

warwick.ac.uk/lib-publications

Original citation:
Reguly, I Z., László, Endre, Mudalige, Gihan R. and Giles, Mike B.. (2016) Vectorizing
unstructured mesh computations for many-core architectures. Concurrency and
Computation: Practice and Experience, 28 (2). pp. 557-577.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/83587

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
"This is the peer reviewed version of the following article: Reguly, I Z., László, Endre,
Mudalige, Gihan R. and Giles, Mike B.. (2016) Vectorizing unstructured mesh computations
for many-core architectures. Concurrency and Computation: Practice and Experience, 28 (2).
pp. 557-577. which has been published in final form at http://dx.doi.org/10.1002/cpe.3621
This article may be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Self-Archiving."

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/83587
http://dx.doi.org/10.1002/cpe.3621
http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms
http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms
mailto:wrap@warwick.ac.uk

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–20
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Vectorizing Unstructured Mesh Computations for Many-core
Architectures

I. Z. Reguly1,2,∗, E László1,2, G. R. Mudalige1 and M.B. Giles1
1Oxford e-Research Centre, University of Oxford, Oxford, UK

2 Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary

SUMMARY

Achieving optimal performance on the latest multi- and many-core architectures increasingly depends
on making efficient use of the hardware’s vector units. This paper presents results on achieving high
performance through vectorization on CPUs and the Xeon-Phi on a key class of irregular applications:
unstructured mesh computations. Using SIMT and SIMD programming models, we show how unstructured
mesh computations map to OpenCL or vector intrinsics through the use of code generation techniques in
the OP2 Domain Specific Library, and explore how irregular memory accesses and race conditions can
be organized on different hardware. We benchmark Intel Xeon CPUs and the Xeon-Phi, using a tsunami
simulation and a representative CFD benchmark. Results are compared with previous work on CPUs and
NVIDIA GPUs to provide a comparison of achievable performance on current many-core systems. We
show that auto-vectorization and the OpenCL SIMT model don’t map efficiently to CPU vector units due
to vectorization issues and threading overheads. In contrast, using SIMD vector intrinsics imposes some
restrictions and requires more involved programming techniques, but results in efficient code and near-
optimal performance; 2x faster than non-vectorized code. We observe that the Xeon-Phi does not provide
good performance for these applications, but is still comparable to a pair of mid-range Xeon chips. Copyright
c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Vectorization, Xeon Phi, AVX, CUDA, Unstructured Grid, Programming Abstraction,
Many-Core, Domain Specific Library

1. INTRODUCTION

The rapidly changing hardware architectures of micro-processor systems continue to produce highly
parallel systems in the form of multi-core, many-core and heterogeneous systems. Today, most
computer system has a complex configuration with many levels of parallelism. At the low end, four
processor cores on a single piece of silicon is commonplace while many emerging architectures
such as many-core accelerators/co-processors have hundreds or thousands of cores. At the high-
end, systems such as large parallel high performance computing (HPC) clusters are developed
with combinations of these processors and co-processors [1], with heterogeneous configurations
propelling them towards capabilities to scale up to a billion threads. These systems have become
significantly more difficult to program for performance than systems with traditional single threaded
microprocessors [2].

Parallel programming models, such as distributed memory message passing and shared memory
multi-threading have been the dominant models for programming traditional CPU based systems.
These programming models were largely based on utilizing task level parallelism either through
multi-threading (OpenMP, POSIX threads) or message passing (MPI). But the emergence of
accelerators such as GPUs (e.g. NVIDIA GPUs [3]), the Intel Xeon Phi [4] and similar co-processors

∗Correspondence to: István Z. Reguly, Oxford e-Research Centre, 7 Keble Road, Oxford, OX1 3QG, United Kingdom.
E-mail: istvan.reguly@oerc.ox.ac.uk

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

(DSPs [5], FPGAs [6]) have complicated the way in which parallel programs are written to utilize
these systems. Even traditional x86 based processor cores now have increasingly larger vector units
(e.g. AVX), and require special programming techniques in order to get full utilization.

Many-core co-processors such as GPUs have brought with them new extensions (e.g. CUDA,
OpenCL) to general-purpose programming languages such as C/C++/Fortran. These follow a single
instruction multiple thread (SIMT) parallel programming model. NVIDIA’s CUDA has gained
widespread popularity and has developed a large software ecosystem. However it is restricted to
NVIDIA GPUs. OpenCL, based on a very similar SIMT model, supports a wider range of hardware,
but has not developed an ecosystem comparable to that of CUDA - in part because it struggles with
the lack of proactive support from some hardware vendors. At the same time, larger vector units
are being designed into CPUs, and at the lowest level they require a very explicit single instruction
multiple data (SIMD) programming model. In a SIMD programming model, operations are carried
out on packed vectors(128-512 bits) of values as opposed to scalar values, and it is more restrictive
than the SIMT model. For example in the case of data-driven random memory access patterns that
arise in key classes of applications, computations require explicit handling of aligned, unaligned,
scatter and gather type accesses in the machine code. In contrast, in the SIMT model this is carried
out implicitly by the hardware.

In previous generations of CPUs vectorization of computations was of lesser importance, due to
the shorter vector units, however the 256 bit and 512 bit long vectors have become key features in the
latest architectures, their utilization is increasingly necessary to achieve high performance. This has
drawn the auto-vectorization capabilities of modern compilers into focus; such compilers at best
could only vectorize a few classes of applications with regular memory access and computation
patterns, such as structured grids or multimedia.

The programming techniques that make it possible to utilize vectorization are thus becoming more
and more important. Gaining good performance from vector units is not only important for CPUs
but also for emerging co-processors such as the Intel Xeon Phi. While the Xeon Phi is designed as an
accelerator with processor cores based on a simpler x86 architecture it has the largest vector lengths
currently found on any processor core. However it requires very explicit programming techniques
specific to the hardware to gain maximum performance.

It has been shown that very low level assembly implementations of algorithms can deliver
performance on the Xeon Phi, usually as part of software packages such as MKL [7] or Linpack [8].
Several studies have been published that discuss porting existing applications to the Phi by relying
on higher-level language features, usually compiler auto-vectorization, and have shown success in
the fields of structured grid computations [9, 10] molecular dynamics [11, 12] and finance [13].
Most of the computations in these applications were engineered to lend themselves easily to auto-
vectorization due to the structure of the underlying problems. Even then, the use of low level vector
programming was still required in many cases. Irregular computations have been notoriously hard
to vectorize, due to dependencies driven by data [14].

The focus of this paper is to present research into gaining higher performance through
vectorization on CPUs and the Xeon Phi. Unlike previous work we target the application domain
of unstructured mesh based applications, a key class of applications that have very irregular
access patterns. Our aim is to present the challenges in achieving good vectorizing code for
these applications, which goes beyond the simple structured and regular applications that are well
documented in many-core computing literature. We make use of the OP2 [15] domain specific
abstraction framework to develop specific vectorizing implementations. OP2 is an “active” library
framework for the solution of unstructured mesh applications. The active library approach uses
program transformation tools, so that a single application code written using the OP2 API is
transformed into the appropriate form that can be linked against a given parallel implementation
enabling execution on different back-end hardware platforms. We exploit the multi-layered
development strategy of OP2 to work and optimize at the required level of parallelization, namely
targeting SIMD vectorization on CPUs and Intel’s Xeon Phi, for unstructured mesh applications.
These implementations are then benchmarked and compared to the performance of other (non-
vectorized) parallelizations previously developed with OP2 for the same application. We show

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 3

that it is difficult to achieve efficient vectorization on both CPUs and the Xeon Phi; getting high
performance often involves coding in very low-level intrinsics but a high-level code generation
framework such as OP2 can hide many of the platform specific issues from the application
developer. More specifically we make the following contributions:

1. We explore the SIMT and SIMD execution and parallel programming models and investigate
how popular programming language extensions (CUDA, OpenCL) and techniques (e.g. vector
intrinsics) available for programming modern CPUs and accelerators/co-processors map to
these execution models. Furthermore, we introduce execution schemes that permit compiler
auto-vectorization of OpenMP code.

2. Two CFD applications developed with OP2, the Airfoil [16] benchmark, and the previously
unpublished tsunami simulation code Volna [17] are used to illustrate the contrasting
strategies required to achieve good vectorization. As a result of this work, we develop for
Airfoil and Volna (1) a vector intrinsics based version and (2) an OpenCL based version, both
of which can be executed on Intel CPUs and the Xeon Phi co-processor.

3. The resulting vectorized codes are benchmarked on a number of CPU and many-core
processor systems including two CPUs based on the latest generation of Intel’s Sandy Bridge
and Ivy Bridge micro-architecture, and an Intel Xeon Phi, where they are also compared with
auto-vectorized code. These results are compared against Airfoil’s performance on NVIDIA
GPUs (K40) developed in previous work [18] to provide a comparison of what could be
achieved with current many-core systems. We use highly-optimized code generated through
OP2 for all back-ends, using the same application code, allowing for a direct performance
comparison.

4. Finally, we present a performance analysis study of what has been achieved by
our vectorization efforts, exposing the underlying reasons for the performance of
various implementations on different hardware and performance bottlenecks caused by
computational, control or bandwidth limitations.

The rest of the paper is organized as follows: Section 2 introduces the parallel programming
models used, from the perspective of unstructured grids, Section 3 discusses the OP2 abstraction
for unstructured grids and parallelization approaches used to guarantee correct execution. Section 4
discusses the approaches and code transformations used to get vectorization, and Section 5 discusses
the existing backends which will serve as a baseline for performance analysis in the rest of the paper.
Section 6 presents our experimental setup; the hardware used and the problem being solved through
OP2 and analyses performance on the test hardware. Finally, Section 7 gives an overview of the
results presented in the paper.

2. PARALLEL EXECUTION AND PROGRAMMING MODELS

To make efficient use of today’s heterogeneous architectures, a number of parallelization strategies
have to be employed, often combined with each other to enable execution in different systems
utilizing multiple levels of parallelism. Usually at the top-most level we see the distributed memory
parallelization model, which involves distributing the problem across a number of processes, with
explicit message passing between processes for coordinating the solution to the problem. The
Message Passing Interface (MPI) has become the default standard in implementing this model.
While it is possible to use just distributed memory parallelization, by assigning one process to
each CPU core in a multi-core processor, it is often difficult to maintain such a coarse level of
parallelism due to increasing number of cores on a single compute node. As the cores on a single
compute node share other resources such as NIC, memory and caches, with a distributed memory
model the contention for these shared resources results in increasing communication and memory
storage/access bottlenecks [19].

Therefore, underneath a distributed memory parallelization, a shared memory parallelization
approach is often used to reduce the burden of explicit communications between cores. Threads
are used as the execution unit at this level, where multiple threads share a block of memory,

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

int number_of_points=...;
double *input=...; //size number_of_points
double *result=...; //size number_of_points
for (int n=1; n<number_of_points-1; n++){
 result[n] = -2.0*input[n] + input[n-1]
 + input[n+1];
}

(a) Finite difference stencil on structured grids

int number_of_nodes=...;
int number_of_edges=...;
int edges2nodes=...; //size 2*number_of_edges
double *edge_weights=...; //size number_of_edges
double *result=...; //size number_of_nodes
double *multiplicand=...; //size number_of_nodes
for (int n=0; n<number_of_edges; n++){
 result[edges2nodes[2*n]] += edge_weights[n] *
 multiplicand[edges2nodes[2*n+1]];
}

(b) Sparse matrix-vector product on unstructured grids

Figure 1. Typical operations over structured and unstructured grids

as opposed to MPI processes maintaining their own private memory block. This model, called
Simultaneous Multi-Threading (SMT), executes a collection of processing streams operating largely
independently, each with its own execution path, working on different chunks of shared data.
Currently popular SMT implementations include OpenMP [20] and P-threads.

Recently, many-core processors and co-processors gained widespread popularity, These consist
of a large number of low power, low frequency compute cores and rely on high throughput to
achieve performance by allowing to execute a massive number of threads in parallel. This is in
contrast to speeding up execution of a few threads on traditional CPUs. For many-core processors
and co-processors a popular programming model is the Single Instruction Multiple Thread (SIMT)
model, where a number of lightweight threads execute the same instructions at the same time. From
a programming perspective, one implements code for a single thread, where data or control flow
usually depends on a thread index, and then this code is executed by different threads concurrently.
While it is possible for different threads to have divergent flow paths, in these cases the execution
is serialized because there is only a single instruction being executed at the same time; threads
not active in the currently executed branch are deactivated by the hardware. Threads may also
access different memory addresses when executing the same instruction; the hardware is responsible
for collecting data and feeding it to the threads. The relative position of these memory addresses
between adjacent threads has an important impact on performance: addresses packed next to each
other may be accessed with a single memory transaction, while gather and scatter type accesses may
require multiple transactions. This, combined with the comparatively small amount of cache per
thread often has a non-trivial effect on performance that is difficult to predict. CUDA and OpenCL
are based on the SIMT model, and the latter maps to both CPU vector units and GPUs.

Finally, the Single Instruction Multiple Data (SIMD) execution and programming model is used
by the vector units on Intel CPUs and the Xeon Phi. While some programming models (such as
OpenCL) do support a SIMT programming model and compilation for these architectures, the
hardware and therefore the generated assembly code has to use SIMD. The most reliable way of
obtaining vectorization is by the explicit use of vector registers and instructions; we investigate
the Advanced Vector Extensions (AVX) on Sandy Bridge processors and the Initial Many Core
Instructions (IMCI) specific to the Xeon Phi platform. Most of these instructions have a one-to-
one correspondence with assembly instructions, but are more readable and do not require explicit
management of registers. Vector instructions operate on vector registers that are 256 bits (AVX)
or 512 bits (IMCI) long; they can contain 8 or 16 integers/floats, or 4 or 8 doubles. There is also
support for masked instructions, where specific vector lanes can be excluded from an instruction,
thereby facilitating branching. This execution model implies that data has to be explicitly packed
into vector registers that can then be passed as arguments to an operation. Explicit management of
data movement requires differentiation between loading a contiguous chunk of data from memory
that is (1) aligned, (2) not aligned to the vector length, or (3) that has to be collected from different
addresses and packed; the same patterns apply for store operations.

Applications for scientific computations often combine these parallel programming models in
order to ensure high performance on modern hardware, however from an abstract parallelization
perspective there are huge differences between different types of computations; take for example
a structured grid computation as illustrated in Figure 1a that applies a finite difference stencil -
parallelism here is almost trivial since different iterations of the loop are completely independent
of each other, it is only in a distributed setting that attention has to be paid to exchanging “halo”

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 5

//in main program file
op_par_loop(res_calc,“res_calc",edges,
 op_arg_dat(p_x, 0,edge2node, 2,"double",OP_READ),
 op_arg_dat(p_x, 1,edge2node, 2,"double",OP_READ),
 op_arg_dat(p_q, -1,OP_ID, 4,"double",OP_READ),
 op_arg_dat(p_res, 0,edge2cell, 4,”double”,OP_INC),
 op_arg_dat(p_res, 1,edge2cell, 4,”double”,OP_INC));

Indirection
index

Mapping Data
arity

Data
type

Access
type

//in res_calc.h
void res_calc(const double *x1, const double *x2,
 const double *q,
 double *res1, double *res2){
 //Computations, such as:
 res1[0] += q[0]*(x1[0]-x2[0]);
}

Dataset
name

(a) Specification of a parallel loop

void op_par_loop_res_calc(char const *name,op_set set,
 op_arg arg0,op_arg arg1,op_arg arg2,
 op_arg arg3,op_arg arg4){

 int nargs=5;op_arg args[5] = {arg0,arg1,arg2,arg3,arg4};
 int exec_size = op_mpi_halo_exchanges(set, nargs, args);

 for (int n=0; n<exec_size; n++){
 if (n==set->core_size)op_mpi_wait_all(nargs, args);
 int map0idx = arg0.map_data[n * arg0.map->dim + 0];
 int map1idx = arg0.map_data[n * arg0.map->dim + 1];
 int map2idx = arg3.map_data[n * arg3.map->dim + 0];
 int map3idx = arg3.map_data[n * arg3.map->dim + 1];
 res_calc(&((double*)arg0.data)[2 * map0idx],
 &((double*)arg0.data)[2 * map1idx],
 &((double*)arg2.data)[4 * n],
 &((double*)arg0.data)[4 * map2idx],
 &((double*)arg0.data)[4 * map3idx]);
 }
}

Number of
arguments

Static
code

Prepare
indirect
accesses

Set up
pointers,
call kernel

(b) Code generated for MPI execution

Figure 2. The OP2 API and a simple example of code generation

information. Most compilers are capable of automatically vectorizing such computations, and if the
alignment of the base pointers is known, even aligned memory accesses can be inserted at compile
time. On the other hand, in most unstructured grid computations data is accessed indirectly. Figure
1b shows an example of a sparse matrix-vector product; clearly, different iterations of the loop
may not be independent of each other, which may present data races when trying to parallelize
this operation. Hence, the compiler cannot automatically parallelize this computation. It is also
much more difficult to satisfy data dependencies in a distributed memory environment, since, again,
indirections depend on data. In such an unstructured setting it is necessary to carry out further pre-
processing, based on the indirections, to guarantee execution free of data races, and in the case
of SIMD vectorization, it is necessary to gather and scatter data to or from vector registers with
compile-time unknown memory locations.

While many structured grid computations are amenable to pragma-driven compiler auto-
parallelization, most unstructured grid computations require a lot of additional effort to parallelize.
Developing and maintaining large-scale codes with multiple different combinations of parallel
programming approaches in order to support today’s diverse hardware landscape is clearly not
feasible; doing so would reduce the productivity of application developers and would also require
intimate knowledge of different hardware. Our approach to tackling this issue is to use a domain-
specific, high-level abstraction, based on which we can automatically map to different parallel
programming models and hardware, managing data dependencies and race conditions.

3. THE OP2 LIBRARY FOR UNSTRUCTURED GRIDS

Recently, domain specific languages (DSLs) and similar high-level abstraction frameworks have
been utilized to reduce the complexity of programing parallel applications. With DSLs, the
application programmer describes the problem at a higher level and leaves the details of the
implementation to the library developer. Given the right abstraction, this enables high productivity,
easy maintenance and code longevity for the domain scientist, permitting them to focus on the
problem at hand. At the same time, it enables the library developers to apply radical and platform-
specific optimizations that help deliver near-optimal performance.

OP2 is such a high-level framework for the solution of unstructured mesh applications [15]. Its
abstraction involves breaking up the problem into four distinct parts: (1) sets, such as vertices or
edges, (2) data on sets, such as coordinates and flow variables, (3) connectivity between sets and
(4) operations over sets. These form the OP2 API that can be used to fully and abstractly define
any unstructured mesh. Unstructured grid algorithms tend to iterate over different sets, accessing
and modifying data indirectly on other sets via mappings; for example flux computations often loop
over edges accessing data on edges and neighboring cells, updating flow variables indirectly on
these cells. In a parallel setting this leads to data races, the efficient handling of which is paramount
for high performance.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

The OP2 abstraction is designed to implicitly describe parallelism; the basic assumption is that
the order in which elements are processed does not affect the final result, to within the limits of finite
precision floating point arithmetic. This allows for parallelization of the execution over different set
elements, however, potential data races have to be recognized and dealt with. Therefore the API is
designed to explicitly express access types and patterns, based on the following building blocks:

1. op set: basic components of the mesh, such as edges and cells
2. op dat: data on each element of a set, with a given arity (number of components)
3. op map: connectivity from one set to an other, with a given arity, e.g. each edge connects to

to vertices
4. op par loop: a parallel loop over a given set, executing an elementary kernel function on

each element of the set passing in pointers to data based on arguments described as follows:
op arg dat(op dat,idx,op map,dim,"typ",access),
where a given dataset with dim arity and type datatype is to be accessed through a specific
index in a mapping to another set (or no mapping if it is defined on the same dataset),
describing the type of access, which can be either read, write, increment or read-write.

Figure 2a gives an example of how a parallel loop is described; iterating over edges, reading data on
vertices and edges and incrementing data on cells, and Figure 2b gives a simplified example of code
generated to execute this computation using the pure MPI backend - note how information provided
in the API is sufficient to generate this code.

This API allows OP2 to use a combination of code generation and run-time execution planning
in order to support a wide range of contrasting hardware platforms, using a number of parallel
execution models. At the highest level, we use distributed memory parallelization through message
passing (MPI), where the mesh is split up into partitions using standard partitioners such as PT-
Scotch [21], and an owner-compute approach is used to be in combination with halo exchanges to
ensure correct execution. There are no potential race conditions, but redundant execution of certain
set elements by different processes may be necessary. On multi-core CPUs, we use OpenMP threads
and, through a pre-processing step, split up the computational domain into mini-partitions, or blocks,
that are colored based on potential data races [22]. Blocks of the same color can then be executed
by different threads concurrently without any need for synchronization. The same technique is used
to assign work to CUDA thread blocks or OpenCL work-groups.

It is evident that by working within such a multi-layered abstractions framework there is
opportunity to select and optimize the required level of parallelization for the types of unstructured
mesh applications solved with OP2. The focus of the paper is therefore to present the previously
unexplored SIMD parallelization level for CPUs and the Intel Xeon Phi. We will demonstrate that
our work in obtaining good vectorizing code through OP2 is applicable to any application that falls
within the domain of OP2.

4. VECTORIZATION

Most unstructured mesh computations are not immediately suitable for parallelization due to data-
driven races, therefore we carry out further pre-processing and we alter execution patterns to
guarantee that no race conditions exist. In order to work towards achieving vectorization in the
context of OP2, we draw upon our previous experience with using GPUs [15]. We have used a
two-level coloring approach to avoid race conditions when indirectly writing data; first the problem
is broken up into blocks of elements, and these blocks are colored based on potential races, and
second, elements within each block are colored based on potential races.

When using a SIMT programming model, we assign adjacent set elements to adjacent threads,
gather operations and potential branching is automatically handled by the programming model and
the hardware, and in case of indirect writes to data we serialize access based on the second level of
coloring and block-level synchronization constructs. However, in addition to supporting OpenCL,
we also wish to evaluate vector intrinsics, that are based on the SIMD programming model, as well
as the compiler’s abilities to automatically vectorize loops where different iterations are independent

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 7

__kernel void op_opencl_res_calc(
 __global const double* restrict arg0,
 __global const double* restrict arg2,
 __global double* restrict arg3,
 __global const int* restrict arg0_map,
 __global const int* restrict arg2_map
 /*other indexing structures*/){
 double arg3_l[4] = {0.0,0.0,0.0,0.0};
 double arg4_l[4] = {0.0,0.0,0.0,0.0};
 //current index
 int n=block_offset+get_local_id(0);
 int map0idx = arg0_map[n+set_size*0];
 int map1idx = arg0_map[n+set_size*1];
 int map2idx = arg3_map[n+set_size*0];
 int map3idx = arg3_map[n+set_size*1];
 res_calc(
 &arg0[2 * map0idx],
 &arg0[2 * map1idx],
 &arg2[4 * n],
 arg3_l,
 arg4_l);
 int col2 = colors[n];
 for (int col=0; col<ncolor; col++)
 if (col2==col)
 for (int d=0; d<4; d++){
 arg3[d+map2idx*4] += arg6_l[d];
 arg3[d+map3idx*4] += arg7_l[d];
 }
}

Pointers to
datasets,
mappings,
index data

Prepare
indirect
accesses

Set up
pointers,
call kernel

Indirect
increments

Colored
increment

(a) Kernel code generated for OpenCL

...
for (int n=0;n<(exec_size/VEC)*VEC;n+=VEC)
 intv map0idx=intv(&arg0.map[n+set_size*0]);
 intv map1idx=intv(&arg0.map[n+set_size*1]);
 intv map2idx=intv(&arg3.map[n+set_size*0]);
 intv map3idx=intv(&arg3.map[n+set_size*1]);
 doublev arg0_p[2] = {
 doublev(arg0.data + 0, 2 * map0idx),
 doublev(arg0.data + 1, 2 * map0idx)};
 doublev arg1_p[2] = {
 doublev(arg0.data + 0, 2 * map1idx),
 doublev(arg0.data + 1, 2 * map1idx)};
 doublev arg2_p[4] = {
 doublev(&arg2.data[n * 4 + 0, 4),
 doublev(&arg2.data[n * 4 + 1, 4),
 doublev(&arg2.data[n * 4 + 2, 4),
 doublev(&arg2.data[n * 4 + 3, 4)};
 doublev arg3_p[4] = {0.0,0.0,0.0,0.0};
 doublev arg4_p[4] = {0.0,0.0,0.0,0.0};

 res_calc_vec(arg0_p,arg1_p,
 arg2_p,arg3_p,arg4_p);

 scatter(arg3_p[0],arg3.data+0,2*map2idx);
 scatter(arg3_p[1],arg3.data+1,2*map2idx);
 scatter(arg3_p[2],arg3.data+2,2*map2idx);
 scatter(arg3_p[3],arg3.data+3,2*map2idx);
 scatter(arg4_p[4],arg3.data+0,2*map3idx);
 scatter(arg4_p[5],arg3.data+1,2*map3idx);
 scatter(arg4_p[6],arg3.data+2,2*map3idx);
 scatter(arg4_p[7],arg3.data+3,2*map3idx);
}
...

Read
indirection
indices

Gather
indirect
data to
registers

Indirect
increments

Indirect
increment

Gather
direct
data to
registers

Call user
kernel

(b) Code generated for AVX

Figure 3. Simplified examples of code generated for vectorized backends

of each other. Therefore we have introduced two additional coloring and execution schemes which
assign independent set elements to different vector lanes. With the “full permute” approach we have
a single level of coloring, and set elements are executed by color in parallel which avoids all race
conditions - however it also inhibits any data reuse between elements of the same color. The “block
permute” approach tries to combine the benefits of not having to serialize due to race conditions
with improved temporal locality; in the two-level coloring approach we compute a permutation map
for the execution of elements within each block by color - as long as blocks are small enough so
that their data is contained in cache, this permits data reuse, however we are no longer assigning
adjacent set elements to adjacent vector lanes, therefore data that was formerly accessed directly
now has to be gathered. Our goal with introducing these coloring schemes is to enable the race-free
parallelization of an innermost loop over a number of independent elements; on one hand this will
reduce the branching necessary for the safe updating of shared variables, and on the other, it will
enable compiler auto-vectorization. The performance impact of these approaches is only evaluated
on hardware that support gather and scatter instructions - the K40 and the Xeon Phi - in Section 6.5.

Enabling compiler auto-vectorization is simply an issue of inserting the appropriate compiler
pragmas, but utilizing a SIMT or a SIMD programming model requires more elaborate code
generation and optimization techniques, therefore we now discuss how OP2 can utilize a
combination of backend logic, C++ classes and code generation to support vectorization for general
unstructured mesh computations through OpenCL and vector intrinsics.

4.1. OpenCL

OpenCL (Open Computing Language) is an open standard language based on the SIMT abstraction,
targeting a wide variety of heterogeneous computing platforms, including CPUs, GPUs, DSPs,
FPGAs etc. Since OpenCL is a standard, the implementation of the driver and the runtime
environment relies on the support of the hardware manufacturers. Following the SIMT abstraction,
the workload is broken up into a number of work-groups, each consisting of a number of work-
items. The exact mapping of these is influenced by the parallel capabilities of the device and the
possible optimizations that can be carried out by the compiler or synthesizer. As with most portable
programming abstractions, performance portability is an issue, therefore we first have to understand
how it maps to the target hardware.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

The OpenCL abstraction fully describes any concurrency issues that may arise, therefore
vectorization of work-items would always be valid. However similar to the case of compiler auto-
vectorization of conventional C/C++ code, this can be prevented by a number of factors: control
flow branching, irregular memory access patterns etc. Since Intel’s IMCI instruction set is more
extensive than AVX it gives more flexibility for the compiler to produce vector code.

Task parallelism at the level of the work-groups in Intel OpenCL is implemented using Intel’s
TBB (Thread Building Blocks) library [23]. Although TBB offers an efficient solution for multi-
threading, the overall overhead of scheduling work-groups is larger in OpenCL than that of static
OpenMP parallel loops; however this keeps improving. Since CPUs - as opposed to GPUs - don’t
have dedicated local and private memory units, using these memory spaces introduces unnecessary
data movement and may lead to serious performance degradation. Thus in the OpenCL based CPU
implementation OP2 does not use local memory. OpenCL distinguishes between global, local and
private address spaces.

A key observation when optimizing code for the CPU is that work-groups are executed
sequentially. One can be certain that there are no data-races between work-items in a work-group
if the compiled code is scalar. Even if the code is implicitly vectorized the bundled work-items
execute in lock-step; synchronization between them is implicit, and these bundles are still executed
sequentially. Recognizing this, it is possible to remove work-group level synchronizations which
would otherwise be very expensive. This of course is a platform-specific optimization that violates
the OpenCL programming model, but it is necessary to obtain good performance. It is possible to
remove barriers from the following operations:

• Sharing information specific to a block: since every work-group processes one block (mini
partition) of the whole domain, some information about the block data structure can be shared
amongst the work-items of the work-group. Either this data is read by one work-item and
shared with other work-items through a local variable or every work-item reads the same data
and then no local memory is necessary. The barrier is not necessary in the first case, because
work-item 0 reads the data and stores it in local memory, and it will be available to every other
work-item, since work-item 0 is executed before any other work-item in the group, due to the
sequential execution model.

• Reductions: doing a reduction is straightforward due to the sequential execution even in the
case of vectorized kernels, first the reduction is carried out on vectors and at the end values of
the accumulator vector are added up.

• Indirect increments (or indirect scatter): use of barriers is not needed here either, since 1)
the work-group is executed sequentially and 2) even if the kernel is vectorized, a sequential
colored increment is used to handle WAR (Write After Read) conflicts.

Figure 3a shows a simplified example of the code generated for the loop in Figure 2a, the “host’-
side” setup of parameters and the kernel launch are omitted for brevity. This code is very similar to
the CUDA code generated for GPU execution, except for CPU-specific optimizations as discussed
above.

4.2. Vector intrinsics

Our experiments have shown that the primary obstacle to getting auto-vectorization and good
performance is the scatter-gather nature of memory accesses; for vectorized execution, the values
of adjacent set elements have to be packed next to each other. By using vector intrinsics however,
it is possible to explicitly vectorize execution; in this case data has to be explicitly gathered into
vector registers, the user kernel has to be modified to use intrinsic operations, and the results have
to be explicitly scattered from the vector registers. While operators are not defined for these vector
types, the Intel Compiler includes a header file (dvec.h or micvec.h [24]) that defines container
classes for these types, overloading most operators. By extending these classes, it is possible to
maintain the original simple arithmetic expressions in the user kernels, but instead of scalars they
will now operate on vectors.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 9

#ifdef AVX
#define VEC 4
#typedef doublev F64vec4
#typedef intv I32vec4
...
 //A constructor of the F64vec4 class
 F64vec4(const double *p, I32vec4 &idx) {
 vec[0]=p[idx[0]]; vec[1]=p[idx[1]];
 vec[2]=p[idx[2]]; vec[3]=p[idx[3]];}
 F64vec4 operator *(F64vec4 &a, F64vec4 &b) {
 return _mm256_mul_pd(a,b);}
...
#endif

(a) 256 bit AVX

#ifdef IMCI
#define VEC 8
#typedef doublev F64vec8
#typedef intv I32vec8
...
 //A constructor of the F64vec8 class
 F64vec8(const double *p, I32vec8 &idx) {
 vec = _mm512_i32logather_pd(idx,p,8);
 }
 F64vec8 operator *(F64vec8 &a, F64vec8 &b) {
 return _mm512_mul_pd(a,b);}
...
#endif

(b) 512 bit IMCI

Figure 4. Wrapper classes for vector types

With preprocessor macros, it is also possible to have a single source code generated by OP2 for
different vector lengths, and to select one at compile-time; Figure 4 shows and example of this; the
possible targets are AVX (on the CPU) and IMCI on the Xeon Phi. An important obstacle is the
lack of support for branching in kernels; without a compiler technology we are not able to support
conditionals through operator overloading. Therefore the user of OP2 has to alter conditional code
to use select() instructions instead, which can be supported through function overloading. While
this was easy to apply to the Airfoil benchmark, this is by no means a generic and flexible solution.

A range of load and store instructions are implemented that support aligned addresses, strided
gather/scatter or mapping-based gather/scatter operations, which enables us to utilize different
instructions on different hardware - for example the IMCI has a gather intrinsic. In the case
of indirect incrementing of data it is necessary to avoid data races; depending on the coloring
approach, discussed in Section 4, we can either use simple scatter operations with the full/block
permute approaches, or with the original two-level coloring approach we would need masked scatter
operations - these proved to be slower than just sequentially scattering data out of the vector register,
therefore we do not use them.

Code resulting from the use of vector containers is rather verbose, and results in a much higher
number of source lines due to explicit packing and unpacking of data, as illustrated by Figure 3b.
Furthermore, the iteration range for any given thread where vectorization can take place must be
divisible by the vector length, in order to support aligned load instructions and fully packed vectors,
which is not always the case (especially in an MPI+OpenMP setting), therefore there are actually
three loops generated; a scalar pre-sweep to get directly accessed data aligned to the vector length,
the main vectorized loop, and a scalar post-sweep to compute set elements left over.

5. BASELINE CPU AND GPU IMPLEMENTATIONS

Results presented in previous papers [15, 25] report OP2’s pure MPI and hybrid MPI+OpenMP
performance on clusters of CPUs as well as MPI+CUDA performance results running on Fermi-
generation NVIDIA GPUs. We carried out an in-depth investigation of our MPI and OpenMP
backends that revealed a few bottlenecks. Pure MPI execution was facilitated by a generic
op par loop function that had to carry out a number of logical operations and called the user
kernel via a function pointer. This prevented a number of compiler optimizations; to enable these, we
implemented a code generator that produces a pure MPI stub file which contains more specialized
code, eliminating conditionals, substituting literal constants where possible and with an explicit call
to the user kernel - a simplified example of this was shown in Figure 2b. The generated code for
OpenMP execution was similarly optimized and simplified.

To evaluate the compiler’s auto-vectorization capabilities on these implementations, we have
inserted #pragma ivdep statements in front of innermost for loops when one of the newly
introduced coloring approaches was being used. However in our experience on the CPU, this rarely
led to auto-vectorization of the loops in question, the single exception being the adt calc kernel
in Airfoil for the OpenMP implementation.

Due to significant changes in GPU architecture from the Fermi to the Kepler generation, we have
also revised our optimization techniques; shared memory staging of indirectly accessed data we

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

Table I. Benchmark systems specifications
System CPU 1 CPU 2 Xeon Phi K40
Architecture 2×Xeon E5-2640 2×Xeon E5-2697 v2 Xeon Phi 5110P Tesla K40
Clock frequency 2.4 GHz 2.7 GHz 1.053 GHz 0.87 GHz
Core count 2×6 2×12 61 (60 used) 2880
Last level cache 2×15MB 2×30MB 30MB 1.5MB
Peak bandwidth 2×42.6 GB/s 2×59.7 GB/s 320 GB/s 288 GB/s
Peak GFLOPS DP(SP) 2×120(240) 2×259(518) 1010 (2020) 1430 (4290)
Stream bandwidth 66.8 GB/s 98.76 GB/s 171 GB/s 244 GB/s
D/SGEMM GFLOPS 229(433) 510(944) 833(1729) 1420(3730)
FLOP/byte DP(SP) 3.42(6.48) 5.43(9.34) 4.87(10.1) 6.35(16.3)

Table II. Properties of Airfoil kernels; number of floating point operations and numbers transfers
Kernel Direct Direct Indirect Indirect FLOP FLOP/byte Description

read write read write DP(SP)
save soln 4 4 0 0 4 0.04(0.08) Direct copy
adt calc 4 1 8 0 64 0.57(1.14) Gather, direct write
res calc 0 0 22 8 73 0.3(0.6) Gather, colored scatter
bres calc 1 0 13 4 73 0.5(1.01) Coundary
update 9 8 0 0 17 0.1(0.2) Direct, reduction

Table III. Properties of Volna kernels; number of floating point operations and numbers transfers
Kernel Direct Direct Indirect Indirect FLOP FLOP/byte Description

read write read write
RK 1 8 12 0 0 12 0.6 Direct
RK 2 12 8 0 0 16 0.8 Direct
sim 1 4 4 0 0 0 0 Direct copy
compute flux 4 6 8 0 154 8.5 Gather, direct write
numerical flux 1 4 6 0 9 0.81 Gather, reduction
space disc 8 0 10 8 23 0.88 Gather, scatter

used previously does not prove to be efficient on the new hardware, so a new code generator is
introduced for Kepler hardware that employs a different set of optimizations. Pointers to read-only
data are decorated with const * restrict to make use of caching loads. Furthermore, data
on the GPU is transposed to an SoA layout, and directly accessed from global memory, not from
shared memory. These changes are facilitated by the code generator, no changes have to be made to
the “user code”.

6. PERFORMANCE ANALYSIS

6.1. Experimental setup

It is our goal to benchmark the performance characteristics of different parallel programming
approaches on a range of multi-core and many-core platforms, both relative to each other and in
absolute terms, calculating computational performance and memory throughput. Details of test
hardware can be found in Table I; the list includes a mid-range Intel Xeon machine (CPU 1),
a high-end Xeon machine (CPU 2), an Intel Xeon Phi [4] and an NVIDIA K40 GPU [26]. In
addition to theoretical performance numbers, as advertised by the vendors, we display results of
standard benchmarks (STREAM for memory bandwidth with ECC off on the K40 and generic
matrix-matrix multiply, GEMM for arithmetic throughput) which serve to illustrate how much
of the theoretical peak can be realistically achieved. It is clear that achieving anything close to
the theoretical peak - especially on accelerators - is quite difficult, and often requires low-level
optimizations and parameter tuning. We also highlight the FLOP/byte figures in Table I, which is
essentially a metric for the balance of computational throughput and memory bandwidth on different
architectures; the higher it is, the more bandwidth-starved the chip is. This is especially important
for generally bandwidth-bound applications, such as the ones being investigated, because if their
FLOP/byte ratio is much lower than that of the hardware, then a lot of computational power will be
wasted.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 11

Table IV. Test mesh sizes and memory footprint in double(single) precision
Mesh cells nodes edges memory
Airfoil small 720000 721801 1438600 94(47) MB
Airfoil large 2880000 2883601 5757200 373(186) MB
Volna 2392352 1197384 3589735 n/a(355) MB

For benchmarking we chose two applications, both implemented in OP2; the first is Airfoil,
a non-linear 2D inviscid airfoil code that uses an unstructured grid [16], implemented in both
single and double precision, and the second is Volna, a shallow-water tsunami simulation code [17],
implemented in only in single precision. Both simulations use a finite volume numerical algorithm,
which is generally considered bandwidth-bound. Tables II and III detail the communication
and computational requirements of individual parallel loops in Airfoil and Volna, in terms of
useful data transferred (ignoring e.g. mapping tables) as number of floating-point values and
useful computations (ignoring e.g. indexing arithmetic) for each grid point during execution.
Transcendental operations (sin, cos, exp, sqrt) are counted as one, these are present in adt calc
and compute flux. Note, that these figures do not account for caching, therefore, in case of
indirectly accessed data, off-chip transfers are reduced by data reuse, and the FLOP to byte ratio
goes up.

Comparing the ratio of floating point operations per bytes transferred to those in Table I it is clear
that most of these kernels are theoretically bandwidth-bound, however, we have to account for the
fact that several kernels may not be auto-vectorizing, therefore, for a fair comparison, the FLOP/byte
ratios of CPU architectures have to be divided by the vector length (4 in double and 8 in single
precision with 256 bit vectors). This pushes several kernels much closer to being compute-limited,
which suggests that by applying vectorization, the code can be potentially further accelerated to
the point where its entirely bandwidth-limited, eliminating any computational bottlenecks. In the
following analysis we primarily focus on achieved bandwidth, calculated based on the minimal
(useful) amount of data moved; this assumes an infinite cache size for the duration of a single loop,
which is of course unrealistic, but it gives a good idea of the efficiency of execution.

For Airfoil, performance is evaluated on two problem sizes; a 720k cell mesh and its quadrupled
version, a 2.8M cell mesh, to investigate the sensitivity of the hardware to load-balancing issues.
For Volna, we use a real-world mesh with 2.5M cells, describing the north-western coast of
North America and the strait leading to Vancouver and Seattle, simulating a hypothetical tsunami
originating in the Pacific Ocean. Mesh sizes and memory footprints are detailed in Table IV. These
meshes are halved for OpenCL benchmarks on CPU 1 and CPU 2, because execution is restricted
to a single socket due to limitations in the runtime discussed in Section 6.3.

6.2. Baseline performance

First, we briefly present and discuss the performance of the updated back-ends, described in Section
5, on Airfoil and Volna. This will serve as a baseline for analyzing the performance of vectorized
code. We use the versions of computations that were not auto-vectorized by the compiler, which
we saw was the case for most parallel loops (with one exception). The data and the computational
requirements shown in Tables II and III give an idea of the cost of kernels, but several factors
that influence performance are not immediately obvious. Several kernels, such as save soln,
update, RK 1, RK 2 and sim 1 are loops that only access data that is defined on the set being
operated over, therefore no indirection or coloring is necessary. In our two applications these direct
loops are computationally very simple; updating data, carrying out reductions, etc. These kernels
are clearly bandwidth-bound, with trivial access patterns, albeit no data reuse, making good use of
prefetch engines on the CPU. The kernel bres calc only operates over the boundary, indirectly
accessing data on the interior set that is connected to the boundary; utilization - due to the small size
of the boundary - is generally very low, as well as runtime. Due to its negligible contribution to the
total execution time, we drop bres calc from further analysis, as well as sim 1, which behaves
the same as RK 1 and RK 2.

The kernels adt calc compute flux and numerical flux read and write data directly
on their respective iteration sets (cells or edges) as well as reading values from different sets
through mappings. While these kernels are indirect, no indirect increment takes place, therefore

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

0
10
20
30
40
50
60
70
80

Airfoil Single Airfoil Double Volna

CPU 1 MPI CPU 1 OpenMP CPU 2 MPI CPU 2 OpenMP K40

R
un

tim
e

(s
ec

on
ds

)
Figure 5. Baseline performance on Airfoil, in single and double precision (2.8M cell mesh), and Volna in

single precision (2.4M cell mesh)

Table V. Useful bandwidth (BW - GB/s) and computational (Comp - GFLOP/s) throughput baseline
implementations on Airfoil (double precision) and Volna (single precision) on CPU 1 and the K40 GPU

Kernel MPI CPU 1 MPI CPU 2 CUDA
Time BW Comp Time BW Comp Time BW Comp

save soln 4 46 3.2 2.9 63 4 0.20 230 14
adt calc 24.6 13 14.6 7.6 43 48 0.69 116 133
res calc 25.2 27 32 13.6 50 61 2.77 62 75
bres calc 0.09 29 12 0.05 52 16 0.06 32 5
update 14.05 56 8 9.7 81 10 0.83 235 29
RK 1 3.24 53 4 0.72 79 6 0.87 198 15
RK 2 2.88 59 5 0.64 89 9 0.72 242 24
compute flux 23.34 14 42 4.01 27 82 3.21 101 309
numerical flux 4.68 29 4 0.96 57 6 1.14 120 17
space disc 16.86 21 9 1.51 79 33 1.92 73 31

coloring is not required. adt calc and compute flux include transcendental operations which
are much more expensive than multiplications or additions. The throughput of the double precision
square root instruction is 1 instruction per 44 clock cycles on the CPU, making it a very costly
instruction compared to the one instruction per clock cycle of a multiplication; this further shifts
these kernels towards being compute limited. Finally, res calc and space disc access data
indirectly through mappings and have an indirect update which requires coloring - in the case of
shared memory parallelism approaches this means that the mini-partitions executed by OpenMP
threads or CUDA thread blocks do not overlap with each other, which reduces data reuse and cache
performance.

Figure 5 shows the baseline performance on Airfoil and Volna using the MPI back-end on CPU
1 and 2, as well as the CUDA backend on the K40 card. Estimated bandwidth and FLOP values
are displayed for each kernel in Table V when running the double precision version of Airfoil
and Volna on CPU 1 and the K40. On all hardware, direct kernels achieve a high percentage of
peak bandwidth, however for indirect kernels both of these metrics are lower, especially on ones
which require indirect incrementing of data. Due to expensive square root operations in adt calc
and the high number of computations on compute flux, these kernels appear to be compute-
bound on CPU 1 and 2. Note, that the overall runtime of Airfoil in double precision compared
to single precision is much less then double, despite the fact that twice the amount of memory
has to be moved. This supports our conclusion, that without vectorization, some parts of the code
are not limited by bandwidth, rather compute or latency. As we apply vectorization in the following
sections, we will show that by increasing computational throughput, the performance is increasingly
limited by bandwidth and latency.

6.3. OpenCL performance on CPU and the Xeon Phi

Due to a limitation on the tested Intel CPUs, neither AMD’s nor Intel’s OpenCL 1.2 driver (both
support compilation for Intel CPUs) is currently able to select - using the device fission feature
- a subset of processor cores to execute on a single NUMA socket. Since a fully operational
MPI+OpenCL back-end is not yet available, the presented benchmark is limited to single socket

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 13

Table VI. Timing and bandwidth breakdowns for the Airfoil benchmarks in double(single) precision on the
2.8M cell mesh and Volna using the OpenCL backend on a single socket of CPU 1 and Xeon Phi. Also,

kernels with implicit OpenCL vectorization are marked in the right columns.

Kernel CPU 1 Xeon Phi OpenCL vec
Time BW Time BW CPU Phi

save soln 4.15(2.18) 44(42) 2.6(1.57) 71(59) – 4

adt calc 18.27(13.23) 17.7(12.2) 12.1(7.2) 27(22) 4 4

res calc 31.43(29.91) 22(11.6) 46(29.76) 15(12) – 4

update 14.65(7.34) 53.5(53.4) 12(6.5) 65(60) – 4

RK 1 1.37 42 0.89 64 – 4

RK 2 1.18 49 0.76 75 – 4

compute flux 6.4 51 4.91 67 4 4

numerical flux 7.48 18 3.28 42 4 4

space disc 9.24 40 7.95 45 – 4

performance comparisons. Scheduling threads to a single socket is enforced by the numactl utility.
Based on the first touch memory allocation policy in the Linux kernel, it is certain that the master
thread and the child threads - placed on the same socket - get memory allocated to the same NUMA
memory region.

In the presented performance measurements the one-time cost of run-time compilation is not
counted. Only the time spent on effective computation and synchronization is shown. Figure
6 shows that OpenCL execution time in the CPU case is close to the plain OpenMP time.
As opposed to conventional auto-vectorization, where segments of a code can be vectorized,
OpenCL either vectorizes a whole kernel or none of it. Even though adt calc, bres calc,
compute flux and numerical flux kernels are vectorized, the overall performance of the
OpenCL implementation is not significantly better.

The Intel Offline Compiler [23] has been used to test whether kernels have been vectorized or
not. Results are shown in Table VI. The extended capabilities of the instruction set on the Xeon Phi,
including the gather and scatter instructions, allow the compiler to vectorize more complex code.
The AVX instruction set is more restrictive and although the compiler could produce vector code, it
refuses to do so if the heuristics predict worse performance. Even though the Intel OpenCL compiler
can handle some branching in the control flow, optimization decisions may override these.

The kernel level breakdown of OpenCL in Table VI shows that the largest difference between the
OpenMP and implicitly vectorized OpenCL comes from the adt calc and res calc kernels in
Airfoil and from the compute flux and numerical flux in Volna. Even though adt calc
is vectorized by OpenCL, and is indeed faster than the non-vectorized version shown in Table V,
the performance benefit is much smaller compared to the explicitly vectorized version shown in
Table VII. The same is true for compute flux. In the case of numerical flux, the kernel
was vectorized but the performance degraded. On the other hand space disc was not vectorized
by OpenCL but the performance still increased, but the manually vectorized kernel is still faster.

The OpenCL performance on the Xeon processors is satisfying compared to the non-vectorized
OpenMP performance and even better in the case of the Xeon Phi coprocessor. The results achieved
with the coprocessor are shown on Figure 7. Thus OpenCL, as an environment implementing SIMT
programming model that is amenable to vectorized execution, does deliver some performance
improvement over previous non-vectorized implementations, but profiling shows that significant
performance is lost due to scheduling. Furthermore, in comparison to results in the next section, we
see that while some vectorization is achieved, especially on the Xeon Phi, it is currently not capable
of creating efficient vector code.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

0
10
20
30
40
50
60
70
80

CPU1 Airfoil SP CPU2 Airfoil SP CPU1 Airfoil DP CPU2 Airfoil DP CPU1 Volna SP CPU2 Volna SP

MPI MPI vectorized OpenMP OpenMP vectorized OpenCL

R
un

tim
e

(s
ec

on
ds

)

Figure 6. Vectorization with explicit vector intrinsics and OpenCL, performance results from Airfoil in single
(SP) and double (DP) precision on the 2.8M cell mesh and from Volna in single precision on CPU 1 and 2

6.4. Vector Intrinsics on CPUs

With the parallel programming abstractions and methods described above (MPI, OpenMP and
OpenCL), the programmer has limited control over what gets vectorized, but when using vector
intrinsics, vectorization is explicit. Figure 6 shows performance results comparing the vectorized
and the non-vectorized codes on CPU 1 and CPU 2. With one exception, the pure MPI versions are
faster than the MPI+OpenMP versions, because at this scale the overhead of MPI communications is
almost completely hidden, while OpenMP has some overhead due to threading [27] and the colored
execution.

Observe that the improvement in single precision is much larger than in double precision; this is
due to the fact that twice as much data has to be transferred in double precision, but the length of
the vector registers is the same, therefore only half the number of floating point operations can be
carried out at the same time. Another important observation is that comparing the runtimes in single
and double precision, we only see a 30-40% difference in the baseline in Figure 5 (recall that without
vectorization the computational throughput is the same in single and double precision), while the
vectorized versions show an almost perfect 80-110% speedup when going from double to single
precision. It is also important to note that vectorization has a much larger effect on performance
on CPU 1, which is due to CPU 2 having over twice the computational capacity (2× the cores and
higher frequency), but only 47% more bandwidth; at the same time, CPU 2 also has twice the cache
size, resulting in improved data reuse, which is more of a bottleneck on Airfoil than on Volna.

Table VII shows per-loop breakdowns of the vectorized Airfoil benchmark on CPU 1 and
CPU2, on the larger 2.8M mesh in order to minimize caching artefacts. Comparing double
precision bandwidth values with that of Table V, it is clear that most direct kernels (save soln,
update, RK 1 and RK 2) were already bandwidth-limited, therefore their performance remains
the same. Compute-heavy kernels adt calc and compute flux saw the highest increase in
performance due to vectorization, though gains on CPU 2 are again lower, because of its much
higher computational capacity already having saturated most of the available bandwidth. Kernels
that indirectly read and write data, such as res calc and space disc also gain performance in
most cases though significantly less because they are limited by the serialization of data accesses
and the loss of parallelism, providing further evidence that these kernels were, to some extent,
bound by latency. Switching to single precision should effectively half the runtime of different
loops, because half the amount of data is moved, which matches the timings of direct loops, the
kernel adt calc gains further speedups (2.4 times) on CPU 1 by moving to single precision, due
to the higher computational throughput, which hints at this kernel still being compute-limited in
double precision on CPU 1 - on CPU 2, where theoretical computational throughput is 2.2 times
higher, the speedup is much lower, indicating it is bound by bandwidth. The kernel res calc is
affected by a high number of gather and serialized scatter operations as well as insufficient data
reuse resulting in superfluous data movement; moving to single precision only improves runtime by
30%, thus this kernel is being limited by latency - from serialization as well as caching behavior.
space disc behaves similarly on CPU 1, however due to the doubled size of the cache on CPU
2, much higher data reuse is achieved, therefore its execution is bound by off-chip bandwidth

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 15

Table VII. Timing and bandwidth breakdowns for the Airfoil benchmarks in double(single) precision on the
2.8M cell mesh and Volna using the vectorized pure MPI backend on CPU 1 and CPU 2

Kernel CPU 1 CPU 2
Time BW Time BW

save soln 4.08(2.04) 45(45) 2.9(1.5) 62(61)
adt calc 12.7(5.2) 25(31) 5.6(3.5) 57(46)
res calc 19.5(13.5) 35(26) 9.9(7.1) 69(48)
update 14.6(7.1) 53(56) 9.8(4.7) 79(83)
RK 1 3.27 52 2.19 78
RK 2 2.88 59 1.86 92
compute flux 8.82 37 6 54
numerical flux 4.59 30 3.18 43
space disc 7.47 48 4.56 79

0
20
40
60
80

100
120

Airfoil Single Airfoil Double Volna Single

Scalar MPI Scalar MPI+OpenMP Auto-vectorized MPI+OpenMP
OpenCL Vectorized MPI Vectorized MPI+OpenMP

R
un

tim
e

(s
ec

on
ds

)

Figure 7. Performance of the Xeon Phi on Airfoil (2.8M cell mesh) and on Volna with non-vectorized, auto-
vectorized and vector intrinsic versions

6.5. Vector Intrinsics on the Xeon Phi

One of the main arguments in favor of the Xeon Phi is that applications running on the CPU are
easily ported to the Phi. While this is true to some extent as far as compilation and execution goes,
performance portability is a much more important issue. On the higher level, the balance of MPI
and/or OpenMP is usually slightly different, and on a lower level vectorization is needed more than
ever to achieve high performance. Thanks to the gather and scatter instructions and given the use
of alternate coloring schemes, most loops in our test applications do auto-vectorize. However, as
we show auto-vectorized performance is poor, therefore we evaluate the use of intrinsics as well,
and since the instruction set is not backwards-compatible, they have to be changed. Our approach
of wrapping vectors in C++ classes, using constructors and operator overloading to hide vector
intrinsic instructions permits us to generate the same code for both CPU and Phi vectorization,
and then through compiler preprocessor macros select classes that are appropriate for the hardware
being used. Through this, we can exploit new features in the Phi, such as gather instructions, vector
reduction, etc., and integrate it seamlessly into the OP2 toolchain.

To compile for the Phi, we used the -O3 -mmic -fno-alias -mcmodel=medium
-inline-forceinline flags, and executed all applications natively on the device, we did
not implement offload mode support, because as we show pure OpenMP execution does not
give the best performance, and moving data between the host and the device for the purpose
of hybrid MPI+OpenMP halo exchanges would result in unnecessary traffic. Tests included
pure MPI execution and different combinations of MPI processes and OpenMP threads, setting
I MPI PIN DOMAIN=auto. Due to the nature of the OP2 OpenMP parallelization approach, there
is no data reuse between threads, which is likely why we observed very little (<3%) performance
differences between the settings of KMP AFFINITY, therefore we only report results with the
compact setting. In all MPI+OpenMP hybrid tests, the total number of OpenMP threads is 240
(60 cores, 4 threads each), as the number of MPI processes vary, so does the number of OpenMP
threads per process to give a total of 240; this number of total threads was found to consistently
deliver the best performance.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

0

10

20

30

40

50

60

70

Original Full Permute Block Permute

K40 Single
K40 Double
Phi Single
Phi Double

R
un

tim
e

(s
ec

on
ds

)

(a) Choice of coloring approach

256
512

1024
1536

2048

25

30

35

40

1x
24

0
6x

40

10
x2

4

12
x2

0

20
x1

2
30

x8

60
x4

R
un

tim
e

(s
ec

on
ds

)

Bl
oc

k s
ize

MPI x OpenMP combination

(b) Tuning MPI+OpenMP combination
and block sizes. Colors show

height map.
Figure 8. Coloring approaches and parameter tuning on Airfoil (2.8M mesh)

Figure 7 shows performance figures on the Xeon Phi, with Airfoil executing on the large (2.8M)
mesh. It is clear that auto-vectorization approaches fail to deliver good performance, despite the fact
that all kernels vectorized; though res calc and space disc use a different coloring scheme
that permits vectorization of the gather-scatter loop. In a similar way to the CPU, vectorization
using intrinsics gives a significant performance boost, but the difference is even higher, 2-2.2
times in single and 1.7-1.82 times in double precision. Unlike in the case of the CPU, the hybrid
MPI+OpenMP gives better performance than the pure MPI version - which is due to the MPI
messaging overhead becoming significant when the number of processes goes beyond 120. While
on the CPU and the GPU there was very little performance difference between the small and the
large Airfoil meshes, comparing the runtimes on the small and the large mesh however reveals that
the Xeon Phi is actually quite sensitive to being fully utilized; while the problem size is four times
bigger, it only takes 2.97 times more time in single and 3.25 times more time in double precision to
finish the execution for the vectorized MPI+OpenMP version.

One of the main limiters of performance is the serialization due to coloring when indirectly
incrementing data; in a vector processing setting this can be especially harmful: for example the
Xeon Phi can store 16 single precision floating point values in a vector, so sequentially scattering
these values can easily become a major bottleneck. Therefore we have implemented two additional
coloring approaches, as discussed in Section 3, in order to guarantee the independence of vector
lanes; this makes it possible to use the scatter instruction on the Phi. However, it also implies that
data previously accessed directly now has to be gathered, since the list of elements to be executed
(that have the same color) are given by a permutation, and also that there is not going to be any
data reuse between elements of the same color. With the “full permute” approach temporal locality
is very poor, since all set elements of the same color are executed before proceeding to the next
color, but parallelism is trivial. With the “block permute” approach, only set elements in the same
block are executed by color, therefore temporal locality is significantly improved; but this execution
scheme is more complicated and in case of small blocks may suffer from the underutilization of
vector lanes. Figure 8a shows the performance with different coloring approaches on the K40 and
the Xeon Phi; out of the three the original approach - which causes serialization - still performs
the best, but it is clear that the Phi has enough cache to support the temporal locality of the “block
permute” approach, though it is hit by the increased irregularity of memory accesses, whereas the
K40’s cache is much too small, thus the “full permute” approach performs better due to simplified
execution.

An important factor affecting the performance is the hybrid MPI+OpenMP setup - how many
MPI processes and how many OpenMP threads each. This has non-trivial effects on the cost of
communications, shared cache space, NUMA effects and others. In addition to this, the size of
mini-partitions or blocks formed and assigned by OP2 to OpenMP threads can be modified, trading
off the number of blocks (load balancing) with block size (cache locality). Figure 8b shows the

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 17

Table VIII. Timing and bandwidth breakdowns for Airfoil (2.8M mesh) in double(single) precision and
Volna using different MPI+OpenMP backends on the Xeon Phi

Kernel Scalar Auto-vectorized Intrinsics
Time BW Time BW Time BW

save soln 1.95(1.01) 94(92) 1.94(1.02) 95(90) 2.17(1.11) 84(83)
adt calc 27.7(25.5) 12(6.3) 14.35(13.1) 23(12) 6.86(3.54) 47(45)
res calc 48.8(36.8) 14(9.4) 84.03(66.5) 8(5) 27.22(18.4) 25(18)
update 11.8(9.59) 66(41) 8.33(8.45) 94(46) 8.77(4.6) 89(85)
RK 1 2.16 79 2.19 78 1.35 128
RK 2 2.37 70 3.24 53 1.32 130
compute flux 32.1 10 29.3 11 10.95 30
numerical flux 12.9 11 11.3 12 7.29 19
space disc 23.6 15 24.5 15 9.93 36

effects of varying these parameters on the performance on Airfoil in double precision. Observe that
as the number of MPI processes increases, a larger block size is preferred, up to a point where the
load imbalance is significant.

Per-loop breakdowns for the Xeon Phi are shown in Table VIII for the best combination of
MPI+OpenMP and block size in each case. The importance of vectorization is quite obvious; even
direct loops with very little compute, such as update, RK 1 and RK 2 gain performance, but the
most profound improvement can be observed on indirect loops, such as adt calc, res calc,
compute flux, numerical flux and space disc, which become 2-3 times faster.
adt calc is clearly bound by the expensive sqrt instructions in the scalar case, the intrinsic
version removes this bottleneck, giving 4-7× speedup, to the point where it is bandwidth-bound. The
auto-vectorized code performs poorly, despite the fact that with the exception of save soln and
update (these have for loops inside) each parallel loop is reported as vectorized; res calc and
space disc use the “block permute” approach to guarantee independence of for loop iterations.
With the exception of adt calc all other loops either lose performance compared to the scalar
version, or the gains are marginal.

An important factor influencing runtime is the time spent in MPI communications,
either sending/receiving halo data in res calc, compute flux, numerical flux and
space disc or performing a global reduction in update and numerical flux to compute
the residual or the minimum timestep. Both of these operations result in implicit synchronization;
the time spent actually transferring data is negligible compared to the time spent waiting for data
to arrive due to different processes getting slightly out of sync and then waiting for each other to
catch up at a synchronization point. On the smaller Airfoil problem this takes up to 30% of total
runtime, but is reduced to 13% on the larger problem, whereas on the CPU this is only 7% and 4%
respectively. This points to load balancing issues, explaining some of the performance differences
between the small and the large mesh.

6.6. Performance overview

Having analysed the performance of different platforms, we have exposed a number of bottlenecks
that affect performance of different loops. We have seen that direct loops are generally bandwidth-
bound on all hardware, and achieve a high percentage of the measured peak bandwidth; 70-90% on
the CPU, 60-75% on the Phi and 80-95% on the GPU. Notably, vectorization on the CPU does not
increase the performance of these direct kernels, whereas on the Xeon Phi it does; this is due to the
cache contention when accessing data one-by-one or as a vector.

When vectorization is not utilized adt calc and compute flux loops are shown to be
compute limited (in part due to the low throughput of sqrt operations). When vectorization in
enabled adt calc remains compute bound on the slower CPU, but it becomes bandwidth bound
on CPU 2, the Xeon Phi and the K40. Most indirect loops (res calc, numerical flux,
space disc) gain performance by using vectorization, but they quickly become limited by
latency; caching behavior and the serialized gather-scatter operations.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

0

10

20

30

40

50

Airfoil Single Airfoil Double Volna Single

CPU 1 CPU 2
Xeon Phi K40

R
un

tim
e

(s
ec

on
ds

)
Figure 9. Comparison of the best execution times of the Airfoil benchmark on the 2.8M cell mesh and of

Volna on different hardware

Table IX. Relative performance improvements of different loops in Airfoil (double, 2.8M cell) and in Volna
on different hardware

Kernel CPU 1 CPU 2 Xeon Phi K40
save soln 1.0 1.37 1.88 5.11
adt calc 1.0 2.25 1.87 4.84
res calc 1.0 1.95 0.81 1.79
update 1.0 1.48 1.67 4.54
RK 1 1.0 1.5 2.42 3.75
RK 2 1.0 1.54 2.18 4.05
compute flux 1.0 1.46 0.81 2.75
numerical flux 1.0 1.43 0.63 4.02
space disc 1.0 1.63 0.75 1.52

While the CPU and the GPU are largely unaffected by load balancing issues over MPI, as shown
by minimal performance differences between the small and the large Airfoil problem, the Xeon Phi
requires the larger problem to run efficiently; on the smaller testcase up to 30% of total runtime is
spent in MPI.

Figure 9 shows the best performance results achieved on all platforms on Airfoil and the 2.8M
mesh in both single and double precision as well as on Volna in single precision. The overall
performance of the Xeon Phi is consistently similar to the slower CPU - while simple direct
kernels do run faster than on either CPUs, indirect kernels are significantly slower, pulling the total
runtime up. For the CPUs and the GPU the performance differences are related to the differences
in bandwidth; 40-80% between the two CPUs (with 50% bandwidth difference and 2× cache size)
and the K40 is 2.5-3 times faster than CPU 1, but has over 3.5 times the bandwidth.

Relative performance of different loops compared to CPU 1 are displayed in Table IX and show
how well different architectures handle the different degrees of irregularity in memory accesses that
are present in these loops. Direct loops (update, save soln, RK 1, RK 2) have regular memory
accesses, therefore performance follows the available bandwidth as measured in Table I; note how
the GPU achieves a much higher fraction of the measured peak bandwidth; this is due to the fact
that benchmarks on other platforms are tuned for that specific operation, similar techniques degrade
overall performance in our applications.

Indirect loops deliver varying performance, depending on the number of operations, the degree
of irregularity, the amount of data moved, and caching behavior; on the Phi and the K40 the
performance increase is consistently less, especially on loops that indirectly increment data, since
these are hit by serialization. While in absolute terms this still results in the K40 GPU outperforming
both CPUs, an application with even more irregular, scatter-gather kernels would see less overall
benefit from the use of accelerators. Comparing the performance improvement on direct and indirect
kernels, it is clear, that the longer the vectors are (for doubles, 4 on the CPU, 8 on the Phi and 32
on the GPU) the larger the performance penalty. On the other hand, the larger cache size and higher
clock speed of CPU 2 enable it to be much more efficient on these indirect kernels than one would
expect from the difference in available bandwidth.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

VECTORIZING UNSTRUCTURED MESH COMPUTATIONS FOR MANY-CORE ARCHITECTURES 19

7. CONCLUSIONS

Through execution schemes that lend themselves to auto-vectorization as well as implementing
support for OpenCL and vector intrinsics, we evaluated approaches to achieving vectorized
execution on modern Intel CPUs and the Xeon Phi. A key question was whether existing compiler
supported auto-vectorization approaches are sufficient for achieving vectorized execution for
irregular computations, either through transforming execution schemes to provide loop iteration
independence, or by using SIMT model for expressing parallelism. Furthermore we have evaluated
the use of vector intrinsics in order to guarantee vectorized execution.

Our results show that on CPUs auto-vectorization does not happen for most loops, while the same
code does vectorize on the Intel Xeon Phi. However even then performance is poor, often worse
than scalar code. We have shown that OpenCL is adequately portable, but at the time of writing
the driver and the runtime are not very efficient. When compared to the simple (non-vectorized)
OpenMP execution, runtime is only slightly better; even though some degree of vectorization is
carried out, there is a large overhead coming from the runtime system. This is expected to improve
with time and with the introduction of new instruction sets.

In the third approach, a code generation and a back-end system was set up in OP2 to support
the use of vector registers and intrinsics. While this is the most involved amongst all parallel
programming approaches supported in OP2, it does improve CPU performance significantly;
speedups of 1.6-2.0 in single and 1.1-1.4 in double precision are observed. We show that by applying
vectorization, the performance reaches the practical limits of the hardware, usually bound by
bandwidth to DRAM or caching efficiency, and in some cases control or low-throughput arithmetic.

We have introduced intrinsics support for the Intel Xeon Phi as well, and confirmed that
vectorization is even more important than in the case of the CPUs, with speedups of 2.0-2.2 in
single and 1.7-1.8 in double precision as a result of applying vectorization. Results show that
while bandwidth-bound direct kernels and kernels that are compute-limited on the CPU run slightly
faster on the Phi when compared to the CPU, kernels bound by scatter/gather type operations and
serialization (due to race conditions) are significantly slower. To avoid the serialization issue, we
introduce two additional coloring approaches that guarantee independence between vector lanes.
However these are affected by the increased irregularity and reduced data reuse and fail to improve
performance. We also show that unlike other platforms, the Phi is very sensitive to load balancing
issues that arise when solving smaller problems. Although its performance is on par with a mid-
range dual-socket server CPU system, it is more difficult to use, and compared to the GPU it is
about 2.5 times slower. The source code used for testing is available in the OP2 repository [28].

This paper has shown that vectorization is absolutely essential to achieving maximum
performance on modern CPUs, but higher level approaches, such as auto-vectorization by the
compiler or OpenCL fail to produce efficient code in the case of unstructured grid applications,
therefore low-level vector intrinsics have to be used. We have also demonstrated that given the
right high-level abstraction, it is possible to automatically generate vectorized code and achieve
performance close to the practical limits of the hardware, which is increasingly the available
bandwidth to off-chip memory.

ACKNOWLEDGEMENT

This research has been funded by the UK Technology Strategy Board and Rolls-Royce plc. through
the Siloet project, the UK Engineering and Physical Sciences Research Council projects EP/I006079/1,
EP/I00677X/1 on “Multi-layered Abstractions for PDEs” and TÁMOP-4.2.1./B-11/2/KMR-2011-002,
TÁMOP - 4.2.2./B-10/1-2010-0014. The authors would like to acknowledge the use of the University of
Oxford Advanced Research Computing (ARC) facility in carrying out this work. We are thankful to Paul
Kelly, Carlo Bertolli, Graham Markall, Fabio Luporini, David Ham and Florian Rathgeber, at Imperial
College London, Lawrence Mitchell at the University of Edinburgh for their contributions to the OP2
project, and András Oláh and Péter Szolgay at PPKE ITK Hungary.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 I. Z. REGULY, E. LÁSZLÓ, G. R. MUDALIGE AND M. B. GILES

REFERENCES

1. Top500 Systems 2013. http://www.top500.org/list/.
2. Dally B. Power, programmability, and granularity: The challenges of exascale computing. Parallel Distributed

Processing Symposium (IPDPS), 2011 IEEE International, 2011; 878–878, doi:10.1109/IPDPS.2011.420.
3. What is GPU Computing 2013. http://www.nvidia.com/object/what-is-gpu-computing.

html.
4. Skaugen K. Petascale to Exascale: Extending Intel’s HPC Commitment June 2011. ISC 2010 keynote. http://

download.intel.com/pressroom/archive/reference/ISC_2010_Skaugen_keynote.pdf.
5. Texas Instruments Multi-core TMS320C66x processor. http://www.ti.com/c66multicore.
6. Lindtjorn O, Clapp R, Pell O, Fu H, Flynn M, Fu H. Beyond traditional microprocessors for geoscience high-

performance computing applications. Micro, IEEE March - April 2011; 31(2):41 –49.
7. Intel Math Kernel Library 2013. http://software.intel.com/en-us/intel-mkl.
8. Heinecke A, Vaidyanathan K, Smelyanskiy M, Kobotov A, Dubtsov R, Henry G, Shet A, Chrysos G, Dubey P.

Design and Implementation of the Linpack Benchmark for Single and Multi-node Systems Based on Intel Xeon
Phi Coprocessor. Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, 2013;
126–137, doi:10.1109/IPDPS.2013.113.

9. Rosinski J. Porting, validating, and optimizing NOAA weather models NIM and FIM to Intel Xeon Phi. Technical
Report, NOAA 2013.

10. Brook RG, Hadri B, Betro VC, Hulguin RC, Braby R. Early Application Experiences with the Intel MIC
Architecture in a Cray CX1. Cray User Group (CUG), 2012, 2012.

11. Vladimirov A, Karpusenko V. Test-driving Intel Xeon Phi coprocessors with a basic N-body simulation.
Technical Report, Colfax International 2013. URL http://research.colfaxinternational.com/
post/2013/01/07/Nbody-Xeon-Phi.aspx.

12. Pennycook SJ, Hughes CJ, Smelyanskiy M, Jarvis SA. Exploring SIMD for Molecular Dynamics, Using Intel
Xeon Processors and Intel Xeon Phi Coprocessors. Parallel Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, 2013; 1085–1097, doi:10.1109/IPDPS.2013.44.

13. Smelyanskiy M, Sewall J, Kalamkar D, Satish N, Dubey P, Astafiev N, Burylov I, Nikolaev A, Maidanov S, Li S,
et al.. Analysis and Optimization of Financial Analytics Benchmark on Modern Multi- and Many-core IA-Based
Architectures. High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:,
2012; 1154–1162, doi:10.1109/SC.Companion.2012.139.

14. Kim S, Han H. Efficient simd code generation for irregular kernels. SIGPLAN Not. Feb 2012; 47(8):55–64. URL
http://doi.acm.org/10.1145/2370036.2145824.

15. Giles MB, Mudalige GR, Sharif Z, Markall GR, Kelly PHJ. Performance analysis and optimization of the OP2
framework on many-core architectures. The Computer Journal 2012; 55(2):168–180.

16. Giles MB, Ghate D, Duta MC. Using Automatic Differentiation for Adjoint CFD Code Development.
Computational Fluid Dynamics Journal 2008; 16(4):434–443.

17. Dutykh D, Poncet R, Dias F. The {VOLNA} code for the numerical modeling of tsunami waves: Generation,
propagation and inundation. European Journal of Mechanics - B/Fluids 2011; 30(6):598 – 615, doi:http://dx.doi.
org/10.1016/j.euromechflu.2011.05.005. Special Issue: Nearshore Hydrodynamics.

18. Mudalige GR, Giles MB, Thiyagalingam J, Reguly IZ, Bertolli C, Kelly PHJ, Trefethen AE. Design and initial
performance of a high-level unstructured mesh framework on heterogeneous parallel systems. Parallel Computing
2013; 39(11):669–692.

19. Rabenseifner R, Hager G, Jost G. Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes.
Parallel, Distributed and Network-based Processing, 2009 17th Euromicro International Conference on, 2009;
427–436.

20. Dagum L, Menon R. Openmp: an industry standard api for shared-memory programming. Computational Science
Engineering, IEEE Jan 1998; 5(1):46–55.

21. Scotch and PT-Scotch 2013. http://www.labri.fr/perso/pelegrin/scotch/.
22. Poole EL, Ortega JM. Multicolor ICCG Methods for Vector Computers. SIAM J. Numer. Anal. 1987; 24(6):pp.

1394–1418.
23. Intel SDK for OpenCL Applications 2013. http://software.intel.com/en-us/vcsource/tools/

opencl-sdk.
24. Intel C++ Compiler XE 13.1 User and Reference Guide 2013. https://software.intel.com/sites/

products/documentation/doclib/iss/2013/compiler/cpp-lin/index.htm.
25. Giles MB, Mudalige GR, Spencer B, Bertolli C, Reguly I. Designing OP2 for GPU Architectures. Journal of

Parallel and Distributed Computing November 2013; 73:1451–1460.
26. NVIDIA Tesla Kepler GPU Accelerators 2012. http://www.nvidia.com/object/tesla-servers.

html.
27. Lindberg P. Basic OpenMP threading overhead. Technical Report, Intel 2009. http://software.intel.

com/en-us/articles/basic-openmp-threading-overhead.
28. OP2 github repository 2013. https://github.com/OP2/OP2-Common.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.top500.org/list/
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
 http://download.intel.com/pressroom/archive/reference/ISC_2010_Skaugen_keynote.p df
 http://download.intel.com/pressroom/archive/reference/ISC_2010_Skaugen_keynote.p df
http://www.ti.com/c66multicore
http://software.intel.com/en-us/intel-mkl
http://research.colfaxinternational.com/post/2013/01/07/Nbody-Xeon-Phi.aspx
http://research.colfaxinternational.com/post/2013/01/07/Nbody-Xeon-Phi.aspx
http://doi.acm.org/10.1145/2370036.2145824
http://www.labri.fr/perso/pelegrin/scotch/
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/index.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/index.htm
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/tesla-servers.html
http://software.intel.com/en-us/articles/basic-openmp-threading-overhead
http://software.intel.com/en-us/articles/basic-openmp-threading-overhead
https://github.com/OP2/OP2-Common

	1 Introduction
	2 Parallel Execution and Programming Models
	3 The OP2 Library for Unstructured Grids
	4 Vectorization
	4.1 OpenCL
	4.2 Vector intrinsics

	5 Baseline CPU and GPU implementations
	6 Performance analysis
	6.1 Experimental setup
	6.2 Baseline performance
	6.3 OpenCL performance on CPU and the Xeon Phi
	6.4 Vector Intrinsics on CPUs
	6.5 Vector Intrinsics on the Xeon Phi
	6.6 Performance overview

	7 Conclusions

