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Abstract

We develop a model of bidding markets with financial constraints à la Che and

Gale (1998b) in which two firms choose their budgets optimally and we extend it to

a dynamic setting over an infinite horizon. We provide three main results for the

case in which the exogenous cash-flow is not too large and the opportunity cost of

budgets is positive but arbitrarily low. First, firms keep small budgets and markups

are high most of the time. Second, the dispersion of markups and “money left on

the table” across procurement auctions hinges on differences, both endogenous and

exogenous, in the availability of financial resources rather than on significant private

information. Third, we explain why the empirical analysis of the size of markups based

on the standard auction model may have a bias, downwards or upwards, positively

correlated with the availability of financial resources. A numerical example illustrates

that our model is able to generate a rich set of values for markups, bid dispersion and

concentration.
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1 Introduction

An implicit assumption of the standard model of bidding is that the size of the project is

relatively small compared to the financial resources of the firm. That this assumption is

key to derive the main predictions of the standard model is known since the analysis of Che

and Gale (1998b). In their model, the extent to which a firm is financially constrained

depends on its budget, working capital hereafter, which is assumed exogenous. In our

paper, as it happens in reality, the firm’s working capital is not exogenous but chosen out

of the firm’s internal financial resources, the cash hereafter, which in turn depends on the

past performance of the firm.

Our first main result, stated in Theorem 1, challenges the view that “auctions [still]

work well if raising cash for bids is easy” (Aghion, Hart, and Moore (1992, p. 527)).1

Although the standard model arises in our infinite horizon setup when working capitals

are sufficiently abundant, firms tend to keep too little of it and markups are high if the

exogenous cash-flow is not too large, in a sense we formalise later, and the opportunity

cost of working capital is positive but arbitrarily low

Besides, our model displays sensible features regarding the behaviour of markups,

“money left on the table” and market shares that suggests that we should be more cautious

in the empirical analysis of bidding markets. Our second main result, see Corollaries 3 and

5, provides a new explanation for the dispersion of markups and “money left on the table”2

observed across procurement auctions. Interestingly, this explanation, discussed below

the aforementioned corollaries, does not hinge on significant private information about

working capitals and costs, but on differences in the availability of financial resources

across auctions in a sense that we formalise later. This casts doubts about the usual

interpretation for the dispersion of markups and “money left on the table” observed in

procurement as indicative of incomplete information and large heterogeneity in production

cost.3 Our third main result, see Corollaries 4 and 6, explains why the empirical analysis of
1This conjecture has been recently questioned by Rhodes-Kropf and Viswanathan (2005) under the

assumption that firms finance their bids by borrowing in a competitive financial market.
2“Money left on the table” is the difference between the two lowest bids in procurement auctions.
3Indeed, as Weber (1981) pointed out:“ Some authors have cited the substantial uncertainty concerning

the extractable resources present on a tract, as a factor which makes large bid spreads [i.e. ‘money left on

the table’] unavoidable.” More recently, Krasnokutskaya (2011) noted that “The magnitude of the ‘money
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the size of markups may be biased downwards or upwards with a bias positively correlated

with the availability of financial resources when the researcher assumes that the data are

generated by the standard model. We also use a numerical example to illustrate that the

model is able to generate a rich set of values for key variables like markups, bid dispersion

and concentration.

We are interested in markets in which only bids that have secured financing can be

submitted, i.e. are acceptable,4 as when surety bonds are required.5 We also follow Che

and Gale’s (1998b) insight that the set of acceptable bids increases with the working

capital. This feature is present in a number of settings in which firms have limited access

to external financial resources. One example is an auction in which the price must be paid

upfront, and hence the maximum acceptable bid increases with the firm’s working capital.

Another example is a procurement contest in which the firm must be able to finance the

difference between its working capital and the cost of production. If the external funds

that are available to the firm increase with its bid or its profitability, it follows that the

firm’s minimum acceptable bid decreases in the firm’s working capital. The latter property

arises when the sponsor pays in advance a fraction of the price,6 a feature of the common

practice of progress payments, or when the amount banks are willing to lend depends on

the profitability of the project, as it is usually the case.7

A representative example of the institutional details of the bidding markets we are

interested in is highway maintenance procurement. As Hong and Shum (2002) point out

“many of the contractors in these auctions bid on many contracts over time, and likely

left on the table’ variable [...] indicates that cost uncertainty may be substantial.”
4Alternatively, we could have assumed that it was costly for the firm to default on a submitted bid, e.g.

the firm may bear a direct cost in case of default.
5In the U.S., the Miller Act and “Little Miller Acts” regulate the provision of surety bonds for federal

and state construction projects, respectively. A surety bond plays two roles: first, it certifies that the

proposed bid is not jeopardized by the technological and financial conditions of the firm, and second, it

insures against the losses in case of non-compliance. Indeed, the Surety Information Office highlights that

“Before issuing a bond the surety company must be fully satisfied that the contractor has [...] the financial

strength to support the desired work program.” See http://suretyinfo.org/?wpfb_dl=149.
6A numerical illustration can be found in Beker and Hernando-Veciana (2011).
7We show in Section S4 of the supplementary material that this is also the theoretical prediction of a

model inspired by the observation of Tirole (2006), page 114, that “The borrower must [...] keep a sufficient

stake in the outcome of the project in order to have an incentive not to waste the money.”
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derive a large part of their revenues from doing contract work for the state.” Besides,

Porter and Zona (1993) explain that “The set of firms submitting bids on large projects

was small and fairly stable[...] There may have been significant barriers to entry, and there

was little entry in a growing market.”8

Motivated by these observations, we build a static model in which two firms endowed

with some cash choose working capitals to compete in a first price auction for a procure-

ment contract. The cost of complying is known and identical across firms, the minimum

acceptable bid increases with the firm’s working capital and only cash is publicly observ-

able.9 Since using cash as working capital means postponing consumption, it is costly.10

Firms choose their working capitals and bids optimally. The static model provides a sim-

ple setting with a unique equilibrium that illustrates the strategic forces that shape our

results. The dynamic model consists of the infinite repetition of the static model. The

cash at the beginning of each period is equal to the last period unspent working capital

plus the earnings in previous procurement contract and some exogenous cash-flow.

In our static model, to carry more working capital than strictly necessary to make the

bid acceptable is strictly dominated because of its cost. Thus, the firm that carries more

working capital wins the contract11 and both firms incur the cost of their working capital.

The strategic considerations that shape the equilibrium working capitals are the same

as in the all pay auction with complete information.12 Not surprisingly, in a version of

our game with unlimited cash, there is a unique symmetric equilibrium in which firms

randomize in a bounded interval with an atomless distribution. This is also the unique

equilibrium in our game when the firms’ cash is larger than the upper bound of the support

of the equilibrium randomization. We call the scenario symmetric if this is the case, and

laggard-leader otherwise. In this latter case, firms also randomize in a bounded interval,
8Moreover, it can be shown that in a model with many firms and entry the natural extension of the

equilibrium we study has the feature that only two firms with the most cash enter the market.
9Our first main result and the part of our second main result regarding markups also hold in a version

of our model with observable working capital, see Beker and Hernando-Veciana (2011).
10Any other motivation for the cost of working capital would deliver similar results.
11This feature seems realistic in many procurement contracts: “It is thought that Siemens’ superior

financial firepower was a significant factor in it beating Canada’s Bombardier to preferred bidder status

on Thameslink,” in Minister blocks. . . , The Guardian, 11/Dec/2011.
12It resembles Che and Gale’s (1998a) model of an all pay auction with caps in that working capitals are

bounded by cash. Our model is more general in that they assume exogenous caps common to all agents.
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though the firm with less cash, the laggard hereafter, puts an atom at zero and the other

firm, the leader, at the laggard’s cash.

In our dynamic model, we characterize a class of equilibria that contains the limit of

the sequence of the unique equilibrium of models with an increasing number of periods.

Remarkably, the marginal continuation value of cash is equal to its marginal consumption

value under a mild assumption about the minimum acceptable bid. Thus, as in the static

model, firms do not carry more working capital than strictly necessary to make the bid

acceptable and the strategic interaction each period is, again, similar to an all pay auction.

On the equilibrium path, the frequency of each scenario is determined both by the

exogenous cash-flow and by the minimum acceptable bid as a function of the working

capital. If one keeps the latter fixed, the following cases arise. If the exogenous cash-flow

is sufficiently small, the laggard-leader scenario occurs most of the time as the cost of

working capital becomes negligible. This insight implies our first main result (Theorem

1). Another consequence is that one of the firms tends to win consecutive procurement

contracts.13 If the exogenous cash-flow is sufficiently large, the symmetric scenario occurs

each period. In this case, the probability that a given firm wins the contract is constant

across periods.

To understand the second main result (Corollaries 3 and 5), note that the dispersion

of markups and “money left on the table” is due to heterogeneity across auctions in the

availability of financial resources. Financial resources in the form of cash and minimum

acceptable bids affect the equilibrium working capitals which determine the bids, and

hence the markups and “money left on the table”. To understand the third main result

(Corollaries 4 and 6), note that biases in the structural estimation of markups can also arise

if, as it is often the case, the researcher does not observe costs. Imagine bid data from

several auctions with identical financial conditions and suppose the data are generated

by our static model. On the one hand, if the laggard has little cash, there are large

markups and little “money left on the table”. However, a researcher who assumed the

standard model would conclude that there is little cost heterogeneity and, consequently,

small markups, i.e. the estimation would be biased downwards. On the other hand, if
13To the extent that joint profits are larger in the laggard-leader scenario than in the symmetric scenario,

our result is related to the literature on increasing dominance due to efficiency effects (see Budd, Harris,

and Vickers (1993), Cabral and Riordan (1994) and Athey and Schmutzler (2001)
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the laggard has relatively large cash, but not too large, there is sizable “money left on

the table” and relatively low markups. However, a researcher who assumed the standard

model would conclude that there is large cost heterogeneity and, as a consequence, large

markups, i.e. the estimation would be biased upwards.

Che and Gale (1998b) and Zheng (2001) show that the dispersion of markups can

reflect heterogeneity of working capital if it is sufficiently scarce.14 We show that scarcity

is the typical situation if firms choose their working capital. Whereas they assume that

the distribution of working capitals is constant across firms, our results show that this

distribution is seldom constant across firms. This difference is important because the lack

of asymmetries in the distribution of working capitals precludes the possibility of large

expected money left on the table when private information is small.

Firms also choose working capitals in Galenianos and Kircher’s (2008) model of mon-

etary policy and in Burkett’s (2014) principal-agent model of bidding. Whereas the all

pay auction structure only arises in the former, the laggard-leader scenario does not occur

because working capital is not bounded by cash.

Our paper contributes to a recent literature that explains how asymmetries in mar-

ket shares arise and persist in otherwise symmetric models. In particular, Besanko and

Doraszelski (2004), and Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) show

that firm-specific shocks can give rise to a dynamic of market shares similar to ours. The

difference, though, is that the dynamic in our model arises because firms randomize their

working capital due to the all pay auction structure.

Our characterization of the dynamics resembles that of Kandori, Mailath, and Rob

(1993) in that we study a Markov process in which two persistent scenarios occur infinitely

often and we analyse their frequencies as the randomness vanishes. While the transition

function of their process is exogenous, ours stems from the equilibrium strategies.

Section 2 explains how we model financial constraints. Sections 3 and 4 analyse the

static and the dynamic model, respectively. Section 5 concludes. All the proofs are

relegated to the Appendix and the supplementary material.
14See also Che and Gale (1996, 2000), and DeMarzo, Kremer, and Skrzypacz (2005). Pitchik and Schotter

(1988), Maskin (2000), Benoit and Krishna (2001) and Pitchik (2009) study how bidders distribute a fixed

budget in a sequence of auctions. This is not an issue in our setup.
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2 A Reduced Form Model of Procurement with Financial

Constraints

In this section, we describe a model of procurement that we later embed in the models of

Sections 3 and 4. Two firms15 compete for a procurement contract of common and known

cost c in a first price auction: each firm submits a bid, and the firm who submits the

lowest bid gets the contract at a price equal to its bid.16 Only bids in a restricted set, the

acceptable bids, are allowed. In particular, we assume that the minimum acceptable bid

of a firm with working capital w ≥ 0 is given by17

b∗(w) ≡ π(w) + c, (1)

where π is strictly decreasing, satisfies π(0) > 0 and limw→∞ π(w) < 0 and is continuously

differentiable.

As we discuss in the Introduction, our assumption that firms can submit only accept-

able bids captures a wide range of institutional arrangements whose aim is to preclude

firms from submitting unsustainable bids such as bids that cannot be financed. 18 Alterna-

tively, the sponsor may provide incentives to guarantee that firms submit only acceptable

bids by making them bear some of the cost of default. The monotonicity of the set of

acceptable bids arises naturally in markets in which firms have limited access to external

financial resources, as we discuss in the Introduction and Section S4 of the supplementary

material.

For any given bids b1 and b2, we use markup to denote min{b1,b2}−c
c and we use “money

left on the table” to denote |b1−b2|c .

15As in all pay auctions, see Baye, Kovenock, and de Vries (1996), if there are more than two firms

then there are multiple equilibria. One such equilibrium is that in which two firms choose the equilibrium

strategies of the two-firm model and the other firms choose zero working capital.
16A sale auction of a good with common and known value v can be easily encompassed in our analysis

assuming that c = −v < 0 and bids are negative numbers.
17Thus, the model of auctions with budget constraints analysed by Che and Gale (1998b) in Section 3.2

corresponds in our framework with b∗(w) = −w and π(w) = v−w, and the interpretation in Footnote 16.
18For instance, Meaney (2012) says that “As well as considering the financial aspects of bids, the DfT

[the sponsor] assesses the deliverability and quality of the bidders’ proposals so as to be confident that the

successful bidder is able to deliver on the commitments made in the bidding process.”
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Definition 1. θ is the working capital for which the minimum acceptable bid is equal to

the cost of the procurement contract c so that π(θ) = 0 or, equivalently, θ = π−1(0).

Our assumptions on π imply that there exists a unique θ ∈ (0,∞).

3 The Static Model

Each firm i ∈ {1, 2} starts with some cash mi ≥ 0. We assume the firm’s cash to be

publicly observable. Each firm i chooses simultaneously and independently (I) how much

of its cash to keep as working capital wi ∈ [0,mi] and (II) an acceptable bid bi ≥ b∗(wi)

for a market as described in Section 2. A pure strategy is thus denoted by the vector

(bi, wi) ∈ {(b, w) : b ≥ b∗(w), w ∈ [0,mi]}. Firm i’s expected19 profit in the market against

another firm with cash mj that bids bj is equal to:

V (bi, bj ,mi,mj) ≡


bi − c if bi = bj and mi > mj or if bi < bj ,
1
2(bi − c) if bi = bj and mi = mj ,

0 otherwise,

(2)

where we are applying the usual uniformly random tie breaking rule except in the case in

which one firm has strictly more cash than the other. In this case, we assume that the

firm with strictly more cash wins.20 We assume that the firm maximises

mi − wi + β(wi + V (bi, bj ,mi,mj)), (3)

that is, mi −wi, its consumption hereafter, plus the discounted sum, at rate β ∈ (0, 1), of

the working capital and the expected profit in the market. Note that a unit increase in

working capital is costly in the sense that it reduces the current utility in one unit and

increases the future utility in β. Thus, the cost of working capital becomes negligible when

β increases to 1.

We start by simplifying the strategy space. First, any strategy (b, w) in which b > b∗(w)

is strictly dominated by the strategy (b, w̃) where w̃ satisfies b = b∗(w̃) so that it is never
19We take expectations with respect to the tie breaking rule in the case bi = bj and mi = mj .
20We deviate from the more natural uniformly random tie-breaking rule that is usual in Bertrand games

and all pay auctions in order to guarantee the existence of an equilibrium. In our game, a sufficiently fine

discretisation of the action space would overcome the existence problem and yield our results with the

usual uniformly random tie-breaking rule at the cost of a more cumbersome notation.
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optimal to carry more working capital than is strictly necessary.21 Thus, we restrict to

the set of pure strategies {(b, w) : b = b∗(w), w ∈ [0,m]} where m denotes the firm’s cash.

In our second simplification of the strategy space, we use the following definition:

Definition 2. νβ ∈ [0, θ) is the unique solution22 in w to

βπ(w) = (1− β)w. (4)

Since w = θ solves (4) for β = 1, the Implicit Function Theorem implies:

lim
β↑1

νβ = θ (5)

Thus, νβ denotes the working capital for which βπ(νβ), the discounted procurement prof-

its associated with the minimum acceptable bid corresponding to working capital νβ,

equals (1 − β)νβ, the implicit costs of selecting working capital νβ that are associated

with postponing consumption. Any pure strategy (b∗(w), w) in which w > νβ is strictly

dominated by (b∗(νβ), νβ). As a consequence, we further restrict the set of pure strategies

to {(b, w) : b = b∗(w), w ∈ [0,min{m, νβ}]} where m denotes the firm’s cash.

Once we eliminate the above strictly dominated strategies, the resulting reduced game

has a unidimensional strategy space as an all pay auction. Each firm chooses a working

capital and its corresponding minimum acceptable bid. The firm with the higher working

capital wins the procurement contract and carrying working capital is costly for each firm.

As in all pay auctions, there is no pure strategy equilibrium. This can be easily understood

when each of the two firms’ cash is weakly larger than νβ. If both firms choose different

working capitals, the one with more working capital has a strictly profitable deviation: to

decrease marginally its working capital.23 If both firms choose the same working capital

w, there is also a strictly profitable deviation: to increase marginally its working capital

if w < νβ, and to choose zero working capital if w = νβ.24

21The probability that a firm wins the contract is unaffected but the cost of working capital increases.
22Note that this equation is equivalent to m− w + βw + βπ(w) = m.
23It saves on the cost of working capital without affecting to the cases in which the firm wins and

increases the profits from the procurement contract because it increases the price.
24In the former case, the deviation is profitable because winning the procurement contract at w < νβ

gives strictly positive profits and the deviation breaks the tie in favor of the deviating firm with an

arbitrarily small increase in the cost of working capital and an arbitrarily small decrease in the profits

from the procurement contract. In the latter case, w = νβ implies that one of the firms is winning with

a probability strictly less than one, and hence the definition of νβ , see Footnote 22, means that this firm

makes strictly lower expected payoffs than with zero working capital.
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A mixed strategy over the set of strictly undominated strategies is described by

a distribution function with support25 contained in the set {(b, w) : b = b∗(w), w ∈

[0,min{m, νβ}]} where m denotes the firm’s cash. This randomization can be described

by the marginal distribution over working capitals F . With a slight abuse of notation,

we denote by (b∗, F ) the mixed strategy where the firm randomises its working capital w

according to F and submits a bid b∗(w). If a firm uses (b∗, F ) where F is differentiable

and has support [w,w], then the expected payoff to the other firm with cash m ≥ w from

choosing w ∈ (w,w) is

m− w + βw + βπ(w)F (w) (6)

so that indifference across the support results only if F satisfies the differential equation

1− β = βF ′(w)π(w) + F (w)βπ′(w) (7)

for any w ∈ (w,w). Thus, (1 − β), the increase in the cost of working capital w(1 − β),

must equal βF ′(w)π(w) + F (w)βπ′(w), the change in the expected discounted profits

βπ(w)F (w). There is both a positive effect and a negative effect of an increase in w on

the change in expected discounted profits. The former arises due to the higher probability

of winning a contract and the latter due to the lower profits associated with a win.

We distinguish two scenarios:

Definition 3. Let ml ≡ min{m1,m2}. The symmetric scenario denotes the case in which

ml ≥ νβ. The laggard-leader scenario denotes the complementary case.

Let χy denote the degenerate distribution that puts weight 1 on y ∈ R.

Proposition 1. If ml ≥ νβ, then the unique equilibrium is symmetric and denoted by

the single (mixed) strategy
(
b∗, F β

)
where b∗ is defined in (1) and

F β(w) ≡ (1− β)w
βπ(w)

(8)

with support [0, νβ] solves the differential equation (7) with initial condition F (0) = 0.

Besides: (i) the equilibrium probability of winning the contract is common across firms;

(ii) the equilibrium is unaffected by any change in cash that leaves ml ≥ νβ; and (iii) for

any ml ≥ θ, as β increases to 1, F β(w) converges to χθ(w).
25We use the definition of support of a probability measure in Stokey and Lucas (1999). According to

their definition, the support is the smallest closed set with probability one.
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This equilibrium satisfies the usual property of all pay auctions that bidders without

competitive advantage get their outside opportunity, i.e. the payoff of carrying zero working

capital and losing the procurement contract.

Besides, one can deduce the following corollary from (8) using (5).

Corollary 1. If ml ≥ θ, then in equilibrium, |π(w1) − π(w2)| and π(max {w1, w2}) con-

verge in distribution to χ0 as β increases to 1.

In the standard auction model, cost heterogeneity vanishes as the distribution of costs

converges to the degenerate distribution that puts all the weight on one value. As cost

heterogeneity vanishes, the markup and “money left on the table” vanish (Krishna (2002),

Chapter 2). Corollary 1 says that this limit outcome also arises as β increases to 1 in the

symmetric scenario, see Definition 3, since the markup min{b1,b2}−c
c is equal to π(max{w1,w2})

c

and “money left on the table” |b1−b2|
c is equal to |π(w1)−π(w2)|

c . In this sense, financial

constraints become irrelevant as β increases to 1.

We next consider the laggard-leader scenario, see Definition 3. In what follows, the

leader refers to the firm that starts with more cash and the laggard to the other firm.

Proposition 2. If ml < νβ and m1 6= m2, then in the unique equilibrium,26 the laggard’s

strategy is
(
b∗, F βl

)
and the leader’s strategy is

(
b∗, F βL

)
where b∗ is defined in (1) and

each of the distributions

F βl (w) ≡ F β(w) +
βπ(ml)− (1− β)ml

βπ(w)
if w ∈ [0,ml] , (9)

F βL (w) ≡

 F β(w) if w ∈ [0,ml) ,

1 if w = ml,
(10)

has support [0,ml] and solves the differential equation (7) with separate boundary condi-

tions so that F βl (ml) = 1 and F βl has an atom at 0 while F βL (0) = 0 and F βL has an atom

at 1.

One can deduce the following corollary from Proposition 2 using (5).

Corollary 2. If ml < νβ and m1 6= m2, then (i) the leader is more likely to win the
26Interestingly, this equilibrium has similar qualitative features as the equilibrium of an all pay auction

in which both agents have the same cap but the tie-breaking rule allocates to one of the agents only. The

latter model has been studied in an independent and simultaneous work by Szec (2010).
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contract and (ii) for any ml < θ, as β increases to 1, F βL (w) converges to χml(w) and the

equilibrium probability that the winner is the leader converges to 1

Since each firm is indifferent among all points in its support, the laggard receives a

payoff equal to the symmetric payoff (when it chooses its atom 0) and the leader receives a

premium over the symmetric payoff (when it chooses its atom ml). This difference occurs

because, unlike the symmetric case, the leader is not only able but also willing to undercut

any acceptable bid of the laggard.

Corollary 3. If ml < νβ and m1 6= m2, (i) an increase in ml for which ml < νβ increases

(in the sense of first order stochastic dominance) both equilibrium distributions of working

capitals and hence, decreases the equilibrium expectation of π(max{w1, w2}), and (ii) the

equilibrium probability that each firm chooses its atom simultaneously is:

π(ml)
π(0)

(
1− (1− β)ml

βπ(ml)

)2

. (11)

Corollary 3 is direct from (9) and (10) and it is the starting point for our second main re-

sult. Point (i) shows that the dispersion of markups, min{b1,b2}−c
c = π(max{w1,w2})

c observed

across auctions can be explained by variations in the laggard’s cash and it suggests that

the same can apply to the dispersion of “money left on the table”, |b1−b2|c = |π(w1)−π(w2)|
c .

Note that a similar argument also applies with respect to changes in π. Point (ii) also

casts doubts about the usual interpretation of “money left on the table” as indicative of

incomplete information. To see why, consider the linear example27 π(w) = θ − w. In

this case, as θ increases to infinity, the probability that each firm chooses its atom si-

multaneously tends to 1 so that the “money left on the table” tends to π(0)−π(ml)
c = ml

c .

Thus, a sufficiently large θ implies almost no uncertainty together with sizable “money

left on the table.” Note that the implications about “money left on the table” that are

only suggested by Corollary 3, are proved in Corollary 5 for the dynamic model under

the assumptions that the exogenous cashflow (defined in Section 4.1) is not too large, in

a sense we formalise later, and β is sufficiently close to 1.
27If π(w) = θ − w, the equilibrium probability that each firm chooses its atom simultaneously is:

π(ml)

π(0)

„
1− (1− β)ml

βπ(ml)

«2

=

„
θ −ml

θ

«„
1− (1− β)ml

β(θ −ml)

«2

.

11



Here, the laggard’s cash is exogenous but in the model of Section 4 we show in a

numerical example that the endogenous distribution of the laggard’s cash has sufficient

variability to generate significant dispersion of markups and “money left on the table”

across otherwise identical auctions. Interestingly, these results are provided for parameter

values for which there is little uncertainty.

Corollary 4. If ml < θ and m1 6= m2, then as β increases to 1: (i) in equilibrium,

π(max{w1, w2}) converges in distribution to χπ(ml), and (ii) the equilibrium expectation

of |π(w1)− π(w2)| converges to28 π(ml)
(

ln
(
π(0)
π(ml)

))
.

The corollary follows by inspection of (5), 9) and (10). Intuitively, (i) can be explained

because the leader increases its probability of winning by shifting all its probability mass

to ml as β increases to 1. Since working capital is costless in the limit, the laggard’s

randomization guarantees the indifference of the leader by balancing the positive and

negative effects of an increase in working capital on the expected discounted profits, which

explains (ii).

Corollary 4 implies that when β is close to 1 and ml < m̂, where m̂ ≡ π−1(π(0)
e ) and e

denotes the Euler constant 2.718 . . ., the markup, min{b1,b2}−c
c = π(max{w1,w2})

c , decreases29

and the expected “money left on the table”, |b1−b2|c = |π(w1)−π(w2)|
c , increases as the lag-

gard’s cash ml increases. This is the basis for our third main result. Suppose that β is

close to 1 and that the bid data from several auctions with identical financial constraints

are generated by the model with constant procurement cost c. If ml < νβ, then Corollary

4 states that the average “money left on the table” will be small and there will be large

markups when ml is close to zero but the average “money left on the table” will be sub-

stantial and markups small when ml = m̂. In what follows we assume that ml < νβ. The

bid data reveals the “money left on the table” but costs and, therefore, markups are not

observable. If the average “money left on the table” were small, as would happen if ml is

28Proving (ii) requires some non-trivial computations. F βl converges to a distribution with an atom of

probability π(ml)
π(0)

at zero and density −π′(w)π(ml)

π(w)2
in (0,ml]. This together with the convergence of F βL (w)

to χml(w) implies that the expectation of |b1 − b2| = π(min{w1, w2})− π(max{w1, w2}) converges to:

π(0)
π(ml)

π(0)
+

Z ml

0

π(w)

„
−π′(w)

π(ml)

π(w)2

«
dw−π(ml) = π(ml)

Z ml

0

„
−π′(w)

π(w)

«
dw = π(ml)

„
ln

„
π(0)

π(ml)

««
.

29Since ∂
∂m

“
π(m)

“
ln
“
π(0)
π(m)

”””
> 0 if m < m̂.
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close to zero, an interpretation of the bid data using the standard model would conclude

that there was little cost heterogeneity and small markups even though there were large

markups in the generated data. That is, the results would be biased downward. If the

average “money left on the table” were substantial, as would happen if ml = m̂, then

an interpretation of the bid data using the standard model would conclude that there

was large cost heterogeneity and therefore large markups even though there were small

markups in the generated data. That is, the results on markups would be biased upwards.

Finally, in Proposition 3 we describe the equilibrium strategies when each firm has

cash m < νβ. We use ξβ ∈ (0, θ) to denote the function implicitly defined as the unique

solution in m to:
β

2
π(m)− (1− β)m = 0. (12)

By (1), (2) and (3), the left hand side of (12) is equal to the difference in a firm’s expected

payoffs between choosing working capital m and zero working capital when the other firm

chooses working capital m. If m ∈ (ξβ, νβ), we let λ(m) ∈ [0,m] be implicitly defined

by:30 (
F β(λ(m)) +

1− F β(λ(m))
2

)
βπ(m)− (1− β)m = 0, (13)

where F β is defined in (8). By (1), (2) and (3), the left hand side of (13) is equal to

the difference in a firm’s expected payoffs between choosing working capital m and zero

working capital when the other firm chooses a working capital in (0, λ(m)) with probability

F β(λ(m)) and a working capital equal to m with probability 1− F β(λ(m)).

Proposition 3. If m1 = m2 = m then the unique equilibrium is symmetric and denoted

by (b∗, χm) if m ∈ (0, ξβ]; and by (b∗, F ∗∗) if m ∈ (ξβ, νβ) where b∗ is defined in (1),

F ∗∗(w) ≡


F β(w) if w ∈ [0, λ(m)]

F β(λ(m)) if w ∈ (λ(m),m)

1 if w ≥ m,

and F β is defined in (8).
30Existence and uniqueness of the solution follow from the properties of the left hand side of the equation.

This is increasing in λ(m), it is negative at λ(m) = 0 and it is strictly positive at λ(m) = m. The first one

is direct, the second can be deduced from (12) using that m > ξβ , and the third from the definition of νβ ,

in (4), using that m < νβ , and the definition of F β in (8).
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The equilibrium in the first case is explained by the fact that m ≤ ξβ implies that the

left hand side of (12) is weakly positive and hence the best response to χm is χm. This

is not the case when m > ξβ as the left hand side of (12) is strictly negative. Instead,

the equilibrium in this case is constructed by shifting probability away from the common

amount of cash and placing it at the bottom of the space of working capitals according to

a distribution that solves the differential equation (7).

We shall not discuss the implications of Proposition 3 as in our dynamic model the

case in which both firms cash is less than θ does not arise along the game tree. See our

discussion after introducing Assumption 1.

4 The Dynamic Model

In this section, we endogenise the distribution of cash by assuming that it is derived from

the past market outcomes. This approach provides a natural framework to analyse the

conventional wisdom in economics that “auctions [still] work well if raising cash for bids

is easy.” In Theorem 1, we provide conditions under which the laggard-leader scenario

occurs most of the time. This is the basis for our first main result. Besides, we provide

formal results in Corollaries 5 and 6 and a numerical example that, on the one hand,

complement the previous section analysis of the second and third main results and, on the

other hand, shed some light on the concentration and asymmetries of market shares.

4.1 The Game

We consider the infinite horizon dynamic version of the game in the last section. We

assume that both firms have the same amount of cash in the first period. Afterwards

each firm’s cash is equal to its working capital in the previous period plus the profits in

the procurement contract and some exogenous cash flow31 m > 0. We assume that m

is constant across time and firms, and interpret it as derived from other activities of the

firm. Hence, in any period t in which firms start with cash (m1,t,m2,t), choose working

capitals (w1,t, w2,t) and bids (b1,t, b2,t), and Firm 1 wins the procurement contract with

31All our results also hold true for the case m = 0. However, the analysis in Section 4.3 differs, as

explained in Footnote 42.
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profits b1,t − c, the next period distribution of cash is equal to:

(m1,t+1,m2,t+1) = (w1,t + b1,t − c+m,w2,t +m). (14)

Firm i ∈ {1, 2} wins in period t with probability one if bi,t < bj,t or if bi,t = bj,t and

mi,t > mj,t, with probability 1/2 if bi,t = bj,t and mi,t = mj,t, and loses otherwise. The

payoff in period t of a firm with cash mt that chooses working capital wt is equal to its

consumption mt − wt. The firm’s lifetime payoff in a subgame beginning at period τ is:

∞∑
t=τ

βt−τ (mt − wt),

where (mt, wt) denotes its cash and working capital holdings in period t. We assume that

the firm maximises its expected lifetime payoff at any period τ .

The following assumption32 is used in the proof of Proposition 4.

Assumption 1. π(w) ≥ θ −m− w for any w ∈ [0,∞).

Since π(w) is the minimum profit that a firm with working capital w can make when it

wins the procurement contract, (14) and Assumption 1 imply that the firm that wins the

procurement contract one period, starts next period with cash at least θ. As we explain

after Proposition 4, this assumption guarantees that firms do not want to carry more

working capital than strictly necessary to make the bid acceptable. Assumption 1 also

implies that θ must be less than any common amount of cash held by the firms in any

information set after the first period. We show in Proposition 3, for the case of the static

model, that a tedious case differentiation is necessary if one allows firms to have identical

cash less than θ. For the same reason, we assume that both firms start in the first period

with cash greater than θ.33

We denote by Ω the set of cash vectors that may arise in the information sets of

the game tree. A Markov mixed strategy consists of a randomization over the set of

working capitals and acceptable bids for each point (m,m′) in Ω, where m denotes the

firm’s cash and m′ the rival’s. We shall restrict to equilibria in Markov mixed strategies

with support contained in the set {(b, w) : b = b̃(w|m,m′), w ∈ [0,m]} for some function
32A large class of functions satisfy this assumption, for instance the linear function π(w) = θ − w.
33In this sense, our result that firms carry too little cash in the long term arises even when firms start

with sufficiently large amounts of cash.
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b̃(·|m,m′) : [0,m] → R that satisfies that b̃(w|m,m′) ≥ π(w) + c for any w ∈ [0,m]. This

Markov mixed strategy can be described by its marginal distribution function σ(·|m,m′)

over working capitals and the bid function b̃ (·|m,m′).

We let W (m,m′) denote the lifetime expected payoff of a firm that has cash m when

its rival has m′. In Definition 4 below, we denote the expected continuation payoff of a

firm who bids b with working capital w, cash m and face a rival who bids b′, has working

capital w′ and cash m′ by W̃ (b, w,m, b′, w′,m′) which is equal to:

ρ(b,m, b′,m′)W
(
w+m+b− c, w′ +m

)
+ (1−ρ(b,m, b′,m′))W

(
w+m,w′+m+b′ − c

)
, (15)

where:

ρ(b,m, b′,m′) =


1 if either b < b′, or if b = b′ and m > m′

0 if either b > b′, or if b = b′ and m < m′

1
2 if b = b′ and m = m′.

describes the allocation rule of the procurement contract.

Definition 4. A (symmetric) Bidding and Investment (BI) equilibrium34 is a value func-

tion W , a working capital distribution σ and a bid function b such that for every (m,m′) ∈

Ω, W is the value function and σ ( ·|m,m′) and b(·|m,m′) are the optimisers of the right

hand side of the following Bellman equation:

W (m,m′) = max
σ̃(w) ∈ ∆(m)

b̃(w) ≥ π(w) + c

∫∫ [
m− w + βW̃ (b̃(w), w,m, b(w′|m′,m), w′,m′)

]
σ
(
dw′|m′,m

)
σ̃ (dw) ,

where ∆(m) denotes the set of distributions with support in [0,m] and W̃ is defined by

(15).

4.2 The Equilibrium Strategies

In what follows, we define a value function, a bid function and a working capital dis-

tribution and show that they are a BI equilibrium. Our proposed strategies generalize

the equilibrium strategies in Section 3. The bid function is, as in the static model, the

minimum acceptable bid (with a slight abuse of notation):
34In a version of our model with finitely many periods studied in the supplementary material there is a

unique equilibrium that is symmetric. We also show that as the horizon increases to infinity, the limit of

that equilibrium is a BI equilibrium.
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b∗(w|m,m′) ≡ π(w) + c. (16)

We find our equilibrium distribution of working capital by setting up a fixed point problem

over a set of functions and then use the solution of this problem to describe the equilibrium

distribution. We set up the fixed point problem as follows. We start with a non-empty,

closed, bounded and convex subset Pβ of the space of all bounded continuous functions.

For each function Ψ in this class Pβ we set up a differential equation that depends on Ψ.

We then consider the unique continuous solution, FΨ
m , to this differential equation with

initial condition F (m) = 1. Lastly, we seek Ψ in Pβ that is a fixed point of an operator

T : Pβ→ Pβ where T (Ψ) is described in terms of FΨ
m . Once we have this fixed point, Ψβ

say, we then use FΨβ
m to define the equilibrium distribution of working capital and it turns

out that Ψβ determines the equilibrium premium earned by a leader (see (25)).

Let Pβ be defined as:{
Ψ : [0,∞)→

[
0,

β

1− β
π(0)

]
is continuous, decreasing and Ψ(m) = 0 ∀m ≥ θ

}
. (17)

Definition 5. For any Ψ ∈ Pβ and m ∈ [0, θ), we denote by FΨ
m : [0,m]→ R the unique

continuous solution to the first order differential equation:35

1− β = βF ′(w) (π(w) + Ψ(w +m)) + F (w)βπ′(w) and F (m) = 1. (18)

The functional form of FΨ
m can be found in (A4) in the Appendix.36 Note that (18) is

analogous to (7) and that (18) is identical to (7) when Ψ is the zero function.

Definition 6. We denote by ν̂Ψ the unique value of m∈ [0, θ) for which FΨ
m(0) = 0.

By (8) and Definitions 2 and 6, we see that νβ =
(
F β
)−1 (1) and ν̂Ψ = νβ when Ψ is

the zero function.

We underscore that, for any m ≤ ν̂Ψ, FΨ
m(w) is a distribution of w (given the pair

(Ψ,m)) with support in [0,m] that is continuous for w ∈ (0,m) but it has an atom of size

FΨ
m(0) at w = 0 when m < ν̂Ψ. Recall that FΨ

ν̂Ψ(0) = 0 by Definition 6.

Consider the following functional equation:

T (Ψ) = Ψ, (19)
35The uniqueness of the solution follows from Theorem 7.1 in Coddington and Levinson (1984), pag. 22.
36We thank an anonymous referee for pointing out that (18) has an explicit solution.
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where T : Pβ → Pβ is defined as:37

T (Ψ)(m)≡

 βFΨ
m(0) (π(0) + Ψ(m)) if 0 ≤ m ≤ ν̂Ψ,

0 if m > ν̂Ψ.
(20)

Definition 7. For any β ∈ (0, 1), we denote by P̂β⊂Pβ the set of fixed points of T , by Ψβ

an element of P̂β and by νβ≡ ν̂Ψβ the upper end of the support of the distribution FΨβ

νβ
.

Lemma S2 in the supplementary material shows that the set of fixed points P̂β is not

empty. Let:

F βl,m(w) = F βL,m(w) = FΨβ

νβ (w) if w ≤ νβ ≤ m, (21)

F βl,m(w) = FΨβ

m (w) if w ≤ m < νβ, (22)

F βL,m(w) ≡

FΨβ

νβ
(w) if w < m < νβ,

1 if w = m < νβ.
(23)

For any (m,m′) ∈ Ω, let:

σ∗(w|m,m′) ≡

 F βl,m(w) if m ≤ m′,

F βL,m′(w) if m > m′,
(24)

and:

W ∗
(
m,m′

)
≡


m+ β

1−βm if m ≤ m′,

m+ β
1−βm+ Ψβ (m′) if m > m′.

(25)

Thus, Ψβ(m′) is an additive premium associated to being leader.

Note that Assumption 1 implies that the case in which both firms have the same cash

m = m′ and (m,m′) ∈ Ω can only arise if m = m′ ≥ θ. By Definitions 6 and 7, νβ < θ.

Thus, (21) implies that F βl,m = F βL,m′ = FΨβ

νβ
, and (19) and (20) imply that Ψβ (m′) = 0.

Thus, neither σ∗ nor W ∗ change discontinuously at any of these points.

Proposition 4. For each Ψβ ∈ P̂β, (W ∗, σ∗, b∗) is a BI equilibrium where W ∗, σ∗ are

defined by (21)-(25) and b∗ by (16).38

37That T (Ψ) ∈ Pβ follows from checking the conditions in (17). Since FΨ
m decreases in m, by (A4) in the

Appendix, (20) implies that T (Ψ)(m) decreases continuously from βFΨ
0 (0)(π(0)+Ψ(m)) to βFΨ

ν̂Ψ(0)(π(0)+

Ψ(m)) as m increases from 0 to ν̂Ψ, and it is then equal to zero. Besides, T (Ψ)(m) = 0 for m ≥

θ since θ > ν̂Ψ, by Definition 6, βFΨ
ν̂Ψ(0)(π(0) + Ψ(m)) = 0 since FΨ

ν̂Ψ(0) = 0, by Definition 6, and

βFΨ
0 (0)(π(0) + Ψ(m)) ≤ βπ(0)

(1−β)
since FΨ

0 (0) = 1, by Definition 5, and Ψ(m) ≤ βπ(0)
(1−β)

since Ψ ∈ Pβ .
38The limit of the unique equilibrium of the finite horizon model is one of the equilibria described in

Proposition 4, see the supplementary material.
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The intuition behind the proposition is based on our results in the static model. There,

we use the property that the game has the all pay auction structure: after deleting strictly

dominated strategies, the firm that carries more working capital wins but carrying working

capital is costly for both firms. This argument also applies here because this property

is inherited from one period to the previous one in the following sense: if the payoffs

of the reduced game in period t satisfy the property, so do the payoffs of the reduced

game in period t − 1. To see why, note that the usual result of all pay auctions that

bidders without competitive advantage get their outside opportunity implies here that the

laggard’s equilibrium payoffs in the reduced game of period t are equal to the payoffs of

consuming all its cash and starting period t + 1 as a laggard with cash m. The leader’s

equilibrium payoffs in the reduced game in period t have an additive premium which is

a consequence of the leader’s ability to carry sufficient working capital to undercut any

acceptable bid of the laggard. This ability is independent of the amount of cash the leader

has and so it is the premium. Consequently, the value of a marginal increase in the cash

with which the firm starts period t is equal to its consumption value plus the value of

switching from laggard to leader. The value of switching from laggard to leader is zero

because a marginal increase in cash switches the leadership only when the cash is common

and no less than θ (by (14) and Assumption 1) so that the premium is zero because none

of the firms is constrained by cash to bid above cost. We can thus conclude that, in period

t − 1, a unit increase in working capital, keeping constant the bid, is costly in the sense

that it reduces the current consumption in one unit but only increases the future utility in

its discounted value β. This means, as in the static model, that it is not profitable to carry

more working capital than necessary to make the bid acceptable. Thus, in period t − 1,

after deleting strictly dominated strategies, the firm that carries more working capital

wins but carrying working capital is costly for both firms.39

We can also distinguish here between the symmetric and laggard-leader scenarios and

it may be shown that an analogous version of points (i)-(iii) in Proposition 1 and properly

adapted versions of Corollaries 1-4 hold true as well.
39Note that the property that firms do not want to carry more working capital than strictly necessary

to make the bid acceptable is also a property of the unique equilibrium of the finite version of our model.

This is because the recursive argument in the previous paragraph can be applied starting from the last

period since the last period is the same game as the static model. See the supplementary material.
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4.3 The Equilibrium Dynamics

To study the frequency of the symmetric and the laggard-leader scenarios, we study the

stochastic process of the laggard’s cash induced by our equilibrium. Its state space is

equal to [m, νβ + m] because the procurement profits are non negative and none of the

firms’ working capitals is larger than νβ. In period t + 1, the pair of cash holdings

(m1,t+1,m2,t+1) (see (14)) and, therefore, the laggard’s cash in period t + 1, denoted

by mt+1 ≡ min {m1,t+1,m2,t+1}, are determined by the distribution over working capitals

(w1,t, w2,t) and bids (b1,t, b2,t) in period t which is completely determined by the laggard’s

cash mt in period t. Thus, the laggard’s cash follows a Markov process. Let B denote the

Borel sets of [m, νβ +m]. The probability that mt+1 lies in a Borel set given that mt = m

is given by a transition function Qβ : [m, νβ +m]× B → [0, 1] that can be easily deduced

from the equilibrium. In particular, it is defined by:40

Qβ (m, [m,x]) =

1−
(

1− F βl,m (x−m)
)(

1− F βL,m (x−m)
)

if x−m<m, νβ,

1 o.w.
(26)

This expression is equal to 1 minus the probability that both the laggard’s and the leader’s

working capitals are strictly larger than x−m.

Definition 8. A distribution µ : B → [0, 1] is invariant if it satisfies:

µ (M) =
∫
Qβ (m,M)µ (dm) for all M∈ B. (27)

Standard arguments41 can be used to show that there exists a unique invariant distribu-

tion (which we denote by µβ), and that µβ is globally stable and has support42 [m, νβ+m].

A suitable law of large numbers can be applied to show that the fraction of time that the

Markov process spends on any set M∈ B converges (almost surely) to µ(M).

Typically, the frequency of each scenario depends on a non trivial way on the transition

probabilities. An exception is when the transition probabilities do not depend on the
40As a convention, we denote by [m,m] the singleton {m}.
41See Hopenhayn and Prescott (1992).
42Here is where the assumption m > 0 makes a difference as the support of the invariant distribution

would be equal to {0} if m = 0. This is because zero becomes an absorbing state of the dynamics of the

laggard’s cash when m = 0. To see why, note that a feature of the equilibrium is that a laggard that

chooses zero working capital in any given period loses with probability one in the auction of that period.

Thus, the laggard starts next period with zero cash if m = 0 and its only feasible working capital is zero.
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state.43 By (21) and (26), this independence occurs in our model when the exogenous

cashflow m ≥ νβ so that only the symmetric scenario can occur. Since (20) implies that

Ψβ(m) = 0 for any m ≥ m ≥ νβ, we obtain that m ≥ νβ, (8), (21) and (A4) in the

Appendix imply FΨβ

νβ
= F βL,m = F βl,m = F β for m ≥ m so that the induced equilibrium in

each period is the symmetric scenario of the static model. Thus, the following proposition

is an immediate consequence of (26), (27), Proposition 1, Corollary 1 and the fact that

θ > νβ by Definitions 6 and 7 so no proof is provided.

Proposition 5. If θ
m < 1, then: (i) the equilibrium probability of winning the contract

at any date t is common across firms, (ii) limβ↑1 µ
β ({θ +m}) = 1 and (iii) both (a) the

fraction of time that both firms choose working capital structure arbitrarily close to θ, and

(b) π(max{w1,t, w2,t}), and |π(w1,t)− π(w2,t)| are arbitrarily close to 0 converges (almost

surely) to 1 as β increases to 1.

The ratio θ
m decreases in the cash flow m and increases in the working capital θ needed

to push the bid down to c. Proposition 5 illustrates the conventional wisdom that “auctions

[still] work well if raising cash for bids is easy” as in our model, for a fixed m, it is easy

to raise cash for bids from internal or external resources if β is close to 1 or if θ is small,

respectively. Next, Theorem 1 and Corollary 5(i), which are the basis for our first main

result, show that the ease to raise cash from internal resources is not sufficient for auctions

to work well.

Theorem 1. If θ
m > 4 and π(2m) + π(m) > π(0), then limβ↑1 µ

β({m}) = 1.

The first hypothesis requires that m be sufficiently high relative to θ. Since π is contin-

uous and decreasing, the second hypothesis in Theorem 1 requires that m be sufficiently

small given π. When m is sufficiently small relative to θ and π, then as β increases to 1,

the laggard’s cash equals m.

Corollary 5. If θ
m > 4 and π(2m) + π(m) > π(0), the fraction of time the following

43In the more difficult case in which the transition probabilities depend on the state, the invariant

distribution associated to the limit transition probabilities as β increases to 1 has an easy characterization.

This is because the transition probabilities become degenerate and concentrate its probability in one point

only, either m or θ+m, and thus any distribution with support in {m, θ+m} is an invariant distribution.

Since there are multiple invariant distributions, we cannot apply a continuity argument to characterize

what happens when the cost of working capital is small.
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properties hold in equilibrium converges to 1 (almost surely) as β increases to 1: (i)

π(max{w1,t, w2,t}) is arbitrarily close to π(m), and (ii) |π(w1,t) − π(w2,t)| is arbitrarily

close to π(0)− π(m).

Corollary 5 follows since as β increases to 1: µβ({m}) increases to 1, by Theorem 1, and

the laggard and the leader play with probability arbitrarily close to 1 at their atoms when

the laggard’s cash is m, by Lemma A5 in the Appendix, the assumption that θ
m > 4 and

π(2m) + π(m) > π(0), the first line of (A13) and Lemma A8(ii) in the Appendix. Thus,

if m is sufficiently small given π, then, as β tends to 1, the leader wins the procurement

contract most of the time so that large concentrations and asymmetries in market shares

occur. The next section provides a quantitative example.

Corollary 5 is the basis for extending our second main result to the dynamic model:

the dispersion of markups min{b1,b2}−c
c = π(max{w1,w2})

c , and “money left on the table”,
|b1−b2|

c = |π(w1)−π(w2)|
c , across auctions arises only due to differences in the exogenous cash

flow m and the function π. Thus, Corollary 5 gives a general setting that goes beyond the

linear example and sufficiently large θ discussed after Corollary 3. Each case shows that

it is incorrect to infer, as is typically done, that the dispersion of markups and “money

left on the table” indicates incomplete information. That is, the usual interpretation is

incorrect in this setting.

Corollary 6. If θ
m > 4 and π(2m) + π(m) > π(0), the following properties hold in equi-

librium (almost surely) as β increases to 1: (i) lim
τ→∞

1
τ

τ∑
t=1

π(max{w1,t, w2,t}) is arbitrarily

close to π(m), and (ii) lim
τ→∞

1
τ

τ∑
t=1

|π(w1,t)− π(w2,t)| is arbitrarily close to π(0)− π(m).

For those m satisfying the assumptions of Corollary 6, an argument analogous to the

one we made after Corollary 4 let us extend our third main result to the dynamic model.44

4.4 A Numerical Example

In this section, we use a numerical example to shed some light on the intermediate case

(not covered in Section 4.3) in which θ
m lies in (1, 4).

Our example illustrates the following properties that are useful for empirical work:
44Indeed, one can replace ml by m and consider two arbitrary values for m
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(I) the endogenous distribution of the laggard’s cash has sufficient variability to generate

significant dispersion of markups and bids across otherwise identical auctions; (II) changes

in θ
m give rise to a rich set of values for bid dispersion and concentration; and (III) large

concentration and asymmetries in market shares arise for large values of θ
m .

We use empirically grounded values for the parameters: a year consists of four periods45

and we assume46 β = 0.9602, π(w) = θ − w and47 θ
c = 1. We compute a solution to the

functional equation (19) by iterating the function T (see (20)) from the initial condition

Ψ = 0 to obtain a fixed point48 Ψβ. Afterwards, we use Proposition 4 to construct a

BI equilibrium (W ∗, σ∗, b∗). Finally, we compute µβ, the invariant measure (over the

laggard’s cash) associated with the BI equilibrium (W ∗, σ∗, b∗) .

The left panel of Figure 1 illustrates (I).49 It shows that, for a given ratio θ
m , markups

and “money left on the table” may have significant volatility across auctions due to the

endogenous volatility of the firm’s working capital and cash.

Figure 1: π(w) = θ − w, β = 0.9602 and θ
c = 1. Left and central panels (resp.): St. dev. of

min{b1,t,b2,t}−c
c and |b1,t−b2,t|

c , and HHI as a function of θ
m . Right panel: Invariant distribution of

annual market share of Firm 1 (1 yr = 4 periods) for θ
m = 1 and θ

m ≈ 4.
45In the data of Hong and Shum (2002) firms bid on average in 4 contracts per year: “[in] a data set of

bids submitted in procurement contract auctions conducted by the NJDOT in the years 1989-1997,[. . . ]

firms which are awarded at least one contract bid in an average of 29.43 auctions.”
46This assumption implies an annual discount rate of 0.85, slightly higher than the 0.80 used in Jofre-

Bonet and Pesendorfer (2003), and an expected cost of working capital of 0.15.
47Since π and, hence µ, are independent of c, any measure of markups or money left on the table is

arbitrary unless we provide a relationship between c and the other parameters. We explain in Footnote 49

how to generate the graph in the right panel of Figure 1 for different values of the ratio θ/c.
48Lemma S3 in the supplementary material shows that the generated sequence converges to a fixed point

of Equation (19).
49In Figure 1 we keep θ = c = 1 and vary m between 0.25 and 1. Interestingly, the graph remains the

same for any combination of m and θ for which the ratio θ/m varies between 1 and 4 while keeping c = θ.

One can obtain the graph for other values of θ
c

simply multiplying the values in the vertical axis by θ
c
.
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Regarding (II), as θ
m increases from 1 to 4, the left panel of Figure 1 shows that the

standard deviation of the “money left on the table” varies from 0.17 to 0.04 whereas the

central and right panels show, respectively, that the Herfindahl-Hirschman Index (HHI)

varies from 0.625 to almost 1 and that the distribution of Firm 1 market share shifts.50

The fact that HHI is almost 1 and that the distribution of Firm 1 market share becomes

concentrated on 0 and 1 for θ
m ≈ 4 illustrate (III). To the extent that there is a direct

relationship between the size of the ratio θ
m to the project’s cost, our model predicts that

concentration is greater for larger projects than for smaller ones.51

5 Conclusion

We have studied a model of bidding markets with financial constraints. A key element of

our analysis is that the stage at which firms choose their working capitals resembles an

all pay auction with caps. This feature, and thus our results, seems pertinent for other

models of investing under winner-take-all competition, like patent races. The introduction

of private information about cost is a natural extension that nests both the standard model

and our model and provides a framework to test between these two models. Existing results

for all pay auctions and general contests52 suggest these may be fruitful lines of future

research. Furthermore, our analysis points out a tractable way to incorporate the dynamics

of liquidity in Galenianos and Kircher’s (2008) analysis of monetary policy. Although the

main focus of our paper is positive, it also offers interesting normative insights for markets

in the absence of surety bonds (which implies firms’ bids are unconstrained). It is well

known that the possibility of bankruptcy creates distortions in these markets (see Calveras,

Ganuza, and Hauk (2004), and Zheng (2001)). Our paper shows that using surety bonds

to insure against bankruptcy could also have dramatic consequences for markups and

concentration.

50The same firm wins all the contracts 98.92% of the years if θ
m
≈ 4, and only 13% of the years if θ

m
= 1.

51Porter and Zona (1993) explain that “the market for large jobs [in procurement of highway mainte-

nance] was highly concentrated. Only 22 firms submitted bids on jobs over $1 million. On the 25 largest

jobs, 45 percent of the 76 bids were submitted by the four largest firms.”
52Amann and Leininger (1996) study the relationship between the equilibrium of the all pay auction

with and without private information and Alcalde and Dahm (2010) study the similarities between the

equilibrium outcome in an all pay auction and in some other models of contests.
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Appendix: Proofs

The proofs of the next lemmae are available in the supplementary material. We start

with some auxiliary results that are used in the proofs of Propositions 1, 2 and 3. First,

recall that we can restrict to mixed strategies (b∗, Fi) in which Fi: R→ [0, 1] has support

in [0,min{νβ,mi}] and b∗ is as in (1). In Lemmas A1-A3 and Propositions 1-3, we study

the equilibrium choices of working capital assuming that the firm bids according to b∗.

Lemma A1. Suppose an equilibrium ((b∗, F1), (b∗, F2)). Fj puts strictly positive proba-

bility on [w − ε, w] for any ε > 0, if w ∈ (0,min{νβ,mi}] belongs to the support of Fi, for

{i, j} = {1, 2}.

Lemma A2. Suppose an equilibrium ((b∗, F1), (b∗, F2)). Fi is continuous at w ∈ [0,min{νβ,mj})

if Fj puts strictly positive probability on [w − ε, w] for any ε > 0 and {i, j} = {1, 2}.

Lemma A3. Suppose an equilibrium ((b∗, F1), (b∗, F2)). For {i, j} = {1, 2}:

(i) If the support of Fi contains w 6= 0, then the support of Fj also contains w.

(ii) If w ∈ (0,min{νβ,ml}), then Fi is continuous at w.

(iii) If ml < νβ and mi < mj , then Fi is continuous at mi.

(iv) If Fj has an atom at 0 then Fi is continuous at 0.

(v) If the support of Fi contains w ∈ (0,min{νβ,ml}), then it also contains [0, w].

Besides, when ml < νβ and mi 6= mj , the claim also holds true for w = ml.

(vi) If Fi is continuous in (0, ν) and (0, ν) belongs to the support of Fj then:

Fi(w) = F β(w) +
π(0)
π(w)

Fi(0)∀w ∈ [0, ν). (A1)

Proof of Proposition 1

Proof. To see why the proposed strategy is an equilibrium note that the expected payoff

of Firm i with cash mi when it chooses working capital w and the other firm randomizes

its working capital according to F β, see (6), is equal to:

mi − (1− β)w + βπ(w)F β(w),
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which, by definition of F β in (8), is equal to mi if w ≤ νβ, and strictly less than mi

otherwise. Thus, deviations are not profitable, as required.

We now prove that the equilibrium is unique. The maximum of the support of Fi,

i = 1, 2 is common by Lemma A3(i), strictly positive by Lemma A3(iv), and weakly less

than νβ by the restriction to strictly undominated strategies. These results and Lemma

A3(v) imply that F1 and F2 (a) each have an atom at νβ or (b) each have support equal

to [0, ν] for some ν ∈ (0, νβ]. (a) cannot occur because (2) and Definition 2 imply that

at least one firm earns less than mi when each chooses νβ and so that firm can strictly

improve its payoff by choosing zero working capital. In Case (b), Lemma A3(ii) implies

that F1 and F2 are continuous in (0, ν). Thus, if ν = νβ, Lemma A3(vi) and F β(νβ) = 1

imply that F1(0) = F2(0) = 0, and hence F1 = F2 = F β, as desired. To finish the proof

we show that ν = νβ. Lemma A3(iv) implies that Fi(0) = 0 for some i ∈ {1, 2}. Hence

Lemma A3(vi) implies that Fi(w) = F β(w) for w ∈ [0, ν). To get a contradiction, suppose

ν < νβ. Then, Fi(ν) = F β(ν) because Lemma A3(ii) implies that Fi is continuous at ν.

Thus, F β(ν) < 1, by Definition 2 and (8), which contradicts that Fi has support [0, ν].

Properties (i) and (ii) are straightforward and (iii) follows from (5) and (8). �

Proof of Proposition 2

Proof. We first show that the proposed candidate is an equilibrium. By (6) (replacing F

with F βL and m with ml), (7), (8) and (10), the laggard’s expected payoff from w ∈ [0,ml)

is constant and equal to ml. The tie-breaking rule guarantees that this payoff is continuous

at w = ml so that the laggard has no incentive to deviate. By (6) (replacing F with F βl

and m with mL), (7), (8) and (9), the leader’s expected payoff from w ∈ [0,ml] is constant

and equal to mL − (1− β)ml + βπ(ml) ≥ mL − (1− β)w′ + βπ(w′) for any w′ ∈ (ml,mL]

so that the leader has no incentive to deviate.

To prove uniqueness, we use the fact that ml < νβ along with Lemma A3 ((i) and (iv)),

to infer that the supports of the equilibrium distributions must have a common maximum

that is weakly less than ml. Since ml < νβ, and ml 6= mL, Lemma A3(v) can then be used

to imply that each support equals [0, ν] for some ν ∈ (0,ml] and Lemma A3(ii) implies

that both distributions must be continuous on (0, ν). Since ν ≤ ml < νβ, (2) and (8) imply

that F β(w) < 1 for any w ∈ [0, ν], so that each distribution must have an atom either
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at 0 or at ν. Lemma A3 ((ii) and (iii)) implies that the laggard’s atom is at 0 and the

laggard’s payoff must equal ml. Lemma A3(iv) then implies that the leader’s atom is at ν.

If ν < ml, then the laggard can obtain a payoff higher than ml by choosing w ∈ (ν,ml).

Thus, ν = ml so that (9) and (10) define the unique equilibrium distributions. �

Proof of Proposition 3

Proof. We first show that our proposal is an equilibrium. If m ∈ (0, ξβ), then the payoff

to each firm is β
(
m+ π(m)

2

)
and the payoff to a deviation to w < m is (m − (1 − β)w).

Deviations are unprofitable since w > 0, π decreases and ξβ satisfies (12) implies

β

(
m+

π(m)
2

)
− (m− (1− β)w) ≥ β

π(m)
2
− (1− β)m

≥ β
π(ξβ)

2
− (1− β)ξβ = 0. (A2)

If m ∈ (ξβ, νβ), then, by construction, using (6), (8), (12), and (13), the payoff to each

firm is constant and equal to m on [0, λ(m)] ∪ {m}, the support of F ∗∗. If a firm uses

w ∈ (λ(m),m), then the payoff equals m − w + β
(
w + π(w)F β(λ(m))

)
< m − λ(m) +

β(λ(m) + π(λ(m))F β(λ(m))) = m since the payoff decreases in w in this range and the

payoff is continuous on [0,m] and therefore equals m at the boundary.

We now show uniqueness. If m ∈ (0, ξβ), Lemma A3 ((i), (iv) and (v)) imply that either

(a) the support of Fi equals {0,m} and the support of Fj equals {m} for {i, j} = {1, 2};

or for i = 1, 2 (b) the support of Fi is {m}; (c) the support of Fi is [0, ν] ∪ {m} for some

ν ∈ (0,m]; or (d) the support of Fi is [0, ν] for some ν ∈ (0,m). In case (a) i’s payoff at

w = 0 (i.e., m) must equal its expected payoff at w = m (i.e., βm+ β
2π(m)) which holds by

(12) only if m = ξβ. If m = ξβ, j’s expected payoff at ξβ is βξβ +
(
Fi(0) + 1−Fi(0)

2

)
βπ(ξβ)

and the limit, as w ↓ 0, of j’s expected payoff at w is ξβ + Fi(0)βπ(0) which is greater

than its payoff at ξβ since π(w) > π(ξβ) > 0 and (12) imply

ξβ + Fi(0)βπ(0) > ξβ + Fi(0)βπ(ξβ) = ξβ + Fi(0)βπ(ξβ) +
β

2
π(ξβ)− (1− β)ξβ

= βξβ +
(
Fi(0) +

1
2

)
βπ(ξβ)

> βξβ +
(
Fi(0) +

1− Fi(0)
2

)
βπ(ξβ)
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which violates equilibrium requirements. In case (b) we know that equilibrium results by

construction when m ∈ [0, ξβ]. If m 6∈ [0, ξβ], then equilibrium cannot result since the

expected payoff of β
(
m+ π(m)

2

)
< m in this case. In case (c) we know that equilibrium

results when Fi = F ∗∗ for i = 1, 2 by construction when m ∈
(
ξβ, νβ

)
. That it is the only

equilibrium follows since the expected payoffs at 0 and at m must be equal so that

m = β

(
m+

(
lim
w↑ν

Fj(w) +
1− limw↑ν Fj(w)

2

)
π(m)

)
(A3)

which implies that limw↑ν Fj(w) = 2m(1−β)−βπ(m)
βπ(m) ∈ (0, 1) for j = 1, 2 only if m ∈ (ξβ, νβ)

by (4) and (12). In this case, F1(w) = F2(w) is continuous on (0, ν) (Lemma A3(ii)) and

F1(0) = F2(0) = 0 (Lemma A3(iv)) so that F1(w) = F2(w) = F β(w) for w ∈ (0, ν). In

this case, (13) and (A3) imply that ν = λ(m) so that Lemma A3(vi) implies F1(w) =

F2(w) = F β(w) for w ∈ [0, λ(m)] and so F1(w) = F2(w) = F ∗∗(w).

Finally, in case (d), Lemma A3(ii) implies that F1 and F2 are continuous on (0, ν) and

so Lemma A3(vi) implies Fi(w) satisfies (A1) for i = 1, 2. Lemma A3(iv) implies that

either (i) Fi is continuous on [0, ν] for i = 1, 2, (ii) Fi is continuous on [0, ν], Fj has an atom

at 0 for {i, j} = {1, 2}, or (iii), Fi has an atom at 0, Fj has an atom at ν for {i, j} = {1, 2}.

Cases d(i)-(ii) are not possible because (A1) implies that Fi(ν) = (1−β)ν
βπ(ν) < 1 since ν < νβ.

In case d(iii), by (A1), Fi(w) is described by the right-hand side of (9) and Fj(w), by that

of (10) after replacing ml with ν in (9) and (10). In this case, the payoff to i is constant

and equal to m but the payoff to j is constant and equal to m − ν(1 − β) + βπ(ν) > m

since ν < νβ and so i can do better by deviating to w = m+ ε for some small ε > 0. �

Solutions to the Differential Equation in (18)

It can be shown by taking derivatives that:

FΨ
m(w) = e

Rm
w

π′(y)
π(y)+Ψ(y+m)

dy

1− 1− β
β

∫ m

w

e
Rm
x

(−π′(y))
π(y)+Ψ(y+m)

dy

π(x) + Ψ(x+m)
dx

 (A4)

= e
Rm
w

π′(y)
π(y)+Ψ(y+m)

dy − 1− β
β

∫ m

w

e
R x
w

π′(y)
π(y)+Ψ(y+m)

dy

π(x) + Ψ(x+m)
dx, (A5)

where we use in the second step that e
R b
a A(x)dx · e−

R b
c A(x)dx = e

R c
a A(x)dx. One can also

show by taking derivatives that in the the particular case of FΨ
ν̂Ψ , see Definition 6:

FΨ
ν̂Ψ(w) =

1− β
β

∫ w

0

e
R w
x

(−π′(y))
π(y)+Ψ(y+m)

dy

π(x) + Ψ(x+m)
dx. (A6)
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Proof of Proposition 4

To show that our bid function b∗ solves the right hand side of the firm’s Bellman equation

in Definition 4, we prove the more general argument that for our continuation value W ∗,

and for any given bid and working capital of the rival, a working capital w and a bid

b̃ > π(w) + c does strictly worse than the same bid b̃ and the minimum working capital

that makes this bid acceptable, i.e. w̃ such that π(w̃) + c = b̃. The argument is the

same as in the static case: reducing today’s working capital while keeping constant the

bid increases today’s utility in the amount of working capital reduced while it decreases

tomorrow’s continuation value in its discounted value. This is easy to deduce from the

functional form of W ∗, see (25), when the reduction in today’s working capital (keeping

constant the bid) does not change the identity of tomorrow’s leader. Otherwise, it is a

consequence of both firms having the same cash when the identity of the leader changes,

the implication of Assumption 1 that at least one firm has cash larger than θ at any

information set, and that Ψβ(m′) = 0 if m′ ≥ θ, by (17) and Definition 7.

In what follows, we assume that both firms use the bid function b∗ and write down the

expected payoff to a firm with cash m that chooses a working capital w ∈ [0,m] when the

opponent with cash m′ chooses working capital according to the equilibrium distribution.

We consider different cases depending on the relationship between m and m′ and show

that in each case the expected payoff equals W ∗(m,m′).

If m,m′ ≥ νβ then the opponent’s distribution of working capital is the atomless

distribution FΨβ

νβ
with support equal to [0, νβ], see Definition 7 and (21) and (24). Using

that b∗(w|m,m′) ≥ b∗(w′|m′,m) if and only if w ≤ w′, the definition of W ∗ in (25) and

some algebra, we obtain that the expected payoff is

m− (1− β)w +
β

1− β
m+ β

∫ min{w,νβ}

0
(π(w) + Ψβ(w̃ +m))(FΨβ

νβ )
′
(w̃)dw̃. (A7)

The derivative of Equation (A7) with respect to w is 0 for w ∈ [0, νβ] because FΨβ

νβ
solves

(18) and it is negative for w > νβ. Thus the firm is indifferent among all w ∈ [0, νβ] and

strictly prefers these levels to anything strictly greater than νβ. The expected payoff to

the firm with cash m equals the expected payoff in Equation (A7) when w = 0 which

equals W ∗(m,m′) for m,m′ ≥ νβ as required.

If m < m′ and m ∈ [0, νβ), our firm is the laggard and the other firm the leader. The
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leader’s distribution of working capital is F βL,m with support [0,m] and an atom at m, see

(23). Using that b∗(w|m,m′) ≥ b∗(w′|m′,m) if and only if w ≤ w′, the definition of W ∗ in

(25) and some algebra, we obtain that the laggard’s expected payoff is

m− (1− β)w +
β

1− β
m+ β

∫ w

0
(π(w) + Ψβ(w̃ +m))(F βL,m)′(w̃)dw̃, (A8)

if w ∈ [0,m). The derivative of (A8) with respect to w, for w ∈ [0,m), is 0 because

F βL,m solves (18), see (23). Our tie-breaking rule ensures that the laggard’s expected

payoff is continuous at w = m. Thus, the laggard is indifferent among all w ∈ [0,m)

and its expected payoff is equal to the expected payoff in (A8) when w = 0 which equals

W ∗(m,m′) for m < m′ and m ∈ [0, νβ] as required.

If m > m′ and m′ ∈ [0, νβ], our firm is the leader and the other is the laggard. The

laggard’s distribution of working capital is F βl,m′ ≡ F
Ψβ

m′ with support [0,m′] and an atom

at 0, see (22). Using that b∗(w|m,m′) ≥ b∗(w′|m′,m) if and only if w ≤ w′, the definition

of W ∗ in (25) and some algebra, the leader’s expected payoff is

m− (1− β)w +
β

1− β
m+ βF βl,m(0)(π(w) + Ψβ(m)))+

β

∫ min{w,m′}

0
(π(w) + Ψβ(w̃ +m))(F βl,m)′(w̃)dw̃, (A9)

The derivative of Equation (A9) with respect to w for w ∈ [0,m] is 0 because F βl,m defined

in (21) solves (18) in [0,m]. The leader’s expected payoff is given by (A9) evaluated at

w = 0 and it equals W ∗(m,m′) for m > m′ and m′ ∈ [0, νβ] as required, as can be deduced

using that Ψβ is a fixed point of the operator T on Pβ . �

Proof of Theorem 1

To prove Theorem 1 we show a more general result that we state as Theorem A1 below.

The lemma and definition that follows are used, respectively, in the proof of Lemma A5

and the statement of Theorem A1.

Lemma A4. limβ↑1 ν
β = θ.

Definition A1. Let Λ ≡
{

(π,m) : lim
β↑1

(
inf
{
x : x = Ψβ(m) for some Ψβ ∈ P̂β

})
=∞

}
.

Λ consists of the (π,m) such that every selection of fixed points of T diverges as β ↑ 1.
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Theorem A1. If θ
m > 4 and (π,m) ∈ Λ, then limβ↑1 µ

β({m}) = 1.

The following lemma together with Theorem A1 imply Theorem 1.

Lemma A5. If π(2m) + π(m) > π(0), then (π,m) ∈ Λ.

Auxiliary Results Used in the Proof of Theorem A1

Lemma A6. Fl,m and FL,m decrease in m for m < νβ and are constant in m for m ≥ νβ.

In the proof of Theorem A1, we use the implication of (26) that:

Qβ(m, [m,x]) = F βl,m(x−m) + F βL,m(x−m)− F βl,m(x−m)F βL,m(x−m), (A10)

for x−m<m, νβ, which implies that:

Qβ(m, [m,x]) = (2− F βL,θ(x−m))F βL,θ(x−m) = Qβ(θ, [m,x]), (A11)

for m ≥ θ, by (21)-(23), because νβ < θ by Definitions 6 and 7.

Finally, note that for m′′ < m′:

Qβ(m, (m′′,m′]) = Qβ(m, [m,m′])−Qβ(m, [m,m′′]), (A12)

which is equal to zero when m′′ −m≥m by (26).

Lemma A7. If m′ −m < νβ and M⊂ (m,m′] then Qβ(m,M) ≤ 2(1− F βl,m′−m(0)).

Lemma A8.

(i) Suppose (π,m) ∈ Λ and θ > 2m then:

limβ→1 F
β
l,m(w) =



1 if m < θ −m and w ∈ [0,m],
π(m)
π(w) if m ∈ [θ −m, θ) and w ∈ [θ −m,m],
π(m)
π(θ−m) if m ∈ [θ −m, θ) and w ∈ [0, θ −m),

0 if m ≥ θ and w ∈ [0, θ),

(A13)

(ii) limβ→1 F
β
L,m(w) = 0 if w < min{θ,m}.

(iii) Suppose (π,m) ∈ Λ and θ ≥ 3m then:

lim
β→1

(1− β)Ψβ(m) =

 π(m) if m < θ −m,

π(m) π(m)
π(θ−m) if m ∈ [θ −m, θ).

(A14)
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Lemma A9. Suppose (π,m) ∈ Λ.

(i) limβ↑1
FβL,m(w)

1−β = 0 if w < min{θ −m,m}.

(ii) limβ↑1
FβL,θ(θ−2m−ε)

(1−β)2 =
∫ θ−2m−ε

0
1

π(m)dz > 0, if θ ≥ 3m.

(iii) limβ↑1
1−Fβl,θ−m−ε(0)

1−β =
∫ θ−m−ε

0

(−π′(z)) min
n

π(m)
π(θ−m)

,1
o

π(m) min
n
π(z+m)
π(θ−m)

,1
o dz > 0 for any ε > 0, if θ ≥ 3m.

Lemma A10. If (π,m) ∈ Λ and θ > 2m, then limβ↑1 µ
β((m, θ]) = 0.

Proof of Theorem A1

For ε ∈ (0, θ − 4m), we define the following sets A ≡ {m}, B ≡ (m, θ − 2m − ε], C =

(θ−2m− ε, θ−m− ε], D ≡ (θ−m− ε, θ− ε], E ≡ (θ− ε, θ+m]. We also let B̂ ≡ (m, 2m).

The definition of ε implies that B̂ ⊂ B.

By Lemma A10, it is sufficient to show that limβ↑1 µ
β(E) = 0. We provide an upper

bound for µβ(E) for β close to 1 and show that this bound converges to zero.

That Q(m,E) = 0 if m 6∈ D ∪E (which follows from (A12) and (26)) and (27) imply:

µβ(E) = µβ(D)
∫
D
Qβ(m,E)

µβ(dm)
µβ(D)

+ µβ(E)
∫
E
Qβ(m,E)

µβ(dm)
µβ(E)

≤ µβ(D) +
(
µβ(E)

∫
E
Qβ(m,E)

µβ(dm)
µβ(E)

)
. (A15)

That Q(m,D) = 0 if m 6∈ C ∪D ∪E (which follows from (A12) and (26)) and (27) imply:

µβ(D) = µβ(C ∪D)
∫
C∪D

Qβ(m,D)
µβ(dm)

µβ(C ∪D)
+ µβ(E)

∫
E
Qβ(m,D)

µβ(dm)
µβ(E)

. (A16)

Substituting (A16) into (A15), using that 1−Qβ(m,D)−Qβ(m,E) = Qβ(m,A∪B ∪C)

and solving for µβ(E), one gets the first inequality below:

µβ(E) ≤
∫
C∪DQ

β(m,D)µβ(dm)∫
E Q

β(m,A ∪B ∪ C)µ
β(dm)
µβ(E)

≤
∫
C∪DQ

β(m,D)µβ(dm)
Qβ(θ,A ∪B ∪ C)

≤
2(1− F βl,θ−m−ε(0))µβ(C ∪D)

Qβ(θ,A ∪B ∪ C)

≤
2(1− F βl,θ−m−ε(0))

(
2(1− F βl,θ−m−ε(0))µβ((m, θ]) +Qβ(θ, C ∪D)µβ([θ, θ +m])

)
Qβ(θ,A ∪B ∪ C)

=

2(1−Fβl,θ−m−ε(0))

1−β

(
2(1−Fβl,θ−m−ε(0))

1−β µβ((m, θ]) + Qβ(θ,C∪D)
1−β µβ([θ, θ +m])

)
Qβ(θ,A∪B∪C)

(1−β)2

, (A17)
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where the remaining inequalities are explained as follows. The second inequality follows

from the property that Qβ(m,A ∪ B ∪ C) ≥ Qβ(θ,A ∪ B ∪ C) for m ∈ E. This property

follows from Qβ(m,A ∪ B ∪ C) = Qβ(m, [m, θ −m− ε]) and because the right hand side

of (26) is increasing in F βl,m(x−m) and F βL,m(x−m) and the fact that F βl,m(x) ≥ F βl,θ(x)

and F βL,m(x) ≥ F βL,θ(x) by Lemma A6 since νβ < θ by Definitions 6 and 7. The third

inequality follows from Lemma A7 for M = D and m′ = θ − ε which is less than νβ by

Lemma A4. Finally, the last inequality follows from:

µβ(C ∪D) =
∫ θ

θ−3m−ε
Qβ(m,C ∪D)µβ(dm) +Qβ(θ, C ∪D)µβ([θ, θ +m]) (A18)

≤ 2(1− Fl,θ−m−ε(0))µβ((m, θ]) +Qβ(θ, C ∪D)µβ([θ, θ +m]). (A19)

The first equality uses (27), Qβ(m,C ∪D) = 0 if m < θ − 3m− ε, see right below (A12),

and Qβ(m,C ∪D) = Qβ(θ, C ∪D) if m ≥ θ by (A11). The inequality uses Lemma A7 for

M = C ∪D and m′ = θ − ε < νβ by Lemma A4.

To conclude the proof, we show that the last line of the right hand side of (A17) tends

to zero as β tends to 1.

First, note that

lim
β↑1

Qβ(θ,A ∪B ∪ C)
(1− β)2

= lim
β↑1

(
(2− F βL,θ(θ − 2m− ε))

F βL,θ(θ − 2m− ε)
(1− β)2

)

= 2
∫ θ−2m−ε

0

1
π(m)

dy > 0 (A20)

where the first step uses (A11); the second step uses that limβ→1 F
β
L,θ(θ − 2m − ε) = 0

and limβ↑1
FβL,θ(θ−2m−ε)

(1−β)2 =
∫ θ−2m−ε

0
1

π(m)dy by Lemmas A8(i) and A9(ii), respectively, and

that the limit of the product equals the product of the limits. Next note that:

lim
β↑1

Qβ(θ, C ∪D)
1− β

= lim
β↑1

(
Qβ(θ, [m, θ − ε])

1− β
− Qβ(θ, [m, θ − 2m− ε])

1− β

)
= 0, (A21)

by application of (A12), in the first step, and of (A11) and Lemma A9(i), and the property

that the limit of a difference is equal to the difference of the limits, in the second step.

That the right hand side of the last line of (A17) tends to zero as β tends to 1 follows

from (A20)-(A21), Lemmas A9(iii) and A10, µβ([θ, θ +m]) ≤ 1 and that the limit of the

ratio equals the ratio of the limits when the denominator’s limit is not zero. �
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This supplementary material consists of four parts. Section S1 contains the proofs

of all the Lemmae of the main text. Section S2 provides a proof for the existence of

a fixed point to the operator T defined in (20). Section S3 studies a finite horizon

version of our model of Section 4. Section S4 analyses a model with moral hazard and

limited liability that endogenizes our function π, see (1).

53In this supplementary material we use cross references to equations, definitions, lemmas and proposi-

tions in the original paper. The numbering of footnotes is consecutive to the original paper.



S1 Proofs of Lemmae

Proof of Lemma A1

Proof. To get a contradiction, suppose that w ∈ (0,min{νβ,mi}] belongs to the support

of Fi and Fj puts zero probability on [w− ε, w] for some ε > 0. We shall argue that Firm

i has a profitable deviation when Firm j plays (b∗, Fj). The contradiction hypothesis has

two implications. (a) w− ε gives Firm i strictly greater expected payoffs than w since the

former saves on the cost of working capital and increases the profit when winning without

affecting the probability of winning. (b) Firm i’s expected payoffs are continuous in its

working capital at w since Fj does not put an atom at w. (a) and (b) mean that there

exists an ε′ ∈ (0, ε) such that any working capital in (w − ε′, w + ε′) gives strictly less

expected payoffs than a working capital w− ε. The fact that w belongs to the support of

Fi means that Fi puts strictly positive probability in (w − ε′, w + ε′) and thus Firm i has

a profitable deviation: shift the probability mass in (w − ε′, w + ε′) to w − ε. �

Proof of Lemma A2

Proof. To get a contradiction, suppose there exists w ∈ [0,min{νβ,mj}) for which Fj puts

strictly positive probability on [w − ε, w] for all ε > 0 and Fi has an atom at w. Suppose,

first, that mj > mi and Fj puts zero probability on [w − ε′, w) for some ε′ > 0. Our tie

breaking rule in (2) implies that Firm i loses with probability one conditional on both

firms choosing w. Thus, Firm i can profitably deviate by shifting the probability that Fi

puts in w to w − ε′. Since Fj puts zero probability in [w − ε′, w), this deviation does not

affect the probability that i wins the contract but it saves the cost of working capital ε′.

We conclude that either (i) mj > mi and Fj puts strictly positive probability on [w−ε, w)

for all ε > 0 or (ii) mj ≤ mi and Fj puts strictly positive probability on [w − ε, w) for all

ε > 0. In each case one can find ε′ > 0 small enough such that Firm j can improve by

moving the probability that Fj puts in [w− ε′, w) in case (i) and in [w− ε′, w] in case (ii),

to a point slightly above w. Each deviation affects marginally Firm j’s cost of working

capital and profits conditional on winning but allows the firm to increase from at most
1
2 to 1 the probability of winning the procurement contract at a strictly positive profit if

Firm i plays the atom at w. �
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Proof of Lemma A3

Proof. Lemma A1 and the definition of support implies (i). (ii) and (iii) follow from

putting Lemmas A1 and A2 together. (iv) follows from Lemma A2 for w = 0. To prove

(v), note that Lemma A1 and (i) (with the roles of i and j interchanged) imply that it is

sufficient to show that Fj is continuous at w. That follows from (ii) (applied to Fj instead

of Fi). The case w = ml is similar, the only differences are that we use (iii) instead of

(ii) and we take mi < mj without loss of generality by (i). To prove (vi), note that for

{i, j} = {1, 2} the continuity of Fi in (0, ν) implies that j’s equilibrium expected payoffs

of choosing w ∈ (0, ν) are equal to (6) for F = Fi. Since (0, ν) belongs to the support of

Fj , the usual indifference condition of a mixed strategy equilibrium implies that Fi is a

continuous solution of (7) in (0, ν). Since Fi is a distribution and thus it is right-continuous

at 0, the uniqueness result in Theorem 7.1 in Coddington and Levinson (1984), pag. 22,

implies that the solutions we seek are characterized by (A1) as can be proved by taking

derivatives. �

Proof of Lemma A4

Proof. It follows from (5) and νβ ∈ [νβ, θ). That νβ < θ follows from Definitions 6 and 7.

To show that νβ ≥ νβ we use that (A4) and Definition 6 imply:

1− 1− β
β

∫ ν̂Ψ

0

e
R ν̂Ψ

x
(−π′(y))

π(y)+Ψ(y+m)
dy

π(x) + Ψ(x+m)
dx = 0. (S1)

Thus, νβ ≥ νβ follows from the facts that the left hand side of (S1) increases in Ψ and

decreases in ν̂Ψ and that, by Definitions 2 and 7, two solutions to (S1) are (Ψ, ν̂Ψ) = (0, νβ)

and (Ψ, ν̂Ψ) = (Ψβ, νβ) �

Proof of Lemma A5

Proof. In this lemma, we use five auxiliary results. First, we use the implication of

π(2m) > π(0) − π(m) and π strictly decreasing that π(2m) > 0, and hence 2m < θ,

by Definition 1, which together with Lemma A4 means that for β close to 1,

2m < νβ. (S2)

2



Second, note that for m ≤ νβ, (22) implies that

F βl,m(0) = FΨβ

m (0) ≥ π(m)
π(0)

(
1− 1− β

β

m

π(m)

)
, (S3)

where the inequality follows from the fact that its right hand side is equal to the right

hand side of (A4) for Ψ equal to the zero function and w = 0, and that the right hand

side of (A4) decreases if the function Ψ shifts downwards.

Third, we use the following implication of (19)-(20) for m,m < νβ:

Ψβ(m)
Ψβ(m)

=
FΨβ
m (0)
FΨβ
m (0)

. (S4)

Fourth, we use that F βl,m is a solution to (18) in [w′, w′′] ⊂ [0,min{m, νβ}], by (21)-(23),

and hence satisfies:

F βl,m(w′′)− F βl,m(w′) =
∫ w′′

w′

1−β
β + (−π′(y))F βl,m(y)

π(y) + Ψ(y +m)
dy. (S5)

Fifth, we use that m ≤ νβ means that,

1− F βl,m(0) = F βl,m(m)− F βl,m(0)

=
∫ m

0

1−β
β + (−π′(y))F βl,m(y)

π(y) + Ψβ(y +m)
dy

≤
∫ m

0

1−β
β + (−π′(y))

Ψβ(2m)
dy

=
1−β
β m+ π(0)− π(m)

Ψβ(2m)
, (S6)

where the first step follows from F βl,m(m) = FΨβ
m (m), by (22), and FΨβ

m (m) = 1, by

Definition 5, the second step from (S5), the third step from F βl,m(y) ≤ 1, π(y) ≥ 0 and

Ψβ(y +m) ≥ Ψβ(2m), and the last step from standard algebra.

The lemma is proved using that π(2m) > 0, as explained above, limβ↑1 F
β
l,m(0) > 0, by

(S3), and the following equalities and inequalities, for β close to 1:

(1− β)Ψβ(m) = βF βl,m(0)
(
π(0) + Ψβ(m)

)
− βΨβ(m)

= βF βl,m(0)

(
π(0)−

1− F βl,m(0)

F βl,m(0)
Ψβ(m)

)

≥ βF βl,m(0)

(
π(0)−

1−β
β m+ π(0)− π(m)

F βl,2m(0)

)

≥ βF βl,m(0)π(0)
π(2m) + π(m)− π(0)− 1−β

β 3m

π(2m)− 1−β
β 2m

,

3



where we use in the first equality (19) and (20); in the second equality, an algebraic

transformation; in the first inequality, (S2), (S4) for m = 2m and (S6); and in the second

inequality, (S2), (S3) for m = 2m and some algebra. �

Proof of Lemma A6

Proof. Direct from (21), (22), (23), and (A5). �

Proof of Lemma A7

Proof. It is sufficient to show that:

Qβ(m, [m,m′])− F βl,m(0) ≤ 2(1− F βl,m′−m(0)). (S7)

This can be deduced fromQβ(m,M) ≤ Qβ(m, (m,m′]), (A12) form′′ = m andQβ(m, {m}) =

F βl,m(0). That Qβ(m, {m}) = F βl,m(0) can be deduced from (26) since F βL,m(0) = 0 by (21)

and (23) and Definition 6.

If m′ − m ≥ m, (S7) follows from Qβ(m, [m,m′]) = 1, by (26), and F βl,m(0) ≥

F βl,m′−m(0), by Lemma A6. If m′ −m < m, (S7) follows from:

Qβ(m, [m,m′])− F βl,m(0)

= F βl,m(m′ −m) + F βL,m(m′ −m)(1− F βl,m(m′ −m))− F βl,m(0)

= F βl,m(m′ −m)− F βl,m(0) + (F βL,m(m′ −m)− F βL,m(0))(1− F βl,m(m′ −m))

≤ F βl,m(m′ −m)− F βl,m(0) + (F βL,m(m′ −m)− F βL,m(0))

≤ 2(F βl,m(m′ −m)− F βl,m(0))

≤ 2(F βl,m′−m(m′ −m)− F βl,m′−m(0))

= 2(1− F βl,m′−m(0)),

where the first step uses (A10) which applies by m′−m < m and the Lemma’s hypothesis;

the second step uses again that F βL,m(0) = 0; the third step uses that F βl,m ≤ 1 and that

4



F βL,m(·) is increasing and m′ −m ≥ 0; and the fourth step uses that:

F βL,m(m′ −m)− F βL,m(0) =
∫ m′−m

0

1−β
β + (−π′(y))F βL,m(y)

π(y) + Ψ(y +m)
dy

≤
∫ m′−m

0

1−β
β + (−π′(y))F βl,m(y)

π(y) + Ψ(y +m)
dy

= F βl,m(m′ −m)− F βl,m(0),

where the equalities use m′ −m < m and the Lemma’s hypothesis to apply (S5) and a

similar equation in which F βL,m replaces F βl,m, and the inequality follows from Lemma A6

and (21)-(23); in the fifth step, we use the Lemma’s hypothesis, m′ − m < m, (S5) for

w′′ = m′−m and w′ = 0 and Lemma A6; and in the sixth step, that F βl,m′−m(m′−m) = 1

by (21) and (22). �

Proof of Lemma A8

Proof. We use the following implication of (π,m) ∈ Λ, first line, and Ψβ ∈ Pβ, second

line:

lim
β→1

Ψβ(m) =

 ∞ if m < θ,

0 if m ≥ θ.
(S8)

The definition of Pβ in (17) implies the second line. The first line can be deduced using

Lemma A4, (S4), limβ→1 Ψβ(m) =∞, FΨβ
m (0) ≤ 1 and (S3).

To prove (i) and (ii), we use that limβ↑1 ν
β = θ, by Lemma A4, νβ < θ, by Definitions

6 and 7, and (21)-(23) imply that for β close to 1:

F βl,m(w) =

 FΨβ
m (w) if m < θ

FΨβ

νβ
(w) if m ≥ θ

, (S9)

and,

F βL,m(w) = FΨβ

νβ
(w) if w ∈ [0,min{m, θ}). (S10)

The limit, as β goes to 1, of the first line of the right hand side of (S9) is equal to the

corresponding expressions in the first three lines of the right of (A13). This is because:

(a) the two terms of the product in the right hand side of (A4) evaluated at Ψβ have the

necessary finite limits as β goes to 1; and (b) the product of (finite) limits equals the limit

of the product. Result (a) can be shown by using the the bounded convergence theorem

5



(Royden (1988), page 81), denoted BCT hereafter,54 and (S8). That the limit, as β goes

to 1, of the second line of the right of (S9) is equal to the right of the fourth line of (A13) is

a consequence of the integral in the last line of the right hand side of (A6) being bounded

for Ψ = Ψβ. Since this argument does not require neither (π,m) ∈ Λ nor θ > 2m, it also

implies the limit in (ii).

To prove (iii), we start with the case m = m. We use that for β close to 1, F βl,m(0) =

FΨβ
m (0) by (22) and m < νβ, a consequence of 3m < θ and Lemma A4. Thus, Definition

7 means that:

(1− β)Ψβ(m) = βF βl,m(0)(π(0) + Ψβ(m))− βΨβ(m)

= βF βl,m(0)π(0)− βΨβ(m)(1− F βl,m(0)), (S11)

where the first term on the second line of the right hand side of (S11) tends to π(0)

since limβ↑1 F
β
l,m(0) = 1 by the first line of the right of (A13) and 3m > θ. We use that

F βl,m(m) = 1, by (22) and Definition 5, and (S5) to rewrite the last term of (S11) as

βΨβ(m)
∫ m

0

1−β
β + (−π′(z))F βl,m(z)

π(z) + Ψβ(z +m)
dz = β

∫ m

0

1−β
β + (−π′(z))F βl,m(z)

π(z)
Ψβ(m)

+
Fβl,z+m(0)

Fβl,m(0)

dz. (S12)

where the equality in (S12) follows from (S4). By application of the BCT, the limit of this

last term when β tends to 1 is equal to π(0)− π(m), as required, since Ψβ(m) diverges to

infinity and F βl,m(w) tends to 1 for w ≤ m and m ∈ [m, 2m]. The former follows from the

assumption that (π,m) ∈ Λ and Definition A1, and the latter follows from the first line of

the right hand side of (A13) since we assume that 3m < θ which means that 2m < θ−m.

The result for a general m can be deduced from the result for m = m and (S4) and

the limit results for F βl,m in part (i) of this lemma. �

Proof of Lemma A9

Proof. To show (i), note that (21) and (23) and Lemma A4 imply that FL,m(w) = FΨβ

νβ
(w)

for w < min{θ,m} and β close to 1. Thus, we can deduce (i) from (A6), (S8), and the

BCT.
54The BCT applies because each integrand in (A4) is uniformly bounded along the sequence since Ψ

being non negative implies that | −π′(y)
π(y)+Ψ(y+m)

| ≤ π′(y)
π(y)

and 0 ≤ 1
π(x)+Ψ(x+m)

≤ 1
π(x)

.
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To show (ii), note that (21) and Lemma A4 imply that F βL,θ(θ − 2m − ε) = FΨβ

νβ
(θ −

2m− ε) for β close to 1. Thus, we can deduce from (A6) and Definition 7 that:

F βL,θ(θ − 2m− ε)
(1− β)2

=
1
β

∫ θ−2m−ε

0

e
R θ−2m−ε
x

(−π′(y))

π(y)+Ψβ(y+m)
dy

(1− β)π(x) + (1− β)Ψβ(x+m)
dx.

We can deduce (ii) from this equation, applying the limits in (S8), the first line of the

right of (A14) and the BCT. The BCT can be applied to the integral in x because, first,

its integrand is non negative and bounded above by:

e
R θ−2m−ε
0

(−π′(y))
π(y)

dy

(1− β)Ψβ(θ −m− ε)
, (S13)

since π(x) is non-negative for x ∈ [0, θ] and Ψβ(z + m) is decreasing and non-negative

in x; and second, expression (S13) is uniformly bounded above for any β in (1/2, 1) as a

consequence of the first line of the right of (A14).

To show (iii), note that for β close to 1:

lim
β↑1

1− F βl,θ−m−ε(0)

1− β
= lim

β↑1

F βl,θ−m−ε(θ −m− ε)− F
β
l,θ−m−ε(0)

1− β

= lim
β↑1

∫ θ−m−ε

0

1−β
β + (−π′(z))F βl,θ−m−ε(z)

(1− β)π(z) + (1− β)Ψβ(z +m)
dz

=
∫ θ−m−ε

0
lim
β↑1

(
1−β
β + (−π′(z))F βl,θ−m−ε(z)

(1− β)π(z) + (1− β)Ψβ(z +m)

)
dz

=
∫ θ−m−ε

0

(−π′(z)) min
{

π(m)
π(θ−m) , 1

}
π(m) min

{
π(z+m)
π(θ−m) , 1

} dz,

where first equality follows from Lemma A4, (22), and FΨβ
m (m) = 1; the second equality

follows by Lemma A4 and (S5); in the third equality we apply, once again, the BCT using

that the integrand is nonnegative and bounded above by:

1−β
β + γ

(1− β)π(z) + (1− β)Ψβ(z +m)
,

which is uniformly bounded above in β for β ∈ (1/2, 1) and z ∈ [0, θ−m−z] as can be shown

by applying Lemma A8(iii) to the denominator; and finally, in the fourth equality we use

the following three properties: (a) the numerator converges to (−π′(w)) min
{

π(m)
π(θ−m) , 1

}
since the first and third line of the right hand side of (A13) implies that limβ↑1 F

β
l,m(z) =

7



min
{

π(m)
π(θ−m) , 1

}
because z ≤ θ−m−ε, (b) the denominator converges to π(m) min

{
π(w+m)
π(θ−m−ε) , 1

}
>

0 since Lemma A8(iii) implies that limβ↑1(1 − β)Ψβ(z + m) = π(m) min
{
π(z+m)
π(θ−m) , 1

}
be-

cause z + m < θ and (c) the limit of the ratio equals the ratio of the limits when the

denominator has a positive limit. �

Proof of Lemma A10

Proof. For M = (m, θ], (27) implies that µβ(M) =
∫
Qβ(m,M)µβ(dm), which is less

than 2(1 − F βl,θ−m(0)) for β close to 1 since Lemma A7 for m′ = θ can be applied by

Lemma A4 and since µβ is a probability measure. Thus, the lemma follows from the third

line on the right hand side of (A13). �

S2 Existence of Fixed Points of the Operator T

To simplify the notation, we adopt the convention that

(a)+ ≡ max {a, 0} . (S14)

We also find convenient to compute a bound for ν̂Ψ for any Ψ ∈ Pβ.

Definition S1. xβ is the unique w ∈ [(θ −m)+, θ] that solves:

βπ(w) = (1− β)(w − (θ −m)+).

Note the similarity between the equation that defines xβ and (4). Indeed, as next

lemma shows, xβ is an upper bound to the support of the randomizations that firms play

over working capitals in the models of Section 4 and Section S3. In this sense, it is an

analogue of νβ in the static model.

Lemma S1. ν̂Ψ ≤ xβ for any Ψ ∈ Pβ.

Proof. By Definition 5, FΨ
ν̂Ψ(ν̂Ψ) = 1. Besides, the right hand side of (A6) is increasing in

w for w < θ. Thus, it is sufficient to show the right hand side of (A6) is greater than 1 at
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w = xβ. This expression is equal to:

1− β
β

∫ xβ

0

e
R xβ
x

(−π′(y))
π(y)+Ψ(y+m)

dy

π(x) + Ψ(x+m)
dx ≥ 1− β

β

∫ xβ

(θ−m)+

e
R xβ
x

(−π′(y))
π(y)+Ψ(y+m)

dy

π(x) + Ψ(x+m)
dx

=
1− β
β

∫ xβ

(θ−m)+

e
R xβ
x

(−π′(y))
π(y)

dy

π(x)
dx

=
1− β
β
· x

β − (θ −m)+

π(xβ)
= 1,

where we use that the integrand is positive in the first step, that Ψ(m) = 0 for m ≥ θ in

the second step, standard algebra in the third step and Definition S1 in the last step. �

We prove that T has a fixed point applying Schauder Fixed-Point Theorem. For this

purpose, we restrict the domain of Ψ to [0, θ +m]. Define P̃β as:{
Ψ: [0, θ +m]→

[
0,

β

1− β
π(0)

]
is continuous, decreasing and Ψ(m) = 0∀m ≥ θ

}
. (S15)

For any Ψ̃ ∈ P̃β, we define its (unique) extension to Pβ by the function Ψ that satisfies

Ψ(m) = Ψ̃(m) if m ∈ [0, θ + m] and Ψ(m) = 0 if m ∈ (θ + m,∞). For any Ψ̃ ∈ P̃β, let

F Ψ̃
m ≡ FΨ

m where Ψ is the extension of Ψ̃ to Pβ. For any Ψ̃ ∈ P̃β, let T̃ (Ψ̃)(m) ≡ T (Ψ)(m)

for m ∈ [0, θ +m], where T is defined in (20) and Ψ is the extension of Ψ̃ to Pβ.

Lemma S2. The operator T̃ : P̃β → P̃β has a fixed point. Moreover, the extension of

any fixed point of T̃ is a fixed point of the operator T : Pβ → Pβ and any fixed point of

T is the extension of some fixed point of T̃ .

Proof. We endow P̃β with the sup-norm, that we denote by || · ||, and check that the

operator T̃ on P̃β satisfies all the conditions of Schauder Fixed-Point Theorem, see Stokey

and Lucas (1999), Theorem 17.4, page 520.

P̃β is a nonempty, closed, bounded and convex subset of the set of continuous functions

on [0, θ + m]. Furthermore, it is easy to see that T : Pβ → Pβ, see Footnote 37, implies

that T̃ : P̃β → P̃β. We show below that T̃ is continuous and that the family T̃ (P̃β) is

equicontinuous, as desired.

Claim 1: T̃ is continuous.
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We assume an arbitrary sequence {Ψn} → Ψ in P̃β and show that T̃ (Ψn) → T̃ (Ψ).

Note that ||T̃ (Ψn)− T̃ (Ψ)|| is equal to:

sup
m∈[0,xβ ]

∣∣β(FΨn
m (0))+(π(0) + Ψn(m))− β(FΨ

m(0))+(π(0) + Ψ(m))
∣∣

= sup
m∈[0,xβ ]

∣∣((FΨn
m (0))+ − (FΨ

m(0))+)β(π(0) + Ψ(m)) + β(FΨn
m (0))+(Ψn(m)−Ψ(m))

∣∣
≤ sup

m∈[0,xβ ]

{∣∣(FΨn
m (0))+ − (FΨ

m(0))+
∣∣β(π(0) + Ψ(m)) + β(FΨn

m (0))+ |Ψn(m)−Ψ(m)|
}

≤ sup
m∈[0,xβ ]

{∣∣(FΨn
m (0))+ − (FΨ

m(0))+
∣∣ β

1− β
π(0) + β |Ψn(m)−Ψ(m)|

}
≤ β

1− β
π(0) sup

m∈[0,xβ ]

∣∣FΨn
m (0)− FΨ

m(0)
∣∣+ β sup

m∈[0,xβ ]

|Ψn(m)−Ψ(m)| ,

where the first step follows from (20), Lemma S1 and because (S14) implies that (FΨ
m(0))+ =

FΨ
m(0) if m ≤ ν̂Ψ and55 (FΨ

m(0))+ = 0 if m > ν̂Ψ; in the second step we add and sub-

tract βΨ(m)(FΨn
m (0))+; the third step follows from |A+B| ≤ |A| + |B|; the fourth step

because Ψ(m) ≤ β
1−βπ(0) and (FΨn

m (0))+ ≤ 1; and the fifth step from the property that

supx{a(x) + b(x)} ≤ supx a(x) + supx b(x), and that |(A)+ − (B)+| ≤ |A−B|.

Definition S1 implies that xβ < θ +m and so,

sup
m∈[0,xβ ]

|Ψn(m)−Ψ(m)| ≤ sup
m∈[0,θ+m]

|Ψn(m)−Ψ(m)| = ||Ψn −Ψ||.

Since we assume that ||Ψn −Ψ|| converges to zero, it only remains to be shown that:

lim
n→∞

sup
m∈[0,xβ ]

∣∣FΨn
m (0)− FΨ

m(0)
∣∣ = 0. (S16)

Let Ψn(w) ≡ (Ψ(w)− εn)+ and Ψn(w) ≡ Ψ(w) + εn for εn ≡ supñ≥n ||Ψñ −Ψ||. With

a slight abuse of notation, we denote by F
Ψn(w)
m (w) and F

Ψn(w)
m (w) the right hand side

of (A4) at Ψ = Ψn and Ψ = Ψn, respectively. Thus, that Ψ(w) and Ψn(w) belong to

[Ψn(w),Ψn(w)] and that FΨ
m ≥ F Ψ̃

m if Ψ(w) ≥ Ψ̃(w) ≥ 0 for any w, by (A4), imply that

F
Ψ(w)
m (0) and F

Ψn(w)
m (0) belong to [FΨn(w)

m (0), FΨn(w)
m (0)]. Thus:

|FΨn
m (0)− FΨ

m(0)| ≤
∣∣∣FΨn
m (0))− FΨn

m (0)
∣∣∣ . (S17)

Note that,

lim
n→∞

sup
m∈[0,xβ ]

∣∣∣FΨn
m (0)− FΨn

m (0)
∣∣∣ = 0, (S18)

55Since FΨ
m(0) is decreasing in m, see (A4), and FΨ

ν̂Ψ(0) = 0, see Definition 6.
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by an application of Theorem 7.13 in Rudin (1976), pag. 150. We can apply this theorem,

because (A4) implies that: (a) FΨn
m (0) and F

Ψn
m (0) are continuous in m ∈ [0, xβ], (b)

{FΨn
m (0) − F

Ψn
m (0)}n is a decreasing sequence since {Ψn}n and {Ψn}n are respectively

decreasing and increasing sequences, and (c) FΨn
m (0)−FΨn

m (0) converges to zero pointwise

in m ∈ [0, xβ] since limn→∞ ||Ψn −Ψn|| = 0 and the BCT56 applies.

Equations (S17) and (S18) imply (S16) as desired.

Claim 2: the family T̃ (P̃β) is equicontinuous.

(20), Ψ(m) ∈
[
0, β

1−βπ(0)
]

for Ψ ∈ P̃β and Lemma S1 means that it is sufficient to

show that there exists a finite κ such that:∣∣∣∣∂FΨ
m(0)
∂m

∣∣∣∣ ≤ κ for any Ψ ∈ P̃β and m ∈ [0, xβ]. (S19)

Equation (A5) evaluated at w = 0 implies that:

∣∣∣∣∂FΨ
m(0)
∂m

∣∣∣∣ =
e

Rm
0

π′(y)
π(y)+Ψ(y+m)

dy

π(m) + Ψ(m+m)

∣∣∣∣π′(m)− 1− β
β

∣∣∣∣ for m ∈ [0, xβ]. (S20)

Note that e
Rm
0

π′(y)
π(y)+Ψ(y+m)

dy ≤ 1 because π′(y)
π(y)+Ψ(y+m) < 0 and that π(m) + Ψ(m + m) ≥

π(xβ) because π is a decreasing function and Ψ(m + m) ≥ 0. Besides, since −π′ is

continuous, there exists a finite γ ≥ 0 such that:

−π′(z) ≤ γ, for all z ∈ [0, θ]. (S21)

These arguments imply the condition in (S19) for

κ =
1

π(xβ)

∣∣∣∣γ +
1− β
β

∣∣∣∣ .
�

Lemma S2 implies the following proposition (and no proof is required).

Proposition S1. The operator T defined in (20) has a fixed point in Pβ.
56The same arguments as in Footnote 54 can be used to show that each integrand in (A4) is uniformly

bounded in β.
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S3 A Finite Horizon Model

In this section, we show that the unique equilibrium of a finite period version of the model

in Section 4 converges as the number of periods tend to infinity to one of the equilibria

that we analyse in Section 4. As Athey and Schmutzler (2001) have argued:

If there are multiple equilibria, one equilibrium of particular interest (if it

exists) is an equilibrium attained by taking the limit of first-period strategies

as the horizon T approaches infinity.

We consider a t+ 1-period model with periods denoted by t ∈ {1, 2, . . . , t+ 1}. All the

periods but the last one are as in the model of Section 4. In the last period, all the firm’s

cash is consumed. The dynamic link between periods and the firms’ objective functions,

adapted to the finite time horizon, are also as in Section 4. Both firms start with identical

cash larger than θ and we assume Assumption 1. We study the subgame perfect equilibria

of the game.

Definition S2. We let Ψt, t = 2, . . . , t + 1, be defined recursively (starting from t + 1)

by Ψt+1 ≡ 0, and Ψt ≡ T (Ψt+1), where T is the operator defined in (20). We let νt,

t = 1, . . . , t, denote ν̂Ψt+1 .

For t = 1, . . . , t, let,

Ft,l,m(w) = Ft,L,m(w) = FΨt+1
νt (w) if w ≤ νt ≤ m (S22)

Ft,l,m(w) = FΨt+1
m (w) if w ≤ m < νt (S23)

Ft,L,m(w) ≡

F
Ψt+1
νt (w) if w < m < νt

1 if w = m < νt
(S24)

Let Ω denote (as in Section 4) the cash vectors that can arise along the game tree. For

any t ∈ {1, 2, ..., t} and (m,m′) ∈ Ω, let:

σ∗t (w|m,m′) ≡

 Ft,l,m(w) if m ≤ m′

Ft,L,m′(w) if m > m′,
(S25)

and,

Wt(m,m′) ≡

 m+m
∑t+1−t

τ=1 βτ if m ≤ m′

m+m
∑t+1−t

τ=1 βτ + Ψt(m′) if m > m′.
(S26)
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Note that Wt is continuous in Ω because the only conflicting point is when m = m′

and Assumption 1 implies that in this case m′ ≥ θ and hence Ψt(m′) = 0 by (17). We

also let Wt+1(m,m′) ≡ m, for any (m,m′) ∈ Ω.

Proposition S2. There is a unique subgame perfect equilibrium of the game. In this

equilibrium, and at any period t ∈ {1, 2, ..., t}, both firms randomize their working capital

according to σ∗t , bid according to b∗ and have Wt expected continuation payoffs at the

beginning of period t.

Proof: We prove the proposition using backward induction. It is trivial that the continu-

ation payoffs at the beginning of period t + 1 are described by Wt+1 in period t + 1. We

can then apply recursively the following claim:

Claim: There is a unique equilibrium in the reduced game defined by period t and the

continuation payoffs βWt+1. In this equilibrium both firms use the strategy (b∗, σ∗t ), and

get expected equilibrium payoffs described by Wt.

To prove the claim, note that the argument in the first paragraph of the proof of

Proposition 4 also applies here using Wt+1, Ψt+1, (S26) and Definition S2 instead of W ∗,

Ψβ, (25) and Definition 7, respectively. Thus, in equilibrium both firms use b∗. Under this

assumption, the expected payoffs of a firm with cash m and working capital w ≥ θ −m

that faces a rival that randomizes according to F are equal to:

m−w+β

∫ w

0
Wt(w+π(w) +m, w̃+m)F (dw̃) +β

∫ ∞
w

Wt(w+m, w̃+π(w̃) +m)F (dw̃)

= m− (1− β)w +m
t+1−t∑
τ=1

βτ + βπ(w)F (w) + β

∫ min{w,xβ−m}

0
Ψt+1(w̃ +m)F (dw̃)

(S27)

since Ψt+1(w̃ +m) = 0 for w̃ +m ≥ xβ by (20) and Lemma S1.

We use (S27) to show, first, that σ∗t is an equilibrium with equilibrium expected payoffs

given by Wt and, second, that there is no other equilibrium.

To show that σ∗t is optimal when the other firm uses σ∗t we distinguish whether the

laggard’s cash is larger than νt. If this is the case, the proof follows by an adaptation of

the proof of the case m,m′ ≥ νβ in Proposition 4, but using νt, F
Ψt+1
νt (·), Ψt+1, Wt+1,
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(S22) and Definition S2 instead of νβ, FΨβ

νβ
(·), Ψβ, W ∗, (21) and Definition 7, respectively.

Otherwise, the proof follows by an adaptation of the proof of the case m < m′ and

m ∈ [0, νβ) and the case m > m′ and m′ ∈ [0, νβ) in Proposition 4, but using νt, Ft,L,m,

Ft,l,m, Ψt+1, Wt+1 and (S22), (S23) and (S26) instead of νβ, F βL,m, F βl,m, Ψβ, W ∗, and

(21), (22) and (25), respectively.

Similarly, one can apply the argument in the proof of Proposition 4 that the value

function of the Bellman equation is equal to W ∗ to show that the expected equilibrium

payoffs are equal to Wt.

To prove uniqueness of our equilibrium we explain how to adapt the proof of Proposi-

tions 1 and 2. First, we show that one can restrict to working capitals in [0, xβ] because

for the expected payoff function in (S27), a working capital w ≥ xβ is strictly dominated

by a working capital of (θ−m)+. To see why, note that one can deduce from (S27) and the

definition of xβ in Definition S1 that the difference in expected payoffs between working

capital w > xβ and working capital (θ −m)+ is equal to:

βπ(w)F (w)− βπ((θ −m)+)F ((θ −m)+)

−(1− β)(w − (θ −m)+) ≤ βπ(w)− (1− β)(w − (θ −m)+)

< βπ(xβ)− (1− β)(xβ − (θ −m)+)

= 0,

as desired.

We can show that a version of Lemmas A1, A2 and A3 in which νβ is replaced by xβ

and (A1) by:

Fi(w) = e
R w
0

−π′(y)
π(y)+Ψt+1(y+m)

dy
Fi(0) +

1− β
β

∫ w

0

e
R w
x

(−π′(y))
π(y)+Ψt+1(y+m)

dy

π(x) + Ψt+1(x+m)
∀w ∈ [0, ν). (S28)

is satisfied by the game defined by the expected payoffs in (S27). We can proceed as in the

proof of Propositions 1 and 2 to prove uniqueness when the laggard’s cash is greater than

νt, and when the laggard’s cash is less than νt, respectively. The only difference is that

we use νt and xβ instead of νβ, Definition S1 instead of Definition 2, (18) for Ψ = Ψt+1

instead of (7), FΨt+1
νt instead of F β, Ft,l,m instead of Fl,m, and Ft,L,m instead of FL,m, and

thus (S22)-(S24) instead of (8)-(10). �
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Finally, we show that the limit of the equilibrium of this finite game as the number

of periods goes to infinity is equal to the equilibrium of the model in Section 4. To get

this result, we abuse a little bit of the notation and denote by σ∗
t,t

, Wt,t, Ψt,t and νt,t the

functions σ∗t , Wt, Ψt and νt, respectively, to make the dependence in the length of the

time horizon of the game explicit.

Lemma S3. {Ψt,t}∞t=t+1
is an increasing sequence in Pβ with limit Ψ∞ ∈ Pβ. Besides,

Ψ∞ is a fixed point of T , where T is defined in (20).

Proof. We first note that by Definition S2, Ψt,t = T t−t(Ψ) for Ψ the zero function in Pβ,

and Tn : Pβ → Pβ an operator defined recursively by T 1 = T and Tn = Tn−1 for n > 1.

The operator T is monotone in the sense that Ψ ≥ Ψ′ implies that T (Ψ) ≥ T (Ψ′).

This is a consequence of (20) because (A4) implies that FΨ
m(0) ≥ FΨ′

m (0). Furthermore,

the operator T is continuous and the set T (Pβ) is equicontinuous by analogous arguments

to Claim 1 and Claim 2, respectively, in the proof of Lemma S2. Thus, {Ψt,t}∞t=t+1
is an

increasing sequence in an equicontinuous set T (Pβ). Consequently, {Ψt,t}∞t=t+1
has a limit

in Pβ that we denote by Ψ∞. By continuity of T and the definitions of Ψ∞ and Ψt,t:

T (Ψ∞) = T ( lim
t→∞

Ψt,t) = lim
t→∞

T (Ψt,t) = lim
t→∞

Ψt−1,t = Ψ∞.

Thus Ψ∞ is a fixed point of T as desired. �

Denote by σ∗ and W ∗ the equilibrium of Proposition 4 that corresponds to the function

Ψβ = Ψ∞, where Ψ∞ is defined in Lemma S3.

Proposition S3. For any (m,m′) ∈ Ω, σ∗
t,t

(·|m,m′) converges weakly to σ∗(·|m,m′) and

Wt,t(m,m
′) converges uniformly to W ∗(m,m′) as t goes to infinity.

Proof. The uniform convergence of Wt,t(m,m
′) to W ∗(m,m′) is a straightforward conse-

quence of Lemma S3 and the definitions of W ∗(m,m′) and Wt,t(m,m
′) in (25) and (S26).

The convergence of σ∗
t,t

follows the definitions in (21)-(24) and in (S22)-(S25) and the

limits:

F
Ψt,t
m (w) t→∞−−−→ FΨβ

m (w) (S29)

F
Ψt,t
νt,t (w) t→∞−−−→ FΨβ

νβ (w) (S30)

νt,t
t→∞−−−→ νβ, (S31)
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for νt,t = ν̂Ψt,t , Ψβ = Ψ∞ and νβ = ν̂Ψ∞ .

Equation (S29) follows from Lemma S3 and the application of the property that the

limit of the product is equal to the product of the limits if finite and the BCT to (A4) for

Ψ = Ψt,t. BCT can applied because the same arguments as in Footnote 54 mean here that

the integrands of the corresponding limits are uniformly bounded in t. Equation (S30)

follows from the application of Lemma S3 and the BCT to (A6) for Ψ = Ψt,t. Equation

(S31) follows from the application of the property that the sequence of unique solutions

xt to the sequence of equations Υt(xt) = 1 converges to the unique solution x of the limit

equation limt→∞Υt(x) = 1 when Υt is a strictly increasing function and {Υt} converges

to a strictly increasing function. This property applies to xt = νt,t and x = νβ because

(a) νt,t and νβ are the unique solutions in w to 1 equal to the last line of the right hand

side of (A6) for Ψ = Ψt,t and Ψ = Ψ∞, respectively; (b) the last line of the right hand

side of (A6) is strictly increasing in w; and (c) the last line of the right hand side of (A6)

evaluated at Ψ = Ψt,t converges to the last line of the right hand side of (A6) evaluated

at Ψ = Ψ∞ by application of the BCT to the two integrals and Lemma S3. �

S4 A Model of Financial Constraints

In this section, we endogenize the function π in a model in which moral hazard and

limited liability restrict the set of acceptable bids. In this model, the firm who wins the

procurement contract can divert some funds at the cost of jeopardizing the success of the

procurement contract. The main implication is that the minimum acceptable bid for a

firm with working capital w is given by an endogenous function π which under natural

assumptions is strictly decreasing.

We endogenize the set of acceptable bids in the model57 of Section 4 by assuming that

a bid b is acceptable if and only if the firm has incentives to comply with the procure-

ment contract in case of winning. We begin by formalizing this incentive compatibility

constraint, and later we discuss institutional frameworks that enforce it.

Suppose the same game tree as in Section 4 with an additional stage each period after

a firm wins the procurement contract and before the firm complies with the contract. To
57It is straightforward how to adapt this variation to the static model of Section 3.
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describe this new stage, we use a differentiable function α : [0,∞)2 → [0,∞). As before,

the total funds of the firm that wins the procurement contract are equal to its working

capital w. We assume that either the working capital is sufficient to pay for the cost c,

i.e. w ≥ c, or the firm gets a loan d = c − w at zero interest rate.58 In both cases, the

firm can choose between complying with the procurement contract and the loan, if any, or

defaulting.59 If the firm complies with both, it starts next period with cash equal to w+d,

minus the production cost c, plus the procurement price b, minus the loan repayment d

and plus the exogenous cash flow m, i.e.60

w + b− c+m. (S32)

If the same firm defaults, it starts next period with cash equal to α(d,w) ∈ [0, d+w] plus

the exogenous cash flow m, i.e.

α(d,w) +m, (S33)

Thus, α(d,w) denotes the funds of the firm that cannot be expropriated after default.

This model is realistic. For instance, it is a common practice that an entrepreneur

who participates in a procurement contest uses a limited liability company (LLC) that

can be liquidated in case of default. The entrepreneur could divert the funds from the

LLC to its personal account before defaulting. α(d,w) represents the diverted funds that

cannot be expropriated even after litigation and w + d − α(d,w) represents the funds

that the entrepreneur cannot keep after default because they are either used to pay a

compensation to the sponsor, spent on litigation costs or recouped by the lender. In this

case, the limited liability status of the LLC implies that neither the lender nor the sponsor

can seize any future revenue of the entrepreneur. Finally, default may not restrict the

entrepreneur’s future ability to borrow if there are other lenders who are willing to lend

to the entrepreneur. Formally, this would happen in a model in which firms and lenders

are matched only once and lenders do not observe the outcome of past matches.

The comparison of (S32) and (S33) means that a firm that borrows d = max{c−w, 0}
58A zero interest rate is consistent with a competitive banking sector, no discounting between the moment

the money is transferred to the firm and when it pays back and the fact that acceptable bids are risk free.
59For simplicity, we do not allow for default only in the loan or only in the procurement contract.
60Formally, we identify the case w ≥ c and no loan with the case of borrowing d = 0.
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prefers to comply rather than default if and only if:

w + b− c ≥ α(max{c− w, 0}, w). (S34)

Thus, and no proof is necessary:

Proposition S4. If the firm’s continuation value W is increasing in its own cash, only

bids greater than α(max{c−w, 0}, w)+c−w are acceptable for a firm with working capital

w ∈ [0,∞). This implies that the set of acceptable bids is characterized by a function

π(w) = α(max{c− w, 0}, w)− w.

The endogenous function π is strictly decreasing under natural assumptions. For in-

stance, the derivative of π at61 w < c is negative if substituting one unit of working capital

for one unit of debt increases the amount of non-expropriable funds by no more than one

unit. Furthermore, one can find meaningful economic conditions under which the linear

case, π(w) = θ − w, arises. For instance, if ∂α(d,w)
∂d = ∂α(d,w)

∂w , for d = c− w, i.e. if the

amount of non-expropriable funds does not change when debt is substituted by working

capital.

In reality, the incentive compatibility constraint that we analyse above is usually en-

forced by different institutional frameworks. A natural example in procurement is the

requirement of a surety bond. Indeed, the role of sureties62 is to guarantee that the firm

will comply with the procurement contract. An alternative explanation for the particular

case w < c is that the sponsor requires proof of the availability of the required external

financing and banks are happy to provide it only if they do not expect the firm to default.

61The relevant case is w < c because of two reasons. First, θ ≤ c since θ solves π(θ) = α(max{c −

w, 0}, θ) − θ = 0 and π(c) = α((0, c) − c ≤ 0 because α(0, w) ≤ w. Second, the analysis in Section 4 only

requires characterizing π in the domain [0, θ), since firms have no incentive to carry more working capital

than θ. To see why, recall that a firm with working capital w bids b∗(w|m,m′) and note that w > θ implies

that π(w) < 0, and hence b∗(w|m,m′) < c. If continuation values are increasing in the firm’s cash, a firm

does not have incentives to bid below c if the rival does not do it, as in our proposed equilibrium. Bidding

less than c does not increase the cases in which the firm wins but reduces the profits in case of winning.
62See Footnote 5.
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