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1 INTRODUCTION

ABSTRACT

We present high-speed, three-colour photometry of the eclipsing dwarf nova PHL 1445,
which, with an orbital period of 76.3 min, lies just below the period minimum of ~82 min for
cataclysmic variable stars (CVs). Averaging four eclipses reveals resolved eclipses of the white
dwarf and bright spot. We determined the system parameters by fitting a parametrized eclipse
model to the averaged light curve. We obtain a mass ratio of g = 0.087 £ 0.006 and inclination
i = 8522 £ 029. The primary and donor masses were found to be M,, = 0.73 + 0.03 M and
My = 0.064 £ 0.005 M@, respectively. Through multicolour photometry a temperature of the
white dwarf of T, = 13200 &£ 700 K and a distance of 220 £ 50 pc were determined. The
evolutionary state of PHL 1445 is uncertain. We are able to rule out a significantly evolved
donor, but not one that is slightly evolved. Formation with a brown dwarf donor is plausible,
though the brown dwarf would need to be no older than 600 Myr at the start of mass transfer,
requiring an extremely low mass ratio (¢ = 0.025) progenitor system. PHL 1445 joins SDSS
1433 as a sub-period minimum CV with a substellar donor. The existence of two such systems
raises an alternative possibility that current estimates for the intrinsic scatter and/or position
of the period minimum may be in error.

Key words: binaries: close —binaries: eclipsing —brown dwarfs —stars: dwarf novae — stars:
individual: PHL 1445.

mentum. A bright spot forms where the gas stream from the donor
impacts the disc. For a general review of CVs, see Hellier (2001).

Cataclysmic variable stars (CVs) are close binary systems, with
each system containing a white dwarf primary and low-mass sec-
ondary. The secondary star is large enough to fill its Roche lobe and
therefore mass is transferred to the white dwarf. In systems with
a low-magnetic-field white dwarf, this transferred mass does not
immediately accrete on to the surface of the white dwarf, instead
forms an accretion disc around it in order to conserve angular mo-

* E-mail: MMcallister1 @sheffield.ac.uk

The structure of CVs can, at some inclinations, result in complex
eclipses, with the accretion disc, white dwarf and bright spot all
being eclipsed by the secondary star in quick succession. High-
time-resolution photometry allows each of these individual features
to be observed and their timings determined, which can then be used
to determine accurate system parameters (e.g. Wood et al. 1986).

Steady mass transfer from the donor secondary to the white dwarf
primary is possible due to angular momentum loss from the sys-
tem. Without angular momentum loss, mass-loss from the donor
increases the size of the Roche lobe until it is no longer filled by
the donor, causing mass transfer to cease. Angular momentum loss

© 2015 The Authors
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Table 1. Journal of observations. The dead time between exposures was 0.025 s for all observations. The GPS timestamp on each data point is
accurate to 50 ps. Tiyig represents the mid-eclipse time, while Texp and Nex, represent the exposure time and number of exposures, respectively.
NBLUE indicates the number of u’-band frames which were co-added on-chip to reduce the impact of readout noise. The last column indicates
whether or not the observations were photometric.

Date Start phase End phase Filters Tiid Texp NBLUE  Nexp Seeing Airmass Phot?
(HMJD) (s) (arcsec)
2011 August 26 —1264.338  —1263.098 u'g'i 55800.15106(3)  2.685 2 2098  0.8-1.7  1.35-1.69 No
2011 November 01 —0.604 0.131 u'g'ry 55867.12400(3)  2.137 2 1119  1.0-2.7 1.39-1.51 No
2012 January 14 1391.856 1392.217 u'g'r 55940.87898(3)  1.979 3 827 1.2-25 1.33-1.37 No
2012 January 14 1393.696 1394.177 u'g'ry 55940.98490(3) 1.979 3 1102 1.3-3.5  1.90-2.36 No
2012 January 15 1412.678 1413.119 u'g'r 55941.99163(3) 1.979 3 1008  1.1-1.9  2.03-2.53 Yes
2012 January 16 1429.792 1430.500 u'g'ry 55942.89237(3) 1.979 3 1619  1.1-64  1.36-1.80 Yes
2012 January 16 1430.500 1431.183 u'g'r 55942.94534(3) 1.979 3 1561 1.1-64  1.36-1.80 Yes
2012 January 22 1541.725 1542.147 u'g'r 55948.82668(3)  1.979 3 966 0.9-3.0 1.32 Yes
2012 September 08 5888.678 5889.173 u'g'i 56179.15198(3) 2.982 3 754 1.0-1.8  1.36-1.44 No
2012 October 13 6546.740 6547.175 u'g'r 56214.01605(3)  3.480 3 571 14-33  1.52-1.69 Yes
2013 July 30 12.023.706 12 024.176 u'g'i 56504.21431(3) 3.852 3 557 1.3-29  1.54-1.74 Yes
2013 December 31 14925879 14926.216  u'g'¥ 56657.97642(3)  3.922 3 394 1.5-2.5  1.55-1.69 Yes
2014 January 01 14 941.796 14942260  u'g'r 56658.82417(3)  3.628 3 584 1.0-1.9  1.38-1.47 Yes
2014 January 01 14944.657 14945127  u'g'¥ 56658.98310(3)  3.628 3 591 1.0-1.9  1.54-1.74 Yes
2014 January 02 14960.781 14 961.153 u'g'r 56659.83095(3)  3.628 3 467 0.8-1.3  1.37-1.43 Yes

reduces the size of the Roche lobe, countering the effect of donor
mass-loss and allowing steady mass transfer. Mass transfer in CVs
leads to an evolution towards smaller system separations and there-
fore shorter orbital periods.

As CVs evolve to shorter orbital periods, their donors are
driven further away from thermal equilibrium. This is a conse-
quence of mass-loss from the donor, more specifically a conse-
quence of the donor’s thermal time-scale increasing at a more
rapid rate than its mass-loss time-scale. As mass continues to
be transferred from the donor, it eventually enters the substellar
regime, and this is approximately where it is far enough away
from thermal equilibrium for its radius to no longer decrease in re-
sponse to further mass-loss. The degenerate nature of the substellar
donor can even cause its radius to increase in response to mass-
loss, resulting now in an increasing system separation and orbital
period.

CV evolution theory therefore predicts the existence of an orbital
period minimum, and this is what is observed, with the period
minimum currently estimated to be at 8§1.8 £ 0.9 min (Knigge,
Baraffe & Patterson 2011). An accumulation of systems is also
expected to be found at the period minimum — the ‘period spike’ —
due to systems spending more time at this stage in their evolution.
This feature has been observed at 82.4 £ 0.7 min (Gansicke et al.
2009), in excellent agreement with the period minimum. There are,
however, a handful of CVs that have periods below this period
minimum.

An example of such a CV, with an orbital period of 76.3 min, is
PHL 1445. PHL 1445 was first catalogued as a faint blue object by
Haro & Luyten (1962) in the Palomar—Haro—Luyten catalogue, and
again (as PB 9151) by Berger & Fringant (1984). It was identified
as a CV system by Wils (2009) through spectroscopic analysis of
the 6dF Galaxy Survey target 6dFGS g0242429-114646, found to
be coincident with PHL 1445. Its spectrum showed double-peaked
emission lines, indicating a high inclination and possibly deeply
eclipsing system (Wils 2009). The eclipsing nature of PHL 1445
was confirmed by Wils et al. (2011) through follow-up photometry,
which also gave the first determination of the system’s orbital period.

There are multiple ways for a hydrogen-rich CV to have an
orbital period shorter than the period minimum. These include

Galactic halo membership (Patterson, Thorstensen & Knigge 2008;
Uthas et al. 2011), an evolved donor (Thorstensen et al. 2002;
Podsiadlowski, Han & Rappaport 2003) or formation with a brown
dwarf donor (Kolb & Baraffe 1999; Politano 2004). Obtaining PHL
1445’s donor mass and temperature may help reveal why it lies
below the period minimum.

In this paper, we present high-time-resolution ULTRACAM eclipse
light curves of PHL 1445, with system parameters determined
through light-curve modelling of an average light curve. Individ-
uval light curves are also given the same treatment, in order to see
how certain parameters vary between eclipses. The observations are
described in Section 2, the results displayed in Section 3, and the
analysis of these results in Section 4.

2 OBSERVATIONS

PHL 1445 was observed over seven observing runs (2011 August—
2014 January) using uLTRACAM (Dhillon et al. 2007) on the 4.2 m
William Herschel Telescope, La Palma. 15 eclipses were observed
in total, the majority observed simultaneously in the SDSS-i/g'r
colour bands, the rest in SDSS-u'g’i’. A complete journal of obser-
vations is shown in Table 1.

Data reduction was carried out using the uLTRACAM pipeline re-
duction software (see Feline et al. 2004). A nearby, photometrically
stable comparison star was used to correct for any transparency vari-
ations during observations. The standard stars Feige 22 (observed at
the start of the night on 2012 January 16) and SA92-342 (observed
at the end of the night on 2013 July 30) were used to transform the
photometry into the u'g'r'i'z’ standard system (Smith et al. 2002).

The photometry was corrected for extinction using nightly mea-
surements of the r'-band extinction from the Carlsberg Meridian
Telescope,' and subsequently converted into -, g’- and /'-band ex-
tinction using the information provided in La Palma Technical Note
31.2

! http://www.ast.cam.ac.uk/ioa/research/cmt/camc_extinction.html
2 http://www.ing.iac.es/Astronomy/observing/manuals/ps/tech_notes/
tn031.pdf
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The typical out-of-eclipse photometric errors were estimated at
4, 2 and 2 per cent in the u’, g’ and ' bands, respectively. These
errors increased to approximately 12, 8 and 7 per cent when both
the white dwarf and bright spot were eclipsed.

3 RESULTS

3.1 Orbital ephemeris

Mid-eclipse times (1) wWere determined assuming that the white
dwarf eclipse is symmetric around phase zero: Tiia = (Twi + Twe)/2,
where Ty; and Ty, are the times of white dwarf mid-ingress and
mid-egress, respectively. Ty; and Ty, were determined by locating
the minimum and maximum times of the smoothed g'-band light-
curve derivative. The Tp;q errors (see Table 1) were adjusted to give
x2 = 1 with respect to a linear fit. The eclipse observed on 2011
August 26 is the exception here, as no white dwarf features can
be seen in the eclipse due to PHL 1445 being in outburst. In this
instance, the time of minimum light was used for T}4.

All eclipses, with the exception of the 2011 August outburst
eclipse, were used to determine the following ephemeris:

HMID = 55867.123984(12) + 0.0529848884(13) E.

This ephemeris was used to phase-fold the data for the analysis that
follows.

3.2 Light-curve morphology and variations

Aside from the single outburst eclipse mentioned above, all other
observations listed in Table 1 show a strong white dwarf eclipse
feature. The same cannot be said for a bright spot feature, as a
bright spot ingress can be discerned in most cases, but not one
eclipse shows a clear egress. The reason for the lack of clear bright
spot egress in any of these light curves is the strong flickering seen
in this system. The flickering appears to begin immediately after
white dwarf egress at around phase 0.03 (see Fig. 1), implying that
its source is close to the white dwarf, either in the inner disc or
boundary layer.

To help reduce the prominence of the strong flickering present,
and to be able to locate the position of the bright spot egress, it was
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Figure 1. Top: all 14 quiescent PHL 1445 g’-band eclipses observed.
Bottom: four PHL 1445 g’-band eclipses chosen to create an average.
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necessary to average multiple eclipses together. The 10 eclipses
showing signs of a bright spot ingress were phase-folded using
the ephemeris above and averaged, allowing a broad, faint bright
spot egress feature to emerge. Averaging also seemed to reduce the
strength of the bright spot ingress. After analysing each individual
eclipse, it was apparent that the position of the bright spot ingress
varied significantly across the range of observations due to changes
in accretion disc radius. This is the reason for the bright spot ingress
feature becoming broad and weak in the average eclipse.

To fix this issue, four eclipse light curves (phases 0, 1413, 1430
and 1431) observed not too far apart in time (2011 November-2012
January), with clear bright spot ingresses at a similar position, were
phase-folded and averaged. It is apparent from Fig. 1 that these
four chosen eclipses occurred when PHL 1445 was in the lower
of two distinct photometric states (clear gap visible in top plot just
before white dwarf ingress), although this was not a criterion for
choosing candidates for the average. A further two eclipses were
observed within this time span (both on January 14), but were not
used due to a mixture of bad observing conditions and lack of a
visible bright spot ingress. This new average light curve revealed
much sharper bright spot features than that consisting of all 10
eclipses, and it is worth noting that the position of the bright spot
egress remained unchanged from the 10-eclipse average. The total
rms of this average light curve’s residuals is approximately 7 per
cent, which is significantly larger than the typical photometric error
(~2 per cent) and shows that while flickering has been decreased
through averaging, it continues to be an issue. A model was then
fitted to this average light curve, in order to obtain the system
parameters (Fig. 2).

3.3 Phase-folded average light-curve modelling

The model of the binary system used here to calculate eclipse light
curves contains contributions from the white dwarf, bright spot,
accretion disc and secondary star, and is described in detail by
Savoury et al. (2011). We note briefly that the model constrains the
mass ratio (q), white dwarf radius as a fraction of the binary sep-
aration (R,,/a), white dwarf eclipse phase full-width at half-depth
(A¢) and white dwarf flux; these parameters can then be used to
calculate system parameters (see Section 3.4). It is worth noting that
we use a simplified version of the bright spot model (as described
in Littlefair et al. 2007), as none of the derived system parameters
were found to change significantly between models, and an F-test
(Press et al. 2007) showed the extra complexity is not justified for
PHL 1445. The model requires a number of assumptions, including
that of an unobscured white dwarf (Savoury et al. 2011). The va-
lidity of this assumption has recently been questioned by Spark &
O’Donoghue (2015), through fast photometry observations of the
dwarf nova OY Car. It is not yet completely clear that the results
of Spark & O’Donoghue (2015) cannot be explained by flicker-
ing in the boundary layer and inner disc, and coupled with agree-
ment between photometric and spectroscopic parameter estimates
(Copperwheat et al. 2012; Savoury et al. 2012) we feel an unob-
scured white dwarf is still a reasonable assumption to make.

As discussed in Section 3.2, four PHL 1445 eclipses were phase-
folded and averaged, with the resulting light curves in the «/, g’
and ' bands shown in Fig. 2. Initial Markov chain Monte Carlo
(MCMO) fits to the /-, g’- and r'-band data were carried out. All
model parameters were left to be fitted freely, apart from the white
dwarf limb-darkening parameter (U,,), which was kept fixed at an
initial value of 0.345. The reason for keeping U,, fixed is that we
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Figure 2. Model fits (red) to average PHL 1445 light curves (black) in
¥ (top), ¢ (middle) and u’ (bottom) bands. Also shown are the different
components of the model: white dwarf (dark blue), bright spot (light blue),
accretion disc (green) and donor (purple). The residuals are at the bottom of
each plot.

cannot accurately constrain this parameter with the quality of data
available.

The white dwarf fluxes returned from these initial model fits
were then fitted — again using MCMC routines — to white dwarf
atmosphere predictions (Bergeron, Wesemael & Beauchamp 1995),
in order to derive initial estimates of the temperature, log g and
distance. Reddening was also included as a parameter, in order for
its uncertainty to be taken into account when determining the error
in temperature, but is not constrained by our data. All priors used
were uninformative and uniform. Systematic errors of 5 per cent
were added to the white dwarf fluxes returned by the model fitting,

PHL 1445: eclipsing CV near period minimum 117

as the formal errors did not take into account any uncertainties in
our absolute photometry.

With rough estimates of the white dwarf temperature and log g
known, more reliable U,, values could be obtained using the data
tables in Gianninas et al. (2013). Limb-darkening parameters of
0.469, 0.390 and 0.340 were determined for the «’, g’ and ' bands,
respectively. The typical value of 0.345 for U,, was replaced with
these new values and — again keeping U, fixed — the eclipse model
fits were carried out for a second and final time.

3.4 System parameters

The mass ratio (q), white dwarf eclipse phase full-width at half-
depth (A¢) and scaled white dwarf radius (R, /a) posterior probabil-
ity distributions returned by the MCMC fits described in Section 3.3
can be used along with Kepler’s third law, the system orbital period
and a temperature-corrected white dwarf mass—radius relationship
(Wood 1995) to calculate the posterior probability distributions of
the system parameters (Savoury et al. 2011). These system param-
eters include

(i) mass ratio, g;

(i) white dwarf mass, M,;

(ii1) white dwarf radius, Ry,;

(iv) white dwarf log g;

(v) donor mass, My;

(vi) donor radius, Ry;

(vii) binary separation, a;

(viii) white dwarf radial velocity, K ;
(ix) donor radial velocity, Kg;

(x) inclination, i.

Combining the posterior probability distributions from the «’, g
and ' bands gave the total posterior distributions for each system
parameter (Fig. 3), with the peak of this distribution taken as the
value of that particular system parameter. Upper and lower error
bounds are derived from the 67 per cent confidence levels. Fig. 4
shows a corner plot for the g’-band fit, which exposes degeneracies
between certain system parameters.

The system parameters were calculated twice in total. The value
for log g returned from the first calculation was used to constrain
the log g prior in a second MCMC fit involving the white dwarf

Mass Ratio (g} Inclightion (deg)

0075 0080 0.085 0090 0095 0100 0105 0.110 0115 0120830 65 840 85 850 65 .
/ﬂ\ M, (Mg) Separation (Rg)

5 os 07 08 08 10 11 12 048 050 052 054 056 058 060 062 0.
J‘, - &/\Kﬂmq)

0.006 0007 0.008 0.009 0010 0011 0012 0013 0014 0.015 35 [ a5 50 55 e

s My (Mo) K,(kms™)

0.085 0100 0105 0110 0115 0120 0125 0130 0.135

Figure 3. Normalized posterior probability density functions (black) for
each parameter of the model. The red, green and blue distributions represent
the /-, ¢’- and u/-band fits, respectively.
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Figure 4. Corner plot of g’-band fit showing correlations of varying strengths between system parameters.

atmosphere predictions (Bergeron et al. 1995). This second MCMC
fit also used white dwarf fluxes from four wavelength bands instead
of the three used previously. The additional /’-band white dwarf flux
was obtained through fitting the eclipse model to the individual -
band eclipse from the 2012 September observation (see Section 3.5
for more details on this and other individual eclipse fitting). A
systematic error of 3 per cent had to be added to the fluxes in order
to reach a x? of ~1, which is of the same order as the out-of-
eclipse photometric error (~2 per cent) and approximately half that
of the error associated with flickering (~5 per cent). The use of
an additional bandpass and a constraint on log g resulted in more
precise values for the white dwarf temperature and distance. This
new temperature was then used to obtain a more reliable white dwarf
mass—radius relationship, which was used in the second calculation
of the system parameters.

Fig. 5 shows a white dwarf colour—colour plot, containing both the
colour of the white dwarf in PHL 1445 and models from Bergeron
et al. (1995). As expected, there is good agreement between the
colour of the white dwarf and the temperature and log g values
determined from fitting to these models.

MNRAS 451, 114-125 (2015)
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Figure 5. White dwarf colour—colour plot. The PHL 1445 white dwarf is
shown by the red data point and the black lines represent white dwarf models
of varying log g from Bergeron et al. (1995).
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Table 2. System parameters for PHL 1445. The errors in the combined column are returned by the model and are purely statistical. The errors in the
final column take into account the systematic error due to flickering. 7, and d represent the temperature and distance of the white dwarf, respectively.

Band v g u Combined Sys err (per cent) due Final

to flickering estimates
q 0.0866 =+ 0.0006 0.0873 £ 0.0008 0.096 + 0.004 0.08701 =+ 0.0005 7 0.087 + 0.006
My M) 0.722 £ 0.010 0.740 + 0.008 0.76 £ 0.08 0.733 £ 0.006 4 0.73 £ 0.03
Rw (Rp) 0.01137 £0.00013  0.01114 £0.00010  0.0109 £ 0.0009  0.01122 % 0.000 08 3 0.0112 £ 0.0003
My Mg) 0.0625 + 0.0010 0.0646 £+ 0.0010 0.073 £ 0.009 0.0637 & 0.0007 7 0.064 + 0.005
R4 Rp) 0.1085 % 0.0006 0.1097 £ 0.0006 0.115 £ 0.004 0.1092 £ 0.0004 4 0.109 + 0.004
aRp) 0.547 £ 0.003 0.552 + 0.002 0.559 £ 0.018 0.5502 4+ 0.0016 2 0.550 +0.011
Ky (kms™1) 41.5+£03 422+04 47+3 41.8+£0.3 6 42+3
K; (kms~1) 479 £2 483.1 £ 1.7 484 £+ 16 481.7+£ 1.4 1 482 +5
i(°) 85.24 £+ 0.05 85.14 +0.07 84.4+0.3 85.19 £+ 0.04 1 85.2+09
log g 82+03 82+03
Ty (K) 13200 + 700 13200 + 700
d (pc) 220 £+ 50 220 £ 50

The calculated system parameters can be found in Table 2. The
errors in the first three columns of Table 2 are those resulting from
the MCMC fitting only, and do not account for uncertainties related
to the assumptions associated with the model (see Savoury et al.
2011) or those arising from the effects of flickering. Flickering
affects the system parameters because it decreases the accuracy
to which the eclipse timings — especially bright spot ingress and
egress — can be measured. As this particular system displays strong
flickering, it is clear that the errors on the system parameters from
the model are underestimated, even though multiple light curves
have been averaged.

To probe the effects of flickering, four additional g’-band average
light curves were produced and fitted with the eclipse model. Each of
these new light curves contained a different combination of three of
the four individual light curves used in the original g’-band average
light curve. The spread of system parameters obtained from these
four MCMC fits gives a more realistic idea of the errors involved;
the errors in the final column of Table 2 include our estimate of the
uncertainty introduced by flickering.

3.5 Individual light-curve modelling

After determining various system parameters using an average
eclipse light curve, the eclipse model could now be fitted to in-
dividual light curves (as long as they showed signs of a bright spot
ingress), using the model fit parameters as a starting point. The
eclipse model parameters g, A¢, Ry /a and Uy, do not vary with
time, so these parameter values were kept fixed in the individual
fits.

In total there were 10 eclipses that showed signs of a bright
spot ingress feature, and therefore qualified for individual MCMC
fitting, including the four used in the phase-folded average fitting.
All but one of these eclipses were observed in the wavelength bands
u'g'r’; the other in «'g'i’. Each individual eclipse was fitted in each
of the three bands, with the starting model parameters depending
on the band. The one i'-band eclipse (2012 September 08) was
given the overall g’-band model parameters as a starting point in the
MCMC fitting, but using an i’-band U, value of 0.301 (Gianninas
et al. 2013). Successful fits to bright spot ingress were achieved
for all 10 eclipses. Since g and A¢ were held fixed, and bright
spot ingress/egress timings are functions of ¢, A¢ and radius of the

accretion disc as a fraction of the binary separation (Rgisc /@), Rgisc/a
could be constrained for all 10 eclipses.

The individual g’-band light curves and corresponding eclipse
model fits are shown in Fig. 6. Individual eclipse fitting should
enable us to analyse how various parameters vary from eclipse to
eclipse, for example disc radii and component fluxes. However, due
to the strong flickering present in each light curve, it is important
to check these fits are genuine and interpret the results with care.
Looking at the individual fits in Fig. 6, it is clear that not all achieve
a true fit to the bright spot features (e.g. cycle numbers 5889, 14942
and 14945), and this will be taken into account in the following
discussion.

The individual eclipse fitting carried out on PHL 1445 provided
nine separate sets of u'g’r’ fluxes for the white dwarf, accretion disc
and bright spot. Following Section 3.4, a systematic error of 3 per
cent was added to all fluxes returned by the individual fits. There
was no evidence for a varying white dwarf temperature across these
nine observations.

3.5.1 Accretion disc

Individual eclipse fitting produced a value of Rg/a for all 10
eclipses. This value from the model is actually the bright spot’s
distance from the white dwarf as a fraction of the binary separation,
but we assume that the bright spot is lying at the edge of the accretion
disc. With the u'-band fits being the least reliable due to the low
quality of light curves, only the r'-, i'- and g’-band Rgis./a were
used. For each eclipse, an average of the r-, i’- and g’-band Rg;s./a
was plotted against Tpniq to show how the disc varies with time, as
shown in Fig. 7. The plot is split into two due to a sizeable time gap
between observations.

The individual errors displayed in Fig. 7 are from the model fits,
and are dramatically underestimated due to the effects of flickering.
There is a systematic error on the disc radius of approximately
10 per cent due to flickering, and this is represented by the bar
in the bottom-left corner of Fig. 7. Without the introduction of
this systematic error, the disc changes appear to be very large,
for example take the successive eclipses of 1430 and 1431. In the
time of just one orbital period (76.3 min), Rgisc/a increases from
approximately 0.288 to 0.380, implying a disc expansion velocity
of 7200 m s~!, which is significantly faster than the 2 m s~ ‘viscous
velocity” of material within the disc. As Fig. 6 shows, both of these
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Figure 6. Model fits (red) to individual PHL 1445 g’-band eclipses (black). The additional coloured lines are explained in Fig. 2. The cycle numbers of each

eclipse are also displayed.

eclipses have clear bright spot ingress features. The fit to the bright
spot ingress in the 1431 eclipse is far better than that in the 1430
eclipse, and this may be the real reason for the large disc radius
expansion observed over this orbital cycle. The poor fit to the bright
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spot ingress in cycle 1430, and in many other individual eclipses
(Fig. 6), is most likely due to the large amount of flickering, which
we address with the introduction of a 10 per cent systematic error.
It must be noted that in some individual eclipses with weak bright
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Figure 7. PHL 1445 accretion disc radius (Rgisc) as a fraction of the binary
separation (a) versus time (in MJD). Individual errors are purely statistical,
and in most cases the error bars are smaller than the data points. The bar in
the bottom-left corner gives an indication of the real error due to flickering.
The figure is split into two due to a large gap in time (~200 d) between
observations.

spot features (e.g. cycle numbers 1542 and 5889) the bright spot
ingress is hardly fit at all, resulting in much more uncertain values
of Ryisc/a in these cases.

The left-hand plot in Fig. 8 shows how the flux of the disc varies
with disc radius. Again, the individual errors are underestimated,
and the errors introduced by flickering are represented by the bars
in the top-left corner of each plot. To measure the reliability of
these flux changes, we again turn to the successive eclipse cycles
1430 and 1431. Here we find that in one orbital period the disc
flux increases by ~0.025 mJy, but at the same time the white dwarf
flux drops by the same amount. Such a change in white dwarf flux
over one orbital cycle is not expected, and it is clear by looking at
Fig. 6 that a fraction of the white dwarf flux in cycle 1430 has in the
following cycle been fitted by the disc component instead. This may
not be the case for all individual eclipse fits, but it does question
the reliability of the model disc flux values. The most likely cause
for this is the large amount of flickering in these individual eclipse
light curves, which confirms the need for a large systematic error
to account for it. Despite the large errors, there does appear to be a
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positive correlation between these two disc parameters. There is no
evidence for changes in disc temperature, so the trend in Fig. 8, if
real, appears to be simply due to a larger disc radius resulting in a
larger disc surface area and therefore flux.

3.5.2 Bright spot

The bright spot fluxes were also plotted against Ry;sc /a (see the right-
hand plot in Fig. 8). Unlike the disc fluxes, on the whole the bright
spot fluxes appear to stay relatively constant across the different
disc radii. Assuming that the main contributor to bright spot flux is
the relative velocity of the gas stream as it impacts with the disc, we
modelled the gas stream and calculated its velocity relative to the
disc for a number of disc radii across the range 0.2 < Rgisc/a < 0.6.
The relative velocity of the gas stream only increased by a factor of
2 across this range, which could explain why we see little variation
in bright spot fluxes.

An attempt was also made to determine bright spot temperatures
from the bright spot fluxes. The bright spot fluxes in each band
from each eclipse were used to calculate bright spot colours, and
then compared to local thermal equilibrium hydrogen slab models
calculated using SYNPHOT in IRAF. Due to the large error bars on
the eclipse fluxes, and the rapid changes in colour with variations in
temperature and density associated with the models, accurate bright
spot temperatures could not be determined in this particular case.

4 DISCUSSION

4.1 Component masses

We find a white dwarf mass of 0.73 & 0.03 M, in PHL 1445,
which is much larger than that of white dwarfs in single and pre-
CV systems (Kepler et al. 2007; Zorotovic, Schreiber & Gansicke
2011), but is identical to the average white dwarf mass in CV
systems below the period gap (0.73 & 0.05 M) found by Knigge
(20006). It is however lower than the mean white dwarf mass found
by Savoury et al. (2011) within a group of 14 short-period CVs
(0.81 £ 0.04 M(y)). We expect this mass for the white dwarf in
PHL 1445 to be reliable, as previous mass determinations using this
method agree with those obtained through spectroscopic methods
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Figure 8. PHL 1445 accretion disc flux (left) and bright spot flux (right) versus radius (Rgisc) as a fraction of the binary separation (a). Red, green and blue
data points represent -, g’- and u’-band observations, respectively. Individual errors are purely statistical, and in most cases the error bars are smaller than the
data points. The bars in the top-left corners of each plot give an indication of the real error due to flickering.
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(Tulloch, Rodriguez-Gil & Dhillon 2009; Copperwheat et al. 2012;
Savoury et al. 2012).

As for the donor in PHL 1445, we find that it has a mass of
0.064 £ 0.005 M. This is just below the hydrogen burning mass
limit of ~0.075 M) (Kumar 1963; Hayashi & Nakano 1963), which
suggests that it is substellar.

4.2 Flickering

One particular feature of the PHL 1445 eclipses is high-amplitude
flickering. This is much larger than the flickering observed in other
known CVs with substellar donors (see Section 4.4), and appears to
be originating from the inner accretion disc, near the white dwarf.
The accretion disc and bright spot fluxes as a fraction of the white
dwarf flux were calculated in «/, g’ and 7/, and compared with those
from other CVs with substellar donors. PHL 1445°s disc fluxes are
nearly double those of the second highest disc flux system, which
suggests that the enhanced flickering is associated with a brighter
disc.

4.3 Evolutionary state of PHL 1445

It is known that PHL 1445 consists of an accreting white dwarf
and a donor star, but what is not known is the nature of this donor
star. It is possible that PHL 1445 lies below the period minimum
because it contains an unusual donor star, one most likely off the
main sequence. We have determined a mass, radius and flux for the
donor star of PHL 1445, allowing us to investigate this.

One possibility is that PHL 1445 is a Galactic halo object. A
system belonging to the Galactic halo would typically have a metal-
poor donor star, meaning a smaller-than-expected radius for its mass
and therefore a higher density. Due to the inverse relation between
density of a Roche lobe-filling donor star and the orbital period
of a system, a metal-poor donor is one way for a CV system to
have an orbital period below the period minimum (Patterson et al.
2008). This was found to be the case for SDSS J150722.30+52309.8
(SDSS 1507), another CV with an orbital period (67 min) below
the minimum (Patterson et al. 2008; Uthas et al. 2011).

SDSS 1507’s halo membership is supported by both its unusually
high space velocity (167 kms™"), calculated from its distance and
proper motions by Patterson et al. (2008), and sub-solar metallicity
determined from UV spectroscopy by Uthas et al. (2011). Using
our distance to PHL 1445 and proper motions listed in the PPMXL
catalogue (Roeser, Demleitner & Schilbach 2010), a transverse ve-
locity of 39 £ 9kms~! was calculated. This is significantly lower
than that for SDSS 1507, and is very close to the average trans-
verse velocity of 33kms™! for CVs (Patterson et al. 2008), which
is evidence against PHL 1445 being a member of the Galactic halo.

Another explanation for the short orbital period is a donor star
that is already evolved at the start of mass transfer. One way of
determining the evolutionary stage of a star is through its compo-
sition, which can be determined from its spectrum. A spectrum for
PHL 1445 is shown in Wils (2009), but this is not useful to us as
it is dominated by the other components of the CV, not the donor.
This is not surprising, as we also fail to directly detect the donor
(see Fig. 2). Through model fitting we do obtain an upper limit for
the donor flux, which is actually a measure of the total uneclipsed
flux from the system.

Thorstensen et al. (2002) show that an evolved donor with a
central hydrogen abundance of X. = 0.05, in a system with PHL
1445’s orbital period, should have a temperature in excess of 4000 K,
while Podsiadlowski et al. (2003) show an X. = 0.1 evolved donor
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in a similar system to have a temperature somewhere between 1500
and 2000 K. Through knowledge of PHL 1445’s donor angular
diameter and flux from the eclipse model, we are able to rule out
a 4000 K donor, but do find some agreement with a 1500-2000 K
donor.

g — r colours were estimated for both a 4000 K and 1800 K
donor. The colour for the 4000 K donor was found through the
linear relation between T and g — ' (Fukugita et al. 2011), but
this relation does not extend to below ~3800 K so semi-empirical
model isochrones had to be used in order to obtain a colour for
the 1800 K donor (Baraffe et al. 1998; Allard, Homeier & Freytag
2011; Bell et al. 2014). From these colours, r'-band zero-magnitude
angular diameters were calculated and used together with the donor
angular diameter to produce an apparent »'-band donor magnitude
at each temperature (Boyajian, van Belle & von Braun 2014). It
must be noted that the colour obtained for the 1800 K donor lies
outside the valid range given by Boyajian et al. (2014) for their
magnitude—angular diameter relation.

Donor fluxes of (159 + 1.1) x 1072 and (0.33 =+
0.18) x 1072 mJy were calculated for 4000 and 1800 K, respec-
tively. The 4000 K donor is approximately 13 times the (1.27 £
0.08) x 1072 mJy upper limit for the #/-band donor flux from the
eclipse model, while the 1800 K donor flux is approximately four
times smaller. Analysis of the donor flux hence shows that a slightly
evolved donor (X. = 0.1) cannot be ruled out for PHL 1445, and
may be the reason for its unusually short orbital period.

PHL 1445 could also lie below the period minimum because
it formed directly with a brown dwarf donor. These systems can
start out with periods much shorter than the period minimum, but
evolve towards longer orbital periods like post-period bounce CVs
(Kolb & Baraffe 1999). We investigate whether PHL 1445 could
have formed with a brown dwarf donor by studying the relation
between donor mass and orbital period (see Fig. 9). Fig. 9 shows
a number of different evolutionary tracks. The red track is from
Knigge et al. (2011) and represents a CV with a main-sequence
donor. These CVs evolve from longer periods to shorter ones until
the period minimum (vertical dashed line) is reached, at which
point the track inverts and heads back to longer periods. The green
track is from Thorstensen et al. (2002) and represents a system
containing an evolved donor with X, = 0.05. Above we rule out
the possibility of such a highly evolved donor, and this is supported
by the fact that the PHL 1445 data point lies comfortably below
this line. The solid blue line is from Kolb & Baraffe (1999) and
represents a system that formed with a brown dwarf donor. It would
appear that the PHL 1445 data point lies far from this track, but
this track is computed from an old model, using a gravitational-
radiation (GR) based angular momentum loss rate and ignoring
deformation of the donor. Knigge et al. (2011) showed that tracks
with these assumptions cannot fit the observed locus of CVs in the
M, versus Py, diagram, and that models which include deformation
and an angular momentum loss rate of 2.47x GR are required. The
main-sequence donor track (red) in Fig. 9 takes into account both a
2.47xGR angular momentum loss rate and deformation (Renvoizé
et al. 2002), and for the additional brown dwarf donor tracks (blue:
dashed, dot—dashed and dotted) we have done the same. All three
of these tracks have been calculated from a model containing a
0.75 M primary and a donor of initial mass 0.07 M, with an
additional variable parameter being the age of the donor at the start
of mass transfer (#y;). This is an important parameter with regard
to understanding the subsequent evolution of such a system, since
a substellar object has a time-dependent radius. The dashed, dot—
dashed and dotted blue lines represent ti,;’s of 2 Gyr, 1 Gyr and
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Figure 9. Donor mass (Mg) versus orbital period (Py) for PHL 1445 and other substellar donor CVs: SDSS 1433, SDSS 1035 and SDSS 1507 (Savoury
et al. 2011). Also plotted are a number of evolutionary tracks: main-sequence donor (red line; Knigge et al. 2011), evolved donor with X, = 0.05 (green line;
Thorstensen et al. 2002) and brown dwarf donor (solid blue line; Kolb & Baraffe 1999). The three additional blue lines also show tracks for brown dwarf
donors but with modified physics and varying donor age at the start of mass transfer (fiyi¢). The dashed, dot—dashed and dotted blue lines represent fini¢’s of
2 Gyr, 1 Gyr and 600 Myr, respectively. The vertical dashed black line represents the location of the CV period minimum determined by Knigge et al. (2011),
with the shaded area representing the error on this value. The bar across the top of the plot shows the FWHM of the CV period spike observed by Ginsicke

et al. (2009).

600 Myr, respectively. The latter of these tracks — with a f;; of
600 Myr — is consistent with the PHL 1445 data point, but how
feasible is such a proposed system?

In order for mass transfer to start so early in the system’s life-
time, the primary star must have evolved off the main sequence very
quickly to leave a white dwarf ready for mass transfer. This puts a
lower limit on the initial primary mass of 2.8 M) (Girardi et al.
2000). Considering that the secondary has an initial mass no greater
than 0.07 M would mean an initial mass ratio of approximately
0.025 or less. This is extremely low, and main-sequence star/brown
dwarf binaries with extreme mass ratios are rare, but it would seem
that they are able to form (Grether & Lineweaver 2006). Binaries
with such low mass ratios have been observed, for example HIP
77900B, which has a mass ratio as low as 0.005 (Aller et al. 2013),
although its separation is also extreme at 3200 au. There is also ob-
servational evidence for binaries with A-type star primaries to have
a bias towards low mass ratios of less than 0.1 (Kouwenhoven et al.
2005). It is thus a possibility that PHL 1445 formed directly from
a binary system with a very low mass ratio containing a >2.8 M
primary and brown dwarf secondary.

4.4 PHL 1445: a possible period bouncer?

Another CV, SDSS J143317.78+101123.3 (SDSS 1433), has also
been found to host a substellar donor (Littlefair et al. 2008; Savoury
et al. 2011). SDSS 1433 — with an orbital period of 78.1 min and
donor mass of 0.0571 £ 0.0007 M) — was claimed to be a post-
period bounce system by both Littlefair et al. (2008) and Savoury
et al. (2011). Current estimates now place the period minimum at
81.8 = 0.9 min (Knigge et al. 2011), suggesting that SDSS 1433
may not, in fact, be a period bouncer.

With an orbital period below the period minimum and a substel-
lar donor, SDSS 1433 may be another system that formed with a
brown dwarf donor. This is supported by plotting SDSS 1443 on

the same My versus Py, diagram as PHL 1445 (see Fig. 9). SDSS
1433 also appears to lie on the evolutionary track associated with
a brown dwarf donor of age 600 Myr at the start of mass transfer,
and therefore may have had a progenitor system with the same, ex-
tremely low mass ratio as that of PHL 1445. The chances of finding
two systems with such similar, extreme initial mass ratios should
be very low, so the fact we do raises some suspicion.

There are currently only four CV systems that have been found to
contain substellar donors: PHL 1445, SDSS 1433, SDSS 1507 and
SDSS J103533.03+055158.4 (SDSS 1035) (Littlefair et al. 2008;
Savoury et al. 2011). SDSS 1507 was mentioned in the previous
section, and lies below the period minimum due to being a member
of the Galactic halo. SDSS 1035 has an orbital period slightly above
the period minimum (82.1 min; Savoury et al. 2011), and is thought
to be a period bouncer. So out of a sample of just four systems
known to contain substellar donors, 50 per cent of them may have
formed with a brown dwarf donor, and in progenitor systems with
a similar mass ratio.

This does not fit with the observation of a ‘brown dwarf desert’
(Duquennoy & Mayor 1991; Marcy & Butler 2000; Grether &
Lineweaver 2006): the lack of brown dwarfs observed in binaries
with main-sequence primaries and separations <3 au. The link be-
tween the ‘brown dwarf desert’ and CVs formed with brown dwarf
secondaries was made by Politano (2004). Through population syn-
thesis, Politano (2004) found that the majority of progenitors of
zero-age CVs with brown dwarf secondaries have orbital separa-
tions and primary masses that coincide with this ‘desert’, explaining
the dearth of CVs with substellar donors and periods below the pe-
riod minimum.

The ‘desert’ is not completely arid, however, and a number of
such systems do exist (Duchéne & Kraus 2013). Taking all of this
into consideration, we would expect to see significantly more post-
period bounce systems than those formed directly with a brown
dwarf donor, not the equal numbers found. This may be due to an
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observational bias against period-bounce CVs, but it is unclear what
would cause this. It is therefore unlikely that PHL 1445 and SDSS
1433 are systems that formed with a brown dwarf donor, which
opens up the possibility that both may actually be normal CVs,
lying within the intrinsic scatter of the period minimum.

The current period minimum at 81.8 £ 0.9 min (vertical dashed
line in Fig. 9) was determined by Knigge et al. (2011) through fit-
ting a semi-empirical donor-based CV evolution track (red track in
Fig. 9) to the masses of a sample of CV donors. This sample of
donors contains an intrinsic dispersion of o, = 0.02 dex (Knigge
et al. 2011), introducing an intrinsic scatter around the period min-
imum of equal value. This is equivalent to an intrinsic dispersion
of oy = 3.7 min, significantly larger than the 0.9 min error on the
period minimum location. Approximately one third of this intrinsic
scatter is due to the ~20 per cent dispersion in white dwarf masses
of the sample (Knigge 2006). The majority of the remaining er-
ror can probably be attributed to a distribution in mass-loss rates,
associated with residual magnetic braking below the CV period
gap. This residual magnetic braking may explain why Knigge et al.
(2011) require additional angular momentum loss below the period
gap in order to produce a CV evolution track that is in agreement
with the donor sample.

An independent measure of the intrinsic scatter can be obtained
from the ‘period spike’ analysis in Gansicke et al. (2009). The
position of the period spike at 82.4 4 0.7 min is a good match to
the period minimum from Knigge et al. (2011), and Gansicke et al.
(2009) — assuming a Gaussian distribution — find a full width at
half-maximum (FWHM) of 5.7 min for this feature (see Fig. 9).
The intrinsic scatter on the period spike is therefore o, = 2.4 min.
Using oy of the period spike from Gansicke et al. (2009) as the
dispersion of systems around the period minimum, PHL 1445 and
SDSS 1433 turn out to be 2.30 and 1.50 outliers, respectively.

In the sample of short-period eclipsing CV systems in Savoury
et al. (2011), four systems have periods between 80 and 86 min,
making them period spike systems according to Gansicke et al.
(2009). Assuming that PHL 1445 and SDSS 1433 are also systems
near the period minimum brings the total to 6. We must also assume
here that no selection biases were involved with Savoury et al.
(2011) choosing systems for model fitting. If CVs are distributed
around a period minimum of 81.8 min, with an intrinsic scatter of
2.4 min, then the chances of finding these two outlying systems in
such a small sample are approximately 6 per cent. This confirms
the seemingly unlikely occurrence of finding two period minimum
systems with periods as short as SDSS 1433 and PHL 1445, if the
existing estimates for the position of the period minimum and oy
are correct.

It may be that the intrinsic scatter around the period minimum
is underestimated, or that the position of the period minimum is
incorrect. Being able to join the three substellar donor systems, PHL
1445, SDSS 1433 and SDSS 1035 with a single evolutionary track in
Fig. 9 would provide evidence for the latter of these two possibilities,
as this would suggest that all three are period minimum systems that
are of similar nature but just at different evolutionary stages. This
would involve tweaking the parameters of the evolutionary model
(e.g. angular momentum loss) and is beyond the scope of this paper,
but the results would be of interest.

5 CONCLUSIONS

We have presented high-speed, three-colour photometry of the
short-period eclipsing dwarf nova PHL 1445. Four eclipses were
averaged to overcome the presence of flickering, making bright
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spot features visible and therefore enabling the determination of
system parameters through eclipse model fitting. These system pa-
rameters include mass ratio ¢ = 0.087 £ 0.006, orbital inclination
i = 85°2 & 029, primary mass M,, = 0.73 &= 0.03 M, and donor
mass My = 0.064 & 0.005 M), amongst others. The white dwarf
temperature 7,, = 13200 £ 700 K and photometric distance to the
system d = 220 = 50 pc were also found through multicolour white
dwarf flux fitting to model-atmosphere predictions.

We considered a number of possible reasons for PHL 1445 hav-
ing an orbital period below the period minimum and determined
their plausibility. PHL 1445°s small proper motion does not make
Galactic halo membership likely. Analysis of the donor’s ¥'-band
flux was used to rule out a significantly evolved donor, but one that
is only slightly evolved (X, = 0.1) remains a possibility. Formation
with a brown dwarf donor cannot be ruled out, although the brown
dwarf would have to be older than 600 Myr at the start of mass
transfer, which requires a progenitor system with an extremely low
mass ratio of ¢ = 0.025. Both PHL 1445 and SDSS 1433 — another
CV with a substellar donor — lie below the period minimum for
CVs, and their frequency may be evidence for error in the estimates
for the intrinsic scatter and/or position of the period minimum.
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