
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/83231

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk



M A
OD C

S

Assimilating Data into Mathematical

Models

by

Daniel Sanz-Alonso

Thesis

Submitted for the degree

Doctor of Philosophy

Mathematics Institute

The University of Warwick

June 2016



Contents

Acknowledgments iv

Declarations v

Chapter 1 Introduction 1

1.1 A Bird’s-Eye View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Inverse Problems and Filtering: Guiding Examples . . . . . . . . . . 3

1.2.1 Inverse Problems: an Example . . . . . . . . . . . . . . . . . 3

1.2.2 Filtering: an Example . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Gaussian Approximation Algorithms . . . . . . . . . . . . . . 11

1.3.2 Particle Approximation Algorithms . . . . . . . . . . . . . . . 13

1.3.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Identifying Challenges and Choosing Algorithms . . . . . . . . . . . 16

1.4.1 Large Dimension, Small Noise, Nonlinearities . . . . . . . . . 16

1.4.2 Brief Comparison of Algorithms . . . . . . . . . . . . . . . . 17

1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.1 Filtering Chaotic Dynamical Systems . . . . . . . . . . . . . 18

1.5.2 Importance Sampling: Computational Complexity and Intrin-

sic Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Ongoing and Future Research . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 2 Filter Accuracy for Chaotic Dynamical Systems: a Gen-

eral Framework 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Suboptimal Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 3DVAR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Nonlinear Observers and Truncated Nonlinear Observers . . . 29

i



2.4 Stochastic Stability of Suboptimal Filters and Filter Accuracy . . . . 29

2.4.1 The Lyapunov Method for Stability of Stochastic Filters . . . 29

2.4.2 Filter Accuracy with Global Squeezing Property . . . . . . . 30

2.4.3 Filter Accuracy for Chaotic Deterministic Dynamics . . . . . 33

2.5 Application to Relevant Models . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Finite Dimensions (Lorenz ’63 and ’96 Models) . . . . . . . . 36

2.5.2 Infinite Dimensions (Navier-Stokes Equation) . . . . . . . . . 42

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 3 Filter accuracy for the Lorenz ’96 Model 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Lorenz ’96 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Fixed Observation Operator . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Continuous Assimilation . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Discrete Assimilation . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Adaptive Observation Operator . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 3DVAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . 62

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 4 Importance Sampling: Computational Complexity and In-

trinsic Dimension 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Our Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.2 Organization of the Chapter and Notation . . . . . . . . . . . 81

4.1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 The Second Moment of the Target-Proposal Density . . . . . 85

4.2.3 Effective Sample Size . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.4 Probability Metrics . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.5 High State Space Dimension and Absolute Continuity . . . . 89

4.2.6 Singular Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.7 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Importance Sampling and Inverse Problems . . . . . . . . . . . . . . 96

4.3.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Intrinsic Dimension . . . . . . . . . . . . . . . . . . . . . . . 99

ii



4.3.3 Absolute Continuity . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.4 Singular Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Importance Sampling and Filtering . . . . . . . . . . . . . . . . . . . 110

4.4.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.2 Intrinsic Dimension . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.3 Absolute Continuity . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.4 Singular Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6.1 Gaussian Measures in Hilbert Space . . . . . . . . . . . . . . 122

4.6.2 Proofs Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.3 Proofs Section 4.3 . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6.4 Proofs Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . 138

iii



Acknowledgments

First of all I would like to thank Andrew Stuart; I could not have asked for a better

supervisor either at a mathematical or a personal level. Thanks also to my second

supervisor Gareth Roberts from whom I have learned so much, and to my examiners

Adam Johansen and Arnaud Doucet, who took the interest and time to read this

thesis from cover to cover. I am particularly thankful to Sergios Agapiou and Omiros

Papaspiliopoulos for their continuous support. The memory of our time together at

Warwick, Barcelona, and Savannah will stay with me forever, as will my friendship

with you. I am also grateful to my collaborators Kody Law and Abhishek Shukla,

to my first year mentor David Kelly, and to Rodrigo Targino and Gareth Peters for

their warm hospitality in my visits to London.

I thank everyone who has made so enjoyable my years at Warwick. Thanks

to my tennis friends and rivals (Andy, Atanas, James, Lukasz, Lynn, Tony, and

Yuan) and to Faz, Felipe, Gianmarco and Rachele. My biggest thanks to Cyril,

Kyung, and Neil.

Finalmente, gracias a mi familia y muy especialmente a mis padres Jesús y
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Chapter 1

Introduction

This thesis touches on a number of subjects, including inverse problems, nonlinear

filtering, data assimilation, uncertainty quantification, and computational statistics.

The recurrent theme is that of combining mathematical models (often differential

equations) with observed data. I have aimed to improve the current understanding

of the theoretical and computational challenges that arise when doing so. Identifying

these challenges precisely is fundamental in developing new algorithms that tackle

them.

1.1 A Bird’s-Eye View

The question underlying most of this thesis is how to improve on the incomplete

understanding that mathematical models provide about physical systems by using

noisy, indirect observations of the system. This is a problem with many faces. In

this thesis I use a wide set of mathematical tools that includes the theory of (chaotic)

ordinary and partial (stochastic) differential equations, control theory, variational

data assimilation algorithms, Kalman filtering and generalizations, importance sam-

pling and particle filters, probability theory in infinite dimensional Banach spaces,

and the Bayesian formulation of inverse problems in function space.

I focus on two classes of problems: inverse problems and filtering. In the

former the data is assimilated all at once, while in the latter the data is assimilated

sequentially in time, as it becomes available. The sequential nature of filtering poses

distinct computational challenges, especially if online algorithms are required.

I have mostly worked within the Bayesian paradigm, where uncertain quan-

tities are treated as random variables. Under the Bayesian formulation the aim is

to update (sequentially in the case of filtering) the distribution suggested by expert
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knowledge and the mathematical model (the prior distribution), into the conditional

distribution given the observed data (the posterior or filtering distribution). At the

heart of this update is Bayes’ formula.

In almost all cases of applied interest some algorithm is needed in order

to approximate the updated measures. This is because Bayes’ formula often in-

volves analytically intractable integrals. Crucially, there are two settings where

Bayes’ formula can be readily computed: finite-state problems, and problems with

a linear and Gaussian structure. Both are of central applied importance, but their

key role goes beyond that. Indeed, most algorithms used outside the finite-state

or linear-Gaussian set-up proceed by imposing some particle or linear-Gaussian ap-

proximation, and then computing Bayes’ formula exactly with an approximate prior

and observation model. We remark that other closed conjugate analyses outside the

finite-state or linear Gaussian set-ups are possible but of less applied relevance, see

[Bernardo and Smith, 1994] and [Vidoni, 1999].

In this thesis I address a number of theoretical and computational questions

arising from the Bayesian formulation, and from the algorithmic approximations

thereof. From a theoretical viewpoint, it is of the essence to have theoretical guar-

antees that as more data (generated from some “truth”) are incorporated into the

prior, the updated measures concentrate around the underlying truth. I have stud-

ied this question in the mathematically rich, and practically important framework

of filtering deterministic chaotic dynamical systems. From a computational view-

point, I have investigated three main sources of challenges: the high dimensional

nature of the systems arising in applications, small noise regimes, and highly non-

linear problems. I have aimed to give a precise meaning to these challenges. This is

important in order to build new algorithms that tackle them, and to compare the

performance of different algorithms on a sound basis. Moreover, I have contributed

towards a better understanding of how these precisely defined challenges affect the

performance of algorithms based on importance sampling.

This thesis has four chapters. Chapter 2 is a transcript of the published paper

“Long-time Asymptotics of the Filtering Distribution for Partially Observed Chaotic

Dynamical Systems” [Sanz-Alonso and Stuart, 2015]. Chapter 3 is a transcript of the

published paper “Filter Accuracy for the Lorenz 96 Model: Fixed Versus Adaptive

Observation Operators” [Law et al., 2016]. Chapter 4 is a transcript of the submitted

paper “Importance Sampling: Computational Complexity and Intrinsic Dimension”

[Agapiou et al., 2015]. The remainder of this introductory Chapter 1 is organized

as follows. Section 1.2 introduces inverse problems and filtering by means of simple

but rich and paradigmatic examples. Section 1.3 describes two classes of algorithms

2



widely used in the Bayesian assimilation of data: Gaussian methods (which will be

largely studied in Chapters 2 and 3), and particle methods (which will be studied

in Chapter 4). Section 1.4 loosely presents three situations where the algorithmic

approximation of measures is particularly challenging: large dimensional systems,

small noise regimes, and highly nonlinear problems. I show how these challenging

settings impact in different ways the performance of Gaussian and particle methods.

I also give a brief account of the relative advantages of these algorithms. Section 1.5

summarizes the main contributions of this thesis, and Section 1.6 closes with some

future research directions.

1.2 Inverse Problems and Filtering: Guiding Examples

We illustrate the Bayesian approach by means of examples. Subsection 1.2.1 intro-

duces Bayesian inverse problems, and Subsection 1.2.2 Bayesian filtering. In each

subsection a motivating example is followed by a discussion and a literature review.

The examples show the advantages and limitations of the Bayesian approach in con-

crete settings. The discussion and literature review aim to provide a wider picture,

and to highlight the paradigmatic features of the examples.

1.2.1 Inverse Problems: an Example

1.2.1.1 Mathematical Model, Prior, Data and Posterior

Consider the mathematical model of an elliptic partial differential equation, defined

in a bounded domain D ⊂ Rd with Lipschitz boundary ∂D,

−∇ · (κ∇p) = f, x ∈ D,

p = 0, x ∈ ∂D,
(1.2.1)

where f is given and assumed to belong to the dual of V := H1
0 (D). It is well known

that, for given κ ∈ L∞(D) with ess infx∈D κ(x) = κmin > 0, problem (1.2.1) has a

unique weak solution p ∈ V. The partial differential equation in (1.2.1) is an example

of a balance law and models many different phenomena. To be concrete, let us say

that p represents the pressure of a fluid in a porous medium at steady state. Then

(1.2.1) combines the constitutive equation known as Darcy’s law (which, informally,

asserts that fluids tend to flow from high to low pressure regions) with conservation

of mass. The function κ represents the permeability of the medium, and quantifies

the intensity with which the fluid flows from higher to lower pressure regions. There

is central applied interest, notably in the oil industry, in understanding subsurface
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flows. In such scenarios it is difficult to determine by measurements the permeability

function κ : D → (κmin,∞) that should be plugged into (1.2.1). Thus, even if the toy

model (1.2.1) were a perfect model for the pressure p of interest, there is uncertainty

in the solution coming from the uncertainty on the input κ.

The first step of the Bayesian approach is to acknowledge the uncertainty

in κ by viewing it as a random variable whose distribution is called the prior. In

practice the prior should encode all the available knowledge on κ. For instance, it

may be known that the function κ has certain smoothness. Alternatively, it may

be known that the medium is composed of two different rocks, each having known

constant permeability. In this later case, the uncertainty reduces to determining the

surface that separates the rocks. Both examples show a common trait: although

the aim is to recover the infinite dimensional object κ, and thereby the pressure p,

the problem is heavily constrained by the prior.

The second step of the Bayesian approach is to use indirect data in order

to reduce the uncertainty in κ. Let us assume that we have access to J noisy

measurements of the pressure p

yj = lj(p) + ηj , 1 ≤ j ≤ J,

where the lj are linear functionals on V, and ηj is some random noise. Noting that

p is a nonlinear function of κ, this can be rewritten as

y = G(κ) + η,

where y := [y1, . . . , yJ ]T ∈ RJ , η := [η1, . . . , ηJ ]T ∈ RJ , and Gj(κ) = lj(p). The key

object of interest in the Bayesian formulation is the posterior distribution, which

is the conditional distribution of κ given y. The posterior can be pushed forward

through the mathematical model (1.2.1) to produce a distribution on p. This dis-

tribution may be used to compute the ‘most likely’ value of p, known as the MAP

(maximum a posteriori) estimator. Importantly, it also contains quantitative and

qualitative information on the uncertainty remaining in the quantity of interest p.

1.2.1.2 Discussion and Theoretical Challenges

As described in the example, Bayesian inversion proceeds by (i) specifying a prior

on the unknown input (permeability) (ii) updating it based on data, and (iii) propa-

gating it through the mathematical model to obtain a distribution on the unknown

of interest (pressure). This should be contrasted to plain vanilla uncertainty quan-

tification, that consists of steps (i) and (iii), and omits step (ii). The objective is to
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reduce the uncertainty in the values of the pressure by the use of data. Practical

implementation of step (iii) may be problematic in complex models arising in ap-

plications. This issue will not be considered in this thesis, as we focus on steps (i)

and (ii).

In our example the uncertainty stems from the input parameter κ; the data

consists of observations of the true pressure. Further examples include (i) the inverse

problem of determining the solution of an evolution equation at time T > 0 with

uncertain initial condition, by use of partial and noisy observations of the solution

at time T ∗ > 0. This problem will be discussed in the next section in a filtering

set-up; and (ii) Electrical Impedance Tomography (EIT), where the conductivity of

a body is inferred from electrode measurements on its surface.

All these inverse problems are clearly underdetermined: they aim to recover

an infinite dimensional object (the function κ, and hence p in our example) from

a finite number of noisy observations. The Bayesian formulation acts as a natural

regularization —with a clear probabilistic interpretation— of the inverse problem

through the introduction of a prior distribution on the unknown. The prior is fun-

damental in two ways. First, it reduces dramatically the number of parameters that

are effectively estimated by imposing structure and correlations on the unknown.

We will give an insightful interpretation of this in Chapter 4, where we relate the

dimension of the Bayesian inverse problem to the notion of effective number of pa-

rameters from statistics and machine learning. Second, introducing probabilistic

information on the unknown results naturally —through the Bayesian machinery—

in a posterior distribution on the unknown as the solution to the inverse problem.

The Bayesian solution to the inverse problem is a probability distribution that ac-

counts for the uncertainty in the reconstruction due to the underdetermined nature

of the problem. This is in contrast with traditional approaches where the solution is

typically limited to a point estimate. The choice of the prior is, however, critical for

the success and validity of the Bayesian approach. Some interesting theoretical re-

search questions are: How should the prior be chosen so that the posterior contracts

at optimal rate around the unknown as more data are collected? How to quantify

the errors introduced by discretization of function space inverse problems, account-

ing for both discretization of the stochastic input parameter space, and temporal

and spatial discretizations of the underlying mathematical model?

1.2.1.3 Literature Review

Methods used for vanilla uncertainty quantification include stochastic finite element

methods and stochastic collocation methods [Ghanem and Spanos, 2003]. A good
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introductory text with a focus on methods based on generalized polynomial chaos

expansions is [Xiu, 2010].

A review of the classical approach to inverse problems is given in [Engl et al.,

1996], [Mueller and Siltanen, 2012]. Excellent surveys of the Bayesian approach

are [Kaipio and Somersalo, 2005], and [Stuart, 2010]. The latter deals with the

formulation of the problems in function space.

The classical elliptic inverse problem is studied in [Banks and Kunisch, 2012]

and [Richter, 1981], and the Bayesian formulation in [Dashti et al., 2012] and [Dashti

and Stuart, 2011]. Posterior consistency results were established in [Vollmer, 2013].

The regularizing effect of the prior in the Bayesian approach can be inter-

preted as a Tikhonov-Phillips regularization in the classical formulation [Kaipio and

Somersalo, 2005]. The connection between MAP estimators and the classical regu-

larized solution of the inverse problem is also discussed in [Kaipio and Somersalo,

2005]. [Dashti et al., 2013] extended the results to Banach separable spaces.

The inverse EIT problem was formulated and studied in [Somersalo et al.,

1992], and in function space setting in [Dunlop and Stuart, 2015]. See [Iglesias et al.,

2015] for a Bayesian level set formulation of geometric inverse problems, where the

goal is to recover the surfaces separating different media.

1.2.2 Filtering: an Example

1.2.2.1 Mathematical Model, Data and Filtering Distribution

Consider as mathematical model the following differential equation, defined in a

Hilbert space (H, 〈·, ·〉, | · |),

dv

dt
+Av +B(v, v) = f. (1.2.2)

We will be interested in filtering dissipative systems of the form (1.2.2) with energy

conserving nonlinearity. Thus we will impose that, for some λ > 0, and for all v ∈ H,

〈Av, v〉 ≥ λ|v|2 and 〈B(v, v), v〉 = 0. Dissipative models of the form (1.2.2) include

the Lorenz ’63 model, the Lorenz ’96 model, and the Navier Stokes equation on a

two-dimensional torus. The underlying spaces are H = R3 for the Lorenz ’63 model,

H = Rd, d ≥ 3 for the Lorenz ’96 model, and certain infinite dimensional space

of functions for the Navier Stokes equation (details and motivation for studying

these models are given in Chapter 2). Under mild assumptions, satisfied by all

the aforementioned models, equation (1.2.2) supplemented with an initial condition

v(0) = v0 ∈ H, has a unique solution in any finite time interval. We will be interested

in the scenario where there is uncertainty in the initial condition. The aim will be
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to estimate the solution v(t) at time t > 0 based on the data available at that given

time.

The first step of the Bayesian approach to filtering is, in analogy with Section

1.2.1, to assume that the initial condition is only known statistically, v0 ∼ µ0. Thus

µ0 can be thought of as a prior measure on the initial condition of the system. The

prior µ0, together with the model (1.2.2), suggest a prior measure νt on any v(t) by

pushing-forward µ0 by the solution semigroup Ψt associated with (1.2.2). That is,

νt(·) = µ0

(
Ψ−1
t (·)

)
.

The second step is to use indirect data in order to reduce the uncertainty

in v(t). We consider the most realistic scenario where the data arrives discretely in

time, every h > 0 units of time. Denote v(jh) = vj , j ≥ 1, and let

yj := h(vj) + ηj , (1.2.3)

where h is some observation function, and ηj is some random noise. The aim of

filtering is to compute sequentially in time the filtering distributions,

µj(·) := P(vj ∈ ·|y1, . . . , yj), j ≥ 1, (1.2.4)

as new observations become available.

For later reference we now introduce some terminology and a concrete math-

ematical setting for filtering. The process of interest is called the signal process, and

is denoted {vj}j≥0. The observation process is denoted {yj}j≥0, where y0 = 0 so that

there is effectively no observation at discrete time j = 0. We denote Yj := {yi}ji=1.

The signal and observation processes satisfy

vj+1 = Ψ(vj) + ξj , j ≥ 0,

yj+1 = Hvj+1 + ηj+1, j ≥ 0,
(1.2.5)

where Ψ : Rdv → Rdv and H ∈ Rdy×dv . We make the following statistical assump-

tions:

(i) The initial condition v0 is only known statistically, v0 ∼ N(m0, C0).

(ii) The ξj ’s form an i.i.d. sequence, independent of v0, with ξ0 ∼ N(0, Q).

(iii) The ηj ’s form an i.i.d. sequence, independent of
(
v0, {ξj}j≥0

)
, with η1 ∼

N(0, R).

The assumption that the signal is finite dimensional, vj ∈ Rdv , is made for

ease of exposition. It will be dropped in Chapters 2, 3 and 4. The assumption that

the observation operator H is linear is often restrictive. More general observations
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of the form yj+1 = h(vj+1) + ηj are of applied importance. When the signal arises

from a differential equation (such as (1.2.2)), the map Ψ is the ∆t time solution

semigroup, with ∆t > 0 the time between observations. Note that deterministic

dynamics corresponds to the degenerate case Q = 0.

1.2.2.2 Discussion and Theoretical Challenges

The filtering setting (1.2.5) can be cast into the more general language of hidden

Markov models. Our interest in models of the specific form (1.2.5) comes from

geophysical applications, in particular weather forecasting. Distinct features of these

filtering problems are (i) the huge dimension of the unknown and the data (currently

of the order of 109 and 106, respectively, in operating weather forecasting models in

the United Kingdom), (ii) the turbulent character of the dynamics, and (iii) that

observations are often sparse in time and space, and subject to small noise. The term

data assimilation is often used in the geosciences to refer to filtering problems with

these features. The mathematical model (1.2.2) is flexible and allows for models

containing these three features in different degrees. For this reason it has been

often used to test filtering algorithms. Filtering has many applications outside the

geosciences, some of which will be briefly reviewed in the next subsection.

The filtering distributions (1.2.4) depend on the choice of the initial prior

distribution µ0. It is of crucial theoretical and applied importance to determine

whether, for sufficiently large discrete time j, the distribution µj essentially ‘forgets’

the prior µ0. This question has given rise to an extensive literature on nonlinear

filtering stability. On the theoretical side, filtering stability provides a justification

for the Bayesian approach: the choice of the prior becomes, for sufficiently large

j, irrelevant for the Bayesian solution µj . On the applied side, filtering stability

is essential for algorithms to successfully approximate the filtering distributions: it

guarantees that the approximation error at a given time step is not amplified at

later times. A further key question is whether in the long-time asymptotic the

filtering distributions concentrate around the realization of the signal that underlies

the data. This is called filter accuracy. In this thesis we encounter scenarios where

the signal dynamics are unpredictable and only sparse observations of them are

available, but still the filtering distributions provide useful information on the state

of the signal. In the terminology of the previous section, we will study partially and

noisily observed chaotic dynamics where the νt’s contain scarce information on the

state of the signal, while the µt are peaked around the true value of the signal that

underlies the observations.
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1.2.2.3 Literature Review

An excellent survey of nonlinear filtering, that makes apparent the depth and

breadth of the subject, is [Crisan and Rozovskii, 2011]. Recent books on Bayesian

filtering and data assimilation are [Law et al., 2015], [Majda and Harlim, 2012],

[Särkkä, 2013], [Reich and Cotter, 2015], and [Cappé et al., 2009]. Other fundamen-

tal books include [Jazwinski, 2007] and [Kalnay, 2003]. As mentioned before, the

filtering problems studied in this thesis are motivated mainly by geophysical appli-

cations. The list of applications of nonlinear filtering is endless, with an enormous

body of literature associated with each of them. To give the reader a flavour of the

breadth of applications we replicate here the (incomplete) list in [Van Handel, 2006]:

navigation and target tracking, changepoint detection, stochastic control, finance,

audio and image enhancement, biology, quantum optics, speech recognition, and

communication theory. We refer to [Van Handel, 2006] for pointers to the literature

on each of those applications.

The starting point of the study of stability of nonlinear filters is the seminal

paper [Kunita, 1971], which addressed the related question of filter ergodicity. The

development and popularization of particle filters in the 1990s gave rise to a renewed

interest in the subject, which resulted in numerous papers built on [Kunita, 1971].

Unfortunately, Kunita’s paper had a mistake in one of the proofs, where an unjusti-

fied exchange of supremum and intersection of σ-fields was performed. This mistake

was inherited by many papers in the 1990s. A key contribution that helped to

clarify these issues is [Budhiraja, 2003], where several desirable properties of filters

—that include filter stability, filter ergodicity and permissibility of the interchange

of supremum and intersection of certain σ-fields— are proved to be equivalent. Re-

cent state-of-the-art studies on filter stability include [Kleptsyna and Veretennikov,

2008], [Douc et al., 2009], and [Tong and Van Handel, 2014]. See also [Crisan and

Rozovskii, 2011] for more references.

A pioneering work on filter accuracy is [Cérou, 2000]. Some of the questions

investigated in the second and third chapters of this thesis are motivated by this

paper, and more directly by the subsequent body of work that studied the accuracy

of suboptimal filters that approximate the filtering distributions: [Brett et al., 2013],

[Law et al., 2014], [Kelly et al., 2014].

1.3 Algorithms

We now introduce two classes of algorithms that will be extensively studied in this

thesis: Gaussian and particle approximation methods. We will describe the methods
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in the filtering setting (1.2.5). Our presentation is biased toward algorithms that are

sequential, meaning that the cost of approximating the filtering distribution at time

j+1 given an approximation at time j does not depend on j. Some of the algorithms

described here have also been recently used to approximate posterior distributions

arising from non-sequential Bayesian inverse problems. Gaussian approximation

methods will be studied in much more detail in Chapters 2 and 3, and particle

approximation methods in Chapter 4. Both classes bypass the intractability of

Bayes’ formula by invoking different approximations. For convenience we recall

Bayes’ formula, which can be non-rigorously written as

P(θ|y)︸ ︷︷ ︸
posterior

∝ P(θ)︸︷︷︸
prior

P(y|θ)︸ ︷︷ ︸
likelihood

. (1.3.1)

Here θ should be interpreted as the quantity of interest, and y as data. P(θ) is the

distribution of θ before the data y is assimilated. P(y|θ) represents the likelihood of

the data y given a value θ of the unknown. P(θ|y) is the distribution of interest, i.e.

the distribution of the quantity of interest θ given data y. The normalizing constant

that makes the right-hand side of (1.3.1) a probability distribution is typically hard

to compute.

Gaussian and particle methods rely, respectively, on the following key facts:

• If P(θ) is Gaussian, and P(y|θ) is Gaussian, then P(θ|y) is Gaussian.

• If P(θ) is a particle measure with equal weights, informally written as P(dθ) =
1
N

∑N
=1 δθn(dθ), then P(θ|y) is a weighted particle measure. Moreover,

P(dθ|y) ∝
N∑
n=1

P(y|θn)δθn(dθ). (1.3.2)

A third class of algorithms, which we do not study in this thesis, is that of

Markov Chain Monte Carlo (MCMC) methods. They rely on the following key fact:

• It is often possible to construct a Markov Chain with unique invariant distri-

bution P(θ|y), and so this distribution can be approximated by the occupation

measure of the Markov Chain over some time interval.

Gaussian and MCMC algorithms can approximate the posterior without com-

puting the normalizing constant in (1.3.1), while particle methods often produce an

approximation to this constant. MCMC methods are arguably the gold standard

for computationally challenging Bayesian inverse problems. However, only recent
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methodological developments have suggested the potential of these methods in se-

quential filtering problems. Both Gaussian and particle methods have also their

own merits and caveats, which we will explore in the next section. It is noteworthy

that much of the methodological progress in the last ten years has revolved around

two ideas. The first one is to combine algorithms from the three classes above that

retain their respective advantages while mitigating their disadvantages. The sec-

ond related idea is to develop sequential algorithms for static inverse problems, and

modifying algorithms well suited for static problems for their use in sequential ones.

The remainder of this section is organized as follows. Subsection 1.3.1 de-

scribes Gaussian approximation methods, and Subsection 1.3.2 describes particle

approximation methods. The section closes with a literature review in Subsection

1.3.3.

We work in the framework of (1.2.5). The aim will be to approximate the

filtering distributions (recall (1.2.4))

µj(·) := P(vj ∈ ·|Yj), j ≥ 1.

Some of the algorithms approximate, as an intermediate step, the predictive distri-

butions

µ̂j+1(·) := P(vj+1 ∈ ·|Yj), j ≥ 0. (1.3.3)

1.3.1 Gaussian Approximation Algorithms

These algorithms rely on the key fact that Bayes’ formula can be easily computed

when the prior is Gaussian and the observations are linear and Gaussian. More

precisely, suppose that the predictive distribution was Gaussian, say

µ̂j+1 = N(m̂j+1, Ĉj+1).

Then, using the linearity and Gaussianity of the observation model (1.2.5), is easy to

check that the filtering distribution is again Gaussian, say µj+1 = N(mj+1, Cj+1).

Moreover, its mean mj+1 and covariance Cj+1 are given by the Kalman formulae

Cj+1 = (I −Kj+1H)Ĉj+1,

mj+1 = m̂j+1 +Kj+1(yj+1 −Hm̂j+1),
(1.3.4)

where Kj+1 is the so-called Kalman gain

Kj+1 := Ĉj+1H
T (HĈj+1H

T + Γ)−1. (1.3.5)
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The predictive distributions {µ̂j} are not Gaussian except in the case of linear

dynamics Ψ(v) = Mv. Gaussian approximation algorithms proceed by approximat-

ing the predictive distribution by a Gaussian,

µ̂j+1 ≈ N(m̂j+1, Ĉj+1). (1.3.6)

and then applying Bayes’ rule exactly with this (possibly uncontrolled) approxima-

tion of the prior. As implied by the previous discussion, this procedure results in

a Gaussian approximation of the filtering distribution, with mean and covariance

given by (1.3.4)

Different algorithms in the family differ in the way the Gaussian approxima-

tion to the predictive distributions (1.3.6) is performed. A very basic description of

some of these algorithms follows. The starting point for all of them is a Gaussian

approximation of the filtering distribution at time j, µj ≈ N(mj , Cj). The output

is a Gaussian approximation, µj+1 ≈ N(mj+1, Cj+1), of the filtering distribution at

time j + 1.

• Three dimensional variational (3DVAR) method:

1. Set m̂j+1 := Ψ(mj), Ĉj+1 := C, for some C independent of time j.

2. Compute mj+1 and Cj+1 using (1.3.4) and (1.3.5).

• Extended Kalman filter (ExKF):

1. Set m̂j+1 := Ψ(mj), Ĉj+1 := DΨ(mj)CjDΨ(mj)
T +Q.

2. Compute mj+1 and Cj+1 using (1.3.4) and (1.3.5).

• Ensemble Kalman filter (EnKF):

1. Generate N samples, {vnj }Nn=1, from N(mj , Cj).

2. Propagate them: v̂nj+1 := Ψ(vnj ) + ξnj , 1 ≤ n ≤ N, ξnj ∼ N(0, Q).

3. Set m̂j+1 := 1
N

∑N
n=1 v̂

n
j+1, Ĉj+1 := 1

N

∑N
n=1(v̂nj+1−m̂j+1)(v̂nj+1−m̂j+1)T .

4. Compute mj+1 and Cj+1 using (1.3.4) and (1.3.5).

Note that the Kalman gain K = Kj+1 is independent of time j. More elabo-

rate forms of these algorithms are used in practice. In particular, the above descrip-

tion of the EnKF is far from operational implementations. We have two motivations

for presenting the algorithms in the basic form above. First, their common under-

lying structure is highlighted. Second, it will make it easier to explain some central

ideas.
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The mere formulation of the algorithms above suggests that the main dilemma

facing Gaussian approximation algorithms is how to propagate the covariance ma-

trix through the nonlinear dynamics. The 3DVAR method provides the simplest

solution: it essentially ignores the problem. The ExKF propagates the covariance

through the linearized dynamics. The EnKF uses an empirical approximation.

We now close this brief description of Gaussian filters. We refer to Subsection

1.3.3 for literature review, to Section 1.4 for a discussion on their strengths and

weaknesses, and to Chapters 2 and 3 for new theoretical and numerical results on

these algorithms.

1.3.2 Particle Approximation Algorithms

These algorithms rely on the key fact that Bayes’ formula can be easily computed

when the prior is a particle measure and the likelihood can be evaluated. Again we

aim for a simple but clear presentation. The input will be a particle approximation

of the filtering distribution at time j, µj ≈ 1
N

∑N
n=1 δvnj . The output is a particle

approximation of the filtering distribution at time j + 1, µj+1 ≈ 1
N

∑N
n=1 δvnj .

The most simple algorithm is as follows:

1. Generate a particle approximation of the predictive distribution µ̂j+1:

v̂nj+1 ∼ N
(
Ψ(vnj ), Q

)
, 1 ≤ n ≤ N, µ̂j+1 ≈

1

N

N∑
n=1

δv̂nj+1
.

2. Use (1.3.2) with prior 1
N

∑N
n=1 δv̂nj+1

and likelihood N(yj+1;Hvj+1, R) to pro-

duce a weighted particle approximation of the filtering distribution µj+1.

3. Sample N times from the distribution obtained in 2 to produce a particle

approximation with equal weights.

This algorithm is called the bootstrap filter, and is a simple form of Sequential Im-

portance Resampling (SIR) method. The bootstrap filter, as the Gaussian methods

of the previous subsection, split the filtering step into two steps:

µj︸︷︷︸
:=P(vj |Yj)

prediction−−−−−−→ µ̂j+1︸︷︷︸
:=P(vj+1|Yj)

analysis−−−−−→ µj+1︸︷︷︸
:=P(vj+1|Yj+1)

.

First the predictive distribution is approximated, and then a closed form of Bayes’

formula is used to assimilate the new observation yj+1. These two steps are called

prediction and analysis, respectively. They are naturally built into the Gaussian
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approach, since for these methods Bayes’ formula needs to be employed with Gaus-

sian prior and linear-Gaussian observations. In contrast, Bayes’ formula for particle

measures can be used as long as the corresponding likelihood can be evaluated. This

opens the possibility of studying particle algorithms associated with other decom-

positions of the filtering step, such as

µj︸︷︷︸
:=P(vj |Yj)

−→ P(vj |Yj+1) −→ µj+1︸︷︷︸
:=P(vj+1|Yj+1)

.

The well-known resulting algorithm is often called SIR with optimal proposal. It

can be implemented in simple settings such as (1.2.5). However, in more general

problems it is usually not implementable, since it requires evaluation of P(yj+1|vj)
and propagation of conditioned dynamics. We will clarify this point in Chapter 4,

where we will also provide new mathematical understanding as to why the optimal

proposal algorithm is advantageous when implementable.

1.3.3 Literature Review

Our description of the algorithms is inspired by [Law et al., 2015]. Some novel

features of our presentation are: (i) we emphasize how Gaussian and particle al-

gorithms are built on the observation that Bayes’ formula is tractable for linear

Gaussian models and particle measures, and (ii) our unified description of Gaussian

methods, which goes one step further than [Law et al., 2015] by resorting to the

basic formulation of the EnKF in [Vanden-Eijnden and Weare, 2012].

Despite its simplicity, the 3DVAR algorithm was successfully used in oper-

ational weather forecasting in the 90s and early 00s. Now it has been replaced

by a combination of the 4DVAR method [Dimet and Talagrand, 1986] –which in-

cludes a temporal dimension as well as the three spatial dimenions in its variational

formulation– with the EnKF. 3DVAR was first described in the meteorology and

data assimilation literature in [Lorenc, 1986], [Parrish and Derber, 1992]. In con-

trol theory terminology 3DVAR can be interpreted as a nonlinear observer. The

analysis of nonlinear observers in [Thau, 1973], [Tarn and Rasis, 1976] is central for

the study of 3DVAR, as described in Chapters 2 and 3 . Excellent references for

the ExKF and the EnKF are [Jazwinski, 2007] and [Evensen, 2003], respectively. A

popular subclass of Gaussian methods are based on the Unscented transformation

[Julier and Uhlmann, 1997]. These methods allow to compute the first moments of

the predictive distribution with third order accuracy, by means of a deterministic

transformation of sigma-points. Their use in large dimensional geophysical applica-

14



tions has been limited due to the costly growth of the required sigma-points with

the dimension of the problem.

Accuracy of the 3DVAR algorithm in tracking the signal has been studied

in [Law et al., 2014], [Brett et al., 2013], [Bloemker et al., 2014]. Chapters 2 and 3

will contribute to this topic. The analysis of the EnKF is more subtle: the low-rank

empirical approximation of the prediction covariance may cause catastrophic filter

divergence, whereby ensemble-state estimates explode to machine infinity. This can

occur even for dissipative systems satisfying an absorbing ball property [Harlim

and Majda, 2010], [Gottwald and Majda, 2013]. A better understanding of the

mechanism that leads to such a catastrophic behaviour of ensemble methods is given

in [Kelly et al., 2015], and [Tong et al., 2015]. Catastrophic divergence arises through

amplification of energy in the analysis step in situations where the observations lie

in the complement of the subspace generated by the ensemble. It can be avoided

by using some inflation of the covariance which makes the filter stable [Tong et al.,

2015], see also [Kelly et al., 2014].

The particle algorithms in Subsection 1.3.2 are the basis of particle filters,

also known as sequential Monte Carlo (SMC) methods. The popularity of these

methods has only grown since the introduction of the bootstrap filter in [Gordon

et al., 1993]. We refer to [Doucet and Johansen, 2009] for an excellent survey, and to

[Doucet et al., 2000]. SMC algorithms have given rise to an extensive body of deep

mathematics [Del Moral, 2004]. They have been often claimed to perform poorly

in high dimensions [Bengtsson et al., 2008], [Bickel et al., 2008], but are extremely

successful in small or moderate dimensional highly nonlinear problems arising in

engineering, tracking, finance, etc. In Chapter 4 we will explore their potential use

in geophysical applications. Moreover, we will give new mathematical understanding

on how the dimensionality of the problem affects the performance of these methods.

Markov Chain Monte Carlo algorithms [Metropolis et al., 1953], [Hastings,

1970], [Liu, 2008] are not treated in this thesis. Contrary to the Gaussian and

particle methods described above, MCMC are typically not sequential, meaning

that the cost of updating the distribution at time j depends on j. A key recent

development of the MCMC machinery in this respect is the particle MCMC method

proposed in [Andrieu et al., 2010], which combines in nontrivial fashion MCMC and

SMC methods. A further development in this line is the SMC2 method [Chopin

et al., 2013]. Note also that many SMC methods make use of MCMC as a building

block, see for instance [Kantas et al., 2014].

Particle MCMC methods and SMC2 are part of the recent trend of combining

algorithms. Other examples include: EnKF and particle filters [Frei and Künsch,
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2013], [Chustagulprom et al., 2015], [Stordal et al., 2011], 3DVAR and EnKF [Hamill

and Snyder, 2000], 4DVAR and EnKF [Zhang et al., 2009], etc. Another trend

is to modify sequential methods for their use in static problems: [Chopin, 2002],

[Schillings and Stuart, 2016], [Beskos et al., 2015], and [Iglesias et al., 2013].

1.4 Identifying Challenges and Choosing Algorithms

In this section we identify three sources of computational challenges in the Bayesian

approach: large dimensional systems, small noise regimes, and highly nonlinear

problems. This thesis aims to provide a better understanding of, and give a precise

meaning to, all these challenges, and to determine conditions under which certain

algorithms can overcome them. Computational challenges should be distinguished

from theoretical ones. For instance, it is intuitively clear that small observational

noise is in theory desirable, since it helps the concentration of the posterior around

the unknown of interest. However, small observational noise causes the posterior to

be far from the prior, which poses a challenge for many algorithms. Subsection 1.4.1

introduces and briefly describes these challenges, and Subsection 1.4.2 discusses how

they affect Gaussian and particle methods. More broadly, Subsection 1.4.2 provides

a comparison between these two classes of algorithms, and their relative merits.

1.4.1 Large Dimension, Small Noise, Nonlinearities

Arguably the main computational challenge facing the Bayesian approach today is

how to deal with the increasingly large dimension of unknowns of interest, and data

sets available. The sheer dimension makes it costly to perform basic operations (e.g..

evaluating functions, storing matrices), and computing gradients is often unfeasible.

When implementing discretized versions of problems defined in function spaces, it

is important to understand the changes in computational cost and errors of the

algorithms as the level of the discretizations are refined. It is also desirable to

combine this analysis with a theoretical understanding of the errors introduced by

the discretization itself.

A second way in which the dimensionality affects in particular the perfor-

mance of particle methods is by typically causing the updated measures to be far

from the prior measures. This is part of a deep story, and will be the subject of

Chapter 4. There we show how a suitable notion of distance between the prior and

the posterior affects the performance of importance sampling, which is at the heart

of particle methods. Large nominal dimension (defined as the minimum of the di-

mension of the unknown, and the dimension of the data), small observational noise,
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and high regularity of the prior all contribute to moving the posterior away from the

prior. In Chapter 4 we define a notion of intrinsic dimension for Bayesian inverse

problems that combines all of these ingredients. We will study how the intrinsic

dimension, and each of its ingredients, impacts the distance between posterior and

prior, and hence the performance of algorithms based on importance sampling.

As well as contributing to increased intrinsic dimension, small noise regimes

pose a different algorithmic challenge in filtering settings. Degenerate observation

noise, and small or degenerate noise in the dynamics, can compromise the ergodicity,

controllability, and observability of the system. As already noted in Subsection

1.2.2.2, ergodicity acts as a dissipation mechanism for algorithmic errors.

Lastly, nonlinearities pose a problem to the propagation of covariances in

Gaussian methods. The current theoretical understanding of the errors introduced

by these Gaussian approximations in nonlinear settings is far from satisfactory.

Moreover, nonlinear systems typically result in multimodal updated measures, which

are often harder to approximate.

1.4.2 Brief Comparison of Algorithms

The Gaussian ansatz underlying Gaussian methods is not justified in nonlinear set-

tings. In such scenarios, these methods cannot hope to recover the distribution of

interest, but only the first two moments. In Chapters 2 and 3 we will show, how-

ever, that even though statistical information is lost when using these methods in

highly nonlinear settings, they can reliably track the signal, i.e. find the mean of the

filtering distribution. The accuracy of particle methods in approximating the whole

filtering distribution is –contrary to that of Gaussian methods– not dependent on

linear or Gaussian assumptions on the filtering set-up. Indeed, under mild assump-

tions, it can be shown that these algorithms provide a consistent approximation to

the updated measures: any desired accuracy can be in principle achieved by using a

large enough number of particles in the approximation. Particle methods are how-

ever not well suited for problems were the updated measures are far from the prior.

This often happens in large dimensional problems or small noise regimes, as will be

made precise in Chapter 4 through the notion of intrinsic dimension.

Among Gaussian methods, the EnKF has two main advantages. First, the

nonlinear character of the dynamics is not ignored while propagating the covariance.

Second, the empirical approach provides a low-rank approximation of the covariance.

This is particularly well suited for high dimensional problems, where the number of

samples is usually much lower than the dimension dv of the signal. For instance,

EnKF has proved to be successful in weather forecasting applications, where Ĉj+1 is
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a matrix of size dv×dv ≈ 109×109 and the number N of samples is of the order N =

102. Thus, Ĉj+1 is approximated by a matrix of rank N ≤ 102. When the algorithm

is carefully implemented it only needs to store and propagate matrices of size N×dv
rather than the full covariance of size 10dv×dv . In contrast, the ExKF requires to

store and propagate the full covariance, and to compute a gradient which is often not

feasible in high dimensional problems. Our results In Chapters 2 and 3 show that

for accurate tracking of the signal it is often enough to assimilate data containing

information on the unstable directions of the dynamics. In particular, Chapter

3 shows that tracking can be successful even with extremely small dimensional

observation space, provided that at each time step the observations are allowed

to align with the unstable parts of the dynamics. In the language of Chapter 4, this

implies a dramatic reduction of the intrinsic dimension of the problem.

1.5 Main Contributions

In the following two subsections I summarize some of the contributions of this thesis.

1.5.1 Filtering Chaotic Dynamical Systems

Trajectories of chaotic systems tend to diverge exponentially fast. Any uncertainty

on the initial conditions is thus rapidly amplified by the dynamics. However, when

observations of the system are available, they may be used to ameliorate this growth

in uncertainty and potentially lead to accurate estimates of the state of the system.

I have developed [Sanz-Alonso and Stuart, 2015] a unified theory that gives sufficient

conditions on the observations of a wide class of dissipative chaotic differential equa-

tions that guarantee long-time accuracy of the estimated state variables. Examples

include the Lorenz 63 and 96 models, as well as the Navier Stokes equations on a

two-dimensional torus. The importance of these model problems within geophysical

applications is highlighted in [Majda and Wang, 2006], and their use for testing

the efficacy of filtering algorithms is exemplified in [Law and Stuart, 2012], [Majda

and Harlim, 2012]. A key ingredient in proving the results was to introduce a new

modification of the 3DVAR algorithm from meteorology [Lorenc, 1986], specially

tailored to dissipative systems. One of the main aims of that paper was to help

to bridge the gap between the control theory and data assimilation communities. I

have also contributed to an in-depth numerical and theoretical study of the Lorenz

’96 model [Law et al., 2016], and towards exploring the advantages of using adaptive

observation operators, that align with the unstable directions of the system. The

theory includes discrete time data assimilation and continuous limits. The advan-
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tages of using adaptive observations within the 3DVAR algorithm and the ExKF

was numerically investigated.

1.5.2 Importance Sampling: Computational Complexity and In-

trinsic Dimension

Importance sampling is a simple building block of many state-of-the art sampling

algorithms, which has often been claimed to deteriorate in high dimensions and in

small noise regimes [Bengtsson et al., 2008], [Ades and Van Leeuwen, 2013]. It is

however unclear what should be understood by ‘dimension’ in the Bayesian frame-

work. The prior infuses information and correlations on the components of the un-

known, reducing the number of parameters that are estimated [Agapiou et al., 2015].

I have brought ideas from machine learning and statistics [Zhang, 2002], [Lu and

Mathé, 2014] in order to define an intrinsic dimension of inverse problems, which can

be interpreted as the number of components in which the data substantially changes

the prior. It is the intrinsic dimension that affects importance sampling. Crucially,

I show that Bayesian inverse problems defined in infinite dimensional Hilbert spaces

can potentially have small intrinsic dimension, and importance sampling can be suc-

cessfully used, as long as the posterior is absolutely continuous with respect to the

prior. Further, I established a direct link between absolute continuity and intrinsic

dimension, and I found precise rates of degeneracy of importance sampling in terms

of intrinsic dimension under various parameter regimes relevant to practitioners. I

have explored the implications that these insights have in the context of particle

filters, and I have linked our intrinsic dimension to other notions of dimension, such

as those in [Chorin and Morzfeld, 2013], [Bickel et al., 2008].

1.6 Ongoing and Future Research

Here is a sketch of some ideas I am currently exploring, and some possible future

lines:

• Gaussian ansatzs. Laying a mathematical foundation and justification for the

Gaussian ansatzs employed by many data assimilation algorithms. In this

direction I have started to investigate Gaussian approximations to nonlinear

stochastic differential equations. A thorough investigation of this subject will

provide a much needed understanding of the validity of these algorithms, pos-

sibly in terms of the frequency of the observations, the nonlinearities of the

system, and the size of the observation noise.
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• Large dimension, small noise, nonlinearities. It would be interesting to gen-

eralize our notion of intrinsic dimension, which currently assumes linearity, to

nonlinear systems. A related idea is the design of algorithms that automat-

ically detect the coordinates of the system in which the data is informative.

This is of key importance in the function space setting, where truncating the

measures is needed in numerical computations, and there is a risk that by

truncating in the wrong place much information is lost.

• Continuous time limits. Investigating the long-time behaviour of the fil-

tering distributions for partially observed chaotic dynamical systems under

continuous-time observation limits.
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Chapter 2

Filter Accuracy for Chaotic

Dynamical Systems: a General

Framework

2.1 Introduction

The evolution of many physical systems can be successfully modelled by a determin-

istic dynamical system for which the initial conditions may not be known exactly.

In the presence of chaos, uncertainty in the initial conditions will be dramatically

amplified even in short time-intervals. However, when observations of the system

are available, they may be used to ameliorate this growth in uncertainty and poten-

tially lead to accurate estimates of the state of the system. In this work we provide

sufficient conditions on the observations of a wide class of dissipative chaotic differ-

ential equations that guarantee long-time accuracy of the estimated state variables.

The equations covered by our theory include the Lorenz ’63 and ’96 models as well

as the Navier Stokes equation on a two-dimensional torus. The importance of these

model problems within geophysical applications is highlighted in [Majda and Wang,

2006], and their use for testing the efficacy of filtering algorithms is exemplified in

[Majda and Harlim, 2012; Law and Stuart, 2012].

It is often natural to acknowledge the uncertainty on the initial condition by

viewing it as a probability distribution which is propagated by the dynamics. When-

ever a new observation of the state variables becomes available, this distribution is

updated to incorporate it, reducing uncertainty. This process is performed sequen-

tially in what is known as filtering [Crisan and Rozovskii, 2011]. Unfortunately,

in almost all situations of applied relevance —with the exception of finite state

21



signals and the linear Gaussian case— the analytical expression for these filtering

distributions involves integrals that cannot be computed in closed form. It is thus

necessary to employ a numerical algorithm to sequentially approximate the filtering

distributions. In order to develop good algorithms a thorough understanding of the

properties of these distributions is desirable. The interplay between properties of

the filtering distributions and those of their numerical approximations is perhaps

best exemplified by the case of filter stability and particle filtering: the long-time

behaviour of particle filtering algorithms depends crucially on the sensitivity of fil-

tering distributions to their initial condition [Del Moral, 2004], [Crisan and Heine,

2008], [Lei and Bickel, 2013]. The main result of this paper shows long-time concen-

tration of the filtering distributions towards the true underlying signal for partially

observed chaotic dynamics. The proofs combine the asymptotic boundedness of a

new suboptimal filter with the mean-square optimality of the mean of the filtering

distribution as an estimator of the signal [Williams, 1991]. All our examples rely on

synchronization properties of dynamical systems. This tool underlies the study of

noise-free data assimilation initiated in [Hayden et al., 2011] for the Lorenz ’63 and

the Navier Stokes equation. The paper [Hayden et al., 2011] motivated studies of

the 3DVAR filter (three-dimensional variational method) for a variety of dissipative

chaotic dynamical systems, conditioned on noisy observations, in [Brett et al., 2013]

(Navier Stokes), [Law et al., 2014] (Lorenz ’63) and [Law et al., 2016] (Lorenz ’96).

The 3DVAR filter from meteorology [Lorenc, 1986; Parrish and Derber, 1992] is a

method which, iteratively in time, solves a quadratic minimization problem repre-

senting a compromise between matching the model and the data. Here we study

the filtering distribution itself, using modifications of the 3DVAR filter which exploit

dissipativity to obtain upper bounds on the error made by the optimal filter. We

also provide a unified methodology for the analysis. Furthermore, whereas previous

work in [Brett et al., 2013], [Law et al., 2016] required the observation noise to have

bounded support, here only finite variance is assumed.

The suboptimal modified 3DVAR filter that we use in our analysis can also

be interpreted using ideas from nonlinear observer theory [Thau, 1973], [Tarn and

Rasis, 1976]. Its asymptotic boundedness is proved by a Lyapunov-type argument.

Although more sophisticated suboptimal filters could be used to gain insight on

the filtering distributions, our choice of modified nonlinear observers is particularly

well-suited to deal with high (possibly infinite) dimensional signals, as indicated

by the fact that the theory includes the Navier-Stokes equation. Filtering in high

dimensions is not, in general, well-understood. For example, the question of whether

some form of particle filtering could be robust with respect to dimension has received
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much recent attention [Snyder et al., 2008], [Rebeschini and van Handel, 2015],

[Beskos et al., 2014a]. By understanding properties of the filtering distribution in

high and infinite dimensions we provide insight that may inform future development

of particle filters.

The chapter is organized as follows. In Section 2.2 we set up the notation

and formulate the questions we address in the rest of the chapter. Section 2.3

reviews the 3DVAR algorithm from data assimilation and its relation to more general

nonlinear observers from the control theory literature. A new truncated nonlinear

observer is also introduced. In Section 2.4 we prove long-time asymptotic results

for these suboptimal filters, and thereby deduce long-time accuracy of the filtering

distributions. Section 2.5 contains some applications to relevant models and we

close in Section 2.6.

2.2 Set-up

Filtering problems are naturally formulated within the framework of Hidden Markov

Models. The general setting that we consider is that of a Markov chain {vj , yj}j≥0,

where {vj}j≥0 is the signal process, and {yj}j≥0 is the observation process. We

assume throughout y0 = 0 so that y0 gives no information on the initial value of the

signal and that, for each j ≥ 1, yj is a noisy observation of vj . We are interested in

the value of the signal, but have access only to outcomes of the observation process.

We suppose that both take values in a separable Hilbert space H = (H, 〈·, ·〉, | · |)
and that the signal is randomly initialized with distribution µ0, v0 ∼ µ0. We assume

further that there is a deterministic map Ψ such that

vj+1 = Ψ(vj), for j ≥ 0, (2.2.1)

and therefore all the randomness in the signal comes from its initialization.

The observation process is given by

yj = Pvj + εwj , for j ≥ 1, (2.2.2)

where P denotes some linear operator that projects the signal onto a proper subspace

of H, {wj}j≥1 is an i.i.d. noise sequence —independent of v0— and ε > 0 quantifies

the strength of the noise. We define Q = I−P . For mathematical convenience, and

contrary to usual convention, we see both observations and noise as taking values in

the same space H as the signal, with the standing assumptions Qyj = 0, Qw1 = 0
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v0 ∼ µ v1 v2 · · ·

y1 y2

Ψ Ψ Ψ

Figure 2.1: Graphic representation of the dependence structure assumed through-
out this chapter. Conditional on v0, . . . , vj , the distribution of vj+1 is completely
determined by vj via a deterministic map Ψ; therefore the signal process forms a
Markov chain. Similarly, conditional on {vj}j≥0, {yj}j≥1 is a sequence of indepen-
dent random variables such that the conditional distribution of yj depends only on
vj .

and Pw1 = w1 a.s.1 Thus Q is a projection operator onto the unobserved part of

the system. For j ≥ 0, we let Yj := σ(yi, i ≤ j) be the σ–algebra generated by the

observations up to the discrete time j.

Note that the law of {vj , yj}j≥0 is completely determined by four elements:

the law of v0, the map Ψ, the law of w1 and the observation operator P . We

will denote by P the law of {vj , yj}j≥0 and by E the corresponding expectation.

It will be assumed throughout that E|v0|2 < ∞ and that the observation noise

satisfies Ew1 = 0 and E|w1|2 < ∞. For convenience and without loss of generality

we normalize the latter so that E|w1|2 = 1.

The main object of interest in filtering theory are the conditional distribu-

tions of the signal at discrete time j ≥ 1 given all observations up to time j. These

are known as filtering distributions and will be denoted by

µj(·) := P
[
vj ∈ ·|Yj

]
.

The mean v̂j of the filtering distribution µj is known as the optimal filter

v̂j := E[vj |Yj ] =

∫
H
v µj(dv).

By the mean-square minimization property of the conditional expectation [Williams,

1991], this filter is optimal in the sense that, among all Yj-measurable random

variables, it is the only one —up to equivalence— that minimizes the L2 distance

1More generally, when an operator T : H → H acts on the observations it should be implicitly
understood that T : H → H satisfies T = PT. Moreover it will often be assumed that T

∣∣
P

: PH →
PH is positive definite and then the operator T−1 : H → H should be interpreted as satisfying
PT−1 = T−1

∣∣
P
, QT−1 ≡ 0.

24



to the signal vj :

E|vj − v̂j |2 ≤ E|vj − zj |2, for allYj–measurable zj . (2.2.3)

In words, v̂j is the best possible estimator (in the mean-square sense) of the state of

the signal at time j given information up to time j. The optimal filter is usually, like

the filtering distributions, not analytically available. However, by studying suitable

suboptimal filters {zj}j≥0 and using (2.2.3) we can find sufficient conditions under

which the optimal filter is close to the signal in the long-time horizon. We thus

provide sufficient conditions under which the observations counteract the potentially

chaotic behaviour of the dynamical system, and allow predictability on infinite time-

horizons.

The main objective of this chapter is to investigate the long-time asymptotic

behaviour of the filtering distribution for discrete-time chaotic signals, arising from

the solution to a dissipative quadratic system with energy-conserving nonlinearity

dv

dt
+Av +B(v, v) = f, (2.2.4)

which is observed at discrete times tj = jh, j ≥ 1, h > 0. The bilinear form B(·, ·)
will be assumed throughout to be symmetric. We denote by Ψt the one-parameter

solution semigroup associated with (2.2.4), i.e. for v0 ∈ H, Ψt(v0) is the value at

time t of the solution to (2.2.4) with initial condition v0. Furthermore we introduce

the abbreviation Ψ = Ψh.

Our theory —developed in Section 2.4— relies on two assumptions that we

now state and explain.

Assumptions 2.2.1.

1. (Absorbing ball property.) There are constants r0, r1 > 0 such that

|Ψt(v0)|2 ≤ exp(−r1t)|v0|2 + r0

(
1− exp(−r1t)

)
, t ≥ 0. (2.2.5)

Therefore, setting r =
√

2r0, the ball B := {u ∈ H : |u| ≤ r} is absorbing and

forward invariant for the dynamical system (2.2.1).

2. (Squeezing property.) There is a function V : H → [0,∞) such that V (·)1/2 is

a Hilbert norm equivalent to | · |, a bounded operator D, an absorbing set BV = {u ∈
H : V (u)1/2 ≤ R} ⊃ B, and a constant α ∈ (0, 1) such that, for all u ∈ B, v ∈ BV ,

V
(

(I −DP )
(
Ψ(v)−Ψ(u)

))
≤ αV (v − u).
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The absorbing ball property concerns only the signal dynamics. It is satisfied

by many dissipative models of the form (2.2.4) —see Section 2.5. The squeezing

property involves both the signal dynamics and the observation operator P. It is

satisfied by several problems of interest provided that the assimilation time h is

sufficiently small and that the ‘right’ parts of the system are observed; see again

Section 2.5 for examples. We remark that several forms of the squeezing property

can be found in the dissipative dynamical systems literature. They all refer to the

existence of a contracting part of the dynamics. Their importance for filtering has

been explored in [Hayden et al., 2011], [Brett et al., 2013] and [Chueshov, 2014]. It

also underlies the analysis in [Kelly et al., 2014] and [Law et al., 2016], as we make

apparent here. We have formulated the squeezing property to suit our analyses and

with the intention of highlighting the similar role that it plays to detectability for

linear problems, as explained in Subsection 2.4.2. The function V will represent a

Lyapunov type function in Section 2.4. For all the chaotic examples in Section 2.5

the operator D will be chosen as the identity, but other choices are possible. As

we shall see, the absorbing ball property is not required when a global form of the

squeezing property, as may arise for linear problems, is satisfied.

We will construct suboptimal filters {mj}j≥0 that are forced to lie in BV .
By the absorbing ball property the signal vj is contained, for large j and with high

probability, in the forward-invariant ball B. Therefore, intuitively, the squeezing

property can be applied, for large j, to mj ∈ BV , vj ∈ B.

The main result of the chapter, Theorem 2.4.8, shows that, when Assumption

2.2.1 holds, the optimal filter accurately tracks the signal. Specifically we show that

there is a constant c > 0, independent of the noise strength ε, such that

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2. (2.2.6)

Note that (2.2.6) not only guarantees that in the low noise regime the optimal filter

(i.e. the mean of the filtering distribution) is —on average— close to the signal, but

also that the variance of the filtering distribution is —on average— small. Indeed,

since

var[vj
∣∣Yj ] = E

[
(vj − v̂j)⊗ (vj − v̂j)

∣∣∣∣Yj]
it follows by taking expectations and using linearity of the trace operator that

TraceE var[vj
∣∣Yj ] = E|vj − v̂j |2,
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and therefore (2.2.6) implies

lim sup
j→∞

TraceE var[vj
∣∣Yj ] ≤ cε2.

We hence see that (2.2.6) guarantees that the variance of the filtering distributions

scales as the size of the observation noise, like O(ε2). Thus the initial uncertainty

in the initial condition which is O(1) is reduced, in the large-time asymptotic, to

uncertainty of O(ε): the observations have overcome the effect of chaos. Small

variance of the long-time filtering distribution had been previously proposed as a

condition for successful data assimilation [Chorin and Morzfeld, 2013].

2.3 Suboptimal Filters

The aim of this section is to introduce a suboptimal filter, designed to track dynamics

satisfying Assumption 2.2.1. This filter is based on the 3DVAR algorithm from

data assimilation, and nonlinear observers from control applications. We give the

necessary background on these in Subsection 2.3.1 before introducing the new filter

in Subsection 2.3.2.

2.3.1 3DVAR Filter

The 3DVAR filter approximates the filtering distribution µj+1 by a GaussianN(zj+1, C)

whose mean can be found recursively starting from a deterministic point z0 ∈ H by

solving the variational problem

zj+1 := argminz

{
1

2

∣∣∣C−1/2
]

(
z −Ψ(zj)

)∣∣∣2 +
1

2ε2

∣∣∣Γ−1/2(yj+1 − Pz)
∣∣∣2} , (2.3.1)

where C] is a fixed model covariance that represents the lack of confidence in the

model Ψ, and Γ is the covariance operator of the observation noise w1.

The covariance C of the 3DVAR filter is determined by the Kalman update

formula

C−1 = C−1
] + P TΓ−1P.

It is immediate from (2.3.1) that zj is Yj-measurable for all j ≥ 0, and it

can be shown [Law et al., 2015] that the solution zj+1 to this variational problem

satisfies

zj+1 = (I −KP )Ψ(zj) +Kyj+1, (2.3.2)
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where K is the Kalman gain

K = C]P
T (PC]P

T + ε2Γ)−1.

The 3DVAR filter was introduced, and has been widely applied, in the mete-

orological sciences [Parrish and Derber, 1992; Lorenc, 1986]. Long-time asymptotic

stability and accuracy properties —that guarantee that the means zj become close

to the signal vj— have recently been studied for the Lorenz ’63 model [Law et al.,

2014] subject to additive Gaussian noise, and the Lorenz ’96 and Navier-Stokes

equation observed subject to bounded noise [Law et al., 2016], [Brett et al., 2013].

It will be convenient to allow for other choices of operator K in the above

definition, and consider the more general recursion

zj+1 = (I −DP )Ψ(zj) +Dyj+1, (2.3.3)

where D is some linear operator that we are free to choose as desired. Filters of

the form (2.3.3) are known as nonlinear observers [Thau, 1973], [Tarn and Rasis,

1976]. The 3DVAR filter can be seen as an instance of these where the operator

D is determined by model and noise covariances, and by the observation operator.

We now derive a recursive formula for the error made by nonlinear observers when

approximating the signal. To that end note, firstly, that the signal {vj}j≥0 satisfies

vj+1 = (I −DP )Ψ(vj) +DPΨ(vj).

Secondly, using (2.2.2) at time j + 1, combined with the assumption that Pwj+1 =

wj+1,

zj+1 = (I −DP )Ψ(zj) +DPΨ(vj) + εDPwj+1

Therefore, substracting the previous two equations, we obtain that the error δj :=

vj − zj satisfies

δj+1 = (I −DP )
(
Ψ(vj)−Ψ(zj)

)
− εDPwj+1. (2.3.4)

Despite their simplicity nonlinear observers are known to accurately track the signal

under suitable conditions [Tarn and Rasis, 1976; Thau, 1973]. Equation (2.3.4) plays

a central role in such analysis, and will underlie our analysis too. It demonstrates

the importance of the operator (I−DP )Ψ in the propagation of error; this operator

combines the properties of the dynamical system, encoded in Ψ, with the properties

of the observation operator P .
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2.3.2 Nonlinear Observers and Truncated Nonlinear Observers

In the remainder of this section we introduce a truncated nonlinear observer that is

especially tailored to exploit the absorbing ball property of the underlying dynamics.

Given a non-empty closed convex subset C ⊂ H, take m0 ∈ C and, for j ≥ 0,

define the C-truncated nonlinear observer mj+1 by

mj+1 := PC

(
(I −DP )Ψ(mj) +Dyj+1

)
, (2.3.5)

where PC is the orthogonal (with respect to a suitable inner product) projection

operator onto the set C; this is well-defined for any non-empty closed convex set

[Rudin, 1987]. In the next section we will analyze the long-time behaviour of this

filter when C is chosen as BV and the inner product is the one induced by V 1/2 (see

Assumption 2.2.1). The main advantage of this truncated filter is that mj ∈ BV for

all j ≥ 0, and large uninformative observations yj corresponding to large realizations

of the observation noise wj will not hinder the performance of the filter. Examples

of other truncated stochastic algorithms can be found in [Kushner and Yin, 2003].

2.4 Stochastic Stability of Suboptimal Filters and Filter

Accuracy

In this section we prove long-time accuracy of certain suboptimal filters under differ-

ent assumptions on the underlying dynamics and observation model. These results

are used to establish long-time concentration of the filtering distributions. We start

in Subsection 2.4.1 by recalling the Lyapunov method for proving asymptotic bound-

edness of stochastic algorithms. In Subsection 2.4.2 we employ this method to show

asymptotic accuracy of nonlinear observers when a global form of the squeezing

property is satisfied, as happens for certain linear problems. Finally, in Subsection

2.4.3 we use truncated nonlinear observers to deal with chaotic models where only

the weaker Assumption 2.2.1 holds.

2.4.1 The Lyapunov Method for Stability of Stochastic Filters

Consider a Markov chain {δj}j≥0 and think of it as the random sequence of errors

made by some filtering procedure. The next result, from [Tarn and Rasis, 1976],

underlies much of the analysis in the following subsections.

Lemma 2.4.1. Let δ1
j and δ2

j be two realizations of the H-valued random variable

δj and set ∆j = δ1
j − δ2

j . Suppose that there is a function V : H → [0,∞) such that
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1. V (0) = 0, V (x) ≥ θ|x|2 for all x ∈ H and some θ > 0.

2. There are real numbers K > 0 and α ∈ (0, 1) such that, for all ∆j ∈ H,

E[V (∆j+1)|∆j ] ≤ K + αV (∆j).

Then, for any a ∈ H,

θE[|∆j |2|∆0 = a] ≤ αjV (a) +K

j−1∑
i=0

αi.

Therefore, regardless of the initial state ∆0,

lim sup
j→∞

E|∆j |2 ≤
K

θ(1− α)
.

2.4.2 Filter Accuracy with Global Squeezing Property

The following results show that if, for some suitable operator D, the map (I−DP )Ψ

satisfies a global Lipschitz condition, then it is possible to use nonlinear observers

to deduce long-time accuracy of the filtering distributions. Although such a global

condition does not typically hold for dissipative chaotic dynamical systems arising

in applications, the following discussion serves as a motivation for the more general

theory in Subsection 2.4.3. Moreover, the results in this subsection are of interest

in their own right. In particular they are enough to deal with the important case of

linear signal dynamics.

Theorem 2.4.2. Assume that there is a Hilbert norm V (·)1/2 in H, equivalent to

| · |, and a bounded operator D and constant α ∈ (0, 1) such that

V
(

(I −DP )
(
Ψ(v)−Ψ(u)

))
≤ αV (v − u) ∀u, v ∈ H.

Define {zj}j≥0 by (2.3.3). Then there is a constant c > 0, independent of the noise

strength ε, such that

lim sup
j→∞

E|vj − zj |2 ≤ cε2.

Proof. By assumption V satisfies the first condition in Lemma 4.1. Set δj = vj − zj .
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Then, using equation (2.3.4) and the independence structure,

E[V (δj+1)|δj ] = E
[
V
(

(I −DP )
(
Ψ(vj)−Ψ(zj)

)
− εDwj+1

)∣∣∣δj]
= E

[
V
(

(I −DP )
(
Ψ(vj)−Ψ(zj)

))∣∣∣δj]+ ε2EV (Dwj+1)

≤ E
[
V
(

(I −DP )
(
Ψ(vj)−Ψ(zj)

))∣∣∣δj]+ Cε2

≤ αV (δj) + Cε2,

where C > 0 is independent of ε and to obtain the first inequality we used equivalence

of norms and the fact that D is bounded. Thus the second condition in Lemma 4.1

holds and the proof is complete.

The following corollary is an immediate consequence of the L2 optimality

property of the optimal filter (2.2.3).

Corollary 2.4.3. Under the hypothesis of the previous theorem

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2, lim sup
j→∞

TraceE var[vj
∣∣Yj ] ≤ cε2.

In the remainder of this subsection we apply, for the sake of motivation, the

previous theorem to the case of linear finite dimensional dynamics. We take H = Rd

and let the signal be given by

vj+1 = Lvj , j ≥ 1, v0 ∼ µ0. (2.4.1)

This framework has been widely studied within the control theory community,

mostly —but not exclusively— in the case where both the initial distribution of

the signal and the observation noise are Gaussian. Other than its modelling appeal,

this linear Gaussian setting has the exceptional feature that the filtering distribu-

tions are themselves again Gaussian. Moreover, their means and covariances can

be iteratively computed using the Kalman filter [Kalman, 1960]. Since the optimal

filter is the mean of the filtering distribution, the explicit characterization of the

Kalman filter yields an explicit characterization of the optimal filter. Suppose that,

for some given v̂0 ∈ Rd and C0 ∈ Rd×d, µ0 = N(v̂0, C0) and suppose further that

w1 ∼ N(0,Γ). Then the filtering distributions are Gaussian, µj = N(v̂j , Cj), j ≥ 1,

and the means and covariances satisfy the recursion (see [Law et al., 2015])

v̂j+1 = (I −Kj+1P )Lv̂j +Kj+1yj+1,

C−1
j+1 = C−1

j+1|j + ε−2P TΓ−1P, (2.4.2)
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where the predictive Kalman covariance Cj+1|j and Kalman gain Kj+1 are given by

Cj+1|j = LCjL
T ,

Kj+1 = Cj+1|jP
T (PCj+1|jP

T + ε2Γ)−1.

Similar formulae are available when the covariance operator Γ is not invertible in

the observation space [Law et al., 2015].

Remark 2.4.4. It is clear from (2.4.2) that the Kalman filter covariance Cj, which

is the covariance of the filtering distribution µj, is deterministic and in particular

does not make use of the observations. It follows from the discussion in Section 2.2

that in the linear Gaussian setting

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2

implies

lim sup
j→∞

TraceCj ≤ cε2.

In the linear setting the global squeezing property in Theorem 2.4.2 reduces

to the control theory notion of detectability, that we now recall.

Definition 2.4.5. The pair (L,P ) is called detectable if there exists a matrix D

such that ρ(L−DP ) < 1, where ρ(·) denotes spectral radius.

We remark that the condition ρ(L − DP ) < 1 guarantees the existence of

a Hilbert norm in Rd in which the linear map defined by the matrix L − DP is

contractive. It therefore yields a global form of the squeezing property. Note that

detectability may hold for unstable dynamics with ρ(L) > 1. However the observa-

tions need to contain information on the unstable directions. It is not necessary that

these are directly observed, but only that we can retrieve information from them by

exploiting any rotations present in the dynamics. This is the interpretation of the

matrix D in the definition. The next result states the abstract global theorem of

the previous section in the setting of linear dynamics. Our aim in including it here

is to make apparent the connection between classical control theory [Lancaster and

Rodman, 1995], ideas from data assimilation concerning the 3DVAR filter [Brett

et al., 2013], [Kelly et al., 2014], [Law et al., 2016], and the new results for chaotic

systems observed with unbounded noise in Section 2.4.3.

Theorem 2.4.6. Assume that H = Rd and Ψ(v) = Lv with L ∈ Rd×d. Then if the

pair (L,P ) is detectable there is a constant c > 0 independent of the noise strength

32



ε, such that

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2,

and consequently in the linear Gaussian setting

lim sup
j→∞

TraceCj ≤ cε2.

Proof. By the Hautus lemma [Sontag, 1998] the pair (L,P ) is detectable if and only

if

Rank

(
λI − L
P

)
= d

for all λ with |λ| ≥ 1 or, in other words, if Ker(λI − L) ∩ Ker(P ) = {0} for all λ

with |λ| ≥ 1. Using this characterization of detectability it is immediate from the

identity

Ker(λI − L) ∩Ker(PL) = Ker(λI − L) ∩Ker(P ), λ 6= 0,

that (L,P ) is detectable iff (L,PL) is detectable. Now by hypothesis (L,P ) is

detectable and so there exists a matrix D such that ρ
(
(I −DP )L

)
< 1. Hence the

linear map defined in Rd by the matrix (I −DP )L is globally contractive in some

Hilbert norm. The result follows from Theorem 2.4.2 and Corollary 2.4.3.

2.4.3 Filter Accuracy for Chaotic Deterministic Dynamics

In this section we study filter accuracy for signals satisfying Assumption 2.2.1. Our

analysis now makes use of truncated nonlinear observers (2.3.5), which are forced to

lie in the absorbing ball BV . The idea is that, once the signal gets into the absorbing

ball, projecting the filter into BV reduces the distance from the signal, as measured

by the Lyapunov function V. This is the content of the following lemma. PBV x

denotes the closest point (in the V 1/2 norm) to x ∈ H in the set BV . Therefore,

PBV x = R1/2 x
V 1/2(x)

for x /∈ BV .

Lemma 2.4.7. Let V 1/2(·) be a Hilbert norm and let R > 0 be arbitrary. Set

BV := {b ∈ H : V (b) ≤ R} similarly as in Assumption 2.2.1. Then,

V (PBV x− b) ≤ V (x− b), x ∈ H, b ∈ BV . (2.4.3)

Proof. The case x ∈ BV is obvious so we assume V (x) > R. Let 〈·, ·〉V denote the

inner product associated with the norm V 1/2. We claim that

〈PBV x− b, x− PBV x〉V ≥ 0. (2.4.4)
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Indeed we have

〈PBV x− b, x− PBV x〉V =

〈
R1/2 x

V 1/2(x)
− b, x−R1/2 x

V 1/2(x)

〉
V

=

(
1− R1/2

V 1/2(x)

)〈
R1/2 x

V 1/2(x)
− b, x

〉
V

=

(
1− R1/2

V 1/2(x)

)(
R1/2V 1/2(x)− 〈b, x〉V

)
≥

(
1− R1/2

V 1/2(x)

)(
R1/2V 1/2(x)− V 1/2(b)V 1/2(x)

)
.

Now, R ≥ V (b) because b ∈ BV and the claim is proved.

Finally note that (2.4.4) implies V (PBV x− b) ≤ V (x− b). To see this recall

the elementary fact that for arbitrary x1, x2 ∈ H we have that 〈x1, x2〉V ≥ 0 implies

V (x1) ≤ V (x1 + x2) and choose x1 := PBV x− b and x2 := x− PBV x.

Using the fact established in Lemma 2.4.7 we are now in a position to prove

positive results about the truncated nonlinear observer, and hence the optimal filter,

in the long-time asymptotic regime.

Theorem 2.4.8. Suppose that Assumption 2.2.1 holds. Let {mj}j≥0 be the sequence

of BV -truncated nonlinear observers given by (2.3.5). Then there is a constant c > 0,

independent of the noise strength ε, such that

lim sup
j→∞

E|vj −mj |2 ≤ cε2.

Consequently,

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2, lim sup
j→∞

TraceE var[vj
∣∣Yj ] ≤ cε2.

Proof. By Lemma 2.4.9 below, for arbitrary δ > 0 there is J > 0 such that, for

every j ≥ J, ∫
{vJ /∈B}

V (vj −mj)dP < δ. (2.4.5)

Now, for j ≥ J we have by the absorbing ball property that vJ ∈ B implies that

34



vj+1 ∈ B, and hence by Lemma 2.4.7∫
{vJ∈B}

V (vj+1 −mj+1)dP

≤
∫
{vJ∈B}

V
(

(I −DP )
(
Ψ(vj)−Ψ(mj)

)
− εDwj+1

)
dP

=

∫
{vJ∈B}

V (εDwj+1)dP +

∫
{vJ∈B}

V
(

(I −DP )
(
Ψ(vj)−Ψ(mj)

))
dP

− 2

∫
{vJ∈B}

〈
εwj+1, (I −DP )

(
Ψ(vj)−Ψ(mj)

)〉
V
dP.

Using the independence structure the last term vanishes, and for the second term

we can employ the squeezing property with vj ∈ B, mj ∈ BV to deduce∫
{vJ∈B}

V (vj+1 −mj+1)dP ≤ cε2 + α

∫
{vJ∈B}

V (vj −mj)dP.

Since α ∈ (0, 1), Gronwall’s lemma starting from J gives (for a different constant

c > 0)

lim sup
j→∞

∫
{vJ∈B}

V (vj+1 −mj+1)dP ≤ cε2. (2.4.6)

Finally, combining (2.4.5) and (2.4.6) yields

lim sup
j→∞

EV (vj −mj) ≤ cε2 + δ,

and since δ > 0 was arbitrary and the norms V (·)1/2 and | · | are assumed equivalent

the proof is complete.

The following lemma is used in the preceding proof.

Lemma 2.4.9. Let δ > 0. Then, with the notation and assumptions of the previous

theorem, there is J = J(δ) such that, for every j ≥ J,∫
{vJ /∈B}

V (vj −mj)dP < δ.

Proof. Firstly, by the assumed equivalence of norms there is θ > 0 such that

V (·)1/2 ≤ θ| · |. Secondly, using the absorbing ball property it is easy to check

that P[vJ /∈ B] can be made arbitrarily small by choosing J large enough. There-

fore, since we work with the standing assumption that E|v0|2 <∞, it is possible to
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choose J large enough so that∫
{vJ /∈B}

θ2|v0|2 +R2 + 2Rθ|v0|dP ≤ δ.

Then, for j > J,∫
{vJ /∈B}

V (vj −mj)dP ≤
∫
{vJ /∈B}

V (vj) + V (mj) + 2V (vj)
1/2V (mj)

1/2dP

≤
∫
{vJ /∈B}

V (vj) +R2 + 2RV (vj)
1/2dP

≤
∫
{vJ /∈B}

θ2|vj |2 +R2 + 2Rθ|vj |dP

≤
∫
{vJ /∈B}

θ2|v0|2 +R2 + 2Rθ|v0|dP ≤ δ,

where we used that, for j > J and vJ /∈ B, |vj | ≤ |v0| by (2.2.5).

2.5 Application to Relevant Models

2.5.1 Finite Dimensions (Lorenz ’63 and ’96 Models)

We study first the finite dimensional case H = Rd. Our aim is to introduce a general

setting for which Assumption 2.2.1 holds, and thus the theory of the previous section

can be applied. In order to do so we need to introduce suitable norms, and some

conditions on the general nonlinear dissipative equation (2.2.4). We start by setting

| · | to be the Euclidean norm, and V (·) = |P · |2 + | · |2.

Next we introduce a set of hypotheses on the general system (2.2.4), and the

observation matrix P.

Assumptions 2.5.1.

1. 〈Au, u〉 ≥ |u|2, ∀u ∈ H.
2. 〈B(u, u), u〉 = 0, ∀u ∈ H. (Energy conserving nonlinearity.)

3. There is c1 > 0 such that 2|〈B(u, ũ), ũ〉| ≤ c1|Pũ||u||ũ|, ∀u, ũ ∈ H.
4. There is c2 > 0 such that |B(u, ũ)| ≤ c2|u||ũ|, ∀u, ũ ∈ H.
5. There are c3 > 0 and c4 ≥ 0 such that 〈Au, Pu〉 ≥ c3|Pu|2 − c4|u|2.

Assumptions 2.5.1.1, 2.5.1.2 and 2.5.1.4 are satisfied by various important

dissipative equations, including the Lorenz ’63 [Hayden et al., 2011] (and used in

[Law et al., 2014]), and Lorenz ’96 models [Law et al., 2016]. Assumptions 2.5.1.3

and 2.5.1.5 are fulfilled when the ‘right’ parts of the system are observed. Examples
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of observation matrices P that fit into our theory are given —both for the Lorenz

’63 and ’96 models— in Subsections 2.5.1.1 and 2.5.1.2.

The first two items of Assumption 2.5.1 are enough to ensure the absorbing

ball property Assumption 2.2.1. Indeed, if these conditions hold then taking the

inner product of (2.2.4) with v gives

1

2

d

dt
|v|2 + 〈Av, v〉+ 〈B(v, v), v〉 = 〈f, v〉,

or
d

dt
|v|2 + |v|2 ≤ |f |2.

Finally, Gronwall’s lemma yields Assumption 2.2.1.1 with r0 = |f |2 and r1 = 1, and

the absorbing ball

B := {u ∈ H : |u| ≤ r :=
√

2|f |}. (2.5.1)

We now show that the squeezing property is also satisfied provided that the

time h between observations is sufficiently small. The proof is based on the analysis

of the Lorenz ’63 model in [Hayden et al., 2011]. Recall that Q = I − P is the

operator that projects onto the unobserved part of the system.

Lemma 2.5.2. Suppose that Assumption 2.5.1 holds and let r′ > 0. Then there is

h? > 0 with the property that for all h < h?, v ∈ B, and u ∈ H with |u − v| ≤ r′,

there exists α = α(r′) ∈ (0, 1) such that

V
(
Q
(
Ψ(v)−Ψ(u)

))
≤ αV (v − u).

Proof. Denote δ0 = u− v and δ(t) = Ψt(u)−Ψt(v). Lemma 2.5.3 below shows that

|δ(t)|2 ≤ b1(t)|δ0|2 + b2(t)|Pδ0|2,

where b1(t) and b2(t) are also defined in Lemma 2.5.3. Therefore, noting that

V
(
Qδ(t)

)
= |Qδ(t)|2 ≤ |δ(t)|2,

V
(
Qδ(t)

)
≤ max {b1(t), b2(t)}V (δ0).

Since b1(0) = 1, b2(0) = 0, and b′1(0) = −1 < 0 it follows that, for all sufficiently

small t, max {b1(t), b2(t)} ∈ (0, 1) and the lemma is proved.

The following result has been used in the proof.
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Lemma 2.5.3. Suppose that the notation and assumptions of the previous lemma

are in force, and that |δ0| ≤ r′. Then, for t ∈ [0, h),

|Pδ(t)|2 ≤ |Pδ0|2 +
(
k4(ekt − 1) + k5(e2kt − 1)

)
|δ0|2,

and

|δ(t)|2 ≤ k1(1− e−t)|Pδ0|2

+

(
e−t + k2

[
ekt − e−t

k + 1
− (1− e−t)

]
+ k3

[
e2kt − e−t

2k + 1
− (1− e−t)

])
|δ0|2,

where k and ki, 1 ≤ i ≤ 5, are constants defined in the proof, and k3 and k5 depend

on r′. Therefore,

|Pδ(t)|2 ≤ a1(t)|δ0|2 + |Pδ0|2 (2.5.2)

and

|δ(t)|2 ≤ b1(t)|δ0|2 + b2(t)|Pδ0|2, (2.5.3)

where the functions a1, b1 and b2 are defined in the obvious way from the expressions

above.

Proof. Firstly, it is not difficult to check (see for example [Kelly et al., 2014]) that

Assumptions 2.5.1.1, 2.5.1.2 and 2.5.1.3 imply that there exists a constant k > 0

such that, for u ∈ H, v ∈ B and t > 0,

|δ(t)|2 ≤ ekt|δ0|2.

Next, using the definition of δ and the symmetry of B(·, ·) it is possible to derive

[Law et al., 2014] the error equation

dδ

dt
+Aδ + 2B(v, δ) +B(δ, δ) = 0. (2.5.4)

Taking the inner product with δ we obtain

1

2

d

dt
|δ|2 + 〈Aδ, δ〉+ 2〈B(v, δ), δ〉 = 0,

and therefore

1

2

d

dt
|δ|2 + |δ|2 ≤ c1r|δ||Pδ| ≤

1

2
|δ|2 +

1

2
c2

1r
2|Pδ|2,
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i.e.
d|δ|2

dt
+ |δ|2 ≤ c2

1r
2|Pδ|2. (2.5.5)

We now bound |Pδ|2. Taking the inner product of (2.5.4) with Pδ

1

2

d

dt
|Pδ|2 + 〈Aδ, Pδ〉+ 2〈B(v, δ), P δ〉+ 〈B(δ, δ), P δ〉 = 0.

Hence,

1

2

d

dt
|Pδ|2 + 〈Aδ, Pδ〉 ≤ 2|〈B(v, δ), P δ〉|+ |〈B(δ, δ), P δ〉|

≤ 2c2r|δ||Pδ|+ c2|δ|2|Pδ|

and

1

2

d

dt
|Pδ|2 + c3|Pδ|2 ≤ c4|δ|2 + 2c2r|δ||Pδ|+ c2|δ|2|Pδ|

≤ c4|δ|2 + 2c2r|δ||Pδ|+ c2|δ|ekt/2r′|Pδ|

≤ c4|δ|2 +
2

c3
c2

2r
2|δ|2 +

c3

2
|Pδ|2 +

1

2c3
c2

2e
ktr′2|δ|2 +

c3

2
|Pδ|2

i.e.
d

dt
|Pδ|2 ≤

(
2c4 +

4

c3
c2

2r
2 +

1

c3
c2

2e
ktr′2

)
|δ|2.

On integrating from 0 to t and using that |δ(t)|2 ≤ |δ0|2ekt:

|Pδ(t)|2 ≤ |Pδ0|2 +

(
2c4 + 4

c3
c2

2r
2

k
(ekt − 1) +

c2
2r
′2

2kc3
(e2kt − 1)

)
|δ0|2

= |Pδ0|2 +
(
k4(ekt − 1) + k5(e2kt − 1)

)
|δ0|2,

where the last equality defines k4 and k5. This proves (2.5.2). Then, going back to

(2.5.5),

d

dt
|δ|2 + |δ|2 ≤ c2

1r
2
{
|Pδ0|2 +

(
k4(ekt − 1) + k5(e2kt − 1)

)
|δ0|2

}
.

After denoting k1 = c2
1r

2, k2 = k1k4 and k3 = k1k5 the inequality above becomes

d

dt
|δ|2 + |δ|2 ≤ k1|Pδ0|2 +

(
k2(ekt − 1) + k3(e2kt − 1)

)
|δ0|2.

Finally, Gronwall’s lemma gives (2.5.3).

39



The previous lemmas show that Assumption 2.5.1 implies the squeezing prop-

erty Assumption 2.2.1.2 provided that the assimilation time h is sufficiently small.

Indeed taking

BV := {u ∈ H : V (u)1/2 ≤
√

2r} (2.5.6)

with r as in (2.5.1) we have that |u−v| ≤ (1+
√

2)r for u ∈ B, v ∈ BV , and we are in

the setting of Lemma 2.5.2 with r′ = (1 +
√

2)r. Moreover, the requirement B ⊂ BV
in 2.2.1.2 is also fulfilled. Therefore the following result is a direct application of

Theorem 2.4.8.

Theorem 2.5.4. Assume that the signal dynamics are defined via a general dissi-

pative differential equation on Rd with quadratic energy-conserving nonlinearity of

the form (2.2.4), and that Assumption 2.5.1 is satisfied. Then there is h? > 0 such

that Assumption 2.2.1 is also satisfied for all h < h?. Therefore, if {mj}j≥0 denotes

the sequence of BV -truncated nonlinear observers given by (2.3.5) and (2.5.6), then

there is a constant c > 0, independent of the noise strength ε, such that, for all

discrete assimilation time h < h?,

lim sup
j→∞

E|vj −mj |2 ≤ cε2.

Consequently

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2, lim sup
j→∞

TraceE var[vj
∣∣Yj ] ≤ cε2.

2.5.1.1 Lorenz ’63 Model

A first example of a system of the form (2.2.4) is the Lorenz ’63 model, which

corresponds to a three dimensional problem defined by (2.2.4) with

A =

 a −a 0

a 1 0

0 0 b

 ,

B(u, ũ) =

 0

(u1ũ3 + u3ũ1)/2

−(u1ũ2 + u2ũ1)/2

 , f =

 0

0

−b(r + a)

 .
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ε MSE

1 1.59

0.1 1.3× 10−2

0.01 4.93× 10−4

Table 2.1: Bounds in the MSE given by the truncated nonlinear observer for the
Lorenz ’63 model. Only the first coordinate is observed. The assimilation time step is
h = 0.01 and the signal was filtered up to time T = 5. The MSE was computed using
20 initializations of v0 ∼ N(0, I); for each of these initializations five observation
sequences were generated using Gaussian noise. The MSE shown is the Monte Carlo
average of the filter error at time T over all these simulations.

The standard parameter values are (a, b, r) = (10, 8/3, 28). Define the projection

matrix

P :=

 1 0 0

0 0 0

0 0 0

 .
It is then immediate from the definitions that the first, second and fourth items of

Assumption 2.5.1 are satisfied [Hayden et al., 2011]. A verification of the third and

fifth items can be found in the proof of Theorem 2.5 of [Hayden et al., 2011].

To provide insight, in Table 1 we show a Monte Carlo estimate of the mean

square error (MSE) E|mj−vj |2 made by a truncated nonlinear observer with different

values of the observation noise strength ε. The results suggest that the MSE of this

suboptimal filter decreases as O(ε2), in agreement with our theoretical analyses.

This provides an upper bound for the error made by the optimal filter. It is worth

mentioning that the values of h for which we observe accurate signal reconstruction

are often far larger than the upper limits required by our theory.

Remark 2.5.5. An accuracy result for the Lorenz ’63 model, similar to Theorem

2.5.4 above, was established in [Law et al., 2014] using the 3DVAR algorithm. Indeed

truncation is not needed for this model since a global form of the squeezing property

Assumption 2.2.1.2 holds (with v ∈ B, u ∈ H).

2.5.1.2 Lorenz ’96 Model

Another system that satisfies the assumptions introduced in this section is the

Lorenz ’96 model, which is of the form (2.2.4) with the choices A = Id×d, where we
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ε MSE

1 1.11

0.1 1.08× 10−2

0.01 3.36× 10−4

Table 2.2: Same experiment as in Table 1, now for the Lorenz ’96 model with the
observation operator (2.5.7).

assume d ∈ 3N, forcing term

f =


8
...

8

 ,
and bilinear form

B(u, ũ) = −1

2



ũ2ud + u2ũd − ũdud−1 − udũd−1

...

ũi−1ui+1 + ui−1ũi+1 − ũi−2ui−1 − ui−2ũi−1

...

ũd−1u1 + ud−1ũ1 − ũd−2ud−1 − ud−2ũd−1


.

Define the projection matrix P by replacing every third column of the identity

matrix Id×d by the zero column vector

P =
[
e1, e2, 0, e4, e5, 0, · · ·

]
. (2.5.7)

For a proof that the first, second and fourth items of Assumption 2.5.1 are

satisfied see Property 2.1.1 in [Law et al., 2016]. The third item results from com-

bining Property 2.1.1 and Property 2.2.2 in [Law et al., 2016]. Finally, since A = I

the fifth item holds with c3 = 1, c4 = 0.

As for the Lorenz ’63 model, we show a Monte Carlo estimate of the error

made by a truncated nonlinear observer in Table 2. Again the error decreases as ε2.

2.5.2 Infinite Dimensions (Navier-Stokes Equation)

It is well known [Bloemker et al., 2013] that the incompressible Navier-Stokes equa-

tion on the torus T2 = [0, l] × [0, l] can be written in the form (2.2.4) as we now

recall.

Let Ĥ be the space of zero-mean, divergence-free, vector-valued polynomials
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u from T2 to R2. Let H be the closure of Ĥ with respect to the L2 norm. Finally, let

PH : (L2(T2))2 → H be the Leray-Helmholtz orthogonal projector [Temam, 1995].

Then, the operator A and the symmetric bilinear form B in (2.2.4) are given by

Au = −νPH∆, B(u, v) =
1

2
PH [u · ∇v] +

1

2
PH [v · ∇u],

were ν is the viscosity.

We assume that f ∈ H so that PHf = f. In the periodic case considered

here A = −ν∆ with domain D(A) = H2(T2) ∩ H. Moreover, the solution to the

Navier-Stokes equation (see below for the precise definition) can be written as a

Fourier series

v =
∑
k∈K

vke
ikx, K =

{
2π

L
(n1, n2) : ni ∈ Z, (n1, n2) 6= (0, 0)

}
.

The Fourier coefficients encode the divergence-free property and hence may be writ-

ten as vk = v′kk
⊥/|k| for scalar coefficients v′k, where | · | is the Euclidean norm, and

for k = (k1, k2) k⊥ = (k2,−k1). We now define the observation operator P = Pλ in

the general observation model (2.2.2) as

Pλu =
∑
|k|2≤λ

uke
ikx,

and set Qλ = I − Pλ. Several choices of noise fit into our theory, and a natural one

is given by

w1 =
∑
|k|2≤λ

ξke
ikx, (2.5.8)

where ξk ∼ N
(

0,
(
k2n(λ)

)−1
)

and n(λ) := #{k : k2 ≤ λ}.
We have already defined L2 divergence-free functions as an appropriate clo-

sure of Ĥ, and denoted this space by H; we now define H1 divergence-free functions

as the closure of Ĥ with respect to the H1 norm, and we denote this space H. It is

in H that we will apply our general theory. We define a norm in H

‖u‖2H1 :=
∑
k∈K

k2|uk|2,

which is equivalent to the H1 norm. Note that with this definition E‖w1‖2H1 = 1.

The following theorem —see [Temam, 1995], [Constantin and Foias, 1988] or

[Robinson, 2001]— guarantees the existence and uniqueness of strong solutions to

this problem with initial conditions in H.
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Proposition 2.5.6. Let u0 ∈ H and f ∈ H. Then (2.2.4) has a unique strong

solution

u ∈ L∞
(
(0, T );H

)
∩ L2

(
(0, T );D(A)

)
and

du

dt
∈ L2

(
(0, T ), H

)
for any T > 0. Furthermore, this solution is in C([0, T ];H) and depends continuously

on the initial data u0 in the H norm.

Take | · | = V (·)1/2 = ‖ · ‖H1 . It is not difficult to prove the absorbing

ball property for the Navier-Stokes equation with initial conditions in H [Robinson,

2001]. Indeed there is θ = θ(ν) > 0 such that, for every u ∈ H, |Au|2 ≥ θ|u|2. Then

Assumption 2.2.1.1 is satisfied with r0 = |f |2θ2 and r1 = θ. We hence set

B = {u ∈ H : |u| ≤ r :=
√

2
|f |
θ
}. (2.5.9)

The following squeezing property is taken from [Brett et al., 2013], which uses the

analysis in [Hayden et al., 2011].

Lemma 2.5.7. For every r′ > 0 there are constants α = α(r′) ∈ (0, 1) and λ? =

λ?(r
′) > 0 with the property that, for λ > λ?, there exists h? = h?(r′, λ) such that,

for all u, v ∈ B(r′) := {x ∈ H : V (x)1/2 ≤ r′}, and assimilation time h < h?,

V
(
Qλ
(
Ψ(v)−Ψ(u)

))
≤ αV (v − u).

The previous lemma yields Assumption 2.2.1.2. for sufficiently small as-

similation time h by choosing BV = B and r′ = 2r. The next result is then a

straightforward application of Theorem 2.4.8.

Theorem 2.5.8. Take | · | and V as above, and let {mj}j≥0 be the sequence of

BV -truncated nonlinear observers with BV = B given by (2.5.9). Then there are

h?, λ? > 0, such that for all h < h? and λ > λ? Assumption 2.2.1 is satisfied and

therefore there exists a constant c > 0, independent of the noise strength ε, such that

lim sup
j→∞

E|vj −mj |2 ≤ cε2,

Consequently,

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2, lim sup
j→∞

TraceE var[vj
∣∣Yj ] ≤ cε2.
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2.6 Conclusions

We conclude by summarizing our work and highlighting future directions.

• Noisy observations can be used to compensate, in the long-time asymptotic

regime, for uncertainty in the initial conditions of unstable or chaotic dynam-

ical systems.

• It would be interesting to study similar questions in continuous time, and to

investigate the impact of other sources of uncertainty, such as those arising

from incomplete knowledge of the parameters in the model.

• We have determined conditions on the dynamics and observations under which

the optimal filter accurately tracks the signal (and the variance of the filtering

distributions becomes small) in the long-time asymptotic.

• These properties of the true filtering distribution are potentially useful for the

design of improved algorithmic approximations of the filtering distributions.

• We have introduced a modification of the 3DVAR filter as a tool to prove our

results. This new filter is potentially of interest in its own right as a practical

algorithm.

45



Chapter 3

Filter accuracy for the Lorenz

’96 Model

3.1 Introduction

Data assimilation is concerned with the blending of data and dynamical mathemati-

cal models, often in an online fashion where it is known as filtering; motivation comes

from applications in the geophysical sciences such as weather forecasting [Kalnay,

2003], oceanography [Bennett, 2003] and oil reservoir simulation [Oliver et al., 2008].

Over the last decade there has been a growing body of theoretical understanding

which enables use of the theory of synchronization in dynamical systems to estab-

lish desirable properties of these filters. This idea is highlighted in the recent book

[Abarbanel, 2013] from a physics perspective and, on the rigorous mathematical

side, has been developed from a pair of papers by Olson, Titi and co-workers [Olson

and Titi, 2003; Hayden et al., 2011], in the context of the Navier-Stokes equation in

which a finite number of Fourier modes are observed. This mathematical work of

Olson and Titi concerns perfect (noise-free) observations, but the ideas have been

extended to the incorporation of noisy data for the Navier-Stokes equation in the

papers [Bloemker et al., 2014; Brett et al., 2013]. Furthermore the techniques used

are quite robust to different dissipative dynamical systems, and have been demon-

strated to apply in the Lorenz ’63 model [Hayden et al., 2011; Law et al., 2014], and

also to point-wise in space and continuous time observations [Azouani et al., 2014]

by use of a control theory perspective similar to that which arises from the deriva-

tion of continuous time limits of discrete time filters [Bloemker et al., 2014]. A key

question in the field is to determine relationships between the underlying dynamical

system and the observation operator which are sufficient to ensure that the signal
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can be accurately recovered from a chaotic dynamical system, whose initialization is

not known precisely, by the use of observed data. Our purpose is to investigate this

question theoretically and computationally. We work in the context of the Lorenz

’96 model, widely adopted as a useful test model in the atmospheric sciences data

assimilation community [Majda and Harlim, 2012; Ott et al., 2004].

The primary contributions of this chapter are: (i) to theoretically demon-

strate the robustness of the methodology proposed by Olson and Titi, by extending

it to the Lorenz ’96 model; (ii) to highlight the gap between such theories and what

can be achieved in practice, by performing careful numerical experiments; and (iii)

to illustrate the power of allowing the observation operator to adapt to the dynamics

as this leads to accurate reconstruction of the signal based on very sparse observa-

tions. Indeed our approach in (iii) suggests highly efficient new algorithms where

the observation operator is allowed to adapt to the current state of the dynamical

system. The question of how to optimize the observation operator to maximize in-

formation was first addressed in the context of atmospheric science applications in

[Lorenz and Emanuel, 1998]. The adaptive observation operators that we propose

are not currently practical for operational atmospheric data assimilation, but they

suggest a key principle which should underlie the construction of adaptive obser-

vation operators: to learn as much as possible about modes of instability in the

dynamics at minimal cost.

The outline of the chapter is as follows. In Section 3.2 we introduce the

model set up and a family of Kalman-based filtering schemes which include as par-

ticular cases the Three-dimensional Variational method (3DVAR) and the Extended

Kalman Filter (ExKF) used in this chapter. All of these methods may be derived

from sequential application of a minimization principle which encodes the trade-off

between matching the model and matching the data. In Section 3.3 we describe

the Lorenz ’96 model and discuss its properties that are relevant to this work. In

Section 3.4 we introduce a fixed observation operator which corresponds to observ-

ing two thirds of the signal and study theoretical properties of the 3DVAR filter,

in both a continuous and a discrete time setting. In Section 3.5 we introduce an

adaptive observation operator which employs knowledge of the linearized dynamics

over the assimilation window to ensure that the unstable directions of the dynamics

are observed. We then numerically study the performance of a range of filters using

the adaptive observations. In Subsection 3.5.1 we consider the 3DVAR method,

whilst Subsection 3.5.2 focuses on the Extended Kalman Filter (ExKF). In Subsec-

tion 3.5.2 we also compare the adaptive observation implementation of the ExKF

with the AUS (Assimilation in Unstable Space) scheme [Trevisan and Uboldi, 2004]
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which motivates our work. The AUS scheme projects the model covariances into

the subspaces governed by the unstable dynamics, whereas we use this idea on the

observation operators themselves, rather than on the covariances. In Section 3.6

we summarize the work and draw some brief conclusions. In order to maintain a

readable flow of ideas, the proofs of all properties, propositions and theorems stated

in the main body of the text are collected in an appendix.

Throughout the chapter we denote by 〈·, ·〉 and | · | the standard Euclidean

inner-product and norm. For positive-definite matrix C we define | · |C := |C−
1
2 · |.

3.2 Set Up

We consider the ordinary differential equation (ODE)

dv

dt
= F(v), v(0) = v0, (3.2.1)

where the solution to (3.2.1) is referred to as the signal. We denote by Ψ : RJ×R+ →
RJ the solution operator for the equation (3.2.1), so that v(t) = Ψ(v0; t). In our

discrete time filtering developments we assume that, for some fixed h > 0, the signal

is subject to observations at times tk := kh, k ≥ 1. We then write Ψ(·) := Ψ(·;h)

and vk := v(kh), with slight abuse of notation to simplify the presentation. Our

main interest is in using partial observations of the discrete time dynamical system

vk+1 = Ψ(vk), k ≥ 0, (3.2.2)

to make estimates of the state of the system. To this end we introduce the family

of linear observation operators {Hk}k≥1, where Hk : RJ → RJ is assumed to have

rank (which may change with k) less than or equal to M ≤ J . We then consider

data {yk}k≥1 given by

yk = Hkvk + νk, k ≥ 1, (3.2.3)

where we assume that the random and/or systematic error νk (and hence also yk)

is contained in HkRJ . If Yk = {y`}k`=1 then the objective of filtering is to estimate

vk from Yk given incomplete knowledge of v0; furthermore this is to be done in a

sequential fashion, using the estimate of vk from Yk to determine the estimate of

vk+1 from Yk+1. We are most interested in the case where M < J , so that the

observations are partial, and HkRJ is a strict subset of RJ ; in particular we address

the question of how small M can be chosen whilst still allowing accurate recovery

of the signal over long time-intervals.
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Let mk denote our estimate of vk given Yk. The discrete time filters used in

this chapter have the form

mk+1 = argminm

{
1

2

∣∣m−Ψ(mk)
∣∣2
Ĉk+1

+
1

2

∣∣yk+1 −Hk+1m
∣∣2
Γ

}
. (3.2.4)

The norm in the second term is only applied within the M -dimensional image space

of Hk+1, where yk+1 lies; then Γ is realized as a positive-definite M ×M matrix in

this image space, and Ĉk+1 is a positive-definite J × J matrix. The minimization

represents a compromise between respecting the model and respecting the data,

with the covariance weights Ĉk+1 and Γ determining the relative size of the two

contributions; see [Law et al., 2015] for more details. Different choices of Ĉk+1

give different filtering methods. For instance, the choice Ĉk+1 = C0 (constant in

k) corresponds to the 3DVAR method. More sophisticated algorithms, such as the

ExKF, allow Ĉk+1 to depend on mk.

All the discrete time algorithms we consider proceed iteratively in the sense

that the estimate mk+1 is determined by the previous one, mk, and the observed

data yk+1; we are given an initial condition m0 which is an imperfect estimate of

v0. It is convenient to see the update mk 7→ mk+1 as a two-step process. In the first

one, known as the forecast step, the estimate mk is evolved with the dynamics of the

underlying model yielding a prediction Ψ(mk) for the current state of the system.

In the second step, known as the analysis step, the forecast is used in conjunction

with the observed data yk+1 to produce the estimate mk+1 of the true state of the

underlying system vk+1, using the minimization principle (3.2.4).

In Section 3.4 we study the continuous time filtering problem for fixed ob-

servation operator, where the goal is to estimate the value of a continuous time

signal

v(t) = Ψ(v0, t), t ≥ 0,

at time T > 0. As in the discrete case, it is assumed that only incomplete knowledge

of v0 is available. In order to estimate v(T ) we assume that we have access, at

each time 0 < t ≤ T, to a (perhaps noisily perturbed) projection of the signal given

by a fixed, constant in time, observation matrix H. The continuous time limit of

3DVAR with constant observation operator H, is obtained by setting Γ = h−1Γ0

and Ĉk+1 = C and letting h → 0. The resulting filter, derived in [Bloemker et al.,

2014], is given by
dm

dt
= F(m) + CH∗Γ−1

0

(dz

dt
−Hm

)
, (3.2.5)

where the observed data is now z – formally the time-integral of the natural con-
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tinuous time limit of y – which satisfies the stochastic differential equation (SDE)

dz

dt
= Hv +HΓ

1
2
0

dw

dt
, (3.2.6)

for w a unit Wiener process. This filter has the effect of nudging the solution towards

the observed data in the H-projected direction. A similar idea is used in [Azouani

et al., 2014] to assimilate pointwise observations of the Navier-Stokes equation.

For the discrete and continuous time filtering schemes as described we address

the following questions:

– how does the filter error |mk − vk| behave as k →∞ (discrete setting)?

– how does the filter error |m(t)− v(t)| behave as t→∞ (continuous setting)?

We answer these questions in Section 3.4 in the context of the Lorenz ’96 model: for

a carefully chosen fixed observation operator we determine conditions under which

the large time filter error is small – this is filter accuracy. We then turn to the

adaptive observation operator and focus on the following lines of enquiry:

– how much do we need to observe to obtain filter accuracy? (in other words

what is the minimum rank of the observation operator required?)

– how does adapting the observation operator affect the answer to this question?

We study both these questions numerically in Section 3.5, again focussing on

the Lorenz ’96 model to illustrate ideas.

3.3 Lorenz ’96 Model

The Lorenz ’96 model is a lattice-periodic system of coupled nonlinear ODE whose

solution u = (u(1), . . . , u(J))T ∈ RJ satisfies

du(j)

dt
= u(j−1)(u(j+1) − u(j−2))− u(j) + F for j = 1, 2, · · · , J, (3.3.1)

subject to the periodic boundary conditions

u(0) = u(J), u(J+1) = u(1), u(−1) = u(J−1). (3.3.2)

Here F is a forcing parameter, constant in time. For our numerical experiments we

will choose F so that the dynamical system exhibits sensitive dependence on initial

conditions and positive Lyapunov exponents. For example, for F = 8 and J = 60
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the system is chaotic. Our theoretical results apply to any choice of the parameter

F and to arbitrarily large system dimension J .

It is helpful to write the model in the following form, widely adopted in the

analysis of geophysical models as dissipative dynamical systems [Temam, 1997]:

du

dt
+Au+B(u, u) = f, u(0) = u0 (3.3.3)

where

A = IJ×J , f =


F
...

F


J×1

and for u, ũ ∈ RJ

B(u, ũ) = −1

2



ũ(2)u(J) + u(2)ũ(J) − ũ(J)u(J−1) − u(J)ũ(J−1)

...

ũ(j−1)u(j+1) + u(j−1)ũ(j+1) − ũ(j−2)u(j−1) − u(j−2)ũ(j−1)

...

ũ(J−1)u(1) + u(J−1)ũ(1) − ũ(J−2)u(J−1) − u(J−2)ũ(J−1)


J×1

.

We will use the following properties of A and B, proved in the appendix:

Properties 3.3.1. For u, ũ ∈ RJ

1. 〈Au, u〉 = |u|2.

2. 〈B(u, u), u〉 = 0.

3. B(u, ũ) = B(ũ, u).

4. |B(u, ũ)| ≤ 2|u||ũ|.

5. 2〈B(u, ũ), u〉 = −〈B(u, u), ũ〉.

Property (1) shows that the linear term induces dissipation in the model,

whilst property (2) shows that the nonlinear term is energy-conserving. Balancing

these two properties against the injection of energy through f gives the existence of

an absorbing, forward-invariant ball for equation (3.3.3), as stated in the following

proposition, proved in the appendix.
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Proposition 3.3.2. Let K = 2JF 2 and define B := {u ∈ RJ : |u|2 ≤ K}. Then B
is an absorbing, forward-invariant ball for equation (3.3.3): for any u0 ∈ RJ there

is time T = T (|u0|) ≥ 0 such that u(t) ∈ B for all t ≥ T.

3.4 Fixed Observation Operator

In this section we consider filtering the Lorenz ’96 model with a specific choice of

fixed observation matrix P (thus Hk = H = P ) that we now introduce. First, we let

{ej}Jj=1 be the standard basis for the Euclidean space RJ and assume that J = 3J ′

for some integer J ′ ≥ 1. Then the projection matrix P is defined by replacing every

third column of the identity matrix IJ×J by the zero vector:

P =
(
e1, e2, 0, e4, e5, 0, . . .

)
J×J

. (3.4.1)

Thus P has rank M = 2J ′. We also define its complement Q as

Q = IJ×J − P.

Remark 3.4.1. Note that in the definition of the projection matrix P we could have

chosen either the first or the second column to be set to zero periodically, instead of

choosing every third column this way; the theoretical results in the remainder of this

section would be unaltered by doing this.

The matrix P provides sufficiently rich observations to allow the accurate

recovery of the signal in the long-time asymptotic regime, both in continuous and

discrete time settings. The following property of P , proved in the appendix, plays

a key role in the analysis:

Properties 3.4.2. The bilinear form B(·, ·) as defined after (3.3.3) satisfies B(Qu,Qu) =

0 and, furthermore, there is a constant c > 0 such that

|〈B(u, u), ũ〉| ≤ c|u||ũ||Pu|.

All proofs in the following subsections are given in the appendix.

3.4.1 Continuous Assimilation

In this subsection we assume that the data arrives continuously in time. Subsection

3.4.1.1 deals with noiseless data, and the more realistic noisy scenario is studied in

Subsection 3.4.1.2. We aim to show that, in the large time asymptotic, the filter is
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close to the truth. In the absence of noise our results are analogous to those for the

partially observed Lorenz ’63 and Navier-Stokes models in [Olson and Titi, 2003];

in the presence of noise the results are similar to those proved in [Bloemker et al.,

2014] for the Navier-Stokes equation and in [Law et al., 2014] for the Lorenz ’63

model, and generalize the work in [Tarn and Rasis, 1976] to non-globally Lipschitz

vector fields.

3.4.1.1 Noiseless Observations

The true solution v satisfies the following equation

dv

dt
+ v +B(v, v) = f, v(0) = v0. (3.4.2)

Suppose that the projection Pv of the true solution is perfectly observed and con-

tinuously assimilated into the approximate solution m. The synchronization filter m

has the following form:

m = Pv + q, (3.4.3)

where v is the true solution given by (3.4.2) and q satisfies the equation (3.3.3)

projected by Q to obtain

dq

dt
+ q +QB(Pv + q, Pv + q) = Qf, q(0) = q0. (3.4.4)

Equations (3.4.3) and (3.4.4) form the continuous time synchronization filter. The

following theorem shows that the approximate solution converges to the true solution

asymptotically as t→∞.

Theorem 3.4.3. Let m be given by the equations (3.4.3), (3.4.4) and let v be the

solution of the equation (3.4.2) with initial data v0 ∈ B, the absorbing ball in Propo-

sition 3.3.2, so that sup
t≥0
|v(t)|2 ≤ K. Then

lim
t→∞
|m(t)− v(t)|2 = 0.

The result establishes that in the case of high frequency in time observations

the approximate solution converges to the true solution even though the signal is

observed partially at frequency 2/3 in space. We now extend this result by allowing

for noisy observations.
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3.4.1.2 Noisy Observations: Continuous 3DVAR

Recall that the continuous time limit of 3DVAR is given by (3.2.5) where the ob-

served data z, the integral of y, satisfies the SDE (3.2.6). We study this filter in

the case where H = P and under small observation noise Γ0 = ε2I. The 3DVAR

model covariance is then taken to be of the size of the observation noise. We choose

C = σ2I, where σ2 = σ2(ε) = η−1ε2, for some η > 0. Then equations (3.2.5) and

(3.2.6) can be rewritten as

dm

dt
= F(m) +

1

η

(dz

dt
− Pm

)
(3.4.5)

where
dz

dt
= Pv + εP

dw

dt
, (3.4.6)

and w is a unit Wiener process. Note that the parameter ε represents both the size

of the 3DVAR observation covariance and the size of the noise in the observations.

The reader will notice that the continuous time synchronization filter is ob-

tained from this continuous time 3DVAR filter if ε is set to zero and if the (singular)

limit η → 0 is taken. The next theorem shows that the approximate solution m

converges to a neighbourhood of the true solution v where the size of the neighbour-

hood depends upon ε. Similarly as in [Law et al., 2014] and [Bloemker et al., 2014] it

is required that η, the ratio between the size of observation and model covariances,

is sufficiently small. The next theorem is thus a natural generalization of Theorem

3.4.3 to incorporate noisy data.

Theorem 3.4.4. Let (m, z) solve the equations (3.4.5), (3.4.6) and let v solve the

equation (3.4.2) with the initial data v(0) ∈ B, the absorbing ball of Proposition

3.3.2, so that supt≥0 |v(t)|2 ≤ K. Then for the constant c as given in the Property

3.4.2, given η < 4
c2K

we obtain

E|m(t)− v(t)|2 ≤ e−λt|m(0)− v(0)|2 +
2Jε2

3λη2
(1− e−λt), (3.4.7)

where λ is defined by

λ = 2

(
1− c2ηK

4

)
. (3.4.8)

Thus

limsupt→∞E|m(t)− v(t)|2 ≤ aε2,

where a = 2J
3λη2

does not depend on the strength of the observation noise, ε.
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3.4.2 Discrete Assimilation

We now turn to discrete data assimilation. Recall that filters in discrete time can

be split into two steps: forecast and analysis. In this section we establish conditions

under which the corrections made at the analysis steps overcome the divergence

inherent due to nonlinear instabilities of the model in the forecast stage. As in

the previous section we study first the case of noiseless data, generalizing the work

of [Hayden et al., 2011] from the Navier-Stokes and Lorenz ’63 models to include

the Lorenz ’96 model, and then study the case of 3DVAR, generalizing the work in

[Brett et al., 2013; Law et al., 2014], which concerns the Navier-Stokes and Lorenz

’63 models respectively, to the Lorenz ’96 model.

3.4.2.1 Noiseless Observations

Let h > 0, and set tk := kh, k ≥ 0. For any function g : R+ → RJ , continuous in

[tk−1, tk), we denote g(t−k ) := limt↑tk g(t). Let v be a solution of equation (3.4.2) with

v(0) in the absorbing forward-invariant ball B. The discrete time synchronization

filter m of [Hayden et al., 2011] may be expressed as follows:

dm

dt
+m+B(m,m) = f, t ∈ (tk, tk+1), (3.4.9a)

m(tk) = Pv(tk) +Qm(t−k ). (3.4.9b)

Thus the filter consists of solving the underlying dynamical model, by resetting the

filter to take the value Pv(t) in the subspace PRJ at every time t = tk. The following

theorem shows that the filter m converges to the true signal v.

Theorem 3.4.5. Let v be a solution of the equation (3.4.2) with v(0) ∈ B. Then

there exists h∗ > 0 such that for any h ∈ (0, h∗] the approximating solution m given

by (3.4.9) converges to v as t→∞.

3.4.2.2 Noisy Observations: Discrete 3DVAR

Now we consider the situation where the data is noisy and Hk = P. We employ

the 3DVAR filter which results from the minimization principle (3.2.4) in the case

where Ĉk+1 = σ2I and Γ = ε2I. Recall the true signal is determined by the equation

(3.2.2) and the observed data by the equation (3.2.3), now written in terms of the
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true signal vk = v(tk) solving the equation (3.3.3) with v0 ∈ B. Thus

vk+1 = Ψ(vk), v0 ∈ B,

yk+1 = Pvk+1 + νk+1.

If we define η := ε2

σ2 then the 3DVAR filter can be written as

mk+1 =
( η

1 + η
P +Q

)
Ψ(mk) +

1

1 + η
yk+1,

after noting that Pyk+1 = yk+1 because P is a projection and νk+1 is assumed to

lie in the image of P . In fact the data has the following form:

yk+1 = Pvk+1 + Pνk+1

= PΨ(vk) + νk+1.

Combining the two equations gives

mk+1 =
( η

1 + η
P +Q

)
Ψ(mk) +

1

1 + η

(
PΨ(vk) + νk+1

)
. (3.4.10)

We can write the equation for the true solution vk, given by (3.2.2), in the following

form:

vk+1 =
( η

1 + η
P +Q

)
Ψ(vk) +

1

1 + η
PΨ(vk). (3.4.11)

Note that vk = v(tk) where v(·) solves (3.4.2). We are interested in comparing the

output of the filter, mk, with the true signal vk. Notice that if the noise νk is set to

zero and if the limit η → 0 is taken then the filter becomes

mk+1 = PΨ(vk) +QΨ(mk)

which is precisely the discrete time synchronization filter. Theorem 3.4.6 below will

reflect this observation, constituting a noisy variation on Theorem 3.4.5.

We will assume that the νk are independent random variables that satisfy the

bound |νk| ≤ ε, thereby linking the scale of the covariance Γ employed in 3DVAR to

the size of the noise. We let ‖ · ‖ be the norm defined by ‖z‖ := |z|+ |Pz|, z ∈ RJ .

Theorem 3.4.6. Let v be the solution of the equation (3.4.2) with v(0) ∈ B. Assume

that {νk}k≥1 is a sequence of independent bounded random variables such that, for

every k, |νk| ≤ ε. Then there are choices (detailed in the proof in the appendix) of

assimilation step h > 0 and parameter η > 0 sufficiently small such that, for some
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α ∈ (0, 1) and provided that the noise ε > 0 is small enough, the error satisfies

‖mk+1 − vk+1‖ ≤ α‖mk − vk‖+ 2ε. (3.4.12)

Thus, there is a > 0 such that

lim sup
k→∞

‖mk − vk‖ ≤ aε.

3.5 Adaptive Observation Operator

The theory in the previous section demonstrates that accurate filtering of chaotic

models is driven by observing enough of the dynamics to control the exponential

separation of trajectories in the dynamics. However the fixed observation operator

P that we analyze requires observation of 2/3 of the system state vector. Even if the

observation operator is fixed our numerical results will show that observation of this

proportion of the state is not necessary to obtain accurate filtering. Furthermore, by

adapting the observations to the dynamics, we will be able to obtain the same quality

of reconstruction with even fewer observations. In this section we will demonstrate

these ideas in the context of noisy discrete time filtering, and with reference to the

Lorenz ’96 model.

The variational equation for the dynamical system (3.2.1) is given by

d

dt
DΨ(u, t) = DF

(
Ψ(u, t)

)
·DΨ(u, t); DΨ(u, 0) = IJ×J , (3.5.1)

using the chain rule. The solution of the variational equation gives the derivative

matrix of the solution operator Ψ, which in turn characterizes the behaviour of Ψ

with respect to small variations in the initial value u. Let Lk+1 := L(tk+1) be the

solution of the variational equation (3.5.1) over the assimilation window (tk, tk+1),

initialized at IJ×J , given as

dL

dt
= DF

(
Ψ(mk, t− tk)

)
L, t ∈ (tk, tk+1); L(tk) = IJ×J . (3.5.2)

Let {λjk, ψ
j
k}
J
j=1 denote eigenvalue/eigenvector pairs of the matrix LTk+1Lk+1, where

the eigenvalues (which are, of course, real) are ordered to be non-decreasing, and

the eigenvectors are orthonormalized with respect to the Euclidean inner-product

〈·, ·〉. We define the adaptive observation operator Hk to be

Hk := H0(ψ1
k, · · · , ψJk )T (3.5.3)
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where

H0 =

(
0 0

0 IM×M

)
. (3.5.4)

Thus H0 and Hk both have rank M . Defined in this way we see that for any given

v ∈ RJ the projection Hkv is given by the vector(
0, · · · , 0, 〈ψJ−M+1

k , v〉, · · · , 〈ψJk , v〉
)T
,

that is the projection of v onto the M eigenvectors of LTk+1Lk+1 with largest mod-

ulus.

Remark 3.5.1. In the following work we consider the leading eigenvalues and corre-

sponding eigenvectors of the matrix LTkLk to track the unstable (positive Lyapunov

growth) directions. To leading order in h it is equivalent to consider the matrix

LkL
T
k in the case of frequent observations (small h) as can be seen by the following

expressions

LTkLk = (I + hDFk)T (I + hDFk) +O(h2)

= I + h(DFTk +DFk) +O(h2)

and

LkL
T
k = (I + hDFk)(I + hDFk)T +O(h2)

= I + h(DFk +DFTk ) +O(h2),

where DFk = DF(mk).

Of course for large intervals h, the above does not hold, and the difference

between LTkLk and LkL
T
k may be substantial. It is however clear that these opera-

tors have the same eigenvalues, with the eigenvectors of LkL
T
k corresponding to λjk

given by Lkψ
j
k for the corresponding eigenvector ψjk of LTkLk. That is to say, for

the linearized deformation map Lk, the direction ψjk is the pre-deformation princi-

ple direction corresponding to the principle strain λjk induced by the deformation.

The direction Lkψ
j
k is the post-deformation principle direction corresponding to the

principle strain λjk. The dominant directions chosen in Eq. (3.5.3) are those direc-

tions corresponding to the greatest growth over the interval (tk, tk+1) of infinitesimal

perturbations to the predicting trajectory, Ψ(mk−1, h) at time tk. This is only one

sensible option. One could alternatively consider the directions corresponding to the

58



greatest growth over the interval (tk−1, tk), or over the whole interval (tk−1, tk+1).

Investigation of these alternatives is beyond the scope of this work and is therefore

deferred to later investigation.

We make a small shift of notation and now consider the observation operator

Hk as a linear mapping from RJ into RM , rather than as a linear operator from RJ

into itself, with rank M ; the latter perspective was advantageous for the presentation

of the analysis, but differs from the former which is sometimes computationally

advantageous and more widely used for the description of algorithms. Recall the

minimization principle (3.2.4), noting that now the first norm is in RJ and the

second in RM .

3.5.1 3DVAR

Here we consider the minimization principle (3.2.4) with the choice Ĉk+1 = C0 ∈
RJ×J , a strictly positive-definite matrix, for all k. Assuming that Γ ∈ RM×M is also

strictly positive-definite, the filter may be written as

mk+1 = Ψ(mk) +Gk+1

(
yk+1 −Hk+1Ψ(mk)

)
(3.5.5a)

Gk+1 = C0H
T
k+1(Hk+1C0H

T
k+1 + Γ)−1. (3.5.5b)

As well as using the choice of Hk defined in (3.5.3), we also employ the fixed

observation operator where Hk = H, including the choice H = P given by (3.4.1).

In the last case J = 3J ′, M = 2J ′ and P is realized as a2J ′ × 3J ′ matrix.

We make the choices C0 = σ2IJ×J , Γ = ε2IM×M and define η = ε2/σ2.

Throughout our experiments we take h = 0.1, ε2 = 0.01 and fix the parameter

η = 0.01 (i.e. σ = 1). We use the Lorenz ’96 model (3.3.1) to define Ψ, with the

parameter choices F = 8 and J = 60. The system then has 19 positive Lyapunov ex-

ponents which we calculate by the methods described in [Benettin et al., 1976]. The

observational noise is i.i.d Gaussian with respect to time index k, with distribution

ν1 ∼ N(0, ε2).

Throughout the following we show (approximation) to the expected value,

with respect to noise realizations around a single fixed true signal solving (3.4.2),

of the error between the filter and the signal underlying the data, in the Euclidean

norm, as a function of time. We also quote numbers which are found by time-

averaging this quantity. The expectation is approximated by a Monte Carlo method

in which I realizations of the noise in the data are created, leading to filters m
(i)
k ,
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with k denoting time and i denoting realization. Thus we have, for tk = kh,

RMSE(tk) =
1

I

I∑
i=1

√
‖m(i)

k − vk‖
2

J
.

This quantity is graphed, as a function of k, in what follows. Notice that similar

results are obtained if only one realization is used (I = 1) but they are more noisy

and hence the trends underlying them are not so clear. We take I = 104 throughout

the reported numerical results. When we state a number for the RMSE this will be

found by time-averaging after ignoring the initial transients (tk < 40):

RMSE = mean
tk>40

{RMSE(tk)}.

In what follows we will simply refer to RMSE ; from the context it will be clear

whether we are talking about the function of time, RMSE(tk), or the time-averaged

number RMSE.

Figures 3.1, 3.2 and 3.3 exhibit, for fixed observation 3DVAR and adaptive

observation 3DVAR, the RMSE as a function of time. The Figure 3.1 shows the

RMSE for fixed observation operator where the observed space is of dimension 60

(complete observations), 40 (observation operator defined as in the equation (3.4.1)),

36 and 24 respectively. For values M = 60, 40 and 36 the error decreases rapidly

and the approximate solution converges to a neighbourhood of the true solution

where the size of the neighbourhood depends upon the variance of the observational

noise. For the cases M = 60 and M = 40 we use the identity operator IJ×J and the

projection operator P as defined in the equation (3.4.1) as the observation operators

respectively. The observation operator for the case M = 36 can be given as

P36 =
(
e1, e2, 0, e4, 0, e6, e7, 0, e9, 0, e11, e12, 0, e14, . . .

)
J×J

(3.5.6)

where we observe 3 out of 5 directions periodically. The RMSE , averaged over

the trajectory, after ignoring the initial transients, is 1.30 × 10−2 when M = 60,

1.14 × 10−2 when M = 40 and 1.90 × 10−2 when M = 36; note that this is on

the scale of the observational noise. The rate of convergence of the approximate

solution to the true solution in the case of partial observations is lower than the

rate of convergence when full observations are used however the RMSE is lower in

the case when M = 40 due to fewer noisy inputs in stable directions in comparison

to the case when all directions are observed. The convergence of the approximate

solution to the true solution for the case when M = 36 shows that the value M = 40,
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Figure 3.1: Fixed Observation Operator 3DVAR. RMSE values averaged over the
trajectory for M = 60, 40 and 36 are 1.30 × 10−2, 1.14 × 10−2 and 1.90 × 10−2

respectively.

for which theoretical results have been presented in Section 3.4, is not required for

small error (O(ε)) consistently over the trajectory. We also consider the case when

24 = 40% of the modes are observed using the following observation operator:

P24 =
(
e1, 0, 0, e4, 0, 0, e7, 0, 0, e10, e11, 0, 0, e14, . . .

)
J×J

. (3.5.7)

Thus we observe 4 out of 10 directions periodically; this structure is motivated by

the work reported in [Abarbanel, 2013; Kostuk, 2012] where it was demonstrated

that observing 40% of the modes, with the observation directions chosen carefully

and with observations sufficiently frequent in time, is sufficient for the approximate

solution to converge to the true underlying solution. The Figure 3.2 shows that, in

our observational set-up, observing 24 of the modes only allows marginally successful

reconstruction of the signal, asymptotically in time; the RMSE makes regular large

excursions and the time-averaged RMSE over the trajectory is (5.73× 10−2), which

is an order of magnitude larger than for 36, 40 or 60 observations.

Figure 3.3 shows the RMSE for adaptive observation 3DVAR. In this case

we notice that the error is consistently small, uniformly in time, with just 9 or

more modes observed. When M = 9 (15% observed modes) the RMSE averaged
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Figure 3.2: Fixed Observation Operator 3DVAR. Comparison with the case when
M = 24. RMSE value averaged over the trajectory for M = 24 is 5.73× 10−2.

over the trajectory is 1.35 × 10−2 which again is of the order of the observational

noise variance. For M ≥ 9 the error is similar – see Figure 3.3b. On the other

hand, for smaller values of M the error is not controlled as shown in Figure 3.3a

where the RMSE for M = 7 is compared with that for M = 9; for M = 7 it is an

order of magnitude larger than for M = 9. It is noteworthy that the number of

observations necessary and sufficient for accurate reconstruction is approximately

half the number of positive Lyapunov exponents.

3.5.2 Extended Kalman Filter

In the Extended Kalman Filter (ExKF) the approximate solution evolves according

to the minimization principle (3.2.4) with Ck chosen as a covariance matrix evolving

in the forecast step according to the linearized dynamics, and in the assimilation

stage updated according to Bayes’ rule based on a Gaussian observational error

covariance. This gives the method

mk+1 = Ψ(mk) +Gk+1

(
yk+1 −Hk+1Ψ(mk)

)
,

Ĉk+1 = DΨ(mk)CkDΨ(mk)
T ,

Ck+1 = (IJ×J −Gk+1Hk+1)Ĉk+1,

Gk+1 = Ĉk+1H
T
k+1(Hk+1Ĉk+1H

T
k+1 + Γ)−1.

We first consider the ExKF scheme with a fixed observation operator Hk =
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(a) Comparison of RMSE between M = 7 and M = 9. RMSE values averaged over trajectory
are 2.25× 10−1, 1.35× 10−2 respectively.

(b) Averaged RMSE for different choices of M

Figure 3.3: Adaptive Observation 3DVAR

H. We make two choices for H: the full rank identity operator and a partial obser-

vation operator given by (3.5.7) so that 40% of the modes are observed. For the first

case the filtering scheme is the standard ExKF with all the modes being observed.

The approximate solution converges to the true solution and the error decreases

rapidly as can be seen in the Figure 3.4a. The RMSE is 9.49 × 10−4 which is an

order of magnitude smaller than the analogous error for the 3DVAR algorithm when

fully observed which is, recall, 1.30 × 10−2. For the partial observations case with

M = 24 we see that again the approximate solution converges to the true underlying

solution as shown in the Figure 3.4b. Furthermore the solution given by the ExKF

with M = 24 is far more robust than for 3DVAR with this number of observations.

The RMSE is also lower for ExKF (2.68 × 10−3) when compared with the 3DVAR

scheme (5.73× 10−2).

We now turn to adaptive observation within the context of the ExKF. The
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(a) Percentage of components observed = 100%. RMSE value averaged over trajectory
9.49× 10−4.

(b) Percentage of components observed = 40%. RMSE value averaged over trajectory
1.39× 10−3.

Figure 3.4: Fixed Observation ExKF. The zoomed in figures shows the variability
in RMSE between time t = 20 and t = 90.
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Figure 3.5 shows that it is possible to obtain an RMSE which is of the order of

the observational error, and is robust over long time intervals, using only a 7 di-

mensional observation space, improving marginally on the 3DVAR situation where

9 dimensions were required to attain a similar level of accuracy.

The AUS scheme, as proposed by Trevisan and co-workers [Trevisan and

Uboldi, 2004], is an ExKF method which operates by confining the analysis update

to the subspace spanned by a finite number of directions, ideally designed to capture

the instabilities in the dynamics. This is typically achieved by choosing to work in

the subspace of the linear dynamics spanned by the M largest growth directions;

furthermore M is fixed as the number (precomputed) of non-negative Lyapunov

exponents. Asymptotically this method with H = IJ×J behaves similarly to the

adaptive ExKF with observation operator of rank M . To understand the intuition

behind the AUS method we plot in Figure 3.6a the rank (computed by truncation

to zero of eigenvalues below a threshold) of the covariance matrix Ck from standard

ExKF based on observing 60 and 24 modes. Notice that in both cases the rank

approaches a value of 19 or 20 and that 19 is the number of non-negative Lyapunov

exponents. This means that the covariance is effectively zero in 40 of the observed

dimensions and that, as a consequence of the minimization principle (3.2.4), data

will be ignored in the 40 dimensions where the covariance is negligible. It is hence

natural to simply confine the update step to the subspace of dimension 19 given by

the number of positive Lyapunov exponents, right from the outset. This is exatcly

what AUS does by reducing the rank of the error covariance matrix Ck. Numerical

results are given in Figure 3.6b which shows the RMSE over the trajectory for

the ExKF-AUS assimilation scheme with time. After initial transients the error is

mostly of the numerical order of the observational noise. Occasional jumps outside

this error bound are observed but the approximate solution converges to the true

solution each time. The RMSE for ExKF-AUS is 1.49× 10−2. However, if the rank

of the error covariance matrix C0 in AUS is chosen to be less than the number of

unstable modes for the underlying system, then the approximate solution does not

converge to the true solution.

3.6 Conclusions

In this chapter we have studied the long-time behaviour of filters for partially ob-

served dissipative dynamical systems, using the Lorenz ’96 model as a canonical

example. We have highlighted the connection to synchronization in dynamical sys-

tems, and shown that this synchronization theory, which applies to noise-free data,
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(a) Comparison of RMSE between M = 5 and M = 7. RMSE values averaged over trajectory
are 2.84× 10−1, 1.31× 10−3 respectively.

(b) Averaged RMSE for different choices of M .

Figure 3.5: Adaptive Observation ExKF
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(a) Standard ExKF with 60 and 24 observed modes. The rank of the error covariance matrix
Ck decays to (approximately) the number of unstable Lyapunov modes in the underlying
system, namely 19.

(b) RMSE value averaged over trajectory: 1.49 × 10−2. The zoomed in figures shows the
variability in RMSE between time t = 20 and t = 90.

Figure 3.6: Rank of error covariance and ExKF-Assimilation in Unstable Space
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is robust to the addition of noise, in both the continuous and discrete time settings.

In so doing we are studying the 3DVAR algorithm. In the context of the Lorenz ’96

model we have identified a fixed observation operator, based on observing 2/3 of the

components of the signal’s vector, which is sufficient to ensure desirable long-time

properties of the filter. However it is to be expected that, within the context of

fixed observation operators, considerably fewer observations may be needed to en-

sure such desirable properties. Ideas from nonlinear control theory will be relevant

in addressing this issue. We also studied adaptive observation operators, targeted to

observe the directions of maximal growth within the local linearized dynamics. We

demonstrated that with these adaptive observers, considerably fewer observations

are required. We also made a connection between these adaptive observation opera-

tors, and the AUS methodology which is also based on the local linearized dynamics,

but works by projecting within the model covariance operators of ExKF, whilst the

observation operators themselves are fixed; thus the model covariances are adapted.

Both adaptive observation operators and the AUS methodology show the potential

for considerable computational savings in filtering, without loss of accuracy.

In conclusion our work highlights the role of ideas from dynamical systems in

the rigorous analysis of filtering schemes and, through computational studies, shows

the gap between theory and practice, demonstrating the need for further theoretical

developments. We emphasize that the adaptive observation operator methods may

not be implementable in practice on the high dimensional systems arising in, for

example, meteorological applications. However, they provide conceptual insights

into the development of improved algorithms and it is hence important to understand

their properties.
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Appendix: Proofs

Proof of Properties 3.3.1. Properties 1, 2 and 3 are straightforward and we omit the

proofs. We start showing 4. For any u ∈ RJ set

‖u‖∞ = max
1≤j≤J

|u(j)|

and recall that |u|2 ≥ ‖u‖2∞. Then, for u, ũ ∈ RJ , and for 1 ≤ j ≤ J , we have that

2|B(u, ũ)(j)| ≤ ‖u‖∞(|ũ(j+1)|+ |ũ(j−2)|) + ‖ũ‖∞(|u(j+1)|+ |u(j−2)|),

and so

4|B(u, ũ)|2 ≤ 2‖u‖2∞
J∑
j=1

(|ũ(j+1)|+ |ũ(j−2)|)2 + 2‖ũ‖2∞
J∑
j=1

(|u(j+1)|+ |u(j−2)|)2

≤ 8‖u‖2∞|ũ|2 + 8‖ũ‖2∞|u|2

≤ 16|u|2|ũ|2.

Hence

|B(u, ũ)| ≤ 2|u||ũ|.

For 5 we use rearrangement and periodicity of indices under summation as follows:

2〈B(u, ũ), u〉 =

J∑
j=1

(
u(j)(u(j−1)ũ(j+1) + ũ(j−1)u(j+1) − ũ(j−1)u(j−2) − u(j−1)ũ(j−2))

)

=
J∑
j=1

(u(j)u(j−1)ũ(j+1) − u(j)ũ(j−1)u(j−2))

=
J∑
j=1

(u(j−1)u(j−2)ũ(j) − u(j+1)ũ(j)u(j−1))

=

J∑
j=1

(
ũ(j)(u(j−1)u(j−2) − u(j+1)u(j−1))

)
= −〈B(u, u), ũ〉.

Proof of Proposition 3.3.2. Taking the Euclidean inner product of u(t) with equa-
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tion (3.3.3) and using properties 1 and 2 we get

1

2

d|u|2

dt
= −|u|2 + 〈f, u〉.

Using Cauchy-Schwartz and Young’s inequalities for the last term gives

d|u|2

dt
+ |u|2 ≤ JF 2.

Therefore, using Gronwall’s lemma,

|u(t)|2 ≤ |u0|2e−t + JF 2(1− e−t),

and the result follows.

Proof of Property 3.4.2. The first part is automatic since, if q := Qu, then for all

j either q(j−1) = 0 or q(j−2) = q(j+1) = 0. Since B(Qu,Qu) = 0 and B(·, ·) is a

bilinear operator we can write

B(u, u) = B(Pu+Qu,Pu+Qu)

= B(Pu, Pu) + 2B(Pu,Qu).

Now using property 4, and the fact that there is c > 0 such that |Pu|+2|Qu| ≤ c
2 |u|,

|〈B(u, u), ũ〉| ≤ |B(u, u)||ũ|

≤ |B(Pu, Pu) + 2B(Pu,Qu)||ũ|

≤ 2|Pu||ũ|(|Pu|+ 2|Qu|)

≤ c|Pu||ũ||u|.

Proof of Theorem 3.4.3. Define the error in the approximate solution as δ = m−v =

q −Qv. Note that Qδ = δ. The error satisfies the following equation

Q
dδ

dt
+Qδ +Q

(
B(Pv + q, Pv + q)−B(v, v)

)
= 0.

Splitting v = Pv + Qv and noting, from Properties 3.4.2, that B(Qv,Qv) = 0 and

B(q, q) = 0, yields
dQδ

dt
+Qδ + 2QB(Pv,Qδ) = 0.

70



Taking the inner product with Qδ gives

1

2

d|Qδ|2

dt
+ |Qδ|2 + 2〈B(Pv,Qδ), Qδ〉 = 0.

Note that from the Properties 3.3.1, 3 and 5, and Property 3.4.2, we have

2〈B(u,Qδ), Qδ〉 = −〈B(Qδ,Qδ), u〉

= 0.

Thus since Qδ = δ we have
d|δ|2

dt
+ 2|δ|2 = 0,

and so

|δ(t)|2 = |δ(0)|2e−2t.

As t→∞ the error δ(t)→ 0.

Proof of Theorem 3.4.4. From (3.4.5) and (3.4.6)

dm

dt
= F(m) +

1

η

(
Pv + εP

dw

dt
− Pm

)
.

Thus
dm

dt
= −m−B(m,m) + f +

1

η
P (v −m) +

ε

η
P

dw

dt
.

The signal is given by
dv

dt
= −v −B(v, v) + f,

and so the error δ = m− v satisfies

dδ

dt
= −δ − 2B(v, δ)−B(δ, δ)− 1

η
Pδ +

ε

η
P

dw

dt
.

Lemma 3.6.2 below, Properties 3.3.1 and Itô’s formula give

1

2
d|δ|2 +

(
1− c2Kη

4

)
|δ|2dt ≤ ε

η
〈Pdw, δ〉+

J

3

ε2

η2
dt.

Integrating and taking expectations

dE|δ|2

dt
≤ −λE|δ|2 +

2Jε2

3η2
.

Use of the Gronwall inequality gives the desired result.
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We now turn to discrete-time data assimilation, where the following lemma

plays an important role:

Lemma 3.6.1. Consider the Lorenz ’96 model (3.3.3) with F > 0 and J ≥ 3. Let v

and u be two solutions in [tk, tk+1), with v(tk) ∈ B. Then there exists a β ∈ R such

that

|u(t)− v(t)|2 ≤ |u(tk)− v(tk)|2eβ(t−tk) t ∈ [tk, tk+1).

Proof. Let δ = m− v. Then δ satisfies

1

2

d|δ|2

dt
+ |δ|2 + 2〈B(v, δ), δ〉+ 〈B(δ, δ), δ〉 = 0 (3.6.1)

so that, by Property 3.3.1, item 2,

1

2

d|δ|2

dt
+ |δ|2 − 2|〈B(v, δ), δ〉| ≤ 0.

Using Properties 3.3.1 items 4 and 5 gives |〈B(v, δ), δ〉| ≤ K
1
2 |δ|2, where K is defined

in Proposition 3.3.2, so that

1

2

d|δ|2

dt
≤ (2K

1
2 − 1)|δ|2.

Integrating the differential inequality gives

|δ(t)|2 ≤ |δ(tk)|2eβ(t−tk). (3.6.2)

Note if F < 1
2
√

2J
then β = 2(2K

1
2 −1) < 0 and the subsequent analysis may

be significantly simplified. Thus we assume in what follows that F ≥ 1
2
√

2J
so that

β ≥ 0. Lemma 3.6.1 gives an estimate on the growth of the error in the forecast

step. Our aim now is to show that this growth can be controlled by observing

Pv discretely in time. It will be required that the time h between observations is

sufficiently small.

To ease the notation we introduce three functions that will be used in the

proofs of Theorems 3.4.2 and 3.4.6. Namely we define, for t > 0,

A1(t) :=
16K

β
(eβt − 1) +

4R2
0

2β
(e2βt − 1), (3.6.3)
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B1(t) :=
16c2K2

β

[
eβt − e−t

β + 1
− (1− e−t)

]
+e−t+

4c2KR2
0

2β

[
e2βt − e−t

2β + 1
− (1− e−t)

]
,

(3.6.4)

and

B2(t) := c2K{1− e−t}. (3.6.5)

Here and in what follows c, β and K are as in Property 3.4.2, Lemma 3.6.1 and

Proposition 3.3.2. We will use two different norms in RJ to prove the theorems that

follow. In each case, the constant R0 > 0 above quantifies the size of the initial

error, measured in the relevant norm for the result at hand.

Proof of Theorem 3.4.5. Define the error δ = m − v. Subtracting equation (3.4.2)

from equation (3.4.9) gives

dδ

dt
+ δ + 2B(v, δ) +B(δ, δ) = 0, t ∈ (tk, tk+1), (3.6.6a)

δ(tk) = Qδ(t−k ) (3.6.6b)

where δ(t−k+1) := limt↑tk+1
δ(t) as defined in Section 3.4.2.1. Notice that B1(0) = 1

and B′1(0) = −1, so that there is h∗ > 0 with the property that B1(h) ∈ (0, 1) for

all h ∈ (0, h∗]. Fix any such assimilation time h and denote γ = B1(h) ∈ (0, 1). Let

R0 := |δ0|. We show by induction that, for every k, |δk|2 ≤ γkR2
0. We suppose that

it is true for k and we prove it for k + 1.

Taking the inner product of Pδ with the equation (3.6.6) gives

1

2

d|Pδ|2

dt
+ |Pδ|2 + 2〈B(v, δ), P δ〉+ 〈B(δ, δ), P δ〉 = 0

so that, by Property 3.3.1, item 4,

1

2

d|Pδ|2

dt
+ |Pδ|2 ≤ 4|v||δ||Pδ|+ 2|δ|2|Pδ|.

By the inductive hypothesis we have |δk|2 ≤ R2
0 since γ ∈ (0, 1). Shifting the time

origin by setting τ := t− tk and using Lemma 3.6.1 gives

1

2

d|Pδ|2

dτ
+ |Pδ|2 ≤ 4K

1
2 |δ||Pδ|+ 2|δk|e

βτ
2 |δ||Pδ|

≤ 4K
1
2 |δ||Pδ|+ 2R0e

βτ
2 |δ||Pδ|. (3.6.7)
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Applying Young’s inequality to each term on the right-hand side we obtain

d|Pδ|2

dτ
≤ 16K|δ|2 + 4R2

0e
βτ |δ|2. (3.6.8)

Integrating from 0 to s, where s ∈ (0, h), gives

|Pδ(s)|2 ≤ A1(s)|δk|2. (3.6.9)

Now again consider the equation (3.6.1) using Property 3.3.1 item 5 to obtain

1

2

d|δ|2

dτ
+ |δ|2 − |〈B(δ, δ), v〉| ≤ 0.

Using Property 3.4.2 and Young’s inequality yields

1

2

d|δ|2

dτ
+ |δ|2 ≤ c|v||δ||Pδ|

≤ cK
1
2 |δ||Pδ|

≤ |δ|2

2
+
c2K

2
|Pδ|2. (3.6.10)

Employing the bound (3.6.9) then gives

d|δ|2

dτ
+ |δ|2 ≤

(
16c2K2

β
(eβτ − 1) +

4c2KR2
0

2β
(e2βτ − 1)

)
|δk|2.

Therefore, upon using Gronwall’s lemma,

|δ(s)|2 ≤ B1(s)|δk|2.

It follows that

|δk+1|2 ≤ γ|δk|2 ≤ γk+1R2
0,

and the induction (and hence the proof) is complete.

Proof of Theorem 3.4.6. We define the error process δ(t) as follows:

δ(t) =

{
δk := mk − v(t) if t = tk

Ψ(mk, t− tk)− v(t) if t ∈ (tk, tk+1).
(3.6.11)

Observe that δ is discontinuous at times tk which are multiples of h, since
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mk+1 6= Ψ(mk;h). Subtracting (3.4.11) from (3.4.10) we obtain

δk+1 = δ(tk+1) =

(
η

1 + η
P +Q

)
+

1

1 + η
νk+1. (3.6.12)

Let A1(·), B1(·) and B2(·) be as in (3.6.3, 3.6.4, 3.6.5), and set

M1(t) :=
2η

1 + η

√
A1(t) +

√
B1(t),

M2(t) :=
2η

1 + η
+
√
B2(t).

Since A1(0) = 0, B1(0) = 1, B2(0) = 0 and

d

dt

√
B1(t)

∣∣∣
t=0

= −1/2 < 0

it is possible to find h, η > 0 small such that

M2(h) < M1(h) =: α < 1.

Let R0 = ‖δ0‖. We show by induction that for such h and η, and provided that ε is

small enough so that

αR0 + 2ε < R0,

we have that ‖δk‖ ≤ R0 for all k. Suppose for induction that it is true for k. Then

|δk| ≤ ‖δk‖ ≤ R0 and we can apply (after shifting time as before) Lemma 3.6.3

below to obtain that

|Pδ(t)| ≤
√
A1(t)|δk|2 + |Pδk|2 ≤

√
A1(t)|δk|+ |Pδk|

and

|δ(t)| ≤
√
B1(t)|δk|2 +B2(t)|Pδk|2 ≤

√
B1(t)|δk|+

√
B2(t)|Pδk|.

Therefore,

|Pδk+1|+ |δk+1| ≤
(

2η

1 + η

√
A1(h) +

√
B1(h)

)
|δk|+

(
2η

1 + η
+
√
B2(h)

)
|Pδk|+ 2ε

= M1(h)|δk|+M2(h)|Pδk|+ 2ε.

Since M2(h) < M1(h) = α we deduce that

‖δk+1‖ ≤ α‖δk‖+ 2ε,
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which proves (3.4.12). Furthermore, the induction is complete, since

‖δk+1‖ ≤ α‖δk‖+ 2ε ≤ αR0 + 2ε ≤ R0.

Lemma 3.6.2. Let v ∈ B. Then, for any δ,

〈δ + 2B(v, δ) +B(δ, δ) +
1

η
Pδ, δ〉 ≥

(
1− c2Kη

4

)
|δ|2.

Proof. Use of Property 3.3.1, items 3 and 5, together with Property 3.4.2, shows

that

〈δ + 2B(v, δ) +B(δ, δ) +
1

η
Pδ, δ〉 = |δ|2 + 2〈B(v, δ), δ〉+ 〈B(δ, δ), δ〉+ 〈1

η
Pδ, δ〉

= |δ|2 − 〈B(δ, δ), v〉+ 〈1
η
Pδ, δ〉

≥ |δ|2 − cK
1
2 |δ||Pδ|+ 1

η
|Pδ|2

≥ |δ|2 − θ|δ|2

2
− c2K|Pδ|2

2θ
+

1

η
|Pδ|2.

Now choosing θ = c2Kη
2 establishes the claim.

Lemma 3.6.3. In the setting of Theorem 3.4.6, for t ∈ [0, h) and R0 := ‖δ0‖ we

have

|Pδ(t)|2 ≤ A1(t)|δ0|2 + |Pδ0|2 (3.6.13)

and

|δ(t)|2 ≤ B1(t)|δ0|2 +B2(t)|Pδ0|2, (3.6.14)

where the error δ is defined as in (3.6.11) and A1, B1 and B2 are given by (3.6.3,

3.6.4, 3.6.5).

Proof. As in equation (3.6.8) we have

d|Pδ|2

dt
≤ 16K|δ|2 + 4R2

0e
βt|δ|2.

On integrating from 0 to t as before, and noting that now Pδ0 6= 0 in general, we
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obtain

|Pδ(t)|2 ≤
(

16K

β
{eβt − 1}+

4R2
0

2β
{e2βt − 1}

)
|δ0|2 + |Pδ0|2,

which proves (3.6.13).

For the second inequality recall the bound (3.6.10)

1

2

d|δ|2

dt
+ |δ|2 ≤ |δ|

2

2
+
c2K

2
|Pδ|2,

and combine it with (3.6.13) to get

d|δ|2

dt
+ |δ|2 ≤

(
16c2K2

β
{eβt − 1}+

4c2KR2
0

2β
{e2βt − 1}

)
|δ0|2 + c2K|Pδ0|2.

Applying Gronwall’s inequality yields (3.6.14).
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Chapter 4

Importance Sampling:

Computational Complexity and

Intrinsic Dimension

4.1 Introduction

4.1.1 Our Purpose

Our purpose in this chapter is to overview various ways of measuring the compu-

tational complexity of importance sampling, to link them to one another through

transparent mathematical reasoning, and to create cohesion in the vast published

literature on this subject. In addressing these issues we will study importance sam-

pling in a general abstract setting, and then in the particular cases of Bayesian

inversion and filtering. These two application settings are particularly important

as there are many pressing scientific, technological and societal problems which can

be formulated via inversion or filtering. An example of such an inverse problem is

the determination of subsurface properties of the Earth from surface measurements;

an example of a filtering problem is assimilation of atmospheric measurements into

numerical weather forecasts.

The general abstract setting in which we work is as follows. We let µ and π

be two probability measures on a measurable space (X ,F) related via the expression

dµ

dπ
(u) := g(u)

/∫
X
g(u)π(du). (4.1.1)

Here, g is the unnormalised density (or Radon-Nikodym derivative) of µ with respect

to π. Note that the very existence of the density implies that the target is absolutely
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continuous with respect to the proposal; absolute continuity will play an important

role in our subsequent developments of this subject.

Importance sampling is a method for using independent samples from the

proposal π to approximately compute expectations with respect to the target µ.

The computational complexity is measured by the number of samples required to

control the worst error made when approximating expectations within a class of test

functions. Intuitively it is clear that the computational complexity of importance

sampling is related to how far the target measure is from the proposal measure.

With this in mind, a key quantity in what follows is the second moment, under the

proposal, of dµ/dπ, which throughout the chapter is denoted by ρ. As we observe

below, it is simply obtained as ρ = π(g2)/π(g)2.

The first application of this setting that we study is the linear inverse problem

to determine u ∈ X from y where

y = Ku+ η, η ∼ N(0,Γ). (4.1.2)

We adopt a Bayesian approach in which we place a prior u ∼ Pu = N(0,Σ), assume

that η is independent of u, and seek the posterior u|y ∼ Pu|y. We study importance

sampling with Pu|y being the target µ and the prior Pu being the proposal π.

The second application is the linear filtering problem of sequentially updating

the distribution of vj ∈ X given {yi}ji=1 where

vj+1 = Mvj + ξj , ξj ∼ N(0, Q), j ≥ 0,

yj+1 = Hvj+1 + ζj+1, ζj+1 ∼ N(0, R), j ≥ 0.
(4.1.3)

We assume that the problem has a Markov structure. We study the approximation

of one step of the filtering update by means of particles, building on the study of

importance sampling for the linear inverse problem. To this end it is expedient to

work on the product space X ×X , and consider importance sampling for (vj , vj+1) ∈
X × X . It then transpires that, for two different proposals, which are commonly

termed the standard proposal and the optimal proposal, the complexity of one step

of particle filtering may be understood by the study of a linear inverse problem on

X ; we show this for both proposals, and then use the link to an inverse problem to

derive results about the complexity of particle filters based on these two proposals.

For the abstract importance sampling problem we will relate ρ to a number

of other natural quantities. These include the effective sample size ess, used heuris-

tically in many application domains, and a variety of distance metrics between π

and µ. Since the existence of a density between target and proposal is central in
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this discussion, we will also discuss what happens as this absolute continuity prop-

erty breaks down. We study this first in high dimensional problems, and second in

singular parameter limits (by which we mean limits in which important parameters

defining the problem tend to zero). The motivation for studying high dimensional

problems can be appreciated by considering the two examples mentioned at the start

of the introduction: inverse problems from the Earth’s subsurface, and filtering for

numerical weather prediction. In both cases the unknown which we are trying to

determine from data is best thought of as a spatially varying field for subsurface

properties such as permeability, or atmospheric properties, such as temperature. In

practice the field will be discretized and represented as a high dimensional vector,

for computational purposes, but for these types of application the state dimension

can be of order 109. Furthermore as computer power advances there is pressure

to resolve more physics, and hence for the state dimension to increase. Thus, it is

important to understand infinite dimensional problems, and sequences of approxi-

mating finite dimensional problems which approach the infinite dimensional limit.

A motivation for studying singular parameter limits arises, for example, from prob-

lems in which the noise is small and the relevant log-likelihoods scale inversely with

the noise variance. Breakdown of absolute continuity will be related to limits in

which the target and proposal become increasingly close to being mutually singular.

We will highlight a variety of notions of intrinsic dimension that have been

introduced in the inverse problem literature; these may differ substantially from

the dimensions of the spaces where the unknown u and the data y live. We then

go on to show how these intrinsic dimensions relate to the parameter ρ, previously

demonstrated to be central to computational complexity. We do so in various limits

arising from large dimension of u and y, and/or small observational noise. We

also link these concepts to breakdown of absolute continuity. Finally we apply our

understanding of linear inverse problems to particle filters, translating the results

from one to the other via the correspondence between the two problems, for both

standard and optimal proposals, as described above.

It is often claimed that importance sampling suffers from the curse of dimen-

sionality. Whilst there is some empirical truth in this fact, there is a great deal of

confusion in the literature about what exactly makes importance sampling hard. In

fact such a statement about the role of dimension is vacuous unless “dimension” is

defined precisely. Throughout this chapter we use the following convention:

• State space dimension is the dimension of the measurable space where the

measures µ and π are defined. We will be mostly interested in the case where

the measurable space X is a separable Hilbert space, in which case the state
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space dimension is the cardinality of an orthonormal basis of the space. In

the context of inverse problems and filtering, the state space dimension is the

dimension of the unknown.

• Data space dimension is the dimension of the space where the data lives.

• Nominal dimension is the minimum of the state space dimension and the data

state dimension.

• Intrinsic dimension: we will use two notions of intrinsic dimension for inverse

problems, denoted by efd and τ . These combine state/data dimension and

small noise parameters. They can be interpreted as a measure of how infor-

mative the data is relative to the prior.

Our presentation shows how the intrinsic dimensions are natural when study-

ing computational complexity of importance sampling. Furthermore we relate these

quantities to the second moment of the Radon-Nikodym derivative between proposal

and target, ρ, which will also be shown to arise naturally in the same context. In

studying these quantities, and their inter-relations, we aim to achieve the purpose set

out at the start of this subsection. Furthermore, a bibliography subsection, within

each section, will link our overarching mathematical framework to the published

literature in this area.

4.1.2 Organization of the Chapter and Notation

Section 4.2 describes importance sampling in abstract form. In Sections 4.3 and 4.4

the linear Gaussian inverse problem and the linear Gaussian filtering problem are

studied. Our aim is to provide a digestible narrative and hence all proofs are left

to an appendix in Section 4.6. Furthermore, as we study the inverse and filtering

problems in both finite dimensional Euclidean space and infinite dimensional Hilbert

space, there are some technical matters related to Gaussian measures in infinite

dimensional spaces that we also detail in the appendix, Subsection 4.6.1, in order

not to distract from the narrative flow.

Given a probability measure ν on a measurable space (X ,F) expectations of

a measurable function φ : X → R with respect to ν will be written as both ν(φ)

and Eν [φ]. When it is clear which measure is being used we may drop the suffix ν

and write simply E[φ]. Similarly, the variance will be written as Varν(φ) and again

we may drop the suffix when no confusion arises from doing so. All test functions

φ appearing in this chapter are assumed to be measurable.
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We will be interested in sequences of measures indexed by time, by the state

space dimension or by a tempering scheme. These are denoted with a subscript,

e.g. νt, νd or νi. Anything to do with samples from a measure is denoted with a

superscript: N for the number of samples, and n for the indices of the samples. The

i-th coordinate of a vector u is denoted by u(i). Thus, unt (i) denotes i-th coordinate

of the n-th sample from the measure of interest at time t. Finally, the law of a

random variable v will be denoted by Pv.

4.1.3 Literature Review

Some early developments of importance sampling as a method to reduce the variance

in Monte Carlo estimation date back to the early 1950’s [Kahn and Marshall, 1953],

[Kahn, 1955]. In particular the paper [Kahn and Marshall, 1953] demonstrates how

to optimally choose the proposal density for given test function φ and target density.

A modern view of importance sampling in the general framework (4.1.1) is given

in [Chopin and Papaspiliopoulos, 2016]. A comprehensive description of Bayesian

inverse problems in finite state/data space dimensions can be found in [Kaipio and

Somersalo, 2005], and its formulation in infinite dimensional spaces in [Dashti and

Stuart, 2016; Lasanen, 2007, 2012a,b; Stuart, 2010]. Text books overviewing the

subject of filtering and particle filters include [Del Moral, 2004; Bain and Crisan,

2009], and the article [Crisan and Doucet, 2002] provides a readable introduction to

the area. For an up-to-date and in-depth survey of nonlinear filtering see [Crisan

and Rozovskii, 2011]. The linear Gaussian inverse problem and the linear Gaussian

filtering problem have been extensively studied because they arise naturally in many

applications, lead to considerable algorithmic tractability, and provide theoretical

insight. For references concerning linear Gaussian inverse problems see [Franklin,

1970; Mandelbaum, 1984; Lehtinen et al., 1989; Kekkonen et al., 2015]. The linear

Gaussian filter –the Kalman filter– was introduced in [Kalman, 1960]; see [Lancaster

and Rodman, 1995] for further analysis. The inverse problem of determining sub-

surface properties of the Earth from surface measurements is discussed in [Oliver

et al., 2008], while the filtering problem of assimilating atmospheric measurements

for numerical weather prediction is discussed in [Kalnay, 2003].

The key role of ρ, the second moment of the Radon-Nikodym derivative

between the target and the proposal, has long been acknowledged [Liu, 1996], [Pitt

and Shephard, 1999]. The value of ρ is indeed known to be asymptotically linked

to the effective sample size [Kong, 1992], [Kong et al., 1994], [Liu, 1996]. Recent

justification for the use of the effective sample size within particle methods is given

in [Whiteley et al., 2016]. We will provide a further nonasymptotic justification of
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the relevance of ρ through its appearance in error bounds on the error in importance

sampling; in this context it is of relevance to highlight the paper [Crisan et al., 1998]

which proved non-asymptotic bounds on the error in the importance-sampling based

particle filter algorithm. We will also bound the importance sampling error in terms

of different notions of distance between the target and the proposal measures, as

in [Chen, 2005]; a useful overview of the subject of distances between probability

measures is [Gibbs and Su, 2002].

We formulate problems in both finite dimensional and infinite dimensional

state spaces. We refer to [Kallenberg, 2002] for a modern presentation of probabil-

ity appropriate for understanding the material in this chapter. Some of our results

are built on the rich area of Gaussian measures in Hilbert space; we include all

the required background on this material in the appendix Subsection 4.6.1, and

references are included there. However we emphasize that the presentation in the

main body of the text is designed to keep technical material to a minimum and to

be accessible to readers who are not versed in the theory of probability in infinite

dimensional spaces. Absolute continuity of the target with respect to the proposal

– or the existence of a density of the target with respect to the proposal – is central

to our developments. This concept also plays a pivotal role in the understanding

of Markov chain Monte Carlo (MCMC) methods in high and infinite dimensional

spaces [Tierney, 1998]. A key idea in MCMC is that breakdown of absolute con-

tinuity on sequences of problems of increasing state space dimension is responsible

for poor algorithmic performance with respect to increasing dimension; this should

be avoided if possible, such as for problems with a well-defined infinite dimensional

limit [Cotter et al., 2013]. Similar ideas will come in to play in this chapter.

As well as the breakdown of absolute continuity through increase in dimen-

sion, small noise limits can also lead to sequences of proposal/target measures which

are increasingly close to mutually singular and for which absolute continuity breaks

down. Small noise regimes are of theoretical and computational interest for both

inverse problems and filtering. For instance, in inverse problems there is a growing

interest in the study of the concentration rate of the posterior in the small obser-

vational noise limit, see [Knapik et al., 2011], [Agapiou et al., 2013], [Knapik et al.,

2013], [Agapiou et al., 2014], [Ray, 2013], [Vollmer, 2013], [Kekkonen et al., 2015]. In

filtering and multiscale diffusions, the analysis and development of improved propos-

als to deal with small noise limits or simulation of rare events is an active research

area [Vanden-Eijnden and Weare, 2012], [Zhang et al., 2013], [Dupuis et al., 2012],

[Spiliopoulos, 2013] [Tu et al., 2013].

In order to quantify the computational complexity of a problem, a recur-
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rent concept is that of intrinsic dimension. Several notions of intrinsic dimension

have been used in different fields, including dimension of learning problems [Bishop,

2006], [Zhang, 2002], [Zhang, 2005], of statistical inverse problems [Lu and Mathé,

2014], of functions in the context of quasi Monte Carlo (QMC) integration in fi-

nance applications [Caflisch et al., 1997], [Moskowitz and Caflisch, 1996], [Kuo and

Sloan, 2005], and of data assimilation problems [Chorin and Morzfeld, 2013]. The

underlying theme is that in many application areas where models are formulated

in high dimensional state spaces, there is often a small subspace which captures

most of the features of the system. It is the dimension of this subspace that ef-

fects the complexity of the problem. In the context of inverse problems the paper

[Bengtsson et al., 2008] proposed a notion of intrinsic dimension, which was shown

to have a direct connection with the performance of importance sampling. We in-

troduce a further notion of intrinsic dimension for Bayesian inverse problems which

agrees with the notion of effective number of parameters used in machine learning

and statistics [Bishop, 2006]. We also establish that this notion of dimension and

the one in [Bengtsson et al., 2008] are finite, or otherwise, at the same time. Both

intrinsic dimensions account for three key features of the complexity of the inverse

problem: the nominal dimension (i.e. the minimum of the dimension of the state

space and the data), the size of the observational noise and the regularity of the

prior relative to the observation noise. Varying the parameters related to these three

features may cause a break-down of absolute continuity. The deterioration of im-

portance sampling in large nominal dimensional limits has been widely investigated

[Bengtsson et al., 2008], [Bickel et al., 2008], [Snyder et al., 2008], [Snyder et al.,

2015], [Snyder, 2011], [Slivinski and Snyder, 2015]. In particular, the key role of the

intrinsic dimension, rather than the nominal one, in explaining this deterioration

was studied in [Bengtsson et al., 2008]. Here we study the different behaviour of

importance sampling as absolute continuity is broken in the three regimes above,

and we investigate whether, in all these regimes, the deterioration of importance

sampling may be quantified by the various intrinsic dimensions that we introduce.

4.2 Importance Sampling

In Subsection 4.2.1 we define importance sampling and in Subsection 4.2.2 we

demonstrate the role of the second moment of the target-proposal density, ρ; we

prove two non-asymptotic theorems showing O
(
(ρ/N)

1
2

)
convergence rate of impor-

tance sampling with respect to the number N of particles. Then in Subsection 4.2.3

we show how ρ relates to the effective sample size ess as often defined by practition-
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ers, whilst in Subsection 4.2.4 we link ρ to various distances between probability

measures. In Subsection 4.2.5 we highlight the role of the breakdown of absolute

continuity in the growth of ρ, as the dimension of the space X grows. Subsection

4.2.6 follows with a similar discussion relating to singular limits of the density be-

tween target and proposal. Subsection 4.2.7 contains a literature review and, in

particular, sources for all the material in this section.

4.2.1 General Setting

We consider target µ and proposal π, both probability measures on the measurable

space (X ,F), related by (4.1.1). In many statistical applications interest lies in

estimating expectations under µ, for a collection of test functions, using samples

from π. For a test function φ : X → R such that µ(|φ|) <∞, the identity

µ(φ) =
π(φg)

π(g)
,

leads to the autonormalized importance sampling estimator:

µN (φ) :=
1
N

∑N
n=1 φ(un)g(un)

1
N

∑N
m=1 g(um)

, un ∼ π i.i.d. (4.2.1)

=
N∑
n=1

wnφ(un), wn :=
g(un)∑N

m=1 g(um)
;

here the wn’s are called the normalized weights. As suggested by the notation, it is

useful to view (4.2.1) as integrating a function φ with respect to the random prob-

ability measure µN :=
∑N

n=1w
nδun . Under this perspective, importance sampling

consists of approximating the target µ by the measure µN , which is typically called

the particle approximation of µ. Note that, while µN depends on the proposal π,

we suppress this dependence for economy of notation. Our aim is to understand the

quality of the approximation µN of µ. In particular we would like to know how large

to choose N in order to obtain small error. This will quantify the computational

complexity of importance sampling.

4.2.2 The Second Moment of the Target-Proposal Density

A fundamental quantity in addressing this issue is ρ, defined by

ρ :=
π(g2)

π(g)2
. (4.2.2)
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Thus ρ is the second moment of the Radon-Nikodym derivative of the target with

respect to the proposal. The Cauchy-Schwarz inequality shows that π(g)2 ≤ π(g2)

and hence that ρ ≥ 1. Our first non-asymptotic result shows that, for bounded test

functions φ, both the bias and the mean square error (MSE) of the autonormalized

importance sampling estimator are O
(
N−1

)
with constant of proportionality linear

in ρ. The proof is in the appendix, Subsubsection 4.6.2.1.

Theorem 4.2.1. Assume that µ is absolutely continuous with respect to π, with

square-integrable density g, that is, π(g2) < ∞. The bias and MSE of importance

sampling over bounded test functions may be characterized as follows:

sup
|φ|≤1

∣∣∣E[µN (φ)− µ(φ)
]∣∣∣ ≤ 12

N
ρ ,

and

sup
|φ|≤1

E
[(
µN (φ)− µ(φ)

)2] ≤ 4

N
ρ.

Remark 4.2.2. For a bounded test function |φ| ≤ 1, we trivially get |µN (φ) −
µ(φ)| ≤ 2; hence the bounds on bias and MSE provided in Theorem 4.2.1 are useful

only when they are smaller than 2 and 4, respectively. The result is strongly sug-

gestive that it is necessary to keep ρ/N small in order to obtain good importance

sampling approximations. This heuristic dominates the developments in the remain-

der of the chapter, and in particular our wish to study the behaviour of ρ in various

limits.

It is interesting to contrast Theorem 4.2.1 to a well-known elementary asymp-

totic result. First, note that

µN (φ)− µ(φ) =
N−1

∑N
n=1

g(un)
π(g)

[
φ(un)− µ(φ)

]
N−1

∑N
n=1

g(un)
π(g)

.

Therefore, under the condition π
(
g2
)
<∞, and provided additionally that π

(
g2φ2

)
<

∞, an application of the Slutsky lemmas gives that

√
N
(
µN (φ)− µ(φ)

)
=⇒ N

(
0,
π
(
g2φ

2)
π(g)2

)
, where φ := φ− µ(φ) . (4.2.3)

For bounded |φ| ≤ 1, the only condition needed for appealing to the asymptotic

result is π
(
g2
)
<∞. Then (4.2.3) gives that, for large N and since |φ| ≤ 2,

E
[(
µN (φ)− µ(φ)

)2]
/

4

N
ρ ,
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which is in precise agreement with our non-asymptotic bound.

In comparison with the asymptotic result (4.2.3), our non-asymptotic theo-

rem makes an identical assumption on the importance weights, that is π
(
g2
)
<∞,

but stronger assumptions on the test functions. We can obtain non-asymptotic

bounds on the MSE and bias for much larger classes of test functions but at the ex-

pense of more assumptions on the importance weights. The next theorem addresses

the issue of relaxing the class of test functions, whilst still deriving nonasymptotic

bounds; the proof can be found in the appendix, Subsubsection 4.6.2.2. To simplify

the statement we first introduce the following notation. We write mt[h] for the t-th

central moment with respect to π of a function h : X → R. That is,

mt[h] := π(|h(u)− π(h)|t).

We also define, as above, φ := φ− µ(φ).

Theorem 4.2.3. Suppose that φ and g are such that CMSE defined below is finite:

CMSE :=
3

π(g)2
m2[φg] +

3

π(g)4
π(|φg|2d)

1
dC

1
e
2em2e[g]

1
e

+
3

π(g)
2(1+ 1

p
)
π(|φ|2p)

1
pC

1
q

2q(1+ 1
p

)
m2q(1+ 1

p
)[g]

1
q .

Then the bias and MSE of importance sampling when applied to approximate µ(φ)

may be characterized as follows:

∣∣∣E[µN (φ)− µ(φ)
]∣∣∣ ≤ 1

N

(
2

π(g)2
m2[g]

1
2m2[φg]

1
2 + 2C

1
2
MSE

π(g2)
1
2

π(g)

)

and

E
[(
µN (φ)− µ(φ)

)2] ≤ 1

N
CMSE.

The constants Ct > 0, t ≥ 2, satisfy C
1
t
t ≤ t−1 and the two pairs of parameters d, e,

and p, q are conjugate indices.

Remark 4.2.4. In Bayesian inverse problems π(g) <∞ often implies that π
(
gs
)
<

∞ for any positive s; we will demonstrate this in a particular case in Section 4.3. In

such a case, Theorem 4.2.3 combined with Hölder’s inequality shows that importance

sampling converges at rate N−1 for any test function φ satisfying π
(
|φ|2+ε

)
< ∞

for some ε > 0.
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4.2.3 Effective Sample Size

Many practitioners define the effective sample size by the formula

ess :=

(
N∑
n=1

(wn)2

)−1

=

(∑N
n=1 g(un)

)2

∑N
n=1 g(un)2

= N
πNMC(g)2

πNMC

(
g2
) ,

where πNMC is the empirical Monte Carlo random measure

πNMC :=
1

N

N∑
n=1

δun , un ∼ π.

By the Cauchy-Schwarz inequality it follows that ess ≤ N . Furthermore, since the

weights lie in [0, 1], we have

N∑
n=1

(wn)2 ≤
N∑
n=1

wn = 1

so that ess ≥ 1. These upper and lower bounds may be attained as follows. If all the

weights are equal, and hence take value N−1, then ess = N , the optimal situation.

On the other hand if exactly k weights take the same value, with the remainder then

zero, ess = k; in particular the lower bound of 1 is attained if precisely one weight

takes the value 1 and all others are zero.

For large enough N , and provided π
(
g2
)
<∞, the strong law of large num-

bers gives

ess ≈ N/ρ .

Recalling that ρ ≥ 1 we see that ρ−1 quantifies the proportion of particles that

effectively characterize the sample size, in the large particle size asymptotic. Fur-

thermore, by Theorem 4.2.1, we have that, for large N ,

sup
|φ|≤1

E
[(
µN (φ)− µ(φ)

)2]
/

4

ess
.

This provides a further justification for the use of ess as an effective sample size, in

the large N asymptotic regime.

4.2.4 Probability Metrics

Intuition tells us that importance sampling will perform well when the distance

between proposal π and target µ is not too large. Furthermore we have shown the
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role of ρ in measuring the rate of convergence of importance sampling. It is hence of

interest to explicitly link ρ to distance metrics between π and µ. In fact we consider

asymmetric divergences as distance measures; these are not strictly metrics, but

certainly represent useful distance measures in many contexts in probability. First

consider the χ2 divergence, which satisfies

Dχ2(µ‖π) := π

([
g

π(g)
− 1

]2
)

= ρ− 1 . (4.2.4)

The Kullback-Leibler divergence is given by

DKL(µ‖π) := π

(
g

π(g)
log

g

π(g)

)
,

and may be shown to satisfy

ρ ≥ eDKL(µ‖π) . (4.2.5)

Thus Theorem 4.2.1 suggests that the number of particles required for accurate

importance sampling scales exponentially with the Kullback-Leibler divergence be-

tween proposal and target and linearly with the χ2 divergence.

4.2.5 High State Space Dimension and Absolute Continuity

The preceding three subsections have demonstrated how, when the target is abso-

lutely continuous with respect to the proposal, importance sampling converges as

the square root of ρ/N. It is thus natural to ask if, and how, this desirable con-

vergence breaks down for sequences of target and proposal measures which become

increasingly close to singular. To this end, suppose that the underlying space is

the Cartesian product Rd equipped with the corresponding product σ-algebra, the

proposal is a product measure and the un-normalized weight function also has a

product form, as follows:

πd(du) =
d∏
i=1

π1(du(i)), µd(du) =
d∏
i=1

µ1(du(i)), gd(u) = exp

{
−

d∑
i=1

h(u(i))

}
,

for probability measures π1, µ1 on R and h : R → R+ (and we assume it is not

constant to remove the trivial case µ1 = π1). We index the proposal, target, density

and ρ with respect to d since interest here lies in the limiting behaviour as d increases.

In the setting of (4.1.1) we now have

µd(du) ∝ gd(u)πd(du).
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By construction gd has all polynomial moments under πd and importance

sampling for each d has the good properties developed in the previous sections. It

is also fairly straightforward to see that µ∞ and π∞ are mutually singular when h

is not constant: one way to see this is to note that

1

d

d∑
i=1

u(i)

has a different almost sure limit under µ∞ and π∞. Two measures cannot be abso-

lutely continuous unless they share the same almost sure properties. Therefore µ∞

is not absolutely continuous with respect to π∞ and importance sampling is unde-

fined in the limit d = ∞. As a consequence we should expect to see a degradation

in its performance for large state space dimension d.

To illustrate this degradation, assume that π1(h2) < ∞. Under the product

structure (4.2.7), we have ρd = (ρ1)d. Furthermore ρ1 > 1 (since h is not constant).

Thus ρd grows exponentially with the state space dimension suggesting, when com-

bined with Theorem 4.2.1, that exponentially many particles are required, with

respect to dimension, to make importance sampling accurate.

A useful perspective on the preceding, which links to our discussion of the

small noise limit in the next subsection, is as follows. By the central limit theorem

we have that, for large d,

gd(u) ≈ c′ exp(−
√
dcz
)
, z ∼ N(0, 1), (4.2.6)

where c, c′ > 0 are constants with respect to z; in addition c is independent of

dimension d, whilst c′ may depend on d. From this it follows that (noting that any

constant scaling, such as c′, disappears from the definition of ρd)

ρd =
πd(g

2
d)

πd(gd)2
≈ E exp(−2

√
dcz)(

E exp(−
√
dcz)

)2 , (4.2.7)

where, here, E denotes expectation with respect to z ∼ N(0, 1). Using the fact that

Ee−az = ea
2/2 we see that ρd ≈ ec

2d.

It is important to realise that it is not the product structure per se that

leads to the collapse, rather the lack of absolute continuity in the limit of infinite

state space dimension. Thinking about the role of high dimensions in this way is

very instructive in our understanding of high dimensional problems, but is very

much related to the setting in which all the coordinates of the problem play a

similar role. This does not happen in many application areas. Often there is a
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diminishing response of the likelihood to perturbations in growing coordinate index.

When this is the case, increasing the state space dimension has only a mild effect

in the complexity of the problem, and it is possible to have well-behaved infinite

dimensional limits; we will see this perspective in Subsections 4.3.1, 4.3.2 and 4.3.3

for inverse problems, and Subsections 4.4.1, 4.4.2 and 4.4.3 for filtering.

4.2.6 Singular Limits

In the previous subsection we saw an example where for high dimensional state

spaces the target and proposal became increasingly close to being mutually singu-

lar, resulting in ρ which grows exponentially with the state space dimension. In

this subsection we observe that mutual singularity can also occur because of small

parameters in the unnormalized density g appearing in (4.1.1), even in problems of

fixed dimension; this will lead to ρ which grows algebraically with respect to the

small parameter. To understand this situation let X = R and consider (4.1.1) in

the setting where

g(u) = exp
(
−ε−1h(u)

)
where h : R→ R+. Furthermore assume, for simplicity, that h is twice differentiable

and has a unique minimum at u?, and that h′′(u?) > 0. Assume, in addition, that

π has a Lebesgue density with bounded first derivative. Then the Laplace method

shows that

E exp
(
−2ε−1h(u)

)
≈ exp

(
−2ε−1h(u?)

)√ 2πε

2h′′(u?)

and that

E exp
(
−ε−1h(u)

)
≈ exp

(
−ε−1h(u?)

)√ 2πε

h′′(u?)
.

It follows that

ρ ≈
√
h′′(u?)

4πε
.

Thus Theorem 4.2.1 indicates that the number of particles required for importance

sampling to be accurate should grow at least as fast as ε−
1
2 .

4.2.7 Literature Review

In Subsection 4.2.1 we introduced the importance sampling approximation of a tar-

get µ using a proposal π, both related by (4.1.1). The resulting particle approxi-

mation measure µN is random because it is based on samples from π. Hence µN (φ)

is a random estimator of µ(φ). This estimator is in general biased, and therefore a
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reasonable metric for its quality is the MSE

E
[(
µN (φ)− µ(φ)

)2]
,

where the expectation is with respect to the randomness in the measure µN . We

bound the MSE over the class of bounded test functions in Theorem 4.2.1. In fact

we may view this theorem as giving a bound on a distance between the measure

µ and its approximation µN . To this end let ν and µ denote mappings from an

underlying probability space (which for us will be that associated with π) into the

space of probability measures on (X ,F); in the following, expectation E is with

respect to this underlying probability space. In [Rebeschini and van Handel, 2015]

a distance d(·, ·) beween such random measures is defined by

d(ν, µ)2 = sup
|φ|≤1

E
((
ν(φ)− µ(φ)

)2)
, (4.2.8)

where the supremum is taken over bounded measurable functions. The paper [Rebes-

chini and van Handel, 2015] used this distance to study the convergence of particle

filters. Note that if the measures are not random the distance reduces to total vari-

ation. Using this distance, together with the discussion in Subsection 4.2.4 linking

ρ to the χ2 divergence, we see that Theorem 4.2.1 states that

d(µN , µ)2 ≤ 4

N

(
1 +Dχ2(µ‖π)

)
.

In Subsection 4.2.4 we also link ρ to the Kullback-Leibler divergence; the bound

(4.2.5) can be found in Theorem 4.19 of [Boucheron et al., 2013].

In Subsections 4.2.5 and 4.2.6 we studied how limits in which the target and

proposal become closer and closer

As was already noted, this suggests the need to increase the number of

particles linearly with Dχ2(µ‖π) or exponentially with DKL(µ‖π). Provided that

log
( g(u)
π(g)

)
, u ∼ µ, is concentrated around its expected value, as often happens in

large dimensional and singular limits, it has recently been shown [Chatterjee and

Diaconis, 2015] that using a sample size of approximately exp
(
DKL(µ‖π)

)
is both

necessary and sufficient in order to control the L1 error of the importance sampling

estimator µN (φ). Theorem 4.2.1 is similar to [Del Moral, 2004, Theorem 7.4.3].

However the later result uses a metric defined over subclasses of bounded functions.

The resulting constants in their bounds rely on covering numbers, which are of-

ten intractable. In contrast, the constant ρ in Theorem 4.2.1 is more amenable

to analysis and has several meaningful interpretations that will be explored in the
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remainder of the chapter, including the one resulting in the preceding display. We

also refer to [Del Moral, 2013, Section 11.2] for a more recent analysis. The central

limit result in equation (4.2.3) shows that for large N the upper bound in Theorem

4.2.1 is sharp. Equation (4.2.3) can be seen as a trivial application of deeper cen-

tral limit theorems for particle filters, see [Chopin, 2004]. The constants Ct > 0,

t ≥ 2 in Theorem 4.2.3 are determined by the Marcinkiewicz-Zygmund inequality

[Ren and Liang, 2001]. The proof of Theorem 4.2.3, provided in Subsection 4.6.2.2

of the appendix, follows the approach of [Doukhan and Lang, 2009] for evaluating

moments of ratios. Further importance sampling results have been proved within

the study of convergence properties of various versions of the particle filter as a

numerical method for the approximation of the true filtering/smoothing distribu-

tion. These results are often formulated in finite dimensional state spaces, under

bounded likelihood assumptions and for bounded test functions, see [Crisan et al.,

1998], [Del Moral and Miclo, 2000], [Crisan and Doucet, 2002], [Mı́guez et al., 2013],

[Achutegui et al., 2014]. Generalizations for continuous time filtering can be found

in [Bain and Crisan, 2009] and [Han, 2013].

The effective sample size ess, introduced in Subsection 4.2.3, is a standard

statistic used to assess and monitor particle approximation errors in importance

sampling [Kong, 1992], [Kong et al., 1994]. The effective sample size ess does not

depend on any specific test function, but is rather a particular function of the

normalized weights which quantifies their variability. So does ρ, and as we show in

Subsection 4.2.3 there is an asymptotic connection between both. When interested

in assessing the quality of the estimator µN (φ) for a particular test function, a

common diagnosis is the empirical variance of such estimator. In [Chatterjee and

Diaconis, 2015], the authors study the limitations of such a diagnosis by showing

that in the non-asymptotic regime it fails to capture the distance between the target

and the proposal; they also propose a new diagnosis. Our discussion of ess relies on

the condition π
(
g2
)
<∞. Intuitively, the particle approximation will be rather poor

when this condition is not met. Extreme value theory provides some clues about

the asymptotic particle approximation error. First it may be shown that, regardless

of whether π
(
g2
)

is finite or not, but simply on the basis that π(g) <∞, the largest

normalised weight, w(N), will converge to 0 as N → ∞; see for example Section 3

of [Downey and Wright, 2007] for a review of related results. On the other hand,

[McLeish and O’Brien, 1982] shows that, for large N,

E
[
N

ess

]
≈
∫ N

0
γS(γ)dγ,
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where S(γ) is the survival function of the distribution of the un-normalized weights,

γ := g(u) for u ∼ π. For instance, if the weights have density proportional to γ−a−1,

for 1 < a < 2, then π
(
g2
)

=∞ and, for large enough N and constant C,

E
[
N

ess

]
≈ C N−a+2 .

Thus, in contrast to the situation where π
(
g2
)
< ∞, in this setting the effective

sample size does not grow linearly with N .

In Subsections 4.2.5 and 4.2.6 we studied how limits in which the target

and proposal become closer and closer to being mutually singular (breakdown of

absolute continuity) lead to problems for importance sampling. In Subsection 4.2.5

we studied high dimensional problems, using analysis of problems with product

structure to enable analytical tractability of the calculations. This use of product

structure was pioneered for MCMC methods in [Gelman et al., 1996]. The product

structure was then used in a number of recent papers concerning the behaviour of

importance sampling in high nominal dimensions, starting with the seminal paper

[Bengtsson et al., 2008], and leading on to others such as [Beskos et al., 2014a],

[Beskos et al., 2014b], [Bickel et al., 2008], [Snyder et al., 2008], [Snyder, 2011],

[Slivinski and Snyder, 2015], and [Snyder et al., 2015].

In [Bengtsson et al., 2008, Section 3.2] it is shown that, using (4.2.6), the

maximum normalised importance sampling weight can be approximately written as

w(N) ≈ 1

1 +
∑

n>1 exp
{
−
√
dc(z(n) − z(1))

} ,
where {zn}Nn=1 are samples from N(0, 1) and the z(n) are the ordered statistics. In

[Bickel et al., 2008] a direct but non-trivial calculation shows that if N does not grow

exponentially with d, the sum in the denominator converges to 0 in probability and

as a result the maximum weight to 1. Of course this means that all other weights

are converging to zero, and that the effective sample size is 1. It chimes with the

heuristic derived in Subsection 4.2.5 where we show that ρ grows exponentially with

d and that choosing N to grow exponentially is thus necessary to keep the upper

bound in Theorem 4.2.1 small. The phenomenon is an instance of what is sometimes

termed collapse of importance sampling in high dimensions. This type of behaviour

can be obtained for other classes of targets and proposals; see [Bengtsson et al.,

2008], [Snyder et al., 2008].

Within the product setting it may be possible, for some limited classes of

problems, to avoid degeneracy of importance sampling-based algorithms for large d
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at polynomial cost. The idea is to use tempering, that is, to introduce a sequence

of intermediate distributions {µd,i}pi=1, with p ≥ 1 depending on d, that ‘bridge’ the

target and proposal measures

dµd
dπd

(u) =

p∏
i=0

dµd,i+1

dµd,i
(u),

where we have set µd,0 := πd and µd,p+1 := µd. The distributions {µd,i}p+1
i=1 are

targeted sequentially using some form of particle filter. A natural way to define the

intermediate distributions is by

dµi+1

dµi
(u) = gd(u)ai , 0 ≤ i ≤ p, (4.2.9)

where the temperatures 0 < ai < 1 satisfy
∑p

i=0 ai = 1, and have the effect of

‘flattening’ the change of measure gd. The main idea underlying [Beskos et al.,

2014a] is that using p = d bridging distributions in Rd and ai = 1/d leads to d

importance sampling steps with ρ = O(1). On the other hand, not using tempering

leads to one importance sampling step with ρ = O
(
ed
)
. Therefore, as long as

one can guarantee that by solving d problems sequentially the errors do not grow

exponentially with d, tempering is advantageous. In this scenario, in order to avoid

degradation of importance sampling without tempering, the number of particles

needs to grow exponentially with d; with tempering one can hope to avoid collapse

with computational cost O
(
Nd2

)
under the stated assumption about growth of

errors. On a related note, [Frei and Künsch, 2013] proposed a method to combine

the ensemble Kalman filter and particle filters. They introduced p = 1 bridging

distributions, and used an ensemble Kalman filter approximation of µd,1 to build a

weighted particle approximation of µ.

Finally, in Subsection 4.2.6 we use the Laplace method. This is a classical

methodology for approximating integrals against near singular integrands, and can

be found in many textbooks; see for instance [Bender and Orszag, 1999]. The inter-

ested reader may compare the calculation in Subsection 4.2.5, using the Gaussian

approximation, with that arising in Subsection 4.2.6, where the small noise limit is

studied. At first glance they are similar in form, but the former calculation leads to

exponential behaviour in dimension (since it results from different exponents) whilst

the latter leads to algebraic behaviour in small noise (since it results from different

normalizing constants).
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4.3 Importance Sampling and Inverse Problems

The previous section showed that the distance between the proposal and the target

is key in understanding the computational complexity of importance sampling and

the central role played by ρ. In this section we study the computational complexity

of importance sampling applied in the context of Bayesian inverse problems. In

doing so we introduce a notion of intrinsic dimension.

The Bayesian approach to inverse problems consists of updating incomplete

knowledge concerning a variable u, encoded in a prior probability distribution Pu,

based on some noisy observations of u, denoted by y. The updated knowledge is

encoded in a posterior probability distribution Pu|y. We study importance sampling

with target µ := Pu|y and proposal π := Pu. To make the analysis tractable we

consider linear Gaussian inverse problems.

In Subsection 4.3.1 we describe the setting of the problem, working in a

general Hilbert space, but developing finite dimensional intuition in parallel to aid

the reader who is not familiar with the theory of Gaussian measures in Hilbert space;

furthermore, we include Subsection 4.6.1 in the appendix which gives background

on this theory. Subsection 4.3.2 introduces various notions of “intrinsic dimension”

associated with this problem; a key point to appreciate in the sequel is that this

dimension can be finite even when the problem is posed in an infinite dimensional

Hilbert space.

We highlight that a useful notion of intrinsic dimension for an inverse problem

summarizes how much information is contained in the data – relative to the prior –

rather than the dimensions of the unknown u (the state space dimension) or the data

y (the data space dimension). We show, in Subsection 4.3.3, that when these latter

dimensions are infinite then it is crucial that the posterior is absolutely continuous

with respect to the prior in order for the intrinsic dimension to be finite; we also link

absolute continuity and finite intrinsic dimension with boundedness of the second

moment, ρ, of the Radon-Nikodym derivative of posterior with respect to prior.

We then investigate, in Subsection 4.3.4, the behaviour of the intrinsic dimension

of the inverse problem as the measures µ and π approach mutual singularity; we

study both high nominal dimensional limits and small noise limits. We conclude the

section with a literature review in Subsection 4.3.5, containing sources for all the

material in this section.
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4.3.1 General Setting

We study the inverse problem of finding u from y where

y = Ku+ η. (4.3.1)

In particular we work in the setting where u is an element of the (potentially infinite

dimensional) separable Hilbert space (H,
〈
·, ·
〉
, ‖·‖). Two cases will help guide the

reader:

Example 4.3.1 (Linear Regression Model). In the context of the linear regression

model, u ∈ Rdu is the regression parameter vector, y ∈ Rdy is a vector of training

outputs and K ∈ Rdy×du is the so-called design matrix whose column space is used

to construct a linear predictor for the scalar output. In this setting, du, dy < ∞,

although in modern applications they might be both very large, and the case du � dy

is the so-called “large p (here du) small N (here dy)” problem.

Example 4.3.2 (Deconvolution Problem). In the context of signal deconvolution,

u ∈ L2(0, 1) is a square integrable unknown signal on the unit interval, K : L2(0, 1)→
L2(0, 1) is a convolution operator Ku(x) = (φ ? u)(x) =

∫ 1
0 φ(x − z)u(z)dz, and

y = Ku + η is the noisy observation of the convoluted signal where η is observa-

tional noise. The convolution kernel φ might be, for example, a Gaussian kernel

φ(x) = e−δx
2
. Note also that discretization of the deconvolution problem will lead to

a family of instances of the preceding linear regression model, parametrised by the

dimension of the discretization space.

The infinite dimensional setting does require some technical background,

and this is outlined in the first subsection of the appendix. Nevertheless, the reader

versed only in finite dimensional Gaussian concepts will readily make sense of the

notions of intrinsic dimension described in Subsection 4.3.2 simply by thinking of

(potentially infinite dimensional) matrix representations of covariances. In partic-

ular, the adjoint, denoted ·∗, can be thought of as generalization of the concept

of transpose, and self-adjoint operators as symmetric matrices. However, to fully

appreciate the links made in Subsection 4.3.3, the infinite dimensional setting and

the background material from the appendix Subsection 4.6.1 will be helpful.

In equation (4.3.1) the data y is comprised of the image of the unknown u

under a linear map K, with added observational noise η. Here K can be formally

thought of as being a bounded linear operator in H, which is ill-posed in the sense

that if we attempt to invert the data using the (generalized) inverse of K, we get

amplification of small errors η in the observation to large errors in the reconstruction
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of u. In such situations, we need to use regularization techniques in order to stably

reconstruct of the unknown u, from the noisy data y.

We assume Gaussian observation noise η ∼ Pη := N(0, Γ) and adopt a

Bayesian approach by putting a prior on the unknown u ∼ Pu = N(0, Σ), where

Γ : H → H and Σ : H → H are bounded, self-adjoint, positive-definite linear

operators. As discussed in Subsection 4.6.1, if covariance Γ (respectively Σ) is trace

class then η ∼ Pη (respectively u ∼ Pu) is almost surely in H. On the other hand,

as also discussed in Subsection 4.6.1, when covariance Γ (respectively Σ) is not

trace-class we have that η /∈ H but η ∈ Y Pη-almost surely (respectively u /∈ H but

u ∈ X Pu-almost surely) where Y (respectively X ) strictly contains H; indeed H is

compactly embedded into X ,Y.
In this setting the prior Pu and posterior Pu|y are Gaussian conjugate and

Pu|y = N(m,C), with mean and covariance given, under appropriate conditions

detailed in the literature review Subsection 4.3.5, by

m = ΣK∗(KΣK∗ + Γ)−1y, (4.3.2)

C = Σ− ΣK∗(KΣK∗ + Γ)−1KΣ. (4.3.3)

The reader wishing to derive these formulae using finite dimensional intuition may

note that, using Bayes’ rule and completion of the square, the posterior mean and

covariance can be expressed via precision matrices as

C−1 = Σ−1 +K∗Γ−1K, (4.3.4)

C−1m = K∗Γ−1y. (4.3.5)

Use of the Schur complement yields (4.3.2).

We tacitly assume that K can be extended to act on elements in X and that

the sum of Ku and η makes sense in Y. In the setting outlined above we assume

that the prior acts as a regularization for the inversion of the data y. This is encoded

in the following assumption on the relationship between the operators K,Σ and Γ.

Assumption 4.3.3. Define S = Γ−
1
2KΣ

1
2 , A = S∗S and assume that A, viewed

as a linear operator in H, is bounded. Furthermore, assume that the spectrum of A

consists of a countable number of eigenvalues, sorted without loss of generality in a

non-increasing way

λ1 ≥ λ2 ≥ · · · ≥ λj ≥ · · · ≥ 0.

In Section 4.3.5 we give an intuitive explanation for the centrality of A and

S, and discuss the role of the assumption in the context of inverse problems.
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4.3.2 Intrinsic Dimension

The operator A defined in Assumption 4.3.3 plays an important role in what fol-

lows because it measures the size of the difference between the prior and posterior

covariances Σ and C. The developments in Section 4.2 indicate that a key measure

determining the computational complexity of importance sampling is the distance

between the target (here the posterior) and the proposal (here the prior). In the

Gaussian setting considered in this section the differences between posterior and

prior covariances will contribute to this distance and we now develop this idea.

Note, however, that we say nothing here about the differences between prior and

posterior means.

We illustrate the ideas in finite state/data space dimensions in the first in-

stance, a setting in which we have the following result, proved in the appendix,

Subsubsection 4.6.3.1. For extensions to Hilbert spaces, see the discussion in the

literature review Subection 4.3.5.

Proposition 4.3.4. In the finite dimensional setting, and under the assumption

that both Σ and C are invertible,

Tr
(
(C−1 − Σ−1)Σ

)
= Tr(A), Tr

(
(Σ− C)Σ−1

)
= Tr

(
(I +A)−1A

)
.

Thus the traces of A and of (I + A)−1A measure the relative differences

between the posterior and prior precision and covariance operators, respectively,

relative to their prior values. For this reason they provide useful measures of the

computational compexity of importance sampling, motivating the following defini-

tions:

τ := Tr(A), efd := Tr
(
(I +A)−1A

)
. (4.3.6)

Note that the trace calculates the sum of the eigenvalues and is well-defined, al-

though may be infinite, in the Hilbert space setting. We refer to efd as effective

dimension; both τ and efd are measures of the intrinsic dimension of the inverse

problem at hand. Remaining for the moment in the finite dimensional setting, we

have the next result. The proof is given in the appendix, Subsubsection 4.6.3.1:

Proposition 4.3.5. Let S and A be defined as in Assumption 4.3.3, and consider

the finite dimensional setting.

1. The matrices Γ1/2S(I + A)−1S∗Γ−1/2 ∈ Rdy×dy , S(I + A)−1S∗ ∈ Rdy×dy and

(I +A)−1A ∈ Rdu×du have the same non-zero eigenvalues and hence the same

trace.
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2. If λi > 0 is a non-zero eigenvalue of A then these three matrices have corre-

sponding eigenvalue λi(1 + λi)
−1 < 1, and

efd =
∑
i

λi
1 + λi

≤ d = min{du, dy} .

Here, recall, d = min{du, dy} is referred to as the nominal dimension of the

problem. Part 2. of the preceding result demonstrates the connection between

efd and the physical dimensions of the unknown and observation spaces, whilst

part 1. demonstrates the equivalence between the traces of a variety of operators,

all of which are used in the literature; this is discussed in greater detail in the

literature review of Subsection 4.3.5. In the Hilbert space setting, recall, the intrinsic

dimensions efd and τ can be infinite. It is important to note, however, that this

cannot happen if the rank of K is finite. That is, the intrinsic dimension efd is finite

whenever the unknown u or the data y live in a finite dimensional subspace of H.
The following result, proved in Subsubsection 4.6.3.1 of the appendix, relates efd

and τ. It shows in particular that they are finite, or otherwise, at the same time. It

holds in the infinite dimensional setting.

Lemma 4.3.6. Let Assumption 4.3.3 hold. Then A is trace class if and only if

(I +A)−1A is trace class, and the following inequalities hold

1

‖I +A‖
Tr(A) ≤ Tr

(
(I +A)−1A

)
≤ Tr(A).

As a consequence
1

‖I +A‖
τ ≤ efd ≤ τ. (4.3.7)

We are now ready to study the performance of importance sampling with

posterior as target and prior as proposal. In Subsection 4.3.3 we identify conditions

under which we can guarantee that ρ in Theorem 4.2.1 is finite and absolute conti-

nuity holds. In Subsection 4.3.4 we then study the growth of ρ as mutual singularity

is approached in different regimes. The intrinsic dimensions τ and efd will be woven

into these developments.

4.3.3 Absolute Continuity

In the finite dimensional setting, when both covariance matrices Σ and Γ are strictly

positive-definite, the Gaussian proposal and target distributions have densities with

respect to the Lebesgue measure. They are hence mutually absolutely continuous
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and it is hence straightforward to find the Radon-Nikodym derivative of the target

with respect to the proposal by taking the ratio of the respective Lebesgue densities

once the posterior is identified via Bayes’ theorem; this gives:

dµ

dπ
(u) =

dPu|y
dPu

(u; y) ∝ exp

(
−1

2
u∗K∗Γ−1Ku+ u∗K∗Γ−1y

)
=: g(u; y). (4.3.8)

Direct calculation shows that, for du, dy < ∞ and Γ invertible, the ratio ρ

defined in (4.2.2) is finite, and indeed that g admits all polynomial moments, all

of which are positive. In this subsection we study ρ in the Hilbert space setting.

In general there is no guarantee that the posterior is absolutely continuous with

respect to the prior; when it is not, g, and hence ρ, are not defined. We thus seek

conditions under which such absolute continuity may be established.

To this end, we define the likelihood measure y|u ∼ Py|u := N(Ku,Γ),

and the joint distribution of (u, y) under the model ν(du, dy) := Py|u(dy|u)Pu(du),

recalling that Pu = N(0,Σ). We also define the marginal distribution of the data

under the joint distribution, νy(dy) = Py(dy). We have the following result, proved

in Subsubsection 4.6.3.2 of the appendix:

Theorem 4.3.7. Let Assumption 4.3.3 hold and let µ = Pu|y and π = Pu. The

following are equivalent:

i) efd <∞;

ii) τ <∞;

iii) Γ−1/2Ku ∈ H, π-almost surely;

iv) for νy-almost all y, the posterior µ is well defined as a measure in X and is

absolutely continuous with respect to the prior with

dµ

dπ
(u) ∝ exp

(
−1

2

∥∥∥Γ−1/2Ku
∥∥∥2

+
1

2

〈
Γ−1/2y,Γ−1/2Ku

〉)
=: g(u; y), (4.3.9)

where 0 < π
(
g(·; y)

)
<∞.

Remark 4.3.8. Due to the exponential structure of g, we have that assertion (iv)

of the last theorem is immediately equivalent to g being ν-almost surely positive and

finite and for νy-almost all y the second moment of the target-proposal density is

finite:

ρ =
π
(
g(·; y)2

)
π
(
g(·; y)

)2 <∞.
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Note that item (iii) can also be interpreted as quantifying the dimension

of the problem, since it is a requirement on the regularity of the forward image

of the unknown, relative to the noise; such regularity condition typically relates to

smoothness of the underlying field, and thus to intrinsic dimension, as we show here.

We have established something very interesting: there are meaningful notions

of intrinsic dimension for inverse problems formulated in infinite state/data state

dimensions and, when the intrinsic dimension is finite, importance sampling may

be possible as there is absolute continuity; moreover, in such situation ρ is finite.

Thus, under any of the equivalent conditions i)-iv), Theorem 4.2.1 can be used to

provide bounds on the effective sample size ess, defined in Subsection 4.2.3; indeed

the effective sample size is then proportional to N .

It is now of interest to understand how ρ, and the intrinsic dimensions τ and

efd, depend on various parameters arising in the problem, such as small noise or

the dimension of finite dimensional approximations of the inverse problem. Such

questions are studied in the next subsection.

4.3.4 Singular Limits

The parameter ρ is a complicated nonlinear function of the eigenvalues of A and the

data y. However, there are some situations in which we can lower bound ρ in terms

of the intrinsic dimensions τ , efd and the size of the eigenvalues of A. We present

two classes of examples of this type. The first is a simple but insightful example in

which the eigenvalues cluster into a finite dimensional set of large eigenvalues and a

set of small remaining eigenvalues. The second involves asymptotic considerations

in a simultaneously diagonalizable setting.

4.3.4.1 Spectral Jump

Consider the setting where u and y both live in finite dimensional spaces of di-

mensions du and dy respectively. Suppose that A has eigenvalues {λi}dui=1 with

λi = C � 1 for 1 ≤ i ≤ k, and λi � 1 for k + 1 ≤ i ≤ du; indeed we assume that

du∑
i=k+1

λi � 1.

Then τ(A) ≈ Ck, whilst the effective dimension satisfies efd ≈ k. Using the identity

2DKL(Pu|y‖Pu) = log
(

det(I +A)
)
− Tr

(
(I +A)−1A

)
+m∗Σ−1m.
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and studying the asymptotics for fixed m, with k and C large, we obtain

DKL(Pu|y||Pu) ≈ efd

2
log(C) .

Therefore, using (4.2.5),

ρ ' C
efd
2 .

This suggests that ρ grows exponentially with the number of large eigenvalues,

whereas it has an algebraic dependence on the size of the eigenvalues. Theorem 4.2.1

then suggests that the number of particles required for accurate importance sampling

will grow exponentially with the number of large eigenvalues, and algebraically with

the size of the eigenvalues. A similar distinction may be found by comparing the

behaviour of ρ in large state space dimension in Subsection 4.2.5 (exponential) and

with respect to small scaling parameter in Subsection 4.2.6 (algebraic).

4.3.4.2 Spectral Cascade

We now introduce a three-parameter family of inverse problems, defined through

the eigenvalues of A. These three parameters represent the regularity of the prior

and the forward map, the size of the observational noise, and the number of positive

eigenvalues of A, which corresponds to the nominal dimension. We are interested

in investigating the performance of importance sampling, as quantified by ρ, in

different regimes for these parameters. We work in the framework of Assumption

4.3.3, and under the following additional assumption:

Assumption 4.3.9. Within the framework of Assumption 4.3.3, we assume that

Γ = γI and that A has eigenvalues
{
j−β

γ

}∞
j=1

with γ > 0, and β ≥ 0. We consider

a truncated sequence of problems with A(β, γ, d), with eigenvalues
{
j−β

γ

}d
j=1

, d ∈
N ∪ {∞}. Finally, we assume that the data is generated from a fixed underlying

infinite dimensional truth u†,

y = Ku† + η, Ku† ∈ H,

and for the truncated problems the data is given by projecting y onto the first d

eigenfunctions of A.

Note that d in the previous assumption is the data space dimension, which

agrees here with the nominal dimension. The setting of the previous assumption

arises, for example, when d is finite, from discretizing the data of an inverse problem

formulated in an infinite dimensional state space. Provided that the forward map K
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and the prior covariance Σ commute, our analysis extends to the case where both the

unknown and the data are discretized in the common eigenbasis. In all these cases,

interest lies in understanding how the complexity of importance sampling depends

on the level of the discretizations. The parameter γ may arise as an observational

noise scaling, and it is hence of interest to study the complexity of importance

sampling when γ is small. And finally the parameter β reflects regularity of the

problem, as determined by the prior and noise covariances, and the forward map;

critical phase transitions occur in computational complexity as this parameter is

varied, as we will show.

The intrinsic dimensions τ = τ(β, γ, d) and efd = efd(β, γ, d) read

τ =
1

γ

d∑
j=1

j−β, efd =
d∑
j=1

j−β

γ + j−β
. (4.3.10)

Table 4.1 shows the scalings of the effective dimensions efd and τ with the

model parameters. It also shows how ρ behaves under these scalings and hence gives,

by Theorem 4.2.1, an indication of the number of particles required for accurate

importance sampling in a given regime. In all the scaling limits where ρ grows to

infinity the posterior and prior are approaching mutual singularity; we can then

apply Theorem 4.2.1 to get an indication of how importance sampling deteriorates

in these limits.

Note that by Theorem 4.3.7 we have τ(β, γ, d) <∞ if and only if efd(β, γ, d) <

∞. It is clear from (4.3.10) that τ =∞ if and only if {d =∞, β ≤ 1}. By Theorem

4.3.7 again, this implies, in particular, that absolute continuity is lost in the limit

as d→∞ when β ≤ 1, and as β ↘ 1 when d =∞. Absolute continuity is also lost

in the limit γ → 0, in which the posterior is fully concentrated around the data (at

least in those directions in which the data live). In this limit we always have τ =∞,

whereas efd <∞ in the case where d <∞ and efd =∞ when d =∞. Note that in

the limit γ = 0 Assumption 4.3.3 does not hold, which explains why τ and efd are

not finite simultaneously. Indeed, as was noted before, efd is always bounded by the

nominal dimension d irrespective of the size γ of the noise.

Some important remarks on Table 4.1 are:

• ρ grows algebraically in the small noise limit (γ → 0) if the nominal dimension

d is finite.

• ρ grows exponentially in τ or efd as the nominal dimension grows (d → ∞),

or as the prior becomes rougher (β ↘ 1).
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Regime Parameters efd τ ρ

Small noise γ → 0, d <∞ d γ−1 γ−d/2

γ → 0, d =∞, β > 1 γ−1/β γ−1 γ−
εβ
2

(γ−1/β−ε)

Large d d→∞, β < 1 d1−β d1−β exp(d1−β)

Small noise γ = d−α, d→∞, β > 1, α > β d dα d(α−β)d

and large d γ = d−α, d→∞, β > 1, α < β dα/β dα dεd
α/β−ε

γ = d−α, d→∞, β < 1, α > β d d1+α−β d(α−β)d

γ = d−α, d→∞, β < 1, α < β d1+α−β d1+α−β dεd
α/β−ε

Regularity d =∞, β ↘ 1 1
β−1

1
β−1 exp( 1

β−1)

Table 4.1: The third and fourth columns show the scaling of the intrinsic dimensions
with model parameters. The fourth one gives a lower bound on the growth of ρ,
suggesting that the number of particles should be increased at least as indicated
by this column in terms of the model parameters. This lower bound holds for all
realizations of the data y when γ → 0, and in probability for those regimes where γ
is fixed. ε can be chosen arbitrarily small.

• ρ grows factorially in the small noise limit (γ → 0) if d =∞, and in the joint

limit γ = d−α, d→∞. The exponent in the rates relates naturally to efd.

The scalings of τ and efd can be readily deduced by comparing the sums

defining τ and efd with integrals. The analysis of the sensitivity of ρ to the model

parameters relies on an explicit expression for this quantity. The details are in the

appendix, Subsubsection 4.6.3.3.

4.3.5 Literature Review

Some more examples of linear inverse problems in both finite and infinite dimensions

include the Radon Inversion used for X-ray imaging, the determination of the initial

temperature from later measurements and the inversion of the Laplace transform.

Many case studies as well as more elaborate nonlinear inverse problems can be found

for example in [Kaipio and Somersalo, 2005], [Stuart, 2010] which adopt a Bayesian

approach to their solution, and [Engl et al., 1996], [Mueller and Siltanen, 2012] which

adopt a classical approach. The Bayesian approach we undertake, in the example of

linear regression (Example 4.3.1) becomes the Gaussian conjugate Bayesian analysis

of linear regression models, as in [Lindley and Smith, 1972].

Formulae (4.3.4), (4.3.5) for the mean and covariance expressed via precisions

in the finite dimensional setting may be found in [Lindley and Smith, 1972]. In fact

sense can be given to these formulae in the infinite dimensional setting as well; see

[Agapiou et al., 2013, Section 5]. Formulae (4.3.2), (4.3.3) in the infinite dimensional

setting are derived in [Mandelbaum, 1984], [Lehtinen et al., 1989]; in the specific
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case of inverting for the initial condition in the heat equation they were derived

in [Franklin, 1970]. The appendix, Subsection 4.6.1, has a discussion of Gaussian

measures in Hilbert spaces and contains further background references.

As mentioned above, we tacitly assume that K can be extended to act on

elements in X and that the sum of Ku and η makes sense in Y. This assumption

holds trivially if the three operators K,Σ,Γ are simultaneously diagonalizable. It

also holds in non-diagonal settings, in which it is possible to link the domains of

powers of the three operators by appropriate embeddings; for some examples see

[Agapiou et al., 2013, Section 7].

The assumption that the spectrum of A introduced in Assumption 4.3.3

consists of a countable number of eigenvalues, means that the operator A can be

thought of as an infinitely large diagonal matrix. It holds if A is compact [Lax, 2002,

Theorem 3, Chapter 28], but is in fact more general since it covers, for example, the

non-compact case A = I.

In the finite dimensional setting the assumption that A is bounded holds

automatically if the noise covariance is invertible. The centrality of S = Γ−
1
2KΣ

1
2

may then be understood as follows. Under the prior and noise models we may

write u = Σ
1
2u0 and η = Γ

1
2 η0 where u0 and η0 are independent centred Gaussians

with identity covariance operators (white noises). Under the assumption that Γ is

invertible we then find that we may write (4.3.1), for y0 = Γ−
1
2 y, as

y0 = Su0 + η0. (4.3.11)

Thus all results may be derived for this inverse problem, and translated back to the

original setting. The role of S, and hence A, is thus clear in the finite dimensional

setting. This intuition carries over to infinite dimensions.

We note here that the inverse problem

y0 = w0 + η0 (4.3.12)

with η0 a white noise and w0 ∼ N(0, SS∗) is equivalent to (4.3.11), but formulated

in terms of unknown w0 = Au0, rather than unknown u0. In this picture the key op-

erator is SS∗ rather than A = S∗S. Note that by Lemma 4.6.5 Tr(S∗S) = Tr(SS∗).

Furthermore, if S is compact the operators SS∗ and S∗S have the same nonzero

eigenvalues [Engl et al., 1996, Section 2.2], thus Tr((I + SS∗)−1SS∗) = Tr((I +

S∗S)−1S∗S). The last equality holds even if S is non-compact, since then Lemma

4.6.5 together with Lemma 4.3.6 imply that both sides are infinite. Combining,

we see that the intrinsic dimension (τ or efd) is the same regardless of whether we
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view w0 or u0 as the unknown. In particular, the assumption that A is bounded

is equivalent to assuming that the operators S, S∗ or SS∗ are bounded [Lax, 2002,

Theorem 14, Chapter 19]. For the equivalent formulation (4.3.12), the posterior

mean equation (4.3.2) is

m = SS∗(SS∗ + I)−1y.

If SS∗ is compact, that is, if its nonzero eigenvalues λi go to 0, then m is a regular-

ized approximation of w0, since the components of the data corresponding to small

eigenvalues λi are shrunk towards zero. On the other hand, if SS∗ is unbounded,

that is, if its nonzero eigenvalues λi go to infinity, then there is no regularization

and high frequency components in the data remain almost unaffected by SS∗ in m.

Therefore, the case SS∗ is bounded is the borderline case for having that the prior

has a regularizing effect in the inversion of the data.

In Subsection 4.3.2 we study notions of dimension for Bayesian inverse prob-

lems. In the Bayesian setting, the prior infuses information and correlations on the

components of the unknown u, reducing the number of parameters that are esti-

mated. In the context of Bayesian or penalized likelihood frameworks, this has led

to the notion of effective number of parameters, defined as

Tr
(

Γ1/2S(I + S∗S)−1S∗Γ−1/2
)
.

This quantity agrees with efd by Proposition 4.3.5 and has been used extensively in

Statistics and Machine Learning, see for example [Spiegelhalter et al., 2002], and Sec-

tion 3.5.3 of [Bishop, 2006] and references therein. One motivation for this definition

is based on a Bayesian version of the “hat matrix”, see for example [Spiegelhalter

et al., 2002]. However, in this article we provide a different motivation that is more

relevant to our aims. Moreover, rather than as an effective number of parameters,

we interpret efd as the effective dimension of the Bayesian linear model. Similar

forms of effective dimension have been used for learning problems in [Zhang, 2002],

[Zhang, 2005], [Caponnetto and De Vito, 2007] and for statistical inverse problems

in [Lu and Mathé, 2014]. In all of these contexts the size of the operator A quanti-

fies how informative the data is; see the discussion below. The paper [Bickel et al.,

2008] introduced the notion of τ = Tr(A) as an effective dimension for importance

sampling within linear inverse problems and filtering. In that paper several trans-

formations of the inverse problem are performed before doing the analysis. We undo

these transformations. The role of τ in the performance of the Ensemble Kalman

filter had been previously studied in [Furrer and Bengtsson, 2007].

The operator A has played an important role in the study of linear inverse
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problems. First, it has been used for obtaining posterior contraction rates in the

small noise limit, see the operator B∗B in [Lin et al., 2015], [Agapiou and Mathé,

2014]. Its use was motivated by techniques for analyzing classical regularization

methods, in particular regularization in Hilbert scales see [Engl et al., 1996, Chap-

ter 8]. Furthermore, its eigenvalues and eigendirections can be used to determine

(optimal) low-rank approximations of the posterior covariance [Bui-Thanh et al.,

2013], [Spantini et al., 2015, Theorem 2.3]. The analogue of A in nonlinear Bayesian

inverse problems is the so-called prior-preconditioned data-misfit Hessian, which has

been used in [Martin et al., 2012] to design Metropolis Hastings proposals.

Proposition 4.3.5 shows that efd is at most as large as the nominal dimension,

in finite dimensional settings. The difference between both is a measure of the effect

the prior has on the inference relative to the maximum likelihood solution. This

difference increases as the size of Σ increases, or as the correlation among the vectors

that form the columns of K increases, while the difference decreases as the size of

Γ decreases or as the correlations in Γ increase. Note also that in finite dimensional

settings, Proposition 4.3.4 shows that efd quantifies how much change there is in

going from the posterior to the prior, measured in terms of change in the covariance,

in units of the prior; and τ plays a similar role expressed in terms of change in the

precisions, again in units of the prior. By the cyclic property of the trace, Lemma

4.6.5(ii), and by Proposition 4.3.4, τ and efd may also be characterized as follows:

τ = Tr
(
(C−1 − Σ−1)Σ

)
= Tr

(
(Σ− C)C−1

)
,

efd = Tr
(
(Σ− C)Σ−1

)
= Tr

(
(C−1 − Σ−1)C

)
.

Thus we may also view efd as measuring the change in the precision, measured in

units given by the posterior precision; whilst τ measures the change in the covari-

ance, measured in units given by the posterior covariance.

Note that Proposition 4.3.4 also holds in the general Hilbert space setting,

provided formula (4.3.4) for the posterior precision operator can be justified; see

Remark 4.6.6 in the appendix. The above alternative identities for τ and efd can

also be justified in those settings, using analogous techniques. We hence have that

the interpretations of τ and efd discussed in the previous paragraph, carry over to

such infinite dimensional settings.

In many applications, the unknown u ∈ Rdu and often the data y ∈ Rdy

correspond to discretizations of continuum functions living in Hilbert spaces. The

canonical illustration arises from discretizting Example 4.3.2 to obtain Example

4.3.1. In such situations the three matrices K,Γ,Σ defining the Bayesian inverse
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problem also correspond to discretizations of infinite dimensional linear operators.

It is of interest to understand the performance of importance sampling as the dis-

cretization level increases in order to decide how to distribute the available budget

between using more particles or investing in higher discretization levels. A deep

analysis of importance sampling in the large d limit can be found in [Bengtsson

et al., 2008]. The authors show that, if β ≤ 1 and d → ∞, the maximum impor-

tance sampling weight converges to 1 in probability, unless the number of particles

grows super-exponentially with, essentially, τ(d). Here we show that ρ(d) grows ex-

ponentially with τ(d) (and efd(d)), which together with Theorem 4.2.1 suggests also

the need to increase the number of samples exponentially with dimension.

It is straightforward to check that since Ku† ∈ H, the probability measure

of the data in Assumption 4.3.9 is equivalent to the marginal probability measure of

the data under the model, νy(dy). Hence for data of the form of Assumption 4.3.9,

Theorem 4.3.7 implies that the posterior is absolutely continuous with respect to

the prior, almost surely with respect to the noise distribution.

The deviance information criterion introduced in [Spiegelhalter et al., 2002],

is based on a notion of effective number of parameters that generalises the one we

discuss in this chapter to more general Bayesian hierarchical models.

In the context of inverse problems, by (4.3.9), the tempered un-normalized

likelihood g(u; y)a takes the form

g(u; y)a = exp

(
− a

2γ

∥∥∥Γ−1/2Ku
∥∥∥2

+
a

γ

〈
Γ−1/2y,Γ−1/2Ku

〉)
. (4.3.13)

This corresponds to the likelihood of our standard inverse problem, but where Γ

is replaced by Γ/a and hence A in Assumption 4.3.3 is scaled by a. In particular,

in the context of an inverse problem in the Euclidean space Rd, if a = 1
d and A(d)

is a discretization of an operator A with eigenvalues bounded by λmax we easily

deduce that the tempered problem has intrinsic dimensions efd, τ ≤ λmax, bounded

independently of d. Applying this sequentially then leads to the sequence of measures

µd,i as explained at the end of Subsection 4.2.7. We remark that under the tempering

approach d of these problems with bounded effective dimension would need to be

solved sequentially; a careful study of the propagation of errors of such sequential

scheme would be necessary to understand its complexity, but is beyond the scope of

our work. In practice this issue can be ameliorated by including approriate mixing

kernels, invariant with respect to µd,i for each i, as demonstrated in [Kantas et al.,

2014].
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4.4 Importance Sampling and Filtering

In Section 4.2 we introduced importance sampling, and studied its computational

complexity. We highlighted the role of the density of the target with respect to the

proposal. We also studied the behaviour of importance sampling when approaching

loss of absolute continuity between target and proposal. In particular we studied

the effect of various singular limits (large nominal dimension, small parameters) in

this breakdown. Section 4.3 studied these issues for Bayesian linear inverse prob-

lems. Here we study them for the filtering problem, using the relationship between

Bayesian inversion and filtering outlined in the introductory section, and detailed

here. In Subsection 4.4.1 we set-up the problem and derive a link between impor-

tance sampling based particle filters and the inverse problem. In Subsections 4.4.2

and 4.4.3 respectively we use this connection to study the intrinsic dimension of fil-

tering, and the connection to absolute continuity between proposal and target, and

in doing so make comparisons between the standard and optimal proposals. Sub-

section 4.4.4 contains some explicit computations which enable comparison of the

complexity of the two proposals in various singular limits relating to high dimension

or small observational noise. We conclude with the literature review Subsection

4.4.5 which overviews the sources for the material herein.

The component of particle filtering which we analyze in this section is only

that related to sequential importance sampling; we do not discuss the interaction

between the simulated particles which arises via resampling schemes. Such interac-

tion would not typically be very relevant in the two time-unit dynamical systems

we study here, but would be necessary to get reasonable numerical schemes when

assimilating data over many time units. We comment further on this, and the choice

of the assimilation problem we study, in the literature review.

4.4.1 General Setting

We simplify the notation by setting j = 0 in (4.1.3) to obtain

v1 = Mv0 + ξ, v0 ∼ N(0, P ), ξ ∼ N(0, Q),

y1 = Hv1 + ζ, ζ ∼ N(0, R).
(4.4.1)

Note that we have also imposed a Gaussian assumption on v0. Because of the Markov

assumption on the dynamics for {vj}, we have that v0 and ξ are independent. As

in Section 4.3 we set-up the problem in a separable Hilbert space H, although the

reader versed only in finite dimensional Gaussian measures should have no trou-

ble following the developments, simply by thinking of the covariance operators as
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(possibly infinite) matrices. We assume throughout that the covariance operators

P,Q,R : H → H are bounded, self-adjoint, positive linear operators, but not neces-

sarily trace-class (see the discussion on this trace-class issue in Section 4.3). We also

assume that the operators M,H : H → H that describe, respectively, the uncon-

ditioned signal dynamics and the observation operator, can be extended to larger

spaces if necessary; see the appendix Subsection 4.6.1 for further details on these

technical issues.

Our goal in this section is to study the complexity of importance sampling

within the context of both the standard and optimal proposals for particle filtering.

For both these proposals we show that there is an inverse problem embedded within

the particle filtering method, and compute the proposal covariance, the observation

operator and the observational noise covariance. We may then use the material from

the previous section, concerning inverse problems, to make direct conclusions about

the complexity of importance sampling for particle filters.

The aim of one step of filtering may be expressed as sampling from the target

Pv1,v0|y1 . Particle filters do this by importance sampling, with this measure on the

product space X × X as the target. We wish to compare two ways of doing this,

one by using the proposal distribution Pv1|v0Pv0 and the second by using as proposal

distribution Pv1|v0,y1Pv0 . The first is known as the standard proposal, and the second

as the optimal proposal. We now connect each of these proposals to a different

inverse problem.

4.4.1.1 Standard Proposal

For the standard proposal we note that, using Bayes’ theorem, conditioning, and

that the observation y1 does not depend on v0 explicitly,

Pv1,v0|y1 ∝ Py1|v1,v0Pv1,v0
= Py1|v1,v0Pv1|v0Pv0
= Py1|v1Pv1|v0Pv0 .

Thus the density of the target Pv1,v0|y1 with respect to the proposal Pv1|v0Pv0 is

proportional to Py1|v1 . Although this density concerns a proposal on the joint space

of (v0, v1), since it involves only v1 we may consider the related inverse problem of

finding v1, given y1, and ignore v0.

In this picture filtering via the standard proposal proceeds as follows:

Pv0 7→ Pv1 7→ Pv1|y1 .
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Here the first step involves propagation of proability measures under the dynamics.

This provides the proposal π = Pv1 used for importance sampling to determine the

target µ = Pv1|y1 . The situation is illustrated in the upper branch of Figure 4.1.

Since

E(v1v
∗
1) = E(Mv0 + ξ)(Mv0 + ξ)∗,

and v0 and ξ are independent under the Markov assumption, the proposal distribu-

tion is readily seen to be a centred Gaussian with covariance Σ = MPM∗+Q. The

observation operator is K = H and the noise covariance Γ = R. We have estab-

lished a direct connection between the particle filter, with standard proposal, and

the inverse problem of the previous section. We will use this connection to study

the complexity of the particle filter, with standard proposal, in what follows.

4.4.1.2 Optimal Proposal

For the optimal proposal we note that, by conditioning on v0,

Pv1,v0|y1 = Pv1|v0,y1Pv0|y1

= Pv1|v0,y1Pv0
Pv0|y1
Pv0

.

Thus the density of the target Pv1,v0|y1 with respect to the proposal Pv1|v0,y1Pv0 is

the same as the density of Pv0|y1 with respect to Pv0 . As a consequence, although

this density concerns a proposal on the joint space of (v0, v1), it is equivalent to an

inverse problem involving only v0. We may thus consider the related inverse problem

of finding v0 given y1, and ignore v1.

In this picture filtering via the optimal proposal proceeds as follows:

Pv0 7→ Pv0|y1 7→ Pv1|y1 .

Here the first step involves importance sampling with proposal π = Pv0 and target

µ = Pv0|y1 . This target measure is then propagated under the conditioned dynamics

to find Pv1|y1 ; the underlying assumption of the optimal proposal is that Pv1|v0,y1
can be sampled so that this conditioned dynamics can be implemented particle by

particle. The situation is illustrated in the lower branch of Figure 4.1. Since

y1 = HMv0 +Hξ + ζ

the proposal distribution is readily seen to be a centred Gaussian with covariance

Σ = P , the observation operator K = HM and the noise covariance given by

112



Pv1

Pv0 Pv1|y1

Pv0|y1

Dynamics

Inverse problem

Inverse problem

Conditioned dynamics

Figure 4.1: Filtering step decomposed in two different ways. The upper path first
pushes forward the measure Pv0 using the signal dynamics, and then incorporates
the observation y1. The lower path assimilates the observation y1 first, and then
propagates the conditioned measure using the signal dynamics. The standard pro-
posal corresponds to the upper decomposition and the optimal one to the lower
decomposition.

the covariance of Hξ + ζ, namely Γ = HQH∗ + R. Again we have established a

direct connection between the particle filter, with optimal proposal, and the inverse

problem of the previous section. We will use this connection to study the complexity

of the particle filter, with optimal proposal, in what follows.

A key assumption of the optimal proposal is the second step: the ability to

sample from the conditioned dynamics Pv1|v0,y1 and we make a few comments on

this before returning to our main purpose, namely to study complexity of particle

filtering via the connection to an inverse problem. The first comment is to note

that since we are in a purely Gaussian setting, this conditioned dynamics is itself

determined by a Gaussian and so may in principle be performed in a straightforward

fashion. In fact the conditioned dynamics remains Gaussian even if the forward

model Mv0 is replaced by a nonlinear map f(v0), so that the optimal proposal has

wider applicability than might at first be appreciated. Secondly we comment that

the Gaussian arising in the conditioned dynamics has mean m and variance Ξ given

by the formulae

Ξ = Q−QH∗(HQH∗ +R)−1HQ,

m = Mv0 +QH∗(HQH∗ +R)−1(y1 −HMv0).

It is a tacit assumption in what follows that the operators defining the filtering

problem are such that Ξ : H → H is well-defined and that m ∈ H is well-defined.

More can be said about these points, but doing so will add further technicalities

without contributing to the main goals of this chapter.

113



Standard Proposal Optimal proposal

Proposal Pv0(dv0)Pv1|v0(dv1) Pv0(dv0)Pv1|v0,y1(dv1)

BIP y1 = Hv1 + ηst y1 = HMv0 + ηop
Prior Cov. MPM∗ +Q P
Data Cov. R R+HQH∗

log g(u; y1) −1
2‖Hv1‖2R + 〈y1, Hv1〉R −1

2‖HMv0‖2R+HQH∗ + 〈y1, HMv0〉R+HQH∗

Table 4.2

4.4.2 Intrinsic Dimension

Using the inverse problems that arise for the standard proposal and for the optimal

proposal, and employing them within the definition of A from Assumption 4.3.3, we

find the two operators A arising for these two different proposals:

A := Ast := (MPM∗ +Q)1/2H∗R−1H(MPM∗ +Q)1/2

for the standard proposal, and

A := Aop := P
1
2M∗H∗(R+HQH∗)−1HMP 1/2

for the optimal proposal. Again here it is assumed that these operators are bounded

in H:

Assumption 4.4.1. The operators Ast and Aop, viewed as linear operators in H,

are bounded. Furthermore, assume that the spectra of both Ast and Aop consist of a

countable number of eigenvalues.

Using these definitions of Ast and Aop we may define, from (4.3.6), the in-

trinsic dimensions τst, efdst for the standard proposal and τop, efdop for the optimal

one in the following way

τst = Tr(Ast), efdst = Tr
(
(I +Ast)

−1Ast
)

and

τop = Tr(Aop), efdop = Tr
(
(I +Aop)

−1Aop
)
.

4.4.3 Absolute Continuity

The following two theorems are a straightforward application of Theorem 4.3.7, using

the connections between filtering and inverse problems made above. The contents
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of the two theorems are summarized in Table 4.2.

Theorem 4.4.2. Consider one-step of particle filtering for (4.4.1). Let µ = Pv1|y1
and π = Pv1 = N(0, Q+MPM∗). Then the following are equivalent:

i) efdst <∞;

ii) τst <∞;

iii) R−1/2Hv1 ∈ H, π-almost surely;

iv) for νy-almost all y, the target distribution µ is well defined as a measure in X
and is absolutely continuous with respect to the proposal with

dµ

dπ
(v1) ∝ exp

(
−1

2

∥∥∥R−1/2Hv1

∥∥∥2
+

1

2

〈
R−1/2y1, R

−1/2Hv1

〉)
=: gst(v1; y1),

(4.4.2)

where 0 < π
(
gst(·; y1)

)
<∞.

Theorem 4.4.3. Consider one-step of particle filtering for (4.4.1). Let µ = Pv0|y1
and π = Pv0 = N(0, Q). Then, for Rop = R+HQH∗, the following are equivalent:

i) efdop <∞;

ii) τop <∞;

iii) R
−1/2
op HMv0 ∈ H, π-almost surely;

iv) for νy-almost all y, the target distribution µ is well defined as a measure in X
and is absolutely continuous with respect to the proposal with

dµ

dπ
(v0) ∝ exp

(
−1

2

∥∥∥R−1/2
op HMv0

∥∥∥2
+

1

2

〈
R−1/2
op y1, R

−1/2
op HMv0

〉)
=: gop(v0; y1),

(4.4.3)

where 0 < π
(
gop(·; y1)

)
<∞.

Remark 4.4.4. Because of the exponential structure of gst and gop, the assertion

(iv) in the preceding two theorems is equivalent to gst and gop being ν-almost surely

positive and finite and for almost all y1 the second moment of the target-proposal

density is finite. This second moment is given, for the standard and optimal pro-

posals, by

ρst =
π
(
gst(·; y)2

)
π
(
gst(·; y)

)2 <∞
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and

ρop =
π
(
gop(·; y)2

)
π
(
gop(·; y)

)2 <∞

respectively. The relative sizes of ρst and ρop determine the relative efficiency of the

standard and optimal proposal versions of filtering.

The following theorem shows that there is loss of absolute continuity for the

standard proposal whenever there is for the optimal one. The result is formulated in

terms of the intrinsic dimension τ, and we show that τop = ∞ implies τst = ∞. By

Theorem 4.3.7, this implies the result concerning absolute continuity. Recalling that

poor behaviour of importance sampling is intimately related to such breakdown, this

suggests that the optimal proposal is always at least as good as the standard one.

The following theorem also gives a condition on the operators H, Q and R under

which collapse for both proposals occurs at the same time, irrespective of the regu-

larity of the operators M and P. Roughly speaking this simultaneous collapse result

states that if R is large compared to Q then absolute continuity for both proposals is

equivalent; and hence collapse of importance sampling happens under one proposal

if and only if it happens under the other. Intuitively the advantages of the optimal

proposal stem from the noise in the dynamics; they disappear completely if the

dynamics is deterministic. The theorem quantifies this idea. Finally, an example

demonstrates that there are situations where τop is finite, so that optimal proposal

based importance sampling works well for finite dimensional approximations of an

infinite dimensional problem, whilst τst is infinite, so that standard proposal based

importance sampling works poorly for finite dimensional approximations. The proof

of the theorem is given in the appendix, Subsection 4.6.4.

Theorem 4.4.5. Suppose that Assumption 4.4.1 holds. Then,

τop ≤ τst. (4.4.4)

Moreover, if Tr
(
HQH∗R−1

)
<∞, then

τst <∞ ⇐⇒ τop <∞.

We remark that, under additional simplifying assumptions, we can obtain

bounds of the form (4.4.4) for efd and ρ. We chose to formulate the result in terms

of τ since we can prove the bound (4.4.4) in full generality. Moreover, by Theorem

4.3.7 the bound in terms of τ suffices in order to understand the different collapse

properties of both proposals.
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The following example demonstrates that it is possible that τop < ∞ while

τst = ∞; in this situation filtering via the optimal proposal is well-defined, whilst

using the standard proposal it is not. Loosely speaking, this happens if y1 provides

more information on v1 than v0.

Example 4.4.6. Suppose that

H = Q = R = M = I, Tr(P ) <∞.

Then, it is straightforward from the definitions that Ast = P + I and Aop = P/2. In

an infinite dimensional Hilbert the identity operator has infinite trace, Tr(I) = ∞,

and so

τst = Tr(Ast) = Tr(P + I) =∞, τop = Tr(Aop) = Tr(P/2) <∞.

We have thus established an example of a filtering model for which τst = ∞ and

τop < ∞. We note that by Theorem 4.4.5, any such example satisfies the condition

Tr(HQH∗R−1) = ∞. When this condition is met, automatically τst = ∞ (see the

proof of the Theorem 4.4.5 in the appendix, Subsection 4.6.4). However, τop can

still be finite. Indeed, within the proof of that theorem we show that the inequality

τop ≤ Tr(R−1HMPM∗H∗)

always holds. The right-hand side may be finite provided that the eigenvalues of P

decay fast enough. A simple example of this situation is where HM is a bounded

operator and all the relevant operators have eigenvalues. In this case the Rayleigh-

Courant-Fisher theorem – see the appendix, Subsection 4.6.3 for a reference – guar-

antees that the eigenvalues of HMPM∗H∗ can be bounded in terms of those of

P . Again by the Rayleigh-Courant-Fisher theorem, since we are always assum-

ing that the covariance R is bounded, it is possible to bound the eigenvalues of

R−1HMPM∗H∗ in terms of those of HMPM∗H∗. This provides a wider range of

examples where τst =∞ while τop <∞.

4.4.4 Singular Limits

We are interested in the computational complexity of particle filtering. As stated

in Remark 4.4.4 the values of the second moment of the target-proposal density, ρst

and ρop, characterize the performance of particle filtering using impotance sampling

with the standard and optimal proposals respectively. By comparing the values of

ρst and ρop we can ascertain situations in which the optimal proposal has significant
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Regime Param. eig(Ast) eig(Aop) eig(P∞) ρst ρop
Small obs. noise r → 0 r−1 r r r−d/2 1

r = q → 0 1 1 r(= q) 1 1

Large d d→∞ 1 1 1 exp(d) exp(d)

Table 4.3: Scalings of the standard and optimal proposals in small noise and large
d regimes for one filter step initialized from stationarity (P = P∞). This table and
the one below should be interpreted in the same way as Table 4.1.

Regime Param. eig(Ast) eig(Aop) ρst ρop
Small obs. noise r → 0 r−1 1 r−d/2 1

r = q → 0 r−1 r−1 r−d/2 r−d/2

Large d d→∞ 1 1 exp(d) exp(d)

Table 4.4: Scalings of the standard and optimal proposals in small noise and large
d regimes for one filter step initialized from P = pI.

advantage over the standard proposal. We also recall, from Section 4.3, the role

of the intrinsic dimensions in determining the scaling of the second moment of the

target-proposal density.

The following example will illustrate a number of interesting phenomena in

this regard. In the setting of fixed finite state/data state dimension it will illustrate

how the scalings of the various covariances entering the problem effect computational

complexity. In the setting of increasing nominal dimension d, when the limiting

target is singular with respect to the proposal, it will illustrate how computational

complexity scales with d. And finally we will contrast the complexity of the filters

in two differing initialization scenarios: (i) from an arbitrary initial covariance P ,

and from a steady state covariance P∞. Such a steady state covariance is a fixed

point of the covariance update map for the Kalman filter defined by (4.1.3).

Example 4.4.7. Suppose that M = H = I ∈ Rd×d, and R = rI, Q = qI, with

r, q > 0. A simple calculation shows that the steady state covariance is given by

P∞ =

√
q2 + 4qr − q

2
I,

and that the operators Ast and Aop when P = P∞ are

Ast =

√
q2 + 4qr + q

2r
I, Aop =

√
q2 + 4qr − q
2(q + r)

I.

Note that Ast and Aop are a function of q/r, whereas P∞ is not.

If the filtering step is initialized outside stationarity at P = pI, with p > 0,
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then

Ast =
p+ q

r
I, Aop =

p

q + r
I.

Both the size and number of the eigenvalues of Aop/Ast play a role in determining the

size of ρ, the second moment of the target-proposal variance. It is thus interesting

to study how ρ scales in both the small observational noise regime r � 1 and the

high dimensional regime d� 1. The results are summarized in Tables 4.3 and 4.4.

Some conclusions from these tables are:

• The standard proposal degenerates at an algebraic rate as r → 0, for fixed

dimenson d, for both initializations of P .

• The optimal proposal is not sensitive to the small observation limit r → 0

if the size of the signal noise, q, is fixed. If started outside stationarity, the

optimal proposal degenerates algebraically if q ∝ r → 0. However, even in this

situation the optimal proposal scales well if initialized in the stationary regime.

• In this example the limiting problem with d = ∞ has infinite intrinsic di-

mension for both proposals, because the target and the proposal are mutually

singular. As a result, ρ grows exponentially in the large d limit.

• Example 4.4.6 suggests that there are cases where ρst grows exponentially in

the large dimensional limit d → ∞ but ρop converges to a finite value. This

may happen if Tr
(
HQH∗R−1

)
<∞, but the prior covariance P is sufficiently

smooth.

4.4.5 Literature Review

In Subsection 4.4.1 we follow [Bengtsson et al., 2008], [Bickel et al., 2008], [Snyder

et al., 2008], [Snyder, 2011], [Slivinski and Snyder, 2015], [Snyder et al., 2015] and

consider one step of the filtering model (4.1.3). There are two main motivations

for studying one step of the filter. Firstly, if keeping the filter error small is pro-

hibitively costly for one step, then there is no hope that an online particle filter

will be successful [Bengtsson et al., 2008]. Secondly, it can provide insight for filters

initialized close to stationarity [Chorin and Morzfeld, 2013]. As in [Snyder, 2011],

[Slivinski and Snyder, 2015], [Snyder et al., 2015] we cast the analysis of importance

sampling in joint space and consider as target µ := Pu|y1 , with u := (v0, v1) and

with the standard and optimal proposals defined in Subsection 4.4.1.

In general nonlinear, non-Gaussian problems the optimal proposal is usually

not implementable, since it is not possible to evaluate the corresponding weights,
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or to sample from the distribution Pv1|v0,y1 . However, the optimal proposal is imple-

mentable in our framework (see for example [Doucet et al., 2000]) and understanding

its behaviour is important in order to build and analyze improved and computable

proposals which are informed by the data [Tu et al., 2013], [Goodman et al., 2015],

[van Leeuwen, 2010]. It is worth making the point that the so-called “optimal

proposal” is really only locally optimal. In particular, this choice is optimal in mini-

mizing the variance of the weights at the given step given that all previous proposals

have been already chosen. This choice does not minimize the Monte Carlo variance

for some time horizon for some family of test functions. A different optimality cri-

terion is obtained by trying to simultaneously minimize the variance of weights at

times t ≤ r ≤ t+m, for some m ≥ 1, or minimize some function of these variances,

say their sum or their maximum. Such look ahead procedures might not be feasi-

ble in practice. Surprisingly, examples exist where the standard proposal leads to

smaller variance of weights some steps ahead relative to the locally optimally tuned

particle fiter; see for example Section 3 of [Johansen and Doucet, 2008], and the

discussion in [Chopin and Papaspiliopoulos, 2016, Chapter 10]. Still, such exam-

ples are quite contrived and experience suggests that local adaptation is useful in

practice.

Similarly as for inverse problems, the values of ρst and ρop determine the

performance of importance sampling for the filtering model with the standard and

optimal proposals. These depend in a nonlinear fashion on the eigenvalues of Ast and

Aop. In Subsection 4.4.3 we show that the conditions of collapse for the standard

and optimal proposals (found in [Snyder, 2011] and [Bickel et al., 2008], respec-

tively) correspond to any of the equivalent conditions of finite dimension or finite ρ

described in Theorems 4.4.2 and 4.4.3.

In Subsection 4.4.4 we study singular limits in the framework of [Chorin and

Morzfeld, 2013]. Thus, we consider a diagonal filtering setting in the Euclidean

space Rd, and assume that all coordinates of the problem play the same role, which

corresponds to the extreme case β = 0 in Subsection 4.3.4. The paper [Chorin

and Morzfeld, 2013] introduced a notion of effective dimension for detectable and

stabilizable linear Gaussian data assimilation problems as the Frobenius norm of

the steady state covariance of the filtering distribution. It is well known that the

detectability and stabilizability conditions ensure the existence of such steady state

covariance [Lancaster and Rodman, 1995]. This notion of dimension quantifies the

success of data assimilation in having reduced uncertainty on the unknown once the

data has been assimilated. Therefore the definition of dimension given in [Chorin

and Morzfeld, 2013] is at odds with both τ and efd : it does not quantify how much
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is learned from the data in one step, but instead how concentrated the filtering

distribution is in the time asymptotic regime when the filter is in steady state. Our

calculations demonstrate differences which can occur in the computational complex-

ity of filtering, depending on whether it is initialized in this statistical steady state,

or at an arbitrary point.

4.5 Conclusions

The main motivation for this article is the study of computational complexity of

importance sampling, and in particular provision of a framework which unifies the

multitude of publications with bearing on this question. We study inverse problems

and particle filters in Bayesian models that involve high and infinite state space and

data dimensions.

Our study has required revisiting the fundamental structure of importance

sampling on general state spaces. We have derived non-asymptotic concentration

inequalities for the particle approximation error and related what turns out to be the

key parameter of performance, the second moment of the density between the target

and proposal, to many different importance sampling input and output quantities.

As a reasonable compromise between mathematical tractability and practical

relevance we have focused on Bayesian linear models for regression and statistical

inversion of ill-posed inverse problems. We have studied the efficiency of sampling-

based posterior inference in these contexts carried out by importance sampling using

the prior as proposal. We have demonstrated that performance is controlled by an

intrinsic dimension, as opposed to the state space or data dimensions, and we have

discussed and related two different measures of this dimension. It is important

to emphasise that the intrinsic dimension is really a measure of relative strength

between the prior and the likelihood in forming the posterior, as opposed to a

measure of “degrees of freedom” in the prior. In other words, infinite-dimensional

Bayesian linear models with finite intrinsic dimension are not identified with models

for which the prior for the unknown is concentrated on a finite-dimensional manifold

of the infinite-dimensional state space.

A similar consideration of balancing tractability and practical relevance has

dictated the choice not to study interacting particles typically used for filtering, but

rather to focus on one-step filtering using importance sampling. For such problems

we introduce appropriate notions of intrinsic dimension and compare the relative

merits of popular alternative schemes.

The most pressing topic for future research stemming from this article is the
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development of concrete recommendations for algorithmic design within classes of

Bayesian models used in practice. Within the model structure we have studied here,

practically relevant and important extensions include models with non-Gaussian

priors on the unknown, nonlinear operators that link the unknown to the data, and

unknown hyperparameters involved in the model specification. Linearisation of a

nonlinear model around some reasonable value for the unknown (e.g. the posterior

mean) is one way to extend our measures of intrinsic dimension in such frameworks.

We can expect the subject area to see considerable development in the coming

decade.

4.6 Appendix

4.6.1 Gaussian Measures in Hilbert Space

In Section 4.3 we study Bayesian inverse problems in the Hilbert space setting. This

enables us to talk about infinite dimensional limits of sequences of high dimensional

inverse problems and is hence useful when studying the complexity of importance

sampling in high dimensions. Here we provide some background on Gaussian mea-

sures in Hilbert space. We start by describing how to construct a random draw from

a Gaussian measure on an infinite dimensional separable Hilbert space (H,
〈
·, ·
〉
, ‖·‖).

Let C : H → H be a self-adjoint, positive-definite and trace class operator. It then

holds that C has a countable set of eigenvalues {κj}j∈N, with corresponding normal-

ized eigenfunctions {ej}j∈N which form a complete orthonormal basis in H.

Example 4.6.1. We use as a running example the case where H is the space of

square integrable real-valued functions on the unit interval, H = L2(0, 1) and where

the Gaussian measure of interest is a unit centred Brownian bridge on the interval

(0, 1). Then m = 0 and C is the inverse of the negative Laplacian on (0, 1) with

homogeneous Dirichlet boundary conditions. The eigenfunctions and eigenvalues of

C are given by

ej(t) =
√

2 sin(jπt), κj = (jπ)−2.

The eigenvalues are summable and hence the operator C is trace class. For further

details see [Stuart, 2010].

For any m ∈ H, we can write a draw x ∼ N(m, C) as

x = m+

∞∑
j=1

√
κjζjej ,
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where ζj are independent standard normal random variables in R; this is the Karhunen-

Loeve expansion [Adler, 1990, Chapter III.3]. The trace class assumption on the

operator C, ensures that x ∈ H with probability 1, see Lemma 4.6.2 in Subsection

4.6.3. The particular rate of decay of the eigenvalues {κj} determines the almost

sure regularity properties of x. The idea is that the quicker the decay, the smoother

x is, in a sense which depends on the basis {ej}. For example if {ej} is the Fourier

basis, which is the case if C is a function of the Laplacian on a tours, then a quicker

decay of the eigenvalues of C means a higher Hölder and Sobolev regularity (see

[Stuart, 2010, Lemmas 6.25 & 6.27] and [Dashti and Stuart, 2016, Section 2.4]). For

the Brownian bridge Example 4.6.1 above, draws are almost surely in spaces of both

Hölder and Sobolev regularity upto (but not including) one half.

The above considerations suggest that we can work entirely in the “fre-

quency” domain, namely the space of coefficients of the element of H in the eigen-

basis of the covariance, the sequence space `2. Indeed, we can identify the Gaussian

measure N(m, C) with the independent product measure
⊗∞

j=1N(mj , κj), where

mj =
〈
m, ej

〉
. Using this identification, we can define a sequence of Gaussian mea-

sures in Rd which converge to N(m, C) as d→∞, by truncating the product measure

to the first d terms. Even though in Rd any two Gaussian measures with strictly

positive covariances are absolutely continuous with respect to each other (that is,

equivalent as measures), in the infinite-dimensional limit two Gaussian measures can

be mutually singular, and indeed are unless very stringent conditions are satisfied.

For N(m, C) in H, we define its Cameron-Martin space E as the domain

of C−1/2, which can be characterized as the space of all the shifts in the mean

which result in an equivalent Gaussian measure. Since C is a trace class operator,

its inverse (hence also its square root) is an unbounded operator, therefore E is

a compact subset of H. In fact E has zero measure under N(0, C). For example,

if C is given by the Brownian bridge Example 4.6.1, then the Cameron-Martin

space E is the Sobolev space of functions which vanish on the boundary and whose

first derivative is in H; as mentioned above, draws from this measure only have

upto half a derivative in the Sobolev sense. The equivalence or singularity of two

Gaussian measures with different covariance operators and different means depends

on the compatibility of both their means and covariances, as expressed in the three

conditions of the Feldman-Hajek theorem. For more details on the equivalence and

singularity of Gaussian measures see [Da Prato and Zabczyk, 1992].

The Karhunen-Loeve expansion makes sense even if C is not trace class,

in which case it defines a Gaussian measure in a space X ⊃ H with a modified

covariance operator which is trace class. Indeed, let D : H → H be any injective
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bounded self-adjoint operator such that: a) D is diagonalizable in {ej}j∈N, with

(positive) eigenvalues {dj}j∈N; b) the operator DCD is trace class, that is, {κjd2
j}j∈N

is summable. Define the weighted inner product
〈
· , ·
〉
D−2 :=

〈
D · , D ·

〉
, the

weighted norm ‖ · ‖D−2 = ‖D · ‖ and the space

X := span{ej : j ∈ N}‖ · ‖D−2
.

Then the functions ψj = d−1
j ej , j ∈ N, form a complete orthonormal basis in the

Hilbert space (X ,
〈
· , ·
〉
D−2 , ‖ · ‖D−2). The Karhunen-Loeve expansion can then be

written as

x = m+
∞∑
j=1

√
κjζjej = m+

∞∑
j=1

√
κjdjζjψj ,

so that we can view x as drawn from the Gaussian measure N(m,DCD) in X , where

DCD is trace class by assumption. For example, the case H = L2(0, 1) and C = I,

corresponding to Gaussian white noise for functions on the interval (0, 1), can be

made sense of in negative Sobolev-Hilbert spaces with −1/2− ε derivatives, for any

ε > 0. Finally, we stress that absolute continuity in general and the Cameron-Martin

space in particular, are concepts which are independent of the space in which we

make sense of the measure. In the Gaussian white noise example, we hence have

that the Cameron-Martin space is E = H.

The following lemma is similar to numerous results concerning Gaussian

measures in function spaces. Because the precise form which we use is not in the

literature, we provide a direct proof.

Lemma 4.6.2. Let X be a separable Hilbert space with orthonormal basis {ϕj}j∈N.

Define the Gaussian measure γ through the Karhunen-Loeve expansion

γ := L
( ∞∑
j=1

√
λjξjϕj

)
,

where λj is a sequence of positive numbers and where ξj are i.i.d. standard normal.

Then draws from γ are in X almost surely if and only if
∑∞

j=1 λj <∞.

Proof. If
∑∞

j=1 λj <∞, then

Eγ ‖x‖2X = E
∞∑
j=1

λjξ
2
j =

∞∑
j=1

λj <∞,

hence x ∼ γ is in X almost surely.
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For the converse, suppose that x ∼ γ is in X almost surely. Then

‖x‖2X =

∞∑
j=1

λjξ
2
j <∞, a.s.

Note that this implies that λj → 0, and so in particular λ∞ := supj λj <∞.
By [Kallenberg, 2002, Theorem 3.17], since

√
λjξj ∼ N(0, λj) are indepen-

dent and symmetric random variables, we get that

∞∑
j=1

E[λjξ
2
j ∧ 1] <∞.

A change of variable gives

E[λjξ
2
j ∧ 1] ≥ 2√

2πλj

∫ 1

0
y2e
− y2

2λj dy

=
2λ

3
2
j√

2πλj

∫ 1/
√
λj

0
z2e−

z2

2 dz =
2λj√

2π

∫ 1/
√
λj

0
z2e−

z2

2 dz.

Thus, for every j ∈ N,

E[λjξ
2
j ∧ 1] ≥ 2λj√

2π

∫ 1/
√
λ∞

0
z2e−

z2

2 dz.

Since the left hand side is summable, we conclude that

∞∑
j=1

λj <∞.

4.6.2 Proofs Section 4.2

Throughout we denote by πNMC the empirical random measure

πNMC :=
1

N

N∑
n=1

δun , un ∼ π.

We recall that µN denotes the particle approximation of µ based on sampling from

the proposal π.
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4.6.2.1 Proof of Theorem 4.2.1

Proof of Theorem 4.2.1. For the bias we write

µN (φ)− µ(φ) =
1

πNMC(g)
πNMC(φg)− µ(φ)

=
1

πNMC(g)
πNMC

((
φ− µ(φ)

)
g
)
.

Then, letting φ := φ− µ(φ) and noting that

π(φg) = 0

we can rewrite

µN (φ)− µ(φ) =
1

πNMC(g)

(
πNMC(φg)− π(φg)

)
.

The first of the terms in brackets is an unbiased estimator of the second one, and so

E
[
µN (φ)− µ(φ)

]
= E

[( 1

πNMC(g)
− 1

π(g)

)(
πNMC(φg)− π(φg)

)]

= E

[
1

πNMC(g)π(g)

(
π(g)− πNMC(g)

)(
πNMC(φg)− π(φg)

)]
.

Therefore,∣∣∣E[µN (φ)− µ(φ)
]∣∣∣

≤
∣∣∣∣E[(µN (φ)− µ(φ)

)
1{2πNMC(g)>π(g)}

]∣∣∣∣+

∣∣∣∣E[(µN (φ)− µ(φ)
)
1{2πNMC(g)≤π(g)}

]∣∣∣∣
≤ 2

π(g)2
E
[∣∣π(g)− πNMC(g)

∣∣∣∣πNMC(φg)− π(φg)
∣∣]+ 2P

(
2πNMC(g) ≤ π(g)

)
≤ 2

π(g)2

1√
N
π
(
g2
)1/2 2√

N
π
(
g2
)1/2

+ 2P
(

2πNMC(g) ≤ π(g)
)
,

where in the second and third inequality we used that |φ| ≤ 1. Now note that

P
(

2πNMC(g) ≤ π(g)
)

= P
(

2(πNMC(g)−π(g)) ≤ −π(g)
)
≤ P

(
2|πNMC(g)−π(g)| ≥ π(g)

)
.

By the Markov inequality P
(

2πNMC(g) ≤ π(g)
)
≤ 4

N
π(g2)
π(g)2

, and so

sup
|φ|≤1

∣∣∣E[µN (φ)− µ(φ)
]∣∣∣ ≤ 12

N

π(g2)

π(g)2
.
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This completes the proof of the result for the bias. For the MSE

µN (φ)− µ(φ) =
1

πNMC(g)
πNMC(φg)− 1

π(g)
π(φg)

=

(
1

πNMC(g)
− 1

π(g)

)
πNMC(φg)− 1

π(g)

(
π(φg)− πNMC(φg)

)
=

1

π(g)

(
π(g)− πNMC(g)

)
µN (φ)− 1

π(g)

(
π(φg)− πNMC(φg)

)
, (4.6.1)

and so using the inequality (a+ b)2 ≤ 2(a2 + b2) we obtain

(
µN (φ)− µ(φ)

)2 ≤ 2

π(g)2

{(
π(g)− πNMC(g)

)2
µN (φ)2 +

(
π(φg)− πNMC(φg)

)2
}
.

Therefore, for |φ| ≤ 1,

E
[(
µN (φ)− µ(φ)

)2] ≤ 2

π(g)2

{
E
[(
π(g)− πNMC(g)

)2
]

+ E
[(
π(φg)− πNMC(φg)

)2
]}

=
2

π(g)2

{
Varπ

(
πNMC(g)

)
+ Varπ

(
πNMC(φg)

)}
≤ 2

Nπ(g)2

{
π
(
g2
)

+ π
(
φ2g2

)}
≤ 4

N

π
(
g2
)

π(g)2
,

and the proof is complete.

Remark 4.6.3. The constant 12 for the bias can be somewhat reduced by using in

the proof the indicator 1{aπNMC(g)≤π(g)} instead of 1{2πNMC(g)≤π(g)} and optimizing over

a > 0. Doing this yields the constant C ≈ 10.42 rather than C = 12.

4.6.2.2 Proof of Theorem 4.2.3

The proof of the MSE part of Theorem 4.2.3 uses the approach of [Doukhan and

Lang, 2009] for calculating moments of ratios of estimators. The proof of the bias

part is very similar to the proof of the bias part of Theorem 4.2.1.

In order to estimate the MSE, we use [Doukhan and Lang, 2009, Lemma 2]

which in our setting becomes:
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Lemma 4.6.4. For 0 < θ < 1, it holds

∣∣µN (φ)− µ(φ)
∣∣ ≤ |πNMC(φg)− π(φg)|

π(g)
+
|πNMC(φg)|
π(g)2

|πNMC(g)− π(g)|

+ max
1≤n≤N

|φ(un)| |π
N
MC(g)− π(g)|1+θ

π(g)1+θ
.

The main novelty of the above lemma compared to the bounds we used in

the proof of Theorem 4.2.1, is not the bound on φ using the maximum, but rather

the introduction of θ ∈ (0, 1). This will be apparent in the proof of Theorem 4.2.3

below.

We also repeatedly use Hölder’s inequality in the form

E
[
|uv|s

]
≤ E

[
|u|sa

] 1
aE
[
|v|sb

] 1
b ,

for any s > 0 and for a, b > 1 such that 1
a + 1

b = 1, as well as the Marcinkiewicz-

Zygmund inequality [Ren and Liang, 2001], which for centered i.i.d. random vari-

ables Xn gives

E

[∣∣∣ N∑
n=1

Xn

∣∣∣t] ≤ CtN t
2E
[
|X1|t

]
, ∀t ≥ 2.

There are known bounds on the constants, namely C
1
t
t ≤ t − 1, [Ren and Liang,

2001]. We apply this inequality in several occasions with Xn = h(un) − π(h) for

different functions h, in which case we get

E
[∣∣πNMC(h)− π(h)

∣∣t] ≤ CtE[∣∣h(u1)− π(h)
∣∣t]N− t2 , ∀t ≥ 2. (4.6.2)

We are now ready to prove Theorem 4.2.3.

Proof of Theorem 4.2.3. We first prove the MSE part. By Lemma 4.6.4 we have

that

E
[(
µN (φ)− µ(φ)

)2] ≤ 3A1 + 3A2 + 3A3,

where A1, A2, A3 correspond to the second moments of the three terms respectively.

1. For the first term we have

A1 =
1

π(g)2
E
[(
πNMC(φg)− π(φg)

)2
]
≤ 1

π(g)2
E
[(
φ(u1)g(u1)− π(φg)

)2
]
N−1.
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2. For the second term, Hölder’s inequality gives

A2 =
1

π(g)4
E
[∣∣πNMC(φg)

(
πNMC(g)− π(g)

)∣∣2]
≤ 1

π(g)4
E
[∣∣πNMC(φg)

∣∣2d] 1
dE
[∣∣πNMC(g)− π(g)

∣∣2e] 1
e
,

where 1
d + 1

e = 1. Use of the triangle inequality yields

E
[∣∣πNMC(φg)

∣∣2d] 1
d

=
1

N2
E
[∣∣∣ N∑
n=1

φ(un)g(un)
∣∣∣2d] 1

d

≤ π
(
|φg|2d

) 1
d .

Combining with (4.6.2) (note that t = 2e > 2) we get

A2 ≤
1

π(g)4
π
(
|φg|2d

) 1
dC

1
e
2eE
[∣∣g(u1)− π(g)

∣∣2e] 1
e
N−1.

3. By Hölder we have

A3 =
1

π(g)2(1+θ)
E

[
max

1≤n≤N
|φ(un)|2

∣∣π(g)− πNMC(g)
∣∣2(1+θ)

]

≤ 1

π(g)2(1+θ)
E

[
max

1≤n≤N

∣∣φ(un)
∣∣2p] 1

p

E

[∣∣π(g)− πNMC(g)
∣∣2q(1+θ)

] 1
q

,

where 1
p + 1

q = 1. Note that

E

[
max

1≤n≤N

∣∣φ(un)
∣∣2p] 1

p

≤ E

[
N∑
n=1

∣∣φ(un)
∣∣2p] 1

p

= N
1
pπ
(
|φ|2p

) 1
p .

Combining with (4.6.2), with tθ = 2q(1 + θ) > 2, we get

A3 ≤
1

π(g)2(1+θ)
N

1
pπ
(
|φ|2p

) 1
pC

1
q

tθ
E
[∣∣g(u1)− π(g)

∣∣tθ] 1
q
N−1−θ.

Now choosing θ = 1
p ∈ (0, 1) gives the desired order of convergence

A3 ≤
1

π(g)
2(1+ 1

p
)
π(|φ|2p)

1
pC

1
q

2q(1+ 1
p

)
E
[∣∣g − π(g)

∣∣2q(1+ 1
p

)
] 1
q
N−1.

This completes the proof of the MSE part. For the bias, as in the proof of
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Theorem 4.2.1 we have∣∣∣E[µN (φ)− µ(φ)
]∣∣∣

≤ 2

π(g)2
E
[∣∣∣π(g)− πNMC(g)

∣∣∣∣∣∣πNMC(φg)− π(φg)
∣∣∣]+

∣∣∣∣E[(µN (φ)− µ(φ)
)
1{2πNMC(g)≤π(g)}

]∣∣∣∣,
where φ = φ− µ(φ). Using the Cauchy-Schwarz inequality we obtain∣∣∣E[µN (φ)− µ(φ)

]∣∣∣
≤ 2

π(g)2
E
[∣∣π(g)− πNMC(g)

∣∣2] 1
2E
[∣∣πNMC(φg)− π(φg)

∣∣2] 1
2

+ E
[(
µN (φ)− µ(φ)

)2] 1
2P
(

2πNMC(g) ≤ π(g)
) 1

2

≤ 2

π(g)2

1

N
E
[∣∣g(u1)− π(g)

∣∣2] 1
2E
[∣∣φ(u1)g(u1)− π(φg)

∣∣2] 1
2

+
C

1
2
MSE

N
1
2

2

N
1
2

π(g2)
1
2

π(g)
,

where to bound the probability of 2πNMC(g) ≤ π(g) we use the Markov inequality

similarly as in the analogous part of the proof of Theorem 4.2.1.

4.6.3 Proofs Section 4.3

We next state a lemma collecting several useful properties of the trace of linear op-

erators. A compact linear operator T is said to belong in the trace class family, if its

singular values {σi}∞i=1 are summable. In this case we write Tr(T ) =
∑∞

i=1 σi, while

for notational convenience we define the trace even for non-trace class operators,

with infinite value. T is said to belong in the Hilbert-Schmidt family, if its singular

values are square summable (equivalently if T ∗T is Hilbert-Schmidt).

Lemma 4.6.5. Let T be an operator on a Hilbert space H. Suppose for the next

three items that T is trace class. Then

i) Tr(T ∗) = Tr(T ). In particular, if the eigenvalues of T are real then Tr(T ∗) =

Tr(T );

ii) for any bounded operator B in H, Tr(TB) = Tr(BT ). This assertion also

holds if T and B are Hilbert-Schmidt;

iii) for any bounded operator B in H, Tr(TB) = Tr(BT ) ≤ ‖B‖Tr(T ).

For any bounded linear operator T , it holds that

iv) Tr(T ∗T ) = Tr(TT ∗),
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where if T (equivalently T ∗) is not Hilbert-Schmidt, we define the trace to be +∞.

If T is a linear operator and P is bounded and positive definite, such that

TP−1 (equivalently P−
1
2TP−

1
2 or P−1T ) is bounded, it holds that

v) Tr(TP ) = Tr(P
1
2TP

1
2 ) = Tr(PT ),

where as in (iv) we allow infinite values of the trace.

Finally, suppose that D1 is positive definite and D2 is positive semi definite,

and that T is self adjoint and bounded in H. Furthermore, assume that D−1
1 T and

(D1 +D2)−1T have eigenvalues. Then

vi) Tr(D−1
1 T ) ≥ Tr

(
(D1 +D2)−1T ).

Proof. The proofs of parts (i)-(iii) can be found in [Lax, 2002, Section 30.2], while

(iv) is an exercise in [Lax, 2002, Section 30.8]. Part (v) can be shown using the

infinite-dimensional analogue of matrix similarity, see [Apostol et al., 1982, Section

2]. In particular, if we multiply TP to the left by P 1/2 and to the right by P−1/2,

we do not change its eigenvalues hence neither its trace, so Tr(TP ) = Tr(P
1
2TP

1
2 ).

Similarly, if we multiply TP to the left by P and to the right by P−1, we get

Tr(TP ) = Tr(PT ). Part (vi) follows from the stronger fact that the ordered eigen-

values of D−1
1 T are one by one bounded by the ordered eigenvalues of (D1 +D2)−1T .

This in turn can be established using that the eigenvalues of these operators are de-

termined by the generalized eigenvalue problem Tv = λD1v and Tv = λ(D1 +D2)v,

with associated Rayleigh quotients

〈x, Tx〉
〈x,D1x〉

≥ 〈x, Tx〉
〈x, (D1 +D2)x〉

, (4.6.3)

and an application of the Rayleigh-Courant-Fisher theorem (see [Lax, 2002] and

[Reed and Simon, 1978]).

4.6.3.1 Proofs of subsection 4.3.2

Proof of Proposition 4.3.4. Under the given assumptions, expression (4.3.4) for C−1

is well-defined and gives

Σ
1
2C−1Σ

1
2 = I +A. (4.6.4)
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Thus

Tr(A) = Tr(C
1
2C−1Σ

1
2 − I)

= Tr
(
C

1
2 (C−1 − Σ−1)Σ

1
2
)

= Tr
(
(C−1 − Σ−1)Σ

)
,

where the last equality is justified using the cyclic property of the trace, Lemma

4.6.5(ii). For the second identity, since (I +A)−1A = I − (I +A)−1, we have again

by (4.6.4)

Tr((I +A)−1A) = Tr
(
I − (I +A)−1

)
= Tr

(
I − Σ−1/2CΣ−1/2

)
= Tr

(
Σ−1/2(Σ− C)Σ−1/2

)
= Tr

(
(Σ− C)Σ−1

)
,

where the last equality is again justified via the cyclic property of the trace.

Remark 4.6.6. Proposition 4.3.4 also holds in the general separable Hilbert space

setting, provided that formula (4.3.4) for the precision operator of the posterior is

justified, see [Agapiou et al., 2013, Section 5]. Indeed, the proofs of the two identities

are almost identical to the finite dimensional case, the only difference being in the

justification of the last equalities in the two sequences of equalities above. In this

case the two trace-commutativity equalities have to be justified using Lemma 4.6.5(v)

rather than Lemma 4.6.5(ii). In the first case, Lemma 4.6.5(v) can be applied, since

A = Σ
1
2 (C−1 − Σ−1)Σ

1
2 is bounded by Assumption 4.3.3, and Σ is assumed to be

positive definite and bounded. In the second case, Lemma 4.6.5(v) can be applied,

since by Assumption 4.3.3 the operator (I + A)−1A is bounded, and Σ is bounded

and positive definite.

Proof of Proposition 4.3.5. 1. We have that (vi, µi) is an eigenvector/value pair

of the first matrix if and only if (Γ−1/2vi, µi) is of the second. It is also

immediate that (vi, µi) is a pair for the second if and only if (S∗vi, µi) is for

A(I +A)−1. However, it is also easy to check that A(I +A)−1 = (I +A)−1A.

2. In view of the above, note that (vi, µi) is a pair for (I + A)−1A if an only if

(vi, µi/(1 − µi)) is for A. Hence, if λi is an eigenvalue of A, λi/(1 + λi) is

one for the other matrices. Given that this is always less or equal to 1 and
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the efd is a trace of either dy × dy or du × du matrices, the inequality follows

immediately.

Proof of Lemma 4.3.6. If A is trace class then it is compact and since it is also

self-adjoint and nonnegative it can be shown (for example using the spectral repre-

sentation of A) that
∥∥(I +A)−1

∥∥ ≤ 1. Then Lemma 4.6.5(iii) implies that

Tr
(
(I +A)−1A

)
≤ Tr(A).

Assume now that (I + A)−1A is trace class. Then A is too since it is the

product of the bounded operator I+A and the trace class operator (I+A)−1A, see

again Lemma 4.6.5(iii). In particular,

Tr(A) ≤ ‖I +A‖Tr
(
(I +A)−1A

)
.

4.6.3.2 Proofs of subsection 4.3.3

Proof of Theorem 4.3.7. i)⇔ ii) is immediate from Lemma 4.3.6.

ii) ⇔ iii) It holds that Γ−
1
2Ku ∼ N(0,Γ−

1
2KΣK∗Γ−

1
2 ) since Γ−

1
2Ku is a linear

transformation of the Gaussian u ∼ Pu = N(0,Σ). By Lemma 4.6.2 and since A has

eigenvalues, we hence have that Γ−
1
2Ku ∈ H if and only if Tr(Γ−

1
2KΣK∗Γ−

1
2 ) <∞.

iii) ⇒ iv) According to the discussion in Subsection 4.6.1 on the absolute

continuity of two Gaussian measures with the same covariance but different means,

the Gaussian likelihood measure Py|u = N(Ku,Γ) and the Gaussian noise measure

Pη = N(0,Γ) are equivalent if and only if Γ−
1
2Ku ∈ H. Under iii), we hence have

that Py|u and Pη are equivalent for π-almost all u and under the Cameron-Martin

formula [Da Prato and Zabczyk, 1992] for π-almost all u we have

dPy|u
dPη

(y) = exp

(
−1

2

∥∥∥Γ−1/2Ku
∥∥∥2

+
〈
Γ−1/2y,Γ−1/2Ku

〉)
=: g(u; y).

Defining the measure ν0(u, y) := π(u)× Pη(y) in X × Y, we then immediately have

that
dν

dν0
(u, y) = g(u; y),

where ν is the joint distribution of (u, y) under the model y = Ku + η with u and
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η independent Gaussians N(0,Σ) and N(0,Γ) respectively.

We next show that π(g(·; y)) > 0 for Pη-almost all y, which will in turn enable

us to use a standard conditioning result to get that the posterior is well defined and

absolutely continuous with respect to the prior. Indeed, it suffices to show that

g(u; y) > 0 ν0-almost surely. Fix u ∼ π. Then, as a function of y ∼ Pη the negative

exponent of g is distributed as N(1
2‖Γ

− 1
2Ku‖2, ‖Γ−

1
2Ku‖2) where ‖Γ−

1
2Ku‖2 <∞

with π probability 1. Therefore, for ν0-almost all (u, y) the exponent is finite and

thus g is ν0-almost surely positive implying that π(g(·; y)) > 0 for Pη-almost all y.

Noticing that the equivalence of ν and ν0 implies the equivalence of the marginal

distribution of the data under the model, νy, with the noise distribution Pη, we get

that π(g(·; y)) > 0 for νy-almost all y. Hence, we can apply Lemma 5.3 of [Hairer

et al., 2007], to get that the posterior measure Pu|y(·) = ν(·|y) exists νy-almost

surely and is given by

dµ

dπ
(u) =

1

π(g)
exp

(
− 1

2γ

∥∥∥Γ−1/2Ku
∥∥∥2

+
1

γ

〈
Γ−1/2y,Γ−1/2Ku

〉)
.

Finally, we note that since dν
dν0

= g, we have that
∫
X×Y g dν0(u, y) = 1. Thus

the Fubini-Tonelli theorem implies that π(g(·; y)) <∞ for Pη-almost all y and hence

also for νy-almost all y.

iv) ⇒ ii) Under iv) we have that the posterior measure µ which, as dis-

cussed in Subsection 4.3.1, is Gaussian with mean and covariance given by (4.3.2)

and (4.3.3), is y-almost surely absolutely continuous with respect to the prior π =

N(0,Σ). By the Feldman-Hajek theorem [Da Prato and Zabczyk, 1992], we hence

have that y-almost surely the posterior mean lives in the common Cameron-Martin

space of the two measures. This common Cameron-Martin space is the image space

of Σ
1
2 in H. Thus we deduce that w := Σ−

1
2 ΣK∗(KΣK∗+Γ)−1y ∈ H almost surely.

We next observe that, under ν, Γ−
1
2 y ∼ N(0, SS∗ + I). Furthermore

w = S∗(SS∗ + I)−1Γ−
1
2 y,

thus under ν, w ∼ N(0, S∗(SS∗ + I)−1S) where S is defined in Assumption 4.3.3.

Using Lemma 4.6.2, we thus get that iv) implies that S∗(SS∗+ I)−1S is trace class.

Using Lemma 4.6.5(iv) with T = (SS∗ + I)−
1
2S, we then also get that (SS∗ +

I)−
1
2SS∗(SS∗ + I)−

1
2 is trace class. Since (SS∗ + I)

1
2 is bounded, using Lemma

4.6.5(iii) twice we get that SS∗ is trace class. Finally, again using Lemma 4.6.5(iv)

we get that S∗S is trace class, thus ii) holds.
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4.6.3.3 Proofs of subsection 4.3.4

The scalings of τ and efd can be readily deduced by comparing the sums defining τ

and efd with integrals:

τ(β, γ, d) ≈ 1

γ

∫ d

1

1

xβ
dx, efd ≈

∫ d

1

1

1 + γxβ
= γ−1/β

∫ dγ1/β

γ

1

1 + yβ
dy.

Our analysis of the sensitivity of ρ = ρ(β, γ, d) to the model parameters

relies in the following expression for ρ, which is valid unless the effective dimension

is infinite, i.e. unless d =∞, β ≤ 1.

In the next result, and in the analysis that follows, we ease the notation by

using subscripts to denote the coordinate of a vector. Thus we write, for instance,

yj rather than y(j).

Lemma 4.6.7. Under Assumption 4.3.9

ρ = ρ(β, γ, d) :=

d∏
j=1

j−β

γ + 1√
2 j
−β

γ + 1
exp

(
d∑
j=1

(
2

2 + γjβ
− 1

1 + γjβ

)
y2
j

γ

)
, (4.6.5)

which is finite for νy-almost all y.

Proof of Lemma 4.6.7. We rewrite the expectation with respect to π as an expec-

tation with respect to the law of Ku as follows. Note that here uj is a dummy

integration variable, which represents the j-th corrdinate of Ku, rather than that
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of u. Precisely, we have:

π
(
g(·, y)

)
=

∫
X
g(u, y)dπ(u)

=

∫
X

exp

− 1

2γ

∞∑
j=1

u2
j +

1

γ

d∑
j=1

yjuj

 d

 d⊗
j=1

N
(

0, j−β
)

(uj)



=
d∏
j=1

∫
R

exp

(
− 1

2γ
u2
j +

1

γ
yjuj

) exp

(
− jβu2j

2

)
√

2πj−β
duj

=
d∏
j=1

1√
2πj−β

∫
R

exp

(
−(γ−1 + jβ)

u2
j

2
+

1

γ
yjuj

)
duj

=

d∏
j=1

exp

(
γ−2y2j

2(γ−1+jβ)

)
√

2πj−β

∫
R

exp

−(γ−1 + jβ)

(
uj − γ−1yj

γ−1+jβ

)2

2

 duj

=
d∏
j=1

√
jβ

γ−1 + jβ
exp

(
γ−2y2

j

2(γ−1 + jβ)

)

=
d∏
j=1

√
γjβ

1 + γjβ
exp

(
γ−1y2

j

2(1 + γjβ)

)
.

Thus,

π
(
g(·, y)

)2
=

d∏
j=1

γjβ

1 + γjβ
exp

(
γ−1y2

j

1 + γjβ

)
and

π
(
g(·, y)2

)
=

d∏
j=1

√
γjβ

2 + γjβ
exp

(
2γ−1y2

j

2 + γjβ

)
,

Taking the corresponding ratio gives the expression for ρ.

Analysis of scalings of ρ. Here we show how to obtain the scalings in Table 4.1.

Taking logarithms in (4.6.5)

log(ρ) =
d∑
j=1

log

(
j−β

γ + 1√
2 j
−β

γ + 1

)
+

d∑
j=1

(
2

2 + γjβ
− 1

1 + γjβ

)
γ−1y2

j . (4.6.6)

Note that every term of both sums is positive. In the small noise regimes the first

sum dominates, whereas in the large d, β ↘ 1 the second does. We show here how

to find the scaling of γ → 0 when d =∞.
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We have that

log(ρ) ≥
∞∑
j=1

log

(
j−β

γ + 1√
2 j
−β

γ + 1

)

≈
∫ f(γ)

1
log

(
x−β

γ + 1√
2x
−β

γ + 1

)
dx+

∫ ∞
f(γ)

log

(
x−β

γ + 1√
2x
−β

γ + 1

)
dx

where f(γ) is a function of γ that we are free to choose. Choosing f(γ) = γ−1/β−ε

(ε small) the first integral dominates the second one and, for small γ, log(ρ) ≥
γ−1/β−ε log(γ−εβ/2) from where the result in Table 4.1 follows. The joint large d,

small γ scalings can be established similarly.

When the second sum in (4.6.6) dominates, the scalings hold in probability.

To illustrate this, we study here how to derive the large d limit with β < 1. Without

loss of generality we can assume in what follows that each yj is centered, i.e. yj ∼
N(0, γ) instead of yj ∼ N

(
(Ku)†j , γ

)
. This is justified since, for any c > 0,

P(y2
j ≥ c) = P(|yj | ≥ c1/2) ≥ P(|yj − (Ku)†j | ≥ c

1/2).

Neglecting the first sum in (4.6.6), which can be shown to be of lower order in d,

we get
d∑
j=1

(
2

2 + γjβ
− 1

1 + γjβ

)
γ−1y2

j = S(y, d).

Using that Ey2
j = γ,

E log(ρ) ≥
d∑
j=1

(
2

2 + γjβ
− 1

1 + γjβ

)

≈
∫ d

1

(
2

2 + γxβ
− 1

1 + γxβ

)
dx ≈ d1−β =: m(d).

Also, since Var(y2
j ) = 3γ2,

Var log(ρ) ≥
d∑
j=1

(
2

2 + γjβ
− 1

1 + γjβ

)2

γ2

≈
∫ d

1

(
2

2 + γxβ
− 1

1 + γxβ

)2

dx ≈ d1−2β =: c(d).
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Thus we have

P
(

log(ρ) ≥ m(d)/2
)
≥ P

(
S(y, d) ≥ m(d)/2

)
≥ P

(
S(y, d) ≥ ES(y, d)/2

)
≥ P

(
|S(y, d)− ES(y, d)| ≤ ES(y, d)/2

)
= 1− P

(
|S(y, d)− ES(y, d)| ≥ ES(y, d)/2

)
≥ 1− P

(
|S(y, d)− ES(y, d)| ≥ m(d)/2

)
≥ 1− 4

c(d)

m(d)2
→ 1.

4.6.4 Proofs Section 4.4

The following lemma will be used in the proof of Theorem 4.4.5. It justifies the

use of the cyclic property in calculating certain traces in the infinite dimensional

setting.

Lemma 4.6.8. Suppose that A = S∗S, where S = Γ−1/2KΣ1/2 as in Assumption

4.3.3 is bounded. Then

τ = Tr(A) = Tr(Γ−1KΣK∗).

Therefore, using the equivalence in Table 4.2 we have that τst and τop admit the

following equivalent expressions:

τst = Tr
(
R−1H(MPM∗ +Q)H∗

)
(4.6.7)

and

τop = Tr
(
(R+HQH∗)−1HMPM∗H∗

)
. (4.6.8)

Proof. Using Lemma 4.6.5(iv) we have that τ = Tr(S∗S) = Tr(SS∗). Now note

that SS∗ = Γ−1/2KΣK∗Γ−1/2 is bounded since A is, and that Γ1/2 is also bounded,

hence we can use Lemma 4.6.5(v) to get the desired result.
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Proof of Theorem 4.4.5. Using the previous lemma,

τst = Tr
(
R−1HMPM∗H∗

)
+ Tr

(
R−1HQH∗

)
≥ Tr

(
R−1HMPM∗H∗

)
≥ Tr

(
(R+HQH∗)−1HMPM∗H∗

)
= τop,

where the first inequality holds because R is positive-definite and HQH∗ is positive

semi definite, and the second one follows from Lemma 4.6.5(vi).

If Tr(HQH∗R−1) <∞ then there is c > 0 such that, for all x, ‖HQH∗x‖ ≤
c‖Rx‖. Hence applying again Lemma 4.6.5(vi) for both directions of the equivalence,

we obtain that

τop = Tr
(

(R+HQH∗)−1HMPM∗H∗
)
<∞ ⇐⇒ Tr

(
R−1HMPM∗H∗

)
<∞

⇐⇒ τst <∞.
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interacting particle systems. Université de Toulouse. Laboratoire de Statistique et

Probabilités, 1998.

G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge

University Press, 1992.

M. Dashti and A. M. Stuart. Uncertainty quantification and weak approximation of

an elliptic inverse problem. SIAM Journal on Numerical Analysis, 49:2524–2542,

2011.

M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. Handbook

of Uncertainty Quantification, 2016.

M. Dashti, S. Harris, and A. M. Stuart. Besov priors for bayesian inverse problems.

Inverse Problems and Imaging, 6:183–200, 2012.

M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss. Map estimators and posterior

consistency in bayesian nonparametric inverse problems. Inverse Problems, 29:

095017, 2013.

P. Del Moral. Feynman-Kac Formulae. Springer, 2004.

P. Del Moral. Mean Field Simulation for Monte Carlo Integration. CRC Press,

2013.

P. Del Moral and L. Miclo. Branching and interacting particle systems approxima-

tions of Feynman-Kac formulae with applications to non-linear filtering. Springer,

2000.

F. X. Dimet and O. Talagrand. Variational algorithms for analysis and assimilation

of meteorological observations: theoretical aspects. Tellus A, 38(2):97–110, 1986.

R. Douc, E. Moulines, and Y. Ritov. Forgetting of the initial condition for the filter

in general state-space hidden markov chain: a coupling approach. Electronic

Journal of Probability, 14:27–49, 2009.

144



A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing:

Fifteen years later. Handbook of Nonlinear Filtering, 12(656-704):3, 2009.

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods

for Bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.

P. Doukhan and G. Lang. Evaluation for moments of a ratio with application to

regression estimation. Bernoulli, 15(4):1259–1286, 2009.

P. J. Downey and P. E. Wright. The ratio of the extreme to the sum in a random

sequence. Extremes, 10(4):249–266, 2007. doi: 10.1007/s10687-007-0044-0.

M. M. Dunlop and A. M. Stuart. The bayesian formulation of eit: Analysis and

algorithms. arXiv preprint arXiv:1508.04106, 2015.

P. Dupuis, K. Spiliopoulos, and H. Wang. Importance sampling for multiscale dif-

fusions. Multiscale Modeling & Simulation, 10(1):1–27, 2012.

H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume

375. Springer Science &amp; Business Media, 1996.

G. Evensen. The ensemble Kalman filter: Theoretical formulation and practical

implementation. Ocean Dynamics, 53(4):343–367, 2003.

J. N. Franklin. Well-posed stochastic extensions of ill-posed linear problems. Journal

of Mathematical Analysis and Applications, 31(3):682–716, 1970.
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