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Linear-Scaling Density Functional Theory using the
Projector Augmented Wave Method

Nicholas D. M. Hine
Department of Physics, University of Warwick, Coventry, CV4 7AL

Abstract. Quantum mechanical simulation of realistic models of nanostruc-
tured systems, such as nanocrystals and crystalline interfaces, demands compu-
tational methods combining high-accuracy with low-order scaling with system
size. Blöchl’s Projector Augmented Wave (PAW) approach enables all-electron
(AE) calculations with the efficiency and systematic accuracy of plane-wave pseu-
dopotential calculations. Meanwhile, Linear-Scaling (LS) approaches to Density
Functional Theory (DFT) allow for simulation of thousands of atoms in feasible
computational effort. This article describes an adaptation of PAW for use in the
LS-DFT framework provided by the ONETEP LS-DFT package. ONETEP uses
optimisation of the density matrix through in-situ-optimised local orbitals rather
than the direct calculation of eigenstates as in traditional PAW approaches. The
method is shown to be comparably accurate to both PAW and AE approaches
and to exhibit improved convergence properties compared to norm-conserving
pseudopotential methods.

PACS numbers: 31.15.E-,71.15.Mb,34.20.Gj,31.15.-p,31.15.A-
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1. Introduction

Within the field of Density Functional Theory (DFT) [1, 2] there exists a wide range
of methodologies with differing strengths: choices of basis set, the approach taken
to electron-ion interactions, and the approach to energy minimisation can all vary
considerably between different approaches. The Projector Augmented Wave (PAW)
method of Blöchl [3] combines two highly-advantageous properties: the accuracy
and transferability of all-electron (AE) methods, with the computational efficiency
of plane-wave or grid-based pseudopotential methods. PAW proceeds by relating soft
pseudo- (PS) wavefunctions, which can be easily represented by plane-waves or on
a cartesian grid, to corresponding AE wavefunctions, which vary rapidly near the
nuclei. It does this by introducing a linear transformation augmenting the soft part
of the wavefunction with partial waves near each atom. PAW is thus an all-electron
method in the sense that the all-electron energies and wavefunctions are reproduced
(rather than that it calculates all the electronic states explicitly). As well as enabling
‘softer’ wavefunctions than norm-conserving pseudopotentials, and thus smaller basis
sets, PAW enables new types of calculation. Crucially, PAW allows direct access to
quantities whose evaluation requires values of wavefunctions, densities and electric
fields in the immediate vicinity of the atomic nuclei, which is not possible with norm-
conserving pseudopotentials. This occurs as when calculating shielding tensors in
Nuclear Magnetic Resonance [4], calculating Electric Field Gradients at nuclei [5],
and finding energies of core to conduction transitions in theoretical spectroscopy [6].

All these advantages imply that PAW should be ideal for tackling the significant
challenges of theoretical simulation of large-scale models of nanostructured materials.
The ability to rigorously predict and explain electronic properties of complex nanoscale
systems using PAW-based calculations would be of great value to applications in
electronics, photovoltaics, sensing, and elsewhere. However, the majority of the
existing, widely-used implementations of DFT using PAW, e.g. VASP [7], PWPAW
[8, 9], GPAW [10], PWSCF [11], and ABINIT [12] are all ‘traditional’ DFT methods, in
that they directly work with eigenstates of the Kohn-Sham Hamiltonian, represented
in terms of plane-waves or on a grid. Their computational effort thus scales
asymptotically as the cube of the system size N . This cost becomes prohibitive much
beyond around 1000 atoms with current hardware. Despite the efficiency of PAW,
these methods therefore cannot easily be used to simulate the extremely large systems
required to study realistically-sized isolated nanostructures.

‘Linear-Scaling’ (LS) approaches to DFT are designed to overcome this scaling
limitation, bypassing the use of Kohn-Sham eigenstates, by working directly with
the density matrix (DM) [13]. In LS-DFT, the density matrix is constructed from
nonorthogonal local orbitals centered on the atoms, here denoted φα(r), where the
index α runs over all orbitals on all sites. It is known [14, 15] that a general flexible
form for the DM is:

ρ(r, r′) = φα(r)K
αβφβ(r

′) . (1)

where Kαβ is a generalisation of occupancies to nonorthogonal orbitals. Superscript
indices denote contravariant quantities throughout this work, and subscript indices
covariant quantities. The Einstein convention of summation over repeated Greek
indices is employed throughout. Furthermore, in insulators, the ‘nearsightedness’ of
the density matrix [16] means Kαβ is short-ranged, and thus a highly-sparse matrix
in large systems. In practice, Kαβ can be truncated for |Rα − Rβ | > RK for some
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range RK . The total energy and other properties can then be shown to converge
systematically with increasing range RK of the density matrix [17]. The speed at
which this convergence occurs is known to be controlled by the magnitude of the
energy gap between the occupied and unoccupied states.

To obtain the ground-state energy in such methods, it is expressed in terms of
the Kohn-Sham Hamiltonian ĤKS as

ET = KαβHβα − Edc[n] , (2)

where Hβα = 〈φβ |ĤKS|φα〉 and Edc[n] is the standard double-counting term expressed
in terms of the density n(r) = ρ(r, r). The total energy ET is thus a functional of
Kαβ and {φα(r)}, and can be minimised with respect to these quantities. This in turn
means that the local orbitals φα(r) can be optimised in-situ, allowing a minimal set
to be used. The density matrix must obey certain properties to represent a valid DM
for an Ne-electron system [14]: it must be correctly normalised, in that Tr[ρ] = Ne,
and it must be idempotent, in that ρ2 = ρ, so that it represents a set of orthogonal
eigenstates. These constraints can be put in the form of matrix equations involving
Kαβ . Combined with suitable algorithms for purification and optimisation of the
density matrix, these ideas underlie most linear-scaling approaches to DFT.

To date, most practical O(N) methods have supported only norm-conserving
pseudopotentials (NCPPs), and have thus not been able to take advantage of
the benefits of PAW. This article details a novel linear-scaling approach to PAW,
implemented within the ONETEP LS-DFT method [18, 19, 20]. The choice of
nomenclature employed closely follows that of Ref. [12], and readers are referred to
that work for an introduction to the PAW method as it is applied in traditional DFT.

The ONETEP linear-scaling DFT code has been demonstrated to be suitable
for large-scale simulations of nanostructures [21, 22], and scales in parallel to many
thousands of cores [23, 24]. High-impact applications of the combined LS+PAW
method have already been described to various systems, including transition metal
dichalcogenide heterostructures [25], black-phosphorous transistor structures [26],
and CdS nanostructures [27], and a range of systems for Electron Energy Loss
Spesctroscopy (EELS) [28], but the foundations of this implementation of the method
have not previously been described, hence the current work.

2. Linear-Scaling PAW Formalism

ONETEP uses a density matrix expressed as in Eq. 1, where {φα(r)} are known as
Nonorthogonalised Generalised Wannier Functions (NGWFs), and are expressed in
terms of an underlying basis of psinc functions (effectively bandwidth-limited delta
functions) on each grid point ri:

φα(r) =
∑
i

ciαD(r− ri) . (3)

The grid spacing is defined by a cutoff energy Ec, and the radius of the NGWFs is
controlled by a strict cutoff Rφ beyond which ciα = 0. The total energy can be shown
to be variational with respect to both parameters, which makes the accuracy of the
NGWF representation systematically controllable and asymptotically equivalent to
that of plane waves, and thus ideal for PAW.

Since PAW is based around transformation of the eigenstates between AE and
PS forms, to use it in a linear-scaling method it must first be reformulated in
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terms of a transformation of the density matrix. All the terms in the total energy
and Hamiltonian can then be evaluated in linear-scaling computational effort. The
evaluation of PAW energies and forces is relatively complex, and this work only
describes aspects central to its adaptation to LS-DFT. The reader is referred to
Refs. [7, 12] for details overlooked as a result.

The fundamental transformation in traditional PAW [3, 7] is that relating an AE
orbital |ψn〉 to a PS orbital |ψ̃n〉:

|ψn〉 = |ψ̃n〉+ (|ϕν〉 − |ϕ̃ν〉)〈p̃ν |ψ̃n〉 . (4)

This transformation is written in terms of pre-defined projectors |p̃ν〉, PS partial waves
|ϕ̃ν〉 and AE partial waves |ϕν〉, localised within a chosen core radius rc around
each atom. The index ν runs over all projectors of all atoms in the system. The
projectors are dual to the PS partial waves, hence 〈p̃ν |ϕ̃µ〉 = δνµ, and within each
sphere the projectors and partial waves should ideally form a complete set, giving the
completeness relation

∑
ν |p̃ν〉〈ϕ̃ν | = 1. This latter relation is only strictly true in

the limit of a complete set of partial waves. However, with a suitably-designed PAW
potential, it can be shown to be a good approximation when the operator is applied to
any state whose energy lies within the range of energies corresponding to valence and
low-lying conduction states. Note also that it is implicitly assumed that the projectors
associated with different atoms do not overlap: in practice this must be very nearly
true for accurate results, but a small amount of volume overlap (around 5%) can
be tolerated without any significant devation relative to AE results. In practice, all
overlap terms of the form 〈p̃ν |ϕ̃µ〉 where µ and ν originate on different atoms are
explicitly neglected.

Within the Linear-Scaling DFT approach, direct access to the eigenstates is not
possible, so a transformation equivalent to Eq. 4 must be applied to the AE density
matrix. Defining the AE density matrix in terms of the AE orbitals written via the
PAW transformation of Eq. 4, one obtains:

ρ =
∑
n

(
|ψ̃n〉+

∑
ν

(|ϕν〉 − |ϕ̃ν〉)〈p̃ν |ψ̃n〉
)
fn

(
〈ψ̃n|+

∑
µ

(〈ϕµ| − 〈ϕ̃µ|)〈ψ̃n|p̃µ〉
)

=
∑
n

|ψ̃n〉fn〈ψ̃n|+
∑
νµ

(|ϕν〉 − |ϕ̃ν〉)(〈ϕµ| − 〈ϕ̃µ|)
∑
n

〈p̃ν |ψ̃n〉fn〈ψ̃n|p̃µ〉 (5)

+
∑
ν

(|ϕν〉 − |ϕ̃ν〉)〈p̃ν |
∑
n

|ψ̃n〉fn〈ψ̃n|+
∑
n

|ψ̃n〉fn〈ψ̃n|p̃µ〉
∑
µ

(〈ϕµ| − 〈ϕ̃µ|)

At this stage it is possible to identify the PS density matrix ρ̃ =
∑
n |ψ̃n〉fn〈ψ̃n|, which

will become the fundamental quantity with which the calculation works. To proceed
further, one can insert identity operators assuming a complete set of partial waves
within the PAW spheres, i.e.

∑
µ |p̃µ〉〈ϕ̃µ| = 1 and

∑
ν |ϕ̃ν〉〈p̃ν | = 1 after the third

term and before the fourth:

ρ = ρ̃+
∑
νµ

(|ϕν〉 − |ϕ̃ν〉)〈p̃ν |ρ̃|p̃µ〉(〈ϕµ| − 〈ϕ̃µ|) (6)

+
∑
νµ

(|ϕν〉 − |ϕ̃ν〉)〈p̃ν |ρ̃|p̃µ〉〈ϕ̃µ|+
∑
νµ

|ϕ̃ν〉〈p̃ν |ρ̃|p̃µ〉(〈ϕµ| − 〈ϕ̃µ|)

It is important to note that at this point the assumption is made that any nonlocal
operators will not act between different PAW spheres. This point could require special
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attention if the formalism is in future extended to be able to perform exact exchange
calculations. Finally, by collecting terms, one can obtain:

ρ = ρ̃+
∑
νµ

(|ϕν〉〈ϕµ| − |ϕ̃ν〉〈ϕ̃µ|)〈p̃ν |ρ̃|p̃µ〉 (7)

The NGWFs used within a ONETEP calculation, {φα(r)}, are constructed out
of psinc functions as per Eq. 3 and thus display convervence properties similar to
plane-waves. They are an ideal means to represent this ‘soft’ part of the DM, so one
can define

ρ̃ = |φα〉Kαβ〈φβ | . (8)

In the existing NCPP-based ONETEP method, the NGWFs and the kernel are written
in the same basic form, and can be optimised to minimise the total energy subject to
the requirement that the kernel be idempotent and correctly normalised: no reference
need be made at any point to the eigenstates of the Hamiltonian.

To adapt this for PAW, one must bear in mind that the constraints of idempotency
and correct normalisation, Tr[ρ] = Ne and ρ2 = ρ, must apply to the all electron
density DM, not its pseudised form ρ̃. For NCPP case, these two constraints can be
expressed as

KαβSβα = Ne . (9)

and

KαγSγδK
δβ = Kαβ . (10)

with Sαβ = 〈φα|φβ〉 being the overlap matrix of the NGWFs.
In PAW, one can retain the exact same forms, as long as the overlap matrix

between NGWFs is redefined to account for the PAW transformation, in the same
way as the overlap between eigenstates is redefined in traditional PAW:

Sαβ = 〈φα|
[
1 + |p̃ν〉(〈ϕν |ϕµ〉 − 〈ϕ̃ν |ϕ̃µ〉)〈p̃µ|

]
|φβ〉 . (11)

Then it can be shown that the same expressions can be retained for the requirements
of a normalised, purified kernel, when expressed in terms of Kαβ and the redefined
Sαβ .

The basic premise of calculating energies in PAW is that the ‘atomic’ quantities
within the spheres centred on each atom are treated on radial grids, while the rest,
the ‘soft’ parts, are treated on a uniform grid. All components of a given AE quantity
x are thus broken down into a PS part on the uniform grid, denoted x̃, an AE atomic
part, denoted x1, and a PS atomic part to be subtracted to cancel the PS part on the
grid, denoted x̃1. In order to calculate the all-electron energy using these NGWFs,
the total valence electron density is first broken down into the components:

nv(r) = ρ(r, r) = ñ(r) + n1(r)− ñ1(r) , (12)

where, from Eqs. 7 and 8,

ñ(r) = φα(r)K
αβφβ(r) , (13)

n1(r) = ϕν(r)ρ
νµϕµ(r) , (14)

ñ1(r) = ϕ̃ν(r)ρ
νµϕ̃µ(r) . (15)

The crucial matrix ρνµ is the projection of the density matrix in the PAW spheres:

ρνµ = 〈p̃ν |φα〉Kαβ〈φβ |p̃µ〉 . (16)
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Because both sets of functions φα and p̃ν are strictly localised, 〈φα|p̃ν〉 is very sparse in
large systems, so ρνµ can be rapidly evaluated from Kαβ with efficient sparse matrix
algebra [23, 29]. It is a ‘block-diagonal’ matrix, in that only blocks for which ν and µ
are on the same atom are nonzero.

One of the central aims of PAW is to avoid needing to treat explicitly the
interaction of spatially rapidly-varying quantities such as core densities between
different atoms. Therefore a key susbstition is made to enable the density-density
interactions to be calculated efficiently. The total density is further decomposed in
the manner of Refs [7, 12] into soft pseudo density plus a compensation density term
(sometimes referred to as augmentation density). This also occurs for other AE terms
which need to be represented on the regular cartesian grid. A soft pseudo-density for
the nucleus and core electrons ñZc replaces the AE version nZc: this is used to generate
the Hartree potential resulting from the nucleus and any core electrons. Similarly, a
soft core density ñc replaces the AE nc, which is used to calculate the nonlinear core-
correction terms (i.e. any nonlinearity in the exchange-correlation potential resulting
from overlap between core and valence electron density).

The compensation density is defined by an expansion of the form:

n̂(r) =
∑
LM

ρνµQ̂LMνµ (r) , (17)

where Q̂LMνµ (r) are ‘soft’ functions designed to reproduce the L,M moments of the
difference between the AE and PS densities (See Ref. [12], Eqs. 12-17, for further
details). The notation x̂ refers to quantities associated with this compensation density.

The total energy is divided up as E = Ẽ + E1 + Ẽ1, with

Ẽ = Kαβ〈φβ |
-1
2
∇2|φα〉+ Exc[ñ+ ñc] + EH[ñ+ n̂] +

ˆ
vH[nZc](ñ+ n̂)dr+ EII (18)

E1 = ρνµ〈ϕµ|
-1
2
∇2|ϕν〉+ Exc[n

1 + nc] + EH[n
1] +

ˆ
vH[nZc]n

1dr (19)

Ẽ1 = ρνµ〈ϕ̃µ|
-1
2
∇2|ϕ̃ν〉+ Exc[ñ

1 + ñc] + EH[ñ
1 + n̂] +

ˆ
vH[ñZc](ñ

1 + n̂)dr (20)

Note that the compensation density n̂ is generally not included in the XC terms: as
its shape is unphysical, it can have unwanted effects on the XC potential [30].

Taking the derivative of the full expression for E with respect to the pseudo-
density operator ρ̃ gives the Hamiltonian H̃

H̃ = −1

2
∇2 + ṽeff + |p̃ν〉Dνµ〈p̃µ| , (21)

in which each of the three terms represent kinetic, local effective potential and nonlocal
effective potential energy contributions. The nonlocal energies Dνµ will be defined
below, and ṽeff is an effective potential defined on a uniform cartesian grid in terms
of Hartree, XC and ionic parts,

ṽeff = ṽH[ñ+ n̂] + ṽH[ñZc] + ṽxc[ñ+ ñc] . (22)

Because they involve no AE quantities evaluated outside the spheres around each
atom, all three of these terms are well-behaved on the uniform cartesian grid. They
can thus be evaluated numerically with the standard methods already implemented
in grid-based DFT codes.
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The nonlocal energies are similarly decomposed into three parts, collecting
terms resulting from augmentation densities, AE partial waves and PS partial waves
respectively:

Dνµ = D̂νµ +D1
νµ − D̃1

νµ (23)

with

D̂νµ =
∑
LM

ˆ
ṽH[ñ+ n̂+ ñZc](r)Q̂

LM
νµ (r)dr , (24)

D1
νµ = 〈ϕν |

-1
2
∇2 + v1

eff |ϕµ〉 , (25)

D̃1
νµ = 〈ϕ̃ν |

-1
2
∇2 + ṽ1

eff |ϕ̃µ〉 (26)

+
∑
LM

ˆ
ṽH[ñ

1 + n̂+ ñZc](r)Q̂
LM
νµ (r)dr , (27)

and

v1
eff = vH[n

1] + vH[nZc] + vxc[n
1 + nc] , (28)

ṽ1
eff = vH[ñ

1 + n̂] + vH[ñZc] + vxc[ñ
1 + ñc] . (29)

Calculation of the bandstructure energy Ebs = KαβH̃βα in O(N) computational
effort requires that matrix elements in the NGWF representation, 〈φβ |H̃|φα〉 can each
be calculated in O(1). This can be achieved for the first two terms in Eq. 21 with
the ‘FFT box’ approach [31], in which a box large enough to encompass one function
φα(r) and all its overlapping neighbours φβ(r) is used to evaluate matrix elements
such as 〈φβ | − 1

2∇
2|φα〉 and 〈φβ |ṽeff |φα〉.

The nonlocal contribution to H̃βα is

V nl
βα = 〈φβ |p̃ν〉Dνµ〈p̃µ|φα〉 . (30)

To find this, the NGWF-projector overlaps 〈φβ |p̃ν〉 are constructed by building each
projector p̃ν(r) in reciprocal space in the FFT box, transforming it to real space and
finding its overlap with each NGWF, as described in Ref. [29].

The FFT box approach is also used for constructing the screened nonlocal energy
term, D̂νµ. Each of the contributing integrals

´
ṽH(r)Q̂

LM
νµ (r)dr, nominally needs to

be taken on the whole uniform grid of the simulation cell. However, it is clear from
the limited range of Q̂LMνµ (r) that in fact it can be performed on a small ‘augmentation
box’. This box is set at a size determined by twice the largest PAW radius rc in the
system, since Q̂LMνµ = 0 outside the PAW region of a given atom. The atom-centered
terms in D1

νµ and D̃1
νµ lend themselves naturally to O(1) evaluation, as they are

evaluated on a radial logarithmic grid for each atom, using the techniques described
in Eqs. 44-50 of Ref. [12]. The XC energies and potentials on the radial grids are
evaluated using an expansion over the moments of n(r) and vxc[n](r) as described in
Eqs. 56-69 of Ref. [12].

The ingredients are thus available for the construction of the sparse matrix H̃αβ

from Kαβ and {φα(r)} in O(N) computational effort. First, the PS density ñ is
constructed on the full grid (Eq. 13), then the sphere-projected density kernel ρνµ
is calculated (Eq. 16) and used to construct n̂ on the full grid, again employing the
‘augmentation box’, and thus to construct ṽeff . ρνµ is re-used to find n̂, n1 and ñ1

for each atom, and these enable construction of v1
eff and ṽ1

eff and thus D1
νµ and D̃1

νµ

(Eqs. 24-29). Finally, the nonlocal energies are screened using Eq. 23 to produce Dνµ.
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3. Full Calculations

The practical scheme for calculations with this method is as follows: the NGWFs
are first initialised to suitably-chosen pseudoatomic orbitals, obtained by solving the
isolated pseudoatom within a sphere of radius Rα for each species present [32]. For
example, for first-row elements one s-like PAO and three p-like PAOs are taken as the
starting point for NGWF optimisation, with further valence shells added as required
for heavier elements. Initialisation of the kernel Kαβ describing the density matrix is
achieved by constructing an initial trial hamiltonian on the basis of a superposition of
the pseudoatomic densities, and applying Palser-Manolopoulos canonical purification
[33].

Minimisation of the total energy E = KαβH̃βα − Edc[n] is then achieved using
a two-level loop as described in Ref. [19]. The inner loop minimises the energy with
respect to elements of the density kernel Kαβ using a variant [34] of the Li-Nunes-
Vanderbilt method [35]. The purified kernel is represented in terms of an auxiliary
kernel Lαβ as Kαβ = (3LSL − 2LSLSL)αβ (i.e. the result of one iteration of
the McWeeny purification transformation). Consistent normalisation is ensured by
replacing Kαβ with Kαβ

n = nKαβ

KκλSλκ
, which is a rescaled version which is defined to be

normalised to n electrons. Minimisation of E subject to the appropriate constraints
on Kαβ is thus in fact obtained by minimising instead with respect to the elements
Lαβ .

The outer optimisation loop optimises the coefficients ciα of Eq. 3 which describe
the NGWFs φα(r). For this, it is necessary to obtain the gradient of the total energy
with respect to the expansion coefficients of the NGWFs in the psinc basis. This can
be found by taking derivatives of the total energy expression with respect to the value
of specific NGWF α at a point r, φα(r), ensuring all terms with some dependence on
φα(r) are propagated appropriately. The result is:

∂E

∂φα(r)
= Kαβ

n [H̃φβ ](r) + φβ(r)Q̃
αβ +

∑
µν

p̃µ(r)Oµν〈p̃ν |φα〉Q̃αβ ,(31)

where

Q̃αβ =
n

KκλSλκ

(
3LH̃ ′L− 2LH̃ ′LSL− 2LSLH̃ ′L− µK

)αβ
(32)

with H̃ ′ = H̃ − µS and µ given by

µ =
(3LSL− 2LSLSL)αβH̃βα

(3LSL− 2LSLSL)κλSλκ
. (33)

The first term in Eq. 31 can be expanded as:

Kαβ
n [H̃φβ ](r) = −

1

2
∇2[Kαβ

n φβ ](r) + ṽeff(r)[K
αβ
n φβ(r)]

+
∑
µν

p̃µ(r)
(
D̂µν +D1

µν − D̃1
µν

)
〈p̃ν |φα〉 . (34)

Eqs. 31-34 can all be evaluated in linear-scaling effort via the methods already
discussed, namely a combination of sparse matrix multiplication, FFT-box based
function summation, and overlap integrals of localised functions.

Both optimisation loops procede via a conjugate-gradients procedure using the
steepest-descents energy gradients ∂E/∂Lαβ and ∂E/∂ci as initial search directions
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and then updating the search directions using the Fletcher-Reeves CG scheme
thereafter.

Once convergence with respect to both quantities is achieved, a variational
minimum energy for a given basis quality (as defined by Ecut, Rφ and RK) is obtained.
In practice, arbitrarily high accuracy can be obtained in the optimisation with respect
to Lαβ for a given set of NGWFs, while due to the competing demands of localisation
and energy minimisation, it is only possible to optimise the NGWFs to a certain
threshold RMS value determined by the localisation radius. Typically, setting this
RMS threshold to 10−6 Ha a

−3/2
0 is sufficient to allow energy and force calculations to

a convergence below 1meV/atom.
For calculations utilising norm-conserving pseudopotentials, the highest magni-

tude of G-vectors required to describe the cartesian grid on which the density is
expressed is exactly twice the magnitude of that describing the wavefunctions. There
is thus no reason to use any finer a grid than 2× the wavefunction grid in such cal-
culations. By contrast, it is important to note that in PAW, the convergence with
respect to the spacing of the cartesian grid on which the density is described can be
rather slower than this. This is because the features of the shape functions and/or
the pseudised core density functions can be rather more strongly peaked than the
wavefunctions themselves. It is often necessary to use a larger multiplier than 2×
the underlying cutoff energy. In the tests in this article, grids of 4× the underlying
wavefunction grid are used to ensure complete convergence.

4. Atomic Forces

As described in [20] and [32], the ionic forces in LS-DFT can be determined from the
Hellmann-Feynman theorem. Normally, this results in force terms due only to those
parts of the total energy which depend explicitly on ionic coordinates: the ion-ion
term, the local potential term, the PS density nonlinear XC term, the compensation
density term, and the nonlocal term:

FI = −
dE

dRI
= Fion−ion

I + Floc
I + Fnlcc

I + F̂I + Fnl
I . (35)

In the nonlocal term Fnl
I in PAW there is, however, the added complication that the

overlap operator changes with the positions of the ions. Therefore, in addition to the
explicit dependence of the energy on RI , there is also a further term entering via
the dependence of the orthonormalisation condition on the location of the ions. To
render this into a form that can be evaluated, the identity ∂

∂RI

[
Kαβ〈φβ |Ŝ|φα〉

]
= 0

is required. The total force is thus written as:

FI = −
∂E

∂RI
−
{

∂E

∂|φα〉
d|φα〉
dRI

+
∂E

∂〈φα|
d〈φα|
dRI

}
= − ∂E

∂RI
−
{
Kαβ〈φβ |Ĥ

d|φα〉
dRI

+
d〈φα|
dRI

Ĥ|φβ〉Kβα

}
= − ∂E

∂RI
+KαδHδγS

γβ〈φβ |
dŜ

dRI
|φα〉 , (36)

where the identities 1̂ = |φγ〉Sγδ〈φδ|Ŝ has been employed in obtaining the final
expression.
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Figure 1. Total energies and forces as a function of bondlength for N2, O2

(triplet), CO and TiO2 molecules. The curves shown are for E(d) are a quartic
polynomial fit to the data, while those for F (d) are the derivative of this fit. The
calculated force F (x) is thus seen to agree very well with −dE/dx.

After some manipulation, the different force terms listed above evaluate to:

Floc
I = −

ˆ
(ñ(r) + n̂(r))

∂vH[ñZc](r)

∂RI
dr , (37)

Fnlcc
I = −

ˆ
vxc[ñ+ ñc]

∂ñc(r)

∂RI
dr

F̂I = −
ˆ
ṽH[ñ+ n̂+ ñZc](r)

∂n̂(r)

∂RI
dr

Fnl
I =

∑
ν∈I

[
−Dνµ〈p̃µ|φα〉Kαβ

〈
φβ | ∂p̃

ν

∂RI

〉
−
〈
∂p̃ν

∂RI
|φα
〉
Kαβ〈φβ |p̃µ〉Dµν

+Oνµ〈p̃µ|φα〉KαγHγδS
δβ
〈
φβ | ∂p̃

ν

∂RI

〉
+
〈
∂p̃ν

∂RI
|φα
〉
KαγHγδS

δβ〈φβ |p̃µ〉Oµν
]
.

The notation ν ∈ I means that the sum runs only over projectors ν on atom
I. Construction of Floc

I , Fnlcc
I and 〈φβ | ∂p̃

ν

∂RI
〉 is computationally equivalent to the

evaluation of corresponding terms in the case of norm conserving potentials, which
is described in Ref. [20]. Construction of F̂I again employs the ‘augmentation box’:
the gradient of the augmentation density is calculated by an FFT for the density
associated with each box, multiplication by the G-vectors of the box, and a transform
back to obtain −∂n̂(r)

∂RI
. The final term, Fnl

I , is obtained via a series of sparse matrix
operations on the corresponding matrices.

As discussed in [32], in cases where it is not feasible to optimise the NGWFs
sufficiently that their gradient is everywhere effectively zero, one can instead, with
minimal computational effort, calculate the residual Pulay terms in terms of the
NGWF gradients. This involves no extra complications in PAW as the NGWF gradient
already contains all relevant contributions. The resulting analytic forces can be used
as inputs for tasks such as geometry optimisation and molecular dynamics, and agree
to very high precision with the gradient of the energy landscape.
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5. Demonstration and Applications of the Method

The purpose of this article is to outline the novel aspects of the methodology and
describe its computational implementation. A number of recent papers have showcased
applications of the method to realistic applications, so an example application will not
be included in this work. Instead, benchmark results are presented for selected small
systems that seek to demonstrate the accuracy of the method. Firstly, the N2 dimer
is examined carefully, so as to demonstrate the exact equivalence of the method to
the implementation of PAW method in the plane-wave DFT code ABINIT, which
itself has been exhaustively benchmarked against all-electron methods and shown to
be comparably accurate [36].

Figure 1 shows the agreement between two calculation methodologies: plane-wave
DFT with a traditional O(N3) PAW implementation, performed using the ABINIT
code (green), and the present O(N) PAW method implemented in ONETEP (red).
PAW datasets for each atomic species are generated with the standard recipes supplied
with the AtomPAW code [8], employing the PW92 formulation of the Local Density
Approximation. Figure 1 shows that for small dimer systems, the new LS-PAW
method produces total energies in very precise agreement with traditional DFT results
obtained by using the same PAW datasets in ABINIT, and furthermore that the
calculated forces agree very precisely with the gradient of the energy with respect
to atomic positions, such that the optimised geometries are in precise agreement.
In these tests, well-converged parameters are used for the NGWF radii and cutoff
energies: Rα =10.0a0, Ec=1000 eV respectively.

Next, convergence is investigated for Perylenetetracarboxylic dianhydride
(PTCDA), an organic dye molecule which is of current interest as an organic
semiconductor. It is a medium-sized organic system (38 atoms) which contains oxygen,
hence when simulated with traditional norm-conserving PSPs requires quite a high
cutoff energy for good convergence. Here PAW datasets from the JTH library [37]
are compared with standard NCPP datasets supplied with ONETEP. The molecules
is modelled in a cubic box of side 28 Å. Geometry relaxation is performed with the
PBE functional beforehand with highly-converged parameters (1000eV, 10a0 NGWF
cutoff radius) to provide an accurate starting geometry.

In general, convergence results for total energy differences between similar
structures are more meaningful than convergence of total energies themselves, and
it is not necessary to run calculations with parameters where complete numerical
convergence with respect to the plane wave cutoff is achieved. Indeed, if total energy
convergence is required, the cutoff energy required for binding energy convergence
will often be significantly exceeded. However, if good total energy convergence is
achieved, then good convergence of derived properties such as binding energy must
have already been achieved and the former therefore represents a stronger criterion.
Good overall convergence of the total energy is also highly desirable from the point of
view of comparability between calculations run with different supercell sizes.

Figure 2 demonstrates that with the PAW approach, total energy can be reached
at considerably lower cutoff energies than is the case with the traditional NCPPs.
Here, convergence to within 0.1eV/atom is reached around 600 eV in PAW, whereas
1000 eV is required before the same level of convergence is possible with NCPPs, which
results in a considerable saving of computational effort. It is important to note (see
insets) that the rate of total energy convergence with respect to NGWF radius is, as
expected, very close to exactly equivalent in both methods, since this behaviour is
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Figure 2. Total energy convergence for a model of perylenetetracarboxylic
dianhydride (PTCDA). Left: total energy convergence with respect to cutoff
energy for the current PAWmethod. Lower inset reproduces a zoomed-in region of
the tail of the plot. Upper inset shows convergence with respect to NGWF radius
at 1000eV cutoff energy. Right: total energy convergence for standard norm-
conserving pseudopotentials. Total energy convergence of under 0.1 eV/atom is
achieved with respect to NGWF radius by around 10a0 in both methods, but in
PAW total energy convergence with respect to the energy cutoff defining the grid
is achieved much sooner: by around 600eV for this system.

related to the details of the density matrix in regions outside of both the PAW spheres
and the norm-conserving pseudopotential radii.

It is next demonstrated that overall linear-scaling of the computational effort,
which has been extensively demonstrated in previous work with the ONETEP code,
is retained in PAW. Trial systems comprising slabs of TiO2 exposing the [101] surface,
of increasing size, are simulated on a fixed number of parallel cores. The prototype
slab is 4 primitive cells in depth, and comprises 5×3 units of the surface unit cell, for a
total of 720 atoms. Larger models can then be constructed by repeating this cell n = 1,
2, 3, 4 and 5 times along the x-direction, for cells ranging from 720 to 3600 atoms, with
N = 720n. Extending the cell in just one direction creates rather more skewed unit
cells than might be used in practical calculations, but allows a regime to be reached
where all relevant matrices are strictly sparse, so provides a good demonstration of
the linear-scaling behaviour. A psinc cutoff energy of 600eV, an NGWF radius of 8a0,
and a kernel cutoff of 40a0 are used for all calculations. The PAW dataset for Ti from
the JTH library [37] includes 3s and 3p semicore states, hence a total of 13 NGWFs
per Ti atom are required, and 4 NGWFs per O atom, making this a rather challenging
test system.

Figure 3(a) shows the total wall time for the execution of a complete NGWF and
kernel optimisation cycle (one total energy calculation from scratch) for n = 1, . . . , 5
repetitions of the prototype slab, run on 720 cores of the ARCHER Cray XC30
supercomputer. It is clear that beyond around 1000 atoms the wall time scales as
O(N) in this regime.

That this overall O(N) scaling must be carried over from calculations with NCPPs
can also be seen from the scaling data in Figure 3(b). This shows total wall time for
total energy calculations on a van der Waals heterostructure, comprising a layer of
hBN, a layer of black phosphorus, and another layer of hBN, for a total of 1824
atoms. The number of cores is varied from 240 to 5184, using a hybrid OpenMP-MPI
paralellisation scheme with 6 OpenMP threads per MPI process. Overall scaling is
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Figure 3. (a) Scaling of total computational effort, measured by wall time when
run on 720 cores of a Cray XC30 machine (ARCHER). The system simulated is a
series of multiples of a 720-atom surface slab of anatase-structure TiO2, exposing
the [101] surface, which is of interest in photocatalytic applications. (b) Strong-
scaling of wall time with respect to number of cores, for a calculation on a van der
Waals heterostructure, comprising a layer of hBN, a layer of black phosphorus,
and another layer of hBN, for a total of 1824 atoms. Ideal scaling would be
parallel to the grey lines. Overall scaling is good until around 1920 cores, and the
majority of the computational effort is accounted for by the four main routines
relating to density, local potential, NGWF gradient and sparse matrix algebra,
with very similar balance as for NCPP calculations.

seen to be rather good until around 1920 cores, and improvement is maintained all the
way to 5184 cores. A ballpark figure of 1 atom per core for calculations on transition
metals is generally a good guide to the limit of highly-efficient parallel scaling for most
calculations. In all these runs, the vast majority of the time is seen to be spent in
routines which are related to the evaluation of quantities involving the NGWFs and
the sparse matrices, all of which scale the same way when using PAW as they do
in NCPPs. Explicit ‘overhead’ associated with PAW on-site quantities, which are in
any case evaluated atom-by-atom and are thus inherently O(N), is not a significant
contributor to the total computational effort.

As a final demonstration of the method, recent applications of this methodology
to problems in the area of nanomaterials simulation will be briefly summarised. In
these applications, the full power of the linear-scaling methodology was demonstrated,
with very large-scale simulations of up to 2000 atoms. It should be noted that previous
benchmark calculations have showed that the ONETEP code is capable of scaling to
calculations of up to 100,000 atoms on upwards of 10,000 cores [23, 24], and the current
PAW methodology retains this scaling in full.

Constantinescu et al. [25] used the approach in a 2015 investigation of the
energetic and electronic properties of bilayer heterostructures of transition metal
dichalcogenide materials, specifically MoS2 and MoSe2. We were able to show that
the energy landscape was very flat under rotation of the layers with respect to each
other, with no strongly preferred alignment: this means almost any stacking can be
envisaged. However, there were strong effects of the heterostructure construction on
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the electronic properties: by unfolding the spectral function into the primitive cells, we
showed that the electronic band structure, specifically the band offsets and the carrier
effective masses, of each layer is tunable through rotation. This work would have
been very much more expensive without the benefit of the PAW formalism described
here. Further investigations as to the convergence properties of the ONETEP PAW
method applied to MoS2 and MoSe2 can be found in the supplementary material to
Ref. [25]. Further work on layered material heterostructures by Constantinescu et al.
[26] involved an investigation of multi-layer stacks comprising black phosphorus (BP)
and hexagonal boron nitride (hBN). In this work we were able to show that spacer
layers of hBN were capable of encapsulating the BP and preserving its electronic
properties, and that the devices modelled showed considerable promise for application
in tunnelling field effect transistors. Once again, such large simulations were made
considerably more feasible via the use of the ONETEP PAW methodology.

More recently, Tait et al. showed that the PAW method within ONETEP can
be used to implement methodology for Electronic Energy Loss Spectroscopy (EELS)
[28]. The simulated EELS approach has been previously implemented successfully
with plane-wave methods, but in the case of LS-DFT it enables EELS calculations
on very large model systems such as grain boundaries and surfaces. Finally, recent
work has focussed on combination of PAW with approaches for Linear-Response
TDDFT in the LS-DFT framework [38, 39], resulting in applications of the combined
approach to study realistic seminconductor nanocrystals of CdS [27]. The results
indicate that PAW is highly appropriate to studying the properties of inorganic
nanomaterials systems incorporating transition metals such as Cd, which is challenging
with traditional methods for a wide variety of reasons.

6. Conclusion

An adaptation of the PAW method to a Linear-Scaling DFT framework used in the
ONETEP code has been presented. Its equivalence to other PAW implementations and
its considerably improved convergence properties have been demonstrated, particularly
for model systems which would present considerable difficulties for standard cubic-
scaling, norm-conserving pseudopotential approaches. In particular, for systems
containing transition metal ions, it is considerably easier to construct highly-
accurate transferrable potentials which require only relatively low cutoff energies.
Its scaling with respect to number of atoms and number of parallel cores has been
demonstrated for large inorganic systems. In the other works discussed which utilise
this methodology, it has been enabled production calculations of properties of systems
up to 2000 atoms. The combination of ONETEP LS-DFT with the PAW approach
thus shows considerable promise for future nanomaterials simulations.
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