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Methods for network meta-analysis of
continuous outcomes using individual
patient data: a case study in acupuncture
for chronic pain
Pedro Saramago1* , Beth Woods1, Helen Weatherly1, Andrea Manca1, Mark Sculpher1, Kamran Khan2,
Andrew J. Vickers3 and Hugh MacPherson4

Abstract

Background: Network meta-analysis methods, which are an extension of the standard pair-wise synthesis framework,
allow for the simultaneous comparison of multiple interventions and consideration of the entire body of evidence in
a single statistical model. There are well-established advantages to using individual patient data to perform network
meta-analysis and methods for network meta-analysis of individual patient data have already been developed for
dichotomous and time-to-event data. This paper describes appropriate methods for the network meta-analysis of
individual patient data on continuous outcomes.

Methods: This paper introduces and describes network meta-analysis of individual patient data models for continuous
outcomes using the analysis of covariance framework. Comparisons are made between this approach and change
score and final score only approaches, which are frequently used and have been proposed in the methodological
literature. A motivating example on the effectiveness of acupuncture for chronic pain is used to demonstrate the
methods. Individual patient data on 28 randomised controlled trials were synthesised. Consistency of endpoints
across the evidence base was obtained through standardisation and mapping exercises.

Results: Individual patient data availability avoided the use of non-baseline-adjusted models, allowing instead for
analysis of covariance models to be applied and thus improving the precision of treatment effect estimates while
adjusting for baseline imbalance.

Conclusions: The network meta-analysis of individual patient data using the analysis of covariance approach is
advocated to be the most appropriate modelling approach for network meta-analysis of continuous outcomes,
particularly in the presence of baseline imbalance. Further methods developments are required to address the
challenge of analysing aggregate level data in the presence of baseline imbalance.

Keywords: Evidence synthesis, Network meta-analysis, Mixed treatment comparisons, Individual-patient data, Analysis
of covariance, Continuous outcome, Heterogeneity
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Background
Evidence synthesis tools are increasingly used to pool
estimates of treatment effects from multiple randomised
controlled trials (RCTs) to inform assessments of com-
parative effectiveness generally, and particularly in the
context of health technology assessment. One such tool is
network meta-analysis (NMA, also known as mixed treat-
ment comparisons), which extends standard pair-wise
meta-analysis by allowing the simultaneous synthesis of
evidence on multiple treatments [1–4]. Most published
work focuses on the pooling of aggregate outcome data
(AD), but with the increasing availability of individual pa-
tient data (IPD) synthesis methods have recently emerged
to utilise IPD [5–10]. The use of IPD allows the consist-
ent use of statistical methods across the body of evidence.
It also creates added value by offering the potential to
reduce and/or explain network heterogeneity, tackle exist-
ing evidence inconsistencies [11], and to examine subgroup
effects in patients where interventions might have an
effectiveness profile which differs from that of the wider
population [10, 12]. Despite its advantages, only a few
methodological studies on the synthesis of IPD in NMA
are available in the published literature and even fewer
examples of its use within cost-effectiveness (CE) analysis
exist [13]. Methods for NMA of IPD have focused mainly
on a subset of the available types of outcomes, i.e. binary
and time-to-event outcomes [10, 14]. Few publications
exist dedicated to continuous outcomes [15, 16], an
important outcome set in medical applications, as well as
in complementary medicine and beyond. Recent publica-
tions by Hong et al. [15] and Thom et al. [16] explored
and discussed the synthesis of continuous endpoints using
IPD in NMA. While the former proposes a framework to
pool multiple continuous outcomes under contrast- and
arm-based parameterisations, the latter focused mainly on
modelling observational evidence available in both IPD
and AD formats. Both papers chose the change from base-
line as their continuous outcome for synthesis but did not
adjust for baseline values of the outcome, apart from when
modelling baseline outcome as a treatment-effect modifier
[15]. In this paper we present a model for NMA of IPD on
continuous outcomes using the analysis of covariance
(ANCOVA) approach which does adjust for baseline out-
come data.
Analysis of covariance (ANCOVA), where the outcome

at follow-up is modelled whilst adjusting for its baseline
value, is the preferred method for estimating treatment
effects from continuous outcomes [17–19]. Treatment
effect estimates based on ANCOVA methods are the most
precise estimates and are robust to chance baseline imba-
lance. As such, these should be the desired outcome meas-
ure for synthesis [20–22]. Unfortunately, ANCOVA results
are frequently not reported for individual studies and,
therefore, ANCOVA is often not used in the synthesis of

aggregate evidence. Instead, sub-optimal methods are used
[23–25] such as unadjusted differences in change from
baseline or final outcome measures.
When IPD is available from each study, the full set

of statistical approaches are available to analysts. Riley et
al. [22] discuss different approaches to the synthesis of
continuous outcome data when IPD is available in a pair-
wise meta-analysis framework. The authors highlight that
availability of IPD is crucial to implement the most appro-
priate modelling approach, the ANCOVA [19, 22]. To our
knowledge, such an ANCOVA synthesis model has not
yet been extended to and/or explored in the NMA setting.
In this paper we present a Bayesian NMA model for the

synthesis of continuous IPD using the ANCOVA frame-
work. The paper aims to ensure that best practice in the
analysis of continuous outcome data within individual
trials and pairwise meta-analyses is extended to the NMA
context. We also aim to illustrate the differences (and
similarities) between NMA of IPD when using ANCOVA,
change score and final score only approaches. The method
presented is applied to a case study of acupuncture for
chronic pain. The paper is structured as follows. Section 2
presents the motivating example for the manuscript,
describes the evidence available and outlines the analysis
undertaken to obtain outcome data for synthesis. Section
3 describes the NMA ANCOVA model for IPD on con-
tinuous outcomes, followed by extensions that incorporate
treatment effect–covariate interactions. Results of apply-
ing the methods described to the motivating dataset are
reported in Section 4, which is followed by some discus-
sion topics and concluding remarks in Section 5.

Evidence on the effectiveness of acupuncture for chronic
pain in primary care
There is currently a lack of agreement about the effective-
ness of acupuncture as a treatment for chronic pain, as
reflected in debates about recent UK guidance surroun-
ding its value [26–32]. Acupuncture received a positive
recommendation from the National Institute for Health
and Care Excellence (NICE) for its use in back pain [26]
and headache/migraine [27], while a negative recommen-
dation was given for its use in osteoarthritis in 2008 and
2014 [28]. The methods in this paper were developed as
part of a project to improve evidence regarding the effec-
tiveness and CE of acupuncture for chronic non-specific
pain to inform decision making in the UK National Health
Service [33].

Dataset
The data used in this study was provided by the Acu-
puncture Trialists’ Collaboration (ATC) who performed
a systematic review in which relevant high quality trials
were identified and, for a large proportion of trials, IPD
was obtained (29 out of 31 studies) [34, 35]. The dataset
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available to us comprised 28 out of these 29 RCTs which
assessed the effectiveness of acupuncture in three pain con-
ditions: osteoarthritis of the knee (OAK) (7 trials [36–42]),
headache, including tension-type headache (TTH) and
migraine (6 trials [43–48]) and musculoskeletal conditions,
encompassing lower back, shoulder and neck pain (15
trials [49–63]). This dataset comprises 17,512 patients.
These studies are summarised in Table 1.
The dataset includes 11 trials comparing acupuncture

to sham acupuncture, 8 comparing acupuncture and
usual care, and 9 comparing all three comparators. The
resulting evidence network is presented in Fig. 1.

Outcomes
One key aspect of the evidence available in this setting is
the heterogeneous reporting of relevant outcomes across
trials. The ATC dataset varied according to the type of
outcomes reported but also on how these were collected
across time. To address this issue, two outcome measures
are used within this paper. The first is a standardised
pain-related outcome, a dimensionless measure of treat-
ment effect usually termed standardised mean difference
(SMD) [20, 21, 64, 65]. For this analysis the primary out-
come of each study was used to generate patient-level
standardised pain estimates. Pain measures varied from
days with headache in the headache/migraine pain condi-
tion, to visual analogue scale (VAS) pain in the musculo-
skeletal group or to Western Ontario and McMaster
Universities Arthritis Index (WOMAC) pain in the OAK
group, as reported in Table 1 (column on the right hand
side). Individual-level standardised pain estimates were
obtained for each trial by dividing the primary outcome
scores by the study-specific standard deviation. Note that
while these estimates were used as inputs in the synthesis
models, the outputs of the synthesis are in the SMD
format, as differences between treatments were estimated
within the modelling1.
While SMDs may be useful for detecting differences

between interventions, they are of limited value to deci-
sion making as these cannot directly inform estimates of
absolute effect or CE modelling, unless they are first
transformed [20]. These considerations motivated the sec-
ond synthesis approach used, which involved translating
(or ‘mapping’) the available patient-reported outcome data
from the trials into EuroQol five-dimension (EQ-5D)
index values [66]. The EQ-5D is a popular preference-
based generic health-related quality of life (HRQoL) mea-
sure, typically employed to weight life years gained and
thus derive quality-adjusted life-years (QALYs) for use
in CE analysis [67]. The EQ-5D preference score was the
second outcome explored. Due to its importance in
supporting health system decision making processes, the
EQ-5D preference score, used in CE analysis, has applica-
tions in many jurisdictions worldwide, including the UK

[68]. The conventional EQ-5D questionnaire includes five
domains, each of which can be at one of three severity
levels. Using an algorithm, responses to this questionnaire
can be transformed to a numeric value that reflects the
preferences of the public for different heath states (here
we used values from the UK general public [69]). Values
range from −0.594 to 1 (the bounds represent, respec-
tively, the worst imaginable health state and full health,
with zero relating to death).
Only a small number of trials (n = 2) in the dataset

directly provided EQ-5D data [36, 56]. Where such data
were not available it was predicted using other generic
and disease specific measures2 (Table 1) through pub-
lished mapping algorithms. In 50 % (n = 14) of the trials,
well established published algorithms were used to map
from Short Form (SF)-36 dimensions and SF-12 summary
scores to EQ-5D3 [58, 70, 71]. In 10 of the 28 trials, pub-
lished algorithms which map VAS pain scores [72] and
WOMAC scores [73] to EQ-5D were used4. For one trial,
a double mapping approach was necessary as, to our
knowledge, no direct mapping algorithm exists to obtain
EQ-5D values from Constant Murley Score (CMS). Thus,
an unpublished mapping algorithm (a report describing
the derivation of the mapping algorithm is available on
request from Kamran Khan: K.A.Khan@warwick.ac.uk
[74]) was used to derive VAS pain estimates from CMS,
which were then used to obtain individual-level EQ-5D
predictions using the Maund et al. [72] algorithm.
For the majority of mapping models used, the propor-

tion of total variation explained (quantified by the coeffi-
cient of determination, R2, in most cases) was low. To
account for this additional source of uncertainty, an
additional variance component was included5 [75]. This
was achieved by adding to each individual-level EQ-5D
prediction a draw from a normal distribution with mean
zero and variance equal to the study-specific residual
variance, that is, Var dEQ5Dh i

⋅ 1−R2
� �

, where dEQ5D is the pre-
dicted (mapped) EQ-5D at individual-level.
HRQoL and standardised pain estimates were obtained

at baseline and at the follow-up period closest to 3 months
following the start of treatment, as 3 months is the typical
end of treatment measurement, though not necessarily the
trial’s primary end-point. Changes from baseline were ob-
tained by calculating the difference between values for these
two time points. Missing data in the ATC dataset (9.3 %
(n = 1,622) and 15.5 % (n = 2,716) of the total number of
patients in the standardised pain and HRQoL outcome,
respectively) was assumed to be missing at random (MAR)
and a complete-case analysis was conducted.
Additional file 1: Table A1 presents the standardised

pain outcome and (mapped/predicted) EQ-5D data. For
both outcome measures baseline imbalance can be ob-
served in some trials. The source of this imbalance is not
clear, but should be addressed in the synthesis [76, 77].
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Table 1 Main characteristics of the data and study outcomes used for analysis
ID Study 1st author, year Location Pain group (type) Age – mean

(SD)
Trial follow-up period /
Time point used in the
analysis (months)

Treatment Obser-vations HRQoL outcome
mapped

Pain outcome
standardised

1 Diener 2006 [46] Germany Headache (migraine) 37.62 (10.4) 6 / 3 Usual care 328 SF-12 Migraine days

Sham acupuncture 202

Acupuncture 305

2 Endres 2007 [47] Germany Headache (TTH) 38.44 (11.77) 6 / 3 Sham acupuncture 200 SF-12 TTH days

Acupuncture 209

3 Jena 2008 [48] Germany Headache (headache) 43.66 (12.69) 6 / 3 Usual care 1613 SF-36 Headache days

Acupuncture 1569

4 Linde 2005 [44] Germany Headache (migraine) 42.55 (11.35) 6 / 3 Usual care 76 SF-36 Days of moderate
to severe pain

Sham acupuncture 81

Acupuncture 145

5 Melchart 2005 [45] Germany Headache (TTH) 42.68 (13.18) 6 / 3 Usual care 75 SF-36 Headache days

Sham acupuncture 62

Acupuncture 132

6 Vickers 2004 [43] UK Headache (headache) 46.34 (10.39) 12 / 3 Usual care 161 SF-36 Severity score

Acupuncture 140

7 Brinkhaus 2006 [55] Germany Musculoske-letal (low back) 58.81 (9.13) 12 / 2 Usual care 79 SF-36 VAS pain score

Sham acupuncture 73

Acupuncture 146

8 Carlsson 2001 [50] Sweden Musculoske-letal (low back) 49.84 (15.4) 6 / 3 Sham acupuncture 16 VAS pain VAS pain score

Acupuncture 34

9 Guerra 2004 [53] Spain Musculoske-letal (shoulder) 59.19 (11.37) 6 / 3 Sham acupuncture 65 VAS pain VAS pain score

Acupuncture 65

10 Haake 2007 [61] Germany Musculoske-letal (low back) 50.15 (14.68) 6 / 3 Usual care 388 SF-12 Von Korff pain
intensity score

Sham acupuncture 387

Acupuncture 387

11 Irnich 2001 [51] Germany Musculoske-letal (neck) NA 3 / 3 Sham acupuncture 61 VAS pain VAS pain score

Acupuncture 56

12 Kennedy 2008 [62] Northern Ireland Musculoske-letal (low back) 45.58 (11.1) 3 / 3 Sham acupuncture 24 VAS pain Roland Morris
disability score

Acupuncture 24

13 Kerr 2003 [52] Northern Ireland Musculoske-letal (low back) NA 6 / 1 Sham acupuncture 20 VAS pain VAS pain score

Acupuncture 26

14 Kleinhenz 1999 [49] Germany Musculoske-letal (shoulder) NA 3 / 1 Sham acupuncture 27 CMS and predicted
VAS pain

CMS

Acupuncture 25
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Table 1 Main characteristics of the data and study outcomes used for analysis (Continued)

15 Salter 2006 [56] UK Musculoske-letal (neck) 47.71 (16.51) 3 / 3 Usual care 14 no mapping – EQ-5D
available

Northwick Park
pain score

Acupuncture 10

16 Thomas 2006 [58] UK Musculoske-letal (neck) 42.62 (10.71) 24 / 3 Usual care 80 no mapping – EQ-5D
available

SF-36 bodily pain score

Acupuncture 159

17 Vas 2006 [57] Spain Musculoske-letal (neck) 46.73 (13.2) 6 / 1 Sham acupuncture 62 SF-36 VAS pain score

Acupuncture 61

18 Vas 2008 [63] Spain Musculoske-letal (shoulder) 55.68 (11.37) 12 / 3 Sham acupuncture 220 VAS pain CMS

Acupuncture 205

19 White 2004 [54] UK Musculoske-letal (neck) 53.36 (15.61) 12 / 3 Sham acupuncture 65 VAS pain VAS pain score

Acupuncture 70

20 Witt 2006 [59] Germany Musculoske-letal (neck) 50.57 (12.93) 6 / 3 Usual care 1698 SF-36 Neck pain and
disability score

Acupuncture 1753

21 Witt 2006 [60] Germany Musculoske-letal (low back) 52.83 (13.33) 6 / 3 Usual care 1390 SF-36 Hanover functional
ability score

Acupuncture 1451

22 Foster 2007 [41] UK Osteoarthritis of the knee 63.23 (8.81) 12 / 1 Usual care 116 VAS pain WOMAC pain score

Sham acupuncture 119

Acupuncture 117

23 Berman 2004 [36] USA Osteoarthritis of the knee 65.46 (8.62) 6 / 2 Usual care 189 no mapping – EQ-5D
available

WOMAC pain score

Sham acupuncture 191

Acupuncture 190

24 Scharf 2006 [39] Germany Osteoarthritis of the knee 62.81 (10.07) 6 / 3 Usual care 316 SF-12 WOMAC total score

Sham acupuncture 365

Acupuncture 326

25 Vas 2004 [37] Spain Osteoarthritis of the knee 67.04 (10.09) 3 / 3 Sham acupuncture 49 WOMAC total WOMAC total score

Acupuncture 48

26 Williamson 2007 [42] UK Osteoarthritis of the knee 70.67 (8.94) 3 / 3 Usual care 61 WOMAC total Oxford knee score

Acupuncture 60

27 Witt 2005 [38] Germany Osteoarthritis of the knee 64.01 (6.49) 12 / 2 Usual care 70 SF-36 WOMAC total score

Sham acupuncture 75

Acupuncture 149

28 Witt 2006 [40] Germany Osteoarthritis of the knee 61.2 (10.39) 6 / 3 Usual care 310 SF-36 WOMAC total score

Acupuncture 322
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Methods
Statistical models for the data
All analyses were conducted using Bayesian methods. A
contrast-based modelling approach is taken throughout
featuring relative treatment effects, in line with the param-
eterisation used by Lu and Ades [78], Saramago et al. [10]
and others. A one-step modelling approach, where the
likelihood for data at the IPD level and that of parameter
estimates were described simultaneously, was preferred
because we intended to explore treatment-by-covariate
interactions at the patient-level [7, 79]. Note that all
four models described below include pain type inter-
actions which are specific to the current case-study.
Table 2 summarises the key characteristics of the four
models implemented, highlighting existing differences
across these.

ANCOVA analysis (model 1)
The main modelling approach considered (model 1) is a
variation of the ANCOVA approach that models the
change score adjusting for baseline outcome values and
with no stratification variables [19, 22, 80, 81] – such an
approach is seen as equivalent to the existing ANCOVA
approach.

The model considers a set of J studies for which IPD
was available. The set of treatments included in these
trials are labelled [A,B,C], where A is the reference treat-
ment and there are K (=3) treatments in total. At baseline,
patient i in study j allocated to treatment k provides a
baseline measurement Yijk0 (where 0 indicates time t at
baseline). Each patient provides a follow-up measurement
(the assessment closest to 3 months), Yijk3. The change
from baseline (Yijk3 − Yijk0) is denoted ΔYijk and is assumed
normally distributed with mean θijk and study-level vari-
ance of Vj.
θijk, is assumed to be a function of μjb, the outcome for

treatment b (the lowest indexed treatment in each study)
in study j for a patient with a baseline utility of 0,Yijk0; δjbk,
the study-specific treatment effect for treatment k relative
to treatment b; and Xjp, p - 1 dummy variables represent-
ing pain type p in the jth study. The latter terms were in-
cluded to allow treatment effects to vary according to pain
type (i.e. OAK; headache - including TTH and migraine;
and musculoskeletal conditions - including lower back,
shoulder and neck pain). There are different ways in
which interaction effects can be specified in NMAs [82].
For this example we assumed that pain treatment inter-
action effects, βbkp, were different for each treatment but
exchangeable across treatments. Estimates of βbkp were

Fig. 1 Network of RCTs. Legend: In the network, a unique treatment category is indicated by a circle. Arrows between circles indicate that these
treatments have been compared in a trial (trials are identified using ‘[]’, numbered according to column ‘ID’ in Table 1. (Pain groups: H – Headache/
migraine; MSK – Musculoskeletal; OAK – Osteoarthritis of the knee)

Table 2 Summary of key characteristics of implemented models

Model 1 Model 2 Model 3 Model 4

Outcome type Continuous Continuous Continuous Continuous

Outcome synthesised Change from baseline Change from baseline Change from baseline Final score

Approach ANCOVA
(baseline adjustment)

ANCOVA
(baseline adjustment)

No baseline adjustment No baseline adjustment

Pain interactions
(case-study specific)

Yes Yes Yes Yes

Further adjustments None Patients characteristics as
treatment-effect modifiers

None None
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therefore assumed to be drawn from a random distribu-
tion with a common mean (Bp) and between treatment
variance (σBp

2 ). An exchangeable interaction approach for
pain was thought to be the most appropriate as it allowed
pain interactions to be different across treatments but
related. Pain interaction effects were not included for
OAK as this is used as the reference pain indication. Pain
interaction terms were specific to the current application
and may be excluded if not of interest. However, we
emphasise that adjustment for baseline should always be
included regardless of the need to model interactions.
A random treatment effect approach was taken due to

the expected between-study heterogeneity, the variance
of which is described as σ2.
This model can be written as:

ΔY ijk ∼N θijk ;V j
� �

θijk ¼ f μjb þ β0jY ijk0 if k ¼ b; b∈ A; B; C;…f g
μjb þ β0jY ijk0 þ δ jbk þ βbkpXjp if k > b

δjbk∼N dbk ; σ
2

� �
∼N dAk−dAb; σ

2
� �

βbkp ¼ βAkp−βAbp βAkp∼N Bp; σ
2
Bp

� �
dAA; βAAp ¼ 0

ð1Þ

Prior distributions were defined independently as follows:
1/Vj ∼Gamma (0.001, 0.001); μjb ∼N(0, 10

6); βoj~N(0, 106);
dAk ∼N(0, 10

6); σ ∼Unif(0, 2); Bp ∼N(0, 10
6); σBp ∼Unif(0, 2).

Correlations in the random effects from trials with three or
more arms were accounted for using publishedmethodology
[3, 64]. In this paper, k > b indicates that k is after b in the
alphabet.

Controlling for treatment effect modifying patient-level
characteristics (model 2)
For the EQ-5D endpoint, model 1 was extended to include
patient-level covariates as potential treatment effect modi-
fiers. Clinical expectations were that older age or higher
body max index (BMI) may make patients more difficult
to treat and, thus, potentially reduce the effect of treat-
ment. Data on age were available from most studies and it
was included as a covariate (centred) in the synthesis
model. Again, a range of approaches can be used to in-
corporate treatment-effect interactions. In this analysis we
assumed a common effect across pain types and for both
acupuncture and sham acupuncture (i.e. a single inter-
action term is assumed to apply to all comparisons with
usual care) [82] as this was deemed more clinically plaus-
ible. A non-linear effect of age was expected a priori, and
thus squared terms were included for both main effects
and treatment interaction effects. BMI data were only
available in 10 of the 28 studies and for this reason we did
not explore this variable further.

Model 2 thus differs from model 1 in that it considers
the effects of the covariate Z (age). Differences to model
1 are shown below:

θijk ¼ f μjb þ β0jY ijk0 þ ϕ0Zijk þ φ0Zijk
2

if k ¼ b; b∈ A;B;C;…f g
μjb þ β0jY ijk0 þ ϕ0Zijk þ φ0Zijk

2 þ δjbk

þβbkpXjp if k > b and b≠A

μjb þ β0jY ijk0 þ ϕ0Zijk þ φ0Zijk
2 þ ϕZijk þ φZijk

2 þ δjbk

þβbkpXjp if k > b and b ¼ AZijk eN m; σ2Z
� �

ð2Þ

Coefficients on the main covariate effect and the effect
squared are represented by ϕ0 and φ0. Coefficients on the
treatment-by-covariate interaction term and the inter-
action between treatment and the squared covariate term
are represented by ϕ and φ. No interaction term for com-
parisons of k and b were included when b ≠A because the
common regression coefficient cancels out.
Due to the possibility of missing covariate information

for some individuals in some studies, Zijk was assumed
to be a normally distributed random variable with
mean m and variance σZ

2, common across all IPD studies.
This represents a Markov chain Monte Carlo (MCMC)
multiple imputation technique which generates indepen-
dent draws of the missing data from its predictive distri-
bution assuming MAR covariate data. Additional priors
were required for this model: ϕ0, ϕ, φ0, φ ∼N(0, 106);
m ∼Unif(−50, 50), σz ~Unif(0, 30)

Analysis with restricted evidence (model 3 and 4)
Although model 1 is the preferred choice, this model
would not be feasible in the absence of outcome informa-
tion at the individual-level for both baseline and follow-up
time points. Sub-optimal models which do not rely on
the availability of IPD were therefore run for comparison
purposes. Three options are typically available to the ana-
lyst when only AD are available [22] – i) in the event of
ANCOVA estimates being available, synthesise these using
published literature [22]; or ii) model the change score
without baseline adjustment (model 3); or iii) model the
final outcome score without baseline adjustment (model
4). We note that – though suboptimal - model 3 has also
been presented in the context of an NMA of continuous
outcomes when IPD were available [15, 16].
Models 3 and 4 are simplifications of model 1 where the

baseline outcome variable is omitted and where model 4
considers the final score, rather than the change score, as
dependent variable. The synthesis of data using models that
ignore baseline outcomes may provide biased treatment
effect estimates because of potential baseline imbalances
(unless addressed within trials themselves) and due to
ignoring potential correlation between the change/final
score and the baseline value [77, 83]. It may also reduce
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the precision of treatment effect estimates, even if balance
at baseline is observed across all synthesised evidence [22].

Calculating the residual deviance
The total residual deviance, TRD – a measure of model fit
- can be estimated for each of the described models by
summing study-level residual deviances, RD. Study-level
RDs are the ratio of the sum across studies of the squared
differences between the observed changes from baseline,
ΔYijk, and the estimated mean, θijk, divided by the study-
level variance,Vj [84]:

Dijk ¼ ΔY ijk−θijk
� �2

RDj ¼ sum Dj
� �

=V jTRD
¼ sum RDð Þ ð3Þ

For a model that fits the data well, it is assumed that
the contributions to the RD to have a chi-squared distri-
bution with N degrees of freedom if a sum over N
unconstrained data points is made. On this basis, it is
expected that the posterior mean of the TRD should be
close to the number of unconstrained data points if the
model predictions are a good fit to the data [20, 84, 85].

Model selection and implementation
Data management was performed in the freely available
software package R version 3.0.0 (Copyright © 2013 The
R Foundation for Statistical Computing [86]). The NMA
analyses were undertaken in WinBUGs [87] version
1.4.3 (Copyright © 2008 Medical Research Council (UK)
and Imperial College (UK)), linked to the R software
through the packages R2WinBUGS [88] and CodaPkg
[89]. Annotated code, sample data and initial values for
model 1 are provided in the Additional file 2 to allow
readers to adapt it for their own purposes.
In all models the MCMC Gibbs sampler was initially

run for 10,000 iterations and these were discarded as
‘burn-in’. Models were run for a further 5,000 iterations,
on which inferences were based. Chain convergence was
checked using autocorrelation and Brooks-Gelman-Rubin
diagram [90, 91] diagnostics. Goodness of fit was assessed
using the deviance information criterion (DIC) and TRD
[84]. Results are presented as EQ-5D preference scores
and SMD treatment effect estimates (and associated 95 %
credibility intervals, CrIs) and also using the probability of
treatment being the ‘best’ treatment in terms of being the
most clinically effective [4].

Results
ANCOVA analysis results (model 1)
Table 2 and Fig. 2 show the evidence from model 1 on
relative treatment effect estimates adjusted for baseline
and treatment-by-pain interaction effects (medians of
the MCMC posterior samples and 95 % CrI shown).
Measures of model fit (TRD and DIC) are also shown.

The reference category for the pain interaction effects is
the OAK pain type.
For both endpoints, model 1 indicates that acupuncture

treatment increases the HRQoL of patients and/or re-
duces pain more than usual care and sham acupuncture
treatments, irrespective of pain group. For the EQ-5D
endpoint the treatment effect of acupuncture vs. usual
care in the OAK population is 0.079 (median, 95 % CrI:
0.042 to 0.114), for headache/migraine and musculoske-
letal pain patients the comparable treatment effects are
0.056 (median, 95 % CrI: 0.021 to 0.092) and 0.082
(median, 95 % CrI: 0.047 to 0.116), respectively. The
results also favour acupuncture over sham acupuncture,
although with a greater degree of uncertainty, as reflected
by the fact that CrIs include zero for all pain types (OAK:
0.022, 95 % CrI −0.014 to 0.060; headache/migraine:
0.004, 95 % CrI −0.035 to 0.042; and musculoskeletal
0.023, 95 % CrI −0.008 to 0.053). The probability that
acupuncture is the best treatment at improving HRQoL is
0.89 for OAK, 0.64 for headache/migraine and 0.95 for
musculoskeletal pain.
Results for the SMD endpoint followed a similar pattern.

However, in contrast to the EQ-5D analysis, in the latter
comparison the CrIs do not include zero in the standar-
dised pain analysis for OAK (0.438, 95 % CrI 0.121 to
0.715) and musculoskeletal (0.527, 95 % CrI 0.323 to 0.735)
pain types, though they do for headache/migraine (0.256,
95 % CrI −0.073 to 0.560). The probability that acupuncture
is the best treatment at improving standardised pain is 0.96
to 1.00 depending on pain type.
It is interesting to note that sham acupuncture vs.

usual care treatment effect 95 % CrIs across pain types
do not include 0 in the EQ-5D endpoint but they do for
SMD, except for the headache/migraine group. These
results suggest that sham acupuncture effects may well
go beyond pain. Also interesting is the estimated magni-
tude of the uncertainty over the pain type interactions
(not reported) as these, particularly for the EQ-5D
endpoint, do not provide strong evidence of a difference
between pain types.
Expectations were that some level of heterogeneity

existed between-trials. Possibly as a consequence of the
mapping work performed, this expectation was not ful-
filled for the EQ-5D endpoint (the between-study variance
estimate is 0.001). For the SMD endpoint the between
study variance was also small relative to the magnitude of
the treatment effects (the between-study variance estimate
is 0.09). The TRD suggests that the models provide an
adequate fit to the data (see Table 3).

Controlling for patient-level characteristics (model 2)
Table 1 provides information on age for each of the trials
included in the dataset. The average age was lower in the
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Fig. 2 Forest plot showing network meta-analysis results for standardised pain and EQ-5D outcomes

Table 3 IPD NMA ANCOVA synthesis model results (model 1), EQ-5D preference score and standardised pain endpoints

IPD NMA ANCOVA results: EQ-5D preference score and SMD endpointsa Model 1, ANCOVA, change in outcome score, adjusted for
baseline median MCMC posterior sample (95 % CrI)

Change EQ-5D Change standardised pain

Relative treatment effects Osteoarthritis of the knee SHAM vs UC 0.057 (0.013, 0.095) 0.271 (-0.007, 0.537)

ACU vs UC 0.079 (0.042, 0.114) 0.703 (0.399, 0.984)

ACU vs SHAM 0.022 (-0.014, 0.060) 0.438 (0.121, 0.715)

Headache SHAM vs UC 0.052 (0.010, 0.095) 0.332 (0.022, 0.669)

ACU vs UC 0.056 (0.021, 0.092) 0.588 (0.311, 0.869)

ACU vs SHAM 0.004 (-0.035, 0.042) 0.256 (-0.073, 0.560)

Musculoskeletal SHAM vs UC 0.059 (0.017, 0.101) 0.063 (-0.241, 0.378)

ACU vs UC 0.082 (0.047, 0.116) 0.588 (0.334, 0.863)

ACU vs SHAM 0.023 (-0.008, 0.053) 0.527 (0.323, 0.735)

Between-study variance 0.001 (0, 0.003) 0.090 (0.049, 0.170)

Total residual devianceb 15,850 (15,480; 16, 230) 17,060 (16,660; 17,450)

Deviance information criterionc -6,420.4 37,394.2
aUC usual care, SHAM sham acupuncture, ACU acupuncture, Headache group headache, migraine and TTH, Musculoskeletal group neck, shoulder and low back pain
bFor the EQ-5D endpoint models used approx. 14800 observations; for the SMD endpoint models used approx. 15900. Models should be preferred when total
residual deviance mean posterior is close to the actual number of data points
cDeviance information criterion (DIC) is a statistical measure of model fit and model comparison. Models with smaller DIC are preferred
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headache/migraine pain group than in the musculoskeletal
group, which in turn was lower than the OAK group.
Using the change in EQ-5D as the outcome for syn-

thesis, Table 4 presents the results of applying model 2
(an extension of model 1) to include patient-level infor-
mation on age – with age considered as a potential treat-
ment effect modifier. The model fit statistics show that
the adjusted by age model is marginally better than model
1, providing lower DIC statistics and reduced posterior
RD. The results are very similar to model 1 and do not
suggest age is a strong effect modifier or that non-linear
effects of age on the effect of treatments are present.

Analysis with restricted evidence (model 3 and 4)
Models 3 and 4 model the change score and the final out-
come score, respectively. These are seen as simplifications
of model 1 where no baseline adjustment is done. Results
for models 3 and 4 are presented in Table 5, together with
model 1 results for comparison. Generally, all three models
convey the same message in relation to which treatment

provides higher increases in patients’ HRQoL; that is,
acupuncture is found to be better than sham and usual care
treatments. As expected, models 3 and 4 (model 3 in
particular) provide different summary results of treatment
effects when compared to model 1. Compared with the
ANCOVA model (model 1), model 3, the change score
approach, generally inflates the summary treatment effects
across pain types, with potential losses in precision (e.g. for
OAK the median EQ-5D treatment effect is inflated 19 %
in model 3 compared to model 1 for the acupuncture vs
usual care comparison). Compared to model 1, model 4
summary treatment effects are generally similar or lower;
CrIs are however consistently wider in model 4 compared
to model 1.

Discussion
This study presents methods for conducting NMA of
IPD on continuous outcomes, building on previous work
on ANCOVA models for pairwise meta-analysis [22].
IPD availability avoided the use of non-baseline-adjusted
models, allowing for ANCOVA models to be applied,
thus improving precision of treatment effect estimates
while adjusting for baseline imbalance [22]. Our results
generalise the findings from Riley et al. [22] to the NMA
setting and reinforce the idea that different approaches
to the synthesis of continuous outcomes will produce
different results. The ANCOVA approach is advocated
to be the most appropriate modelling approach. Due to
limited reporting of ANCOVA results in trial publica-
tions, IPD will typically be required to facilitate imple-
mentation of the ANCOVA NMA approach. The
appropriate analysis of continuous endpoints therefore
provides a further rationale for obtaining access to IPD,
in addition to those well documented in the NMA litera-
ture [10, 12, 15, 92].
Recent work by Hong et al. [15] and Thom et al. [16]

presented and discussed IPD NMA models for continu-
ous outcomes. While Hong and colleagues [15] intro-
duced contrast-based and arm-based models for
multiple outcomes, Thom et al. [16] synthesised AD and
IPD, some of which was observational rather than RCT
data. They also considered interactions between treat-
ment effects and covariates. The existence of ecological
bias was explored in Hong et al. [15] by partitioning
within- and across-study interactions [10]. Both publica-
tions used the change from baseline as their continuous
outcome measure. In both publications models were
presented that did not incorporate an adjustment for
baseline outcome values, and in Hong et al. [15] adjust-
ment for baseline outcome values was only considered
in the context of modelling baseline outcomes as a treat-
ment effect modifier. Thom et al. [16] recognised that
the approach taken was not the recommended one, but
noted that an ANCOVA-type approach was not possible

Table 4 IPD NMA ANCOVA synthesis model (model 2) results
with adjustments, EQ-5D preference endpoint

IPD NMA results:
EQ-5D preference
scores endpointa

Model 2, ANCOVA, with
adjustment for baseline
score, age and
treatment-by-age
interactions, median
MCMC posterior sample
(95 % CrI)

Relative
treatment
effects

Osteoarthritis
of the knee

SHAM vs UC 0.040 (-0.006, 0.084)

ACU vs UC 0.066 (0.025, 0.105)

ACU vs SHAM 0.026 (-0.012, 0.066)

Headache SHAM vs UC 0.056 (0.012, 0.098)

ACU vs UC 0.060 (0.023, 0.095)

ACU vs SHAM 0.004 (-0.036, 0.043)

Musculoskeletal SHAM vs UC 0.045 (-0.001, 0.094)

ACU vs UC 0.074 (0.038, 0.109)

ACU vs SHAM 0.029 (-0.009, 0.067)

Main effects Age -0.002 (-0.002, -0.001)

Age2 0.000 (0.000, 0.000)

Age common
interactions

Age 0.000 (0.000, 0.001)

Age2 0.000 (0.000, 0.000)

Between-study
variance

0.001 (0.000,0.003)

Total residual
devianceb

15,590 (15,210; 15,970)

Deviance information
criterionc

-6,462.0

aUC usual care, SHAM sham acupuncture, ACU acupuncture, Headache group
headache, migraine and TTH, Musculoskeletal group neck, shoulder and low
back pain
bCompare to approx. 14, 800 observations
cDeviance information criterion (DIC) is a statistical measure of model fit and
model comparison. Models should be preferred with smaller DIC
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as, for most studies in their motivating example, only AD
was accessible to them. Our work emphasises that where
IPD is available, all models of continuous outcomes
should include adjustment for the baseline outcome, and
unadjusted models should not be presented.
Analyses in this paper were conducted to explore the

implications of using non-ANCOVA models in a NMA
framework, as other methods have been used in the litera-
ture [15] to analyse continuous outcome IPD, and these
methods are often necessary in the absence of IPD. The re-
sults showed some differences with the ANCOVA results.
Modelling final scores or change scores without baseline
adjustment produced estimates of treatment effect which
differed by up to 19 % compared to the baseline adjusted
model. By explicitly accounting for correlation between the
change score and the baseline score in the presence of
baseline imbalance, the tested ANCOVA model (model 1)
avoids bias in the pooled treatment effect estimates. These
results emphasise how important it is to adjust for baseline
to adequately synthesise evidence in this setting; tasks very
much facilitated with the availability of IPD. We hope that
by highlighting the consequence of using suboptimal
model(s) may encourage readers to obtain IPD so that the
most appropriate methods may be implemented. When
IPD is available ANCOVA should always be used. There
has been a discussion in the literature about the fact that
final or change score analyses may ‘bound’ the true relative
effect estimate. Although this may be true for a single trial,
it may not hold for NMA models [18]. This emphasises
the importance of conducting appropriate analyses as the

potential direction of bias is difficult to predict. Any bias
in treatment effect or impact on precision could lead to
inappropriate decisions regarding adoption and further
research.
The motivating example related to the effectiveness of

acupuncture for the treatment of chronic pain. The ana-
lyses found acupuncture to be more effective than usual
care with respect to reducing pain and improving EQ-5D
preference scores in patients with chronic pain of OAK,
musculoskeletal and headache/migraine origin. The bene-
fits of acupuncture over sham acupuncture are smaller
than when compared to usual care. The methods used
provided outputs in a format that can be used to directly
inform CE considerations once the full set of relevant
comparators are considered.
A recent study by Vickers et al. [35] also explored the

effectiveness of acupuncture for chronic pain. This study
performed an IPD pair-wise meta-analysis using the same
data plus data from an additional trial [93] – data which,
due to lack of consent, was not available to be used in the
current analysis. Using study-specific primary outcome
measures and the ANCOVA methodology, the Vickers et
al. [35] study conducted meta-analyses separately for com-
parisons of acupuncture with sham acupuncture and usual
care, and within each pain type. Despite the methodo-
logical differences, and differences for some trials in
choice of primary outcome measure and/or primary end
point, the authors’ findings are similar.
The instruments used to measure health outcomes

differed between trials. Standardisation and mapping

Table 5 IPD NMA results for models (1), (3) and (4), EQ-5D preference score endpoint

IPD NMA results: EQ-5D
preference scores endpointa

Model 1, ANCOVA, change in
EQ-5D scores, adjusted for
baseline

Model 3, change in EQ-5D
scores, without baseline
adjustment

Model 4, follow-up EQ-5D
score, without baseline
adjustment

Median MCMC posterior
sample (95 % CrI)

Median MCMC posterior
sample (95 % CrI)

Median MCMC posterior
sample (95 % CrI)

Relative treatment
effects

Osteoarthritis of the knee SHAM vs UC 0.057 (0.013, 0.095) 0.077 (0.033, 0.118) 0.051 (0.008, 0.094)

ACU vs UC 0.079 (0.042, 0.114) 0.093 (0.054, 0.129) 0.074 (0.035, 0.113)

ACU vs SHAM 0.022 (-0.014, 0.060) 0.016 (-0.022, 0.054) 0.023 (-0.014, 0.065)

Headache SHAM vs UC 0.052 (0.010, 0.095) 0.044 (0.002, 0.086) 0.052 (0.007, 0.098)

ACU vs UC 0.056 (0.021, 0.092) 0.057 (0.023, 0.090) 0.054 (0.016, 0.092)

ACU vs SHAM 0.004 (-0.035, 0.042) 0.013 (-0.025, 0.051) 0.002 (-0.038, 0.040)

Musculoskeletal SHAM vs UC 0.059 (0.017, 0.101) 0.062 (0.019, 0.104) 0.054 (0.010, 0.099)

ACU vs UC 0.082 (0.047, 0.116) 0.084 (0.048, 0.119) 0.080 (0.044, 0.118)

ACU vs SHAM 0.023 (-0.008, 0.053) 0.022 (-0.011, 0.055) 0.026 (-0.006, 0.056)

Between-study variance 0.001 (0, 0.003) 0.001 (0, 0.003) 0.001 (0, 0.003)

Total residual devianceb 15,850 (15,480; 16,230) 16,990 (16,570; 17,420) 15,370 (15,010; 15,730)

Deviance information criterionc -6,420.4 -69.9 -3,823.7
aUC usual care, SHAM sham acupuncture, ACU acupuncture, Headache group headache, migraine and TTH, Musculoskeletal group neck, shoulder and low back pain,
OAK osteoarthritis of the knee
bCompare to approx. 14,800 observations
cDeviance information criterion (DIC) is a statistical measure of model fit and model comparison. Models should be preferred with smaller DIC
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approaches were used to derive, pain-related outcomes
and EQ-5D, respectively. Analysis of the pain outcome
required development of methods for conducting stan-
dardised mean difference analysis with IPD. Analysis of
the EQ-5D data required an extensive mapping exercise
whereby separate mapping functions were applied to
each study, with choice of mapping dependent on the
available outcome data. Access to IPD in this context
also avoided the use of any assumptions regarding the
distribution of HRQoL instrument scores – thus allow-
ing the observed distributions to be adequately reflected
in the mapped EQ-5D estimates.
This study has a number of limitations. The applicability

of these methods is conditional on the access to IPD. If
IPD is not available or is partially available, other methods
need to be used and limitations stressed. Often a mixture
of IPD and AD is available – anecdotally a 50 % success
rate of obtaining IPD is attained in the academic world,
lower success rates may be achieved elsewhere, where it is
common to have, for instance, only a company’s own RCT
data and not that for competitor interventions. In the
context of continuous outcomes the advantages of access
to IPD are significant and efforts to share data should be
pursued. As access to IPD for all studies in all NMAs is
likely to be unrealistic in the medium-term, it would be
useful to have available a methodology which had the
advantages of the ANCOVA approach but could be used
when only some (or even no) studies in the database were
available in IPD form.
Additionally there are a series of limitations related to

the case study. Firstly, the synthesis of heterogeneous out-
comes relied on imperfect standardisation processes
(which assume that any differences in within trial outcome
variability are due to the use of different instruments) and
mappings which are typically able to explain only a mino-
rity of variation in EQ-5D. The availability of key out-
comes across trials would have reduced these concerns, as
would the collection of generic preference based measures
of HRQoL in all trials. Also, the outcome data closest to
3 months were selected for synthesis. For some trials, the
nearest reported outcome data were at only months 1 or
2. If the effect of acupuncture increases gradually, these
effects may underestimate 3 month outcomes. Further-
more, some of the trials show increased benefits of acu-
puncture over comparators at 12 [94] and 24 months [95]
compared to 3 months. This evidence may be an indica-
tion of the long-term clinical benefits of acupuncture and
has implications for estimating long-term HRQoL and
CE. Collection of trial data for more than 3 months is
therefore warranted together with further work analysing
repeated outcome measurements in a NMA to evaluate
the importance of these effects.
A complete-case analysis was conducted. This approach

to missing data has been thoroughly documented in the

methods literature as not being optimal as it can lead to
bias if observations with missing values systematically
differ from the complete cases and may inflate standard
errors due to the reduction in sample size. Some recent
work has been done in this area [96], although it does not
consider the case where IPD is available. Finally, another
potential issue for future exploration is that the impact
of each pain condition on treatment effects was assumed
to be exchangeable [82]; this assumption could be ex-
plored further by comparing different assumptions over
the inclusion of the interaction effects, or even with the in-
clusion of no interaction effects. In summary, a worthwhile
extension to this work would be to develop a multivariate
ANCOVA modelling framework considering both multiple
endpoints and time points, missing data and which enables
relevant aggregate data to be included, building on recent
work [15, 97–101].

Conclusion
In conclusion, this paper has reiterated the importance of
accessing and analysing IPD and presented methods to fully
exploit the benefits of access to this data in the context of
continuous outcomes. Methods for conducting ANCOVA
IPD NMA of continuous outcomes are presented and dis-
cussed. The methods developed are applicable to contexts
in which endpoints are reposted consistently and to con-
texts in which outcome measures differ across trials. Given
the demonstrable benefits of access to IPD, we suggest that
more effort should be made to share and develop reposito-
ries for data in this format [102].

Endnotes
1Considering stx

t as the standardised value of the pain
measurement p made at the time point t in patients under
treatment tx, it can be demonstrated that (Stx1

t1 − Stx1
t0 )

− (Stx0
t1 − Stx0

t0 ) = (Stx1
t1 − Stx0

t1 ) − (Stx1
t0 − Stx0

t0 ) = ΔSMD
2The selection of the outcome to be mapped was not

at random. Preference was given to generic preference-
based instruments (i.e. SF-12 and SF-36) and, in its
absence, to condition-specific ones (i.e. WOMAC, VAS
pain and CMS), conditional on the existence of a valid
and published algorithm. WOMAC was used in prefe-
rence to VAS pain and CMS as it covers a broader defi-
nition of HRQoL.

3A random effects generalised least squares algorithm
considering dimensions, dimensions squared and interac-
tions from Rowen et al. [71] was used. A multinomial logit
using PCS and MCS summary scores, summary scores
squared and interaction terms from Gray et al. [70] was
used.

4An OLS including total WOMAC score, total WOMAC
squared, age and gender as covariates from Barton et al.
[73] was used. An OLS including VAS pain and VAS pain
squared as covariates from Maund et al. [72] was used.
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5A mapping process involves additional sources of
uncertainty - the uncertainty in the mapping function
regression coefficients and the structure of the mapping
model. These additional sources of uncertainty are not
accounted for in this analysis.
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