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Tractable consideration set structures for assortment optimization

and network revenue management

Arne K. Strauss∗, Kalyan Talluri†
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Abstract

Discrete-choice models are widely used to model consumer purchase behavior in assortment optimization

and revenue management. In many applications, each customer segment is associated with a consider-

ation set that represents the set of products that customers in this segment consider for purchase. The

firm has to make a decision on what assortment to offer at each point in time without the ability to iden-

tify the customer’s segment. A linear program called the Choice-based Deterministic Linear Program

(CDLP ) has been proposed to determine these offer sets. Unfortunately, its size grows exponentially

in the number of products and it is NP-hard to solve when the consideration sets of the segments over-

lap. The Segment-based Deterministic Concave Program with some additional consistency equalities

(SDCP+) is an approximation of CDLP that provides an upper bound on CDLP ’s optimal objective

value. SDCP+ can be solved in a fraction of the time required to solve CDLP and often achieves

the same optimal objective value. This raises the question under what conditions can one guarantee

equivalence of CDLP and SDCP+. In this paper, we obtain a structural result to this end, namely that

if the segment consideration sets overlap with a certain tree structure or if they are fully nested, CDLP

can be equivalently replaced with SDCP+. We give a number of examples from the literature where

this tree structure arises naturally in modeling customer behavior.

Keywords: discrete choice models, assortment optimization, network revenue management, consideration

sets
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1 Introduction

This paper is concerned with three closely related problems: The Assortment Optimization problem is to

determine an assortment of products to maximize the expected revenue from a heterogenous population of

customers. This population is modeled as being made up of multiple latent customer segments. Revenue

management (RM) is dynamic assortment optimization for products that share a common resource. In

Network Revenue Management (NRM), products may use inventory from multiple resources (for example, a

hotel stay for three nights uses three days of inventory; airline itineraries involving multiple flights use seats

on the connecting flight legs). Network interactions arise as the decision to offer a product depends on the

future revenues attainable from the sale of the other products that share resources on the network.

Underlying all three problems is a model of how consumers choose a product to purchase. Talluri and

van Ryzin [18] introduced RM based on a discrete-choice model of customer purchases. Discrete-choice

models represent purchase probability as a function of available products and customer characteristics. Such

modeling was later applied to NRM by Gallego, Iyengar, Phillips, and Dubey [7] and Liu and van Ryzin [12]

who formulated a Choice-based Deterministic Linear Program (CDLP ), the main object1 of study in this

paper. The linear program CDLP has an exponential number of variables and is difficult to solve except for

a few restricted choice models.

In our model, the customer population consists of multiple segments. Each segment is associated with a

subset of products called the consideration set, along with segment-specific parameters of the choice model.

Assuming that all products are available, the consideration set represents the set of products that customers

in that segment would consider for purchase. Consideration sets play a crucial role in the solvability of the

assortment optimization problem: If the segments’ consideration sets overlap, the assortment optimization

problem is NP-hard when there are just two segments, even for simple choice models such as the Multinomial-

Logit (MNL) (Bront, Méndez-Dı́az, and Vulcano [5]).

Motivated by this intractability of CDLP , Talluri [19] develops a weaker formulation called Segment-

based Deterministic Concave Program (SDCP ), weaker in the sense that its optimal objective value gives an

upper bound on the optimal objective value of CDLP . The idea is to solve a collection of small subproblems,

each corresponding to a segment, with some constraints that loosely link them together. SDCP is generally

1We present our results in the context of NRM as this problem generalizes both RM as well as assortment optimization.
Subsequent work on this problem can be found in [3], [11], [20], [13], [15] and [10].
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poor in approximating CDLP when segment consideration sets overlap, i.e. its optimal objective function

value is significantly higher than that of CDLP , and it also performs poorly in revenue simulations. To

improve this situation, Meissner, Strauss, and Talluri [14] propose an extension of the SDCP formulation

called SDCP+ (defined in §2.4) that obtains a significantly tighter relaxation of CDLP for the case of over-

lapping consideration sets. In their numerical experiments, SDCP+ achieves the CDLP optimal objective

function value in many instances despite being faster to solve by an order of magnitude.

The main contribution of this paper is that we identify two consideration set structures for which CDLP

is equivalent to SDCP+, i.e. a solution to CDLP can be obtained by instead solving the simpler problem

SDCP+ with significantly fewer decision variables in a fraction of computation time. We give a number of

applications from the literature where such consideration set structures naturally occur in the modeling of

customer behavior. Our results depend only on the consideration set structure and not on the structure of

the network of resources and, importantly, apply for any general discrete-choice model.

The remainder of the paper is organized as follows: In §2 we introduce the notation, the demand model,

the basic dynamic program and the two approximations of the dynamic program, namely the CDLP and

the SDCP+. In §3 we present the main structural results. In §4 we illustrate some applications from the

literature where the desired structure of the consideration set is naturally present. In §5 we summarize our

conclusions.

2 Models

We introduce the notation in §2.1. In §2.2, we state a dynamic programming formulation of the choice-based

NRM problem. Its intractability motivates the formulation of approximations: in §2.3 we define the Choice-

based Deterministic Linear Program (CDLP ), and in §2.4 the Enhanced Segment-Based Deterministic

Concave Program (SDCP+).

2.1 Notation

A product is a specification of a price (usually with restrictions such as advance purchase requirements)

and a set of resources that the product uses. For instance, a product for a network airline would be the
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combination of fare class (price and restrictions) and the itinerary (the flight legs of the itinerary); in a hotel

network, a product is a multi-night stay for a particular room type at a certain price point.

We define a discrete-time booking horizon that consists of T intervals, indexed by t. The sale process

begins at time 0 and all resources perish instantaneously at time T . We make the standard assumption that

the time intervals are small enough so that the probability of more than one customer arriving in a time

period is negligible.

The underlying network has m resources (indexed by i) and n products (indexed by j), and we refer to

the set of all resources as I and the set of all products as J . The resources used by j are represented by

a resource-product incidence matrix A, with aij = 1 if product j uses resource i, and aij = 0 otherwise.

Columns of A are the 0-1 incidence vectors Aj . We denote the vector of capacities at time t as ct, so the

initial set of capacities at time 0 is c0.

We assume that there are L := {1, . . . , L} customer segments, each with distinct purchase behavior. In

each period, a customer arrives with probability λ and belongs to segment l with probability pl. We denote

λl = plλ and assume
∑

l∈L pl = 1, so λ =
∑

l∈L λl. We assume time-homogenous arrivals (homogenous in

rates and segment mix), but the model and all solution methods in this paper can be clearly extended to

the case where rates and mix change by period. Customers in segment l have a consideration set Cl ⊆ J

of products that they consider to purchase (see Shocker et al. [17] for a survey on the consideration-set

modeling literature).

In each period the firm offers a subset S of its products for sale, called the offer set. Given an offer set

S, an arriving customer purchases a product j (at the price rj) in the set S or decides not to purchase any

(no-purchase). The no-purchase option is indexed by 0 and is always present for the customer.

A segment-l customer’s choice probabilities are not affected by the availability of products j ∈ J \Cl. A

segment-l customer purchases j ∈ S if j ∈ S ∩Cl with probability P l
j(S), S ⊆ J . These functions are either

given by an oracle or by a functional form such as in the MNL model where P l
j(S) = vlj/(

∑

k∈Cl∩S vlk) for

a set of “weights” vl ∈ R|Cl| that capture the attractiveness of the products for each segment l.

Whenever we specify probabilities for a segment l for a given offer set S, we just write it with respect

to Sl = Cl ∩ S (note that P l
j(S) = P l

j (Sl)). So when the firm offers set S, it sells j ∈ S with probability

Pj(S) =
∑

l∈L plP
l
j (Sl) and makes no sale with probability P0(S) = 1−

∑

j∈S Pj(S).
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We define the vector P l(S) = [P l
1(Sl), . . . , P

l
n(Sl)] (recall the no-purchase option is indexed by 0, so

it is not included in this vector). We define the vector P (S) = [P1(S), . . . , Pn(S)]. Notice that P (S) =

∑

l∈L plP
l(S). We define the vectors Ql(S) = AP l(S) and Q(S) = AP (S) to denote the expected resource

consumption for an offer set S by segment l. Likewise, the expected revenue function for segment l is

Rl(S) =
∑

j∈Sl
rjP

l
j(Sl) and the expected revenue from a given arrival, R(S) =

∑

j∈S rjPj(S).

In our notation and demand model we broadly follow Bront et al. [5] and Liu and van Ryzin [12].

2.2 Dynamic Program

We describe the stochastic dynamic program to determine the optimal offer set at each point in time. While

computationally intractable, it gives a conceptual reference point of the value we are trying to approximate

with tractable methods.

Let Vt(ct) denote the maximum expected revenue that can be earned over the remaining time horizon

[t, T ], given remaining capacity ct in period t. Let J(ct) denote the set of products that can be offered given

remaining available capacity, i.e., J(ct) := {j ∈ J |Aj ≤ ct}. Then Vt(ct) satisfies the Bellman equation

Vt(ct) = max
S⊆J(ct)







∑

j∈S

λPj(S)
(

rj + Vt+1(ct −Aj)
)

+
(

λP0(S) + 1− λ
)

Vt+1(ct)







, ∀ t, ∀ ct, (1)

with the boundary condition VT (cT ) = 0 for all cT . Let V DP := V0(c0) denote the optimal value of this

dynamic program from 0 to T , for the given initial capacity vector c0. Solving the dynamic program (1) is

intractable because the state space explodes even for small problems. Therefore, we are forced to look at

approximations to the dynamic program (1).

2.3 Choice Deterministic Linear Program (CDLP )

The Choice-based Deterministic Linear Program (CDLP ) approximation defined in Gallego et al. [7] and

Liu and van Ryzin [12] has 2n decision variables wS (recall that n denotes the number of products). The
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decision variables can be interpreted as the amount of time set S is offered:

max
∑

S⊆J

λR(S)wS

s.t.
∑

S⊆J

λwSQ(S) ≤ c0

(CDLP )
∑

S⊆J

wS = T (2)

0 ≤ wS , ∀S ⊆ J.

That is, we maximize the total expected revenue, subject to the constraint that the total expected capacity

consumption on each resource i must be less than or equal to the initially available capacity c0i. The second

constraint (2) says that we offer product sets over T time units.

Liu and van Ryzin [12] show that the optimal objective value of CDLP is an upper bound on V DP .

They also show that the problem can be solved efficiently by column generation for the MNL model with

non-overlapping segment consideration sets. Bront et al. [5] and Rusmevichientong, Shmoys, Tong, and

Topaloglu [16] investigate this further and show that column generation is NP-hard if the consideration sets

for the segments overlap for the MNL choice model with two segments.

2.4 Enhanced Segment-Based Deterministic Concave Program (SDCP+)

Talluri [19] proposed an upper bound on CDLP called the Segment-based Deterministic Concave Program

(SDCP ). SDCP optimizes the offer set for each segment separately. SDCP and CDLP have the same

objective values when the consideration sets for the different segments are disjoint. We do not elaborate on

the SDCP formulation as it is not considered further in this paper, but it corresponds to the formulation

(SDCP+) given below without the constraints (4).

In applications, the segments’ consideration sets can overlap in a variety of ways and, as the choice

probabilities depend on the offer set, they do not have any structure that we can exploit. We call a set

of constraints valid for a linear programming approximation of the dynamic program (1) if adding the

constraints preserves the property that its optimal objective value still forms an upper bound on V DP .

Meissner et al. [14] develop a set of valid inequalities for SDCP called product cuts—the constraints (4)
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below—that tighten the SDCP bound. We call the formulation SDCP+ in light of the additional constraints

(4). Let Slm represent subsets of Cl∩Cm, i.e., subsets in the intersection of the consideration sets of segments

l and m. SDCP+ is:

max

L
∑

l=1

∑

Sl⊆Cl

λlR
l(Sl)w

l
Sl

s.t.

(SDCP+)

L
∑

l=1

yl ≤ c0 (3)

∑

Sl⊆Cl

λlQ
l(Sl)w

l
Sl

≤ yl, ∀ l ∈ L

∑

Sl⊆Cl

wl
Sl

= T, ∀ l ∈ L

∑

{Sl⊆Cl|Sl⊇Slm}

wl
Sl

−
∑

{Sm⊆Cm|Sm⊇Slm}

wm
Sm

= 0,

∀Slm ⊆ Cl ∩ Cm, ∀ {l,m} ⊂ L : Cl ∩ Cm 6= ∅ (4)

wl
Sl

≥ 0, ∀Sl ⊆ Cl, ∀ l ∈ L,

yl ≥ 0, ∀ l ∈ L.

The vector yl represents capacity allocation to segment l subject to total available capacity c0. We maximize

total expected revenue from each segment l subject to several constraints. The first represents that the

capacity allocations are limited by the overall available network capacity. The second set enforces that each

segment can only consume at most as many resources as have been allocated to it. The third ensures that

we offer product sets (possibly the empty set) over the full time horizon. The intuition behind the product

cuts (4) is the following: SDCP+ can be seen as a collection of segment-level implementations of CDLP

linked via the constraint (3) and tightened via the product cuts (4). For any set Slm ⊂ Cl ∩Cm, the length

of time that set Slm is offered to segment l (possibly alongside other products) must be equal to the length

of time that it is being offered to segment m (again possibly alongside other products). The numerical

experiments of Meissner et al. [14] show that generating just a few of these constraints can be sufficient to

obtain close approximations to the optimal CDLP objective function value.
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3 Analysis of CDLP and SDCP+

We wish to understand when the optimal objective value of SDCP+ is the same as CDLP . To this

end, we first develop a simple example to illustrate that there can be a strict gap between the opti-

mal objective values of CDLP and SDCP+, even if all product cuts are satisfied. The underlying rea-

son for that gap is that there is no solution to CDLP that can be projected onto the segment con-

sideration sets so as to coincide with the segment-level optimal solution. When are these two formu-

lations equivalent then? We explore this issue in the remainder of this section following the example.

A

B

C

1

2

3
4

5

Figure 1: Consideration sets for 3 segments,

5 products

Example 1 Our example has five products and three seg-

ments and their respective consideration sets are shown in Fig-

ure 1. For this example we show that there is a gap between

the optimal objective values of SDCP+ and CDLP even if we

generate all constraints of type (4). Assume T = 1, capacity

c = 1, revenue rj = 1 for all products j ∈ J = {1, 2, 3, 4, 5},

λl = 1/3 for all segments l ∈ {A,B,C}, and the purchase

probabilities defined as follows: PA
j ({1, 2}) := 0.5 for j = 1, 2,

PA
j ({2, 5}) := 0.5 for j = 2, 5, PB

2 ({2}) := 1, PB
j ({1, 2, 3}) :=

1/3 for j = 1, 2, 3, PC
4 ({4}) := 1 and PC

j ({3, 5}) := 0.5 for j = 3, 5, and 0 for all other sets.

We show that there is a feasible solution to SDCP+ for this example with objective value 1. A feasible

solution to SDCP+ is given by yl = 1/3 for all segments l, and wA
{1,2} = wA

{2,5} = 0.5, wB
{2} = wB

{1,2,3} = 0.5,

wC
{4} = wC

{3,5} = 0.5, and wl
Sl

= 0 otherwise for all l ∈ {A,B,C}, Sl ⊂ Cl. This solution is feasible to

SDCP+ since λl

∑

Sl⊆Cl
Ql(Sl)w

l
Sl

= 1/3 = yl for all segments l, and the product cuts (4) for all pairs

of segments {l,m} and sets Slm ⊂ Cl ∩ Cm, Slm 6= ∅ are satisfied as reported in Table 1. They also hold

for Slm = ∅ since the solution satisfies
∑

Sl⊆Cl
wl

Sl
= 1 for all segments l. The other constraints are like-

wise satisfied as can easily be checked. The objective value is 1 since λl

∑

Sl⊆Cl
Rl(Sl)w

l
Sl

= 1/3 for each

l ∈ {A,B,C}.

Next, we show that there is no corresponding solution to CDLP with the same objective value. Note that

CDLP has 25 = 32 variables corresponding to subsets S ⊂ J = {1, 2, 3, 4, 5}. Under the single-leg example
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A

B

C

{1,2}=CA∩CB

{3}=CB∩CC

{5}=CA∩CC

Figure 2: Intersection graph for the example in Figure 1.

described above, we can enumerate all 32 subsets S and calculate the corresponding objective coefficient

λR(S). We find that λR(S) ≤ 2/3 for all S ⊂ J , with equality reached for the sets {1, 2, 3}, {1, 2, 4},

{2, 3, 5}, {1, 2, 3, 4} and {1, 2, 3, 5}. It follows that there can be no feasible solution to CDLP that has

objective value greater than 2/3 since the objective is a convex combination of these coefficients (note that

T = 1).

{l,m} Slm Sl ⊇ Slm

∑

Sl⊇Slm
wl

Sl
Sm ⊇ Slm

∑

Sm⊇Slm
wm

Sm

{A,B} {1} {1},{1,2},{1,5},{1,2,5} 0.5 {1},{1,2},{1,3},{1,2,3} 0.5
{A,B} {2} {2}, {1,2}, {2,5}, {1,2,5} 1 {2}, {1,2}, {2,3}, {1,2,3} 1
{A,B} {1,2} {1,2},{1,2,5} 0.5 {1,2},{1,2,3} 0.5
{A,C} {5} {5},{1,5},{2,5},{1,2,5} 0.5 {5},{3,5},{4,5},{3,4,5} 0.5
{B,C} {3} {3},{1,3},{2,3},{1,2,3} 0.5 {3},{3,4},{3,5},{3,4,5} 0.5

Table 1: Evaluation of all product cuts (4) for the example given in Figure 1.

Moving on from the example, we seek to obtain a structural result on when CDLP and SDCP+ are

equivalent. Since the overlap of the consideration sets plays a critical role in Example 1, let us represent the

overlap structure in a graph. Specifically, we define a bipartite intersection graph as follows: There are two

types of nodes, one type called segment node, the other is called intersection node. Each node of the former

type corresponds to a segment, each of the latter represents a set of the form Ck ∩Cl for some segment pair

(k, l). If there are two pairs of segments (m,n) and (k, l) with Cm ∩ Cn = Ck ∩ Cl, then S = Cm ∩ Cn is

represented by a single intersection node. Edges from segment node k connect to all the sets of the form

Ck ∩Cl 6= ∅ for any l 6= k. In graph theory, a connected graph without cycles is called a tree, and a disjoint

union of trees is called a forest [4].

The intersection graph of the example of Figure 1 has a cycle, as can be seen from Figure 2. This turns

out to be the critical feature: If the segment consideration sets do not have a cycle and are arranged say

in the form of a tree (or, in general, a forest), then the product cuts are sufficient to ensure equivalence

between CDLP and SDCP+, as stated in Proposition 1 below. Before establishing this result, we provide

9



some intuition for it: The intersection tree tells us which segments are directly or indirectly connected to

each other, in the sense that a solution wl for some segment l is dependent on the solution wk for any

segment node k that is reachable from segment node l. Example 1 illustrates this point: It is not possible to

arrange the segment-level solutions in a way such that they are consistent. By consistent, we mean that there

is a feasible solution to CDLP that can be projected onto the segments to obtain the SDCP+ solution.

For instance, if we would arrange the SDCP+ solution so that the sets SA
1 = {1, 2}, SB

1 = {1, 2, 3}, and

SC
1 = {3, 5} are offered in parallel (recall that they are all offered for the same duration), then we cannot

find a single set S ⊂ J whose projection onto the segment consideration sets results in SA
1 , S

B
1 and SC

1 ,

respectively. To see this, note that SA
1 requires us not to offer product 5, whereas SC

1 does require us to

offer product 5. In fact, there is no possibility to arrange the segment-level solutions so that all sets that

would be offered in parallel are consistent, and this shows that the segment-level solutions of Example 1 do

not have a corresponding CDLP solution.

The product cuts ensure that any offer set in the intersection of any two segments’ consideration sets is

being offered to both segments for the same time (possibly alongside offering other products). This is the

case in Example 1: All sets are offered for the same duration. Suppose we have a tree-structured intersection

graph with a segment node l connected to a segment node k via a single intersection node. For a given

solution wl, the product cuts allow us to arrange the segment-level solutions wk in a way such that they

represent the projections of a feasible global solution onto the respective segments. We can repeat this

argument to construct a global CDLP solution by moving along the tree. However, if there is a cycle, then

this pairwise approach to construct a global solution does not work any more because there is no guarantee

that the last segment-level solution (wC in Example 1) in the sequence along the cycle is consistent with the

first segment-level solution (wA in Example 1).

Proposition 1. If the intersection graph is a forest, then CDLP and SDCP+ have the same optimal

objective value (henceforth referred to by the shorthand notation CDLP = SDCP+).

Proof

Any solution to CDLP is a solution to SDCP+ as shown in [14], hence CDLP ≤ SDCP+. It remains to

show CDLP ≥ SDCP+. We use a merging procedure in this proof. For clarity, we first explain it on a simple
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A
B

U

w
A
(S1)

w
A
(S2) w

B
(S3)

w
B
(S4)

Figure 3: Merging procedure used in the proof of Proposition 1.

example with two segments, A and B, displayed in Figure 3 along with their corresponding consideration

sets. Figure 3 shows a feasible solution to SDCP+. We wish to construct a feasible solution to CDLP from

this solution with the same objective value. For simplicity assume that the only sets with positive weights

that contain U are S2 in the consideration set of A and S3 in the consideration set of B. Note that the

product cuts imply the restriction wA
S2

= wB
S3

since S2 and S3 are the only offer sets with positive weight

in the segment-level solution for segments A and B respectively that contain the set U in the intersection

of the consideration sets. Moreover, wA
S1

+ wA
S2

= T and wB
S3

+ wB
S4

= T . This implies that wA
S1

= wB
S4
.

So we construct weights for the CDLP formulation as wCDLP
S1∪S4

= wA
S1

= wB
S4

and wCDLP
S2∪S3

= wA
S2

= wA
S3
.

This CDLP solution satisfies wCDLP
S1∪S4

+ wCDLP
S2∪S3

= T , as well as the capacity constraints, and has the same

objective value as the SDCP+ solution.

In the proof of Proposition 1 (see appendix), we essentially repeat this argument for the more complicated

case with L segments and arbitrary consideration sets using an induction argument (made possible by the

tree structure).

✷

In addition to the tree-structured intersection graphs, we identify another structure that guarantees

equivalence of CDLP and SDCP+. We show that nested consideration sets also guarantee CDLP =

SDCP+ even though such consideration sets do not have the tree structure.

Proposition 2. For a nested consideration set structure C1 ⊆ C2 ⊆ . . . ⊆ CL, CDLP = SDCP+.

Proof

See appendix.

✷

Let us consider why we do not necessarily need a tree structure in the intersection graph: the main induction
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step in the proof of Proposition 1 is a merging procedure between a leaf node and the rest of the intersection

graph. What we require is that at every step we should be able to find a leaf node. Once we identify the

leaf node (segment), and remove it, the intersection graph of the remaining segments can be quite different

from the original. Indeed, that is the reason for the tractability of the nested consideration structure in

Proposition 2 even though the original intersection graph is not a tree. Hence, we can write a more general

version of Proposition 1 as follows:

Proposition 3. CDLP is equivalent to SDCP+ when the intersection graph has a sequence of segment-

nodes, such that the first node in the sequence is a leaf node, and after removal of each leaf node and a

re-drawing of the intersection graph with the remaining segments the next segment-node in the sequence is

also a leaf node in the new intersection graph.

4 Applications

In this section we present some applications from the literature where the consideration set structures that

we have described appear naturally in the modeling. These applications are: RM of advance tickets and

ticket options for sport events (§4.1), RM for primary care clinics (§4.2), dynamic pricing of home delivery

time slots (§4.3), low cost airlines (§4.4), and retail (§4.5).

4.1 Revenue management of advanced tickets and options for sports tickets

Sport event ticket options have become so popular that there is a software company called TTR that

specializes in selling Internet platforms to teams and events that wish to offer options. Balseiro, Gocmen,

Gallego, and Phillips [2] consider a scenario where advance tickets for the tournament are sold before it

starts—hence the identities of the two teams playing in a tournament final are unknown at this time.

However, fans of a specific team are only interested in attending the event if their team makes it to the final.

To address this uncertainty, the authors propose team-specific call options under which a customer can pay

a small non-refundable amount in advance for the right to attend the event if and only if the specified team

makes it to the final and if he pays an additional amount once the finalists are known. Such options allow

event organizers in principle to oversell capacity many times because only fans with advance tickets or with

options for the two finalist teams will be able to attend the event. Fans are segmented by the teams they
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Figure 4: A star consideration structure (left) and the corresponding intersection graph (right) in sports
RM.

support; assuming there are L teams in the tournament in total, we therefore have L customer segments. A

customer from segment l has the choice between buying an advance ticket A that would give access to the

final regardless of who will be playing, and an option Ol for team l. In other words, a customer in segment

l has a consideration set {A,Ol}. Thus we obtain a star consideration set structure (Figure 4).

Balseiro et al. [2] use the CDLP to solve the problem, and show for their specific model that an equiv-

alent, more compact formulation exists that actually is special case of SDCP+. The main result of our

paper provides a more general explanation for the equivalence of CDLP and SDCP+, namely that the

consideration set structure is a tree.

4.2 Revenue management for primary care clinics

Gupta and Wang [8] present an application of revenue management under patient choice of primary care

providers and appointment time-slots. Specifically, the problem is to manage physicians’ consultation time

slot availabilities over a finite booking horizon so as to maximize revenues. Each physician has a panel of

patients for whom he is the designated primary-care provider; these patient groups correspond to customer

segments with preferences for particular physicians. Patients of any segment can choose between all available

combinations of all appointment time-slots and all physicians, hence the consideration sets are all identical.

Same-day patients form another segment and are assumed to be willing to accept any available slot with any

physician on the workday. In this application, the product is a combination of physician-time combination.

All patient segments consider all products, and therefore the intersection tree has a star structure as in

the previous example. Gupta and Wang [8] proposed various heuristics to tackle the problem; our main

result tells us that we can use the tractable SDCP+ formulation in lieu of CDLP as an alternative solution

approach.
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4.3 Dynamic pricing of home delivery time-slots

Another application related to appointment scheduling is the work of Asdemir, Jacob, and Krishnan [1]

who look at the question of how to dynamically price delivery time-slots for attended home delivery over

a finite booking horizon using dynamic programming. Different prices can be quoted for different delivery

time-slots at any given point in time. There are different customer segments in a given area based on a

choice model that reflects their preferences for specific time-slots as well as price sensitivity. Their model

considers all geographic areas as independent of each other. All segments in a given area are assumed to

consider all available delivery time-slots. If the time slot prices have to be the same across all segments

within a given geographical area (which would be reasonable so as to avoid customer dissatisfaction due to

perceived unfairness of this group-based discrimination), we again have a star-shaped tree as the intersection

graph. Similar to the previous application, the geographic area and time-slot combination is the product.

As solution method, Asdemir et al. [1] propose a dynamic program that has an exponentially growing

state space in the number of delivery time-slots. Alternatively, one could again use SDCP+ (equivalent to

CDLP owing to the tree structure) to obtain an approximate policy that can be calculated even for large

problem instances where dynamic programming becomes intractable.

4.4 Nested consideration set structure (low-cost airline model)

Consider a fully nested consideration set structure where the L consideration sets are nested as C1 ⊆

C2 ⊆ . . . ⊆ CL. This models buy-up/buy-down amongst unrestricted products where complete dilution is

possible. This type of structure is encountered on single-leg flights or in a retail context where customers

remove products from consideration based on certain cutoff values for the products’ attributes or qualities,

and these can be ranked linearly. The latter example was proposed by Feldman and Topaloglu [6] to motivate

work on assortment optimization under MNL with nested consideration sets. Proposition 2 shows that this

is tractable, following the structure defined in Propostion 3.

4.5 Retail

When defining segments and their consideration sets, there is often a certain degree of subjectivity and

modeling flexibility. For instance, consider the segmentation study based on retail scanner data by Kamakura
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Figure 5: Intersection graph for the retail data set in [9] (left), transformed after merging segment 5 and
3 and after reducing consideration sets to those with purchase probability greater than 10% (middle), and
after removing leaf nodes as in Proposition 3 (right).

and Russell [9]. Initially, they discover nine customer segments with intersection graph as illustrated on the

left of Figure 5. There are four loyal segments for the brands A, B, C and P, respectively, and five switching

segments. They found that segment 5 and segment 3 could be merged without major impact on the preference

structure. Furthermore, one could refine the sets of the switching segments by including only the products

with purchase probabilities greater than 10% (the threshold mentioned in Kamakura and Russell [9]). The

resulting simplified consideration sets of the modified segments 1′, 2′, 3′, 4′ were {A}, {A,B}, {A,B,C} and

{B,C,P}, respectively. The corresponding intersection graph is depicted in the middle of Figure 5 along with

the simple tree structure on the right that results from removing leaf nodes as in Proposition 3. This serves as

an example of how a modeler could sensibly change the segmentation so as to obtain a tractable structure;

effectively it comes down to balancing the loss in modeling accuracy with tractability of the subsequent

optimization.
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5 Conclusions

Discrete-choice models are widely used to model consumer purchase behavior in assortment optimization

and revenue management. The firm has to make a decision on what assortment to offer at each point in

time without the ability to identify the customer’s segment. In many applications, each customer segment

is associated with a consideration set that represents the set of products that customers in this segment

consider for purchase. The formulation CDLP has been proposed to determine these offer sets but its size

grows exponentially in the number of products and it is computationally intractable for even modest-sized

applications when segment consideration sets overlap. The formulation SDCP+ runs much faster than

CDLP and often obtains the same optimal objective function value. In this paper we show that CDLP

and SDCP+ are equivalent if the intersection graph of the segment consideration sets is a tree or if the

consideration sets are nested. We give a number of examples from the literature that naturally exhibit these

structures.
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Appendix

Proof of Proposition 1

Proof

Any solution to CDLP is a solution to SDCP+ as shown in [14], hence CDLP ≤ SDCP+. It remains to

show CDLP ≥ SDCP+.

Consider the case of a single segment L = 1, and a given feasible solution (wL
SL

, yL)SL
to SDCP+. Then

wCDLP
S := wL

S for all S ⊂ J is a feasible solution to CDLP with the same objective value.

Next, we consider L > 1. Without loss of generality, the discussion will focus on an intersection graph

that is a finite tree rather than a forest since the same arguments can be made for each tree that makes

up the forest. Assuming that it is a tree, there must be at least two leaves, i.e. nodes with degree 1. By

definition, intersection nodes have at least degree 2, so there exists a segment node that is a leaf. Without

loss of generality, let this node correspond to the consideration set of segment L, and let SDCP+ represent

the problem SDCP+ with the segment L removed. Consider a feasible solution (w, y) to SDCP+, where

(w, y) is shorthand notation for wl
Sl

for Sl ⊆ Cl, for all segments l ∈ L := {1, 2, . . . , L}, and yil for all

resources i and l ∈ L.

This solution induces a feasible solution (w̄, ȳ) to SDCP+ by defining w̄l
Sl

:= wl
Sl

for all Sl ⊆ Cl, for all

l ∈ L̄ := L \ {L}, and ȳl := yl for all l ∈ L̄. The solution (w̄, ȳ) produces an objective value equal to that of

SDCP+ less
∑

SL⊆CL
λLR

L(SL)w
L
SL

. By the induction assumption, there exists a feasible solution w̄CDLP
S

for all S ⊆ J̄ := ∪L−1
l=1 Cl to CDLP with the same objective value, and w̄CDLP induces (w̄, ȳ) meaning that

w̄l
Sl

=
∑

S⊆J̄|S∩Cl=Sl
w̄CDLP

S for all l ∈ L̄, Sl ⊆ Cl for l ∈ L̄, and ȳl =
∑

Sl⊆Cl
λlQ

l(Sl)w̄
l
Sl

for all l ∈ L̄.

Now we construct a feasible solution wCDLP
S for all S ⊂ J to CDLP that induces (w, y) for SDCP+

with the same objective value. Since L is a leaf of the intersection tree, all interactions with other segments

are via a set Sint that is associated with the intersection node to which L is connected. Let us denote all

segments that are connected to this intersection node by Lint.

18



Consider a set U ⊆ Sint that is maximal for segment L with respect to Sint, that is there is no set SL ⊆ CL

such that U ( SL ∩ Sint and positive support wL
SL

> 0. Note that for a feasible solution to SDCP+, the

product cuts ensure that if a set is maximal for L with respect to Sint, it is maximal for all segments l ∈ Lint

with respect to Sint. Moreover, from the definition of maximal

∑

{Sl⊆Cl|Sl∩Sint⊇U}

wl
Sl

=
∑

{Sl⊆Cl|Sl∩Sint=U}

wl
Sl
, ∀l ∈ Lint.

We select an arbitrary maximal set U ⊆ Sint and segment l ∈ Lint. The following argument shows that

the total weight τ(U) that we offer sets that intersect with Sint exactly in U is the same in solutions wL and

w̄CDLP :

τ(U) =
∑

SL⊆CL|SL∩Sint=U

wL
SL

(5)

=
∑

Sl⊆Cl|Sl∩Sint=U

wl
Sl

(6)

=
∑

Sl⊆Cl|Sl∩Sint=U

w̄l
Sl

(7)

=
∑

Sl⊆Cl|Sl∩Sint=U

∑

S⊆J̄|S∩Cl=Sl

w̄CDLP
S (8)

=
∑

S⊆J̄|S∩Sint=U

w̄CDLP
S .

The first equality holds by definition, the second due to maximality and the product cuts being satisfied by

the solution w to SDCP+, the third since wl
Sl

= w̄l
Sl
, the fourth because w̄CDLP induces w̄, and the final

one as a result of a reformulation.

As a consequence, we can merge the solution wL
Sl

with w̄CDLP over total weight τ(U) to obtain wCDLP

for all sets that intersect with Sint only in the fixed set U . We illustrate the process in Figure 6 by drawing

two parallel bars of equal length representing the weight τ(U), each bar with intervals corresponding to

the support of the solutions wL and w̄CDLP (the order of the sets does not matter). Merging the sets as

depicted ensures that the constructed solution wCDLP induces wL as well as wl for l ∈ L̄ (the latter due to

the induction assumption on w̄CDLP ).

Now remove all the solution components wL
SL

and wl
Sl

with positive support for all l ∈ Lint with Sl∩Sint =

U and SL ∩ Sint = U . After the removal, the product cut equations for the remaining solution remain valid
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because of the equalities (5–6). We repeat this merging process by taking a maximal U ⊆ Sint at each stage

till we conclude with U = ∅. At every stage, as U is a maximal set, all the sets that contained U , namely sets of

the form U ( Sl∩Sint, l ∈ Lint were maximal sets in previous stages and therefore accounted for by equalities

(5–6) for the set Sl; now combining it with the product cuts for the set U , we again obtain equalities (5–6).

wCDLP
S1∪S4

wCDLP
S2∪S4

wCDLP
S2∪S5

wCDLP
S3∪S5

wL
S1

wL
S2

wL
S3

w̄CDLP
S4

w̄CDLP
S5

Figure 6: Illustration of the procedure to merge solutions in the
support of wL and w̄CDLP to obtain wCDLP for a fixed set U ⊆
Sint.

The solution wCDLP that emerges

from this process is feasible to CDLP :

it holds that
∑

U⊆Sint τ(U) = T (note

that U = ∅ ⊂ Sint), and therefore, by

construction,
∑

S wCDLP
S = T . That the

capacity constraint of CDLP is satisfied

follows from the induction assumption

that w̄CDLP induces (w̄, ȳ), with w̄ := w

and ȳ := y, combined with the fact that

(w, y) is feasible to SDCP+ and that we

constructed wCDLP in a way such that we only added capacity consumption equal to that of segment L

under solution wL. So the combined solution also satisfies the induction for L segments.

The objective value of CDLP equals that of SDCP+ because in the merging process we only add prod-

ucts of CL \ Sint to the solution w̄CDLP , and since these products do not influence other segments as they

are only in the consideration set of segment L, we only add the contribution of segment L to the objective

without a change of the contribution of other segments.

✷

Proof of Proposition 2

Proof

Any solution to CDLP induces a feasible solution in SDCP+ with the same value. To show equivalence,

we have only to construct a feasible solution to CDLP from a feasible solution to SDCP+ with the same

objective value. We refer to a subset of S ⊆ Cl with a positive weight wl
S in SDCP+ as positive in l.
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Assume without loss of generality that a solution to SDCP+ has at least one set S1 ⊆ C1 with w1
S1

> 0.

Note that segment node 1 is a leaf in the intersection graph due to the fully nested structure. Then there are

sets Sl ⊆ Cl such that w1
S1

≥ wl
Sl

for all l > 1. Moreover, we can describe a sequence of maximal nested sets

Sl for l = 2, . . . , L containing S1 that, due to the product cuts (4), have positive w1
S1

and these variables are

non-increasing: namely, S1 ⊆ S2 ⊆ . . . ⊆ SL and w1
S1

≥ . . . ≥ wL
SL

> 0. Moreover, as the consideration sets

are nested, the product cuts (4) imply that Sl−1 = Sl ∩ Cl−1, as no positive maximal set in l − 1 contains

Sl−1.

As each is maximal within its consideration set, these sets have the property that Sl is not contained in

any set S ⊆ Cl of segment l with positive weight w1
S > 0. Therefore, we can create a solution to CDLP by

giving the maximal set SL a weight wL
SL

and subtracting wL
SL

from w1
S1
, . . . , wL

SL
. Now repeat this operation,

at each step peeling off the maximal sequence of weights, to obtain a solution to CDLP . Note that this

procedure terminates in a finite number of steps.

The two solutions have the same objective value:
∑

S λR(S)wS =
∑

l λl

∑

Sl
Rl(Sl)[

∑

S:S∩Cl=Sl
wS ] =

∑

l λl

∑

Sl
Rl(Sl)w

l
Sl

where
∑

S:S∩Cl=Sl
wS = wl

Sl
holds by construction for all Sl ⊂ Cl for all l.

✷
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