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1. INTRODUCTION
DNA-based circuits relying on predictable thermodynam-

ics and kinetics of DNA strand interactions impart flexibility
in synthesizing synthetic biological constructs and in cou-
pling these circuits to in vivo processes [1, 2, 6, 7]. Here, we
focus on the synthetic Kim-Winfree oscillator network, illus-
trated in Fig. 1(i), which is a simple but effective coupled
oscillator system in which two DNA switches SW1 and SW2
are coupled through activator and inhibitor blocks realized
by RNA signals and auxiliary DNA species (see [3]). A typ-
ical experimental realization is closed in the sense that once
the operation starts, we do not either add any chemicals, es-
pecially NTP fuel, externally into the wet-lab apparatus or
remove any chemicals, especially waste products, from the
apparatus. Within the closed system, the oscillations are
bound to die out sooner or later — diminishing NTP fuel
eventually stops supporting the production of RNA signals
and accumulating waste products clog down the toeholds
and, as a result, adversely affect the signal propagation. Fur-
thermore, the oxidation effects and the pH variations tend to
deactivate the enzymes. Loading poses an additional chal-
lenge since it increases the order and the uncertainty of the
system — indeed, these oscillators have recently been used
in [8] to drive conformational changes of a DNA nanome-
chanical device called DNA tweezers. As Fig. 1(ii) shows,
the oscillator performance degrades sharply under loading.
We propose to improve the loading capacity of such tran-
scriptional devices by adopting a partially open architecture
and by using a discrete-time in silico controller, a block dia-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWBDA 2016 Newcastle-upon-Tyrne, August 2016
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

gram of which is illustrated in Fig. 2, which is to be coupled
to the wet-lab apparatus.

A light switching in silico controller, implementing a com-
bination of a Kalman filter and a model predictive controller,
was recently reported in [10]. In [4], a continuous-time L1

adaptive controller was proposed to use a DNA/RNA strand
based actuation that faciliates a much greater control chan-
nel bandwidth than the one provided by a light-based actua-
tion. In the L1 adaptive control architecture, the estimation
loop is decoupled from the control law. This decoupling
allows for the use of fast estimation rates, leading to uni-
form performance bounds and guaranteed robustness in the
presence of bounded nonlinearities and system uncertain-
ties. Hence, the closed-loop system converges to a reference
system with partial compensation of uncertainties, which is
linear, and hence has a scalable, repeatable, and predictable
response. Our discrete-time L1 adaptive controller builds on
the theory developed in [5] which ensures stability for any
sampling time. This controller is optimized using a numeri-
cally efficient convex optimization method and is well suited
for many such bioengineering applications since the frequen-
cies of the reference inputs encountered are slow enough, the
biological processes evolve slowly enough, and the wet-lab
measurements are at discrete time intervals.

2. MAIN RESULTS
We adopt a partially open architecture analogous to a mi-

crochemostat (see [9]) so as to inject control inputs without
increasing the reaction volume. In this continuous flow re-
actor, DNA species, enzymes, and NTP fuel flow in at a low
rate, while the outflow removes a portion of reaction mix-
ture, keeping the accumulation of waste products in check.
We choose the switch outputs of the main reaction chamber
to be the state variables that are to track the desired periodic
waveforms. The DNA switches are tagged with fluorophores
and the auxiliary DNA activators, A1 and A2, are tagged
by quenchers such that the binding of an activator to its
target switch reduces fluorescence signal. The two switches,
SW1 and SW2, have different fluorophores, allowing for a
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Figure 1: (i) The Kim-Winfree oscillator network
comprises two switches (SW1 and SW2) connected
through an activator rA1 and an inhibitor rI2 block.
In [8], it is used to drive DNA tweezers. Due to
the loading effects and a closed-system design, this
network is unable to drive even moderate loads: the
plot (ii), taken from [8], illustrates the loss of oscil-
lations as the load increases from 0 nM to 400 nM.
This highlights the need for more sophisticated con-
trollers and for a more open design.

Figure 2: Our discrete-time L1 adaptive controller.
This controller is implemented in silico in a com-
puter outside the wet-lab apparatus and the inter-
faced with the apparatus.

real-time measurement of the switch outputs as fluorescence
signals. The target waveforms are generated internally as
the reference signals in an in silico controller implemented
inside a computer — the commands of in silico controller
controls, in discrete-time, the concentration of inhibitor and
activator strands to track the reference signals. We charac-
terize the expected disturbance and modeling uncertainty,
obtain a discrete-time model of the overall system to be
controlled, and then synthesize a discrete-time L1 adaptive
feedback controller to achieve the desired performance. As
Fig. 3 illustrates, a significant improvement in the tunabil-
ity and loading capacity of oscillator is obtained. This ap-
proach can easily be adopted to improve the robustness and
the loading capacity of a wide range of wet-lab devices.
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