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Introduction

One of the most common applications of metabolic circuits
is to produce a desired chemical in a chassis organism, such
as the Escherichia coli (E. coli), by importing heterologous

genes encoding for the enzymes that participate in the biosyn-

thetic pathway. Recently, an automated pipeline named
RetroPath was developed to synthesise embedded metabolic
circuits [1]. These circuits are to be embedded in E. coli
for a wide range of applications such as regulating biomass
productions, sensing specific molecules, processing specific
molecules, and releasing specific molecules. In RetroPath,
the available circuit design space, constrained by the set of
design specifications, is searched and a set of optimal circuits
is obtained. In this process, the basic steps are as follows:

1. Step 1: Define the input set of metabolites S, the out-
put (target metabolite set) T, and the metabolic space,
i.e., the set of all possible metabolites and chemical re-

actions that can be generated in vivo, M;
Step 2: Define the specifications of the desired circuit;

Step 3: Compute the set of enzymes involved in at
least one minimal pathway that converts S into T;

Step 4: Enumerate all metabolic pathways converting
S into T (see [2]); and

the objective function comprises the expected reaction
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Step 5: Solve a nonlinear optimization problem wherein

efficiencies, inhibition effects, and perturbation effects.
Here, the fluz balance analysis (FBA) is used.

The FBA (see [4]-[6]) predicts metabolic flux distributions
at a steady state by solving the linear programming problem

maximize w’v subject to Sv=0 and o <v <8,

where wTv denotes the biomass, v denotes the vector of
metabolic fluxes, S is the stoichiometric matrix, and («, 3)
are the a priori known bounds on the fluxes. Thus, it is
inherently assumed in RetroPath that the chassis organism
has reached a steady state following the insertion of the het-
erologous gene. As shown in [4], such an assumption of opti-
mality may not be valid for genetically engineered knockouts
and bacterial strains that were not exposed to long-term
evolutionary pressure. Following [4], we show that Step 5
can indeed be executed more efficiently by assuming that
the metabolic fluxes undergo a minimal redistribution with
respect to the flux configuration of the wild type. This min-
imization of metabolic adjustment (MOMA) is computed by
solving the quadratic programming problem

1
minimize o [|vo[* +v"v" s t. Sv=0 and a<v<p,

where v* denotes the flux distribution predicted by the FBA.

We next show that the efficiency of RetroPath can be im-
proved if transcriptomic data is available. This is achieved
by replacing the use of FBA in Step 5 first with the PROM
algorithm derived in [3] and then with an extension PROM-
E derived by us. PROM refines the upper bounds and the
lower bounds in the metabolic flux constraints of the FBA
by using Bayesian estimation on the available transcriptomic
and metabolomic datasets. Here, the probabilities on the
gene-TF interactions are empirically determined using avail-
able datasets; the more the number of datasets, the better is
the expected performance. Effectively, PROM implements
a slight modification of the FBA using linear programming
and achieves an improvement in not only the capacity to
generate larger genome-scale models but also in the accu-
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Figure 1: Our proposed algorithm PROM-E predicts the growth rates better than PROM [3] and RFBA
[8] on the datasets of [8] across a variety of anaerobic conditions. For aerobic conditions, the PROM-E and
PROM perform equally well and slightly better than RFBA.

racy of predicting the flux states. We then show how further
improvement are obtained using our extension PROM-E.

Results

We now illustrate how our extension PROM-E of PROM
estimates the flux rates more accurately than PROM on the
datasets of [8] wherein growth phenotypes from A System-
atic Annotation Package (ASAP) are predicted for commu-
nity analysis of genomes database. The ASAP database has
growth phenotypes of several E. coli gene KOs under vari-
ous conditions. In [3], 15 TFs for which growth phenotypes
under different 125 conditions are considered and it shown
that PROM predicts the growth phenotypes more accurately
than RFBA [8]. In [3], six strains with KOs of key transcrip-
tional regulators in the oxygen response (AarcA, AappY,
Afnr, AoxyR, AsoxS, and the double KO AarcAAfnr) were
constructed and then the growth rates were measured in aer-
obic and anaerobic glucose minimal medium conditions. As
Fig. 1 shows, our proposed PROM-E algorithm predicts the
growth rate more accurately than PROM in anaerobic con-
ditions and equally well in aerobic conditions. Furthermore,
the standard deviation of the prediction error is significantly
lower in PROM-E compared to PROM. We obtained these
results in MATLAB R2015b interfaced with COBRA Tool-
box 2.0 [7] and Gurobi Optimizer 6.5. As the cost of col-
lecting omics datasets is reducing at Moore’s law, we expect
that our approach will soon be useful in practical contexts.
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