Enhanced Stability and Efficiency in Hole-Transport Layer Free CsSnI₃ Perovskite Photovoltaics ## **Supplementary Information** **Supplementary Figure 1** | XRD patterns of thin films of CsSnI₃ with and without SnCI₂ additive stored in dry air, humid air and humid nitrogen. XRD patterns of: **a** CsSnI₃ with and without 10 mol% SnCI₂ additive.; **b** CsSnI₃ with 10 mol% SnCI₂ additive exposed to dry air for different time periods up to 19 hours, and then to humid air for 1 hour.; **c** a wider angle scan of a CsSnI₃ film exposed to humid air.; **d** a wide angle scan of CsSnI₃ with 10 mol% SnCI₂ additive exposed to humid nitrogen. * denotes sample holder peaks. **Supplementary Figure 2** | SEM image of a compact film of CsSnl₃ prepared with 10 mol% SnCl₂ additive from a 16 wt.% solution in DMF, supported on a gold substrate. **Supplementary Figure 3** | Depth profiling XPS analysis of a CsSnI₃ film with 10 mol% SnCI₂ by argon ion sputtering. High resolution (HR) XPS spectra of the surface of a ~80 nm thick CsSnI₃ film with 10 mol% SnCI₂ additive prepared from a 16 wt% DMF solution and supported on a gold substrate, as a function of Ar⁺ sputtering time: **a** I 3d region; **b** Cl 2p region. The evolution of the percentage composition I (blue) and Cl (green) with sputtering time is shown in **c**. Both curves in **c** are guides to the eye. **Supplementary Figure 4** | HRXPS spectra of films of SnCl₂ and CsSnl₃ with 10 mol% SnCl₂ before and after air exposure. HRXPS spectra of: **a** SnCl₂ O 1s **i** with ~1 min air exposure and **ii** after 1 hour air exposure.; **b** CsSnl₃ with 10 mol% SnCl₂ additive O 1s **i** with ~1 min air exposure and **ii** after 1 hour air exposure.; **c** CsSnl₃ O 1s **i** with ~1 min air exposure and **ii** after 1 hour air exposure.; **d** SnCl₂ Sn 3d **i** with ~1 min air exposure and **ii** after 1 hour air exposure.; **e** CsSnl₃ + 10 mol% SnCl₂ Sn 3d **i** with ~1 min air exposure and **ii** after 1 hour air exposure.; **f** CsSnl₃ Sn 3d **i** with ~1 min air exposure and **ii** after 1 hour air exposure. **Supplementary Figure 5** | Typical current-voltage (*JV*) characteristics for CsSnI₃ based PPV devices with different loadings of SnCI₂ additive before and after an extended period of storage under nitrogen. Representative *JV* plots for devices made using CsSnI₃ with the structure: ITO glass / CsSnI₃ + X mol% SnCI₂ / PC₆₁BM / BCP / AI, with 0, 5, 10, or 15 mol% SnCI₂ additive tested **a** immediately after fabrication, and **b** after 3 weeks storage in a nitrogen glovebox. Full data set given in Supplementary Information Table S3. **Supplementary Figure 6** | JV characteristics of CsSnI₃ with 10 mol% SnCI₂ showing negligible hysteresis and a very weak dependence on scan speed. **a** Representative example of JV characteristics for a device scanned in forward and reverse directions between -1 and + 1 V at a rate of 100 mV s⁻¹ showing no hysteresis.; **(b)** Example of JV characteristics for a device scanned in forward and reverse directions for a range of starting voltages and scan rates, which shows no significant hysteresis and an optimal fill-factor for slower scan rates. **Supplementary Figure 7** | Probing the optical and structural stability of a film of CsSnl₃ + 10 mol% SnCl₂ with storage under nitrogen. **a** Representative *JV* plots for devices made using CsSnl₃ as the photoactive layer with the structure: ITO glass / CsSnl₃ + 10 mol% SnCl₂ (8 wt%)/ PC₆₁BM / BCP / Al, tested immediately after fabrication and after 1 week of storage in a nitrogen filled glovebox.; **b** Electronic absorption spectrum of a CsSnl₃ + 10 mol% SnCl₂ (8 wt%) immediately after deposition and after 8 days of storage in a nitrogen filled glovebox.; **c** X-ray diffraction pattern of a CsSnl₃ + 10 mol% SnCl₂ (8 wt%) film immediately after deposition (blue) and after 1 week of storage in a nitrogen filled glovebox (black). Also shown is the simulated B- γ CsSnl₃ spectrum (red) and the background spectrum (green). **Supplementary Figure 8** | SEM image of a film of CsSnI₃ with 10 mol% SnCl₂ additive prepared using a 16 wt.% solution in DMF and supported on ITO glass. **Supplementary Figure 9** | Representative current-voltage (*JV*) and external quantum efficiency (EQE) characteristics for CsSnI₃ based PPV devices with 10 mol% SnCI₂ additive prepared from precursor solutions of different concentration. **a** Representative JV characteristics for devices with the structure: ITO glass / perovskite / PC₆₁BM/ BCP / Al, using CsSnl₃ with 10 mol% SnCl₂ additive. Films prepared using 8, 16, and 20 wt.% DMF solution. Full data set given in Supplementary Information Table 6. **b** Representative EQE spectra of devices made using CsSnl₃ with 10% SnCl₂ additive from 8, 16, and 20 wt% solutions in DMF immediately after fabrication. The difference between the measured J_{sc} under the solar simulator and integrated response is typically 6-7%. **Supplementary Figure 10** | Probing the electronic structure of PC₆₁BM, SnCl₂ and SnCl₂ doped PC₆₁BM films using ultra-violet photoelectron spectroscopy and electronic absorption spectroscopy. UPS spectra of SnCl₂, PC₆₁BM (~40 nm) and bilayer SnCl₂ (<3 nm) | PCBM (~40 nm) films showing **a** the secondary electron cut-off and **b** the low binding energy edge. The electronic absorption spectrum of a SnCl₂ film on quartz is shown in **c**, and is consistent with an indirect bandgap. **Supplementary Figure 11** | Determining the ionisation potential and work function of CsSnl₃ films using valence level photoelectron spectroscopy. UPS spectra of CsSnl₃ film supported on a gold film showing: (a) the secondary electron cut-off; (b) the low binding energy edge. Importantly the samples were transferred from the glove box, in which they were fabricated, to the ultra-high vacuum system for measurement of the ionisation potential *without* exposure to air. The measured ionisation potential is in close agreement with that reported in Ref. 30 for sputtered clean CsSnl₃. **Supplementary Figure 12** | Log-linear dark current-voltage characteristics of the devices shown in Figure 5 which show that the current in reverse bias is dramatically reduced with the SnCl₂ additive; by ~10 times at a bias of – 1 V. **Supplementary Figure 13** | PPV device stability tests under 1 sun constant illumination in ambient air for unencapsulated devices with the same architecture. Mean (squares) and champion (circles) normalised η for PPV devices *without encapsulation* tested in ambient air under continuous 1 sun simulated solar irradiation with the structure: (black) ITO | CsSnI $_3$ + 10 mol% SnCI $_2$ | PC $_{61}$ BM | BCP | Al at ~ 25% humidity and 50°C.; (blue) ITO | CH $_3$ NH $_3$ PbI $_3$ | PC $_{61}$ BM |BCP | Al at ~ 25% humidity and 50°C.; (red) ITO | CH $_3$ NH $_3$ PbI $_3$ | PC $_{61}$ BM |Bis-C $_{60}$ | Ag reported in Ref. 29. The dotted grey line corresponds to 70% initial power conversion efficiency. All curves are guides to the eye. **Supplementary Figure 14** | Evolution of electronic absorption spectrum of CsSnI₃ films + 10 mol% SnCl₂ additive stored in ambient air, after treatment with chlorobenzene or a solution of PC₆₁BM in chlorobenzene. Normalised electronic absorbance at 450 nm for **a** CsSnI₃ + 10% SnCl₂ with and without PC₆₁BM deposited on top from a concentrated chlorobenzene solution, as used in photovoltaic device fabrication, and **b** CsSnI₃ + 10 mol% SnCl₂ either washed or not washed with chlorobenzene. | Take off angle/° | %Sn | %Cs | %I | %CI | |------------------|------|------|------|------| | 90° | 23.0 | 21.9 | 18.8 | 36.4 | | 30° | 23.8 | 18.1 | 15.3 | 42.9 | **Supplementary Table 1** | Elemental composition analysis of the surface of a compact film of CsSnl₃ film + 10 mol% SnCl₂, determined using XPS for two different angles of X-ray incidence. Percentage composition of the surface of an ~80 nm thick CsSnl₃ film with 10 mol% SnCl₂ prepared from a 16 wt% DMF solution and supported on a gold substrate. Compositional analysis was performed for two different angles of X-ray incidence. Sampling depths for $CsSnI_3$ derived from NIST IMFP database calculator: $Cs\ 3d = 6.4\ nm;\ I\ 3d = 7.1\ nm;\ Sn\ 3d = 7.9\ nm.$ Sampling depths for $SnCI_2$: $Sn\ 3d = 6.8\ nm;\ CI = 8.2\ nm.$ | Device | Number | J _{sc} (mA/cm ²) | V _{oc} (V) | FF | η (%) | Champion | |---------------------------|-----------|---------------------------------------|---------------------|-----------------|-----------------|----------| | | of Pixels | | | | | η (%) | | CsSnI₃ + | 12 | 2.32 ± 0.23 | 0.32 ± 0.04 | 0.38 ± 0.02 | 0.29 ± 0.05 | 0.35 | | 10mol % SnBr ₂ | | | | | | | | CsSnI₃ + 10 | 4 | 6.23 ± 0.58 | 0.14 ± 0.01 | 0.42 ± 0.02 | 0.37 ± 0.03 | 0.40 | | mol% SnF ₂ | | | | | | | **Supplementary Table 2** | Current-voltage (*JV*) parameters for CsSnI₃ based PPV devices with SnBr₂ and SnF₂ additives. Typical *JV* parameters (± one standard deviation) for PPV devices with the structure: ITO glass / CsSnI₃ + 10 mol% SnX₂ / PC₆₁BM / BCP / Al using CsSnI₃ with added SnBr₂ and SnF₂. | Device | number of | J _{sc} (mA/cm ²) | V _{oc} (V) | FF | η (%) | Champion | |-------------------------|-----------|---------------------------------------|---------------------|-----------------|-----------------|------------| | | devices | | | | | η (%) | | CsSnI₃ | 26 | 3.41 ± 0.63 | 0.15 ± 0.03 | 0.38 ± 0.07 | 0.21 ± 0.12 | 0.45 | | | 28 | 3.06 ± 0.59 | 0.21 ± 0.04 | 0.43 ± 0.07 | 0.30 ± 0.15 | 0.58 | | CsSnI₃ + 5 | 15 | 8.72 ± 0.52 | 0.27 ± 0.01 | 0.50 ± 0.05 | 1.18 ± 0.16 | 1.36 | | mol% SnCl ₂ | 15 | 8.2 ± 1.0 | 0.33 ± 0.05 | 0.52 ± 0.07 | 1.48 ± 0.38 | 1.73 | | CsSnl ₃ + 10 | 29 | 8.04 ± 0.68 | 0.35 ± 0.01 | 0.60 ± 0.06 | 1.71 ± 0.27 | 2.14 | | mol% SnCl ₂ | 31 | 8.27 ± 0.78 | 0.41 ± 0.06 | 0.60 ± 0.11 | 2.08 ± 0.55 | 2.75 | | CsSnI ₃ + 15 | 17 | 8.9 ± 1.2 | 0.40 ± 0.01 | 0.64 ± 0.02 | 2.29 ± 0.34 | 2.71 | | mol% SnCl ₂ | 17 | 10.3 ± 1.3 | 0.42 ± 0.03 | 0.59 ± 0.07 | 2.55 ± 0.39 | 3.16 | **Supplementary Table 3** | Current-voltage (*JV*) characteristics for CsSnI₃ based PPV devices with different loadings of SnCI₂ additive before and after an extended period of storage under nitrogen. Typical *JV* parameters (± one standard deviation) for devices with the structure: ITO glass / CsSnI₃ + X mol% SnCI₂ / PC₆₁BM / BCP / AI with 0, 5, 10, or 15 mol% SnCl₂. Data in black - devices tested immediately after fabrication. Data in red - devices tested after storage in a nitrogen filled glove box for 3 weeks. | Device | Number | $J_{ m sc}$ | V _{oc} (V) | FF | η (%) | Champion | |------------------------------|---------|-----------------------|---------------------|-----------------|-----------------|------------| | | of | (mA/cm ²) | | | | η (%) | | | devices | | | | | | | CsSnI₃ | 16 | 3.74 ± 0.36 | 0.18 ± 0.06 | 0.43 ± 0.08 | 0.30 ± 0.13 | 0.49 | | | 17 | 3.76 ± 0.34 | 0.20 ± 0.08 | 0.45 ± 0.13 | 0.38 ± 0.22 | 0.68 | | CsSnI₃ + | 15 | 7.69 ± 0.54 | 0.28 ± 0.03 | 0.40 ± 0.09 | 0.87 ± 0.26 | 1.15 | | 10 mol%
Snl ₂ | 16 | 8.44 ± 0.61 | 0.35 ± 0.02 | 0.49 ± 0.06 | 1.46 ± 0.26 | 1.73 | | CsSnI ₃ + | 14 | 8.58 ± 0.68 | 0.37 ± 0.01 | 0.63 ± 0.03 | 2.00 ± 0.21 | 2.23 | | 10 mol%
SnCl ₂ | 14 | 8.72 ±0.67 | 0.44 ± 0.01 | 0.66 ± 0.02 | 2.53 ± 0.25 | 2.87 | **Supplementary Table 4** | Current-voltage (*JV*) characteristics for CsSnl₃ based PPV devices with different tin halide additives before and after an extended period of storage under nitrogen. Typical *JV* parameters (± one standard deviation) for devices with the structure: ITO glass / perovskite / PC₆₁BM/ BCP / Al. Data in black - devices tested immediately after fabrication. Data in red - devices tested 28 days after fabrication after storage in a nitrogen filled glove box. Representative data set plotted in Figures 5a&b. | Sample | Number | J _{sc} (mA/cm ²) | V _{oc} (V) | FF | η (%) | Champion | |-----------------------|---------|---------------------------------------|---------------------|-----------------|-----------------|------------| | | of | | | | | η (%) | | | devices | | | | | | | CsSnI₃ + | 15 | 6.80 ± 0.34 | 0.25 ± 0.02 | 0.41 ± 0.04 | 0.69 ± 0.12 | 0.88 | | 10% SnI ₂ | 11 | 8.05 ± 0.31 | 0.36 ± 0.01 | 0.51 ± 0.02 | 1.50 ± 0.12 | 1.72 | | CsSnI₃ + | 16 | 9.82 ± 0.45 | 0.26 ± 0.05 | 0.42 ± 0.05 | 1.18 ± 0.37 | 1.72 | | 10% SnCl ₂ | 9 | 11.25 ± 0.83 | 0.40 ± 0.05 | 0.56 ± 0.10 | 2.54 ± 0.67 | 3.26 | **Supplementary Table 5** | Current-voltage (*JV*) characteristics for CsSnI₃ based PPV devices with different tin halide addatives before and after an extended period of storage under nitrogen. Typical *JV* parameters (± one standard deviation) for devices with the structure: ITO glass / perovskite / PC₆₁BM / BCP / Al. Data in black - devices tested immediately after fabrication. Data in red - devices tested 2 months after fabrication after storage in a nitrogen filled glove box. Representative data set plotted in Figures 5c&d. | Sample | J _{sc}
(mA/cm ²) | V _{oc} (V) | FF | η (%) | Champion η (%) | |--------|--|---------------------|-----------------|-----------------|----------------| | 8 wt% | 8.89 ± 0.55 | 0.38 ± 0.01 | 0.53 ± 0.01 | 1.77± 0.20 | 2.06 | | | 9.89 ± 0.55 | 0.50 ± 0.01 | 0.68 ± 0.01 | 3.35 ± 0.21 | 3.56 | | 16 wt% | 6.46 ± 0.86 | 0.36 ± 0.02 | 0.52 ± 0.07 | 1.21 ± 0.25 | 1.71 | | | 9.1 ± 1.1 | 0.29 ± 0.04 | 0.58 ± 0.03 | 1.56 ± 0.45 | 2.52 | | 20 wt% | 6.11 ± 0.97 | 0.33 ± 0.02 | 0.49 ± 0.06 | 0.99 ± 0.26 | 1.29 | | | 3.7 ± 1.0 | 0.21 ± 0.02 | 0.48 ± 0.03 | 0.38 ± 0.17 | 0.81 | **Supplementary Table 6** | Current-voltage (*JV*) characteristics for CsSnI₃ based PPV devices with 10 mol% SnCI₂ additive prepared from precursor solutions of different concentration. Typical *JV* parameters (± one standard deviation) for devices with the structure: ITO glass / CsSnI₃ + 10 mol% SnCI₂ / PC₆₁BM / BCP / Al. Films of CsSnI₃ + 10 mol% SnCI₂ where prepared using DMF solutions with concentrations 8, 16 and 20 wt%. Data in black - devices tested immediately after fabrication. Data in red - devices tested after 5 months storage in a nitrogen filled glove box. ## **Supplementary Discussion** Discussion related to Figure 1 in main text. The small difference in the absorption intensity at very short wavelengths as compared to that in reference 19 is rationalised in terms of a variability in the extent of scattering of short wavelength light, since as is evident in Figure 2 these films are polycrystalline with crystallite dimensions of 50-200 nm.