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Abstract: The purpose of this study is to acquire mechanistic knowledge of the gastrocnemius muscle-

Achilles tendon complex behaviour during specific movements in humans through mathematical 

modelling. Analysis of this muscle-tendon complex was performed to see if already existing muscle-tendon 

models of other parts of the body could be applied to the leg muscles, especially the gastrocnemius muscle-

Achilles tendon complex, and whether they could adequately characterise its behaviour. Five healthy 

volunteers were asked to take part in experiments where dorsiflexion and plantar flexion of the foot were 

studied. A model of the Achilles tendon-gastrocnemius muscle was developed, incorporating assumptions 

regarding the mechanical properties of the muscle fibres and the tendinous tissue in series. Ultrasound 

images of the volunteers, direct measurements and additional mathematical calculations were used to 

parameterise the model. Ground reaction forces, forces on specific joints and moments and angles for the 

ankle were obtained from a Vicon 3D motion capture system. Model validation was performed from the 

experimental data captured for each volunteer and from reconstruction of the movements of specific 

trajectories of the joints, muscles and tendons involved in those movements.  

Keywords: Mathematical model, Hill-type muscle model, Muscle-tendon complex, Musculoskeletal 

modelling, Joint trajectories, Dorsiflexion, Plantar Flexion, Achilles tendon. 

 

1. INTRODUCTION 

The Achilles tendon is a fibrous tissue that connects the 

plantaris, gastrocnemius (calf) and soleus muscles of the 

lower leg to the calcaneus bone (heel) (Fig. 1). Its starting 

point is at the lower margins of the heads of the calf muscle 

and is located on the surface along almost the entire length of 

the triceps surae muscle (the soleus and gastrocnemius 

muscles) [1, 2].  

 

Fig. 1. The Achilles tendon connects the heel to the calf and 

the soleus muscles of the leg (taken from [3] and used with 

permission of WebMD manager). 

 

The Achilles tendon is the strongest and thickest tendon of the 

leg muscles and is crucial for normal propulsion and gait since 

its main role is to plantar flex the ankle [4]. When the calf 

muscles contract, they apply a force to the Achilles tendon and 

therefore push the foot downwards which results in walking, 

jumping, running, standing on toes, etc. [5]. Like other 

tendons, the Achilles tendon transmits tensile forces from the 

leg to the foot according to the amount of stretch it undergoes. 

Inversion of the heel, as well as plantar flexion, are produced 

by these forces when they pass through the ankle and the 

subtalar joints. Thus, movement in the subtalar joints and the 

ankle is created [6]. The mechanical properties of the Achilles 

tendon allow it to store and transmit elastic strain energy 

during fast locomotion and other movements [7]. That is why 

it is described as an energy-saving mechanism and a spring and 

shock absorber during gait [8]. It has been demonstrated 

through measurements of the mechanical properties of the 

Achilles tendon, that there is a variation in the elastic 

properties and the stiffness of the tendon between individuals 

[9, 10]. 

The Achilles tendon in the literature has been modelled as a 

straight line that begins near the middle of the calf and is 

inserted on the posterior part of the heel, or just as a single 



 

 

     

 

point that is inserted into the middle part of the rear of the 

calcaneus bone. In order to define stress and strain in the 

Achilles tendon and acquire information about its loading 

during motion, mathematical models have been developed and 

experiments using the methods of ultrasound and motion 

capture have been used to directly measure tendon length 

changes during dynamic movements [6, 7, 11-13]. Yet, there 

is vast agreement between all authors that it is a very 

challenging task to model the Achilles tendon correctly due to 

the difficulties bestowed when representing its structure, 

material properties, kinetics and mechanisms.  

In order to help in describing the Achilles tendon and its 

properties, motion capture and imaging were chosen as 

experimental methods in this study to assist in creating the 

actual geometry of the tendon and the muscle as well as re-

enacting the changes in length of the Achilles tendon and the 

gastrocnemius muscle when in movement. Furthermore, the 

combination of the extension of existing foot and muscle 

models and the mathematical constructs of those models 

together with the incorporation of nonlinear spring 

characteristics were used in order to better characterise the 

gastrocnemius muscle-Achilles tendon complex. Previous 

muscle-tendon models that incorporate the gastrocnemius 

muscle usually include the Achilles tendon as a free tendon, 

but do not focus on the tendon properties. The innovation in 

this paper is that the focus of the muscle-tendon model lies on 

the Achilles tendon and its mechanistic behaviour. This is 

introduced in the following sections. 

 

2. MATERIALS AND METHODS 

2.1  Model of the Achilles tendon, the gastrocnemius muscle 

and the human foot  

A two segment model of the human foot and leg was created 

in order to develop a musculoskeletal model of the Achilles 

tendon [14]. As presented in Fig. 2, it is comprised of i) the 

Achilles tendon connecting the heel and the gastrocnemius 

muscle, ii) the gastrocnemius muscle connecting to the 

Achilles tendon and the tibia, iii) the tibia originating from the 

ankle joint and ending at the knee and iv) the foot, that is 

represented by a triangle whose vertices are the heel, the ankle 

joint and the toe [14].  The foot in the literature is represented 

either as a rigid body or as two segments when the toe joint is 

included. For the purpose of the experiments, in this paper, it 

is being represented as rigid.  

The ankle consist of three joints: the ankle joint, the subtalar 

joint, and the inferior tibiofibular joint. The ankle joint 

connecting the tibia (leg bone) to the talus (foot joint) has one 

degree of freedom and the movements produced at this joint 

are dorsiflexion and plantar flexion of the foot. The subtalar 

joint, which occurs at the meeting of the talus and the 

calcaneus, allows the inversion and eversion of the foot but 

plays no role in dorsiflexing or plantarflexing the foot and it 

also has one degree of freedom. Τhe subtalar joint can also 

allow pronation and supination to occur which provides the 

third degree of freedom. Since the ankle joint is the dominant 

one in the foot segment, the subtalar joint was not incorporated 

in this study. Also the Achilles tendon plays part in the 

dorsiflexion and plantarflexion of the foot mostly. That is 

when it mostly shortens or lengthens and that is why these 

movements were selected to be analysed in this paper. 

 

Fig. 2. Two segment model of the foot-leg illustrating the 

connection between the Achilles tendon, the gastrocnemius 

muscle, the heel and the tibia [14]. 

The lengths seen in Fig. 2 define the distances given in Table 

1 and were determined by palpation and surface measurement 

of the legs of volunteers. All lengths were measured in mm, 

while the volunteers were standing still in an upright position 

so that the orientation of each segment would be exactly the 

same as the representation of the coordinate system, i.e. the 

normalised directions of the three axes in global space with 

reference to the force plate [15].   

 

Table 1. Definition of distances 

d1 

(mm) 

the distance between the heel and the ankle joint 

d2 

(mm) 

the distance between the ankle joint and the toe 

d3 

(mm) 

the distance between the heel and the toe 

d4 

(mm) 

the length of the tibia 

d5 

(mm) 

the distance of the ankle from the floor 

lG 

(mm) 

anatomical length of the gastrocnemius muscle 

lAT 

(mm) 

anatomical length of the Achilles tendon 

https://en.wikipedia.org/wiki/Joint
https://en.wikipedia.org/wiki/Subtalar_joint
https://en.wikipedia.org/wiki/Subtalar_joint
https://en.wikipedia.org/wiki/Inferior_tibiofibular_joint


 

 

     

 

2.2  System equations  

Knowledge of the patterns of the forces exerted by the 

gastrocnemius muscle on the Achilles tendon and vice versa is 

necessary in order to study the forces that the Achilles tendon 

transmits from the leg to the foot. Hence, it is crucial to 

calculate these forces indirectly using anthropometric and 

readily available kinematic data. The process by which the 

reaction forces and muscle moments are computed is called 

link-segment modelling [16, 17]. In order to calculate joint 

reaction forces and muscle moments we need to have full 

knowledge of the external forces applied to the joints, a 

kinematic description of the movement and accurate 

anthropometric measurements for each of the volunteers 

participating in the experiments. Using this two segment 

model and inverse dynamics it should be possible to predict 

any joint and tendon reactions needed [18]. 

Newton’s second and third laws were used to derive the system 

equations for the musculoskeletal model of the Achilles tendon 

shown in Figs. 2, 3, 4 and 5. Figs. 2 and 3 portray the ankle 

joint dynamics when someone is standing still in an upright 

position, Fig. 4 when dorsiflexing their foot and Fig. 5 when 

plantar flexing their foot. As seen in Fig. 3 the foot is 

represented by a triangle whose vertices are the heel (H), the 

ankle joint (A) and the toe (T). All other references to the 

triangle in this paper will be referred to as triangle HTA. 

 

Fig. 3. Free body diagram of the foot segment during weight 

bearing in static position [14]. 

 

The equations describing a static trial (Fig. 3) are given by:  

 

210         0x xx ATxF F F F           (1)

 

1 2 00y y y aATyF F F F m g       (2)

1 1 1 1 
aankle x x y y a m g

ATx ATx ATy ATy

M F d F d m gd

F d F d



 

 
                                       (3)                              

where the definition of the variables included in these 

equations are given in Table 2. The acceleration along both the 

x and y axes of the segment is 0 m/s2 since during a static trial 

the volunteer does not move.  

 

Table 2. Definition of variables for the static trial 

x 
subscript that represents the horizontal plane 

of action 

y 
subscript that represents the vertical plane of 

action 

F (N) 
force applied to the ankle joint or the heel 

depending on the subscripts 

1 
subscript that signifies the external ground 

reaction force 

2 
subscript that denotes the force acting on the 

foot at the ankle joint because of the tibia 

AT 
subscript that symbolises the Achilles tendon 

force acting on the foot at the heel 

a 
Subscript that represents the centre of the 

mass of the foot 

mag (N) force due to the mass of the foot under gravity 

Mankle  

(N mm) 
moment at the ankle joint 

d (mm) 

distance of the ankle joint from the heel, the 

Achilles tendon and the centre of mass of the 

foot depending on the subscript 

m (kg) mass of the foot segment 

 

The equations describing the dynamic trials of dorsiflexion 

and plantar flexion as seen in Fig.4 and 5 respectively are listed 

below. 

 

1 2 x x x x ATx xF ma F F F ma                            (4) 

 

1 2y y y y ATy a yF ma F F F m g ma                  (5) 

1 1 1 1

0

 
aankle x x y y a m g

ATx ATx ATy ATy

M F d F d m gd

IF d F d 

  

 
                           (6) 

where the definition of the variables included in these 

equations are given in Table 3. The acceleration along the x 

and y axes of the segment is no longer 0 m/s2 since the 

volunteer is moving. In Fig. 4 and 5 θ1 is the angle between 

sides HT and HA of the triangle HTA and φ is the angle 

between the Achilles tendon and the sole of the foot. The force 

mag and its distance 
am gd  from the ankle joint found in 

equations (2), (3), (5) and (6) are calculated using the 

anthropometric data. This table provides the segment mass as 

a fraction of the body mass and the centres of mass as fractions 



 

 

     

 

of the lengths of the segments. The angles in the triangle HTA 

and that of the Achilles tendon shown in Figs. 3, 4 and 5, are 

estimated from the coordinates of the markers placed on the 

ankle joint, the heel, the toe and the Achilles tendon during the 

experiments conducted in the University of Warwick Gait 

Laboratory. Also the moment of inertia about the ankle joint I0 

found in equation (6) is calculated from the anthropometric 

data in Table 4.1 from Winter. All calculations are based on 

the examples given in Winter on how to evaluate all the 

unknowns in equations (1)-(6) from experimental data taken 

from a motion capture system, such as Nexus as used in the 

experiments [16].  

 

Table 3. Definition of variables for a dynamic trial 

x 
subscript that represents the horizontal plane 

of action 

y 
subscript that represents the vertical plane of 

action 

F (N) 
force applied to the ankle joint or the heel 

depending on the subscripts 

1 

subscript that signifies the distance between 

the level that F1x and F1y is applied and the 

ankle joint 

2 

subscript that denotes the distance between the 

level that F2x and F2y is applied and the ankle 

joint 

AT 

subscript that symbolises either the Achilles 

tendon force acting on the foot at the heel or 

the distance between the level that FATx and 

FATy is applied and the ankle joint depending 

on the superscript  

mag (N) force due to the mass of the foot under gravity 

xa , ya  

(mm/s2) 

acceleration of the foot segment in the 

horizontal and vertical plane of action 

respectively 


(rad/s2) 

angular acceleration of the foot segment 

Mankle  

(N mm) 
moment at the ankle joint 

d (mm) 

distance of the ankle joint from the heel and 

the Achilles tendon depending on the 

subscript 

am gd

(mm) 

distance calculated from the coordinates of the 

markers and table 4.1 from Winter [16] 

I0  

(kg mm2) 

moment of inertia about the ankle joint 

calculated from the coordinates of the markers 

and table 4.1 from Winter [16] 

m (kg) mass of the foot segment 

 

 

Fig. 4. Dorsiflexion of the foot [14]. 

 

 

 

Fig. 5. Plantar flexion of the foot [14]. 

 

Using kinetic and kinematic Gait Laboratory data, equations 

(1)-(3) for the static trials and equations (4)-(6) for the 

dynamic trials, i.e. dorsiflexion and plantar flexion, are solved 

numerically and yield the Achilles tendon force FAT that is then 

substituted into the muscle-tendon model in section 2.6 in 



 

 

     

 

order to estimate the parameters of the model. Also 

displacements of the Achilles tendon and the gastrocnemius 

muscle for each movement are calculated from the trajectories 

of the markers and are coupled with the muscle-tendon 

displacements in section 2.6.  

2.3  Muscles  

Muscles perform four important functions for the body: they 

generate heat, stabilise joints, maintain posture of the body and 

produce movements. Skeletal muscles have natural resting 

lengths [16, 19-21]. Depending on internal and external forces 

applied to the skeleton, muscles can lengthen, shorten or 

remain constant. The part of the muscle that shortens and 

lengthens and that is responsible for generating force and 

tension in the muscle is the contractile element. The muscle 

components that are responsible for producing a contractile 

force are the actin and myosin filaments of the myofibrils 

within the muscle fibre cells. However, it is not possible to 

measure the dynamic properties of these components in vivo 

[22]. That is why parameter estimation techniques are used to 

obtain parameter values for our mathematical and mechanical 

models using the experimental data collected. 

2.4 Hill-type Muscle Models 

When describing and creating a muscle-tendon model, Hill-

type muscle models are commonly used. In the early nineteen 

hundreds Hill developed a simple but widely accepted model 

of muscle function suitable for defining the basic mechanics of 

the muscles and for modelling specific beaviours of muscles 

during voluntary human movements [21, 23]. Since this early 

work, progress had been made towards the understanding of 

muscular structure and its function and new Hill-type muscle 

models have been created [24, 25].  

In all Hill-type muscle models there is an active element, the 

contractile element (CE). The amount of the force the 

contractile element produces is determined by the mechanical 

characteristics of the element and can be represented by four 

relationships: stimulation-activation, force-activation, force-

velocity and force-length [26]. The contractile element is 

enclosed by a passive element, a connective tissue that behaves 

as an elastic band and is called the parallel elastic component 

(PEC) [16]. The summation of the forces from both elements 

gives us the total muscle force-length characteristics [16, 26]. 

Since the early work by Hill, knowledge has grown on the 

series elastic component (SEC) that represents all the 

connective tissue in series with the CE including the tendon 

which in our case is the Achilles tendon. It is believed that 

these SECs store large amounts of energy as muscles stretch 

before an explosive shortening. In order to determine the 

force-length characteristics of the SEC, experiments that 

require dynamic changes of force or length on an isolated 

muscle are needed [16]. Thus in our analysis we studied the 

isometric (constant muscle length) and isotonic (constant 

force) contractions of the gastrocnemius muscle-Achilles 

tendon complex. 

 

 

2.5 Gastrocnemius muscle-Achilles tendon complex analysis  

A range of mechanical models of muscles - Crowe (1970)[27], 

Gottlieb and Agarwal (1971)[28], Winter (1995)[16], Haeufle 

(2014)[24] - exist that describe and calculate the tension of a 

muscle depending on different inputs. All of these use a 

modified Hill-type muscle model with different connections 

between the CE, the PEC and the SEC elements. Generally, 

Hill-type muscle models have as an input, muscle-tendon 

lengths, muscle-tendon contraction velocities or neural muscle 

stimulations and as an output a force that is usually applied 

between the insertion points and the origins of the muscle or 

tendon analysed. By simulating different movements of the 

muscles with these models, one can predict the passive and 

active muscle forces.  

 

Fig. 6. Analysis of movement of the Modified Hill-type muscle 

model representing the gastrocnemius muscle-Achilles tendon 

complex. 

As seen in Fig. 6, a modified Hill-type muscle model has been 

used to investigate the mechanical characteristics of the 

Achilles tendon and the gastrocnemius muscle. The 

gastrocnemius muscle is represented by: i) the contractile 

element (CE) that represents the force source when the muscle 

is activated, ii) the parallel damping element that is described 

by a damper where b (Ns/m) is the damping coefficient and 

denotes the ability of the muscle to resist its shortening or 

lengthening depending on the movement studied, and iii) the 

parallel elastic element (PEC) that is defined by the spring 

numbered as 2 with stiffness k2 (N/m) that shows the ability of 

the gastrocnemius muscle to return to its natural resting length. 

A series elastic element k1 shows the series elastic component 

(SEC) of the model and represents the behaviour of the 

Achilles tendon in the complex [7, 16, 22-24, 26, 29]. All other 

connective tissue was ignored since the Achilles tendon is the 

dominant tendon connecting the heel to the gastrocnemius 

muscle and the one that can be studied more accurately with 

the methods used in the associated experiments. The damping 

characteristic of the SEC is considered to be relatively small 

and does not influence the general behaviour of the model; that 

is why it is ignored in this study.  

 

 



 

 

     

 

2.6 Response of the Active Muscle 

The transfer function of the Hill-type muscle model seen in 

Fig. 6 can be used to find the active muscle response. A similar 

approach has been investigated for the muscles of the upper 

limb [26]. As seen in Fig. 6 the externally measured force F 

can be defined by the force of the contractile element FCE that 

is changed by the force of the damping element Fb and that of 

the parallel elastic element Fk. The total force F is transferred 

through the series elastic element that represents the Achilles 

tendon whose force is denoted by FAT, resulting in the 

following two equilibrium equations: 

CE b kF F F F                                                            (7) 

ATF F .                                                                           (8) 

Analysing the movement of the muscle-tendon complex in Fig. 

6 gives the following equations where (9) and (10) are the 

system specific forms of (7) and (8) respectively: 

2
2 2CE

dx
F F b k x

dt
                                                (9) 

1 2 1( )F k x x                                                                            (10) 

 
where α is a positive integer (α =1,2 or 3). If the spring element 

describing the Achilles tendon is considered to be linear then 

α equals 1 and if it is considered nonlinear then α equals 2 or 

3. As mentioned in section 2.2 FAT is calculated from 

experimental data and is substituted into the muscle-tendon 

model. For a static trial equations (1)-(3), and for a dynamic 

trial equations (4)-(6) are used to calculate the Achilles tendon 

force FAT. F1x and F1y that compute the ground reaction force, 

F2x and F2y that represent the force on the ankle joint, ax and 

ay that give the acceleration of the foot segment and Mankle that 

gives the moment at the ankle joint are provided directly from 

the Vicon Nexus system. All distances d1x, d1y, d2x, d2y, dATx, 

and dATy that are explained in Tables 2 and 3 are calculated 

from the coordinates of the markers placed on the feet of the 

volunteer provided by the Vicon Nexus system. As mentioned 

in section 2.2 mag and 
am gd  are calculated from Winter [16]. 

So the only unknown that is the force of the Achilles tendon is 

calculated. So the full set of the model equations is given by 

equations (1)-(3) and (4)-(6) with coupling of (9)-(10). 

Parameter estimation was performed in the time domain and is 

described in section 4.1. In order to validate the model 

qualitatively Laplace transforms of the model equations were 

used as described in the following part of this section. 

 

Since the Achilles tendon is the dominant tendon that transmits 

the force from the heel (and the foot eventually) to the 

gastrocnemius muscle and vice versa and since no other 

external forces are applied to the muscle-tendon model, F is 

assumed to be equal to FAT in equations (9) and (10). Initially 

we assume that the spring is linear (α=1). The displacement of 

the gastrocnemius muscle is denoted by x2 and the 

displacement of the muscle-tendon complex is x1 and is 

measured from the insertion point of the Achilles tendon to the 

heel which is the right end of spring 1. As mentioned 

previously, muscles and tendons have natural resting lengths 

when no force or stimulation is acting upon them. The natural 

lengths of the muscle and the Achilles tendon are denoted by 

lGM0 and lAT0 respectively. When in movement the length of the 

muscle and the tendon change and become lGM=lGM0+x2 and 

lAT= lAT0+x1-x2 respectively. Displacements x1 and x2 (in mm) 

are calculated from the displacements measured from Gait 

Laboratory experiments. In more detail, lGM, lGM0, lAT and lAT0 

(in mm) are known from the displacements captured in the 

experiments and computed from equations (1)-(6).  

Assuming zero initial conditions: 

1 2(0) (0) 0x x  .                                                               (11) 

Using equation (10) to replace x2 in equation (9) and taking 

Laplace transforms gives:  

1 2
2 1

1

( ) ( ) ( ) ( )CE AT

k k bs
F s F s k bs X s

k

 
   .   (12) 

Equation (12) can be rearranged into two different forms. One 

is the equation that describes the external muscle force/tension 

FAT as a function of the force produced by the active contractile 

element. Solving (12) for FAT gives: 

1 1 2
1

1 2 1 2

( )
( ) ( ) ( )AT CE

k k k bs
F s F s X s

k k bs k k bs


 

   
.    (13) 

The other is the expression of displacement X1 in terms of the 

external force and the force from the contractile element of the 

active muscle. Solving (12) for X1 gives: 

1 2
1

2 1 2

( )
( ) ( )

( ) ( )

CE
AT

F s k k bs
X s F s

k bs k k bs

 
 

 
.                        (14) 

In order to validate the model qualitatively the following 

scenarios were investigated. In an isometric contraction, the 

muscle contracts without shortening considerably since both 

of its ends are strictly fixed so that it cannot shorten or 

lengthen. When the muscle is stimulated it contracts 

isometrically and the resulting external force can be measured 

experimentally [30, 31]. This scenario can be investigated 

using equation (13) where the second term is excluded, since 

no change in length, at least externally, is present. This means 

that x1 equals zero but x2 can be nonzero. Thus, (13) becomes: 

1

1 2

( ) ( )AT CE

k
F s F s

k k bs


 
.                                           (15) 

Assuming a maximum tetanic stimulation, where the muscle 

has been maximally stimulated and remains that way for some 

time, the input can be represented by a step function with 

magnitude of FCE. Using the Laplace transform of the step 

function, equation (15) becomes:  

1

1 2

1
( )AT CE

k
F s F

k k bs s


 
.                                               (16) 

                                                           

Taking the inverse Laplace transforms of (16) yields: 

 



 

 

     

 

1 2

1

1 2

( ) (1 e )

k k
t

CE b
AT

F k
F t

k k




 


.                                            (17) 

Equation (17) takes the form of a step response of a first order 

linear system where the time constant is b/(k1+k2) and the gain 

of the system is k1/(k1+k2). Nominal random values were used 

in Matlab 2016a to create a plot for equation (17) shown in 

Fig. 7. It resembles the build-up of tension measured in the 

isometric experiment of a tetanic stimulation of a muscle 

(Figure 4.12) in Freivalds [26]. Note that the force/tension 

(FCE) of the contractile element when the muscle is activated, 

is amended by the combination of the parallel and series elastic 

elements that reduce its value. If the values of k1 and k2 are 

relatively equal, the force reduces to almost 50%. However, 

the values are not that close in the actual muscle, so the 

reduction is relatively small. 

 

 

 
 

Fig. 7. Representation of the calculated force/tension over time 

that builds up when using the modified Hill-type muscle 

model. 

 

Considering an isotonic contraction, tension develops to a 

point and then remains constant while the muscle changes its 

length. There are two types of isotonic contractions. The 

concentric contraction where the muscle shortens when its 

tension is greater than the force opposing it and the eccentric 

contraction, where the muscle elongates, lengthens when the 

force is greater than the muscle tension [26, 31, 32]. In the 

muscle-tendon complex studied, during isotonic contractions, 

the force exerted on the tendon is constant.  

 

During isotonic contraction, the contractile element shortens, 

stretching the series elastic element before it develops tension 

so, for this case, its force FCE is considered to be constant. For 

a purely passive movement FCE is zero, hence the first term of 

equation (14) can be excluded yielding: 

1 2
1

1 2

( ) ( )
( )

AT

k k bs
X s F s

k k bs

 
 


.                                          (18) 

 

Using a unit step input to describe the muscle-tendon tension, 

equation (18) transforms to: 
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Taking inverse Laplace transforms of (19) yields: 
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Nominal values were used in Matlab 2016a to simulate 

equation (20) shown in Fig. 8. In this scenario where a unit 

step input of force is applied and the contractile element 

stretches the series elastic element before it develops tension 

of its own. The damping element does not react initially.  Still, 

the series elastic spring stretches and a step jump of movement 

is observed where the displacement of the muscle-tendon 

complex does not start from zero. Subsequently, the muscle 

continues to load and the damping element begins to yield until 

the two elastic springs balance out the force and the movement 

stabilises. The plot resembles the figure of the measured creep 

(the change in the displacement over time) in the isotonic 

experiment of the upper limb model (Figure 4.15) in Freivalds 

[26]. 

 

 
 

Fig. 8. Calculated displacement of the Hill-type muscle model 

versus time. 

  

2.7  Structural Identifiability analysis of the gastrocnemius 

muscle-Achilles tendon model 

Structural identifiability analysis should be performed when 

developing mathematical models, since it assists in 

determining whether parameters in a mathematical model can 

be uniquely identified or otherwise from the available 

observations. Parameters can be either globally identifiable, 

locally identifiable, or unidentifiable. Globally identifiable 

parameters are those that can be uniquely identified, locally 

identifiable are those that have a finite number of solutions and 

unidentifiable are those that have an infinite number of 

solutions.  

Structural identifiability is defined as follows. Let the generic 

parameter vector p belong to a feasible parameter space P such 

that p P. Let y(t, p) be the output function from the state-



 

 

     

 

space model. Further, consider a parameter vector  �̅� where y(t, 

p) = y(t, �̅�) for all t. If this equality, in a neighbourhood NP 

of p, implies that p = �̅� then the model is structurally locally 

identifiable. If N = P then the model is globally structurally 

identifiable. For a structurally unidentifiable parameter, pi in 

p, every neighbourhood N around P has a parameter vector  �̅� 

where pi �̅�i that gives rise to identical input-output relations. 

Before commencing the parameter estimation, structural 

identifiability analysis of the model should be taken into 

account as part of the experimental design process. In order to 

obtain unique parameter estimates when real data are available 

from experiments, a globally or at least locally identifiable 

model has to be defined. If the model is proven to be 

unidentifiable, then re-parameterisation techniques can be 

used to possibly give a locally identifiable model [32, 33]. The 

data used in the analysis are assumed to be perfect, i.e. 

continuous and noise free.  

Equations (9) and (10) were studied in order to determine the 

structural identifiability of the parameters of the muscle-

tendon model. For observations of x1, x2 and FCE and for the 

linear case where a=1, the model parameters b, k1, and k2 are 

clearly structurally identifiable (by comparison of y(t, p) = 

y(t, �̅�). 

 

3.  EXPERIMENTAL METHODOLOGY 

In order to validate the mathematical approach that was 

analysed in the previous sections, experiments were conducted 

at UHCW and the University of Warwick Gait Laboratory. 

3.1  Imaging 

In this study, ultrasound scans were provided by the University 

Hospitals of Coventry and Warwickshire (UHCW) in order to 

measure the changes in length of the Achilles tendon in 

dorsiflexion and plantar flexion of the foot segment so as to 

design and validate the gastrocnemius muscle-Achilles tendon 

complex [34, 35]. Ultrasound sessions were performed at the 

UHCW with volunteers from the University of Warwick. A 

sonographer scanned the Achilles tendons on both feet of the 

volunteers. He first scanned the volunteers lying still on a bed 

to measure the natural resting length, also named as anatomical 

length, of the Achilles tendon. Then the volunteers were asked 

to dorsiflex and plantar flex their feet to the maximum of their 

abilities and the total length of the Achilles tendon was 

scanned. All images obtained from UHCW and used for this 

study comply with NHS ethics approval for the collection and 

use of such images. 

3.2  Participants 

Five healthy volunteers from the University of Warwick took 

part in the experiments, after giving written informed consent. 

Two were male and three female, between the ages of 25 to 35 

years, with body mass 81±10kg and body height 1.71±0.10m. 

None of them had experienced any Achilles tendon injuries or 

ruptures in the past or had any Achilles tendon pathologies. 

There were no other requirements of the participants apart 

from their ability to walk around a room for up to 10 minutes 

unaided. Ethical approval complying with the research code of 

practice of the University of Warwick had been granted for all 

the above mentioned Gait Laboratory sessions and Ultrasound 

sessions at UHCW by the University’s Biomedical and 

Scientific Research Ethics Committee (BSREC full approval 

Simulation of the Achilles tendon REGO-2013-548AM01). 

3.3  Experimental methodology  

In order to acquire measurements for the parameters 

describing the muscle-tendon model and to validate the results, 

plantar flexion, dorsiflexion and human gait were studied. Gait 

analysis in general helps us study different kinds of movement 

patterns as well as the forces involved in producing those 

movements. Gait analysis is considered reliable since it uses 

computers and videography to capture, observe and interpret 

the different kinds of movements [36, 37]. 

The volunteers that participated in the Gait Laboratory 

sessions, the same as those that participated in the ultrasound 

sessions, were asked to stand still on a force plate, to dorsiflex 

and plantar flex their feet which means to flex and extend their 

feet at the ankle respectively.  

The origin and insertion of the gastrocnemius muscle and the 

Achilles tendon were determined by palpating the legs of the 

participants before marker placement commenced and by 

using information from the ultrasound sessions that were 

performed on each volunteer before the Gait Laboratory 

sessions took place. The natural resting length of the Achilles 

tendon lAT0 as well as the change in its length during plantar 

flexion and dorsiflexion were measured directly from the 

ultrasound images obtained through the experiments at the 

UHCW. The origin and insertion point of the Achilles tendon 

were measured and marked for each volunteer in order to place 

the markers at the exact same positions when the same 

movements of resting, dorsiflexion and plantar flexion were 

studied in the Gait Laboratory. Movement of the skin at the 

site of the insertion of the Achilles tendon was found. The 

amplitude between the tendon insertion and the skin marker 

was measured in the direction of the tendon, and the average 

amplitude of skin movement across the range of movement 

was 5mm with a standard deviation of 2mm.  

The natural resting length of the gastrocnemius muscle lG0 was 

determined by surface measurement and palpation of the legs 

of the subjects before placement of the markers. These lengths 

were then compared with those calculated from the 

coordinates of the markers placed at the origins of the Achilles 

tendon and the gastrocnemius muscle respectively (Vicon 

Nexus analysis). All lengths were measured in mm with 

measuring tape before the marker placement and compared 

with the calculated ones from the system after the marker 

placement. Since the gastrocnemius muscle is a curved 

surface, measuring its length with a measuring tape gives just 

an approximation that can be checked through ultrasound tests. 

The lengths of the gastrocnemius muscle for the mathematical 

model in section 2.2 and the muscle-tendon model in section 

2.6 were calculated using data in Table 4.3 from Winter [16]. 

This table gives the mass, fibre length, physiologic cross-

sectional area and pennation angle of some muscles of the 

human body including the gastrocnemius. 



 

 

     

 

Vicon’s three-dimensional (3D) biomechanical motion 

capture system was used to determine kinetics and kinematics 

of the foot in order to solve equations (1)-(6) for the Achilles 

tendon force and to solve equations (9)-(10) for the parameters 

b, k1, and k2. 

 

4.  RESULTS 

4.1  Time Domain Model and Parameter estimation 

Parameter estimation was performed in the time domain for 

each volunteer in order to acquire a set of fitted values for the 

parameters b, k1, and k2. Measured data of ankle and heel angle 

trajectories and Achilles tendon trajectories as well as 

gastrocnemius muscle trajectories were obtained from the 

experiments and were used to investigate the best fit for the 

parameters of the model, while simulated data were obtained 

from inverse dynamics created from equations (1)-(6) to 

determine model validation. As mentioned in 2.6 the values of 

x2, (x2-x1) and dx2/dt were calculated from the experimental 

data for each volunteer. The derivative term, dx2/dt, was 

determined using the central difference formula: 

2 2 1 2 1( ) ( ) ( )

2

i i idx t x t x t

dt t

 



                                                      (21) 

where ti (i=1,2,…,N) are the sample times for a fixed time step 

Δt=ti+1-ti [16].  

The curve fitting toolbox in Matlab 2016a was used in order to 

fit our experimental and simulated data. Equation (9) was used 

in order to find values for the parameters b and k2 and equation 

(10) (for a=1) was used in order to find values for the 

parameter k1. Custom equations were created to see which was 

the best fit for the dorsiflexion and plantarflexion experiments. 

The parameters b, k1, and k2 were constrained to be positive 

numbers and their confidence intervals are represented by the 

numbers in brackets under their values in Tables 4 and 5. A 

step input was found to appropriately describe the form of the 

force of the contractile element when the volunteers were 

dorsiflexing their feet. The residuals appeared random with no 

apparent pattern and the Root Mean Square Error (RMSE) for 

the best fit for each volunteer is presented in Table 4. Plantar 

flexion was found to be better defined by an impulsive input. 

The residuals appeared random with no apparent pattern and 

the RMSE for the best fit for each volunteer is presented in 

Table 5. All parameter values have a 95% confidence bound. 

As seen in Tables 4 and 5 the values of the parameters b, k1, 

and k2 are different for each subject for dorsiflexion and plantar 

flexion of the foot. They have a similar orders of magnitude, 

but their values have differences that lie in the ranges of i) 

(0.005-0.015) (Ns/mm) for the damper element b, ii) (0.006-

0.017) (N/mm) for the spring element of the Achilles tendon 

k1 and iii) (0.06-0.4) (N/mm) for the spring element of the 

gastrocnemius muscle k2. In plantarflexion, the primary 

muscles acting are the gastrocnemius, the soleus and plantaris 

muscles where the gastrocnemius is the most dominant and the 

only one that crosses both the ankle and the knee joint. In 

dorsiflexion, the most dominant muscle responsible for lifting 

the foot is the tibialis anterior that is located in the anterior part 

of the foot and is not connected with the Achilles tendon or the 

gastrocnemius or soleus muscle. This could be a reason for the 

differences in the values of the parameters b, k1, and k2 in 

dorsiflexion and plantar flexion.  

 

 

Table 4. Values for the parameters b, k1, and k2 and their 

confidence intervals for each volunteer for dorsiflexion 

Volunteer b (Ns/mm) k2 (N/mm) RMSE 

1 
0.0645 

(0.057, 0.073) 

0.099 

(0.088, 0.111) 
0.5245 

2 

0.0261 

 (0.0214, 

0.031) 

0.1322 

(0.101, 0.125) 
0.3059 

3 
0.0095  

(0.0027, 0.016) 

0.0543 

(0.049, 0.059) 
0.2284 

4 
0.0131 

(0.0018, 0.024) 

0.006 

(0.0017,0.069) 
0.1845 

5 
0.113 

(0.1016, 0.124) 

0.3206 

(0.313, 0.328) 
0.7257 

Volunteer k1 (N/mm) RMSE 

1 
0.0893 

(0.0881, 0.0905) 0.7203 

2 
0.1513   

(0.1503, 0.1523) 
0.3274 

3 
0.0644  

(0.0642, 0.0647) 
0.3093 

4 
0.1258  

(0.1227, 0.1289) 
1.234 

5 
0.1007 

(0.0981, 0.1033) 
1.402 

 

In addition, a difference in the values of the parameters across 

the volunteers is observed. This is expected since the 

volunteers have different heights, body masses and different 

backgrounds e.g. in sports training. Volunteer 3 with the 

lowest values of the spring element k1 and the lowest values of 

the damper element b in both dorsiflexion and plantar flexion 

had previously attended years of dance classes. Volunteers 1 

and 5 that had the greatest body mass, appear to have the 

highest values of b in both dorsiflexion and plantarflexion 

which means that their gastrocnemius muscles have an ability 

to resist more when shortening or lengthening. However, since 

the sample of the volunteers is small, it is not possible to draw 

more generic conclusions for a general population.  



 

 

     

 

 

Table 5. Values for the parameters b, k1, and k2 and their 

confidence intervals for each volunteer for plantarflexion 

Volunteer b (Ns/mm) k2 (N/mm) RMSE 

1 
0.0494 

(0.044, 0.0544) 

0.1742  

(0.1722, 0.1762) 
0.5466 

2 
0.0149  

(0.011, 0.0185) 

0.2477 

(0.2466, 0.2488) 
0.1559 

3 
0.0127 

(0.029, 0.0037) 

0.1229  

(0.1209, 0.1249) 
0.3505 

4 
0.0207 

(0.0008, 0.033) 

0.4354 

(0.4343, 0.4364) 
0.136 

5 
0.1178 

(0.1079, 0.127) 

0.1751 

(0.1701, 0.1801) 
0.5235 

Volunteer k1 (N/mm) RMSE 

1 
0.1067 

(0.106, 0.107) 
0.2793 

2 
0.1623  

(0.1613, 0.1633) 
0.2542 

3 
0.0692  

(0.06889, 0.0694) 
0.1536 

4 
0.1536  

(0.1498, 0.1573) 
1.319 

5 
0.0943 

(0.09233, 0.09626) 
0.852 

 

Following the parameter estimation, the values of the 

parameters b, k1, and k2 were used to plot the simulated data of 

the force for the Achilles tendon over time along with the 

experimental data of the Achilles tendon within the model (6)-

(10) over time for each volunteer. An example plot of the 

simulated and experimental responses for volunteer 1 are 

given in Fig. 9. 

The residuals for the simulated and measured Achilles tendon 

force data were also calculated and plotted for each volunteer. 

These appeared random in all cases with no apparent pattern. 

An example is shown in Fig. 10 where the residuals of the 

force data for the dorsiflexion of volunteer 1 are plotted for the 

whole movement. 

 

 

 

 

Fig. 9. Simulated and experimental data of the force of the 

Achilles tendon for volunteer 1 plotted over time. 

 

 

Fig. 10. Plotted residuals of the Achilles tendon force data for 

dorsiflexion for volunteer 1. The discrete points show the 

duration of the whole movement. 

In addition, the displacements of the Achilles tendon over time 

were plotted. As seen in Figs. 11(a), (b), (c), (d) and (e) the 

simulated responses approach the measured data for each 

volunteer. The curve for displacement over time has a similar 

form for each volunteer when they are dorsiflexing their foot. 

Volunteers with similar heights as seen in Fig. 11 (a) and (e) 

have similar shapes of curves. The volunteer with the strongest 

background in sports/fitness training attains the highest 

maximum value of Achilles tendon displacement as seen in 

Fig. 11 (d). This was volunteer 4, who had the lowest value of 

parameter k2 in dorsiflexion. A spring with a higher spring 

value needs more force to get the same amount of stretch than 

for a spring with lower spring value. Since the gastrocnemius 

muscle of volunteer 4 can shorten more with the same amount 

of force, his Achilles tendon can lengthen more and thus reach 

a maximum value of displacement that is larger than others. 

 



 

 

     

 

 

 

 

 

 

 

Fig. 11(a), (b), (c), (d), (e). Experimental and simulated data 

of the displacement of the Achilles tendon over time fitting the 

measured trajectories of the displacement over time of the 

Achilles tendon when dorsiflexion occurs for different 

volunteers. 

 

4.2  Nonlinearity 

As mentioned in section 2.6, nonlinear spring elements 

describing the Achilles tendon were also considered where α 

in equation (10) equals 2 and 3. These two cases were 

investigated to see if the nonlinear spring can describe the 

movement of the muscle-tendon complex in a more 

appropriate way. The solution of the system of equations (9) 

and (10) was studied where α in equation (10) equals 2: 

2
2 2AT CE

dx
F F b k x

dt
    and

2

1 2 1( )ATF k x x  . 

Solving the system of equations symbolically in Matlab 2016a 

gives: 
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                            (23) 

where x2 and x1 are the displacements described in section 2.6 

and seen in Fig. 6. In order to examine if these equations can 

explain any of the movements studied, different values for 

parameters b, k1, and k2 were applied and values for the forces 

FAT and FCE were used according to the data obtained from the 

experiments conducted. Fig. 12 illustrates plantar flexion of 

the foot of one volunteer, where the different curves are 

explained in the legend of the figure. As seen from the plot, 

the simulated data approach the experimental data when x1= 

x2-√(𝑘1𝐹𝐴𝑇)/𝑘1 . 



 

 

     

 

 

Fig. 12. Displacement over time when volunteer is plantar 

flexing foot. The blue line denotes the displacement x2 over 

time. The magenta line symbolises the experimental data of the 

displacement of the muscle-tendon complex over time. The red 

line represents the simulated displacement of the complex 

when x1= x2+√(𝑘1𝐹𝐴𝑇)/𝑘1 over time and the green line 

presents the simulated displacement of the complex when x1= 

x2-√(𝑘1𝐹𝐴𝑇)/𝑘1  over time. 

 

The solution of the following system of equations was also 

studied where a=3 in equation (10): 

2
2 2AT CE

dx
F F b k x

dt
   and

3 2 2 3

1 2 1 2 1 1 2 1 1 13 3ATF k x k x x k x x k x    . 

The analytical solutions were generated symbolically in 

Matlab 2016a and gave equation (24) as the solution of the 

ordinary differential equation: 
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k


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                                     (24) 

and one real root and a complex conjugate pair of roots for the 

cubic equation. However, the mathematical solutions of the 

cubic equation for x1 that are complex numbers cannot 

represent a displacement of a length. So further investigation 

was carried out only on the real root that is shown in (25): 

1 2x x C  , where 

3
3 1/31 2
2

1

( )ATk x F
C x

k

 
             (25) 

As described above for the quadratic equation, different values 

for parameters b, k1, and k2 were applied and values for the 

forces FAT and FCE were given according to the data obtained 

from the experiments conducted. Fig. 13 illustrates plantar 

flexion of the foot of one volunteer. The simulated data 

approach the experimental but the two lines do not coincide as 

well as those in Fig. 12.  

 

Fig. 13. Displacement over time when volunteer is plantar 

flexing foot. The blue line denotes the displacement x2 over 

time. The magenta line symbolises the experimental data of the 

displacement of the muscle-tendon complex over time. The red 

line represents the simulated displacement of the complex 

when x1=x2+C. 

 

5. DISCUSSION  

The purpose of this study was to obtain more insight into how 

the muscle-tendon complex of the human gastrocnemius 

muscle-Achilles tendon behaves during plantar flexion, 

dorsiflexion and its resting position. Subsequently, a model of 

the complex was developed and the patterns of the movements 

were determined through experiments conducted in the 

University of Warwick Gait Laboratory and at UHCW. 

Assumptions were made concerning the values of the damping 

and spring elements of the muscle and the tendon. However, 

these values lie within measured values found in the literature, 

where the dimensions and elastic behaviour of tendinous tissue 

in series with the muscle fibres were studied. The values of the 

spring constants were assumed to lie between the ranges of 0-

1000 N/m and the values of the damping factors were 

considered to lie between the ranges of 0-100Ns/m [9]. The 

geometry and architecture of the gastrocnemius muscle were 

determined through the ultrasounds provided by the UHCW 

and palpation of the legs of the volunteers before marker 

placement commenced, by feeling the origin and the end point 

of the muscle superficially. Since the soleus muscle lies 

underneath the Achilles tendon and cannot be felt correctly by 

palpation, it was omitted in this study. This will be considered 

in future studies.  

Structural identifiability analysis of the modified Hill-type 

muscle model with a focus on the Achilles tendon was 

performed and led to show identifiable parameters that can 

describe the movement of the muscle-tendon complex. 

Parameter estimation of the model led to satisfactory 

agreement between measured and simulated data for the 

specific movements that were studied. Such a model and 

experimental approach offers the potential to be adapted to 



 

 

     

 

other joints, such as the hip joint and the knee. The approach 

developed for the upper limbs [26], was proven to be suitable 

for the leg muscles, so we can speculate that other muscle 

groups can be parameterised and studied in a similar way. 

When investigating the nonlinear model, the solution for the 

quadratic equation when simulated gave a better approach to 

the experimental data than the simulation of the solution of the 

cubic equation. 

This paper describes a method where tailored experiments 

focus on determining the characteristics of the Achilles tendon 

in a Hill-type muscle model. The derivation of the Achilles 

tendon force from the system equations for the 

musculoskeletal model of the Achilles tendon in section 2.2 

and the implementation of that force in the muscle-tendon 

model in order to derive the parameters of the model as well 

as the nonlinear approach of the behaviour of the Achilles 

tendon studied through a motion capture system is, to the best 

of the authors knowledge, novel in the field of muscle-tendon 

research. 

Isometric and isotonic contractions of the muscle-tendon 

complex are important to be examined as an initial step. 

Nonetheless, the way that muscles generate complex 

movements and behave during those complex movements is 

different from the way in which they behave in these specific 

types of contractions (isotonic, isometric). Observations and 

analysis of the complex movements are also necessary which 

will hopefully lead to a more personalised analysis of the 

model generated. The material properties of the gastrocnemius 

muscle and the Achilles tendon should also be incorporated in 

future studies. In addition, a spatio-temporal three-dimension 

description of the system would be an interesting approach to 

be investigated in the future. 
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