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Abstract. The last stage of evolution toward the stationary Kolmogorov spectrum

of hydrodynamic turbulence is studied using the Leith model [1] . This evolution is

shown to manifest itself as a reflection wave in the wavenumber space propagating

from the largest toward the smallest wavenumbers, and is described by a self-similar

solution of a new (third) kind. This stage follows the previously studied stage of

an initial explosive propagation of the spectral front from the smallest to the largest

wavenumbers reaching arbitrarily large wavenumbers in a finite time, and which was

described by a self-similar solution of the second kind [2, 3, 4]. Nonstationary solutions

corresponding to“warm cascades” characterised by a thermalised spectrum at large

wavenumbers are also obtained.
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1. Introduction

Remarkably many fundamental properties of the hydrodynamic turbulence can be

understood based on the the simplest phenomenological model of Leith [1] in which

the energy spectrum E(k, t) obeys a nonlinear diffusion equation

∂E

∂t
=

1

8

∂

∂k

(
k11/2E1/2 ∂

∂k
(E/k2)

)
− νk2E, (1)

where t is time, k is the absolute value of the wavenumber and ν is the kinematic

viscosity coefficient. This is a special case of the singular nonlinear inhomogeneous

diffusion equations, see e.g. [5].

The Leith model is based on the assumption that the noninear interactions are

local in the scale space, and it represents a minimal model that respects the scalings

of more compicated turbulence closures. In particular, in the inertial range (when the

viscosity term can be neglected) equation (1) admits two fundamental stationary scaling

solutions: the thermodynamic spectrum, E(k) ∼ k2, and the Kolmogorov spectrum,

E(k) ∼ k−5/3. These scaling solutions are “built into” the model, but they are not the

only fundamental properties described by equation (1), i.e. the Leith model is essentially

predictive and not merely descriptive.

An immediate prediction of the Leith model which was not put into it by the

construction is the general inviscid steady state—a nonlinear combination of the

thermodynamic and the Kolmogorov scalings [2]:

EP,T (k) = ck2(Pk−11/2 + T 3/2)2/3, (2)

where c = (24/11)2/3 and P and T are arbitrary constants corresponding to the energy

flux through k and a “temperature”. For T = 0, we recover the pure Kolmogorov

cascade solution, whereas for P = 0—a pure thermodynamic spectrum. Such solutions

were called ”warm cascade” in [2] as they describe the so-called bottleneck phenomenon

of spectrum stagnation near the cut-off scale [6] or a crossover scale (e.g. classical-

quantum crossover in superfluid turbulence [7]).

Another important prediction made with the help of the Leith model concerns

transient solutions arising from an initial spectrum compactly supported at low k and

preceding formation of steady cascade. Provided that the initial conditions correspond

to high Reynolds numbers, one can neglect viscosity in such transient evolution and use

the inviscid Leith model:

∂E

∂t
+
∂ε

∂k
= 0, ε = −1

8
k11/2E1/2 ∂

∂k
(E/k2), (3)

where ε is the energy flux. Time-dependent solutions of this equation were investigated

numerically in [2, 3] and analytically in [4], and extensions to other turbulent systems

(e.g. wave turbulence) were made in [8]. It was shown that the evolution becomes self-

similar just before breaking of energy conservation at some finite time t = t∗ at which

the front of the spectrum reaches k = ∞. This is the so-called self-similarity of the

second kind, using the Zeldovich-Raizer terminology [9]. Remarkably, this regime does
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not exhibit the scaling inherited from the Kolmogorov spectrum. Namely, the transient

spectrum behind the propagating front was found to have a power-law asymptotics

E ∼ k−x with x which is greater than the Kolmogorov exponent, x∗ ≈ 1.85 > 5/3.

Previously, a similar behaviour of a transient spectrum exhibiting an anomalously

steep power law was found numerically in MHD wave turbulence [10, 11]. A steeper

transient spectrum was also found numerically for the EDQNM model of hydrodynamic

turbulence [12], giving x∗ ≈ 1.9 which rather close to the exponent observed for the

Leith model. Moreover, a steep transient spectrum with x∗ ≈ 4 was also found in direct

numerical simulations (DNS) of the Euler equations for the ideal fluids [13].

Further, the Leith model was used to classify all possible types of behaviour in

stationary turbulence with forcing and dissipation on the right or/and left boundaries of

the k-range in [14]. These include the Kolmogorov, thermodynamic and mixed solutions

for low and high Reynolds numbers in the forward and inverse cascade settings which

arise in the model (1) with various types of the boundary conditions as t→∞.

On the other hand, there remain questions about the evolution for t∗ < t < ∞.

Note that because we deal with a finite-capacity system, and because the evolution

near t = t∗ is very fast at high k, presence of the forcing and dissipation at the ends

of the k-range is unimportant. Numerical simulations presented in [2, 3] reveal that

the during this period of time there is a reflected wave propagating from large toward

small k into the power-law spectrum with steep exponent x∗ and leaving behind its

front a shallower spectrum with a shallower power-law spectrum whose exponent is very

close to Kolmogorov’s 5/3. Before that a similar scenario was observed in the numerical

simulations of the wave-kinetic equation of weak MHD turbulence in [10]. However, such

an evolution has not been yet explained theoretically. The main goal of the present paper

is show that this final stage of the Kolmogorov spectrum formation can be described by

a self-similar solution of the third kind of the inviscid Leith equation (3).

2. On the classification of self-similar solutions

Zeldovich and Raizer [9] suggested the following classification. Self-similar solutions

whose indices of self-similarity (a and b in our text below) are uniquely determined by

a conservation law (i.e. effectively by the dimensional analysis) are of the first type.

Self-similar solutions for which the indices cannot be deduced for a conservation law

or dimensional analysis, and for determination of which one has to solve a nonlinear

eigenvalue problem are of the second type.

As we will see, the self-similar solutions considered in the present paper cannot fit

in either of these two categories. Neither their can be fixed by a conservation law or

dimensionally, nor they are determined by an eigenvalue problem solution. Instead, the

self-similarity indices are fixed by a prescribed asymptotic behaviour at one of the ends

of the self-similarity variable range. In the example of the reflection wave considered

below this is the low-k end, and the self-similarity indices are fixed by the exponent x∗
of the power-law spectrum ahead of the wave.



Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence 4

For the lack of an existing name, and following the Zeldovich-Raizer line of

terminology, we will say that such self-similar solutions are of the third kind. The

first example of solution of this kind was obtained, as far as we are aware, in Ref. [18]

for a dynamical cooling of a hot spherical air cavity. Note that the third-kind and the

first-kind solutions share the property that they are defined for a formally unbounded

time—unlike the second-kind solutions defined for a finite time range only. (Of course

physical relevance of such infinite-time self-similar solutions hold only for a finite time

in most applications.) On the other hand, the third-kind and the second-kind solutions

share the property that their indices are not determined by a conservation law or a

dimensional analysis—unlike the the first-kind solutions.

3. Self-similar solutions of the third kind

Just before the blowup moment t∗, the front of the spectrum reaches the dissipative

wavenumber kν at which viscosity ν, no matter how small, is important. However, at

k � kν the evolution is still inviscid even for t > t∗: what happens at k ∼ kν simply

plays a role of an effective boundary condition for the low-k dynamics. After making

this observation, we will study such a dynamics at t > t∗ using equation (3).

Equation (3) admits forms the following family of self-similar solutions:

E = (t− t∗)aF (η), η = k/(t− t∗)b, (4)

where a and b are constants called the self-similarity indices. They satisfy the self-

consistency condition,

a = −2− 3b, (5)

ensuring that equation for F (η) is an ODE, namely

−(3b+ 2)F − bηdF
dη

=
1

8

d

dη

(
η11/2F 1/2 d

dη
(η−2F )

)
. (6)

Function F (η) described by this equation describes evolution at t > t∗, but the boundary

condition at η → 0 is determined by the scaling at t = t∗ forming during the pre-t∗ stage.

Namely, we look for a positive solution F which behaves as η−x
∗

at η → 0, where x∗ is

the exponent of the power-law forming at the pre-t∗ stage, t < t∗, t→ t∗. The numerical

value found in [4] is x∗ ≈ 1.8509. Further, because evolution at the low-k part is much

slower than at the high-k part, the spectrum at k → 0 may be considered stationary,

E = const k−x
∗
. This corresponds to x∗ = −a/b. Together with condition (5), this fixes

the values of the of the self-similarity indices a and b. Thus, the self-similarity indices

are fixed by the asymptotics at one of the ends, in this case at η → 0, and this fits the

definition of the self-similarity of the third kind, as defined above. We have

a = − 2x∗

x∗ − 3
and b =

2

x∗ − 3
. (7)

To find F (η), one must state one more boundary condition, e.g. at η → ∞.

However, at this point we will not do that thereby leaving a one-parametric freedom in
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the shapes of F (η). We will postpone the discussion about the relation of these shapes

and conditions at the high-η end until later.

Written in terms of x∗ rather that b, equation (6) becomes

− 2

x∗ − 3

(
η
dF

dη
+ x∗F

)
=

1

8

d

dη

(
η11/2F 1/2 d

dη
(η−2F )

)
. (8)

Equation (8) can be transformed into an autonomous system by substitutions (c.f. [2]):

F =
8

25
η−3f 2,

dF

dη
=

24

25
η−4fg, (9)

where f(s) and g(s) are functions of s = ln η. The resulting autonomous dynamical

system is:

df

ds
=

3

2
(f + g), (10)

f
dg

ds
=

1

3

(
5f 2 + 6fg − 9g2 − 10

x∗ − 3
(3g + x∗f)

)
.

This system is singular at f = 0. By the change of variable

d

ds
=

1

f

d

dτ
, ρ(τ) = f(s), σ(τ) = g(s),

the system (10) is transformed to

dρ

dτ
=

3

2
ρ(ρ+ σ), (11)

dσ

dτ
=

1

3

(
5ρ2 + 6ρσ − 9σ2 − 10

x∗ − 3
(3σ + x∗ρ)

)
.

Fixed points of the system (11) in the semi-plane ρ ≥ 0 are

P1 = (ρ1, σ1) = (0, 0) and P2 = (ρ2, σ2) =

(
0,

10

3
(3− x∗)

)
. (12)

A simple analysis reveals that P1 is an unstable saddle-node with its stable manifold

along the σ-axis and its unstable (slow) manifold directed into the fourth quadrant with

angle − arctan(x∗/3). Fixed point P2 is a saddle with its unstable manifold along the

σ-axis. The phase portrait of the dynamical system is shown in Fig. 1.

At τ → −∞ (η → 0) we have F ∼ η−x
∗

and dF/dη ∼ −x∗η−x∗−1. It follows that

ρ(τ) ∼ 5τx
∗/2−3/2 and σ(τ) ∼ −(5/3)x∗τx

∗/2−3/2. Since x∗ < 3, both ρ → 0 and σ → 0

as τ → −∞. Thus, each orbit of interest must emerge from the vicinity P1 = (0, 0)

along its unstable manifold.

One can see in Fig. 1 that U1, the unstable manifold of P1, asymptotically tends

to a straight line with slope −5/9 corresponding to the Kolmogorov scaling F ∼ η−5/3.

Separatrix U2, the unstable manifold of P2 asymptotically tends to a straight line

with slope 2/3 corresponding to the thermodynamic scaling F ∼ η2. Physically relevant

solutions correspond to the orbits bound by separatrices U1 and U2, and the heteroclinic

orbit H.
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Figure 1. Phase portrait of the dynamical system. The slow (unstable) manifold of

P1 (called U1) is shown in green. The heteroclinic orbit H connecting P1 and P2,

and the unstable manifold of P2 (called U2) are shown in red.
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Figure 2. Solutions for F (η) corresponding to different degrees of the energy flux

reflection. Solid line has slope -5/3. Dashed line has slope −x∗. Dash-dotted line has

slope 2.

A typical orbit starts near P1, which corresponds to F ∼ η−x
∗

at small η. Then

it approaches U1 at some intermediate range of η, which corresponds to Kolmogorov’s

F ∼ η−5/3, and then it asymptotes to thermodynamic F ∼ η2 at large η; see Fig. 2.

To fix a particular solution, one has to specify its behaviour at large η. The relevant

quantity which can help us to make a choice is the energy flux, which for the model (3)

is

ε = −1

8
k11/2E1/2 ∂

∂k
(E/k2). (13)

For the pure Kolmogorov scaling the flux is a positive k−independent constant, for the

pure thermodynamic scaling it is zero. Let us fix a vertical line at some large ρ on the
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(ρ, σ)-plane, and let us parametrise the orbits by the points of their intersections with

this line. Then the lowest lying orbits will be close to the Kolmogorov line, i.e. they will

correspond to a constant positive flux ε. The highest lying trajectories will be closest

to the thermodynamic line and will have ε close to zero. The flux on the orbits lying

in between will be monotonically decreasing as we move up our vertical line from the

maximum value achieved on orbit U1 to the zero (asymptotically for ρ → ∞) value

achieved on orbit U2.

Physically, the different solutions correspond to different degrees of the energy flux

reflection at the large cut-off (or cross-over) wavenumbers. There is no such cut-off for

the classical Navier-Stokes turbulence, and the relevant solution is given by orbit U1.

This solution does not have a thermalised part. According to this solution, F (η) ∼ η−x
∗

for η � 1 and F (η) ∼ η−5/3 for η � 1. Therefore spectrum E(k, t) has scaling ∼ k−x
∗

at

smaller k and Kolmogorov’s ∼ k−5/3 at the larger k, and the point of transition between

these two scalings, ktr, moves toward the lower k end, ktr ∼ (t − t∗)
b, b < 0. Hence

the reflected wave scenario at the final stage of the Kolmogorov spectrum formation at

t∗ < t <∞.

The extreme case of the complete flux reflection occurs, e.g., in numerical

simulations of inviscid (Euler) equations in Fourier space with wavenumber truncation

at some kmax. Formally this corresponds to orbit U2. However, this limit is not so

well-posed as orbit U2 goes directly to fixed point P2, from which it can never leave

to move to fixed point P1 and thereby meet the boundary conditions at η → 0. This

means that there is no exact self-similar solution that would describe the reflection wave

in the case of the complete flux reflection, even though it is perfectly fine to describe

cases with strong incomplete reflections.

Incomplete flux reflection occurs, e.g., in numerical simulations of the fluid

equations in Fourier space with some incomplete energy dissipation near kmax. This

dissipation may be intentional, e.g. via adding a hyper-viscosity term, or simply due

to possible dissipative effects related to a particular discretisation algorithm. As we

see in Fig. 2, stronger flux reflection makes stronger thermalised spectrum and leads

to shrinking of the intermediate range exhibiting Kolmogorov’s scaling. For very

strong reflection the η−x
∗

range transitions to the thermalised spectrum without any

Kolmogorov range presence in between.

It is interesting that transition to the thermalised range are characterised by

presence a range with spectral slopes greater that the thermal value 2. This has an

appearance of a depletion on the spectrum, which is especially pronounced in the

case of strong reflections; see Fig. 2. A similar effect was observed in the numerical

simulations of the Fourier-truncated Euler equation in [6]. They called such a spectrum

depletion a “secondary dissipation” attributing its presence to a nonlocal interaction

with the thermalised part, the latter arguably giving rise to an effective viscosity effect.

It was further argued that such a feature is impossible within the Leith model as the

interactions are very local in k in this case. An indication in favour of this view was

the fact that the stationary “warm cascade” solution (2) does not have such a spectrum
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depletion. However, as we can see now, the depletion does indeed arise within the Leith

model when the time-dependent rather than stationary solutions are considered.

4. Decay of the Kolmogorov spectrum

Obviously, the reflected-wave self-similar solution will only be physically relevant for a

finite time t = t∗ + tmax, namely until the crossover wavenumber between the x∗−range

and the 5/3−range reaches the scales ∼ k0 of the initial spectrum. Just as t∗, the value

of tmax is independent of the viscosity. In fact both of these times are of the order of

the turnover time of the initial eddies, t∗ ∼ tmax ∼ 1/
√
k30E(k0). At t = t∗ + tmax one

can say that the Kolmogorov spectrum is fully formed: it will be stationary at all later

time if there is a permanent forcing at k0.

If there is no forcing in the system, the Kolmogorov spectrum at t � t∗ + tmax
will gradually decrease in amplitude as the energy stored near a minimal wavenumber

kmin (the so-called integral scale) will be gradually bled into larger wavenumbers and

dissipated.

The dynamics is still inviscid for t > t∗ + tmax up to a time tν < ∞ which we will

define later. The inviscid Leith model admits a one-parametric family of self-similar

solutions of the form E(k, t) = t3β−2F (ktβ), where β is a parameter [15]. The value

of the parameter is fixed by the asymptotics at k → 0. In particular, we can take

E(k, t) → c1k
2 as k → 0. It is easy to show that the value of the second k-derivative

of E(k, t) at k = 0 is conserved by the inviscid Leith model (also by the viscous Leith

if E(0, 0) = 0), constant c1 is time independent. This dictates the choice β = 2/5,

Such behaviour is related to existence of Saffman’s invariant, and this is nothing but

the scaling suggested by Saffman [17]. This is equivalent to taking E(k, t) = k2f(ξ)

where ξ = k−11/2t−11/5 and function f(ξ) satisfies

1

12
(f 3/2(ξ))ξξ =

11

5
C5/11ξ−6/11fξ(ξ), (14)

f(0) = 0, f(∞) = c1 (15)

with C = (2/11)−16/11. Formally, our self-similar solution E(k, t) behaves as the

thermodynamical spectrum for lower wavenumbers. Note that the problem (14), (15)

appears in the context of the large time asymptotic of solutions of the inviscid Leith

model after t∗, see [4].

Interestingly, even though we consider here a solution to the inviscid Leith equation,

the total energy decays,
∫
E(k, t) dk ∼ t−6/5. This is because of a finite energy flux to

infinite k.

In fact, at t → ∞ this process can also be described by a self-similar solution, in

this case E = t−1/2F (t1/2k), which is in fact the form inherited from the linear heat

equation. Demonstration of the fact that this is the only possible form of a time-

dependent self-similar solution of the viscous Leith model (1), as well as the equation

for F (η), can be found in [15]. According to this solution there is a Kolmogorov scaling

range whose minimum and maximum wavenumbers (the integral and the dissipative
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scales respectively) decrease as ∼ t−1/2, and the total energy decreases as ∼ t−1. These

are precisely the laws suggested for the decaying isotropic turbulence by Lin in 1948 [16].

Later, alternative laws were suggested, notably by Saffman, who used conservation of

his invariant to derive the decay of the total energy ∼ t−6/5. Saffman suggested that the

low-k part of the spectrum scales as E ∼ k2, and the Leith model solution predicts the

same. The difference in the energy decay law is explained by the fact that in the Leith

model the k2 part has a time-dependent prefactor in the Leith model solution, whereas

it is time-independent in Safmann’s model.

5. Conclusions

In this paper we considered non-stationary solutions the Leith model of turbulence

corresponding to the time t > t∗, where t∗ is the time at which the spectral front

reaches k = ∞ and the first self-similar stage of evolution ends. We found that the

spectra at t > t∗ is described by self-similar solutions which do not fit into the existing

classification into the first and the second kind of Zeldovich and Raizer and, therefore,

named in the present paper self-similar solutions of the third kind. The latter is defined

as a solution whose self-similarity indices can be fixed by neither a conservation law nor

by solving an eigenvalue problem, but are determined by an imposed asymptotics at

one of the ends of the similarity interval.

We have obtained a one-parametric family of self-similar solutions corresponding to

various strengths of the flux dissipation near a maximal wavenumber. These solutions

are generally characterised by three different power laws having exponent x∗ at small

η, Kolmogorov −5/3 at the intermediate η and thermal 2 at large η. There is

also a “secondary dissipation” spectrum depletion between the Kolmogorov and the

thermalised ranges, which was previously found by DNS in [6].

The most physically important solution in this family, is the one without a

thermalised part. It corresponds to Navier-Stokes turbulence without wavenumber cut-

off, in which the energy flux is fully absorbed by viscosity at large wavenumbers without

any backscatter. In this solution the crossover wavenumber between the x∗ and the 5/3

ranges moves toward lower wavenumbers. This crossover wavenumber can be viewed

as the front of a wave reflected off the dissipative scale. It is invading the low-k region

leaving the Kolmogorov spectrum in its wake. Importantly, even though we solve an

inviscid problem, the energy is not conserved in this solution. It is decreasing due to a

finite flux of energy through the right boundary at an increasing rate, ε ∼ (t− t∗)
5−3x∗
x∗−3 .

The reflected-wave solution is physically relevant for the time t bounded from

above by t∗ + tmax. At this time the crossover wavenumber between the x∗−range

and the 5/3−range reaches the scales ∼ k0 of the initial spectrum. Both t∗ and tmax
are independent of the viscosity and are of the order of the turnover time of the initial

eddies, t∗ ∼ tmax ∼ 1/
√
k30E(k0). At t = t∗ + tmax one can say that the Kolmogorov

spectrum is fully formed: it will be stationary if there is a permanent forcing at k0.

Otherwise it will gradually decrease in amplitude, with its range moving to smaller
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wavenumbers, kmin, kν ∼ t−1/2, and the total energy decreasing as ∼ t−1 (respectively,

ε ∼ t−2).

Summarising, the Leith model predicts the following three self-similar evolution

stages for the turbulent spectrum which initially has a finite support in the k-space.

The first stage t < t∗ describes a spectral front propagating to arbitrarily large

dissipative wavenumber in a finite time t∗. The power law spectrum forming behind

the propagating front has an anomalous exponent x∗ > 5/3. The second stage at

t∗ < t < t∗ + tmax describes a reflection wave from large to small wavenumbers which

brings the Kolmogorov spectrum in its wake. The third stage t > t∗ + tmax describes a

gradual decay of the Kolmogorov spectrum with the Kolmogorov range moving toward

smaller k as kmin, kν ∼ t−1/2.

It is likely that the three-stage scenario of self-similar evolution is more robust and

general beyond the Leith model– it should hold e.g. for EDQNM model and even DNS

of hydrodynamic turbulence. Demonstration of this could be quite a challenging task

remaining for future research.
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