x < 15 mol% and decreasing linearly beyond this 

composition. However the values of nTeO obtained are slightly higher than reported for the 

K2O system. The TeO2 Model assumes nTeO is independent of the modifier ion size but it 

would appear that TeO2 glasses modified by small Li+ cations contain less [TeO3] than the 

equivalent K+ glass for the same modifier content. One alternative factor that may 

contribute to this is the rate at which the glass was quenched. The Li2O-TeO2 glasses 

reported here were quenched relatively slowly (cooling of the crucible base), compared to 

the roller-quenched K2O-TeO2 glasses. Therefore the Li2O-TeO2 glass structure had more 

time to reorganize from that of the melt (reportedly containing more [TeO3]). 

For x > 15 mol%, the rate of transformation [TeO4]–  to [TeO3]– was seen to be slower 

in the presence of Li2O rather than K2O. Li, being smaller in size, hence having smaller 

average coordination number than K, (nLiO < nKO), could mean that Li+ is more mobile in the 

glass networks and could satisfy its bond valence requirement with less necessity for 

conversion of [TeO4]– units to [TeO3]– units to provide oxygen atoms for bonding. 

Using the natural-null difference neutron diffraction technique, the average nLiO was 

extracted from the glasses. The lithium-oxygen distribution in each composition has one 

principal peak at about 1.97 Å (close to the average Li-O distance in tetrahedral [LiO4]) and 

contributing 4.0(5) to the average nLiO. In the lower Li2O contents (x = 10, 15, and 20) a 

secondary Li-O peak at about an average value of 2.23 Å increases the total average nLiO to 5, 

5, and 4.5 for x = 10, 15, and 20, respectively. The average position of the secondary peak is 

similar to an Li1-O distance of the high temperature β-Li2Te2O5 crystal phase. In general, Li in 

small quantities (x < 15 mol%) in Li2O-TeO2 glasses has a local structure similar to β-Li2Te2O5 

with 2 resolved rLiO peaks at 1.97 and 2.23 Å (nLiO > 4) whereas in larger quantities (x>15 
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mol%) there is only one rLiO peak at about 1.97 Å (nLiO = 4) such as found in the Li2TeO3 crystal 

phase. 

The quality of the Li2O-TeO2 neutron diffraction data is reduced by the 6Li neutron 

absorption and 128Te resonance phenomenon at 2.2 eV which lower the signal-to-noise ratio 

and limit Qmax to 35 Å-1, hence lowering the resolution of T(r). These limitations reduce the 

possibility of resolving the Te-O distance in the [TeO3] unit. To be able to do so would help 

us to parameterise the complex asymmetric Te-O distances better and to understand the 

changes during [TeO4] ↔ [TeO4]– and  [TeO4]– ↔ [TeO3]– transformation processes. 
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Chapter 6 – Lead(II) tellurite(IV) glasses 

 

6.1 Introduction 

This chapter describes the preparation method of the glass samples and the general 

characterisation methods that include density measurement, energy dispersive X-ray 

analysis, and X-ray diffraction. These initial procedures are used to confirm the glass nominal 

composition, the amorphicity, and the identity of any crystal phase(s) in the samples. 

Subsequently, Raman scattering is used to probe the presence of various units or species in 

the glasses and the information used to derive a semi-quantitative estimate of the average 

Te-O coordination number nTeO. In the neutron diffraction section, the total correlation 

functions TN(r) for the glasses are presented. These are compared with the TN(r) for pure 

TeO2 (glass and crystal phases) and the TN(r) for PbTe5O11 crystal to highlight the differences 

and similarities in Te, Pb, and O environments. Using both TN(r) and the X-ray diffraction 

total correlation function, TX(r), the Te-O distances are extracted. Later, the average nTeO is 

calculated as a function of the modifier PbO content, x. The average nTeO(x) values obtained 

are discussed based on two regions, plateau (x<15 mol%) and post-plateau (x>15mol%). The 

lead environment is later considered in conjunction with the tellurium environment to 

obtain a consistent description of the glass structure. The chapter is concluded by 

summarising the general findings, followed by presentation of the short and intermediate 

range structural information deduced from the study (species/unit presents, average 

coordination number and distances). 

 

6.2 Sample preparation and experimental details 

Lead tellurite glasses, with nominal compositions xPbO.(100-x)TeO2 for x = 5, 7.5, 10, 12.5, 

15, 17.5, 20(a), 20(b), and 25 mol%, were prepared using reagent grade Pb3O4 (Aldrich, 99%) 

and TeO2 (Alfa Aesar 99%). Both 20(a) and 20(b) glass samples have crystal inclusions (as 

later revealed from diffraction experiments) with the latter having less in quantity. Each 15 g 

batch of glass was appropriately weighed and intimately mixed in an agate pestle and 

mortar before being heated from room temperature to a melting temperature, Tm, of 800 oC 

at 10 oC/min in a non-wetting Pt/5Au crucible. The Tm was chosen to be about 100 oC above 

the liquidus (of the sample with the highest value) and was fixed to maintain a similar 

melting history for each glass melt. The melts were then held at temperature for 30 minutes 
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for homogenisation and later quenched by immersing the crucible base in water at room 

temperature.  

 

Figure 6.1: Phase diagram for the PbO-TeO2 system reproduced from Stavrakieva et al.[1]. 

 

A Cu Kα X-ray powder diffractometer (Bruker D5000) (Section 3.6) was used to 

collect the X-ray diffraction patterns of selected glass samples (x = 15, 20(a), 20(b), and 25 

mol% xPbO-(100–x)TeO2) to check the amorphicity and identify any crystal phase(s) present 

in the glasses. Additional information on crystallinity was obtained from the neutron 

diffraction and high-energy X-ray diffraction experiments.  

A Micromeritics AccuPyc 1330 gas pycnometer, using He glass, was used to measure 

the density of the glass samples (x = 10, 12.5, 15, 17.5, 20(a), and 25 mol% xPbO-(100–

x)TeO2). Glass molar volume and number density were then calculated as discussed in detail 

in Section 3.3. 

A Zeiss Supra55-VP Scanning Electron Microscope (SEM) operated at an accelerating 

voltage of 10 kV (Section 3.7) was used to determine the Pb and Te atomic percentages of 

the glass samples (x = 10, 12.5, 15, 17.5, and 20(a) mol% xPbO-(100–x)TeO2). Details of the 

data processing are given in Section 3.7. 

A Renishaw inVia Raman Microscope, equipped with a 514.5 nm Ar+ laser source 

(Section 3.5) was used to collect the Raman spectra of the glass samples (x = 5, 7.5, 10, 15, 

20(a), and 25 mol% xPbO-(100–x)TeO2). The details of the general Raman data acquisition 

and processing are described in Section 3.5. 

High resolution neutron diffraction data were obtained at ISIS (RAL, UK) using the 

GEM diffractometer (Section 2.2) on the glass samples x = 10, 12.5, 15, 17.5, 20(a), 20(b) and 
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25 mol% xPbO.(100–x)TeO2. 8 – 10 g of PbO-TeO2 glass samples were packed into V-cans 

with 40 – 50 % packing. Total beam-time exposure for the samples was from 800 – 1300 μA 

as shown in Table 6.1. The exposure is higher in the 10 mol% PbO glass in order to 

compensate for the lower S/N ratio in the high Te content glass due to the Te neutron 

resonance.  

 

Table 6.1: Neutron beam exposure time for PbO–TeO2 glass samples 

Glass sample 
(mol% PbO) 

Exposure 
(μA) 

10 1300 
12.5 1050 

15 1050 
17.5 1050 

20(a) 800 
20(b) 1050 

25 800 

 

High energy, total X-ray scattering data were collected by Dr Oliver Alderman and Dr 

Chris Benmore at the Advanced Photon Source, Argonne National Laboratory, USA using the 

APS Beamline 6-ID-D with an X-ray wavelength of 0.14349Å (86.406 keV, just below the 

88keV Pb K-edge) (Section 3.9). The xPbO.(100–x)TeO2 glasses of x = 10, 12.5, 15, 17.5, 20(a), 

and 25 mol% were ground to a fine powder in an agate pestle and mortar, in air, and were 

loaded into 1 mm inner diameter Kapton tubes (wall thickness 100 microns). An area X-ray 

detector (Tl-doped CsI scintillator, 2048 x 2048 pixels, each pixel 200 μm x 200 μm square, 

and 500 μm deep) was used. The diffraction patterns obtained were processed as discussed 

in Section 3.9. 

 

6.3 Results - General characterisation 

6.3.1 Sample quality 

Table 6.2 compares the nominal glass compositions with those obtained using EDX. In all the 

samples, a uniform mass loss equivalent to about 1 mol% PbO was measured, with a slightly 

higher mass loss being measured in the 20(a) mol% PbO glass. These losses are consistent, 

within the error, with those observed in PbO–GeO2 glasses which were melted at a higher 

temperature [2]. 
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6.3.2 Density 

Table 6.2 shows the density values as well as the molar volumes and number densities for 

the constituent atoms derived from the density values.  

 

Table 6.2: Glass compositions and density values for PbO-TeO2 glasses. 

Composition /x mol% PbO Density  
/ g cm-3 

Molar volume 
/ cm3 mol-1 

Number density  
/ atoms cm-3 

Nominal EDX Loss Pb Te O 

10.0 9.1(3) 0.9 5.920(1) 28.04 7.41 x1020 6.67 x1021 1.407 x1022 

12.5 11.6(2) 0.9 5.997(1) 27.94 9.37 x1020 6.56 x1021 1.406 x1022 

15.0 13.7(2) 1.3 6.077(1) 27.83 1.14 x1021 6.45 x1021 1.404 x1022 

17.5 16.4(3) 1.1 6.161(1) 27.71 1.35 x1021 6.35 x1021 1.404 x1022 

20.0(a) 18.6(4) 1.4 6.246(1) 27.59 1.56 x1021 6.24 x1021 1.403 x1022 

 

 

Figure 6.2: (a) shows the measured densities for the PbO-TeO2 glasses based on nominal composition 
(red upward pointed triangle) and based on EDX analysis (blue downward pointed triangle) compared 
to the SciGlass data (open circle). (b) shows the calculated molar volumes of the glasses (symbols as in 
(a) compared with the SciGlass data. Error bars for the glasses are within the points shown. (c), (d), 
and (e) show the calculated number densities for constituent atoms, symbol as in (a).  Black filled 
circles are values from the crystal phases (γ-TeO2, PbTe5O11, Pb2Te3O8, PbTeO3) with the dashed line 
being the line of best fit. (1), (2), and (3) in (c) reveal groups of O number density which may result 
from different preparation environments and/or structural differences. 

 

Fig. 6.2(a) shows the density values as a function of both nominal and EDX 

compositions and compares them with the value from the SciGlass database [3], pure TeO2 

glass [4], PbTe5O11 [5], Pb2Te3O8 [6-7] and PbTeO3 [8]. The glass density increases as TeO2 is 
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replaced by heavier PbO molecules, and the data points for the nominal composition PbO-

TeO2 glasses and for pure TeO2 glass are fitted to a polynomial function in order to highlight 

the deviation from x = 0 to x 10 mol% of PbO. The measured values agree with the values 

obtained from the SciGlass database suggesting that the glass composition in the study is 

close to the nominal value. 

Fig. 6.2(b) shows the molar volume values of the glasses, calculated from the density 

values in Fig. 6.2(a). The number density plots are shown in Fig. 6.2(c), (d), and (e) for 

oxygen, tellurium, and lead atoms respectively. Pb number density shows a linear increase 

with x which is almost coincident with that for the crystal phases of γ-TeO2, PbTe5O11, 

Pb2Te3O8, and PbTeO3; Te number density, however, shows deviation from the crystal fit. 

This trend is the same as observed in Li2O-TeO2 glasses, which reflects changes in the TeO2 

network. The same inference could be made for PbO-TeO2 glasses that the PbO environment 

remains similar throughout the composition range and the local order of the TeO2 network 

exhibits a change. O number density shows 3 groups of values calculated from the Sciglass 

data, marked as (1), (2), and (3) and which originate from different reports (as indicated). 

The differences could suggest a real difference in O environments in these glasses, resulting 

from different preparation history, or could reflect different density measurement 

techniques or actual compositions. From the point of preparation history, all glasses were 

melted in Pt/Au crucibles, except for those studied by Stanworth [9] (zirconia, alumina, and 

silica crucibles). The information on the melting temperatures for specific lead tellurite 

glasses is however not available. The Archimedes method was used to measure the density 

values in most of the studies, however, there is no clear classification based on the 

measuring method. 

 As PbO is added to the TeO2 network, all of the atom number densities decrease, 

except for Pb. This reflects the replacement of the 3 atoms of TeO2 by just 2 atoms in PbO 

and is consistent with the decrease observed in molar volume, despite the larger size of the 

Pb2+ ion compared to Te4+. This glass structure shrinkage is comparable to the trend 

observed in the Li2O–TeO2 glasses, though in that case it is the small size of the Li+ ion which 

is the cause. 

 

6.3.3 X-ray diffraction 

From visual inspection, the glasses with x = 10, 12.5, 15, 17.5, 20(a) and 20(b) mol% were 

judged to be amorphous, based on their clarity. However, HEXRD revealed that the glass 

samples with x = 10, 20(a) and 25 mol% contain some crystal phase(s), whilst ND showed 
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that sample 20(a) had more crystal content than 20(b) so the latter sample was given 

greater neutron exposure (Table 6.1). As shown in Fig. 6.3, the X-ray diffraction patterns of 

these samples contain bright dots denoting the presence of crystals. The crystalline content 

at x = 10 mol% is negligible. However, at x = 20 and 25 mol%, the content is much higher and 

this affects the composition of the residual glass.  

 

 

Figure 6.3: High energy X-ray diffraction patterns for xPbO-(100–x)TeO2 glasses for x = 10, 12.5, 15, 
17.5, 20(a) and 25 mol%. Significant crystallisation is seen in 20(a) and 25 mol% PbO samples. 
Negligible crystallisation is seen in 10 mol% PbO sample (spots ringed in red). 

 

The crystal phase present in the x = 10 mol% glass is probably α-TeO2 (based on the high 

TeO2 content) but there is insufficient present to be able to determine the d-spacings. Fig. 

6.4 shows 1D plots of the HEXRD spectra from the samples and Fig 6.4(a) gives the d-

spacings of the 4 sharp crystal peaks. These are similar to those obtained by Kaur et al. [10] 

for glasses of x = 19 and 21 mol% prepared via splat quenching between two brass plates. In 
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the same glasses, prepared at a slower cooling rate, the crystal phases formed in the glasses 

are γ-TeO2, Pb2Te3O8, and PbTeO3. The 4-sharp peaks observed in the splat-quenched glasses 

were therefore assigned by those authors to a mixture of γ-TeO2, Pb2Te3O8, and PbTeO3 

phases. The PanAnalytical X-Ray Suite database matches the crystalline peaks in the 20 

mol% and 25 mol% samples to both PbTe3O7 and Pb2Te3O7 phases. Culea et al. [11] assigned 

the crystal phase to Pb2Te3O7 based on the better fit. However, the Pb2Te3O7 stoichiometry 

seems unlikely for Pb2+ and Te4+ cations. PbTe3O7 is stoichiometrically more reasonable and 

was first reported by Tromel et al. who referred to it as an “anti glass” phase with fluorite-

type structure and defined it as a metastable and non-stoichiometric crystal having 

irregularly displaced atoms such that the short-range order is undefined [12]. This 

metastable phase was also reported by Silva et al. [13] and Kabalci et al. [14] in their studies 

of lead halide tellurite glasses. PbTe3O7 is not reported in Fig. 6.1, the nearest phase being 

PbO.4TeO2 (equivalent to PbTe4O9, not reported). PbTe5O11 (16.67 mol% PbO) however, has 

the composition which is closest to the PbO–TeO2 glasses of this study and this crystal phase 

was obtained in a devitrified 20PbO–80TeO2 glass sample [5].  

 

Figure 6.4: 1D plots of high energy X-ray diffraction spectra for xPbO-(100–x)TeO2 glasses for (a) x = 10 
and 25 mol%  compared to published data for PbTe3O7 from PanAnalytical software database and (b) 

stack plot of x = 10, 12.5, 15, 17.5, 20(a) and 25 mol% 



102 
 

Table 6.3 summarises the physical appearance of the glasses, which includes the amorphicity 

of the glasses, based on diffraction information. 

 
Table 6.3: Physical appearance and diffraction information. *Crystal diffraction spots were revealed in 

the synchrotron X-ray diffraction experiment. 

Nominal x 
(mol% PbO) 

Observation 

State Visual 
inspection 

HEXRD 
Neutron 

diffraction 

10 Clear 
Glass + 
Crystal 

Glass* 
~90TeO2 glass + 

“α-TeO2” 

12.5 Clear Glass Glass ~87.5TeO2 glass 

15 Clear Glass Glass ~85TeO2 glass 

17.5 Clear Glass Glass ~82.5TeO2 glass 

20(a) Clear 
Glass + 
Crystal 

Glass + 
Crystal 

>80TeO2 glass + 
crystals 

20(b) Clear – 
Glass + 
Crystal 

>80TeO2 glass + 
crystals 

25 
Clear, with 
cloudy bits 

Glass + 
Crystal 

Glass + 
Crystal 

>75TeO2 glass + 
crystals 

 

6.4 Raman spectroscopy 

Fig 6.5(a) shows the measured Raman spectra of xPbO.(100-x)TeO2 glasses (x = 5, 7.5, 10, 15, 

20(a) and 25 mol%) collected at room temperature from 100 cm-1 to 1000 cm-1. Glass 

samples of x = 5, 7.5, 20(a), and 25 mol% PbO are partially crystallised. The clear glass bits 

were selected to be analysed using Raman spectroscopy.  The spectra show the typical 

broad Boson peak to up to 400 cm-1, and the Te-O stretching and vibration modes for TeO2–

based glasses from 400 to 900 cm-1 [15-18]. Fig. 6.5(b) shows the reduced and area-

normalised Raman spectra, which were obtained by multiplying the experimental intensity 

with the correction factors for the wavelength-dependent scattered intensity and 

temperature-dependent mean number for phonon occupation in the glasses as discussed in 

Section 3.5. The reduction was done so that the main features of the Te–O vibrations in the 

glass can be highlighted for study. The Raman spectra show a broad continuous peak 

manifold from approximately 500 to 900 cm-1, characteristic of Te–O vibrations as typically 

observed in tellurite glasses encompassing the vibrations in various Te environments, e.g., 3, 

3+1, and 4 coordinated Te. As PbO content is increased, a major change was observed in the 

shape of the manifold, i.e., the peak at 600 cm-1 decreased whilst the peak at about 800 cm-1 

increased. 

The assignment of peaks to various TeO2 species is discussed in Chapter 5, where the 

region from 500 to 900 cm-1 is typically resolved into 4 peaks assigned to the vibrational 

modes of either a 4-coordinated pseudo-trigonal bipyramidal (tbp) unit or a 3-coordinated 
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trigonal pyramidal (tp). The Raman shifts covering the lower wavenumbers in the broad 

peak (Peak 3 and Peak 4, from 620 to 670 cm-1) are assigned to the [TeO4] unit whereas the 

higher wavenumber region (Peak 1 and Peak 2, from 720 to 780 cm-1) is attributed to the 

vibrations of the [TeO3] units.  

 

Figure 6.5: :(a) experimentally obtained Raman spectra (normalised); (b) reduced and area-normalised 
Raman spectra showing the region of interest encompassing the Te-O vibrations; (c) Raman peak 
deconvolution of contributions from [TeO4] and [TeO3] units; (d) area of the peaks in (c) as a function 
of x; and (e) average nTeO obtained compared to the values from Sekiya et. al. [17] x = 20 represents 
20(a) mol% of PbO. 



104 
 

The peak at about 490 cm-1 is attributed to the bending modes of –Te–O–Te– bridges and is 

not included in determining the average Te-O coordination number, nTeO, in the glass. From 

the fits shown in Fig. 6.5(c), the areas of the individual peaks were extracted and the nTeO for 

each glass composition was calculated. Similar peak width was applied for the individual 

peaks in the figure. The sum of the fits gives good agreement with the experimental 

spectrum. The average Raman shifts of the peaks from the fit are consistent with the 

expected values from the literature. 

 In Fig. 6.5(d), the areas for Peak 1 and Peak 2, contributed from the vibrations of Te-

O bonds in [TeO3] units [15] increases as a function of PbO content. This simply means that, 

as Pb2+ is added, there is formation of [TeO3] units in the glasses. Peak 3 and Peak 4 are the 

contributions from Te-O vibrations in [TeO4] units and the areas for these peaks both 

decrease slightly as PbO content is increased. As a function of PbO content, the area of Peak 

5 decreases, reflecting the decrease of Te-O-Te bridges because of the formation of non-

bridging oxygens, NBO. This implies that Pb2+ behaves as a charge compensator (i.e. 

modifier) in the glass. 

The average nTeO values for PbO-TeO2 glasses are shown in Fig 6.5(e). The values and 

their trend with x are comparable to those in TeO2 glasses modified by divalent cations such 

as Ba2+, Mg2+, Sr2+, and Zn2+ [17]. This suggests that Pb2+ behaves as a divalent modifier. 

Surprisingly, the average nTeO values are also similar to those of the Li2O-TeO2 glasses, 

suggesting that the Te environments in PbO-TeO2 and Li2O-TeO2 are similar. However, 

because Raman spectroscopy is semi-quantitative, the average nTeO obtained is less reliable 

and associated with greater error as shown in the figure.  

 

6.5 Total diffraction 

6.5.1 Neutron and X-ray diffraction 

Fig. 6.6(a) shows the distinct scattering, i(Q) for the PbO-TeO2 glasses, to up to 40 Å-1. A Qmax 

value of 35 Å-1 is used for Fourier transformation to the total correlation function, TN(r), due 

to the limitation caused by the Te resonance. Fig. 6.6(b) shows the TN(r), transformed with 

the Qmax value of 35 Å-1. The asymmetric peak at about ~2 Å represents the Te-O distances 

and the peak at ~3 Å represents the overlap of Te-O, O-O, and Pb-O distances in the glass. 

Fig. 6.7 (a) and (b) show the X-ray distinct scattering, iX(Q), and the total correlation function, 

TX(r), obtained from the Fourier transform of iX(Q) with a Qmax value of 20 Å-1. In Fig 6.7(b), 

the peak at about 2 Å corresponds to the asymmetric Te–O distances. The peak at about 2.4 

to 3 Å contains a significant contribution from either PbO or longer TeO distances. The 
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strong peak at about 4 Å arises from the pairs of stronger X-ray scatters (Pb–Pb, Te–Te, and 

Te–Pb)  

 

Figure 6.6: (a) shows the neutron distinct scattering function iN(Q) for PbO-TeO2 glasses with 10, 12.5, 
15, 17.5, and 20(b) mol% PbO and (b) shows the neutron total correlation function TN(r) obtained by 
taking the Fourier transforms of the functions in (a) with a Qmax value of 35 Å-1  
 

 

Figure 6.7 (a) shows the X-ray distinct scattering function iX(Q) for PbO-TeO2 glasses with 10, 12.5, 15, 
17.5, and 20(a) mol% PbO and (b)shows the X-ray total correlation function TX(r) obtained by taking 
the Fourier transforms of the functions in (a) with a Qmax value of 20 Å-1 
 

Fig. 6.8 shows the quality of the simultaneous neutron and X-ray data fitting in terms of the 

sum of fit and the residual of the fit. A balanced weighting factor of 0.5 was used for each 

pair of data sets. The detailed fitting steps using NXFit are discussed in Section 6.5.3. 
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Figure 6.8: The sums of fit and the residuals from the simultaneous fitting of the X-ray and neutron 
diffraction data. 

 

In Fig. 6.8, the first coordination shell in T(r) (1.5 Å – 2.25 Å) consists of the 

asymmetric Te-O distances, arbitrarily fitted with 3 peaks using the leading edge of the 

residual of each preceding peak. By simultaneous fitting of X-ray and neutron diffraction 

total correlation functions, Barney et al. [to be published] have extracted the Te 

environment in the second coordination shell where there are two Te-O distances at 2.59 Å 

and 3.03 Å. The shorter distance is the distance from a Te atom to one of the equatorial O 

atoms in the neighbouring TeO4 polyhedron, characteristic of a highly ordered structure as 

found in γ-TeO2 and possibly retained in the pure TeO2 glass. This distance is not included in 

the fitting due to its negligible contribution in glasses, however, the longer 3.03 Å is included 

to suggest the Te–O distances associated with 2 TeO2 units connected by a corner. The 

absence of this peak would indicate that the TeO2 units are all isolated [TeO4] units. 

 

6.5.2 Comparison with a-TeO2 and related tellurite glasses 

Fig. 6.9 shows that the T(r)Te-O for x = 10, 12.5, and 15 mol% PbO are similar to that of the 

pure TeO2 glass. This indicates that the proportions of [TeO4] and [TeO3] units present at 

these compositions are similar, in nature and quantity, as in pure TeO2 glass. For x = 17.5 

mol% PbO, a small increase in the contribution of the shorter rTeO corresponding to the Te-O 

distance in [TeO3] is seen. This would indicate that the average nTeO for x = 10, 12.5, and 15 
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mol% PbO is close to 3.68 (the value found in pure TeO2 glass), and for x = 17.5, the average 

nTeO is slightly less than 3.68 because more [TeO3] units are formed.  

 

Figure 6.9: Comparison of the total T(r) (weighted to the Te–O pair weighting factors) to highlight the 
Te–O pair environment in the glasses with respect to the pure TeO2 glass. 

 

 

Figure 6.10: Comparison of the weighted T(r) of 15PbO-85TeO2 to pure TeO2 glass and of 17.5PbO-
82.5TeO2 to Null20Li2O-80TeO2 glasses to show the plateau and post-plateau similarities respectively. 
Individual Te-O peaks represent the 17.5PbO sample. 
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Fig. 6.10 shows the comparison of the T(r) for 17.5 mol% PbO glass with pure TeO2 glass and 

Null20Li2O-80TeO2 glass (there is no x = 17.5 % sample for the Li2O-TeO2 system). The T(r)Te-O 

for the Li2O-TeO2 glass matches the T(r)Te-O for the x = 17.5 mol% PbO glass. 

In Section 5.4.3, the calculated average nTeO for the Null20Li2O-80TeO2 glass is 3.65(5). 

This would mean that for x = 17.5 mol% PbO glass, the average nTeO value is also about 3.65 

suggesting that the average nTeO values in PbO-TeO2 glasses behave as in the alkali tellurite 

glasses with the presence of plateau and post-plateau regions in the average nTeO values as a 

function of x. 

 

Figure 6.11: The residual of T(r) 20PbO-TeO2 – T(r) 20NullLi20-TeO2 glasses, showing the “PbO” peak. 
The data for the 20PbO(b) sample are used. 
 

Isostoichiometric technique can be used to partly investigate the Pb2+ environment using the 

null lithium tellurite data if the short range order of PbO-TeO2 and NullLi20-TeO2 glasses are 

close to being identical; for example, the 20 mol % Li2O and 20 mol % PbO glasses. The 

residual (20PbO-TeO2 – T(r) Null20Li20-TeO2 glasses) would yield the “T(r)PbO partials” (which 

contain the PbO and also OO due to the difference of the oxygen environments in lithium 

and lead tellurite glasses). The nPbO obtained by integrating the “PbO peak” from the residual 

will therefore be inaccurate (nPbO obtained was about 6, and not 8). As seen in Fig 6.11 

however, the “PbO peak” shape from the residual is very similar to the PbO peak in PbTe5O11 

crystal phase of which was simulated using the much lower RMS bond variation value (0.05), 

as discussed in Section 4.4.4 (also included T(r)PbO for Pb2Te3O8 for comparison). 
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6.5.3 Parameterising complex Te-O distances 

6.5.3.1 Te-O peak fitting 

The Te-O peaks were fitted using the leading edges of both neutron and X-ray data 

(weighted to 50% each) as shown in Fig. 6.12. The second Te–O(II) peak was fitted from the 

residual of the T(r) after the Te–O(I) peak was fitted. The same process was done for the 

third Te–O(III) peak. The fit parameters obtained are shown in Table 6.4. 

 

Figure 6.12: Fitted Te-O peaks for 17.5PbO-82.5TeO2 glass from NXFit 

 

In the plateau region, (for x < 15 mol%) the average nTeO is approximately constant and has 

the value of 3.69(9). The error is represented by the difference between the value obtained 

by peak fitting and that obtained by integration of the Te–O peak manifold, arising from the 

first coordination sphere from which the other contributions (O–O, Pb–O, and Te–O(IV)) are 

removed. The large error is associated with the limitation in Qmax of the X-ray data which 

broadens the TX(r) and lowers the quality of the fit. It seems that the fraction of the [TeO3] 

units present in pure TeO2 glass is retained in PbO-TeO2 glass for x < 15 mol% PbO and 

suggests that Pb2+ changes the TeO2 network in a similar fashion to the alkali ions. In the 
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plateau region, the NBOs (O1b) created by adding PbO, combined with the pre-existing 

terminal oxygens (O1a) of the [TeO3] units, are sufficient to supply the required coordination 

for Pb2+ without the need for creating more NBOs (O1c) by the formation of the [TeO3]– unit. 

This only breaks the TeO2 bridges and does not transform units, hence the short range Te-O 

environments (distance distribution) are similar for x < 15 mol%, as shown in the comparison 

of T(r) of these glasses with a-TeO2. 

 

Table 6.4: Peak parameters for Te-O and Pb-O peaks obtained from NXFit 

 
Te  

environment 

x / mol% PbO <r> / Å nTeO 

10.0 1.98 3.69(12) 
12.5 1.99 3.70(6) 

15.0 1.98 3.68(10) 

17.5 1.97 3.64(4) 

20.0 1.98 3.58(8) 

Average 1.98(1) – 

PbTe5O11  3.70 

 

For x = 17.5 mol%, the average nTeO obtained is 3.64(4). Within error, this value is not 

significantly different from those in the plateau region but this composition can be 

considered to fall within the post-plateau region by comparison of its TN(r) with that of a-

TeO2 (Fig. 6.9) where the contribution of short Te-O distances corresponding to rTeO in the 

created [TeO3]– units (O1c) is visible as indicated by the mismatch of the leading edge. This 

nTeO value is similar to that of the 20 mol% Li2O glass and, as shown in Fig. 6.10, the 

normalised T(r)/wTeO is identical to the T(r)/wTeO of the 20 mol% NullLi2O glass, proving the 

similarity of the Te environment (distance distribution) in these compositions. In this post 

plateau region, the value of b = 2.1 is obtained by fitting the two data points. This value is 

significantly larger than the value in Li2O-TeO2 glasses (b = 0.8).  

 

6.5.4 Extension of the TeO2 model 

6.5.4.1 Plateau region 

Based on the similarity of the first peak in TN(r) of 10, 12.5, and 15 mol% PbO tellurite glasses 

to that of pure TeO2 glass, it is reasonable to infer that the proportions of [TeO4] and [TeO3] 

units present in these glasses are similar, giving an average nTeO value of 3.69(9). This 

assumption is consistent with the results obtained by simultaneously fitting the X-ray and 

neutron diffraction data. These compositions are therefore in the plateau region. In 

considering the TeO2 model, the value of average nTeO in the plateau region from here on will 
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be fixed at 3.70 to make the average nTeO in PbO–TeO2 similar to that in Li2O–TeO2 so that 

the b value obtained is comparable to the Li2O-TeO2 system. This nTeO value corresponds to:  

 nTeO = 3.70 = (0.3)[Te3] + (0.7)[Te4] 6.1 

Therefore, in RPbO–1TeO2 glass with R and 1 units of PbO and TeO2 respectively,  

 
RPbO–1TeO2 => 0.3[Te3] + 0.7[Te4] + 0.3[O1a] + 2R[O1b] +  

(1.7-R)[O2] + R[Pb] 
6.2 

From this equation, the deviation composition xD can be determined based on these 

assumptions: 

(1) Pb2+ is coordinated to an average of 8 oxygen atoms as will be discussed in 

Section 6.5.5 later (Bond valence for Pb–O is therefore 0.25 v.u., average 

rPbO is ~2.62 Å) 

(2) Te–O1a has a bond valence value of 1.5 v.u., therefore O1a could coordinate 

2 Pb2+ 

(3) Te–O1b (determined from PbTe5O11) has a bond valence value of 1.4 v.u., 

therefore O1b could coordinate to the average number of 2.4 Pb2+ ions 

Therefore, combining (1), (2), and (3) 

8(NPb)  ↔ 2(NO1a) + 2.4(NO1b) 

8(R) ↔ 2(0.3) + 2.4(2R) 

R ↔ 0.1875  

xD  = R/(1+R) ≈ 15.8 mol% 

This xD value agrees well with the experimental nTeO(x) plot in Fig. 6.13 where xD is a value 

between 15 and 17.5 mol% of PbO. Therefore when Pb2+ is coordinated to 8 oxygen atoms 

and each Pb-O bond has the average bond valence value of 0.25 v.u, all O1a and O1b, are 

fully bonded to Pb2+ at 15.8 mol%, which means that x = 10, 12.5, and 15 mol% PbO tellurite 

glasses are within the plateau region of nTeO. 

 

6.5.4.2 Post plateau region 

Since xD for PbO-TeO2 is similar to Li2O-TeO2, from Eqn 5.10, nTeO for post plateau is 

 nTeO = 3.70 – Qb  6.3 

Where Q is the further unit added, [(0.1875 + Q)PbO–1TeO2] (Similar as M in Eqn, 5.7 and 

5.8, Q is chosen to represent PbO-TeO2 glasses). As seen in Fig. 6.13, the value of b = 2.1 fits 

the experimental data well, but this is obtained by using only two points, giving rise to a 

large error value, where the b value could be between 0.8 to 4. Fig. 6.14 compares the 
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nTeO(x) for Li, K, and Pb and their b values. In this case, a fixed value of xD is chosen to 

represent Li, K, and Pb, to highlight the difference in the b values. 

 

Figure 6.13: The determination of b value for PbO-TeO2 glasses 
 

In the plateau region, the condition: 8(NPb) ↔ 2(NO1a) + 2.4(NO1b) is based on the 

assumption that rPbO values in the [PbO8] unit are similar. Adding up the contribution of 

bonds from O1c; 

 8(NPb) ↔ 2(NO1a) + 2.4(NO1b) + 2.8(NO1c) 6.4 

and substituting the fraction of each unit, we have, 

 8(R) ↔ 2(0.3) + 2.4(2R) + 2.8(Rb-0.1875b) where b = 2.1 6.5 

This condition however creates an excess number of bonds in the plateau region: available 

bonds > required bonds. If the system energy is minimised when the number of available 

bonds matches the number of required bonds, Eqn. 6.5 can to be further broken down into 

various equalities. In this case, only 3; (a), (b), or (c) are considered, as follows; 

(a) 8(R)  ↔ 2(0.3) + 2.4(2R) + 2.8(Rb-0.1875b) where b = 1.15 6.5.a 

(b) 8(R)  ↔ 2(0.3) + 2.4(2R) + 1.3(Rb-0.1875b) where b = 2.1 6.5.b 

(c) 8(R)  ↔ 2(0.3) + 2.4(2R) + 2.8(Rb-0.1875b) where b = 2.1 6.5.c 
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Figure 6.14: The average nTeO for PbO-TeO2 glasses, compared with Li2O-TeO2 and K2O-TeO2 glasses. 

 

In the case of (a), this would mean that the number of Te–O bonds broken in the 

transformation process of [TeO4]– to [TeO3]– unit is less that the value obtained from fitting 

the nTeO (post plateau region). This b value of 1.15 is however within the error of b as 

discussed. A smaller b value would mean that the the number of Pb–O1c bonds is less than 

the number of Pb–O1a, or Pb–O1b bonds, to be exact; for the [PbO8] unit, there are 2.8 Pb–

O1a  + 4.8 Pb–O1b + 0.4 Pb–O1c bonds where the distance of Pb–O1a = Pb–O1b = Pb–O1c = 

~2.6 Å. In the case of (b), this would, however, mean that rO1c–Pb is 2.31 Å (0.58 v.u.) which is 

not a typical rPbO within this range of PbO composition (x < 20 mol%). Therefore, this would 

indicate that, in the post-plateau region, Pb2+ changes its environment as a preparation to 

entering the glass former state (to start forming shorter Pb-O bond). Pb2+ environments in 

lead tellurite crystals vary depending on the PbO content. As discussed in Section 4.4.4, in 

PbTe5O11 (16.7 mol% PbO), there is 1 [PbO4+4] unit (subscript 4 + 4 means there are 4 short 

and 4 longer PbO distances), this PbO distance distribution, however, can be approximated 

by a single Gaussian. In the much higher PbO content Pb2Te3O8 crystal (40 mol% PbO), there 

are two Pb sites: [Pb4+4], and [Pb3+5]. In the 50 mol% PbO content crystal (PbTeO3), there are 

2 [PbO2+6] and a [PbO8-long] units present. Based on this trend, it is apparent that, as the PbO 

content increases, shorter PbO distances are formed such that, at 50 mol% PbO, the 

distance resembles a typical Pb-O distance for Pb2+ behaving as a glass former, which is the 

case in  (c). This simply means O1a, O1b, and O1c are connected to Pb2+ at different rPbO, 

however, rPb–O1a, rPbO–O1b, and rPbO–O1c cannot be separately determined from the diffraction 

data. Fig. 6.15 shows the conditions as in the case of (a) as discussed. 
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Figure 6.15: The number of bonds in the plateau and post-plateau regions for b = 2.1, and b = 1.15. 

 

6.5.5 Lead (II) environment 

6.5.5.1 PbO distances and coordination number 

The Pb2+ ion generally adopts a high coordination (average PbO coordination number, nPbO = 

6 to 8) when present at low concentrations in glasses. This is evidenced from high energy X-

ray diffraction [2, 19-21] , neutron diffraction [2, 21-23] , and extended X-ray absorption fine 

structure [24-25] studies on PbO–VO2.5 [20] , PbO–TeO2 [25] , PbO–SiO2 [2, 20-21] , PbO–

BO1.5 [19] for PbO content less than 30 mol%. When present in more than about 50 mol% 

PbO, the average nPbO decreases to 2 – 4 in PbO–AlO1.5 [22], PbO–GaO1.5 [26], PbO–BO1.5 

[19], PbO–SiO2 [2, 20-21], and PbO–TeO2 [25]. Because of the overlapping Pb–O and O–O 

distances, determining the average nPbO value requires removal of the nOO partial associated 

with the glass cation polyhedra. This is feasible in tetrahedral unit glass formers where rOO 

can be obtained by simple trigonometry, but not in complex glass formers where the 

geometry of the glass cation polyhedron is uncertain and several related polyhedra may be 

present. The average nPbO in various glass formers is summarised in Fig. 6.16 where it is 

plotted as a function of PbO content in xPbO-(100–x)MOz/2. The average nPbO in PbO-GeO2 

glasses was not calculated since nOO is unknown due to the presence of [GeO5]– units. 

However, the Pb2+ ion behaves as an intermediate at compositions where [GeO5] and/or 

[GeO6] units are present [2].  
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Figure 6.16: The average PbO coordination number, nPbO, reported in various binary lead 
glasses.  

Ref: d [22], b [19], e [26], f [24], a [20], c [21], h [2] and g [25].  

 

 Figure 6.17: PbO distance, rPbO, reported for various binary lead glasses as in Fig. 6.16 and references 
therein. The distances are as expected from Brese and O’Keefe [27] 

 

Fig 6.17 shows the PbO distances, rPbO, corresponding to the glasses in Fig. 6.16. A general 

trend is seen that, at compositions where Pb2+ behaves as a glass former with low 

coordination number, rPbO is short (2.2 – 2.4 Å), and at compositions where Pb2+ behaves as a 

glass modifier, rPbO is longer (>2.4 Å) 
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Figure 6.18: PbO and OO peaks from NXFit in 17.5PbO-82.5TeO2 and PbTe5O11 

 

Fig. 6.18(a) shows the simulated TX(r) for PbTe5O11 with the Te-O peaks removed. The inset 

in Fig. 6.18(a) shows the simulated broad peak containing the individual Te–Pb, Te–Te, and 

Pb–Pb peaks, whose total is shown in pink in Fig. 6.18(a) and 6.18(b). Fig 6.18(b) and Fig 

6.18(c) compare the TN(r) for the 17.5 mol% PbO sample with that from crystalline PbTe5O11, 

in both cases after the Te-O peaks have been removed. From the comparison, the TN(r) are 

similar, suggesting the similarity of Pb-O and O-O environments in these two systems. As 

evident by the peak fitting in Fig. 6.28(b), the shoulder at about 2.5 Å in the 17.5 mol% PbO 

glass can be fitted with a single Gaussian to represent the sum of the Pb–O and O–O peaks, 

similarly to PbTe5O11 (Fig. 6.18(a)). Since nPbO is ~8 for Pb2+ in PbTe5O11, the average nPbO 

value in the 17.5 mol% PbO glass is assumed to be also 8, as a starting point. This can be 

supported by the absence of any short PbO distance in the shoulder which would 

correspond to the average nPbO value of 2 – 3. The absence of any short Pb-O distance and 

the average nPbO value of 8 are consistent with Pb2+ acting as a modifier. In Fig. 6.19, after 

the Pb–O peak was fitted, the residual was fitted with a broad O–O peak as well as another 

long Te–O(IV) peak. Once all peaks were obtained, they were “shaken” simultaneously using 
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the NXFit program (allowing all parameters to vary by a small fraction) so the peaks could be 

relaxed and a better fit could be obtained. 

 

Figure 6.19: Fitted peaks for 17.5PbO-82.5TeO2 glass from NXFit 

 

For more accurate isolation of Pb–O, O–O and possibly Te–O peaks from 2 to 3 Å, the 

average nOO must be calculated. However, there is not enough information to calculate the 

O–O distances associated with the various (and asymmetric) [TeO4], [TeO3+1], [TeO3], and 

[PbO8] units present. In PbTe5O11, where there are [TeO4], [TeO3+1], and [PbO8] present, the 

rOO associated with these units are shown in Fig. 6.20.  

 

Figure 6.20: The distances of PbO and OO in PbTe5O11 from 2.4 to 3.1 Å 
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The short rOO (< 2.6 Å) from O5, O8, and O9 are associated with edge-sharing TeO2 

polyhedra, as shown in Fig. 6.21 and Fig. 6.22. According to Zachariasen’s theory of glasses 

[28], this type of network connectivity is unlikely to be present, therefore, this short rOO is 

likely to be absent in the PbO–TeO2 glasses. Typical corner-wise TeO2 network connectivity 

in the glasses is shown in Fig. 6.23 when the rOO is about 2.6 Å. Based on the absence of rOO 

for r < 2.6 Å, it is appropriate to fit this region with only the Pb–O peak. 

 

Figure 6.21: Contribution of short rOO (O8) in an edge-sharing connection in PbTe5O11. 

 

 

Figure 6.22: Contribution of short rOO (O9) in an edge-sharing connection in PbTe5O11. 

 

Figure 6.23: Typical corner-wise TeO2 network connectivity in the glasses where the rOO is about 2.6 Å. 
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The fit parameters obtained are shown in Table 6.5. Within the composition range covered, 

Pb2+ has a constant average Pb-O coordination number nPbO of 8.08(6), which indicates that 

Pb2+ behaves as a modifier.  

 

Table 6.5: Peak parameters for Pb-O and O-O peaks obtained from NXFit 

 
Pb  

environment 
O 

environment 

x / mol% PbO r / Å nPbO <u>1/2 nOO 

10.0 2.57 8.08 0.26 5.62 
12.5 2.58 8.18 0.23 5.46 

15.0 2.59 8.05 0.24 5.40 
17.5 2.56 8.03 0.22 5.02 

Average 2.58(1) 8.09(7) 0.24(2)  

PbTe5O11 –  7.84 0.25 5.14 

 

In Fig. 6.16, the average nPbO values in 10 to 20 mol% PbO tellurite glasses are consistent 

(high average nPbO, 6 – 8) with the average nPbO values obtained from borates, silicates, and 

vanadates for the same PbO content. The trend in rPbO, as a function of PbO content, is 

shown in Fig. 6.17 for the various PbO binary glasses, along with the rPbO in crystalline 

PbTe5O11, Pb2Te3O8, and PbTeO3. The shortening of rPbO in high PbO content tellurite crystals 

is consistent with the rPbO from other PbO glasses. The Pb2+ ion in PbTe5O11 (the closest 

crystal composition to the PbO-TeO2 glasses) adopts a distorted [PbO8] unit as discussed in 

Section 4.4.4, and the Pb2+ environment in these glasses could be similar. 

 

6.5.5.2 Parameterising Pb-O distances 

Based on EXAFS [25] and Brillouin scattering [29] studies on PbO-TeO2 glasses, for glasses 

with less than 30 mol% PbO, Pb2+ was found to behave as an intermediate with high average 

lead-oxygen coordination number (nPbO = 8), therefore, this information is partially used in 

extracting the Pb2+ environment from the simultaneous fitting process of X-ray and neutron 

data using NXFit [30] . The distorted [PbO8] unit is represented by 1 average PbO distance at 

about 2.6 Å with a larger broadening. From Table 6.5, the width of the Pb–O peak obtained 

is broad to reflect the wide distribution of rPbO in the glasses. The average rPbO of 8-

coordinated Pb2+ is consistent with the average rPbO obtained from the fit. The asymmetric 

Pb–O distance (hence different Pb–O bond valences) in theory, would change the average 

number of Pb2+ ions that could be bonded to the oxygen sites. In the alkali tellurite glasses, it 

is assumed that there are 3 O1 sites; O1a, O1b, and O1c with different Te–O bond valences 

which would mean they would be coordinated to different average number of Pb2+ ions. 

However, since we do not have enough information to assign the short or long bonds to 
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either Pb–O1a, Pb–O1b, or Pb–O1c, we would have to assume that Pb–O1a, Pb–O1b, and 

Pb–O1c all have the same distance of ~2.62 Å (bond valence = 0.25 v.u). This distance is 

rather an approximation because the calculation of bond valence for Pb2+ is more complex 

due to the presence of the lone pair. However, the broad PbO peak could be further fitted 

with 2 peaks, consistent with the rPbO found in PbTe5O11. 

 

6.5.6 PbTe5O11 and TeO2 glass similarity 

Comparing the T(r) for PbO-TeO2 glasses with the pure TeO2 glass and PbTe5O11 crystal (Fig. 

6.24), a similar peak shape is observed, suggesting similarity of the Te-O distances in both 

systems Similarities are also observed by comparing the T(r) of PbTe5O11 with those from the 

lead tellurite glasses, especially for PbO contents higher than 16.67 mol%. PbTe5O11 could 

therefore be used in parameterising the TeO distances in TeO2 glasses. To investigate 

further, Fig 6.25 shows the radial probability distribution for Te-O pairs (5 Te sites) in 

PbTe5O11. The Te1, Te3, and Te4 sites are the [TeO4] type with two longer axial and two 

shorter equatorial Te-O bonds as found in α-TeO2. The Te2 site is the [TeO3+1] type, with 3 

shorter Te-O bonds and 1 longer Te-O bond. This is the intermediate unit from the 

transformation of [TeO4] to [TeO3]. The Te3 site can be described as a [TeO3] unit where the 

average short Te-O distance is comparable to the Te-O distance as in PbTeO3. PbTe5O11 has 

an average nTeO value of 3.70, close to the average nTeO value for pure TeO2 glass.  

 

Figure 6.24: Similarity of T(r)TeO in pure TeO2 glass, PbTe5O11, and PbO-TeO2 glasses 
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Figure 6.25: Individual TeO environment for 5 Te sites in PbTe5O11 

 

6.6 Conclusions 

Samples of xPbO-(100–x)TeO2 glasses for x = 10, 12.5, 15, 17.5, and 20 mol% were 

successfully prepared and confirmed to be amorphous except for x = 10 (insignificant 

crystallisation) and x = 20 (significant PbTe3O7 phase present) mol%. The glass compositions 

were verified using EDX, where consistent loss of ~1 mol% of PbO was measured in all 

compositions. However, the compositions were treated as approximately nominal since 

their density values were within the scatter of values from the SciGlass database. Number 

density analysis revealed the tellurite anomaly in the Te and O number densities, but not Pb 

number density, which suggests that it is the TeO2 network which undergoes the changes as 

a function of PbO content in this composition range. Raman scattering, which is sensitive to 

species, revealed that PbO causes the change in the TeO2 network by transforming [TeO4] 

units to [TeO3] units, consistent with the alkali tellurite glasses. The semi quantitative 

average nTeO values of PbO-TeO2 glasses were determined to decrease similarly as in the 

TeO2 glasses modified by divalent modifier cations. The average nPbO obtained in the glasses, 

using total neutron and X-ray diffraction, is about 8 which suggests that Pb2+ behaves as a 

modifier. The average nTeO extracted exhibited the plateau and post plateau regions as 

described by the TeO2 Model. Due to the limitation of Qmax = 20 Å-1 for the X-ray data, the 

peaks are significantly broadened which makes deconvolution of the PbO peaks difficult. 
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Using the null lithium neutron data, combined with the neutron and X-ray data, the Pb2+ 

environment was closely examined, and found to be comparable to PbTe5O11. The Te 

environment in the plateau region is similar to that in pure TeO2 glass. In the post plateau 

region, the b value was obtained, and was greater than the b value found for the Li2O-TeO2 

system, though with large error bounds. 

In (low) PbO content glasses in this study, the average PbO coordination number 

nPbO is constant at 8.09(7) and the average nTeO shows a plateau and post-plateau region 

(similar to Li2O-TeO2 glasses). Pb2+ ions are coordinated to 8 oxygens atoms at similar rPbO 

distances of 2.58(1) Å. The Te environment is close to that of pure TeO2 glass or low Li2O 

content TeO2 glass where rTeO is averaged out from combinations of the asymmetric units of 

[TeO4], [TeO3], and [TeO3+1] at approximately similar fractions and distance distributions. At 

this composition, based on the density analysis, the glass network can be described as more 

open (than it is at higher PbO content). The Te environments in Pb2+ and Li+ tellurite glasses 

for PbO and Li2O content less than ~15 mol% are found to be similar. For PbO or Li2O 

content greater than ~15 mol%, Pb2+ ions convert more [TeO4] to [TeO3] units than Li+ ions as 

reflected by the higher b value (2.1 for Pb2+ than 0.8 for Li+). This would suggest that any 

optical activity arising from [TeOn] polyhedra should be similar for Li2O-TeO2 and PbO-TeO2 

for Li2O or PbO content of less than 15 mol% and for greater than 15 mol%, the optical 

activity for PbO-TeO2 should be lower than Li2O-TeO2, since Pb2+ induces more [TeO3] units. 

Nonlinearity of tellurite glasses generally decreases as [TeO4] is replaced by [TeO3] units, 

i.e.as nTeO decreases. nTeO for Li2O-TeO2 glasses can be used to describe the optical activity 

[31] but not for PbO-TeO2 glasses because the optical activity of PbO-TeO2 glasses is 

dominated by the higher activity of PbO [31]. 
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Chapter 7 – Alkali borogermanate glasses 

 

7.1 Introduction 

This chapter presents preliminary results and discussion on the structures of two ternary 

systems, namely potassium and lithium borogermanate glasses, particularly in comparison 

with the structures of lithium [1] and sodium [2] borosilicate glasses, respectively. Where 

possible, each of the ternary alkali borogermanate glasses is compared to the relevant 

binary alkali borate and alkali germanate glasses. Similarities and differences between 

lithium and potassium borogermanate glasses are also described. This chapter describes the 

preparation method of the glass samples and general characterisation methods that include 

density measurement and energy dispersive X-ray analysis. These initial procedures are used 

to confirm the glass nominal composition. Subsequently, Raman scattering is used in an 

attempt to probe the presence of various units or species of interest in these ternary 

glasses. In the 11B MAS NMR section, the environment of 11B isotope in both lithium and 

potassium borogermanate glasses are studied. The average nBO value obtained for each 

system is compared to the alkali borosilicate models of lithium [1] and sodium [2] to extract 

the possible mechanism of change of the B environment in borogermanate glasses. In the 

neutron diffraction (ND) section, total correlation functions T(r) for the glasses are 

presented. From these T(r), the average nBO(ND) is obtained and compared to the nBO(NMR) 

for both ternary systems. In a case where nBO(ND) differs significantly from the nBO(NMR) 

due to deviation from nominal stoichiometry, the actual composition of the glasses is 

probed using nBO(NMR) and the EDX data (for potassium only) to enable a more accurate 

measurement of the average Ge-O coordination number, nGeO value from the diffraction 

data. The average nGeO for potassium and lithium borogermanate glasses are then compared 

and discussed in conjunction with the nBO value for each system to highlight similarities and 

differences of the Ge environment in the two systems. For lithium borogermanate glasses, 

the lithium environment is derived for a few selected samples using the difference (nat – 

null) diffraction technique. The lithium environment is later considered in conjunction with 

the boron and germanium environments to obtain a consistent description of the glass 

structure. The chapter is concluded by summarising the general findings, followed by 

presentation of the short and intermediate range structural information deduced from the 

study (species/unit presents, average coordination number and distances). 

 



125 
 

7.2 Introduction to borate, germanate, and borogermanate glasses. 

7.2.1 Borogermanate glasses 

Borogermanate glasses possess useful technological properties (such as density and 

refractive index) suitable for uses in wave-guide systems [3]. These properties depend on 

the structure of the glass, partly related to the constituent borate and germanate glasses. In 

pure B2O3 glass, the glass structure is made up of [BO3] units in the form of boroxol rings 

linked by [BO3] [4-7]. The addition of alkali oxide will transform [BO3] to [BO4]– until a 

saturation point at ~30 mol% [8-10]. Beyond this point, the [BO4]– units are destroyed with 

the creation of [BO3]– with non-bridging oxygen NBO [11]. The average boron-oxygen 

coordination number nBO, will, therefore increase from 3 to a maximum value (4>nBO>3) at 

~30 mol% and later decrease to ~3. Anomalies in the physical properties of the glasses [12-

14] are observed, in conjunction with the behaviour of nBO. The borate model, which 

involves the presence of various borate superstructural units has successfully described this 

borate anomaly [11, 15]. In alkali germanate glasses, as a function of alkali content, a similar 

germanate anomaly in the physical properties is also observed [16-20]. This anomaly is 

caused by the conversion of [GeO4] units to higher coordinated [GeO5]–/[GeO6]– units [21-

23]. Further addition of alkali destroys the higher coordinated units with the formation of 

[GeO4]– with NBO and the glass structure will experience a decrease in nGeO. The structure of 

ternary alkali borogermanate glasses is complicated because both boron and germanium 

can adopt more than one stable coordination. In addition, it is not known what preferential 

association of alkali with either B or Ge might occur. Therefore, this could cause unexpected 

changes in the structural/superstructural species formed in the glass. This thesis examines 

the borate and/or germanate anomaly in ternary lithium and potassium borogermanate 

glasses. 

 

7.2.2 Binary alkali borate glasses [4, 7-10, 24-26] 

7.2.2.1 Boron environment 

In pure B2O3 glass, the B–O coordination number nBO is 3, where the glass network is made 

up of all [BO3] units (Fig. 7.1) arranged in boroxol ring superstructural units connected by 

non-ring [BO3]. As alkali oxide M2O is added, to give a binary glass of composition xM2O-

(100–x)B2O3, [BO3] units in the boroxol ring are transformed into [BO4]– units (one per M+) 

such as in the superstructural units of tetraborate (pentaborate and triborate connected by 

oxygen) and diborate. For M2O < 30 mol%, the average nBO increases due to the 

transformation of [BO3] to [BO4]– according to: 
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 nBO = 3 + x/(100–x) 7.1 

At M2O > ~30 mol%, the superstructural units are destroyed with the formation of [BO3]– 

units, each with a non-bridging oxygen NBO. This is reflected in the decrease of nBO at M2O > 

30 mol% as shown in Fig. 7.2. The behaviour of nBO explains the anomalous change in the 

physical properties of the glasses. 

 

Figure 7.1: Superstructural borate units [27] 

 

Figure 7.2: nBO in alkali borates and the borate model, nBO = 3 + x/(100-x), nBO values for Li, Na, K, Rb, 
and Cs were taken from [8]. The thick dashed line represents initial [BO4]– formation (Eqn. 7.1) 
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In borate systems, the Raman spectra are particularly important because the technique is 

sensitive to the species present, rather than the averaged information of nBO. Figs. 7.3 show 

the Raman spectra for lithium and alkali borate glasses, taken from Dwivedi and Khanna 

[25].  

 

Figure 7.3:  Raman spectra for lithium and potassium borate glasses, taken from Dwivedi and Khanna 
[25] 
 

Table 7.1: Raman shift values for borate units [24-26, 28-29], b=broad, s=sharp. 

Peak Structural unit Raman shift / cm-1 
f Boroxol ring ~805 (s) 
a, e Triborate ~450 (b) and ~770 (s) 

a, e 
Pentaborate ~450 (b) and ~770 (s) 
Metaborate (Chain) ~720 

c Metaborate (Ring) ~630 
a Diborate ~1100 (b) 
i,j NBO ~1400 to ~1550 (b) 

 

In general, the Raman spectra for alkali borate glasses are similar in terms of the vibrations 

present, however, the ratio of the areas is different, as discussed elsewhere [25, 30]. This is 

because, in alkali borate glasses, the modification of the borate network is strongly 

dependent on the alkali cation, especially at high alkali content [25, 29] giving the same 

species (superstructural units) but in different quantities. Smaller cations such as Li+ and Na+, 

with high charge density, tend to completely disrupt the borate network into isolated units, 

compared to larger alkali cations. This would explain the discrepancy in the quantity of the 

species (qualitatively judged from the area). The region of interest of B–O vibrations in this 
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study is the vibration of boron to non-bridging oxygen (B–O–) since the detection of such 

units is difficult or even impossible by 11B NMR or neutron diffraction. In general, in the 

Raman shift region of <1100 cm-1, the spectrum is dominated by the vibrations of the 

superstructural units (containing 3 and 4-coordinated B). The vibration of B–O– however, is 

assigned to the high shift region at 1400 cm-1. The complete Raman shifts associated with 

the structural units are shown in Table 7.1. The structural analyses of the binary alkali borate 

glasses are discussed elsewhere [25, 29-30]. 

 

7.2.3 Binary alkali germanate glasses [16-19, 21-22] 

7.2.3.1 Germanium environment 

In pure GeO2 glass, the structure consists of 4-coordinated Ge in [GeO4] units. When alkali 

oxide is added to the network, the [GeO4] units are converted to higher coordinated Ge 

([GeO5] and/or [GeO6]) at the rate x/(100–x) without the creation of NBO. This increases the 

average Ge–O coordination number nGeO of the system, up to a maximum value, after which, 

further addition of alkali oxide will create NBO as [GeO4]– units and nGeO will decrease. The 

changes of nGeO as a function of alkali oxide content and species formed are shown in Fig. 7.4 

[31-34]. Hannon et al. [33] confirmed the presence of [GeO5] rather than [GeO6] in Cs2O–

GeO2 glasses. Limited literature data on nGeO(x) in alkali germanate glasses are shown in Fig. 

7.4 for K2O–GeO2 (neutron and x-ray diffraction) [32, 34], Na2O– GeO2 (neutron diffraction) 

[35], and Li2O–GeO2 (EXAFS) [31]. (Note: Two data points for nGeO(K2O) from this study is also 

included in Fig. 7.4. nGeO was obtained by peak integration using the cutoff distance of 2.27 

Å, where at this distance, T(r) has the minimum value). 

Quantification of the GeOn (n = 4, 5, or 6) species by Raman is rather difficult due to 

the overlap of the Ge(n)–O vibrations (n is the number of O oxygen coordinated to the Ge). 

This may indicate the similarity of the bond parameters / environment of Ge in GeO4 and 

GeO5 and/or GeO6. Table 7.2 summarises the Raman peak shift assignment for different Ge–

O units. The low shift region 300 – 550 cm-1 is dominated by the vibrations of [GeO4] species, 

whilst the intermediate region 600 – 750 cm-1 is dominated by the higher coordinated Ge 

species (mostly assigned to the [GeO6] based on the alkali germanate crystals. The highest 

region 800 – 900 cm-1 includes the vibrations of O–Ge–O bridges and Ge–O–, which makes 

the quantification of Ge species difficult since the bridges persist throughout the 

composition whilst the NBO in binary alkali germanate only starts forming at alkali oxide 

content >20 mol%. 
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Figure 7.4: nBO in alkali germanates, a[31], b[35], c[32, 34],d[33] and the germanate model [21] 

 

As seen in Fig. 7.5, the Raman spectra are similar for low alkali content, x < 15 mol% in terms 

of both species present and their relative quantity. Beyond this composition, the spectra for 

lithium and potassium germanate glasses of the same composition differ in terms of relative 

area. This may arise from the different structural role of Li and K in these glasses, as Li are 

reported to behave differently from the rest of the alkali members [36]. The structural 

analyses of the binary alkali germanate glasses are discussed elsewhere [18-22, 31-32, 34, 

36-38]. 

 

Table 7.2: Raman shift values for germanate units [19, 37-40] 

Unit Raman shift / cm-1 

[GeO4] ~340 (e), ~440 (d), and ~529 (d) 

Higher coordinated Ge units ([GeO5] / [GeO6]) ~600 (d), ~650 (d), and ~745 (c) 

Ge–O– and O–Ge–O bridges ~800 (b) and ~900 (a) 
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Figure 7.5: Raman spectra for lithium and potassium germanate [17]. 

 

7.2.4 Binary borogermanate glasses [41] 

7.2.4.1 Borate and germanate species 

In mixed glass former, binary borogermanate glasses, all boron and germanium atoms are 

coordinated to 3 and 4 oxygen atoms, [BO3] and [GeO4] respectively [41]. In pure B2O3 glass, 

about 75% of the [BO3] units are arranged in the boroxol ring type structure and the 

remaining 25% form links between the rings [42]. As GeO2 is added to the B2O3 network, the 

boroxol ring structure is replaced by non-ring [BO3] until about 80% GeO2, where boron is 

present only as non-ring [BO3] [41]. In this study, there are three binary borogermanate base 

glasses with GeO2 content >80 mol%. 

Fig. 7.6 shows the distances for germanium-oxygen rGeO in Ge‒O‒Ge and Ge‒O‒B 

environments and boron-oxygen distances rBO in B‒O‒B and B‒O‒Ge environments, as 

optimised by Lee et al. using quantum chemical calculation [41]. In pure GeO2 and B2O3 

glasses, the rGeO and rBO distances are 1.75 Å (1.748 Å, as predicted by the bond valence 

calculation [43]) and 1.371 Å, respectively. The rGeO in Ge–O–Ge connections is slightly longer 

in the binary borogermanate glasses, whereas rBO is slightly shorter. The binary 

borogermanate glasses show greater intermixing (B‒O‒Ge) than binary borosilicate 

(B‒O‒Si), hence, the glasses are not phase separated. In the same study [41], the oxygen 

M = Li xM2O-(100–x)GeO2 M = K 
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clusters are not well resolved in the 17O NMR, and the Ge–O–Ge fraction was seen to 

increase as a function of GeO2 content. 

 

Figure 7.6: Optimised bridging oxygen environments in binary borogermanate glasses [41]. 

 

7.2.5 Alkali borogermanate glasses 

Currently, there are no reports of quantitative total scattering diffraction measurements on 

these systems. However, complementary probes such as density [44], glass transition 

temperature [45-46], and Raman analysis [47-50] have been used to study the glass 

structure. Ma et al. [45] concluded a great similarity between sodium borosilicate and 

sodium borogermanate by comparing their density and Tg values based on the widely 

accepted sodium borosilicate model of Dell and Bray [2]. The Raman studies by Yoshimura et 

al. [51] and Mansour [47] agree on the distribution of alkali (Li+) ions to both borate and 

germanate networks using the evidence of the observation of vibrations associated with the 

higher coordinated borate and germanate networks. 

 

7.3 Sample preparation and general methodology 

Glass samples were prepared from reagent grade GeO2 (99.99 % purity), 11B-enriched boric 

acid H3BO3 (99.9 % purity), and K2CO3 (99.9 % purity, for potassium borogermanate glasses), 

or Li2CO3 (99.9 % purity, for lithium borogermanate glasses). For preparing null lithium 

borogermanate glasses, the (natural) Li2CO3 was mixed in a specific ratio with 6Li-enriched 

Li2CO3 (99.9 % purity). The compositions of the glasses prepared are shown in Table 7.3 and 

Fig.7.7. K2O-BO1.5-GeO2 (KBG) glasses were prepared earlier by Dr. Diane Holland.  They are 

labelled as xM-yB, corresponding to xM2O-yBO1.5-(100–x–y)GeO2. g-MaBbGecOd is a glass 

where the composition is similar to the crystal phase of MaBbGecOd, respectively. 
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Table 7.3: Alkali borogermanate glasses in this study (with EDX K/Ge value, density, and neutron 
exposure). Typical K/Ge error is shown in parentheses 

 

The oxides and carbonate were mixed thoroughly in an agate and pestle mortar for 30 

minutes. The mixture was melted in a Pt/Rh crucible and heated at 5oC/min from room 

temperature to 1100 oC (for both potassium and lithium borogermanate glasses) and held at 

that melting temperature for 15 minutes before being quenched by dipping the crucible 

base in room temperature water. The amorphicity of the glasses was judged visually and 

later confirmed by the diffraction experiments. A Zeiss Supra55-VP Scanning Electron 

Microscope (SEM) operated at an accelerating voltage of 10 kV (Section 3.7) was used to 

determine the K and Ge atomic ratios of the potassium borogermanate glass samples. 

Sample 

Nominal 
composition 

K/Ge ratio Exposure (μA) 
Density (g cm-3) 

( ±0.0001) 

M2O BO1.5 GeO2 Nom, EDX 
Li null 
(nat) 

K 
M = Li 
(nat) 

M = Li 
(null) 

M = K 

GeO2 0 0 100 – – 3.4724 
10M-0B 10 0 90 – – – – – 3.8664 
20M-0B 20 0 80 – – 1000 – – 3.6937 
30M-0B 30 0 70 – – 1000 – – 3.3580 

0M-10B 0 10 90 – – 3.4248 

10M-10B 10 10 80 
0.249, 

0.248(5) 
1200 1000 3.8407 3.8378 3.7377 

20M-10B 20 10 70 
0.573, 

0.561(5) 
1200 
(600) 

1000 3.9147 3.9075 3.5944 

30M-10B 30 10 60 
1.000, 

1.139(5) 
1200 1000 3.6970 3.6819 3.2580 

0M-20B 0 20 80 – – 3.2713 

10M-20B 10 20 70 
0.285, 

0.277(5) 
1200 1000 3.6884 3.6833 3.5829 

20M-20B 20 20 60 
0.666, 

0.722(5) 
1200 
(600) 

1000 3.7433 3.7324 3.4290 

30M-20B 30 20 50 
1.198, 

1.263(5) 
1200 1000 3.5101 3.4966 3.1391 

0M-30B 0 30 70 – 1000 3.2268 

10M-30B 10 30 60 
0.334, 

0.367(5) 
1200 1000 3.5199 3.5172 3.4238 

20M-30B 20 30 50 
0.799, 

0.867(5) 
1200 
(600) 

1000 3.5531 3.5452 3.3009 

30M-30B 30 30 40 
1.499, 

1.337(5) 
1200 1000 3.3060 3.2920 3.0271 

g-KBGe2O6 14.3 28.6 57.1 – – 500 – – 3.4377 

g- K2B2Ge3O11 16.7 33.5 50.0 
0.667, 

0.680(5) 
– 500 – – 3.3389 

g-LiBGeO4 20 40 40 – – – 3.3492 3.3388 – 
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Figure 7.7: Ternary plot for nominal glass compositions in this study 

 

A Renishaw inVia Raman Microscope, equipped with either a 514.5 nm Ar+ laser source or a 

532 nm diode-pumped solid state laser was used to collect the Raman spectra of the 

potassium borogermanate and lithium borogermanate glass samples, respectively. The 

details of the general Raman data acquisition and processing are given in Section 3.5. 

However, in this chapter, semi-quantitative analysis of the spectra was not possible due to 

the complexity of the spectra, but a qualitative analysis was performed. High-resolution 

neutron diffraction data were obtained at ISIS (RAL, UK) using the GEM diffractometer 

(Section 2.2) on the glass samples. 4 – 7 g of the glass samples were packed into V-cans with 

40 – 50 % packing. Total beam-time exposure for the samples was from 500 – 1200 μA as 

shown in Table 7.3. The exposure is higher in the null lithium borogermanate glasses in 

order to compensate for the lower S/N ratio in the high neutron absorbing null lithium 

glasses. 11B NMR spectra were collected using a 14.1 T Bruker Avance II+ 600 MHz 

spectrometer tuned to 192.3 MHz using a Bruker 4 mm probe (lithium borogermanate 

system) or a 14.15 T Varian spectrometer using a 4 mm Varian T3 probe tuned to 193.1 MHz 

with magic angle spinning (MAS) frequency 12 kHz in both cases. BPO4 was used as a 

secondary reference material with chemical shift -3.3 ppm with respect to the primary 

reference boron trifluoride ether (BTE). More details on NMR are given in Section 3.10. From 

the EDX analysis (only for the M = K glasses), the glass composition can be estimated only 

from the ratio of K to Ge, due to the inaccuracy of the detection of B and O using X-rays. The 

ratio of K/Ge is calculated from each nominal composition (ignoring B and O), and compared 

with the K/Ge ratio obtained from the EDX analysis.  
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Figure 7.8: K/Ge ratio from EDX and nominal composition 

 

Fig. 7.8 shows the comparison of the EDX K/Ge and the nominal K/Ge ratio. For an EDX K/Ge 

ratio lower than the nominal K/Ge ratio, the glass composition can be assumed to have lost 

some K2O, and vice versa if GeO2 is lost due to the volatilisation. These calculated losses are 

used in neutron diffraction analysis to estimate the error in the average coordination 

number. 

 

7.4 Density 

7.4.1 Results 

Table 7.3 shows the density values of the glasses for the nominal compositions. 10M-Ge, 

20M-Ge and 30M-Ge are the binary alkali germanate glasses; 0M-10B, 0M-20B, and 0M-30B 

are the binary borogermanate glasses, whilst the rest are the ternary potassium and lithium 

borogermanate glasses, as labelled. In general, the densities of the potassium 

borogermanate glasses are lower than the corresponding lithium borogermanate glasses for 

the same composition, despite containing the more massive potassium atom. This may arise 

from the structural origin in the glasses. The differences between the density values for the 

natural and null lithium borogermanate glasses are small, as expected to arise from the 

small difference in the molecular masses due to the different ratios of 6Li and 7Li isotopes.  
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7.4.2 Binary borogermanate glasses 

Fig. 7.9 shows the density (a), molar volume (b), and number densities (c – e) for the binary 

borogermanate glasses. The values measured (half-coloured triangles) are compared to 

those from the SciGlass database [52] (open circles). The glasses used in this study are GeO2-

rich, hence, the density value and its molar volume are dominated by the GeO2 network. The 

density decreases as heavier GeO2 is replaced by lighter BO1.5. The rate of decrease however 

is not linear. The straight line in each figure connects a-GeO2 (all [GeO4] units) and 

crystalline, c-B2O3 (all non-ring [BO3] units). In the density plot, if the borogermanate glasses 

had units as found in these end oxides, the density would decrease as described by the line. 

The cubic fit of the SciGlass data overlaps with this line from 0 to 33.3 mol% BO1.5 content.  

 

Figure 7.9: The density value and its derivatives for the binary borogermanate glasses 

 

This suggests that, within this composition range, the [GeO4] and [BO3] units present are 

similar to those in a-GeO2 and c-B2O3 phases. From the NMR studies of binary 

borogermanate glasses, boroxol ring [BO3] units were not observed below about 30 mol% 

BO1.5 [41]. Beyond ~33.33 mol% BO1.5, the density values deviate from the straight line and 



136 
 

continue to decrease to the density value corresponding to pure B2O3 glass. The pure B2O3 

network is characterised by its ring and non-ring [BO3] units. Therefore, it could be inferred 

that the deviation of the density values is due to the formation of the boroxol ring units in 

the glasses. The binary glasses in this study however contain some air bubbles, which 

decrease the density values measured. Deviation from nominal composition could also 

contribute to the discrepancy, however, this is very unlikely, since for the glasses to have 

lower values, the losses must be attributed to GeO2 (which is less probable since GeO2 is less 

volatile than B2O3), and furthermore, those density values (for 10BO1.5-90GeO2 and 20BO1.5-

80GeO2) would indicate the loss of about ~10 mol% GeO2.  

Fig. 7.9 (b) shows that, as BO1.5 replaces GeO2, the molar volume increases, 

nonlinearly, similar to the trend observed in the density plot. Initially, the glass structure 

expands approximately linearly as one non-ring [BO3] replaces one [GeO4]. Beyond about 30 

mol%, planar boroxol [BO3] rings, with higher molar volume, also form, increasing the 

average molar volume of the glass more rapidly. The values for the samples in this study are 

seen to be higher than the cubic fit line, as a consequence of having the lower density 

values. From the number density plots, the number densities for Ge and O decrease almost 

linearly as GeO2 content decreases, whilst B deviates strongly indicating that the borate 

network is responsible for most of the changes in the binary borogermanate glasses. It will 

be shown later in this chapter that the borogermanate binaries are significantly different 

from the ternary alkali borogermanates. 

 

7.4.3 Ternary alkali borogermanate glasses 

In cases of binary glasses, glass compositions can be estimated by comparison with SciGlass 

data. For the ternary glasses, however, because of the limited data from the SciGlass 

database for similar compositions, measured density values can only be compared with 

those interpolated from the contours in the 3D plots which will not be accurate. Data are 

therefore presented in Fig 7.10 in the form of pseudobinaries of fixed BO1.5 content. 

Fig. 7.10 shows the density plots for the lithium and potassium borogermanate 

glasses. The data for Li are open symbols, with closed symbols for K. Binary alkali borate and 

germanate glasses are represented by blue and red, respectively. 10B series (10 mol% BO1.5), 

20B series (20 mol% BO1.5), and 30B series (30 mol% BO1.5) are represented by green, 

orange, and purple, respectively.  
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Figure 7.10: Density plot for lithium and potassium borogermanate glasses 

 

The density values for the ternary lithium and potassium borogermanate glasses are closer 

to their respective binary germanate glasses than the binary borate glasses. This is expected 

since, as seen in Table 7.3, the alkali borogermanate glasses used in this study contain more 

GeO2 than B2O3 (minimum 2.5: 1, and maximum 16:1 ratio of GeO2:B2O3). As BO1.5 content 

increases (for fixed M2O content), density decreases, because the heavier GeO2 is replaced 

by lighter BO1.5. For fixed BO1.5 content, as M2O is increased, the change in density is similar 

to the binary alkali germanate, reflecting the increasing interconnectivity due to the 

formation of higher coordinated germanate species [53]. For increasing BO1.5 content (fixed 

M2O) the decrease in the density suggests that the dominance of the germanate network is 

diluted by the borate networks suggesting a possible intermixing of borate-germanate 

networks. 

In Fig. 7.11, for the binary potassium borate and germanate glasses, the molar 

volumes decrease to a minimum value and then increase, whereas for lithium it only 

decreases. This is due to the difference in the sizes of Li+ (1.67 Å) and K+ (2.43 Å), resulting in 

the non-isostructural induced changes [44]. The smaller Li+ enables it to enter existing voids 

in the glass network, causing the molar volume to be smaller than for the larger K+, which 

has to push the glass network apart. The molar volumes of the alkali borogermanate glasses 

in the figure are closer to the alkali germanate glasses, mainly because the glass composition 

is predominantly germanate. However, as the BO1.5 content is increased, the molar volume 

of the alkali borogermanate glasses increases, due to the introduction of the borate network 
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with much higher molar volume value. Assuming ideal behavior, the solid lines fitting the 

data points for the ternary glasses in Fig 7.11 are calculated from a weighted summation of 

the contributions from the binaries: 

  = (γ)MGe+ (β)MB ; γ + β = 1 (7.2) 

where γ and β are the fractions of the binary germanate and borate contributions, 

respectively.  These show quite good agreement with the experimental data points but 

there are discrepancies which suggest a greater complexity than a simple combination of 

two networks – i.e. these are not two-phase mixtures on whatever scale. 
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Figure 7.11: Molar volume plot for lithium and potassium borogermanate glasses 

 

Figs. 7.12 (a) and (b) show the number density plots for B and Ge atoms for the lithium and 

potassium borogermanate glasses. Again, they illustrate the ease of packing of Li compared 

to K in both the binaries and ternaries. The solid (for K) and dashed (for Li) lines fitting the 

ternary data points are weighted sums of the binaries and their effectiveness suggests that 

the added alkali ions associate with both network formers. It is notable that there is very 

good agreement for the B number density but less good for Ge. The number density for B 

atom in 10, 20, and 30 mol% BO1.5 series can be simulated by using β values of 0.2, 0.4, and 

0.6, respectively, which corresponds to the values of 20, 40, and 60 mol% BO1.5, twice as 

high as expected for simple mixing of non-interacting networks (phase separation). 
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Figure 7.12: Number density plot for B and Ge in lithium and potassium borogermanate glasses 
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Figure 7.13: Number density plot for O in lithium and potassium borogermanate glasses 

 

Fig. 7.13 and 7.14 show the number density of O and M (Li and K) respectively. For O, the 

number density changes in a similar manner to the binary germanate, but at lower number 

density, due to being diluted by the introduction of borate structures into the germanate 

network. For M (Li and K), the same trend (dilution) is also observed. The solid lines in these 

figures (connecting the data point for the ternary glasses) are the weighted sum of both 

borate and germanate binaries. For Li, the factor β used is consistent with the percentage of 

BO1.5 present. The same applies for K except for the highest K2O content in each BO1.5 series, 

where the percentage of borate contribution is higher. This could simply mean that Li+ and 

K+ are associated equally to both borate and germanate networks, except for 30% K2O 

where association of K+ to the borate network is higher that it is to the germanate network. 
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With better accuracy and consistency of density data, using this simple relationship, the 

changes in the density can be quantitatively attributed to originate from the constituent 

network. Thus, both B and Ge changes are affected by the M+ ion. 
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Figure 7.14: Number density plot for Li and K in lithium and potassium borogermanate glasses 

 

7.5 Raman scattering 

7.5.1 Introduction 

In the literature, the number of Raman studies of these borogermanate glasses is limited to 

lithium [47] and potassium [48-49]. Mansour [47] conducted a study on a series of glasses 

with fixed Li2O content (42.5 mol%) while increasing the GeO2 content at the expense of 

B2O3. No anomaly was observed in the density value (linear decrease), revealing that 

average density is a simple contribution from each oxide by a specific factor and Li+ is 

distributed into both borate and germanate networks [47]. For the potassium 

borogermanate glasses, the study was conducted on high B2O3 content (65 and 85 mol %). 

From the Raman analysis, it was concluded that K+ goes to mainly borate sites and NBO units 

(for K2O > 20 mol%) are associated with germanate sites rather than the borate sites [48]. In 

both systems, the Raman spectra are described as being a superposition of the vibrations of 

the borate and germanate species. In this section, the Raman spectra will only be analysed 

qualitatively, due to overlapping, which makes species quantification difficult and 

inaccurate. The ternary potassium borogermanate glasses will be compared with binary 

potassium germanate glasses to deduce similarities and differences between these two 

systems. Later on, the potassium borogermanate glasses will be compared with the lithium 
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borogermanate glasses, though the comparison will be difficult since even in binary borates 

or germanates, Li+ behaves differently than K+ ion. The main purpose of the Raman spectra 

analysis is to probe the presence of vibrations associated with the NBO units (which, for 

borate, do not overlap with any other vibration)  

 

7.5.2 Binary borogermanate glasses 

Fig. 7.15 compares the experimentally obtained Raman spectra with the simulated spectra 

(based on pure B2O3 and GeO2 glasses). In other words, the simulated spectra would 

resemble phase separated binary borogermanate glasses. As seen in Fig. 7.15 (a), the 

spectra are dominated by the germanate network, due to the compositional factor. The 

Raman shifts for the Ge–O vibrations are in the lower range, < 600 cm-1 (Figs. 7.15 (b) and 

(c)), whereas the B–O vibrations are in the higher range, specifically at ~800 cm-1 (for the 

boroxol ring) (Fig. 7.15 (d)).  

 

Figure 7.15: (a) Raman spectra of pure GeO2 glass (solid black line) and binary borogermanate glasses 
(solid colour lines) with their simulated spectra from pure GeO2 and pure B2O3 glasses (dashed lines); 
(b), (c), and (d) are the same spectra divided into 3 regions: 100-360, 300-600, and 600-900 cm-1 to 
highlight the region of interest for Ge-O and B-O vibrations. 

 

The vibrations of [GeO4] units in a ring structure give the principal peaks at about ~350 cm-1, 

~450 cm-1, and 550 cm-1, as discussed previously in the introductory section of this chapter. 

As B2O3 is increased, the vibrations associated with the [GeO4] unit in a 6-membered ring 
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structure, particularly at ~450 cm-1 decrease, suggesting the disruption of the rings. A 

consequent, increase in the vibration associated with smaller (3-membered) ring structure 

at about 500 cm-1 occurs. The vibration of [BO3] species, Fig. 7.12 (d) (~800 cm-1), is seen to 

move to lower Raman shift, indicating that the B–O bond strength is getting weaker. This 

simply means that the rigid B–O in the boroxol ring is transformed into less rigid B–O in the 

non-ring units.  

 

7.5.3 Lithium borogermanate glasses 

Due to the experimental setup limitation, these spectra were collected at lower laser power 

(compared to potassium borogermanate spectra, though comparable to the Raman spectra 

of Mansour [47]). To reduce the effect of noise in these spectra, they were smoothed. The 

region 250 – 1000 cm-1 in Fig. 7.16, is heavily overlapped with various Ge-O and B-O 

vibrations, causing peak parameterisation to be inaccurate. For simplification, the spectra 

are divided into regions (I, II, and III) as shown in Fig. 7.17. Region I covers the vibrations 

from [GeO4], [GeO5]/[GeO6], pentaborate and metaborate units, Region II covers the 

vibrations from [GeO5]/[GeO6], Ge–NBO, Ge–O–Ge, pentaborate, metaborate, boroxol ring, 

and diborate units, and Region II covers the vibration of B–NBO. 

  

Figure 7.16: Assignment of borate and germanate vibrations in lithium borogermanate glasses 
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In this particular section, the region of interest is the third region where the vibration from 

B–NBO is clearly visible. As seen in Fig. 7.17, for low BO1.5 content, vibrations in Region III are 

almost negligible. The peak starts to appear in the 20 BO1.5 series and becomes more 

significant in the 30 BO1.5 series. This may suggest that within these compositions, there is 

formation of non-bridging oxygens associated with the borate network. This however is 

subjective to the baseline selection. The reliability of determining the presence of NBO units 

in these glasses will be discussed later in the neutron diffraction section. 

 

Figure 7.17: The Raman spectra of the lithium borogermanate glasses. 

 

Figure 7.17 shows the Raman spectra for the lithium borogermanate glasses, grouped by 

Li2O content. The general shape of the spectra for 10, 20, and 30 Li2O series resemble the 

binary lithium germanate glasses of the same composition, due to the compositional factor 

since these glasses are mostly germanate. Within the 10 Li2O group, there is no significant 

systematic change to the spectra as GeO2 is replaced by BO1.5. In 20 and 30 Li2O group 

however, a decrease in the Ge-O vibrational region is observed whilst an increase is 

observed in the B-O vibrational region. It should be noted that within this vibrational region 

of B-O, there are some contributions from Ge-O vibrations as well. However, it is only logical 
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to assign the changes in the peak shape due to B-O vibrations since any change associated 

with Ge-O vibration should be decreasing. From these spectra, since changes can be 

attributed to both borate and germanate network, it can be inferred that Li+ is affecting both 

borate and germanate networks. 

 

Figure 7.18: LBG Raman spectra compared to LG, taken from Henderson [17]. 

 

7.5.4 Potassium borogermanate 

Unlike for lithium borogermanate glass, the Raman spectra for the potassium 

borogermanate and potassium germanate glasses were collected using a setup at an 

optimum laser power, hence quantification will be slightly more accurate. The spectra were 

reduced (Section 3.5) and normalised to the total area. Figs. 7.19 compare the Raman 

spectrum for each ternary potassium borogermanate (KBG, red line) to the binary potassium 

germanate (KG, dashed black line) for the same K2O content. The purpose of the comparison 

is to see how similar the Raman spectra are for the Ge-rich glasses to the germanate glasses 

of the same K2O content. The comparison is however, not straight forward since the 

proportion of K2O units associated with the germanate group may not be similar to the 

binary KG glasses for the same K2O content. 

 The vibrations of each borate and germanate species are discussed in detail in 

Section 7.2.2.1 and 7.2.3.1. For simplicity, Fig. 7.19 marks only the vibrations of the units of 

interest, with the vertical lines. From the left, a solid black line (6RGe) arises from the Ge-O 

vibration in 6 membered [GeO4] rings (420 cm-1). Moving to the right, the thick blue strip 
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marks the vibration of Ge-O units in 3-membered [GeO4] rings. These lines, fall within the 

horizontal arrow (marked as GeO2), showing the vibrations mostly due to the [GeO4] units. 

Next, at about 770 cm-1, the orange thick line indicates the vibration of [BO4] units (could be 

in triborate, tetraborate, or pentaborate groups). Overlapping this is a vibration from Q2 

species (marked with the black line). This species is a [GeO4] species with 2 non-bridging 

oxygens. The dash-dotted blue line at 800 cm-1 is the contribution from non-ring [BO3], 

whereas the Q3 line at 865 cm-1 is associated with the [GeO4] unit with 1 nonbridging 

oxygen. 

 

Figure 7.19: Raman spectra for potassium borogermanate glasses, compared to potassium germanate 
glasses 

 

In general, the Raman spectra of the ternary Ge-rich KBG glasses are very similar to the 

binary potassium germanate glasses, especially for low BO1.5 content (10 mol% BO1.5). 

Detection of B-O vibrations in the Raman spectra seems to be impossible. This is because, 

for 10 and 20 mol% K2O series, in the region of interest for the B-O vibration, the spectrum 

for the KBG is very similar to KG. In fact, it is only the 30K2O-30BO1.5-40GeO2 sample which 

shows significant difference from the binary 30K2O-70GeO2. 
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Figure 7.20: Vibrations of B-O associated with NBO in KBG glasses 

 

Fig. 7.20 (a) groups the Raman spectra for the potassium borogermanate according to K2O 

content. Unlike LBG, the Ge-O vibrational region for KBG shows systematic decrease with 

decreasing GeO2 content. The higher frequency region (700 – 1000 cm-1) however shows no 

systematic change. In LBG, the changes in this region were attributed to the changes in the 

borate network. This could suggest that Li and K change the B network differently. In Fig. 

7.20 (b), for high K2O content, there is a contribution from possibly a B–O– at about 1400 cm-

1, a typical range for B–O– in binary alkali borate glasses. However, for 10 K2O group, there is 

a peak at the high frequency range as well, this peak may be the residual peak from the 

binary borogermanate glasses, as seen in the figure. 

 

7.6 11B MAS NMR 

7.6.1 Introduction 

A thorough understanding of the behaviour of boron in binary alkali borate glasses is 

essential when studying the behaviour of B in the more complex ternary alkali 

borogermanate glasses (MBGe). In addition, it is also helpful to consider its environment in 

the more widely studied alkali borosilicate glasses (MBSi) which are structurally simpler than 

MBGe in the sense that only B changes its coordination number and nSiO = 4, whereas in 

(a)                          (b)    



147 
 

MBGe, both B and Ge could change their environments, as observed in the binary borate 

and germanate glasses. 

In alkali borate glasses, nBO (from 11B NMR [8]) is alkali dependent at high alkali 

content, with the lighter ions (Li and Na) producing a higher fraction of 4-coordinated [BO4] 

units compared to the heavier ions (K, Rb, and Cs). The lighter alkali borates also produce 

just one [BO4] peak whilst that from the heavier alkali borates is split. While the peak width 

is seen to vary as a function of the alkali content for the lighter atoms, it seems to be 

independent of the alkali content for the heavier atoms. This suggests a size dependent 

change in the borate network where Li and Na, being smaller in size, are incorporated 

differently than the larger K, Rb, and Cs ions. 

In MBSi glasses, the environment adopted by B is affected by the alkali oxide to 

boron oxide ratio (R = M2O/B2O3), and the silicon oxide to boron oxide ratio (K = SiO2/B2O3). 

Fig 7.21 shows the structural models (nBO v R) proposed, from 11B NMR data, for lithium [1] 

and sodium [2] borosilicate glasses. Initially, in terms of the N4 value, Li and Na affect the 

borosilicate structure in a similar fashion to the binary alkali borate glasses (as characterised 

by the nBO = 3 + R line). However, beyond a certain R-value which is dependent on K, N4 v R is 

different for Li and Na, indicating some difference in the mechanism of incorporation of Li 

and Na in the mixed glass former network. 

In sodium borosilicate glasses (NBS), all the Na+ ions go initially to the borate 

network, (N4 = R until R = 0.5). For convenience, Dell and Bray et. al [2] assumed these 4-

coordinated [BO4] units to be in the diborate superstructural unit, supported by the 

presence of the Raman peaks associated with this unit [2]. This process however extends to 

a higher R value than in the binary alkali borate glasses giving a new maximum value for N4 

at R = ½ + K/16. This is caused by the combination of the alkali ion with some of the diborate 

groups to form a reedmergnerite-like boron-silicon group (Fig 7.22) until all the SiO2 is used 

up at R = ½ + K/16. From this point until R = ½ + K/4, N4 stays constant at ½ + K/16 because 

the Na+ added are taken up by the reedmergnerite group by the creation of NBO on Si (Q3). 

The process of NBO creation is completed when the reedmergnerite group takes an 

additional of 1.5 Na2O molecules which translates to the end value of R = ½ + K/4. Beyond 

this point, Na+ ions combine with the remaining diborate and reedmergnerite groups to 

create NBO on pyroborate units (via the formation of metaborate units) and in the case of 

reedmergnerite, pyroborate and Q2 unit (of SiO2) are formed, at the fractions of (2 – K/4) / (2 

+ K) and (K + K/4) / (2 + K), respectively. As a consequence, N4 decreases linearly as a 
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function of R and K. In general the N4 (expressed as nBO, where nBO = 3 + N4) can be 

summarised as:  
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( ) ( )

( ) ( ) ( )

1
2 16
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Figure 7.21: The lithium [1] and sodium [2] borosilicate models for nBO 

 

Figure 7.22: The reedmergnerite group, taken from [27] 

 

In lithium borosilicate glasses (LBS), for low Li content, N4 changes similarly to the sodium 

borosilicate glasses (N4 = R) until a certain value Rc. Initially, NBO units form in the glass, 

which are associated with [BO3] units, but not [SiO4] units; in NBS, this is not the case since 

the formation of NBO is delayed by the formation of the reedmergnerite groups. In LBS 
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however, the model does not suggest the formation of the reedmergnerite unit, as 

evidenced by the low N4 value (compared to NBS). Beyond Rc (which is obtained by 

computer simulation), Li+ is distributed to both B and Si sites, similarly to the NBS glasses. 

The Li+ in the B sites is shared by the [BO4] and [BO3] (with NBO) units, with  being the 

fraction of Li+ associated with the [BO3] units with NBO. The value of nBO in the LBS glasses 

can be summarised as follows: 
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Figure 7.23: The mechanism of alkali distribution in borosilicate network 

 

As a summary from these Dell and Bray et. al. [2] and Zhong et al. [1] models for alkali 

borosilicate glasses, for low Li and Na content, all the alkali ions are distributed into the 

borate network as in the binary glasses. In NBS, the N4 is extended to a higher value due to 

the formation of the reedmergnerite groups whereas in LBS, the group is not reported to 

form. Another important point is, Si does not change its coordination number in the 

borosilicate glasses. In this study of borogermanate glasses, both B and Ge could adopt a 

higher coordination state without the creation of NBO. Because no models of the ternary 

R (M2O/B2O3) 
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borogermanate glasses have been reported, it seems fairly reasonable to compare the 

ternary borogermanate glasses with the ternary borosilicate glasses. The process of alkali 

distribution in the borosilicate network is summarised as in Fig. 7.23. 

 

7.6.2 11B NMR Results 

7.6.2.1 Binary borogermanate glasses 

Fig. 7.24 shows the 11B MAS NMR spectra for vitreous B2O3 and binary borogermanate 

glasses, confirming the presence of only [BO3] units. The line shapes and chemical shifts of 

the [BO3] units in the binary borogermanate glasses are similar to each other, but noticeably 

different from vitreous B2O3, where about 75% of [BO3] are in the 3-membered boroxol ring 

units and 25% connect the rings [42]. In the binary borogermanate glasses, it has been 

shown that boroxol ring units are absent below about 33.33 mol% BO1.5 [41]. These glasses 

could be regarded as base glasses for the ternary alkali borogermanate glasses used in this 

study but the very high melt temperatures required to make them indicate that structural 

equilibria may be quite different in the absence of alkali oxide. 

 

Figure 7.24: 11B MAS NMR spectra for vitreous B2O3 and binary borogermanate glasses 

 

7.6.2.2 Lithium and potassium borogermanate glasses 

Figs. 7.24 show the NMR spectra for the lithium and potassium borogermanate glasses. As 

seen in the figure, there are two peaks present in the regions 20 – 5 ppm and 5 – 0 ppm, 

which can be attributed to the [BO3] and [BO4] units, respectively. The nBO values were 

calculated from the ratio of the intensities of the peaks (nBO = 3 + N4 = 3 + [BO4]/([BO4] + 

[BO3])) and are presented as in Table 7.4 
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Figure 7.25: 11B NMR spectra for the lithium and potassium borogermanate glasses 

 

Table. 7.4:  nBO for for the lithium and potassium borogermanate glasses 

 Sample 
Nominal composition 

R K 
nBO (±0.10) 

M2O BO1.5 GeO2 M = Li M = K 

20B 
series 

0M-10B 0 10 90 – – 3.00 

10M-10B 10 10 80 2 16 3.53 3.78 

20M-10B 20 10 70 4 14 3.64 3.78 

30M-10B 30 10 60 6 12 3.65 3.67 

30B 
series 

0M-20B 0 20 80 – – 3.00 

10M-20B 10 20 70 1 7 3.48 3.59 

20M-20B 20 20 60 2 6 3.63 3.74 

30M-20B 30 20 50 3 5 3.63 3.61 

 0M-30B 0 30 70 – – 3.00 

 10M-30B 10 30 60 0.7 4 3.44 3.53 

 20M-30B 20 30 50 1.3 3.4 3.60 3.69 

 30M-30B 30 30 40 2 2.6 3.60 3.53 
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7.6.3 Discussion 

7.6.3.1  Lithium borogermanate glasses and lithium borosilicate model 

Fig. 7.26 (a) compares the nBO for the lithium borogermanate glasses (open) to the lithium 

borosilicate model [1] (dashed lines). Figs. 7.26 (b) to (g) compare nBO for each K value.   

 

Figure 7.26: Comparison of the nBO for the LBG glasses to the lithium borosilicate model [1] 

 

For data points with K > 8, nBO is compared with the highest K value available from the LBS 

model (Fig. 7.26 (h)). To illustrate the error on the model, the data points of Zhong and Bray 
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[1] are included. For K values of 2.7, 3, 5, and 6, nBO obtained is slightly higher than, but 

within error of, the model, whilst for other K values (K = 4, and 7), the nBO is as predicted by 

the model. An alternative view is that, for samples with R < 1, corresponding to K = 4 and 7, 

nBO values fit the model well and for R > 1 nBO is slightly higher (but within error) from the 

model. The difference is subtle yet it is tempting to suggest that for R < 1, Li+ enters the LBG 

structure as described by the LBS model whilst for the higher R values, more tetrahedral 

[BO4] units are being created and stabilised in the tetrahedral germanate network. However, 

with limited data points, such an inference is tentative and the main conclusion is that B in 

LBG may undergo similar change in environment as a function of Li2O content as in LBS 

glasses and that, initially, all Li+ goes into the borate network until a certain R value (Rc). 

Beyond this Rc value Li+ may be distributed to both B and Ge sites, and NBO units 

may be formed which are associated with [BO3] units, but not [GeO4+] units. On the B sites, 

Li+ is shared by the [BO4] and [BO3] (with NBO) units, with linearly increasing fraction of Li+ 

associated with the latter as a function of K. However, taking the analogy with LBS further 

would suggest that the Ge environment should be similar to that of Si, with no change in the 

nGeO values. The actual changes in the nGeO values (and the anomalous behaviour of Ge in 

LBG glasses) will be discussed later in the neutron diffraction section. 

 

7.6.3.2 Potassium borogermanate glasses and sodium borosilicate 

model 

There is no potassium borosilicate model but potassium borogermanate (KBG) glasses, can 

be successfully compared with the sodium borosilicate (NBS) model [2]. Figs. 7.27 (b) to (g) 

show this comparison for each K value and, for the data points with K > 8, nBO is compared 

with the highest K value available from both the NBS and LBS models (Fig. 7.26 (h)). The data 

points (open triangles) from the Zhong et al. [1] and Dell et al. [2] study are included. The nBO 

for the potassium borogermanate glasses are shown as closed circles, the sodium 

borosilicate model [2] as solid lines. The nBO for KBG follow the NBS model more closely for 

all K values, except K = 7 where nBO is slightly lower than the model. With the limited data 

points, it is not possible to discuss the trend of nBO(R) for each K value in the KBG glasses, 

however, the local environment change of B in KBG and NBS are closely similar. The first 

conclusion from the comparison is that, in KBG, for R < 0.5, all K+ go to the borate network 

and change nBO as in the binary alkali borate. At R > 0.5, addition of K+ creates more [BO4] 

units, which are stabilised in the germanate network until the R value of 0.5 + K/16. In the 
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NaBS system, this is based on the stabilisation of 1 [BO4] unit in 3 [SiO2] units in a 

reedmergnerite-like unit.  

 

Figure 7.27: Comparison of the nBO for the KBG glasses to the sodium borosilicate model [2] 

 

In KBG however, to our knowledge, no crystal phase containing an equivalent group has 

been reported. Ge on the other hand could change its coordination number with the 

formation of charged [GeO5] or [GeO6] units and may decrease the number of [GeO4] sites 
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available for stabilising the [BO4] units, due to the charge avoidance principle. The NBS 

model is also characterised by the constant nBO region where alkali ions become associated 

with the silicate/borosilicate network. If the same trend is followed by K+ in KBG glasses and 

there is a region where K+ are associated with the germanate network, the nBO would stay 

constant as well. This may not be a problem for high K value where statistically, B and Ge 

can be separated further apart, but for low K value, the formation of charged [GeO4+] units 

may have an effect on the borate network.  The only conclusion from the comparison is that 

B in KBG behave similarly to the NBS model, with the assumption that Ge behaves like Si. 

The environment of Ge can only be probed by neutron diffraction, as discussed later in this 

chapter. 

 

7.6.3.3 Boron in lithium and potassium borogermanate glasses 

 

Figure 7.28: 11B NMR spectra for M2O–BO1.5–GeO2 (M=Li (dashed blue, 14.15 T) and K (solid pink, 14.1 
T)) 
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Figure 7.28 shows the high field (14 T) 11B MAS NMR spectra for lithium and potassium 

borogermanate glasses. The spectra were normalised to the integrated area. Figures in the 

top row (Figs (a), (b), and (c)) compare the spectra for both R = Li and K whilst figures in the 

second (a1 to c1) and third row (a2 to c2) compare the spectra in detail for the region of 4 

and 3-coordinated B, B3, and B4 respectively. For the 4-coordinated boron environment, in 

each BO1.5 series, as M2O is added to the GeO2 network, it is seen that there is a systematic 

change in the shift downfield (to a more positive value), denoting change in the next-nearest 

neighbours of [BO4] i.e. B or Ge. In borosilicate glasses, [BO4] connected to 4 Si atoms, 

[B(4Si)] has the lowest NMR shift value, and this increases on going to [B(B,3Si)] and 

[B(2B,2Si) [54]. A similar trend may occur for borogermanate glasses.  

For low M2O content (hence high GeO2 content, for fixed BO1.5 content), the [BO4] 

units produced are likely to be associated with the GeO2 network. The magnitude of change 

in shift however is different, with KBG being higher than LBG, especially in high BO1.5 content 

glasses. This simply means that in KBG glasses, as K2O is added (and GeO2 content 

decreases), the number of the neighbouring [GeO4] units around the created [BO4] will 

decrease and therefore the downfield shift. Relative to the KBG, the network intermixing is 

however less in LBG glasses evidenced from the smaller change in shift, suggesting little 

change in the number of neighbouring [GeO4] to [BO4] and possible presence of phase 

separation. For the [BO3] peak, in general the shift is seen to be unchanged. Comparison of 

the peak is however difficult due to the overlapping and complexity of the peaks due to the 

quadrupole interaction. 

 

7.7 Neutron diffraction 

7.7.1 Results 

Figures 7.29 and 7.30 shows the distinct scattering i(Q) and total correlation function T(r) for 

the natural and null lithium (LBG) and potassium borogermanate (KBG) glasses. The T(r) 

were obtained using a Qmax value of 40 Å-1 in both cases. The comparison analysis of the 

glasses (g-KBGe2O6 and g-K2B2Ge3O11) with the crystalline phases (c-KBGe2O6 and c-

K2B2Ge3O11) is not included in this preliminary discussion. 

In these T(r) for the alkali borogermanate glasses, the first peak at about 1.5 Å 

corresponds to the boron-oxygen distance(s) in the glasses and the second peak at about 1.8 

Å corresponds to the germanium-oxygen distance(s). Using the M-O bond-valence values 

[43], the boron-oxygen peak can be parameterised with 2 peaks at 1.371 Å and 1.477 Å, 

representing [BO3] and [BO4] respectively. Similarly, the germanium-oxygen peak can be 
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assigned to [GeOn] units with the dominant [GeO4] giving an rGeO of 1.748 Å. There is also 

contribution from at least one other peak on the trailing edge, corresponding to the higher 

coordinated [GeO5] and/or [GeO6] units. In binary alkali germanate glasses (K2O – see below; 

Na [35]; and Cs [33]) the [GeO5] unit is favoured over the [GeO6]. The parameterisation of 

this higher coordinated unit is however difficult due to the complex geometry of the [GeO5] 

polyhedron [55]. In this study, only the B-O peak is parameterised and the Ge-O peak is 

simply integrated to determine nGeO. 

 

Figure 7.29: Total correlation function T(r) and distinct scattering i(Q) for lithium borogermanate 
glasses 
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Figure 7.30: Total correlation function T(r) and distinct scattering i(Q) for potassium borogermanate 
glasses 

 

7.7.2 nBO (11B NMR and ND) and nGeO 

Fig. 7.31 shows the T(r) v r plot for a potassium borogermanate glass, to illustrate the 

process of obtaining average nBO from ND. For nBO (NMR), the nBO is obtained from the area 

of the [BO4] and corrected [BO3] peak, for nBO (Integration), the nBO is obtained by dividing 

the integrated r*T(r) of the B-O region (where the overlapping Ge-O peak is removed) by a 

factor of tBO=2cBbBbO and for nBO (ND – Peak ratio), the average nBO is obtained by fitting the 

T(r) with B-O peaks associated to [BO3] and [BO4] units using calculated B-O distances [43] 

and the ratio of the peaks is calculated, as shown in Eqn 7.3. Accurate nBO is obtained from 

this method provided that the peak positions assigned to the rBO in [BO3] and [BO4] units are 
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correct. nBO values obtained by NMR and peak ratio are consistent if the glass composition is 

close to nominal. The calculation of nBO from integration (ND), however, has compositional 

factor of cB associated. Therefore, the accuracy of nBO depends on cB.  

  

Figure 7.31: Parameterisation of the B-O peak corresponding to [BO3] and [BO4] units 

 

In these ternary glass systems, determination of cB, cM, cGe, and cO (via EDX, only K/Ge ratio is 

obtained) is difficult due to the limited information available, such as the unknown B/K to 

B/Ge ratio. This is more problematic in LBG glasses where only Ge peaks can be 

quantitatively measured from EDX. cB in both cases however can be optimised to give a 

value of nBO equal to the nBO obtained by 11B(NMR) or ND(Peak ratio). This however has a 

knock on effect on the To(r) line (4πρor(sum cibi)2) since new c values would change the To(r) 

value and hence affect the normalisation of i(Q) (Note that, i(Q) is normalised using the 

nominal compositions). To illustrate the magnitude of error, for the null10L10B sample, a 

0.001 error in cB gives rise to a nBO error value of about 0.20, which is 3 times the “typical” 

error for ND derived coordination numbers in similar glasses (for example in Chapter 5, and 

6, and elsewhere [56-57]. Figs. 7.32 and 7.33 (top row) shows the nBO values obtained from 

these different methods. It is seen that for LBG glasses, nBO obtained by integration differs 
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greatly from values obtained by other methods at high Li2O. This could arise from the error 

in normalisation due to the compositional factor and would have the greatest effect where 

the To(r) values are the lowest, i.e. for the highest Li2O content in each series. For this 

preliminary study, the determination of nBO by peak ratio will now be used since it excludes 

the compositional factor and is therefore more accurate. However, this can only be used 

where information on average coordination is available from another source – e.g. 11B NMR 
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(7.3) 

However, the average nGeO value can only be obtained by integration and not peak ratio 

since the geometry of the higher-coordinated [GeOn] unit is unknown (n = 5 and/or 6). 
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(7.4) 

 

For case (1) nGeO is obtained directly from the area of the Ge-O peaks, divided by the t(r)Ge-O 

as calculated [58]. For case (2) and (3), the fraction of cB is the optimised cB calculated from 

the 11B NMR value. Since for LBG glasses, the Li/Ge ratio cannot be determined 

experimentally, two extremes are considered. Case (1), [Li/Ge]Nominal – [Li/Ge](1) is 1/3 of 
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[K/Ge]Nominal – [K/Ge]EDX. The factor of 1/3 based on the volatilisation loss study on KBS and 

LBS by Shimbo [59], and (2), [Li/Ge]Nominal = [Li/Ge](2).  

 

Figure 7.32: nBO and nGeO for LBG glasses from various methods. (1), (2), and (3) refers to Eqn. 7.4. 

 

 

Figure 7.33: nBO and nGeO for KBG glasses from various methods. (1), (2), and (3) refers to Eqn 7.4. 
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For LBG samples, nGeO values were obtained from the null Li isotope samples where Li 

partials are removed. The B-O and Ge-O overlapping distributions are treated using 

complementary nBO values from 11B MAS NMR. As seen in the nGeO plots in Figs. 7.32 and 

7.33, these corrections produce little effect on the nGeO values. A cGe loss of about 0.001 

translates to an error of ±0.02 in nGeO which is 10 times smaller than the error of nBO. For KBG 

glasses (Fig 7.33) the nGeO values at high K2O content are less than 4, and also for the binary 

30BO1.5–70GeO2 the value obtained was about 3.80, which is unlikely; the value should be 

4.00 since it was obtained from the optimised cB . This is due to the knock on effect of the 

normalisation. In theory, the optimised cB, cGe, cM, and cO should correspond to the To(r) = 

4πρor(sum cibi)2 constant, which is the value used to fit the baseline for the Do(r) (Eqn 2.10). 

This would also mean that, the appropriate fractions should be used to process the data, 

however, for convenience and simplicity, the nominal composition is used and the error is 

relative to the nominally derived parameters. In this study the optimised parameters are 

used in obtaining the final coordination number.  

 

Figure 7.34: T(r) of LBG and KBG glasses fitted with a peak corresponding to a [GeO4] to highlight the 
necessity of more peak(s) corresponding to a higher coordinated [GeO4+] unit. 
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To support the claim that nGeO should not be lower than 4.00, Fig. 7.34 shows the weighted 

T(r) to compare the contribution from higher coordinated [GeO4+] units. As seen in the 

figure, the T(r) is fitted with a peak at 1.748 Å to correspond to the Ge-O distance in 

tetrahedral [GeO4], obtained from bond valence calculation [43]. For 30K-10B, 30K-20B, and 

30K-30B, to achieve a good fit, at least one other peak should be included. This peak should 

correspond to a higher coordinated [GeO4+] unit, which means that the average nGeO in these 

samples should be greater than 4. This suggests that the errors are slightly larger than 

expected. The minimum error on nBO is about ±0.1 with ±0.2 (at least, for M = K) on the nGeO 

values. To obtained accurate nBO and nGeO values, the errors associated must be evaluated in 

more detail. 

 

Figure 7.35: Comparison of the T(r)GeO for LBG and KBG glasses highlighting the area, hence nGeO 
difference. 

 

Fig, 7.35 compares the T(r)GeO for the LBG and KBG glasses to directly illustrate the difference 

in Ge environment (and by extension, the nGeO value). In general, the area for GeO in LBG is 

always greater than in KBG. For the 10 BO1.5 series, the difference is less pronounced, 

compared to the higher BO1.5 contents. From NMR, nBO values for KBG are higher than for 

LBG, which means KBG has less K+ available for association with Ge, compared to LBG 

glasses. The preference of Li+ to modify the germanate structure rather than borate may be 

due to several factors; (1) the limiting behaviour of B in the glass network, where, as 

observed in LBS [1], non-bridging oxygen atoms are created at fairly low R, compared to NBS 

and this limits the amount of [BO4] units that can be stabilised into the germanate network; 

(2) the formation of more stable “superstructural groups” of boron-germanium in the 

presence of Li+, which in turn, limits the number of available Li+ for borate group. 
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In Figs 7.36 and 7.37, the dashed-blue line (nGeO*) is the estimated nGeO based on the residual 

Li+ or K+ remaining after accounting for the alkali associated with borate units (calculated 

from nBO (NMR) with the assumption that there is no nonbridging oxygen in the glasses; 

 

2 2 3 2

GeO

GeO

(1) ( 3).2

(2) 2

(2) (1) (2 ) [( 3).2 ] ( * 4).c

Rearrange (2) (1);

(2 ) [( 3).2 ]
* 4

*

BO

BO

BO

For aM O bB O cGeO

M associated with B is n b

Total M is a

M associated with Ge is a n b n

a n b
n

c

If no M is associated with NBO units









 

 



     



 
 

 
(7.5) 

The error band is marked by the green shaded area. Any values lower than the line would 

indicate some association of Li+/K+ with NBO in the form of [BO3]– or [GeO4]–. Theoretically, 

nGeO should never exceed this line. In LBG glasses, nGeO increases as a function of M2O 

content, to an extent that no NBO is created in the glass network, whereas in KBG glasses, it 

is obvious that there is formation of NBO at higher K2O content (possibly at 20 mol% K2O and 

definitely at 30 mol% K2O). In KBG, nBO and nGeO both have a maximum, which means that 

the decrease in the average coordination number is due to the formation of NBO in both 

borate and germanate networks. In LBG, both nBO and nGeO continue to rise and there is no 

maximum present. This reflects that Li+ modifies the borogermanate structure differently 

from K+. 

 

Figure 7.36: nGeO and nBO agreement in LBG glasses 
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Figure 7.37: nGeO and nBO agreement in KBG glasses 

 

7.7.3 Lithium environment 

 

Figure 7.38: T(r)-Nat, T(r)-Null, and T(r)-Difference for the selected samples of 20 mol% Li2O for each B 
series 

 

20Li – 30B  

 

 

 

20Li – 20B  

 

 

 

20Li – 10B  

 



166 
 

Due to beamtime/absorption limitations, data on sample pairs of T(r)-Nat and T(r)-Null were 

restricted to the 20 mol% Li2O samples for each B series (it is hoped that data can be 

collected for the remaining Nat samples in future). With the Nat-Null pairs, the Li 

environment can be probed using the difference technique. As shown in Fig. 7.38, the 

difference between T(r)-Nat and T(r)-Null yield negative Li,O partial correlation functions 

due to the negative scattering length of Li in the natural samples. 

Fig. 7.39 shows the partial T(r)Li,O for each sample (as labelled). There is a peak at r < 

1.5 Å, for 20L-30B which could indicate a difference in BO1.5 content between Null and Nat, 

or could reflect the rather poor statistics in these neutron absorbing samples (Note that the 

truncation effect is reduced since Lorch modification function is used). The Li-O distances 

reported in crystalline LiBGeO4 [60] are 1.76 Å (in Li-OB) and 1.86 Å (in Li-OGe) (Fig. 7.40) and 

1.979 Å is typical of 4-coordinated [LiO4] [43]. Therefore, the distances observed in the 

borogermanate glasses of 1.75 Å (Peak 1) and 1.98 Å (peak 2) could well indicate Li in borate 

and in germanate environments. The Li-O peaks in Fig. 7.39 are fitted with fixed FWHM 

values of 0.0776 and 0.1333 Å for Peak 1 and Peak 2. The quality of the fit is judged by the 

consistency of the residual with the background noise. The area of Peak 1 increases with 

increasing BO1.5 content and the area of Peak 2 decreases with decreasing GeO2 content, 

further supporting the assignment of the peaks to Li in predominantly borate or germanate 

networks. The parameters obtained from the fit are shown in Table 7.5. 

 

Figure 7.39: T(r)-Difference for the selected samples of 20 mol% Li2O for each B series with Li-O peaks 
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Figure 7.40: Li site (1/1) found in approximated LiBGeO4 crystal phase [60]. 
 

Table 7.5: Li-O peak parameters from peak fitting and integration. tLiO is the coefficient for Li-O partial 
correlation function. 

Sample tLiO 

nLiO 
Av 
nLiO 

nLiO 

σ 

Centre 
of 

gravity 
(rLiO / Å) 

Peak 1 
(1.7477 

Å) 

Peak 2 
(1.9833 Å) 

Integration 
(1.6 - 2.24 Å) 

20L-10B -2.99E-02 1.08 3.40 4.48 4.60 0.12 1.9191 

20L-20B -3.04E-02 2.88 2.16 5.04 4.85 0.20 1.8413 

20L-30B -3.09E-02 3.03 1.62 4.65 4.24 0.41 1.8231 

 

Figure 7.41: Average nLiO in 20Li2O-xBO1.5-(80-x)GeO2 for x = 10, 20, and 30 mol% 

 

Fig. 7.41 (a) shows the average nLiO obtained from the peak fitting and integration. The 

average nLiO obtained in this study is consistent with the range of average nLiO values found in 

Li2O-B2O3 glasses [61-62] (shown as the orange bar in the Fig. 7.41).  nLiO values in Li2O-GeO2 

have not been published [63]. This value of 4 – 5 is also consistent with Li+ behaving as a 

modifier. At low B content, assuming homogeneous distribution of Li, an average of 3 out of 

4 oxygen atoms bonded to Li+ are in the germanate network. This could possibly suggest that 

1 [BO4] unit is being stabilised by 3 [GeO4] units, because, at this composition, no NBO is 

associated with either borate or germanate units and also due to the charge avoidance. Fig. 

7.41 (b) shows the mean rLiO in the series. It is seen that, as BO1.5 content is increased at the 

expense of GeO2, the mean Li-O distance decreases. 
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7.8 Conclusion 

Ternary glass samples of natural and null xLi2O-yBO1.5-(100–x–y)GeO2 (LBG) for x = 10, 20, 

and 30 mol% and y = 10, 20, and 30 mol% were successfully prepared. EDX, showed some K 

loss, greater for high K2O and BO1.5 contents. Density and its derivatives (molar volume and 

number density) analyses revealed anomalous change in both B and Ge environment as a 

function of M2O content (M = Li and K). Raman scattering, which is sensitive to species, 

revealed that the spectra are dominated by Ge-O vibrations (since the glasses in this study 

are Ge-rich glasses). Trends in the spectrum shape (intensity) were observed, which confirms 

the density analysis, that both borate and germanate networks are changed.  

 11B MAS NMR was performed on both LBG and KBG glasses. From the N4 value, 

average nBO was obtained. The nBO for LBG and KBG are seen to change in a similar manner 

to the lithium borosilicate (LBS) [1] and sodium borosilicate (NBS) [2] models respectively. 

From preliminary results on neutron diffraction, nBO(NMR) is used to obtain average nGeO 

values. The nGeO values are remarkably different in LBG and KBG glasses: in LBG, nGeO 

increases as predicted for the absence of non-bridging oxygen NBO in the glass. For KBG, 

nGeO shows a maximum suggesting the presence of NBO atoms at high K2O content. The 

lithium environment is extracted from one series (fixed 20 mol% Li2O content and 10, 20, 

and, 30 mol% BO1.5) using the difference technique. 2 Li-O peaks are seen in the difference 

plot, showing discrimination between Li-O distances in the borate and germanate networks. 

Average nLiO ranges from 4 – 5, confirming the typical behaviour of Li+ as a modifier. This 

preliminary work will be completed with the extraction of nLiO for each sample so the trend 

of Li+ association to either borate and germanate network can be studied for fixed BO1.5 

content and increasing Li2O content. Future work involving the extraction of nKO value 

(possibly by means of simulation, or using isostoichiometric method using other alkali oxide 

which is known to induce isostructural changes in glass network) will also be useful for 

studying the preferential association of K+ to either borate or germanate network. 
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Chapter 8 – Conclusions and future work 

 

8.1 Introduction 

This chapter concludes the study by summarising Chapter 5 (Lithium tellurite) and Chapter 6 

(Lead tellurite) into a section on tellurite glass structure, and Chapter 7 (Alkali 

borogermanate glasses) into a section on borogermanate glass structure. Future work to be 

considered is also included in this chapter. 

 

8.2 Tellurite glasses 

In this thesis, the structure of tellurite glasses was studied by controlling the type of the 

second (modifier) oxide used. For the first study, a monovalent typical modifier Li+ cation 

was used in the form of Li2O, whilst for the second study, the more complex divalent Pb2+ 

cation (with 6s2 lone-pair of electrons) in the form of PbO was used. Unlike Li+, Pb2+ is 

reported to behave as a modifier at low PbO content, and more like an intermediate 

(conditional network former) at much higher PbO content. Moreover, Pb2+ has the active 

lone pair of electrons which may interact with the 5s2 lone pair of Te hence affecting the 

TeO2 network differently than the Li+ ion.  

Two tellurite glass series of 10, 15, 20, 25, and 30 mol% Li2O and 10, 12.5, 15, 17.5, 

and 20 mol% PbO were made. The nominal compositions of the glasses were confirmed to 

be close to nominal by comparing density values with those from the SciGlass database (in 

addition, for PbO-TeO2 the composition was confirmed by EDX). In Li2O-TeO2, the density 

decreases as TeO2 increases due to the larger atomic mass of Te (Te = 52 a.m.u). For PbO-

TeO2 however, since Pb is heavier than Te (Pb = 82 a.m.u), the density decreases as TeO2 

content increases. Excluding the mass contribution, molar volume values revealed that, as 

TeO2 decreases, the molar volume value decreases in both Li and Pb modified tellurite 

glasses, where smaller molar volume is observed for Li2O-TeO2, compared to PbO-TeO2 

glasses, mainly due to the size of Li+ which is smaller than Pb2+. Consequently, number 

density for Li+ is higher than for Pb2+. From the number density analysis, similar trends are 

observed in both Te and O environments which suggest that changes to the TeO2 network 

occur in both of these glass systems. The molar volume and number density plots for Li and 

K are compared in Fig. 8.1. In each plot in Fig. 8.1, polynomial fit lines are drawn as guides to 

the eye to suggest possible behaviour of each parameter from pure TeO2 glass to the binary 

tellurite glasses. It should be noted, however, that pure TeO2 glass and the binary tellurite 
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(Li2O-TeO2 and PbO-TeO2) glasses were prepared using two different preparation methods, 

where the pure TeO2 glass was roller-quenched, whilst the latter were splat-quenched with 

slower cooling rate. 

In tellurite glasses, these 5 basic units are often associated when describing the glass 

structure; [TeO4/2], [TeO2/2O], [TeO3/2O–], [TeO1/2O2
–], and [TeO3

2–]. From Raman 

spectroscopy however, these units are simplified into only two; [TeO4] and [TeO3] units. The 

Raman spectra for both Li2O-TeO2 and PbO-TeO2 glasses are similar, showing the various 

vibrations of Te-O bonds in [TeO4] and [TeO3] units, and it is concluded that, as Li2O / PbO is 

added to the glass network, [TeO4] units are being converted to [TeO3]. 
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Figure 8.1: Molar volume and number density for constituent atoms in Li2O-TeO2 and PbO-TeO2 
glasses. Red dashed line is a guide-to-the-eye fit, connecting the glasses and the pure-TeO2 glass (a-

TeO2). 

 

The Te environment in Li2O-TeO2 glasses is obtained from neutron diffraction of null lithium 

isotope glasses to remove Li-O partials which overlap with the Te-O distances, whereas in 

PbO-TeO2, the Te (as well as Pb) environment is obtained from combined neutron and X-ray 

diffraction where the O-O peak (which overlaps with the Pb-O distance) is contrasted. The 

average coordination number of Te-O, nTeO shows two regions; plateau (independent of 

cation type), and post-plateau (dependent of cation type). nTeO(Li) and nTeO(Pb) are 
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compared with nTeO(K) from [1] as in Fig 8.2. In the plateau region, the cation induces silica-

like changes to the tellurite structure by creating non-bridging oxygen NBO atoms, which 

maintains nTeO as found in pure TeO2 glass [1] until a certain “deviation” composition xD 

where the NBO produced are insufficient and more NBO atoms are created by breaking the 

Te-O bond. This transforms a [TeO4] to a [TeO3] unit and the average nTeO decreases. The 

transformation process is described as [TeO4]→b[TeO3], where b is the number of Te-O 

bonds broken, which is also equal to the number of [TeO3] units produced. b is seen to be 

dependent on the cation type where, smaller Li+ (0.59 Å) has the lowest b value of 0.8, whilst 

for slightly larger K+ (1.38 Å), the b value increases to 1.5. Pb2+ (1.29 Å) is slightly smaller than 

K+, the b value is however larger. This means that b is not just a function of cation size. The 

origin of the large b value for Pb2+ maybe speculated to arise from its lone pair activity. For 

future work, Tl+ is a suitable candidate to be studied since it also has a lone pair and it 

behaves like an alkali metal in glasses. To improve the existing datasets and have better 

confidence in the b values, Li2O-TeO2, and PbO-TeO2 glasses with lower and higher 

compositions (as well as more detailed increments) could be prepared by roller-quenching. 

The average nTeO values in the post plateau region can be represented by; 

 ( ) ( )
100TeO post plateau TeO plateau D

xn x n x b x
   
 

  
8.1 

where nTeO(x)plateau (i.e. the dashed line in Fig. 8.2), b, and xD are variables. To be able to 

accurately determine the value of each variable, more data points are required. From this 

relationship, it is seen that the value of b depends on the value of xD (which depends on the 

value of nTeO(x) plateau). 

 

Figure 8.2: nTeO for Li2O-TeO2, K2O-TeO2, and PbO-TeO2 glasses 
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The Li+ environment in Li2O-TeO2 glasses was studied for 10, 15, 20, 25, and 30 mol% Li2O 

glasses by using isotope substitution neutron diffraction, whilst the Pb2+ environment in 

PbO-TeO2 glass for 10, 12.5, 15, 17.5, and 20 mol% PbO was extracted from X-ray and 

neutron diffraction data. For Li+, in all compositions, Li+ behaves as a modifier. The average 

nLiO was found to be 5 at 10 and 15 mol%, decreasing to 4.5 at 20 mol% and 4 at 25 and 30 

mol%. For nLiO > 4, the LiO unit can be regarded as as [LiO4+1] with 4 almost equal distances 

at about 1.967 Å and another longer distance at 2.233 Å (Whilst the classification of these 

[LiO4+1] units is unclear, they can be regarded as a mixture of [LiO4] and [LiO4+1], but not 

[LiO5]). These distances are also found in one of the Li sites in the high temperature phase of 

β-Li2Te2O5. In PbO-TeO2 glasses, at these low PbO contents (10 – 20 mol% PbO), Pb2+ 

behaves as a modifier with average nPbO = 8 and 1 broad distribution centred at rPbO = 2.58 Å. 

(From bond valence calculation [2], symmetric [PbO7] and [PbO8] have rPbO distances of 2.58 

Å and 2.62 Å, respectively). The PbO peak shape and distance in all the compositions 

resemble the (short-range order) PbO peak as found in PbTe5O11, the crystal with the 

composition closest to the glasses studied. For future work, the study of PbO-TeO2 glasses at 

high PbO contents (> 50 mol% PbO), where Pb2+ is likely to behave as a glass former will be 

useful to elucidate the interaction of the 5s2 lone-pair of Te4+ with the 6s2 lone-pair of Pb2+. 

For further understanding of the environments of Te4+ and Li+/Pb2+ in lithium and lead 

tellurite glasses, the structure factors which were obtained experimentally could be 

simulated, for instance using Reverse Monte Carlo, molecular dynamics, or Empirical 

Potential Structure Refinement [3] method. 

 

8.3 Borogermanate glasses 

Nine compositions of Ge-rich lithium and potassium borogermanate glasses were made for 

10, 20, and 30 mol% M2O for each 10, 20, and 30 BO1.5 series, as shown in Fig. 8.3. The 

density and molar volume of the ternary glasses change similarly as the alkali germanate 

glasses, due to the compositional factor of Ge atom. From number density analysis, both B 

and Ge in both systems change in a similar fashion to alkali borate and germanate glasses, 

respectively, suggesting that B and Ge change their environments in each B series as a 

function of alkali content. This is also supported by the Raman analysis. These glasses were 

made in those compositions so that the germanate environments (anomaly) can be studied. 

To analyse the boron environment in terms of previous studies on borosilicate glasses, the 

compositions are converted into R (M2O/B2O3) and K (GeO2/B2O3) values which produces 
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limited N4=f(K,R) lines. It was found out that N4=f(K,R) in KBG and LBG glasses changes in a 

similar fashion to the sodium borosilicate (NBS) model by Dell and Bray et al. [4] and the 

lithium borosilicate model (LBS) model by Zhong et al. [5] respectively.  

 

Figure 8.3: Glass compositions of M2O-BO1.5-GeO2 for M = Li and K in this study 

 

For Ge, nGeO(K) shows a maximum at 20 mol% K2O content in each B series, however for 

nGeO(Li), nGeO increases as a function of Li2O content with the absence of the maxima. In LBG, 

experimental nGeO follows the values predicted for the absence of NBO for all Li2O contents. 

For KBG however, at high (30 mol% K2O in all B series), the discrepancy of the number of K+ 

ions (where K+
Total < K+

B + K+
Ge) indeed suggests that at this composition, NBO are present in 

the glass. Based on the different trends of nBO and nGeO obtained for lithium and potassium 

borogermanate glasses, it is inferred that Li+ and K+ induce non-isostructural changes to the 

borogermanate network, making the investigation of Li+ and K+ environments using 

isostoichiometric neutron diffraction method invalid. For Li+ however, the environment is 

extracted for 20 Li2O mol% samples in each B series using the difference nat – null (isotope 

substitution) neutron diffraction technique. Two Li-O peak distances are obtained, and 

assigned to the distance of Li–OB (shorter, 1.75 Å) and Li–OGe (1.98 Å) based on the trend of 

peak areas as a function of BO1.5 or GeO2 composition, and also by comparison to the 

approximate crystal structure of LiBGeO4. In all samples, nLiO was found to range from 4 to 5, 

where Li+ behaves as a simple modifier.  For future work, nLiO for the rest of the samples 

would be obtained to study the effects of Li+ environment on Ge (if the Ge anomaly is really 
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absent) in LBG glasses. To study the K+ environment closely, it would be useful to have the 

diffraction data for sodium borogermanate glasses since Na+ is likely to behave similarly as 

K+, hence the environments of Na+ and K+ can be obtained by the isostoichiometric neutron 

diffraction method. For recommendations, LBG and KBG samples with compositions similar 

to the LBS and NBS studied by Bray and co-workers should also be prepared so more 

detailed study of the B environment in borogermanate glasses can be done. 
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Appendix A 

 

A.1 Unit nomenclature 

 

Figure A.1: Units of tellurite, germanate, and borates in glasses  

 

Figure A.1 shows the species/units often used when describing the structure of tellurite (a – 

e), germanate (f – l), and borate (m – q) glasses. In the figure, the network former cations 

(Te4+, Ge4+, and B3+) are represented by the black solid circle. The bridging oxygen BO (crossed 
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circle), non-bridging oxygen NBO (empty circle), terminal oxygen TO (striped circle), and 

terminal–non-bridging resonance oxygen TO+NBO (half striped, half empty) are labelled 

accordingly. The nomenclature of these units are shown as in Table A.1. For example for TeO4/2 

unit, or [TeO4/2], the Te is connected to bridging oxygen BO (O1/2) atoms; 1 Te to 4 BO = 

[TeO4/2]. For TeO3/2O–, 1 Te is connected to 3 BO (O1/2) and 1 NBO (O–), and for TeO1/2O2
 –, 1 Te 

is connected to 1 BO (O1/2) and 1 NBO (O–) + 1 TO (O), where 1 NBO and 1 TO resonate as (O2
–

). 

 In terms of Q-speciation, for Te, Q is represented as Qm
n where m and n are the 

numbers of bridging oxygen and total oxygen bonded to Te, respectively. Whereas for Ge, Qn 

is used, where n is the number of bridging oxygens. 

 

Table A.1: Nomenclature of tellurite, germanate and borate units 

System Unit  Q-speciation / 

Tellurite 

a TeO4/2 Q4
4 

b TeO3/2O– Q3
4 

c TeO2/2O Q2
3 

d TeO1/2O2
 – Q1

3 

e TeO3
2– Q0

3 

Germanate 

f GeO4/2 Q4 

g GeO3/2O– Q3 

h GeO2/2O2
2– Q2 

i GeO1/2O3
3– Q1 

j GeO4
4– Q0 

k GeO5
– – 

l GeO6
2– – 

Borate 

m BO3/2 – 

n BO2/2O– – 

o BO1/2O2– – 

p BO3
3– – 

q BO4
– – 
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