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Abstract 

Cities are complex systems, where related Human activities are increasingly difficult to 

explore within. In order to understand urban processes and to gain deeper knowledge 

about cities, the potential of location-based social networks like Twitter could be used a 

promising example to explore latent relationships of underlying mobility patterns. In 

this paper, we therefore present an approach using a geographic self-organizing map 

(Geo-SOM) to uncover and compare previously unseen patterns from social media and 

authoritative data. The results, which we validated with Live Traffic Disruption (TIMS) 

feeds from Transport for London, show that the observed geospatial and temporal 

patterns between special events (r=0.73), traffic incidents (r=0.59) and hazard 

disruptions (r=0.41) from TIMS, are strongly correlated with traffic-related, 

georeferenced tweets. Hence, we conclude that tweets can be used as a proxy indicator 

to detect collective mobility events and may help to provide stakeholders and decision 

makers with complementary information on complex mobility processes. 
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1. Introduction 

The complexity of cities with related human activities is becoming an increasingly tough 

challenge for policy makers and modelers to explore urban dynamics and the study of city-

scale mobility patterns. One promising example of available high-granularity information 

sources is the Transport for London’s (TfL) Traffic Information Management System (TIMS). 

It provides high resolution, up-to-date disruption information regarding congestions, traffic 

incidents, events, construction works and other issues affecting traffic. However, these 

existing traffic measuring systems (e.g., road-side detectors, video surveillance, floating car 

data, etc.) are resource intensive in terms of ongoing operating and maintenance costs. 

Furthermore, a complete detection of all traffic and road conditions is simply not feasible. 

At the same time, in recent years an increasing amount of information has been 

generated through mobile devices, becoming a potentially powerful data resource for 

(geographic) knowledge discovery and human behavior analysis from crowdsourced data 

(Goodchild, 2007). For a number of disciplines this development opens up enormous potential 

for various applications, including urban- and traffic planning, disease- and disaster 

management.  

In particular, harnessing human mobility information from social media platforms 

such as Twitter can potentially lead to new insights into the human mobility process. Due to 

the high spatiotemporal resolution this may provide complementary information when 

compared with existing traffic data sources. However, one main challenge when analyzing 

mobility with officially acquired data is the spatiotemporal complexity of latent processes 

within traffic events (e.g., effects of incidents such as roadworks on the traffic flow and the 

correlations with traffic disruptions), hampering the detection of patterns in large road 

networks (Asif et al., 2014)). 

Simultaneously, when using crowdsourced information it is uncertain how 

representative and trustworthy these new types of geodata are for the inference of human 

mobility patterns (Steiger et al., 2015c). Thus, research in this area requires new 

methodological approaches, which consider the high dimensionality and uncertainty of 

crowdsourced geographic information in the context of a data-driven geography (Miller and 

Goodchild, 2014). In a previous study, we therefore applied and have demonstrated the 

efficiency of self-organizing maps (SOMs) to abstract and cluster information from 

multidimensional Twitter data in a trans-disciplinary approach (Steiger et al., 2015b). 

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
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However, it has not been analyzed whether spatiotemporal information from social media data 

is a suitable proxy for inferring certain traffic-related events. Further the question is whether 

the results in comparison with official traffic disruption reports lead to new insights regarding 

the study of human mobility patterns. 

In this paper, we use a non-geographic and a geographic self-organizing map 

(SOM/Geo-SOM) to discover collective human mobility clusters by analyzing similar 

variances within geospatial, temporal and disruption characteristics from live traffic feeds. 

The results are correlated with traffic-related georeferenced tweets for a case study in London. 

We intend to answer the following research questions (RQ):  

(RQ1): What is the correlation between inferred spatiotemporal clusters from tweets, as a 

proxy of collective human mobility patterns and the real time traffic information provided by 

TIMS?  

(RQ2): Which official traffic events along with their individual traffic disruption 

characteristics (category, severity, duration) are reflected in traffic-related tweets and have a 

dissimilar/similar spatiotemporal distribution? 

2. Background 

This section summarizes the characteristics of both datasets used in this analysis (sub-sections 

2.1 and 2.2). Then, related work in the area of spatiotemporal mobility analysis is depicted in 

sub-section 2.3, followed by a description of the current state of the art regarding the 

application of SOMs for mobility analysis in sub-section 2.4. 

2.1 Comparative reference dataset: TIMS disruption messages 

The Transport for London (TfL) authorities provide real time open traffic disruption data for 

the area of Greater London as part of their Traffic Information Management System (TIMS). 

TIMS contains a broad range of a priori known information concerning road disruptions, such 

as the location of occurrence, details regarding road closures and more in-depth categorization 

of the cause of a disruption. Our research solely focuses on analyzing active persisting traffic 

event messages within the five categories of traffic incidents, traffic volume, hazards, and 

special and planned events (Transport for London, 2007). As persisting traffic disruptions are 

repeated until cleared, we can compute the length of every incident and have, additional 

categorical information regarding the severity of a traffic event by combining it with the 

provided level of interest and priority status. All observed traffic disruption messages and the 

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
http://doi.org/10.1016/j.trc.2016.10.010
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identified general spatiotemporal patterns of occurrences in London provide a reliable ground 

truth of mobility events. Thus, they serve as a reference dataset for our comparison with 

Twitter data. 

2.2 Social media dataset: Twitter 

Within the online social network and microblogging system Twitter, currently more than 288 

million users post 500 million short status messages (tweets) with up to 140 characters per 

day1. As a further option, users can geotag their tweets with a geo-location acquired by their 

mobile devices. Therefore tweets are provided in high spatiotemporal resolution (geolocation 

and timestamp of the tweet) and include a semantic information layer (message content of the 

tweet). Since georeferenced tweets are to a certain extent a proxy of real-world observations 

(Hawelka et al., 2014), they represent a valuable opportunity for studying human mobility 

dynamics. Frequently repeating patterns of contextually similar tweets over geographic space 

and time might serve as an indicator to characterize human activity and to detect traffic-

related events (exemplary georeferenced tweet in Figure 1).  

 

Figure 1. Exemplary traffic-related, georeferenced tweet. 

 

 

2.3 Spatiotemporal and semantic human mobility analysis from social media 

Recent research efforts on harnessing human mobility related information have focused on 

extracting individual and collective human daily activity patterns, such as taxi trip records 

(Jiang et al., 2009, Liu et al., 2012, Peng et al., 2012), GPS trajectories (Gonzalez et al., 2008, 

Wang et al., 2014), or large sets of mobile phone records (Song et al., 2010, Gao, 2014). All 

                                                           
1https://about.twitter.com/de/company 

http://dx.doi.org/10.1016/j.trc.2016.10.010
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studies generally conclude the possibility to infer and predict collective human mobility 

patterns by analyzing travel distances, staying times and collective displacements. 

Regarding human mobility analysis from social media, a number of studies, (Cranshaw et al. 

2012, Hasan et al., 2013, Liu et al., 2014) have used check-in data from Foursquare to analyze 

collective human activity patterns to infer urban- (Wakamiya et al., 2011) and user-specific 

travel characteristics (Noulas et al., 2012). Foursquare is a location and recommendation 

service where users can check in with their mobile phones at specific venues (shops, hotels 

etc.). Liu et al. (2014) extracted trips and spatial interactions from Foursquare check-in data to 

detect inter-urban movements. A further validation of check-in data compared to mobile 

phone locations revealed similar collective movement patterns of people showing spatial and 

social proximity (Cho et al., 2011). 

As for human mobility analysis from Twitter data, several studies estimated individual 

travel behavior with urban motion patterns (Krumm et al., 2011, Ferrari et al., 2011) and also 

found a correlation between tweet locations and certain socioeconomic characteristics of 

people (Li et al., 2013, Hawelka et al., 2014). Tweets are a proxy for tracking and predicting 

human movement and also have similar features compared with mobile phone records (Jurdak 

et al., 2015). With respect to our research questions, Gao (2014) estimated spatiotemporal 

mobility flows from Twitter to infer origin-destination trips. Results have shown similar 

patterns when compared with community survey data. Lenormand et al. (2014) investigated 

the use of Twitter in transport networks for Europe by comparing the number of 

georeferenced tweets with average annual daily traffic reports. The authors were able to detect 

frequent user transport modalities along with overall traffic congestions. Yet, in both studies, 

tweets have simply been aggregated and matched onto the transportation networks on 

different scale levels (leading to modifiable areal unit problem ,Fotheringham & Wong, 1991) 

without analyzing the textual components of tweets. Moreover, no study currently focuses on 

analyzing, which events and information are reflected within tweets. This is an important 

aspect in order to assess the reliability as a proxy source of human mobility activities, adding 

complementary information to existing knowledge.  

Therefore, in accordance with our research goals stated in section one, the following 

sub-section summarizes the recent state of the art concerning the advantages of applying 

SOMs. The section further outlines the potential of SOMs for detecting and comparing human 

mobility clusters from official real-time traffic information and tweets in a combined 

approach.  

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
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2.4 Application of self-organizing maps, Geo-SOM and variants 

A self-organizing map is an unsupervised artificial neural network (ANN) learning algorithm, 

introduced by Kohonen (1982, 1990), that produces a two-dimensional topological connected 

output map from multi-dimensional input data properties. The advantages of neural networks 

for geographic analysis were first demonstrated by Openshaw et al. (1995). Facing a growing 

complexity of spatial data and analysis tasks (Miller and Han, 2009), SOMs have been further 

evaluated as a high-performance data mining method to cluster high-dimensional data (Ultsch 

and Vetter, 1995, Watts and Worner, 2009). Thus, SOMs are of great interest for the field of 

GIScience for spatial data mining and pattern detection (Spielman and Thill, 2008, Gorricha 

et al., 2013), and spatial clustering (Jiang and Harrie, 2004, Skupin and Hagelman, 2005). 

Agarwal and Skupin (2008) provide a broad summary of SOM applications within GIScience. 

Geospatial attributes of temporal observations have been first considered by Kangas (1992) 

(“Kangas Map”). Bação et al. (2005) further modified SOMs by only matching 

geographically close neurons in their Geo-SOM framework.  

Various studies have proven the ability to infer and predict real-world traffic clusters 

inside road networks from official traffic data by using SOMs (Asamer et al., 2007, Asif et al., 

2014, Feng et al., 2014). Sagl et al. (2014) further evaluated spatially autocorrelating SOMs to 

foster the exploration of collective human activities from mobile phone records. A 

combination between Geo-SOM and a hierarchical SOM to further explore a spatial 

motorcycle flow dataset has been described by Feng et al. (2014).  

Regarding the application of SOM for social media analysis, several studies (Boulet et 

al., 2008, Couronne et al., 2013) investigated relationships inside social networks with neural 

networks to study user characteristics and collective similarities. Related to knowledge 

discovery from geographic data, Hagenauer et al. (2010) applied SOMs to cluster point-based 

crime patterns and later use a text mining approach to classify unstructured citizen crime 

reports (Helbich et al., 2013).  

To the best of our knowledge no past research exists on validating and comparing the 

characteristics between inferred spatiotemporal clusters from official traffic disruption 

information and tweets as a proxy of collective human mobility patterns. 

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
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3. Methodology 

Our methodological approach intends to leverage existing knowledge about the 

spatiotemporal characteristics of traffic disruptions from official data in order to compare, 

which patterns of inferred disruption clusters are similarly reflected within georeferenced 

tweets. Therefore, we compute the similarity between the three available information layers 

for traffic disruptions: the categorical attributes for each disruption (category of event, 

severity and duration), the geographic location and the temporal information (for a detailed 

methodological evaluation see (Steiger et al., 2015b)). 

Figure 2 visualizes the overall computational framework. First, we apply a standard 

Kohonen SOM in order to observe and to analyze the general topological relationships of our 

reference dataset (official traffic disruption messages).  

Second, a geographic self-organizing map (Geo-SOM) is computed for the identification of 

similar overlapping traffic disruption patterns. Finally, the resulting traffic disruption clusters 

and their corresponding Geo-SOM weight vectors are correlated with the computed Geo-

SOM weight vectors from all retrieved georeferenced tweets, which semantically cover 

traffic-related information.  

 

Figure 2. Analysis framework. As proposed in (Steiger et al., 2015b). 

 

 

For assessing the geospatial similarity we are considering the obtained geographic location for 

all traffic disruptions. The geospatial position of every observation is used within our Geo-

SOM to only cluster geographical close input vectors, whereas within the applied standard 

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
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Kohonen SOM we omit the geographic space and solely focus on exploring the topological 

relationship between the non-geographic input components (see sub-section 3.3 below).  

The temporal information within each SOM/Geo-SOM is considered by analyzing the 

attribute characteristics and dependencies within the given time periods. Since tweets posted 

at a similar time does not imply that they also correspond to each other, we cannot infer any 

absolute temporal associations between tweets. Unlike GPS trajectories which are a reliable 

sequence of locations and timestamps, within tweets we do not have any a priori, sequential 

information. Thus, each tweet is treated as an independent observation. Since official traffic 

disruptions are retrieved every 15 minutes, we created categorical time bins for every 15 

minutes, every hour and every day to cluster traffic disruptions/tweets when sharing similar 

information close in geographic space and close in time. Note that all derived 15 minute time 

bins are grouped into either weekday or weekend periods to reflect the well-known bimodal 

nature of human mobility (Kung et al., 2014). However, the bin width of time intervals can be 

adjusted in a generic manner (consideration of any given interval, such as day, weeks, months 

etc.). 

3.1 Self-organizing map (SOM) and geographical self-organizing map (Geo-SOM) 

In order to spatially organize the topological representation of our data input features, we 

consecutively apply the standard Kohonen SOM algorithm (Kohonen, 1990, Agarwal & 

Skupin, 2008) and a Geo-SOM (Bação et al., 2005). To cluster the dataset, it is necessary to 

determine a reasonable map size. For this reason, we trained random weight maps with 

different sizes and parameter settings in the initial learning phase. To measure the quality of 

the standard SOM and the Geo-SOM, we compute the average distance between every input 

unit and the mapped training pattern after each iteration, known as quantization error (QE) 

(Table 1). Further, topographical errors (TE) are evaluated to measure the topological 

preservation and continuity of mapping by assessing the distances between all nonadjacent 

best matching units and the second best matching unit for all input features (Uriarte and 

Martín, 2005). Last, we determine the geographical error (GE) by computing the average 

distance between each geographic input component and the final mapped output neuron 

(Agarwal and Skupin, 2008). The clustering results show that a 10x10 neuron network entails 

the least errors (see Table 1).  

 

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
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Table 1. Comparison of computed QE, TE, GE between Kohonen SOM and Geo-SOM (k=2) 

 SOM   Geo-SOM (k=2) 

 5x5 10x10 15x15 5x5 10x10 15x15 

QE 0.424 0.211* 0.308 5.45 0.232* 0.312 

TE 0.350 0.316* 0.370 0.326* 0.343 0.385 

GE - - - 1.796 0.794 0.623* 

       

 

All maps have been trained 10,000 times with a subsequent fine tuning phase until 

convergence is reached, to determine most similar node weights with the smallest distance to 

the input vector (geospatial, temporal and disruption attributes), known as the Best-Matching 

Unit (BMU). Since the main goal is to observe local geospatial cluster patterns, the maximum 

geographical tolerance to search for every BMU is defined as k=2 (Bação et al., 2005). 

Furthermore, weight vectors for every computed Geo-SOM are bivariately correlated 

(Pearson’s r) and also spatially (Local Moran’s I) (Anselin, 1995) autocorrelated (threshold 

distance are all neighboring neurons) in order to assess the spatial interactions of clustering or 

dispersing BMUs, as well as the topological relationships of identified traffic disruption 

clusters across the different Geo-SOMs.  

4. Case study and results 

The analysis framework described in section 3 has been applied in our case study for official 

traffic disruptions and the Twitter dataset. This section summarizes the results of our analysis.  

For our case study of Greater London, we analyzed and compared 129,651 real-time 

traffic disruptions from Transport for London with 63,407 georeferenced tweets for one 

month. For the Twitter data acquisition process, only georeferenced tweets within a given 

bounding box (see table 2 for further description) have been crawled, without any further 

keyword filtering. Furthermore, tweets covering traffic-relevant information were extracted 

by semantically analyzing each Twitter post using the Latent Dirichlet Allocation (Blei et al., 

2003) topic model. The generative topic modeling approach is a computer linguistics 

technique which analyzes each tweet’s content and assigns a probability-based topic indicator 

to each tweet, summarizing the frequency and distribution of how words appear and are 

semantically related to each other. By analyzing the frequency and distributions how words 

appear within tweets and how certain words relate to each other (e.g. “traffic” and “stuck” 

since users always mention them together), a list of “latent” topics describing each tweets 

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
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content can be retrieved. Only tweets showing the highest probability to be assigned to a 

given traffic topic were selected for the subsequent analysis (for a detailed explanation of the 

applied LDA2 semantic methodology and the corresponding evaluation see (Steiger et al., 

2015c)).  

Table 2. Meta-information for the selected traffic disruptions and Twitter dataset. 

Dataset Greater London (UK) 

Bounding Box (WGS 84) -0.303, 51.238, 0.554, 51.731 

Time span 01/04/2015-31/04/2015 

Number of georeferenced tweets 

before LDA-processing 

724,025 

Number of georeferenced tweets 

after LDA-processing 

63,407 

Number of individual Twitter users after 

LDA-processing 

27,193 

Number of georeferenced traffic 

disruptions (TIMS) 

179,651 

 

Figure 3 provides an initial comparison between semantic, temporal and geospatial 

information from official traffic disruptions and traffic-related georeferenced tweets. The 

observed, most frequently occurring words indicate the diverging semantic content; while, 

traffic disruption messages include more detailed contextual information about specific 

landmarks, the semantic information from tweets appears to be more general (3a). Regarding 

the temporal frequency of traffic-related topics (3b), one can observe a similar daily 

distribution with the characteristics of morning and evening peak and a decreasing amount of 

traffic-related posts on weekend periods. However, traffic-related tweets are more 

homogeneously distributed. 

Analyzing the geospatial-semantic distribution of traffic-related posts for both datasets 

(3c), we can discern a geographical clustering of official traffic messages along central 

London mobility hubs (e.g., Trafalgar Square, Piccadilly Circus), whereas tweet point 

densities scatter more across the London road network. However, in order to further 

investigate similarities and to uncover more complex latent relationships between observed 

traffic disruption patterns and tweets, the following sub-section 4.1 presents the results of the 

conducted SOM analysis.  

 

                                                           
2 https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation 

http://dx.doi.org/10.1016/j.trc.2016.10.010
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Figure 3. Comparison of a) overall most frequent associated, occurring words between 

analyzed tweets and official traffic disruptions in word cloud, b) temporal word frequencies of 

tweets and traffic messages during weekdays are shown, and c) the geospatial-semantic point 

densities of tweets and TIMS messages, vertically extruded as spikes and aggregated. (base 

map: Stamen Design CC BY 3.0, Data by OpenStreetMap CC BY SA, TfL TIMS data: TfL 

Publicly-available data licensed under the Open Government License v.2.0)

 

4.1 Results SOM traffic disruption patterns (Figure 4a/4b) 

This section presents the resulting traffic disruption clusters after analysis of the geospatial, 

temporal and attribute information. SOM U-matrices provide the first visual insight into the 

data characteristics and topological structures by plotting the Euclidean distance between the 

derived codebook vectors on a two-dimensional hexagonal output space. Darker colors 

(>0.65) represent distant codebook vectors and dissimilar input attributes of traffic 

disruptions, whereas light colors denote close adjacent neurons (0.10-0.65) and indicate the 

presence of distinct traffic disruption clusters with similar geospatial-temporal characteristics.  

On the applied standard SOM U-matrix (Figure 4a), the codebook vector distances 

between the map units are only representing the topological neighborhood relationships of 

non-geospatial attributes (in our case the traffic disruptions and their temporal characteristics 

see Figure 3). 

 

 

http://dx.doi.org/10.1016/j.trc.2016.10.010
http://dx.doi.org/10.1016/j.trc.2016.10.010
http://doi.org/10.1016/j.trc.2016.10.010


This is the “Accepted Version” of the paper published as Steiger, E., Resch, B., de Albuquerque, J. P., 
& Zipf, A. (2016). Mining and correlating traffic events from human sensor observations with official 
transport data using self-organizing-maps. Transportation Research Part C: Emerging Technologies, 
73, 91–104. http://doi.org/10.1016/j.trc.2016.10.010.  
 

12 
 

Figure 4a) U-matrix results of the 10x10 SOM analysis showing inferred cluster patterns with 

close BMU weight vectors (<0.2), indicating similar input characteristics. Pie chart sizes 

correspond to the amount of associated disruptions for each cluster. 

 

In Figure 4a, the most notable insight of all emerged patterns is that the attributes of traffic 

events within identical disruption categories strongly differ, depending on the temporal 

characteristics and appear as separate cluster patterns (dissimilar and distant BMU between 

C3&C4 and C5&C6) on the U-matrix. The most associated work disruptions occur during 

weekdays between 9-11pm (C3) with a low severity (3-4) and show slightly differing 

characteristics than work disruptions, which occur in the morning (8-11am) (C4) with medium 

severity (2-3). The average disruption length of both clusters is similar (~3 hours). Traffic 

incidents occurring between Mondays and Wednesdays (C6) peak between 8-10am and 5-

6pm, reflecting typical commuting activities similar to the Geo-SOM results (see Figure 5c). 

In contrast, traffic incidents between Thursday-Friday (C5) are assigned to a separate cluster 

pattern occurring later in the morning (10-12am) and they peak earlier (mostly at 1pm and 

5pm) with a longer average disruption length (Figure 4b). Both clusters share some 

similarities between their input components (e.g., same disruption category). In contrast, work 

disruptions and traffic incidents on weekends show similar temporal distributions with no 
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differentiation between morning and evening times, suggesting a stronger similarity between 

input components, other than during weekdays. 

Moreover, the SOM approach is also useful for detecting cluster outliers 

(O8/O9/O10/O11 with distant adjacent neurons), which share only a few similarities in 

comparison to the entire dataset. These observations form a distinctive abnormal traffic 

pattern with only a small number of associated traffic disruptions. Thus, it would be 

worthwhile to further investigate the causes of disruption by analyzing the cluster attribute 

characteristics. All outliers have been labeled with a high severity (1-2) regarding the current 

or expected impact of the disruption on traffic, requiring a high level of operational attention. 

O8 and O9 are exceptional severe and long lasting traffic volumes and construction works 

which always occur on Mondays, differing from the other weekday disruption intensities.  

Furthermore, cluster outlier O10 represents unplanned hazards, which therefore occur 

at unusual times (most frequently at night between 1-4am) with an average disruption length 

of less than 32 minutes. Cluster outlier O11 consists of long-term construction sites with an 

average disruption length of 7 days, which mainly concentrate in the inner city. 

 

Figure 4b). Average disruption length per disruption category within observed SOM clusters 

and outliers. Note that *marked clusters only have distinctive characteristics on weekend 

periods and are thus not observed during weekdays.

 

4.2 Results Geo-SOM traffic disruption patterns (Figure 5a/5b/5c) 

On the Geo-SOM U-Matrix in Figure 5a, one can generally observe several notable disruption 

patterns. Overall, the highest number of associated, similar traffic disruption patterns cluster 
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along major arterial roads and public squares (C21: Westway with 20,476 disruption messages, 

C17: Victoria Square with 15,233 messages, C22: Elephant & Castle with 12,468 messages, 

C14: Trafalgar Square with 4,407 messages). Special and planned events, such as concerts, 

demonstrations, marches, sporting events, etc., mostly take place in the inner city 

(C7/C12/C15), whereas most of the Geo-SOM clusters with hazard disruptions (obstructions, 

damages, fire etc.) are concentrated along major arterial roads (C1/C2/C5). The longest average 

disruption length (~2 hours) within all traffic message categories is detected along major 

motorways and ring roads (C1/C2/C3/C5/C9/C19) (see Figure 5b). 

Focusing on the temporal characteristics of the dataset, a strong concentration of 

traffic incidents (accidents, breakdowns, etc.) with similar geospatial-temporal attributes 

forms strong clusters with close BMU along major arterial roads (C1/C2/C3/C6/C10/C19/C9/C24). 

These clusters most frequently occur during weekdays in the morning (8am-11am) and in the 

afternoon at 4-5pm, reflecting typical commuting peak hours (Figure 5c). Major traffic 

volume disruption patterns, due to the “sheer weight of traffic” (predetermined category of 

disruption as specified in TIMS feed), occur predominantly on weekdays within the inner city 

around 4-6pm, causing an average disruption length of longer than 40 minutes (C11/C14). 

Furthermore, a clear temporal dependence of traffic disruptions, reflecting an inbound 

and outbound traffic flow, can be seen along the outer London Ringways (C5/C6/C9), where 

traffic incidents most frequently cluster on weekdays at 8am. These roads merge into the 

London Inner Ring Road (strong Geo-SOM cluster C8 with close neurons), where all 

occurring traffic incidents generally peak later on weekdays at 10am. A similar cluster pattern 

exists between the Rochester Way C19 (traffic incidents peak weekday 8am) and major square 

Elephant & Castle C22 (most traffic incidents occur on weekdays at 11am). 

Within the work disruption category, the planned element of these disturbances is also 

reflected within the temporal dimension, since main utility works are carried out during 

weekdays within low traffic periods at night (11pm-1am). Work disruptions during the day 

(C9/C19 construction works at 10am), result in a notable increase of traffic incidents and traffic 

volume disruptions since they have a similar temporal evolution. C4/C16 only occur on 

weekends and are in the proximity of large stadiums/public squares, consisting of a notable 

amount of traffic disruptions due to special events (10-11am), along with traffic accidents 

(happening earlier at 8am with an average disruption length of 25-28 minutes).  
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Figure 5a). U-matrix results of the 10x10 Geo-SOM (k=2) analysis showing the inferred 

cluster pattern with close BMU weight vectors (<0.2), indicating similar input characteristics. 

The sizes of all pie charts denote the amount of associated disruptions for each cluster. 
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Figure 5b). Average disruption length per disruption category within observed Geo-SOM 

clusters and comparison with number of georeferenced tweets within these Geo-SOM 

disruption clusters. The different colors indicate the category of disruption and correspond to 

Figure 5a. Note that *marked clusters only have distinctive characteristics on weekend 

periods and are thus not observed during weekdays.

 

4.3 Result correlation of derived Geo-SOMs (Figure 6) 

We applied the Geo-SOM approach, described in section 3, to official traffic disruption data 

(TIMS) as a reference dataset by using geospatial, temporal and disruption attribute 

information. Next, the Geo-SOM is also utilized to cluster semantically classified and pre-

filtered, georeferenced tweets covering traffic-related events by using their geospatial and 

temporal information (see Figure 2 for the overall analysis framework). Subsequently, the 

resulting BMU weight vectors from both Geo-SOMs are autocorrelated to measure the degree 

of spatial association for all BMUs and their neighboring neurons, in order to statistically 

quantify non-random local indicator of spatial association (LISA) (Anselin, 1995). 

Afterwards, we applied the bivariate Pearson correlation to assess the mutual statistical 

dependence of each BMU weight vector for all Geo-SOMs. This way, latent similar structures 

of inferred mobility disruption patterns, divided into five traffic disruption categories (hazard, 

special events, traffic volume, traffic incident, construction works), are correlated and 

compared to the observed characteristics from tweets to analyze whether the official traffic 

disruptions are reflected within a similar tweet post behavior. Figure 6 visualizes the 
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coherence between the computed neuron weights for each traffic disruption category and 

respective tweets. The bivariate correlation of BMU distances indicates similar (BMU 

weights for mutually compared Geo-SOM <0.5) and dissimilar (BMU weights for mutually 

compared Geo-SOM >0.5-1) input data characteristics for tweets and each traffic disruption 

category. A positive spatial autocorrelation (-1.96<Ii>1.96), denoted by different point sizes, 

implies the presence of distinctive, non-random spatial pattern for the given neuron weight 

and its neighboring neuron weights. 

 

Figure 5c). Derived clusters of the Geo-SOM mapped to the geographic space (base map: 

Tiles Courtesy of MapQuest, data from OpenStreetMap contributors, TfL TIMS data: TfL 

Publicly-available data licensed under the Open Government License v.2.0).
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Figure 6. Results of correlated Geo-SOM BMU distance weights for every disruption 

category with traffic-related tweets.  

 

From the correlations depicted in Figure 6, we can infer the following: 

 Geo-SOM BMU weight vectors between tweets and special event disruptions show 

a strong correlation (r=0.73). BMU weight vectors are very close (boxplot: middle 

quartile<0.4, lower whisker with the first quartile starting from 0.1) and the 

surrounding neurons’ weights also spatially autocorrelate, which demonstrates the 

overall similarity of patterns (Figure 6b). 

 Geo-SOM BMU weight vectors between tweets and traffic incident disruptions 

show a moderate correlation (r=0.59). BMU weight vectors are close (boxplot: 

middle quartile=0.5, lower whisker with the first quartile starting from 0.2) and cluster 

patterns have a similar spatial autocorrelation (Figure 6c). 

 Geo-SOM BMU weight vectors between tweets and hazard disruptions show a 

weak correlation (r=0.41). BMU weight vectors have a medium distance (boxplot: 

middle quartile=0.5, lower whisker with the first quartile starting from 0.25) and 

cluster patterns have a similar spatial autocorrelation (Figure 6a). 
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 Geo-SOM BMU weight vectors between tweets and traffic volume (r=-0.19) and 

tweets and construction works (r=-0.10) show no correlation, since the observed 

BMU weight vectors have a medium to far mutual distance (boxplot: middle 

quartile>0.6, lower whisker with the first quartile beginning from 0.26) and geospatial, 

temporal attribute patterns show no association with a very dissimilar spatial 

autocorrelation (Figure 6d and 6e). 

Furthermore, the severity and duration of inferred traffic disruption clusters (Figure 5a) are 

compared to the number of assigned traffic-related tweets for each neuron (Figure 5b). 

Generally, one can observe a higher amount of traffic-related tweets in the vicinity of major 

public squares and within the inner city (C7/C8/C14/C17/C18) reflecting the varying distribution 

and population frame of Twitter posts. Over all categories, there is no association between the 

average durations and severities of the disruption clusters and generated tweets. However, 

there is a weak correlation (r=0.27) between traffic volume disruptions, their average duration 

as well as severity and the amount of tweets assigned to the same neuron. Geo-SOM clusters 

with a high amount of special events (C8/C12) and traffic volume disruptions (C11/C14/C19) 

have, compared to all the other Geo-SOM clusters, in average 2% more assigned tweets.  

5. Discussion of results and applied methods 

The SOM result within sub-section 4.1 revealed varying durations of observed disruption 

patterns depending on the time of their occurrence. Detected incidents and corresponding 

types of disruptions differ in severity and duration through the day time during weekdays and 

weekends, reflecting the bimodal (peak hour) distribution of human mobility (Wang et al., 

2014). The SOM assists to explore these temporal variations of input attributes by 

topologically grouping dissimilar and similar disruptions together. Hence, work and traffic 

incident related disruption categories with a dissimilar duration and severity between 

mornings and evenings on weekdays are more distant to each other and appear as separate 

structures on the neuronal map (see Figure 4a C3&C4 and C5&C6). In contrast, work and 

traffic disruptions frequently occurring on weekends (C1 and C2) have similar daily and are 

thus mapped to closer relating neurons. As a result, we can confirm that in the SOM, official 

TIMS messages reflect typical well-known human mobility patterns and are therefore a 

reliable and trustworthy reference dataset for the comparison with traffic-related human 

sensor observations (tweets). Distant neurons on the SOM U-matrix (Outliers O8-11) indicate 
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distinctive abnormal traffic events with differing characteristics (e.g. exceptional duration) 

from the majority of disruptions.  

When incorporating the geospatial components using a Geo-SOM (sub-section 4.2), 

one can identify frequently repeating, daily patterns with similar time-dependent disruption 

characteristics along major arterial (ring) roads, being a proxy indication of a specific 

collective inflow and outflow mobility behavior. The U-matrix (see Figure 5a) and the 

detected topological cluster structures, show that disruption messages and their attributes are 

allocated to similar neurons and form distinct clusters along road segments, when linked back 

to geographic space (see Figure 5c). With the Geo-SOM, consistent cluster characteristics of 

disruptions show similar temporal patterns at certain geographic locations and help to uncover 

complex topological structures of the London street network. Geo-SOM structures of 

disruption messages form distinct clusters along road segments and public squares. Outer 

peripheral roads appear as similar cluster patterns on the Geo-SOM and have typical evening 

and morning rush hour peaks with a characteristic distribution of disruption categories 

(predominantly traffic incidents). These patterns are different from inner city clusters along 

major hubs and central ring roads, where the types of traffic disruptions occurring are more 

diverse. Thus, the geographical clusters (see Figure 5c) of frequently repeating disruption 

patterns, reflect the daily intra-urban movement of traffic flow and the underlying hierarchical 

road system of arterial roads leading into the city, which typically intersect at major 

transportation hubs. 

The correlation results of the computed Geo-SOMs (see sub-section 4.3) between 

official traffic messages, as a reference dataset, and traffic-related tweets, have shown that 

observations from Twitter data and their geospatial-temporal characteristics are statistically 

associated and share similarities with certain traffic events, depending on the type of 

disruption event. Special and planned events, together with traffic incidents and hazards, are 

very well reflected in tweets since these observations are mapped to similar neurons (see 

Figure 6), indicating similar geospatial-temporal patterns on each computed Geo-SOM with a 

positive spatial autocorrelation. This result also demonstrates the heterogeneity of the given 

social media observations (as stated in sub-section 2.1), because other types of traffic 

disruptions (e.g., construction works and traffic volumes) show no correlation. Geo-SOM 

cluster patterns with a high amount of special events and traffic volume disruptions also show 

a slightly higher amount of associated tweets compared to, for instance, work disruptions, 

suggesting that these events trigger more tweets. In general, the presented framework 
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demonstrated its usefulness for the exploration of complex mobility disruption patterns. The 

assessment of geospatial and non-geospatial input components with the SOM approach 

revealed characteristic temporally repeating incident and disruption patterns depending on the 

type of disruption event. It is also worth noting that the approach enables the detection of 

distinctive abnormal traffic events with a high severity and increasing duration length. The 

analysis of geospatial components uncovered time-dependent disruption characteristics along 

the London street network as a proxy for the underlying mobility flows Further, the proposed 

workflow is suited for analyzing Twitter data that are characterized by uncertainty in 

geographic and semantic dimensions. 

5.1 Limitations 

Several limitations of the conducted analysis need to be addressed. First, the user generated, 

textual content of tweets is noisy, making it challenging to apply natural language processing 

(NLP) techniques to identify meaningful information (Ling et al., 2012). Thus, the application 

of the LDA model for the selection of traffic-relevant tweets may result in misclassification of 

latent semantic topics. However, this is a common limitation of studies that involve text 

mining methods and we apply commonly known semantic analysis techniques, which reflect 

the current state of research within computational linguistics (Aggarwal and Zhai, 2012). 

Furthermore, in our analysis, we assume that the semantic content of tweets reflects an 

observation at a certain location and time they have been posted. However, there might be a 

temporal latency between real-world events and their appearance in social media. 

Nevertheless, existing social media studies (Sakaki et al., 2010) have shown that events are 

actually broadcasted even earlier in social media than in official data sources, making it 

potentially promising also for the application of real time traffic event detection. Therefore 

traffic related tweets are also of value for the real-time traffic detection of events, since these 

observations are reflected earlier in social media than within the official traffic data reports. 

Further, Twitter data itself is sparse and has a heterogeneous geospatial-temporal distribution. 

Therefore, the study needs to be reproduced in other areas to further compare how human 

sensor observations from Twitter data are related to traffic event characteristics in other urban 

environments. The use of additional demographic and economic variables could further 

explain the influence of socioeconomic factors on the detected traffic patterns. 

Regarding the application of SOMs and Geo-SOMs one main issue arises. In general, 

the inference of traffic patterns from official data by using SOMs has been proven by several 
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existing studies and our previous research also confirms the validity and suitability of SOMs 

for the exploration of geospatial-temporal and semantic clusters from Twitter data. As a 

dimensionality reduction tool, SOMs allow the analysis and topology preservation of the input 

properties from high-dimensional attributes in a combined manner. Prior to the comparison of 

each computed Geo-SOM, QE, TE and GE between every input unit and the mapped output 

neuron after each Geo-SOM training iteration have been quantified. The results showed a 

stable output of neuronal map structures with constant distance errors (see error computation 

results sub-section 3.1).  

6. Conclusion and future work 

This paper presents the results of a combined SOM/Geo-SOM analysis framework for the 

detection of distinctive mobility disruption patterns from official TIMS messages and the 

comparison between traffic-relevant, georeferenced Twitter messages.  

We have chosen a SOM (sub-section 4.1) and a Geo-SOM (sub-section 4.2), in order to assess 

non-geospatial components and the combination with geospatial components separately.  

First, we uncovered latent temporal relationships of traffic disruption properties and 

their temporal variations on a non-geospatial, standard Kohonen SOM. This approach only 

preserves the input dataset characteristics of non-geospatial components, regardless of 

geographic space and is not restricted to any geographical neighborhood. The results (4.1) 

showed for construction work messages and traffic incidents a characteristic difference of 

duration and severity between commuting peak hours (morning and evening rush hour) and 

between weekdays and weekends.  

Second, we assessed the influence of location on a geographically enforced Geo-SOM 

(4.2). The Geo-SOM enables the comparison and correlation of several Geo-SOM results 

(with same training parameters), because features similar in attribute space and geographic 

space are also mapped onto similar output Geo-SOM locations after the dimensionality 

reduction. Therefore, they represent a fraction of the relative, original geographic properties 

of the input data. The resulting geographic clusters of linked road segments with similar 

temporal traffic disruption patterns facilitate the characterization of a certain mobility inflow 

and outflow behavior and revealed previously unexpected connections.  

Answering RQ1, our findings have shown strong correlations between inferred 

spatiotemporal clusters from tweets with proximity to special events, traffic incidents and 

hazard reports. Therefore, georeferenced tweets are helpful for the real-time detection of 
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event-related traffic disruptions (concert, demonstrations, sport events etc.) and are reflected 

in collective human mobility patterns. Thus tweets can add information in order to estimate 

the effect (e.g. severity/ intensity) on the infrastructure when no official traffic data source are 

available, especially for unplanned events. In addition, official real time traffic information 

served as a reference source providing ground-truth for the reliability and plausibility of these 

observed mobility patterns.  

Moreover, in association with a high severity and long duration of traffic volume 

disruptions, there is statistical evidence that the amount of generated Twitter posts with 

similar geospatial, temporal characteristics are increasing accordingly.  

With regard to RQ2, we have shown the similarities of mobility phenomena from 

tweets and their connection with traffic disruptions, making social sensor observations a 

reliable proxy for some traffic-related events. This opens up the possibility to utilize the more 

heterogeneous and wider geospatial-temporal distribution (see Figure 3c) of social media 

messages to harness further information regarding the detection of near real-time flow 

conditions inside road networks, especially during the development of an actual disruption 

event.  

Our results suggest that particularly special events, such as concerts, demonstrations, 

sports events, etc. are well reflected within Twitter and provide complementary information 

about possible collective movements, since people talk about the event beforehand and follow 

similar mobility patterns (Steiger et al., 2015a). These complex events especially, are hard to 

forecast from classic detectors and therefore social media can be used to enrich existing 

information. This newly gained knowledge may support decision-makers during traffic events 

in a way that social media and official authorities complement each other. 

Therefore the results answer how and when tweets should be used for extracting 

mobility behavior: Answering “How” the presented SOM framework analyzes the temporal, 

spatial and textual dimension of each tweet in a combined manner. Furthermore the results 

can be easily compared with official data to underline the significance of social media for 

human mobility analysis. Answering “When” the results show which traffic disruption 

categories are reflected in social media (special events, traffic incidents and hazards), 

demonstrating in what traffic analysis scenarios social media can be used for as an additional 

source of information. In opposition to the geospatial-temporal distribution, the textual 

information from tweets can only be used marginally to semantically enrich traffic disruption 

information, due to the detailed resolution of traffic conditions (see comparison of the most 
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frequent terms in Figure 3a). Nonetheless, the results demonstrated the effectiveness of the 

proposed methodology to uncover similar characteristics and latent disruption patterns from 

official data and georeferenced tweets (see Figure 5a). This implies the practical use of tweets 

to detected real-time traffic events which can add information when no official traffic data 

sources are available, especially for unplanned events such as demonstrations. Tweets here 

help to detect these events but also to extract the underlying mobility pattern in order to 

estimate the effect (severity/intensity) on the infrastructure.  

As for future research, the proposed framework will be expanded and applied across 

other geographic areas (e.g. cities) in order to further compare inferred traffic event 

characteristics. Additionally, characteristics of input variables could be assessed and tracked 

over time by applying a SOM/Geo-SOM for every resulting disruption cluster in order to 

investigate principal, temporally changing components. Another promising direction is the 

prediction of certain human behavior and disruption patterns before an actual event, based on 

the exploration of existing messages and their cluster characteristics. Finally, we are planning 

to use additional demographic and economic variables within the proposed SOM/Geo-SOM 

approach to observe how certain socioeconomic neighborhood characteristics (e.g., car 

ownership, age, etc.) might influence and explain observed traffic patterns.  
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