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We consider the 1/N-expansion of the moments of the proper delay times for a ballis-
tic chaotic cavity supporting N scattering channels. In the random matrix approach,
these moments correspond to traces of negative powers of Wishart matrices. For
systems with and without broken time reversal symmetry (Dyson indices 8 = 1 and
S = 2), we obtain a recursion relation, which efficiently generates the coefficients
of the 1/N-expansion of the moments. The integrality of these coefficients and their
possible diagrammatic interpretation is discussed. © 2016 Author(s). All article con-
tent, except where otherwise noted, is licensed under a Creative Commons Attribution
3.0 Unported License. [http://dx.doi.org/10.1063/1.4966642]

. INTRODUCTION AND STATEMENT OF THE RESULTS
A. Background

The Wigner-Smith!'!374% time-delay matrix Q plays a central role in the theory of quantum
transport.'*3 It is defined in terms of the N-channel scattering matrix S via the relation

0S(E)
T0E @

where E is the energy of the incoming particle. If S is unitary, it is easily seen that Q is Hermitian.
The eigenvalues 7,...,7y of Q are called proper delay times. Apart from the scalar case (N = 1),
the individual proper delay times 73 have no immediate physical meaning. Physically relevant quan-
tities are instead unitarily invariant functions of Q such as powers of traces TrQ* = T]k +o 4+ Tllf,.
In fact, several measurable observables are entirely determined by these powers of traces. For
instance, the Wigner delay time TrQ is a bona fide measure of the time spent by an incident
particle in the scattering region. Higher powers turn out to play a role in AC electronic trans-
port,>®!15 e.g., in the low frequency expansion (w — 0) of the AC dimensionless conductance
G(w) = [-wTrQ + (1/2)w?TrQ? + - - ].

Using the random matrix approach to ballistic chaotic scattering, with the assumption that the
internal Hamiltonian of the cavity belongs to a unitarily invariant ensemble with a large number
of bound states, Brouwer, Frahm and Beenakker* showed (in quite an ingenious way) that the
eigenvalues of (NQ)™' are distributed as those of matrices in the Laguerre ensemble. In other
words, denoting the latter rates by Ai,. .., Ay, their joint probability density is supported on RY and
proportional to

Q = —-inS'(E)

[ J1ai= P [ [N e w2, @)
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where 8 € {1,2,4} according to the physical symmetries of the cavity (hereafter the delay times 7
are measured in units of the Heisenberg time 7x). The above joint distribution is valid in the pres-
ence of completely transparent contacts between the cavity and the external world. The situation
of perfect coupling is indeed the most relevant, because it is possible to reduce arbitrary non-ideal
coupling to the ideal case using the procedure in Refs. 33 and 35.

Our main result gives an asymptotic expansion as N — oo for the average moments (k > 0)

N
P = N“IE[TiQF] = E

3)

i=1

where the expectation E[-] is taken with respect to (2). In particular, we derive explicit recurrence
relations which efficiently provide the coefficients of the expansion to all orders in 1/N.

Theorem 1.1 (Ref. 27). For all three symmetry classes B € {1,2,4}, the following asymptotic
expansion holds:

Z (B)N g 4)

It is tempting to call (4) a “genus” expansion. For complex Gaussian Hermitian matrices
(Gaussian unitary ensemble (GUE)), the large-N expansion of the moments indeed enumerates
maps of given genus.'>*! Although we cannot prove that our expansion is related to the enumeration
of maps, we have strong evidence of an underlying enumeration problem also for the moments
of the ensemble modelling the Wigner-Smith time-delay matrix. More precisely, in this paper
we extend a previous conjecture® on the integrality of the large-N expansion coefficients for the
cumulants of Ter beyond the leading order.

Clearly, 7”° = 1. It is known that the average Wigner delay time is Tl =1 for every N
and . There is no general result for T(ﬁ) for k > 1 and generic 5. For 8 =1 (systems with
time reversal symmetry) a finite-N formula is available, but is too lengthy to be reported here,
see Ref. 26, Eq. (27) For g = 2 the problem somehow simplifies. First, the expansion (4) contains
only powers of N2 (that is, 7! ; = 0 if g is odd); remarkably, two explicit finite-N formulae for T( )

are available in the literature. We report them here.

Proposition 1.2 (Eq. (19) of Ref. 26 and Eq. (6) of Ref. 30). The moments of the proper delay
times for B = 2 are

T(g):N"'N1(k+]—1)(k+j)F(2N—k—j)F(N+1) (sa)
k k = k-1 k-1 I(N-j) T(N)

NS (k= 1\T(N=j+k)T(N+j+1-k)

T Z(_l)j( j ) I(N—j) T(N+j+1) (5b)

These two formulae have been derived independently with two different methods. Formula (5b)
is quite hard to extract large-N asymptotics from (but this is possible, in principle, by using methods
similar to those discussed in Refs. 9 and 22). Formula (5a) behaves better than (5b); although
the number of terms in the sum is unbounded for large N, it is a sum of positive terms and the
only asymptotic analysis one needs is the complete asymptotic series for the ratio of two Gamma
functions. Along these lines of reasoning, the first three terms Tie () (g =0, 2, 4) of the large-N

expansion of T( ) have been obtained in Ref. 27. We also recall that the leading order coefficients

)

T, o are independent of 8 and given by the large Schrider numbers,>*

o) = 2Rl = ke, k; 2; 1), ©6)
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where ,F] is the classical Gauss hypergeometric function, and whose generating function has been
computed explicitly in Refs. 3 and 7. A systematic study of the 1/N-expansion for the time-delay
matrix moments for 8 = 1 and 8 = 2 is our objective.

B. Main results

Our central result is a recursion relation for the coefficients T,E'B g) of the asymptotic expan-

sion (4). As discussed in Ref. 8, the Laguerre measure (2) defines a one-cut B-ensemble. In
particular, as N — oo, the one-point marginal of (2) concentrates on a single interval whose
edges are 3 + V8. In this paper, we denote the monic polynomial vanishing at the edges by
y(z) = z2 — 6z + 1. (This is the so-called spectral curve of the S-ensemble (2).)

Theorem 1.3 (Finite-N recursion at § = 2). For every integer k > 1, and every N > 1,

(N2 = )k + D7) = 3N 2k = D7 + Nk - 2)7, = 0, (7)

with ‘r(z) = Tl(z) 1.

The recursion formula (7) is much more efficient than (5a) and (5b) to generate tables of the
moments of Q. See Appendix B. From Theorem 1.3 one obtains the recursion for the large-N
coeflicients T( ) asa corollary.

Corollary 1.4 (Double-recursion for the large-N coefficients at 8 = 2). The coefficients T, @ )

satisfy the homogeneous linear recurrence

(k+1) ,@1 = 32k - ,§2>+2+(k )t <2>1 o= KAk + 1) ,?jl =0, 8)

for g 2 0and k > 1, with initial conditions
T =Rl -k k2 -1), 1) =0, 752; So.e» ng) = 0. )
In particular, all coefficients T wzth odd g vanish identically.

Analogous results can be obtained for § = 1. In this case we found that 7, (1) (and therefore Theg ))
satisfy an inhomogeneous recursion.

Theorem 1.5 (Finite-N recursion at § = 1). For every integer k > 1, and every N > 1,

3
(@k(k + 1)+ 1= (N + 127, + 6N - N3 = o (k+3N)Nb - N?bi_y), (10a)
where the auxiliary sequence by is the solution of
(N +1)* - kz)(k + Dby — BN = 1)2k = 1)Nby + (k = 2)N*by_, = 0, (10b)

with T(I) = T(l) =1, by = 5+ L and by = NJ

Corollary 1.6 (Double-recursion for the large-N coefficients at § = 1). The coefficients T, a )

satisfy the inhomogeneous linear recurrence

) (1) ) M o __3
Tetl,g+1 - 67, et PO e T 2T, 4k(k + 1)7, N (bi-1,g+1 = 3biga1 = kbrg)
(11a)

where the auxiliary sequence by, is the solution of

2k -1 k-2 2k -1
bisi,g+1— 3mbk,g+l + _lbk—l,g+l + 2bp i1, + mbk,g +(1 = k*)bry1 -1 = 0, (11b)

for g > 0and k > 1. The initial conditions are

1 wf1-32-y3@
W F(1 - k. k:2; 1), r(”—ﬁa;")(—z y(z))

T =
k,0 k,1 Zy(z)

(12)

z=0



111901-4  Cunden et al. J. Math. Phys. 57, 111901 (2016)

Télﬁ 0, 71“; = 0o, (13)
1 7+ 1+34/y(2)

bro=2F(1 — k. k;2;-1), by = paék)(_— o (14)
: y(2) -

bO,g :6O,g _61,g5 bl,g = (_])g(2_60,g)' (15)

Again, the recursive formulae (10a) and (10b) and (11a) and (11b) can efficiently generate
tables of moments and their large- N expansion. See Appendix B.
The proof of Theorem 1.3 and Theorem 1.5 is given in Section III.

C. Generating functions

In this section, we derive explicit formulae for the generating functions of ‘r Let us consider
the formal power series

¢z.0) = Z tPkgs (16)
k,g=0

Using the recursions of Corollary 1.4 and Corollary 1.6 it is possible to obtain a differential equation
for ¢#)(z, ). For instance, for 8 = 2, the generating function ¢®(z, ¢) satisfies

Z
£200 + P26l -y + L () ¢?+4=0, (17)

but this third-order inhomogeneous differential equation (17) is not as tractable. (This was to be
expected, since ¢#)(z,¢) is only a formal power series.) To make some further progress in the
problem we introduce the “partial” generating functions

o

Fg’B)(Z) — ([ﬁ’)zk, (18)
k=0

10@¢) =Y e (19)
g=0

The series ¢®(z,¢) , F)(z) and J,Eﬁ )(¢) are of course related by

00 o

62,0 = Y FP@ee = Y 1P (20)
g=0 k=0
Remark 1. Note that ¢¥)(z, N~ is the generating function of the finite-N moments 7 ('B) and
J]((B )(N = ,EB ). The partial generating functions F;B )(z) are central objects in the perturbative
semiclassical approach.

The partial generating functions have a remarkably simple (i.e., algebraic) structure. We discuss
first the case 8 = 2.

Corollary 1.7. If g is odd, F, (2)(z) = 0. For g even, the generating function Féz)(z) satisfies
2)rr 2)r1
2Fg(, ) (x) + ng( ) (x)} ,

Fg(2+)2(Z) Vy(2) / 3/2
y(x) 21
Féz)(z) _2"%~ Vy(z)

2 ,
and has the following functional form (g > 1)
Rg(Z)

(2)
F Z = —’
8 ( ) y(z)(3g—1)/2

(22)

where R,(z) is a polynomial of degree 2g — 2.
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Corollary 1.8. The order k > 2 generating function J,iz)(f ) is a rational function of the form

P({?)

I = (23)
g T4 (1 = j22%)
(Jo(&) = J1(&) = 1), where Pr({) is a polynomial satisfying the three term recursion
kPi({) = 3(2k = 3)Pr1(Q) + (k = 3)(1 = (k = 2)’0)Pra() = O, 24)
Po(¢) = Pi(¢) = 1.

Outline of the proof. The proof of Corollary 1.8 goes as follows. First, one multiplies the recur-
sion (8) by £¢*! and sums over g to obtain a recursion for J,?) (£). Inserting the expression (23)
in the obtained recursion, elementary steps provide (24). It remains to be proved that P({) is a
polynomial. In fact Py({) = P1({) = 1 are polynomials. From (24) it also follows that if P;_;({) and
Py_»(Z) are polynomials so is Pi({). This completes the proof. The proof of Corollary 1.7 is again a
routine calculation (multiplication of (8) by z* and sum over k). However, in this case R,(2) satisfies
a recursion relation too complicated to be reported here. Nevertheless, it is easy to see that R, »(2)
is a polynomial if R,(z) is so, and to compute its degree. The details are omitted. O

From the partial generating functions Féz) and J ,Ez), it is possible to extract estimates on T,f) as
k — oo (respectively, g — oo) with g (respectively, k) fixed. These asymptotic results are based on
Darboux’s method!? (see the statement in Ref. 32, Theorem 11.3).

Corollary 1.9. The following asymptotics hold:

083 \/— —k .
@ _ Ag k™7 (3-V8) as k — cowith g > 1 fixed, 25)
k.2g By (k — 1) as g — cowith k > 1 fixed.
The constants A, and By are given explicitly by
1-6g
(525 v8) ¥ & (3-8

Ag = 6g—1 > (26)

r(*)

Py ((k—1)72

B, x (k= 1)) @7

T2 a- k-0

It is possible to obtain similar recursions for generating functions in the orthogonal case
B =1. Below we write the relation satisfied by Fg(l)(z) explicitly. In this case, the recurrence

relation for T,il)
.8

recursion for Fg(l)(z) is coupled to a (homogeneous) recursion for the auxiliary generating function
f2(2) = Y br. 2~ This fact complicates the structure of the formulae; it turns out that the generat-

is not homogeneous and involves the auxiliary sequence by . Therefore, the

ing functions Fg(l)(z) are algebraic functions but they do not have the simple functional form (22) of

Fg(2)(z). From a purely algorithmic point of view this is not a problem.

Corollary 1.10. The generating functions Fg(l)(z) satisfy for g > 1

@) = _y:z) /0 “dx {42 F01 () + 8xFV () = 2B (x) + 3(x = 3) fea(x) = Bx £y (%)}
28
1y, 3—z2-+y(2) my, \ _ 1=3z2-+/y(2) (280)
F@) = == B = —
y(2)

where the functions f,(z) satisfy
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ferr(2) = V5 (@) / o ) 20+ DA+ 20 0 = S 0)
372 NYR) s 2V e

2 ’ 2Vy(@)

The generating functions can be computed systematically and efficiently on standard computer
algebra packages. The first few functions F;ﬁ )(z) for =1 and B8 = 2 are reported in Appendix B.
We note that only the leading order (planar) g = 0 and first four corrections g = 1,...,4 have
appeared in the literature so far. (See Ref. 27 for the random matrix approach and Refs. 2, 3, and 23
for semiclassical techniques.)

fo(z) =

Il. INTEGRALITY CONJECTURE AND ITS HEURISTIC EXPLANATION

The inspection of the first values of T,Eﬁ g) for =1 and B =2 (see Table I) suggests that they
are positive integers. A similar fact has been recently observed’-®2® for the leading order in 1/N of
higher order cumulants of TrQ (covariance, third order cumulants, etc.).

Conjecture 1. For § =1and 2, Tlgﬂg) € N forevery k and g.

This conjecture extends beyond the leading order a generic conjectural statement® for the cu-
mulants of TrQ* at generic 8. We have considerable evidence supporting the conjecture. In fact, for
B = 2, using the functional form of the generating functions we can actually prove that infinitely
many T]f; ’s are positive integers. We proceed to prove the following:

Theorem 2.1. T,Ezi € Nforall k < k* andforall g < g*, where k* = 10000 and g* =

Proof. The proof is based on the partial generating functions J,EZ)(g’ ) and Féfz)(z). For a fixed k,

in order to prove that T,?; € N for all g, we consider the generating function Ji(¢). The representa-
tion (23) ’

Pu({?)
152 (1= 22

shows that a sufficient condition for T g @ o be non- negative integers is that the polynomial Py(¢)

ROE (29)

has non-negative integer coefficients (the series expansion of [] j( - j2? ) at { =0 is a product
of geometric series), as suggested by the inspection of the first few polynomials (see Appendix B).
Therefore, the claim “T,iz) € N for all g” involving an infinite number of coefficients can be proved
by exhaustion of a finite number of cases: first, one computes the polynomial Py(¢) using the
recursion (24); then, one checks that the finitely many coeflicients of Py({) are all non-negative
integers. This can be easily done by using a symbolic algebra software. (We have run a Maple code
to compute recursively Pi({) and verify that it has non-negative integer coefficients for all k < k*.)
The proof that if g < g* then T]f; € N for all k goes along similar lines. For g odd the proof is
trivial. Let us consider, for g even, the partial generating functions

Rg(z)

Féz)(z) = W (30)

Here we use the classical identity

m Zm(r)z , (31)

where p,(t) is the Legendre polynomial of degree £. Fort = 3,

4 2
ZOEDY (;) 2’ eN. (32)

p=0
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Hence we can focus on the coefficients of the polynomial R,(z). This case, however, is complicated
by the fact that, although these coefficients seem to be integers, they are not necessarily positive
(see Appendix B). Nevertheless, we can take advantage of (31) and (32) as follows. We have

00

=) G, with Cr= > pe(3)pr, (3 eN.  (33)
=0

01,0035 1=0

1

(2= 6z + 1)

[1+'“+£3g—1=[’

Note that Cgy > C. If we denote R,(z) = Z?iaz a2/, then

o [2g-2
Fo(z) = Z Z ag ;jCr—j z~. (34)
k=0 \ j=0
Since C¢ is nondecreasing we have
282 282
1= Y agCiy = Chopg) ), ag.j. (35
j=0 j=0

Therefore, we conclude that the two conditions (i) ag,; € Z and (ii) }; ag,; > 0 imply T,?; eN.
Again, these conditions can be verified case by case using symbolic algebra softwares. O

Obviously, the values k* and g* in Theorem 2.1 are fixed by limited computational power.

A. Semiclassical explanation of the conjecture

Periodic orbit theory is a collection of diversified results in the semiclassical analysis of quan-
tum systems. Since its creation,'®!33¢ the theory has played an important role in the mathematical
investigations of quantum chaos. Later, the ideas of periodic orbit theory were adapted to study
quantum transport in the chaotic regime. Not surprisingly, a scattering orbit approach to delay times
has also been developed.?*?>3! The semiclassical approach is formulated in terms of the classical
trajectories connecting the exterior and interior regions of the cavity. Each observable (e.g., T]iﬁ )) is
written as a sum over classical trajectories of wave amplitudes. The semiclassical contribution of a
trajectory is determined by its topological properties. Therefore, the set of trajectories is partitioned
according to topological properties where each class of trajectories is represented by a diagram with
a given number of incoming channels, links, and encounters. See the recent paper by Kuipers et al.”
for details. It turns out that the semiclassical contribution of a class of trajectories represented by a
diagram D is given by (=1)1PIN2D) where c1.2(D) € Z. Then, one should sum over all classes
of admissible trajectories (a sum over diagrams). It turns out that the admissible diagrams depend
on the presence or absence of time-reversal symmetry (the Dyson index £ in random matrix theory).
The sum over diagrams is usually the hard part of the semiclassical approach; however, since the
contribution of each diagram is given by the number of scattering channels N to some integer

power, it is clear that the coefficients in the 1/N-expansion of T,Eﬁ ) are integers. We also mention

that Novaes® computed the leading order of T,Eﬁ ) by considering the asymptotics of Selberg-like
integrals; his method consists in enumerating certain classes of lattice paths. As expected, those
paths were found to be in bijection with Schroder paths.

lll. INVERSE MOMENTS OF WISHART-LAGUERRE MATRICES

In this section, we present several new results on the moments of inverse Wishart matrices.
According to (2) and (3), the moments of the Wigner-Smith time-delay matrix Q are related to
the inverse moments of a set of random variables belonging to a specific Laguerre ensemble (see
Remark 2).
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A. Technical results

Let Wy be a N X N random matrix distributed according to the Wishart-Laguerre density

Ps.a(Wy) o e~ 2TVN) det(Wy) 2@+ D1, (36)

where « is a generic parameter satisfying R(a) > 0. This density is defined on the space of N x N
positive definite real symmetric and complex Hermitian matrices for 8 = 1 and 8 = 2, respectively.
We are interested in computing the moments (k € Z) and their large-N expansions

DP(k,a) = E[TtW)], (37)
where from now on E[-] denotes averaging with respect to (36), and « is large enough to ensure

that (37) is finite.

Remark 2. For our physical application on the Wigner-Smith time delay matrix we have T,EB ) =

N*'DPN(—k,N +2 - B), for B = 1 and 2.
Let us define the generating function

MP(s) = E[Te(Wye'"N)], (38)

where in what follows s < 0. For simplicity, the dependence of (38) on « is omitted. First we
present a lemma.

Lemma 3.1. The generating function Ml(f)(s) is related to moments via the identity

o 1MP(s)
Osk-1
(_1)\k\
|k|!

ifk > 0,
s—0~ (39)

0
/ M(,f)(s)s'klds ifk <0.

D (k,a) =

The next ingredient is that M(If)(s) satisfies a differential equation.

Theorem 3.2 (Generating function for 8 = 2, adaptation of Theorem 6.4 in Ref. 17). For
allN > 1, Mﬁ) satisfies the following homogeneous second-order differential equation:

s(1=sHMY" + (3 = 2(a +2N)s = 5HOMY” = B(a +2N) + 4s — a’s)MT = 0. (40)

Theorem 3.3 (Generating function for g =1). For all N > 1, Mz(\;) satisfies the following
inhomogeneous second-order differential equation:

(4s° - s)MI(J)” + s(16s +2(a — 1) + 4N)MI(\})/ + 59 - az)MI(\})
= (Bs+3)M’, — (Ba +6N - 6)MY . 1)

From these differential equations, it is easy to get a recurrence relation on the moments
D(Ig)(k, @) using Lemma 3.1. Indeed, for k < 0, multiplying (40) and (41) by s* and integrating from
—co to 0, one removes all mention of M(If)”(s) and M(NB)'(S) by successive integrations by parts and
then applies identity (39) to compute all integrals. Similarly, for £ > 0, one differentiates (40) and
(41) k times and then applies (39). Several cancellations simplify the outcome considerably. The
final results are the following recurrence relations.

Theorem 3.4 (Moments of complex Wishart matrices, 8 = 2). The moments Dg\zl)(k,a)
satisfy

(k +2)DQ(k + 1,@) = (2k + 1)(@ + 2N)DY(k, @) — (k — 1)(k> = Dk — 1,0) = 0. (42)
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Theorem 3.5 (Moments of real Wishart matrices, 8 = 1). The moments DE\I,)(k, @) satisfy
DYk +1,0) = (2(a = 1) +4N)D\)(k, @) — (1 — a* + 4k(k = 1))DV(k - 1,0)

= %((a+2N— k—1)DS (k@) - D) (k + 1,a)). (43)

Remark 3. Haagerup and Thorbjgrnsen [Ref. 17, Theorem 8.5] proved (40) and then deduced
the finite-N recurrence (42) for positive moments k > 0, thus generalizing the Harer-Zagier recur-
sion formula for GUE matrices'® to the complex Wishart ensemble. Here we show that the same
recursion holds for negative moments (k < 0). The differential equation (41) and the recursion (43)
for B =1 are new results. The inhomogeneous term in the differential equation (41) for 8 =1 is
related to a S = 2 ensemble; the reason for this will become clear in the proof below (see Eq. (47)-
(51)). Theorem 1.3 is a specialization of (42) renaming T,Ez) = Nk‘lDﬁ)(—k,a = N). Theorem 1.5
is a specialization of (43) renaming T,il) = Nk"Dg\l,)(—k,a =N+1) and by = N""Dg)_l(—k,a =
N +1).

In both real and complex cases, traces of powers of Wishart matrices were considered for
generic covariance matrix ¥ using orthogonal and unitary Weingarten functions.’*?> However,
even in the simplest case X = I (the one considered here), the Weingarten functions are not easy
to compute. Furthermore, it is not clear how to obtain an asymptotic 1/N-expansion from such
formulae.

Proof of Lemma 3.1. For k > 0, Eq. (39) is a classical formula. Let us consider the case of
negative moments. By a unitary transformation we can write Wy = UAU' where A is diagonal, so
that Wye*WN = UAe* U and the left-hand side of (39) is

0 0
Tr (U/ Ae*Msk ds UT) =Tr (/ Aethsk ds) , 44)

00 00

where the integral acts on each diagonal entry via

0
" 1
1 Ajetiskds = E(—1)’<k!. (45)

00

J
Then the trace is the sum over j and one obtains the right-hand side of (39). O

B. Proof of the technical results

Proof of Theorems 3.2 and 3.3. We introduce the finite-N average density of eigenvalues of Wy

1 N
< 2. 00= Ao} , (46)

where the expectation is taken with respect to Pg , in (36). The generating function M (1\? )(s) can be
written as

PR(x) =E

M(I\'f)(s) = /Omxesxp(jg)(x) dx. 47

The fundamental ingredient is that for 8 = 2 and B = 1 the finite-N eigenvalue density p(ﬁ)(x) is
given explicitly in terms of Laguerre polynomials. We denote the standard Laguerre polynomial of
degree N and parameter a by

N N +a) xf
(@) \ _ _1Ni r
LY(x) = i§=0< 1) (N_l.) - (48)
They satisfy the second order differential equation

XL () + (1= x4 )Ly () + NLY(x) = 0. )
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The following formulae for the mean eigenvalue densities are well-known. For g =2, the
Christoffel-Darboux formula leads to the expression

() _ F(N+ )
PN (x) = m

For B =1, explicit forms for the mean eigenvalue density for the Laguerre ensembles were given
in Refs. 13 and 39. The result is that p(l)(x) can be expressed in terms of p (x) plus a correc-

tion term. The correction term was understood in a more general context in Ref 1, where it was
formulated in a slightly different way that turns out to be useful here. Moreover, the correction term
depends on the parity of N. Nevertheless, the moments T, ( ) are always rational functions of N, and
hence they are uniquely determined by subsequences hke even N’s. For simplicity, in the case 8 = 1
we will perform our computations for N even, but our final results do not depend on the parity of N.
From Ref. 1, for N even we have

PN = PR () = dyx e LY (), (51)

where the constant dy is given by

(L LY () = LY ()L (0)xe ™. (50)

1 T(N)
d”"Zr(a+N—1) (52)

and
Y(x) = /O sgn(x — y)y @ V2 2L (y)dy. (53)

The plan is now to insert these expressions into (47) and derive differential equations for the
generating functions.

B = 2: Derivation of equation (40)

Equation (40) has been derived in at least two ways in the literature, first by Haagerup and Thor-
bjgrnsen'” and then rediscovered in a more general setting by Ledoux.?’ We will sketch below the
proof given in Ref. 17, where the idea is to prove that

MP(s) = N(@ + NaFi(1 —a = N, 1 = N;2; s3)(1 — 5)@*2N), (54)

It satisfies a classical second-order ordinary differential equation, which after some lengthy alge-
braic manipulations yields (40). To prove (54), a crucial role is played by the classical second-order
differential equation (49) satisfied by the Laguerre polynomials. Combining the differential equation
with the expression (50) leads to

d (xp(z\zl)(x)) VN(N + a)L(“)(x)L(”)l(x)x”e_x. (55)

Then integration by parts in (47) results in

= R [T tmegong “

To compute the integral in (56), substitute u = x(1 — s5) and make use of the scaling identity

N
Lyex) = ) (%if) (1= N L), (57)
r=0

with ¢ = (1 — s)7!, which reduces the integral to the orthogonality relation of Laguerre polynomials.
The single summation that remains is recognised as the series definition of the hypergeometric
function, and hence (54).

B = 1: Derivation of equation (41)

The proof of Theorem 3.3 for 8 =1 is given below and is based on Ref. 21 where the analogous
computation was done for the Gaussian orthogonal ensemble. It was suggested in Ref. 21 that the
computation done there could in principle be carried out for other classical ensembles, but to our
knowledge this has not been done before.
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The starting point is the finite-N formula (51) which we insert into (47),

M(s) = M) () + dnY (s). (58)
where
Y(s) = _/o e“'xx(‘”1)/ze_x/2L§311(x)(//(x) dx. (59)

From Theorem 3.2, we may treat M( ) 1(s) in (58) as a known quantity. Hence we seek a differ-
ential equation for the second addendum in (58). We write the differential equation (49) as the
eigenfunction relation

~TLW(x) = NL(x), (60)

where Tf = xf” + (1 + @ — x)f’. Next, for any sufficiently smooth f and g, the following identity
is a direct consequence of integration by parts:

/ f(-Tg)x%e” xdx—/ xf'g x%e ™ dx. (61)

We now derive a differential equation for Y (s). Taking a derivative with respect to s and integrating
by parts yields

dy *
— = —/ ¥ x(@tI2 ’X/ZL(lgzl(x)zﬁ(x) dx
ds 0
(@+3)2
T os—1/2

1 ® sx (a 3/2 —x/27 (@)’
+s—1/2/0 s ¥yt Ly (x)w(x)dx

/ R 2L @) (o () dx
0

2 © sx . a —xg(a) (@)
+s—1/2/0 xe“xTe Ly (X)L, (x) dx. 62)

In the last integral we used that y’(x) = 2x(@~1/2¢=*/ stg)_z(x). We can rewrite this as

3
(s = 1/2)Y"(s) = —%Y(s) +2uly_ () + xn(s), (63)
where
un-1(s) = / L (LD (0)xe ™ dx, (64)
0
) = [ e L e (©5)

Note that uy—1(s) is closely related to the Laplace transform of p(z) ,(x) (cf. identity (56)),

2
—SMI(V)_l(S)

_ = 66
un-1(s) 4dy (66)

Differentiating (63) one more time we arrive at
(s =1/2)Y"(s)+Y'(s) = — 1) + xn(s). 67)

On the other hand, we can use (60) and (61) to show that

—(N-1Y(s) = / X xIm 2 T L) (x)) g(x) x%e™ dix

— / (esxx(l—a)/2€x/2w(x))/L(lgzll(x) xa/Jrle—x dx
0

=(s+ 1/2)/0 esxx(”+3)/2e_x/2L5fﬁ/l(x) W(x)dx
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-« ® —x )’
+t— /0 e Fx@D/2g /2L(N1](x) W(x)dx
+2/0 xes*x%e” nggz'l(x)L(a)z(x) dx. (68)
Differentiating (68) gives the identity
, - 1
= (N =1Y'(s) = xn(s) + (s + 1/2) x y(s) + XN(s)+2KN(s), (69)
where
Kn(s) = / x2es¥ x%e™ L}, _(x)Ly_o(x)dx. (70)
0

Solving (63) and (67) for y y(s) and y(s) and inserting the result into (69) gives

2
T Y (-3l — Qs+ D +2Ky=0.  (71)

-1
(s2—1/4)Y”+(4s+a +N)Y +

Our aim is now to express K in terms of known quantities. Integrating by parts in (70), we find

Kn(s)=-Q+ a)uy_; — (s — Duy_, - /00 xS ¥ x%e” TLy-1(x)Ly_,(x)dx. (72)
0

Adding the two representations (70) and (72) shows that
(& = 3upy_,(s) — 2s + Duy,_(s) + 2Kn(s) (73)
= (a = 3upy_,(s) + (s — Duy,_ () = 3sup_,(s) + 2Kn(s) (74)
= ~Stjy_,(5) = 3sufy_,(s) - En(s), (75)

where

e = [ R (DL 0 = Ly () L-a() 76)

The difference of Laguerre polynomials in (76) is nothing but the Christoffel-Darboux form of the
eigenvalue density p (x) cf. formula (50). We deduce that

Enis) = —M@;( ), 77)

and hence K can be expressed in terms of explicitly known quantities. Using (66) and solving (74)
and (75) for 2K, we insert the results into (71) and obtain the closed equation

-1 9 -a? 1 ’” ’
(s> = 1/4)Y" + (4s+ ¢ +N) Y+ 4“ Y + E(MM@ +(1ls = MY +5M ) =
N

(78)
All that remains is to rewrite this in terms of M](\})(s) and its derivatives using (58)
(45> = DMV + (165 + 2 — 1) + 4N)M + (9 - 2 )M (79)

+(1 =MD — (55 +2a — 1+ 4N)MY, + (@ - HMT | = 0.

The result (41) now follows after using (40) of Theorem 3.2 to eliminate the variable M,(\f)_'f(s)
appearing in (79). O

IV. CONCLUSIONS AND REMARKS

We considered the average of power traces E[TrQ¥| of the time-delay matrix for ballistic
chaotic cavities. The sample-to-sample average can be computed using a random matrix theory
ansatz. The large-N expansion of these averages has been computed (recursively) for systems with
and without broken time reversal symmetry (8 =2 and S = 1, respectively); we suggest that the
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coefficients of the large-N expansion are whole numbers (Conjecture 1), thus extending a previous
conjecture for the leading order of higher cumulants. A heuristic explanation of the conjecture
comes from the semiclassical approach to chaotic scattering.

We conclude with a last remark. We recall that, up to a scaling factor, the moments of the
time-delay matrix are statistically identical to the inverse moments Tr(W;,k) of a specific Wishart
ensemble. More precisely, for 8 = 2 for concreteness, Wy = XX where X = (x; j)isa N x 2N ma-
trix with independent standard complex Gaussian entries. It is known that the large-N expansions
of moments of Gaussian (GUE) matrices are integers and they are related to a very precise enumer-
ation problem. Similar enumeration problems emerge for the moments of Wishart matrices. The
salient feature of Gaussian and Wishart matrices, and the one which is fundamental for applications
to graphical enumeration, is that expectations of general polynomial functions can be reduced to a
counting of Wick pairings. When considering the average of traces of powers of inverse Wishart
matrices (our situation), Wick’s calculus no longer applies, but the integer nature of the coefficients
nevertheless suggests an underlying combinatorial structure yet to be unveiled.
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APPENDIX A: NUMERICAL TABLES

Here are a few values of the moments T,Eﬁ ) = N*=1E[TrQ]. Recall that Téﬁ ) = Tl(ﬁ )= 1. For

B =2,

L0 _ 2N?
2 N2 -1 ’
L _ 6N*
PN =N -1
@ 22N° +2N*
(N2 -9)(N2-4)(N2 - 1)
L _ 90N® + 30N°
5 T (N2=16)(N2-9)(N2-4)(N2- 1)’
o _ 394N10 4+ 310N® + 16N© AD
6 7 (N2—=25)(N2—-16)(N?—9)(N2—4)(N2-1)
For g =1,
T(l) _ 2N2
2 T (N=-2(N+1)
a _ 6N*
B T INZHIN-2(N+ DH(N+2)
W 22N® — 4N°
4 T INZ6)(N &N _-2)(N+ DN +2)(N+3)°
S _ 90N*® — 60N’
5 7 (N=8)(N—=6)(N—-4)(N=2)(N+1)(N +2)(N +3)N +4)
0 394N'0 — 998N — 48N® — 184N7 — 64N° (A2)

T (N—10)(N — 8)(N — 6)(N — 4)(N = 3)(N + )(N + 2)(N + 3)(N + 4)(N + 5)°
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TABLE 1. A few values of Tf)g (top) and Tg)g (bottom) computed from the recursions (8) and (11a) and (11b).

(2)

ﬁ g
k 0 1 2 3 4 5 6
0 1 0 0 0
1 1 0 0 0
2 2 0 0 2 0
3 6 0 30 0 126 0 510
4 22 0 310 0 3262 0 31270
5 90 0 2730 0 57330 0 1048410
6 394 0 21980 0 805 854 0 24 848 560
7 1806 0 167076 0 9781002 0 468 660192
8 8558 0 1220100 0 106 963 626 0 7510405760
(]

k.g g
k 0 1 2 3 4 5 6
0 1
1 1
2 2 10 22 42 86
3 6 18 102 378 1638 6426 26214
4 22 128 1142 7048 47454 291696 1821094
5 90 840 10650 96 000 904 530 7786680 66945450
6 394 5306 89576 1092460 13529862 152881422 1704027412
7 1806 32802 705012 11060700 172576362 2451889734 34038711504
8 8558 200 064 5297924 103150528 1966038 698 34052988736 572050771 840

APPENDIX B: THE GENERATING FUNCTIONS

The first few polynomials R,(z) defined in (22) are as follows:

Ry(z)=22%,

Ry(z) = 162° - 242° + 62* + 602° + 227,

Re(z) = 360z'° — 967° — 3042% + 44647" — 14 110z°
+12600z° + 75722* + 4082° + 222,

Rs(z)= 161282 + 46 6562 — 647762'% + 413 136z'' — 22104727'°

+57242167° — 575437878 — 324399677 + 7652 7667° + 2 426 4007°

+1522987% + 19082° + 272,

Rio(z) = 1209600z + 9106 560z'7 + 936 5767'° + 34 986 5287 — 351 8797927
+1396450368z'3 — 2988047 4247'% + 2088 897 408z' + 5092739 1547!°
— 11252766 0962° + 2587 036 584z% + 6426 673 4887” + 1479 326 5722°

+986201767° + 1927 1767 + 80167° + 272



111901-15  Cunden et al. J. Math. Phys. 57, 111901 (2016)

The first few polynomials Pi({) of Corollary 1.8 have the following simple expression:

Py({)=2, Pi({) =6,
Py({) =2 +22, Ps(¢) = 30 + 90,
Ps(0)=167% + 3107 + 394, P7(¢)= 50477 + 27307 + 1806,

Py(0) = 3603 +94227% + 219807 + 8558,  Po(¢) = 1826473 + 1359542 + 167 076¢ + 41 586.

Here are the first few generating functions Fg(l)(z) computed from the recursion of Corollary 1.10,

- 15t - 207

-3z 1
F(2)= zy(ZS) gz)lf’ .
R@= Zy(_Z)2Z " y(z;/ : :
F(z)= - 2)7/2 (222 =922+ 19z + 3) - ?z)“ (6z*— 52 + 972 - 152 - 3),
F(z)= EIE (362" +202° + 247° — 219z* + 2162° + 16327 + 62)

; (z)6 (122° - 13227 + 6182° — 18302 + 1840z* + 720z° — 134z - 62),

F(2)= _W (9627 — 4562° +29927° — 7068z* + 3089z” + 821427 + 979z + 12)

e )7 (2882% + 77677 — 3362° — 29162° + 6276z* — 13122 — 75602% — 964z — 12),
F(z)= O ——77(2880z'! + 1558827 — 35522” ~ 533602° + 139938

- 121 8772 — 186 1562° + 329 334z* + 100 6507> + 469972 + 24z)
(960z'2 — 95047 + 629447'° — 373 2487° + 997 76828 — 981 480z’

( )
—1012248z° + 22432567 + 250 584z* — 756727 — 45847 — 247).
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