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GEOMETRIC STRUCTURES, GROMOV NORM AND

KODAIRA DIMENSIONS

WEIYI ZHANG

Abstract. We define the Kodaira dimension for 3-dimensional mani-
folds through Thurston’s eight geometries, along with a classification in
terms of this Kodaira dimension. We show this is compatible with other
existing Kodaira dimensions and the partial order defined by non-zero
degree maps. For higher dimensions, we explore the relations of geomet-
ric structures and mapping orders with various Kodaira dimensions and
other invariants. Especially, we show that a closed geometric 4-manifold
has nonvanishing Gromov norm if and only if it has geometry H2 ×H2,
H2(C) or H4.
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2 WEIYI ZHANG

1. Introduction

Complex Kodaira dimension κh(M,J) provides a very successful classifi-
cation scheme for complex manifolds. This notion is generalized by several
authors (c.f. [31, 39, 40, 26, 27]) to symplectic manifolds, especially of di-
mension two and four. In these two dimensions, this symplectic Kodaira
dimension is independent of the choice of symplectic structures [31]. In
other words, it is a smooth invariant of the manifold which is thus denoted
by κs(M). In dimension four, the smaller the symplectic Kodaira dimension,
the more we know. Symplectic 4-manifolds with κs = −∞ are diffeomor-
phic to rational or ruled surfaces [36]. When κs = 0, all known examples
are K3 surface, Enrique surface and T 2 bundles over T 2. Moreover, it is
shown in [31] that a symplectic manifold with κs = 0 has the same homo-
logical invariants as one of the manifolds listed above. When κs = 1 or 2, no
classification is possible since symplectic manifolds in both categories could
admit arbitrary finitely presented group as their fundamental group [19].

In [9], the authors prove that complex and symplectic Kodaira dimensions
are compatible with each other. More precisely, when a 4-manifoldM admits
at the same time both complex and symplectic structures (but the structures
are not necessarily compatible with each other), then κs(M) = κh(M,J). In
[35], a general framework of “additivity of Kodaira dimension” is provided
to further understand the compatibility of various Kodaira dimensions in
possibly different dimensions. In particular, it is shown that the Kodaira
dimensions are additive for fiber bundles, Lefschetz fibrations and coverings.

Higher dimensional generalizations of Kodaira dimension, e.g. symplectic
Kodaira dimension in dimensions six or higher, are less understood except
for a proposed definition in [33]. Like complex Kodaira dimension, it will no
longer be a smooth invariant. Hence, the study of this notion in higher di-
mensions will be associated to the study of deformation classes of symplectic
structures and symplectic birational geometry.

As suggested by the additivity framework, dimension three should also at-
tach certain counterpart of Kodaira dimension. In this paper, we give a def-
inition of Kodaira dimension κt(M) in dimension three through Thurston’s
eight 3-dimensional geometries and the Geometrization Theorem. It takes
value from −∞, 0, 1 or 3

2 . The half integer 3
2 is a new phenomenon, since

complex or symplectic Kodaira dimension only takes value from integers.
Certain classification with respect to κt(M) is given. This notion is then
discussed in the framework of “additivity of Kodaira dimension”. In this
sense, it is compatible with the complex Kodaira dimension and symplec-
tic Kodaira dimension in dimension 4. Remarkably, we show that the 3-
dimensional Kodaira dimension is compatible with the partial order defined
by non-zero degree maps.

Theorem 1.1. If f : M3 −→ N3 is a non-zero degree map, then κt(M) ≥
κt(N).

Evidently, the theorem implies
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Corollary 1.2. If M3 and N3 are equivalent with respect to nonzero degree
maps, then κt(M) = κt(N).

This result could also be viewed as the first step towards a relative ver-
sion of 3-dimensional Kodaira dimension as what we did for 4-dimensional
symplectic manifolds in [35].

The Gromov norm (or simplicial volume) is a homotopy invariant of ori-
ented closed manifolds which is introduced by Gromov in [20]. It is defined
by minimizing the sum of the absolute values of the coefficients over all
singular chains representing the fundamental class. A remarkable fact in
dimension three is that a closed geometric 3-manifold has nonzero Gromov
norm if and only if it is hyperbolic.

There are nineteen 4-dimensional geometries, which were classified by
Filipkiewicz [14]. As in dimension three, we divide the nineteen geometries
into 4 categories: −∞, 0, 1 and 2, corresponding to the 4 possible values
of Kodaira dimensions of 4-manifolds. We call this number the Kodaira
dimension κg of geometric 4-manifolds.

We give structural description of geometric manifolds with κg = 1 (Propo-
sition 4.3 and Theorem 4.4). Especially, we show

Theorem 1.3. Any closed geometric 4-manifold with geometry H2 × E2,

S̃L2 × E or H3 × E admits a foliation by geodesic circles.

Usually people expect, as suggested by Ricci flow, that 4-manifolds are
glued together from Einstein manifolds and collapsed pieces. However, by
the Hitchin-Thorpe theorem, complex surfaces or symplectic 4-manifolds
with Kodaira dimension 1 do not admit any Einstein metric. Hence, Propo-
sition 4.3 and Theorem 4.4 describe “collapsed pieces” in Kodaria dimension
1.

Theorem 1.3 implies the following fact which identifies closed geometric
4-manifolds with vanishing Gromov norm.

Corollary 1.4. A closed geometric 4-manifold has nonzero Gromov norm
if and only if it has geometry H4, H2 ×H2 or H2(C).

The non-vanishing part of the above corollary is due to [25, 5, 20]. After
posting this paper, the author was kindly informed by Pablo Suárez-Serrato
that the Corollary 1.4 has been obtained by him in [52]. Actually, [52] also
establishes other equivalence conditions. Especially, it shows that a closed
geometric 4-manifold not modeled on H4, H2 × H2 or H2(C) if and only if
it admits an F-structure in the sense of Cheeger-Gromov [8], which implies
Gromov norm zero by [8, 44]. Theorem 4 in [52] claims the statement of

Theorem 1.3 for S̃L2 × E and H3 × E. However, it does not give a proof of
the essential fact that the natural foliation by lines descend to a foliation
by circles when the quotient manifold is closed. Thus the argument in [52]
is incomplete. In fact, the same issue for 3-manifolds is treated carefully in
[51].
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For dimensions greater than or equal to four, we also explore the map-
ping orders defined by maps respecting various structures, e.g. complex,
symplectic or J-holomorphic. In the spirit of Theorem 1.1, we then dis-
cuss the relations of these mapping orders with Kodaira dimensions and
other invariants associated to different structures, e.g. the Gromov norm,
topological entropy, J-(anti)-invariant cohomology etc.. Several structural
properties of non-zero degree maps and degree one maps are discussed along
this line. Various questions are raised during the discussions.

This paper is expanded from a chapter of the author’s thesis [61]. A
previous version was titled Geometric Structures and Kodaira Dimensions.
We thank Tian-Jun Li for his great interest and constant encouragement for
this work from a very early stage. The author is grateful to Claude LeBrun,
Yi Liu, Pablo Suárez-Serrato, Rafael Torres and Yunhui Wu for their very
useful comments. During the preparation of the work, the author is partially
supported by AMS-Simons travel grant and EPSRC grant EP/N002601/1.
Part of the paper was written during the author’s visit to Institut des Hautes
Études Scientifiques. We hereby thank IHES for providing stimulating envi-
ronment. Finally, we would like to express my deep gratitude to the referees
for careful reading and very helpful suggestions which improve the paper
greatly.

Unless it says specifically otherwise, our objects are connected closed ori-
ented manifolds.

2. Preliminaries

In this section, we will recall the definitions and basic properties of several
important notions used in the paper.

2.1. Kodaira dimensions. We mentioned in the introduction that for
complex manifolds, sympletic 4-manifolds and Lefschetz fibrations for 4-
manifolds, we also have suitable definitions of Kodaira dimensions. Let us
first recall the definitions.

Definition 2.1. Suppose (M,J) is a complex manifold of real dimension
2m. The holomorphic Kodaira dimension κh(M,J) is defined as follows:

κh(M,J) =


−∞ if Pl(M,J) = 0 for all l ≥ 1,

0 if Pl(M,J) ∈ {0, 1}, but 6≡ 0 for all l ≥ 1,
k if Pl(M,J) ∼ clk; c > 0.

Here Pl(M,J) is the l-th plurigenus of the complex manifold (M,J) de-

fined by Pl(M,J) = h0(K⊗lJ ), with KJ the canonical bundle of (M,J).

Definition 2.2. For a minimal symplectic 4-manifold (M4, ω) with sym-
plectic canonical class Kω, the Kodaira dimension of (M4, ω) is defined in
the following way:



GEOMETRIC STRUCTURES, GROMOV NORM AND KODAIRA DIMENSIONS 5

κs(M4, ω) =


−∞ if Kω · [ω] < 0 or Kω ·Kω < 0,

0 if Kω · [ω] = 0 and Kω ·Kω = 0,

1 if Kω · [ω] > 0 and Kω ·Kω = 0,

2 if Kω · [ω] > 0 and Kω ·Kω > 0.

The Kodaira dimension of a non-minimal manifold is defined to be that
of any of its minimal models.

Here Kω is defined as the first Chern class of the cotangent bundle for
any almost complex structure compatible with ω.

LeBrun [26, 27, 28] has studied the relations between the Yamabe invari-
ant and Kodaira dimensions. Especially, he proposed a definition of general
type for arbitrary 4-manifolds in [28]: namely, when the Yamabe invariant
is negative. Recall that the Yamabe invariant is defined as

Y (M) = sup
[ĝ]∈C

inf
g∈[ĝ]

∫
M
sgdVg,

where g is a Riemannian metric on M , sg is the scalar curvature of g, and
C is the set of conformal classes on M . When Y (M) ≤ 0, the invariant
is simply the supremum of the scalar curvatures of unit-volume constant-
scalar-curvature metrics on M . There is an interesting question of LeBrun:
if M4 admits a symplectic structure and Y (M4) < 0, is κs(M4) = 2? It
is clear that, for minimal M4, κs(M4) = 2 would imply Y (M4) < 0 since

Y (M) ≤ −4π
√

2K2
M when the Seiberg-Witten invariant is nonzero and

K2
M ≥ 0 (see e.g. [26]). On the other hand, the answer to LeBrun’s question

is positive for Kähler surfaces [27].
Finally, let us recall that the Kodaira dimension κl(g, h, n) of Lefschetz

fibrations defined in [9]. Here g and h denote the fiber and base genus of a
Lefschetz fibration and n is the number of singular fibers.

Definition 2.3. Given a relative minimal (g, h, n) Lefschetz fibration with
h ≥ 1, define the Kodaira dimension κl(g, h, n) as follows:

κl(g, h, n) =


−∞ if g = 0,

0 if (g, h, n) = (1, 1, 0),

1 if (g, h) = (1,≥ 2) or (g, h, n) = (1, 1, > 0) or (≥ 2, 1, 0),

2 if (g, h) ≥ (2, 2) or (g, h, n) = (≥ 2, 1,≥ 1).

The Kodaira dimension of a non-minimal Lefschetz fibration with h ≥ 1
is defined to be that of its minimal models.

Here, a Lefschetz fibration is called relative minimal if no fiber contains
a sphere of self-intersection −1.

The three Kodaira dimensions κh, κs, κl are compatible with each other.
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2.2. Geometric structures. Let us recall the definition of a geometry
structure a la Thurston. A model geometry is a simply connected smooth
manifold X together with a transitive action of a Lie group G on X with
compact stabilizers. A model geometry is called maximal if G is maximal
among groups acting smoothly and transitively on X with compact stabi-
lizers. Sometimes this condition is included in the definition of a model
geometry. A geometric structure on a manifold M is a diffeomorphism from
M to X/Γ for some model geometry X, where Γ is a discrete subgroup of G
acting freely on X. If a given manifold admits a geometric structure, then
it admits one whose model is maximal. In other words, different geometries
are distinguished from their fundamental groups. In this paper, a geometry
means a maximal model geometry such that at least one model X/Γ has
finite volume.

There is a unique geometry in dimension one, that of the Euclidean line
E1 (or sometimes denoted by R). There are three geometries in dimension
2: the spherical geometry S2, the Euclidean geometry E2 and the hyperbolic
geometry H2.

In dimension three we have the following eight maximal geometric struc-
tures:

(1) Spherical geometry S3;
(2) The geometry of S2 × E;
(3) Euclidean geometry E3;
(4) Nil geometry Nil;
(5) Sol geometry Sol;
(6) The geometry of H2 × E;

(7) The geometry S̃L2(R);
(8) Hyperbolic geometry H3.

Here S̃L2(R) is the universal cover of PSL2(R), the unit tangent bundle
of H2. The spherical geometry S3 could also be viewed as the double cover
of the unit tangent bundle of S2. The Nilpotent group is the group of 3× 3
upper triangular matrices of the form

B =

1 b c
0 1 a
0 0 1


The solvable group Sol = R2 oφ R, where φ(t)(x, y) = (etx, e−ty).

For the application in next section, we divide the eight Thurston geome-
tries into four categories:

−∞ : S3 and S2 × E;
0 : E3, Nil and Sol;

1 : H2 × E, S̃L2(R);
3
2 : H3.
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On the other hand, we also have 19 geometries in dimension 4 (see [14]).
As in dimension 3, we separate the 19 geometries into 4 categories:

−∞ : P2(C), S4, S3 × E, S2 × S2, S2 × E2, S2 ×H2, Sol40 and Sol41 ;
0 : E4, Nil4, Nil3 × E and Sol4m,n(including Sol3 × E);

1 : H2 × E2, S̃L2 × E, H3 × E and F 4;
2 : H2(C), H2 ×H2 and H4.

Let us recall the definition of non-product geometries in the list. First, S4,
H4, P2(C) and H2(C) = SU(2, 1)/S(U(2)×U(1)) are Riemannian symmetric
spaces.

Next, nilpotent Lie groups and solvable Lie groups are realized by semidi-
rect product: Nil4 = R3 oU R, Sol4m,n = R3 oTm,n R. Here U(t) = exp(tB)
and Tm,n(t) = exp(tCm,n) with

B =

0 1 0
0 0 1
0 0 0

 , Cm,n =

a 0 0
0 b 0
0 0 c


where ea > eb > ec are roots of λ3 −mλ2 + nλ − 1 = 0 with m,n positive
integers. Especially, a > b > c are real and a + b + c = 0. If m = n, then
b = 0 and Sol4m,n = Sol3 × E.

When there are two equal roots for λ3 − mλ2 + nλ − 1 = 0, i.e. when
m2n2 + 18mn = 4(m3 + n3) + 27, the geometry is denoted by Sol40. There
is another solvable group Sol41 which is represented as a matrix group

B =

1 β γ
0 a α
0 0 1

 , a, α, β, γ ∈ R, a > 0

Finally we have the geometry F 4 with isometry group R2oSL(2,R) with
the natural action of SL(2,R) on R2. The geometry F 4 is the only geometry
in the list to admit no compact model (although, by definition of geometry,
we have some models with finite volume). However, it does admit complex
structures and even Kähler structures.

In [59], Wall studies the relations between complex structures and the
geometries. In summary, the geometries

S4,H4,H3 × E, Nil4, Sol4m,n
do not admit a complex structure compatible with the geometric structure.
In the remaining cases except Sol41, the complex structure on the maximal
relevant geometry is unique. For Sol41 we have two complex structures,
denoted by Sol41 and Sol′41 . Among those admitting complex structures, the
geometries

S3 × E, Sol40, Sol41, Sol′41 , Nil3 × E, S̃L2 × E
admit no compatible Kähler structures. The first four are in Class VII
of Kodaira’s list of complex surfaces. The remaining two are in Class VI.
A compact model for Nil3 × E is the so-called Kodaira-Thurston manifold.
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All the remaining geometries admit compatible Kähler structures. Moreover,
the Kodaira dimension of these Kähler structures is the same as the category
number of the corresponding geometric structures.

2.3. Gromov norm. The Gromov norm, or sometimes called the simplicial
volume, is a norm on the homology (with real coefficients) given by minimiz-
ing the sum of the absolute values of the coefficients over all singular chains
representing a cycle. The Gromov norm ||M || of the manifold M is the Gro-
mov norm of the fundamental class. More precisely, let | · |1 : Ck(M ;R)→ R
be the l1 norm on real singular chains: for z =

∑
ciσi ∈ Ck(M ;R),

|z|1 :=
∑
|ci|.

Then the Gromov norm is

||M || := inf{|z|1|[z] = [M ]} ∈ R≥0.

Let us summarize several fundamental properties of Gromov norm that
will be used in the paper. The first is the gluing result in [20], which says
that the Gromov norm of 3-manifolds is additive for connected sums and
gluing along incompressible tori. In particular, it implies a 3-manifold has
vanishing Gromov norm if and only if this is a graph manifold.

The second follows directly from the definition. Let f : M → N be a map
of oriented closed connected manifolds of the same dimension, then

||M || ≥ | deg f | · ||N ||.

If f is a covering map, then the equality holds. Because homotopy equiva-
lences of oriented closed connected manifolds have degree ±1, it follows that
Gromov norm is a homotopy invariant.

Next, we recall some vanishing properties. First, any manifolds admitting
a self-map f of |deg f | > 1 have vanishing Gromov norm. Second, any
oriented closed connected smooth manifold that admits a non-trivial S1-
action has vanishing Gromov norm [60]. Third, the Gromov norm of oriented
closed connected manifolds with amenable fundamental group is zero [20].

3. Kodaira dimension of 3-manifolds

This section focuses on dimension 3. There are three types of results,
as divided by subsections, which also play as stereotype for results in later
sections. The first subsection gives the definition of the Kodaira dimen-
sion for 3-manifolds in terms of geometric structures. It takes value from
−∞, 0, 1 and 1.5. Classification is given for manifolds with Kodaira di-
mension −∞ and 0. In the second subsection, we show that the Kodaira
dimension for 3-manifolds is compatible with the mapping order given by
nonzero degree maps. The third section is on the compatibility of this new
Kodaira dimension with complex and symplectic Kodaira dimensions, in the
sense of “additivity” introduced in [35]. These results motivate questions in
symplectic and complex geometry.
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3.1. Geometric structures and Kodaira dimension of 3-manifolds.
We start with the discussion of the geometrization theorem, which says that
every closed 3-manifold can be decomposed uniquely into pieces that each
has one of Thurston’s eight geometric structures.

The first step of the decomposition is the prime decomposition, the exis-
tence and uniqueness is due to Kneser and Milnor respectively.

Theorem 3.1. Every compact, orientable 3-manifold can be decomposed
into the connected sum of a unique (finite) collection of prime 3-manifolds.

This reduces the study further decomposition to prime manifolds. The
geometrization theorem was conjectured by Thurston and finally proved by
Perelman using Hamilton’s Ricci flow [46, 47, 48] (see also [6, 24, 41]).

Theorem 3.2. Every oriented prime closed 3-manifold can be cut along
tori, so that the interior of each of the resulting manifolds has a geometric
structure with finite volume.

Notice that there is a unique minimal way of cutting an irreducible ori-
ented 3-manifold along tori into pieces that are Seifert manifolds or atoroidal
called the JSJ decomposition. It is not quite the same as the decomposition
in the above theorem, because some of the pieces in the JSJ decomposi-
tion might not have finite volume geometric structures. Moreover, there are
many inequivalent cuttings of Theorem 3.2 depending on the initial metric
to start the Ricci flow.

Given a 3-manifold M3, we first decompose it into prime pieces and then
further exploit a toroidal decomposition for each prime summand, such that
at the end each piece admits one of the eight geometric structures (recalled
in Section 2.2) with finite volume. By Theorem 3.1, the decomposition is
unique. We call this a T -decomposition. For example, RP 3#RP 3 admits
a geometric structure of type S2 × E. But in this paper, we should first
decompose it into two RP 3, then these two prime pieces admit spherical
geometry.

We are ready to give the following definition of Kodaira dimension of
3-manifolds:

Definition 3.3. For an oriented 3-dimensional manifold M3, we define the
Kodaira dimension κt(M3) as follows:

(1) κt(M3) = −∞ if for any T -decomposition, each piece has geometric
type in category −∞;

(2) κt(M3) = 0 if for any T -decomposition, we have at least a piece with
geometry type in category 0, but no piece has type in category 1 or
3
2 ;

(3) κt(M3) = 1 if for any T -decomposition, we have at least one piece
in category 1, but no piece has type in category 3

2 .

(4) κt(M3) = 3
2 if for any T -decomposition, we have at least one hyper-

bolic piece.
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For non-orientable M , we define κt(M) to be that of its oriented double

cover M̃ .
It is worth noting that κt is not automatically well-defined since the de-

composition in Theorem 3.2 might not be unique. In fact, depending on
the choice of the initial metric, the Ricci flow will cut up a manifold into
geometric pieces in many inequivalent ways.

Before showing the Kodaira dimension κt(M3) is well-defined, let us recall
an important result of Thurston (see Theorem 4.7.10 of [56]), which is used
several times throughout the paper.

Theorem 3.4 (Thurston). Non-closed 3-dimensional geometric manifolds
with finite volume exist only for geometries in category 1 or 3

2 , i.e. H3,

H2 × E and S̃L2(R).

Recall that the Gromov norm is additive when gluing along tori. This fact
implies that the Gromov norm of a 3-manifold is proportional to the sum
of the volume of the hyperbolic pieces under a geometric decomposition. In
particular, a 3-manifold has zero Gromov norm if and only if this is a graph
manifold. In other words, the manifold with κt = 3

2 is characterized by the
non-vanishing of the Gromov norm.

We are ready to show that Definition 3.3 is well-defined.

Theorem 3.5. The 3-dimensional Kodaira dimension κt is well-defined.

Proof. For a manifold M3, if we have a decomposition with every piece from
category −∞, then by Theorem 3.4, there are no toroidal decompositions.
Because the prime decomposition is unique, then we know that the case
κt = −∞ is well-defined.

Similarly, if we have a decomposition with at least one piece from category
0, but no piece from category 1, then by Theorem 3.4, there are no toroidal
decompositions. Because the prime decomposition is unique, then we know
that the case κt = 0 is well-defined.

Moreover, M3 has a hyperbolic piece in a T -decomposition if and only
if it has non-vanishing Gromov norm. Hence the the case κt = 3

2 is also
well-defined.

Finally, the case κt = 1 is just the complementary of cases κt = 3
2 , κt = 0

and κt = −∞.
Hence, Definition 3.3 is well-defined. �

Furthermore, we can classify the manifolds with κt = −∞ or 0.

Proposition 3.6. Let M3 be a 3-dimensional manifold with κt(M3) = −∞
or 0. Then M = (M1#M2# · · ·#Mn), where each Mi is prime and of the
following types:

(1) spherical, i.e. it has a Riemannian metric of constant positive sec-
tional curvature;

(2) S2 × S1;
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(3) nontrivial S2 bundle over S1;
(4) Seifert fibrations with zero orbifold Euler characteristic;
(5) the mapping torus of an Anosov map of the 2-torus or quotient of

these by groups of order at most 8.

Moreover, if κt(M3) = −∞, then each Mi is of type (1)−(3). If κt(M3) =
0, then at least one Mi is of type (4) or (5).

Proof. We first decompose M into prime manifolds. Then we decompose
those prime ones to pieces of finite volume with geometries in category −∞
and 0. By Theorem 3.4, the finite volume geometric pieces with structures
in category −∞ or 0 are compact without boundary. Hence we only have
prime decompositions.

When κt(M3) = −∞, each Mi has If some geometric piece with finite
volume has κt = −∞. For spherical geometry S3, by elliptization conjecture
which is a corollary of Theorem 3.2, it has a Riemannian metric of constant
positive sectional curvature. If the geometry is S2 × E, then it is (2) or (3).

When κt = 0, we have three more geometries: E3, Nil, Sol. Euclidean and
Nil are Seifert fiber spaces with orbifold Euler number 0. Compact manifolds
with Sol geometry are either T 2 bundles over S1 with monodromy of Anosov
type or quotient of these by groups of order at most 8. These correspond to
the last two types listed in the statement. �

Remark 3.7. There are two more non-orientable prime 3-manifolds with
the geometry in category −∞ and 0: RP 2 × S1 and the mapping torus of
the antipode map of S2, which is the non-orientable fiber bundle of S2 over
S1.

Remark 3.8. We would like to thank an anonymous referee making the
suggestion of distinguishing H3 by assigning 3

2 to it in Definition 3.3. In
the previous versions of the paper, we define the Kodaira dimension of a 3-
manifold as the integer part of our current κt. For convenience, we denote
it by κtt := [κt] where [k] means the greatest integer no greater than k. In
other words, the manifolds with κt(M) = 1 or 3

2 are all set to have κtt = 1.
This version of Kodaira dimension is also well-defined and all the main
properties, like Theorem 3.11, still hold.

Moreover, as suggested by Tian-Jun Li, we could have the following nu-
merical description of κtt for irreducible manifolds. Let vb1(M) be the supre-

mum of b1(M̃) among all finite covers M̃ . Then at least for irreducible 3-
manifolds, κtt = −∞ when vb1 = 0, and κtt = 0 when vb1 is finite and
positive, and κtt = 1 when vb1 is infinite. This follows immediately from
Agol’s resolution of virtual Haken conjecture. By Theorem 3.4, It is easy to
see that this description also works for a general 3-manifold if we assume
there are no pieces of S2 × E geometry. There are 4 closed manifolds of
S2 × E geometry: two prime but not irreducible, one not prime, one not
orientable.
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The main reason we take the current definition is the compatibility with
higher dimensional geometric manifolds. See Remark 3.14.

3.2. Nonzero degree maps. In this section, we would like to discuss how
κt changes under non-zero degree maps.

We start with showing H3 is the “largest” geometry among the eight
under non-zero degree maps.

Lemma 3.9. Suppose f : M3 −→ N3 is a non-zero degree map. If at least
one of the geometric pieces for N has geometry H3, then at least one of the
geometric pieces for M is hyperbolic, i.e. κt(M) = 3

2 .

Proof. Since N has a hyperbolic piece, ||N || > 0. Then by the definition of
Gromov norm, ||M || ≥ deg(f) · ||N || > 0. Hence M also has a hyperbolic
piece. �

In general, we think that the Thurston norm and Gabai’s result on taut
foliation should be useful for a version of Lemma 3.9 for other geometries.

The next theorem is the first step towards a definition of the relative
Kodaira dimension of 3-manifolds. We will need the following lemma (see
for example Lemma 1.2 in [50]).

Lemma 3.10. If there is a non-zero degree map f : M → N , then f∗π1(M)
has finite index in π1(N).

Theorem 3.11. If f : M3 −→ N3 is a non-zero degree map, then κt(M) ≥
κt(N).

Proof. Since 3-manifolds are almost determined by their fundamental groups,
let us first recall that how the fundamental groups determine geometric man-
ifolds, see [51, 1]. In the following bullets, let L be a geometric manifold.

• π1(L) is finite if and only if the geometric structure on L is spherical.
• π1(L) is virtually cyclic but not finite if and only if the geometric

structure on L is S2 × E.
• π1(L) is virtually abelian but not virtually cyclic if and only if the

geometric structure on L is Euclidean.
• π1(L) is virtually nilpotent but not virtually abelian if and only if

the geometric structure on L is Nil.
• π1(L) is virtually solvable but not virtually nilpotent if and only if

the geometric structure on L is Sol.
• π1(L) has an infinite index normal cyclic subgroup but is not vir-

tually solvable if and only if the geometric structure on L is either

H2 × E or S̃L2(R).

Here a group G is said to be virtually having some property P if there
is a finite index subgroup H of G which has this property P . When G is
the fundamental group of a 3-manifold, then it is virtually solvable if and
only if it is solvable (e.g. Theorem 1.20 of [1]). We remark that when the
fundamental group is a virtually abelian/nilpotent/solvable group, it has
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an infinite index normal cyclic subgroup (e.g. Lemma 3.2 and the proof of
Theorem 4.17 in [51]).

Before continuing the proof, let us recall that a 3-manifold has Gromov
norm zero if and only if it is a graph manifold. When a graph manifold has
κt ≤ 0, then each irreducible piece in the prime decomposition is (closed
and) geometric. Especially, the fundamental group is the free product of
several groups of types we listed above, because the fundamental group of the
connected sum is the free product of the fundamental groups when dimension
is greater than two. However, for a general 3-manifold, its fundamental
group is the free product with amalgamation along torus or trivial group by
Theorem 3.2.

Let us first prove that when κt(M) = −∞, then κt(N) = −∞ as well.
In this case, π1(M) is the free product of several virtually cyclic groups Gi.
We denote a cyclic subgroup in Gi as Hi. Especially, any subgroup of the
free product of several virtually cyclic groups like π1(M) cannot contain
an infinite index normal cyclic subgroup. We prove it by contradiction. If
there is such a cyclic group C which is generated by an element from some
Gi, then any element a satisfying the property a−1Ca ⊂ C is contained in
Gi. This is because otherwise there will be a nontrivial relation involving
elements of Gi and of at least another Gj , which contradicts to the fact that
π1(M) is a free product of Gi. On the other hand, if C is generated by a
“mixed” element that is not in a single Gi. Without loss, we could assume
the generator of C cannot be written as a power of another element. Then
any element a satisfying the property a−1Ca ⊂ C is contained in C. By
Lemma 3.10, f∗(π1(M)) is of finite index in π1(N). Thus f∗(π1(M)) is the
free product of cyclic groups and of finite index in π1(N). Because f∗ is a
group homomorphism, any subgroup of f∗(π1(M)) also does not contain an
infinite index normal cyclic subgroup. So if π1(N) contains a subgroup G
with an infinite index normal cyclic subgroup C ′, then C ′′ = f∗(π1(M))∩C ′
is a normal subgroup of H = f∗(π1(M))∩G ≤ f∗(π1(M)) with infinite index
since H/C ′′ is of finite index in G/C ′. Moreover, the group C ′′ is a nontrivial
subgroup of f∗(π1(M)) since otherwise C ′ ·f∗(π1(M)) will be infinite distinct
cosets. Hence π1(N) also does not contain a subgroup with an infinite index
normal cyclic subgroup. In addition by Lemma 3.9, ||N || = 0 and hence N
has to be a graph manifold. If a group has a subgroup with an infinite index
normal cyclic subgroup, this subgroup will be preserved under free product
or free product with amalgamation along tori. Thus κt(N) = −∞.

Similarly when κt(M) = 0, π1(M) is the free product of several virtually
solvable groups. By the similar reasoning as above, any subgroup of the
free product of virtually solvable groups cannot contain an infinite index
normal cyclic subgroup which is not virtually solvable. There are still two
possibilities: when the cyclic group is contained in some (virtually solvable
group) Gi and when it is not. In the first case, the elements a such that
a−1Ca ⊂ C are contained in Gi. Hence any such subgroup containing an
infinite index normal cyclic subgroup is virtually solvable. In the second
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case, these elements a are exactly the centralizers of C and constitute a
cyclic group as well. Then by Lemma 3.10, π1(N) contains as a subgroup of
finite index f∗(π1(M)), which is the free product of several virtually solvable
groups as this property is preserved under group homomorphism. In addi-
tion, any subgroup of f∗(π1(M)) does not contain an infinite index normal
cyclic subgroup which is not solvable. By the same argument as in the case
κt(M) = −∞, so is π1(N). And by Lemma 3.9, ||N || = 0 and hence N has
to be a graph manifold. Thus κt(N) ≤ 0.

Finally, when κt(M) = 1, then ||M || = 0. By Lemma 3.9, we have
||N || = 0 as well. Hence κt(N) ≤ 1.

This completes our proof. �

Theorem 3.11 suggests a definition of relative Kodaira dimension of 3-
manifolds. When f is a degree k > 2 map between M and N , it can be
deformed to a branched covering whose branch locus is a link. Hence the
possible definition of relative Kodaira dimension has its own interests for
study, whenever the branched locus is non-empty.

By a result of Rong [50], we also know that a non-zero degree map between
Seifert manifolds with infinite π1 is homotopic to a fiber preserving pinch
followed by a fiber preserving branched covering. In this case, we can reduce
our situation to that of dimension 2, and get κt(M) ≥ κt(N) in turn.

3.3. Comparing with other Kodaira dimensions.

3.3.1. Additivity. We recall the definitions of Kodaira dimensions for com-
plex manifolds, sympletic 4-manifolds and Lefschetz fibrations for 4-manifolds
in Section 2.1. In this section, we will compare our Kodaira dimension κt

with these ones.
Now we are ready to compare these Kodaira dimensions with our κt (in

fact, with κtt = [κt]).

Proposition 3.12. [κt(M)] = κh(M3×S1) when M3×S1 admits a complex
structure. [κt(M)] = κl(M3×S1) when M3×S1 admits a Lefschetz fibration.
[κt(M)] = κs(M3×S1) when M3×S1 admits a symplectic structure. In all
these cases, the manifold M is a surface bundle over S1.

Proof. In [13], Etgü proved that when M×S1 admits a complex structure or
a Lefschetz fibration, M is a surface bundle over S1. Then from the genus of
the surfaces, we determine the Kodaira dimension: when the surface is S2,
T 2 or Σg (g ≥ 2) respectively, [κt] = −∞, 0 or 1 respectively by Definition

3.3. At the same time, κl = −∞, 0 or 1 respectively by Definition 2.3.
Furthermore, when M is a surface bundle over circle, M3 × S1 is a surface
bundle over torus. Thus by classification results on these manifolds in [9],
we also have [κt] = κh in this case.

When M3 × S1 admits a sympletic structure, then [κt] = κs is a conse-
quence of the Taubes conjecture proved by Friedl and Vidussi [15]. Their
theorem says that M3×S1 admits a sympletic structure if and only if M3 is
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a surface bundle over circle. Then the same argument as above shows that
[κt] = κs. �

Finally, let us discuss more on additivity in the sense of [35] up to di-
mension 4. Roughly speaking, we call the Kodaira dimension of a fibration
is additive, if the Kodaira dimension of the total space is the sum of the
Kodaira dimensions of the fiber and the base (might be in the relative sense
if the fibration is not a bundle). For convenience of discussion, we could also
define the topological Kodaira dimension κt for manifolds of dimension up
to 2.

The 2-dimensional Kodaira dimension is defined in the normal sense by
the sign of the Euler class. Namely, κt(S2) = −∞, κt(T 2) = 0 and κt(Σg) =
1 for g ≥ 2.

The only closed connected 0-dimensional manifold is a point, and the
only closed connected 1-dimensional manifold is diffeomorphic to a circle.
We define κt of them to be 0.

When dimension n is three (or a larger odd number), our Kodaira dimen-
sion could take value the half integers n

2 . Then we modify the additivity in
the following manner: [Kod(total)] = [Kod(fiber) + Kod(base)] where [k]
means the greatest integer no greater than k.

Bundles in dimension three contains three cases: covering spaces, circle
bundles over surface and surface bundles over circle. The covering map
preserves κt follows from the fundamental group description of geometric
structures in Theorem 3.11. The additivity of other two cases are both
straightforward to check by definition.

For dimension four, discussions in this section imply the additivity for
the product M3 × S1. The corresponding results of [15] for circle bundles
and mapping tori are further discussed in [16] and [32] respectively. For a
surface bundle over surface, when the base is a positive genus surface, the
additivity is established in [9]. When the base is S2, the bundle is either a
ruled surface or a Hopf surface; the latter case occurs when the fiber is T 2

and homologically trivial. Hence the additivity holds.

3.3.2. Symplectic 4-manifolds and complex manifolds. Motivated by the dis-
cussions in Section 3.1 and the next, we have the following question.

Question 3.13. (1) Let M be a smooth 2n-dimensional complex man-
ifold with nonvanishing Gromov norm. Is κh(M) = n?

(2) Let M be a smooth 4-dimensional symplectic manifold with nonvan-
ishing Gromov norm. Is κs(M) = 2?

If M is a Kähler surface, the question is positively answered by the result
of [45, 44]. Precisely, they showed that M admits an F-structure if and
only if the Kodaira dimension is different from 2 in [45]. On the other hand,
the existence of F-structure implies vanishing Gromov norm. Moreover, all
known examples of compact complex surfaces which are not of Kähler type
have F-structure and thus vanishing Gromov norm. In other words, the
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complex part of Question 3.13 for complex surfaces is reduced to answer the
following: Does every complex surface of Class VII have Gromov norm 0?

In general, if the answer is positive for M and N , so is the product
manifold M ×N since the Kodaira dimension is additive and

||M || · ||N || ≤ ||M ×N || ≤
(

dimM + dimN

dimM

)
· ||M || · ||N ||.

For the symplectic part, κs(M) = −∞ implies vanishing Gromov norm
since all these manifolds are rational or ruled surfaces which have amenable
fundamental groups. It is most interesting to know whether κs(M) = 0
would imply ||M || = 0.

Remark 3.14. The main reason we take the current definition of κt(M3)
instead of κtt(M3) is the compatibility of Kodaira dimensions for geomet-
ric manifolds, which is suggested by an anonymous referee. As suggested
by Question 3.13 and Theorem 4.7, one would like to expect the Kodaira
dimension of a closed 2n-manifold of non-zero Gromov norm to be n. Since
the product of two hyperbolic 3-manifolds has non-trivial Gromov norm, and
if we assume the additivity of the Kodaira dimensions, it would follow that
a hyperbolic 3-manifold should have Kodaira dimension 3

2 .

The following question is partially motivated by Theorem 3.11. We expect
the same conclusion is valid for symplectic 4-manifolds and (J, J ′) pseu-
doholomorphic maps (or symplectic maps) between them with respect to
symplectic Kodaira dimension.

Question 3.15. Suppose that (M1, ω1) and (M2, ω2) are symplectic 4-manifolds
and almost complex structures Ji are tamed by ωi. If f is a (J1, J2)-pseudo-
holomorphic map (i.e. f ◦ J1 = J2 ◦ f) of non-zero degree from (M1, ω1) to
(M2, ω2), is κs(M1, ω1) ≥ κs(M2, ω2)?

Recall that an almost complex structure J is tamed by a symplectic form
ω if ω(v, Jv) > 0 for any v 6= 0.

We could answer this question positively when κs(M1, ω1) = −∞.

Proposition 3.16. Under the assumptions of Question 3.15, if κs(M1, ω1) =
−∞, then κs(M2, ω2) = −∞.

Proof. In this situation, M1 could be covered by J1-holomorphic spheres
in certain homology class A. As f is onto M2, not all these spheres will
be contracted under f . This implies the class f∗A is non-trivial. After
composing f : M1 → M2, any J1-holomorphic sphere S2 → M1 in class
A will be a J2-holomorphic sphere in class f∗A. All these J2-holomorphic
spheres will cover M2 since f is surjective. This implies that the Kodaira
dimension κs(M2) = −∞ as well. �
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4. Kodaira dimensions, geometric structures, and the mapping
order for 4-manifolds

This section generalizes ideas in Section 3 to dimension 4. First, we
define Kodaira dimension for geometric 4-manifolds and establish structural
results. Then we discuss the mapping order given by non-zero degree maps
in topological, smooth, complex, or symplectic category.

4.1. Kodaira dimension κg of geometric 4-manifolds. As we have
seen, there are Kodaira dimensions available for complex and symplectic 4-
manifolds. On the other hand, we also have 19 geometries in dimension 4. It
is natural to ask whether we could define Kodaira dimension for 4-manifolds,
at least for irreducible ones, through the 19 geometries. In dimension 4, we
do not have the decomposition theorem as in dimension 3. Hence we will
only focus on the 19 types of geometric manifolds.

We have divided 19 geometries into 4 categories in Section 2.2. This leads
to the following

Definition 4.1. Let M4 be a 4-dimensional geometric manifold. The Ko-
daira dimension κg(M) is defined to be the category number of M .

Let us collect some useful information for the hyperbolic geometry H3

extracted from [51]. We use the upper half 3-space model

R3
+ = {(x, y, z) ∈ R3|z > 0}

with the metric

ds2 =
1

z2
(dx2 + dy2 + dz2).

The isometry group is generated by reflections and an isometry is determined
by its restriction to the 2-sphere at infinity C ∪ {∞}, where the xy-plane is
identified with C.

The group of orientation preserving isometries of H3 can be identified
with the group of Möbius transformations PSL(2,C) of C ∪ {∞}. If we
identify the point (x, y, z) ∈ R3

+ with the quaternion x + yi+ zj, the 2× 2

complex matrix

(
a b
c d

)
acts on R3

+ by

w 7→ (aw + b)(cw + d)−1,

where w is a quaternion of the form x + yi + zj, z > 0. This yields all
orientation preserving isometries of H3. It follows that each orientation
preserving isometry of H3 fixes one or two points of the sphere at infinity.
There isometries are called parabolic and hyperbolic respectively. If α is an
isometry of H3, let fix(α) denote the set of points on the sphere at infinity
which are fixed by α.

Lemma 4.2 (Lemma 4.5 in [51]). (1) If α and β are two non-trivial
orientation preserving isometries of H3, then α and β commute if
and only if fix(α) = fix(β).
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(2) If α is a non-trivial orientation preserving isometry of H3, then the
group C(α) of all orientation preserving isometries which commute
with α is abelian and isomorphic to R2 or S1 × R.

We remark the orientation preserving isometry group of H2 can be iden-
tified with PSL(2,R). There are three types of orientation preserving isom-
etry: rotations, parabolics and hyperbolics. They are characterized by the
number of points, i.e. 0, 1 or 2, left fixed on the circle at infinity. Thus
similar results of Lemma 4.2 hold. For the second statement, C(α) is abelian
and is isomorphic to S1 if α is a rotation and isomorphic to R otherwise.

We have the following

Proposition 4.3. Let G be a discrete group of isometries of H3 × E which
acts freely and has quotient M . Then one of the following three statements
holds:

(1) the natural foliation of H3×E by lines descends to a foliation on M
by circles;

(2) the natural foliation of H3 × E by lines gives M the structure of a
line bundle over some hyperbolic 3-manifold;

(3) the natural foliation of H3 ×E by lines descends to a foliation of M
by lines in which each line has non-closed image in M . In this case,
G must by isomorphic to Z, Z× Z or the Klein bottle group.

Especially, in the last two cases M is not a closed manifold.

Proof. We identify the isometry group of H3 ×E with Isom(H3)× Isom(R).
As G is discrete, K = G ∩ Isom(R) is discrete and so must be 1, Z2, Z
or D(∞). As G acts freely, K is 1 or Z. Let Γ denote the image of the
projection G→ Isom(H3). Then we have the exact sequence

0→ K → G→ Γ→ 0.

In the case when K is infinite cyclic, each line {x} × E descends to a circle.
Hence M is foliated by circles. When K is trivial, then G ∼= Γ. If Γ is a
discrete group of isometries of H3, then the quotient would be a line bundle
over H3/Γ. For this case, the quotient is not closed.

When Γ is an indiscrete group of Isom(H3). Replacing G by a subgroup
of index two if necessary, we can suppose that Γ is orientation preserving.
We will now consider the projection G → Isom(E). Let L be the image of
the kernel under the isomorphism G→ Γ. L is a discrete group of isometries
of H3.

Suppose L is non-trivial. Conjugation of L by each element of Γ induces
an automorphism of L. As L is discrete, an element of Γ sufficiently close
to the identity must commute with L. Since Γ is not discrete, there must
be a non-trivial element of Γ which centralizes L. Now the centralizer of
any non-trivial element in Isom+(H3) = PSL(2,C) is always abelian, and
actually R × R or S1 × R, by Lemma 4.2. So it follows L is abelian. As L
is discrete and torsion free, L must be Z or Z× Z. On the other hand, Γ is
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indiscrete, hence Γ has a subgroup Γ1 of index at most two which centralizes
L. Since L is abelian, each element has the same fixed points set by Lemma
4.2. Again by the same lemma, each element in Γ1 has the same fixed points
set and thus Γ1 is abelian. If Γ1 consists of hyperbolic isometries there is a
unique geodesic l in H3 left invariant by Γ1. Let G1 be the subgroup of G
corresponding to Γ1. We see that G1 leaves invariant the plane l × R. As
this plane is isometric to Euclidean plane and G1 must act discretely on it,
we know G1 is Z or Z× Z.

If Γ1 consists of parabolic isometries, without loss we could assume the
common fixed point at infinite S2 is ∞. Hence Γ1 leaves invariant each
line x = y = const. Taking l to be one of these lines, same argument as
the above hyperbolic isometry case applies to complete the proof when L is
non-trivial.

When L is trivial, since the orientation preserving part of Isom(R) is
isomorphic to R. Hence G has a subgroup of index at most two which is
abelian. All the arguments above apply to show G1 is actually Z or Z× Z.
Especially, all these analysis imply that the quotient is not a closed manifold
if not foliated by S1. �

We could also give precise description of 4-manifolds of geometries H2×E2

and S̃L2 × E. Especially, we have the following result for closed geometric
4-manifolds with κg = 1.

Theorem 4.4. A closed geometric 4-manifold M with κg = 1 is foliated by
geodesic circles.

Proof. For geometries in category 1, since F 4 does not admit any closed
manifold model, we will focus on the remaining three. For H3 × E, the
statement follows from Proposition 4.3. We have two more cases.

1. H2 × E2:

For H2 × E2, its isometry group is identified with Isom(H2) × Isom(R2).
Hence K = G ∩ Isom(R2) is discrete and torsion free, so has to be 1, Z or
Z× Z. If K is non-trivial, then at least one line in E2 descends to a circle.
Hence the quotient manifolds is foliated by geodesic circles.

If K = 1, we know again G ∼= Γ where Γ is the image of the projection
G→ Isom(H2). If Γ is discrete, G cannot be cofinite since

vol(H2 × E2/G) = area(H2/Γ) · area(E2/K).

In fact, M is a 2-dimensional vector bundle over the hyperbolic surface
H2/Γ. If Γ is not discrete, we will show that G has a subgroup of finite
index isomorphic to Z, Z × Z or Z × Z × Z. The argument is similar to
that of Proposition 4.3. Let L be the image of the kernel of the projection
G → Isom(E2) under the isomorphism G → Γ. L is a discrete group of
isometries of H2. Suppose L is non-trivial first. As Γ is indiscrete, there
must be a non-trivial element of Γ which centralizes L. Now the centralizer
of any non-trivial element in PSL(2,R) is always abelian, hence L is Z since
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it is discrete and torsion free as well. Hence Γ has a subgroup Γ1 of index
at most two which centralizes L, and Γ1 is abelian. By the remark after
Lemma 4.2 for Isom(H2), Γ1 consists of hyperbolic or parabolic isometries
since L ∼= Z prevents the case of rotations. Moreover, whenever Γ1 consists
of hyperbolic isometries or parabolic isometries, there will be an Euclidean
space l × E2 ⊂ H2 × E2 left invariant by G1 and G1 must act discretely on
it. It follows that G1 is Z, Z× Z or Z× Z× Z.

If L is trivial, then G is identical to both Γ and its image under the
projection G→ Isom(E2), say F . If F is discrete, then it is clear that M is
an H2 bundle over the Euclidean surface E2/F .

Hence we could assume both F and Γ are not discrete. Recall the exact
sequence

0→ R2 → Isom(E2)→ O(2)→ 0.

Then J = F ∩ R2 is a normal subgroup of F .
Since translations with same length are in the same conjugacy class, if J

is not discrete, we could choose a discrete subgroup J ′ which is also normal
in F . Since J ′ is discrete and F is indiscrete, F has a subgroup F1 of index
at most two which centralizes J ′. Since the rotations and translations do not
commute, F1

∼= F1∩R2. In particular, this implies F1 and its corresponding
group Γ1 in Γ are abelian. There is an Euclidean plane (for rotations) or an
Euclidean 3-space (for hyperbolic or parabolic isometries) fixed by G1 which
acts discretely on it. Hence G1 is Z, Z× Z or Z× Z× Z. This finishes the
proof that closed H2 × E2 manifolds are foliated by circles.

2. S̃L2 × E:

For S̃L2×E geometry, first notice Isom(S̃L2×E) = Isom(S̃L2)×Isom(E).

Let us look at the image of G under the projection Isom(S̃L2 × E) →
Isom(E). If the kernel K = G ∩ Isom(S̃L2) is trivial, then the image has
to be indiscrete. In this case, G1 is an abelian group. Then we look at

the other projection Isom(S̃L2 × E) → Isom(S̃L2). If the kernel is non-
trivial, the quotient manifold is foliated by geodesic circles. Then G is
identified with its image under this projection. We further project it un-

der Isom(S̃L2) → Isom(H2). Again, if the kernel is nontrivial, it is an
S1 manifold. Hence we could assume G is identified with its image un-
der the composition of the above two projections. An abelian subgroup of
PSL(2,R) = Isom(H2) fixes a line l. Hence G1 leaves invariant and acts
discretely on the 3-space l×E2. It follows that G1 is Z, Z×Z or Z×Z×Z.

If the kernel K is nontrivial, it is discrete in Isom(S̃L2). There are three

cases by the classification of S̃L2 geometry. In the first case, the correspond-
ing 3-manifold is a line bundle over a non-closed surface. In this scenario,
the line bundle structure would be inherited by the 4-manifold. Hence, the
quotient is a non-closed manifold. In the second case, the 3-manifold is a
Seifert fibration. In this situation, the quotient 4-manifold would also be
S1-foliated.
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We are left with the case when K ∩E is trivial and the image of K under

Isom(S̃L2) → Isom(H2) is indiscrete. In this case, K is Z, Z × Z or the
Klein bottle group. Especially, we notice that G has a subgroup G1 of index
at most two such that it has discrete abelian normal subgroup H which is
isomorphic to Z or Z× Z.

Then let us look at the image of G under the composition of the projec-
tions

Isom(S̃L2 × E)→ Isom(S̃L2)→ Isom(H2).

If the kernel is nontrivial, then the quotient 4-manifold is S1-foliated since
the kernel in each step has to be infinite cyclic. Hence we could assume G is
identified with its image Γ in PSL(2,R) = Isom(H2). Since Γ is indiscrete
and it has nontrivial discrete abelian normal subgroup H, Γ has a subgroup
Γ1 of index at most two which centralizes H. Hence by Lemma 4.2, Γ1 is
abelian. Then as we argued in Proposition 4.3, G1 leaves invariant a 3-space
l × E2. Since this 3-space is isometric to the Euclidean space and G1 acts
discretely on it, it follows G1 is Z, Z× Z or Z× Z× Z. In summary, either
our quotient manifold is not closed or it is foliated by geodesic circles. �

Remark 4.5. By [58], we know that if M admits a Riemannian metric with
respect to which all the circles are geodesic, then a double cover of M admits
a non trivial smooth S1 action. In particular, it implies M has vanishing
Gromov norm.

It is interesting to compare Theorem 4.4 with complex surfaces with Ko-
daira dimension 1. It is well known that all these complex surfaces are
elliptic surfaces. While, Theorem 4.4 implies closed geometric manifolds
with κg = 1 also admit some fibration structures with Calabi-Yau fibers.

Theorem 4.4 also sits well in a broader setting. As suggested by the
solution of the geometrization conjecture by Ricci flow, building blocks of 4-
manifolds should consist of Einstein manifolds and collapsed pieces. Einstein
4-manifolds are far more complicated than Einstein 3-manifolds. However,
we have the following Hitchin-Thorpe theorem [21, 54].

Theorem 4.6 (Hitchin-Thorpe). Any compact oriented Einstein 4-manifold
(M, g) satisfies 2χ+3σ ≥ 0. The equality holds if and only if (M, g) is finitely
covered by a Calabi-Yau K3 surface or by a 4-torus.

Notice when M is almost complex with canonical class K, then the in-
equality reads as K2 ≥ 0. Hence it implies there are no (minimal or non-
minimal) symplectic or complex Einstein 4-manifolds of Kodaira dimension
1. Hence very likely, geometric manifolds with κg = 1 are those “collapsed
pieces” building blocks of Kodaira dimension 1. Our Proposition 4.3 and
Theorem 4.4 describes these pieces.

Theorem 4.4 enables us to have the following characterization of closed
geometric 4-manifolds of maximal Kodaira dimension by Gromov norm.

Theorem 4.7. A closed geometric 4-manifold M has nonzero Gromov norm
if and only if κg(M) = 2.
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Proof. First we show that for any geometric manifold with κg = 2, the
Gromov norm is non-vanishing. This is because if M is a closed oriented
locally symmetric space of non-compact type, then ||M || > 0 [25]. The
examples include the three geometries with κg = 2. Especially, if M is
hyperbolic

||M || = 1

v4
Vol(M),

where v4 is the maximal volume of ideal geodesic triangles. If M has geom-
etry H2 ×H2 [5],

||M || = 3

2π2
Vol(M).

We then want to show that the Gromov norm vanishes for geometric 4-
manifolds in the other three categories. Closed manifolds of geometries E4,
Nil4, Nil3 × E, Sol40, Sol41 and Sol4m,n would have solvable fundamental
group. The Gromov norm of such a closed manifold is zero since a solvable
group is in particularly amenable. For the geometric closed manifolds with
κg = −∞, if the geometry is P2(C), S4 or S2 × S2, then the fundamental
group is finite and thus amenable. This implies the Gromov norm is zero.
All the remaining with κg = −∞ have a factor of S2 or S3. Let G be the
discrete group of isometries of these geometries, then the original natural
foliation by 2-spheres or 3-spheres of each geometry is preserved by the
isometries. Hence any such geometric manifold would inherit a foliation
by 2 or 3 dimensional spherical geometries. Since spherical geometries in
dimension 2 or 3 admit nontrivial group actions, especially S1 actions, this
action would extend to the whole geometric manifold. Hence by [60], the
Gromov norm is zero.

For geometries with κg = 1, Theorem 4.4 shows closed geometric mani-
folds are foliated by geodesic circles which in turn implies Gromov norm 0
by Remark 4.5 or Proposition 3 of [52]. �

It is easy to see that κg is preserved under finite covering, since the ge-
ometry is preserved. Theorem 4.7 implies there is no non-zero degree map
from M to N such that κg(M) < 2 and κg(N) = 2. Recently, [42] shows
a similar result as Theorem 3.11 for closed geometric 4-manifold, i.e. κg is
monotone with respect to the existence of maps of non-zero degree.

We end this subsection by discussing the relations with symplectic struc-
tures. First, symplectic 4-manifolds with κs = −∞ are rational or ruled
surfaces. Hence, P2(C), S2 × S2, S2 × E2 and S2 × H2 in κg = −∞ admit
symplectic models. Meanwhile, S4, Sol40 and Sol41 and S3 × E does not ad-
mit any symplectic models. Geometries E4, Nil4, Nil3 × E and Sol3 × E
with κg = 0 admit symplectic models. They are realized by T 2 bundles
over T 2 [18]. All geometries with κg = 1 except F 4 also admit symplectic
structures. They are realized by surface bundles over torus. Finally, for
geometries with κg = 2, product of surfaces Σg ×Σh has geometry H2×H2,
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ball quotients have H2(C). However, it is conjectured that any closed hy-
perbolic 4-manifold would have all Seiberg-Witten invariants vanish, which
in particular implies it does not admit symplectic structures. Partial results
towards this conjecture were obtained in [30].

4.2. Remarks on mapping orders.

4.2.1. Partial orders by non-zero degree maps. In dimension two, orientable
surfaces are ordered by their genus, which is finer than Kodaira dimen-
sion. This order could also be viewed as introduced by maps between man-
ifolds. More precisely, there is a non-zero degree map from Σg to Σh if
and only if g ≥ h. Thus, we could introduce a partial ordered set (in
this case it is totally ordered). The elements are surfaces up to homo-
topy/homeomorphism/diffeomorphism. And we say M2 is larger than N2,
or M2 � N2, if there is a non-zero degree map from M2 to N2. Notice
that it does define an order because once M2 � N2, and N2 � M2, then
M2 ∼= N2.

This partial order could be generalized to higher dimensions. It is usually
called the Gromov partial order. However, there are several issues. Let us
first focus on closed orientable manifolds. First of all, it is very sensitive to
the category of maps we choose. We are interested in continuous or differen-
tiable maps, and sometimes may require to preserve the symplectic/complex
structures. This is not a problem when the dimension is three. In dimension
four, Duan and Wang [12] show that, when we are working on continuous
maps and topological manifolds, the simply connected 4-manifolds are or-
dered by their intersection forms. There are topological 4-manifolds not
admitting smooth structures. However, if we concentrate on smooth mani-
folds, then it does not really matter if we look at continuous maps or differ-
entiable map. This is because a continuous map between smooth manifolds
is homotopic to a differentiable one (c.f. [4] Proposition 17.8). At the same
time, degree is a homotopy invariant. In other words, the smooth non-zero
degree map cannot distinguish the exotic smooth structures. For example,
the exotic 7-spheres and the standard 7-sphere (smoothly) 1-dominate each
other, since we could find differentiable degree 1 maps (from either direction)
which is homotopic to homeomorphisms.

The second issue is this mapping “order” is not necessarily a partial order.
In other words, if we define that M and N are in the same equivalence class
when we have a non-zero degree map from M to N and a non-zero degree
map from N to M , then the equivalence classes are no longer manifolds
up to homotopy/homeomorphism/diffeomorphism, even in dimension three.
For example, S3 and the lens spaces L(p, q) are in the same equivalence
class because there is a quotient map from S3 to L(p, q), and we know that
any three manifold dominates S3. We are interested in determining the
manifolds in a given class. Lemma 3.10 is useful to deal with this issue.

The last but not the least, we have to restrict ourselves to irreducible
manifolds at least when dimension is four. Let us take a look at an example
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of LeBrun [29]. Suppose M is a (non-spin) complete intersection surface
of general type, and N = S2 × S2/Z2. We know that M#N have a de-
gree one map onto M by contracting the N portion in the direct sum to a
point. While on the other hand, the double cover of M#N is kCP 2#lCP 2.
Another more direct example is taking M#CP 2 = (k − 1)CP 2#lCP 2 and
looking at the degree one map from it to M . These examples imply that
this order would not be interesting if we include the reducible ones into our
objects. It only detects the size of the intersection form. This is not the
right order in our mind since kCP 2#lCP 2 should be among the simplest
ones by their topological types. Notice that any symplectic 4-manifolds and
complex surfaces are irreducible.

There are three facts worth noting for the mapping order(s). The first one
is that for any manifold Mn there is always a continuous non-zero degree
map onto Sn. Thus Sn is always the minimal one in the order. A fact
related to this is that any symplectic/complex 4-manifold could be realized
as a symplectic/complex ramified cover of CP 2. So CP 2 is the minimal
manifold in the symplectic/complex order. Another fact is the so called
Gromov hyperbolization. It says that for any manifold N , one can find a
hyperbolic manifold H(N), such that it maps onto N through a non-zero
degree map. In other words, hyperbolic manifold is large with respect to
the order.

Now let us assume our manifolds are smooth. Although the mapping
order defined using differentiable maps does not give more information than
that given by continuous maps, it indeed gives us richer structures when the
map is regarding some geometric structures. In a rougher scale, we expect
various Kodaira dimensions are compatible with this order, in the sense that
if M � N in a suitable category, then κ(M) ≥ κ(N) for Kodaira dimension
κ defined in the same category. The three facts mentioned in the previous
paragraph are evidences. We have shown in Theorem 3.11 that it is indeed
true for κt. It is also true for holomorphic Kodaira dimension (see Theorem
5.1). The corresponding statement for symplectic 4-manifolds is phrased in
Question 3.15.

4.2.2. Degree 1 maps. The degree 1 maps are self interesting and are studied
extensively in the literatures.

In dimension three, there is a good formulation of degree one maps us-
ing surgeries. First, a well known result says that any 3-manifold could be
constructed from S3 by a (±1) surgery along a link, each of whose compo-
nents are unknots (or equivalently we could do a sequence of surgeries along
unknots). A result of Boileau and Wang shows that any surgery along ho-
motopically trivial knot could be realized by a degree one map. Especially,
this gives a proof of the result that S3 is 1-dominated by any 3-manifolds.

Since surgeries on 3-manifolds correspond to attaching 2-handles on 4-
manifolds with boundary, it is natural to have a version of Boileau-Wang’s
result in this situation as well. Notice the degree of a proper map between
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compact manifolds with boundary is defined by using the relative coho-
mology Hn(M,∂M ;Z), which is isomorphic to H0(M ;Z) = Z by Lefschetz
duality.

Proposition 4.8. Suppose M is a compact 4-manifold with boundary, and
M ′ is the 4-manifold obtained by attaching an irreducible 2-handle H along
a homotopically trivial knot k on ∂M , then there is a degree one map f :
M ′ → M . The same statement is true when we attach 2-handles along a
link l with each component homotopically trivial.

Proof. Let us first recall the settings of Proposition 3.1 in [3]. Since k is
null-homotopic in ∂M , k can be obtained from a trivial know k′ by finitely
many self-crossing changes of k′. Let D′ be an embedded disk in M bounded
by k′. A singular disk D ⊂ ∂M with ∂D = k is obtained by by identification
of pairs of arcs in D′ following the self-crossing-changes from k′ to k. The
singular disk D obtained in ∂M with ∂D = k has the homotopy type of a
graph. Let N(D) be a regular neighborhood of D in M . Then N(D) is an
irreducible handlebody. i.e. homeomorphic to D4 = D2 × D2. We could
make a suitable choice of N(D) such that the attaching region N(k) ⊂
N(D).

Let us construct a degree one map f : M ′ = M − N(k) ∪φ H → M =

M −N(k) ∪N(k). where H = D2 ×D2.
First, the map f at part M − N(k) in M ′ is defined to be identity. For

∂M ′, it could be viewed as obtained from a surgery along k from ∂M defined
by the map φ. Hence we could define f on this part as in [3]. Especially, we
notice that the part of ∂H = S1 ×D2 ∪D2 × S1 which is not attached to
M is mapped to N(D).

Combining what we said on M −N(k) and on ∂M ′, the whole boundary
∂H ⊂ N(D). Since H is D4, we can extend the map to whole M ′ by sending
H = D4 into N(D).

Since M is a compact 4-manifold, N(D) is a proper subset of M , we know
the degree of f is one. �

The next step is to analyze the case of maps between closed 4-manifolds.
The 3-handles and 4-handles attachings are uniquely determined by the 1-
handles and 2-handles, especially we know that the union of 3-handles and
4-handles will be diffeomorphic to the boundary sum of m S1 × D3. In
particular, we know the 2-handlebody X2 has boundary #mS

1 × S2. Back
to M ′ and M in previous proposition, we have already established the map
between the corresponding 2-handlebodies M ′ and M . If there are no 3-
handles to be attached for both, i.e. ∂M ′ = ∂M = S3, then the degree one
map could be extended to the unique closed-ups of M ′ and M .

The relations of degree 1 maps with symplectic birational geometry will
be discussed in Section 5.1.
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5. Higher Dimensional Kodaira dimensions and equivalence
classes of mapping order

This section is on higher dimension manifolds. We discuss the compati-
bility of Kodaira dimensions in the sense of mapping order and additivity.

5.1. The mapping order for complex and almost complex man-
ifolds. For complex surfaces, the Kodaira dimension behaves just as we
expect, i.e. it regards the (meromorphic) mapping order and preserved by
covering. Namely, we have the following (see [57]).

Theorem 5.1. • Let f : M → N be a generically surjective mero-
morphic mapping of complex manifolds such that dimM = dimN .
Then we have κh(M) ≥ κh(N).
• Let f : M → N be a finite unramified covering of complex manifolds.

Then we have κh(M) = κh(N).

The complex projective space CPn is smallest with respect to this map-
ping order, in the sense that when M = CPn, N has to be CPn as well.

Example 5.2. Let M1 be the algebraic surface homeomorphic but not dif-
feomorphic to CP 2#5CP 2 constructed in [43]. We know that there are dif-
ferentiable degree one maps from each direction because we can homotope
the homeomorphism from both directions. Theorem 5.1 tells us that there is
no non-trivial holomorphic map f : CP 2#kCP 2 → M1. However, we have
f : M1#kCP 2 → CP 2#5CP 2 with k ≥ 5. There is no such map for k < 5
since they are simply connected which is ordered by their intersection forms
by [12].

Notice that Theorem 5.1 is related to (and could be viewed as 0-dimensional
generalization of) the Iitaka conjecture, which states that a fiber space
f : X → Z satisfies κh(X) ≥ κh(Z) + κh(F ) where F is a general fiber
of f . Here, an (analytic) fiber space is a proper surjective morphism with
connected fibres. Actually, the Iitaka conjecture is one of the main motiva-
tions for our additivity principle of Kodaira dimensions.

Furthermore, the mapping order also regards other invariants. Recall
that the algebraic dimension a(M) of a complex manifold is defined as the
transcendence degree over C of the field CMer(M) of meromorphic functions.
When f : M → N is a surjective holomorphic map, the algebraic dimensions
a(M) = a(N) (see [57]).

In the almost complex setting, it is worth noting that a (J, J ′) holomor-
phic map makes the J-anti-invariant cohomology dimension h−J , which is
introduced in [34, 10], non-decreasing. Let (M2n, J) be an almost complex
manifold. The almost complex structure acts on the bundle of real 2-forms
Λ2 as an involution, by α(·, ·) → α(J ·, J ·). This involution induces the
splitting into J-invariant, respectively, J-anti-invariant 2-forms

Λ2 = Λ+
J ⊕ Λ−J .
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We denote by Ω2 the space of 2-forms on M (C∞-sections of the bundle Λ2),
Ω+
J the space of J-invariant 2-forms, etc. Let also Z2 denote the space of

closed 2-forms on M and let Z±J = Z2 ∩ Ω±J . Then

H±J (M) = {a ∈ H2(M ;R)|∃ α ∈ Z±J such that [α] = a}.

The dimensions dimH±J (M) is denoted as h±J (M).
The following result should be compared with a similar statement for

Betti numbers (and b±2 for 4-manifolds).

Proposition 5.3. If there is a surjective equi-dimensional (J, J ′) holomor-
phic map f : M → N for two almost complex manifolds (M,J) and (N, J ′),
then h±J ≥ h

±
J ′.

Proof. We only show it for h−J . The argument for h+
J is similar. Recall when

α is a J ′-anti-invariant two form on N ,

α(J ′X, J ′Y ) = −α(X,Y ).

Now f∗α is a two form on M , and

f∗α(JX, JY ) = α(J ′f∗X, J
′f∗Y ) = −α(f∗X, f∗Y ) = −f∗α(X,Y ).

Because f has non-zero degree, f∗α is non-trivial and

(f∗α)n = deg(f) · αn.

Finally, f∗ commutes with the differential d. Hence h−J ≥ h
−
J ′ . �

There is no such example with h−J > h−J ′ coming into the author’s mind
when f : (M,J) → (N, J ′) is a surjective equi-dimensional (J, J ′) holomor-
phic map. Generalizations of Proposition 5.3 are discussed in [53].

Now, let us look at degree 1 maps. First, since all birational maps are
of degree 1, it is of interest to understand the relation of it with symplectic
birational geometry (see [33]). However, a plain differentiable degree 1 map
will not preserve the birational class starting from dimension 4. Boileau
and Wang [3] proves that any 3-manifold M is 1-dominated by a hyperbolic
manifolds which is meanwhile a surface bundle H(M). Thus H(M) × S1

again 1-dominates M × S1. Once M is a surface bundle, both could be
endowed with a symplectic structure. Hence, a degree one map could change
(complex/symplectic) Kodaira dimension of manifolds, thus the symplectic
birational equivalence class. Symplectic fiber sum construction provides
more such examples. Moreover, Example 5.2 provides a simply connected
example. Hence, one has to impose more conditions on the map in addition
to its degree in order to preserve the birational equivalence. A natural
question (as mentioned to the author by Tian-Jun Li) is

Question 5.4. Suppose f : M1 → M2 is a (J1, J2) pseudo holomorphic
map of degree 1, where J1 and J2 are almost complex structures tamed by
symplectic structures ω1 and ω2. Is the map a composition of blow downs?
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Blow-downs compatible with Ji are very rigid objects. This excludes a
lot of possibilities for the target (see [11]).

We could show that the map is birational if it is a holomorphic map. Let
f : M → N be a degree one holomorphic map, then except possibly the set
D where det( ∂zi∂wj

) = 0, other parts are 1 : 1. Here zi and wj are holomorphic

local coordinates of N and M respectively. This zero locus D is a complex
subvariety of complex codimension one in M . Thus M and N are birational.
When both M and N are projective varieties, the birational morphism is
factored as several blowdowns.

For general almost complex structures, it is apparent that the Jacobi
matrix Df(x) of f in any point x ∈ M1 is positive definite. Moreover, the
degree is calculated locally as the sum of the signs of the determinant of
Jacobian at each preimage. Hence if f : M1 → M2 is a finite (i.e. the
preimage of any point is a finite set) (J1, J2) pseudo holomorphic map of
degree 1, then f is a diffeomorphism.

More generally, we would like to know whether it is true that any non-
zero degree holomorphic map is homotopic to a composition of blow-downs
and branched covering? One evidence is that every algebraic surface could
be realized as a branched covering of CP 2. Another notable fact is that
for any equi-dimensional dominating morphism f : M → N , we have the
ramification formula KM = f∗KN +Rf , where the effective Q-divisor Rf ≥
0 is called the ramification divisor. We expect the ramification formula
would still hold for (J, J ′)-pseudoholomorphic maps. This would help us to
understand Question 3.15.

Finally, it is amusing to look at the case when the degree is zero. Let
us first suppose the complex dimension is one, then the Liouville’s theorem
tells us that any such map is a constant map, i.e. it maps onto a point
in CP 1. This statement could be generalized to any genus target. This
is because any non-compact Riemannian surface is Stein and further we
know any Stein manifold could be biholomorphically embedded into CN .
For higher dimensions, if f : M → N is of degree zero, then f maps into a
proper subvariety of N .

5.2. Higher dimensional Kodaira dimensions and additivity. For
higher (even) dimensions, we still have the definition of Kodaira dimen-
sions for complex manifolds. However, it is not known if there is a suitable
generalization of 4-dimensional symplectic Kodaira dimension. One differ-
ence between dimensions no more than four and higher is that for dimension
larger than 4 the holomorphic Kodaira dimension depends not only on the
smooth structure but also on the complex structure.

The following example is due to Răsdeaconu, but may not be that well-
known. Hence we reproduce it here for the convenience of readers. Let
us take M = CP 2#8CP 2 and N is the Barlow surface [2] which is a
complex surface of general type homeomorphic to M . One can also take
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M = CP 2#5CP 2 and N is the complex surface of general type home-
omorphic to M constructed in [43]. Then M × Σg is diffeomorphic to
N × Σg. This is because that, at first, they are h−cobordant because M
and N are so. Second, they are s−cobordant because the Whitehead group
Wh(M×Σg) = Wh(N×Σg) = Wh(Σg) = 0. Then by the s−cobordism the-
orem proved independently by Mazur, Stallings, and Barden, they are diffeo-
morphic to each other. On the other hand, they are not the same as complex
manifolds since they have distinct Kodaira dimensions. The Kodaira dimen-
sion κh(M × Σg) = −∞ as κh(M) = −∞. However, κh(N × Σg) = 2 when

g = 1 and κh(N × Σg) = 3 when g > 1. In [49], there are various examples
of diffeomorphic manifolds with different Kodaira dimensions constructed.
It is worth noting that none of them is simply connected.

In [33], Li and Ruan propose a possible way to define symplectic Kodaira
dimension in dimension 6. First let us recall the following definition.

Definition 5.5. A symplectic 6-manifold is minimal if it does not contain
any rigid stable uniruled divisor.

Here a (symplectic) uniruled divisor is nothing but a rational or ruled
4-manifold. A uniruled divisor is stable if one of its uniruled classes A
has a nontrivial Gromov-Witten invariant of the ambient manifold with
Kω(A) ≤ −1. A uniruled divisor is rigid if none of its uniruled class is
uniruled in the ambient manifold.

This definition only takes care about the divisorial contraction. However,
for algebraic 3-folds, flip or small contraction cannot happen in smooth
category.

Assume (M,ω) is a minimal symplectic manifold of dimension 6, then Li
and Ruan propose the following definition of simplectic Kodaira dimension:

(1)

κs(M,ω) =

{
−∞ if one of Ki

ω · [ω]3−i < 0,
k if Ki

ω · [ω]3−i = 0 for i > k and Ki
ω · [ω]3−i > 0 for i ≤ k.

There is an issue of well definedness. For example, one cannot yet exclude
the possibility of a minimal symplectic 6-manifold (M,ω) with

(2) Kω · [ω]2 = 0,K2
ω · [ω] = 0 but K3

ω > 0,

although there are no counterexample in the author’s sight as well.
In dimension 4, a similar issue is resolved only with the help of Seiberg-

Witten invariant which has no counterpart in higher dimensions.
For product symplectic manifolds of type M4×Σg with g ≥ 0 and product

symplectic forms, we can verify that the proposed definition is good in the
sense that no bad cases like (2) would happen. It also satisfies the additivity
and is compatible with complex Kodaira dimension.
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Proposition 5.6. Suppose (M4, ωM ) is a symplectic 4-manifold and (M4×
Σg, ωM × ωg) is minimal, then the following additivity relation holds

κs(M4 × Σg, ωM × ωg) = κs(M4) + κs(Σg).

Moreover, when M4 admits a complex structure J ,

κs(M4 × Σg, ωM × ωg) = κh(M4 × Σg, J × j).

Proof. First notice that minimality of a 4-dimensional symplectic manifold
only depends on the diffeomorphism type. So we will say M4 is minimal
instead of saying (M4, ωM ) is so.

If M4 is not minimal with E as an exceptional curve, then D = E × Σg

is a rigid stable uniruled divisor. Here A = [E] is a uniruled class in D and
KωM×ωg(A) = −1.

Hence M4 is minimal. Notice that the canonical class K = KM×Σg =
KM +KΣg and [ω] = [ωM ] + [ωg]. We calculate

K3 = K2
M ·KΣg ,

K2 · [ω] = K2
M · [ωg] + 2KM · [ωM ] ·KΣg ,

K · [ω]2 = [ωM ]2 ·KΣg + 2[ωM ] ·KM · [ωg].
If g = 0, then we need to prove κs(M4 × S2, ωM × ω0) = −∞, or one of

the products K · [ω]2,K2 · [ω],K3 is negative. Notice KS2 = −2 < 0. Both
K3 ≥ 0,K2 · [ω] ≥ 0 would imply K2

M ≤ 0,KM · [ωM ] ≤ 0. However, this
would imply K · [ω]2 < 0.

If g = 1, then KΣ1 = 0 and K3 = 0. And the signs of K2
ω · [ω] and

K · [ω]2 are determined by that of K2(M) and KM · [ωM ] respectively. Hence
κs(M4 × Σg, ωM × ωg) = κs(M4).

If g ≥ 2, then KΣg > 0 and κs(Σg) = 1. If κs(M) ≥ 0, then K · [ω]2 > 0,

K3 ≥ 0,K2 · [ω] ≥ 0. Furthermore, K3 = 0 if and only if K2
M = 0, i.e.

κs(M) = 0 or 1. And in addition K2 · [ω] = 0 if and only if κs(M) = 0. This
verifies κs(M4 × Σg, ωM × ωg) = κs(M4) + 1 when κs(M) ≥ 0.

When κs(M) = −∞, we want to show one of the product Kω · [ω]2,K2
ω ·

[ω],K3
ω is negative. Actually, we will show it is always true for any (possibly

non-minimal) rational or ruled 4-manifold. If K2
M < 0, then K3 < 0. If

K2
M = 0 and KM · [ωM ] < 0, then K2 · [ω] < 0. Hence we could assume

K2
M > 0 and KM · [ωM ] < 0. The only possibilities are M = CP 2#kCP 2

when k < 9 and S2×S2. For all these cases, if we let KM = 3H+
∑

iEi for

CP 2#kCP 2 and KM = −2S1 − 2S2 for S2 × S2, then ω can be written as
aH−

∑
i biEi and aS1 + bS2 with all the coefficient positive. If both K2 · [ω]

and K · [ω]2 are non-negative, then we have

K2
M · [ωM ]2 ≥ 4(KM · [ωM ])2

from our formula for K2 · [ω] and K · [ω]2. It is straightforward to check that
the inequality is impossible for all the above cases, i.e. one of K2 · [ω] and
K · [ω]2 has to be negative. This completes the proof of our first statement.
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The second statement follows from the facts that κs(M4) = κh(M4) and
that the complex Kodaira dimension is additive for the product complex
structure, i.e. κh(M × Σg, J × j) = κh(M,J) + κh(Σg, j). �

5.3. Remarks on equivalence classes, Entropy and Gromov norm.
In the last section, we mention that the order defined through non-zero
degree maps may not be a partial order. This raises a question that what
is each equivalent class like. Precisely, for which manifolds M and N , we
could have non-zero degree maps f : M → N and g : N → M? Especially,
can we find some invariants for each class?

There is another mapping order, defined in a similar manner but through
degree one maps (instead of general non-zero degree maps). In dimension
three, the degree one mapping order is indeed a partial order [50], i.e. each
equivalence class contains exactly one manifold. This is because 3-manifolds
are almost determined by their fundamental groups and the fundamental
groups of 3-manifolds are residually finite and thus are Hopfian. In other
words, it is more or less a group theory reasoning. However, when dimen-
sion is getting higher, it does not give rise a partial order when we identify
two manifolds if they are homeomorphic. This is because there are exam-
ples of homotopy equivalent but not homeomorphic manifolds, e.g. certain
lens spaces. But on the other hand, the homotopy equivalent manifolds
1-dominate each other by definition.

It is then natural to ask that what will happen if we identify two manifolds
in the same equivalence class of degree one mapping order when they are
merely homotopy equivalent. Let us consider aspherical closed oriented n-
manifolds with Hopfian fundamental groups. By the same argument as
Rong’s for 3-manifolds, if such M and N 1-dominate each other, then they
are homotopy equivalent. If Borel conjecture holds, they are homeomorphic
to each other. Recall the Borel conjecture: Let M and N be closed and
aspherical topological manifolds, if they are homotopy equivalent, then they
are homeomorphic to each other.

In addition, Gromov norm is also an invariant for the equivalence classes
for the degree one mapping order. This is because ||M || ≥ deg(f) · ||N ||
if there is a map f : M → N . It is also amusing to note that if we use
the original mapping order, then each equivalence class is either the same
as the one given by degree one order, or each manifold in the equivalence
class has Gromov norm 0. Especially, by Gromov’s proof of Mostow rigidity,
the equivalence class of degree one mapping order containing a hyperbolic
manifold is exactly this manifold. This is because, by above discussion, any
two manifolds in an equivalence class would have the same Gromov norm.
Moreover, any degree 1 map between hyperbolic manifolds with same volume
is a homotopy equivalence and thus an isometry.

One advantage to consider this degree one mapping order is that we may
prevent the issue of reducibility as indicated in LeBrun’s example. Another
advantage of this mapping order is that the set of topological entropies would
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be an invariant for each equivalence class. The Shub topological entropy S(f)
of a map f : N → N is defined as log λ(f), where λ(f) is the maximal
spectral radius f∗ : Hl(N,R)→ Hl(N,R) among all l.

Proposition 5.7. Assume M and N are equivalent through degree one map,
i.e. there are g : M → N and h : N →M both of degree one. Then, for any
map f1 : M → M , the composed map f2 = g ◦ f1 ◦ h : N → N would have
S(f2) = S(f1).

Proof. This follows from Nakayama’s lemma. One corollary of it says the
following (see Theorem 2.4 of [38]).

Lemma 5.8. Suppose R is a commutative ring. If Z is a finitely gener-
ated R-module and f : Z → Z is a surjective endomorphism, then f is an
isomorphism.

In our situation, homology groups are finitely generated Z-modules. Since
degree one map g : M → N (resp. h : N →M) would induce epimorphisms
g∗ : Hk(M) → Hk(N) (resp. h∗ : Hk(N) → Hk(M)). See for example
Lemma 1.2 in [50]. Hence the compositions g∗◦h∗, h∗◦g∗ are epimorphisms,
and thus isomorphisms by Lemma 5.8. This implies Hk(N) ∼= Hk(M) and
g∗, h∗ are isomorphisms. Hence the Shub topological entropy S(f2) = S(f1).

�

Notice that entropy invariant (and its variants) could make complemen-
tary use with Gromov norm. The latter detects hyperbolic pieces and the
entropy sees the others because if one admits a self degree > 1 map then
Gromov norm has to be 0.

Gromov norm has other interesting applications in the 4-manifolds theory.
For example, we know that CP 2#kCP 2 and S2×S2 all have Gromov norm
0 (even for each homology class of them). This implies that the exotic differ-
ential structures of them will not admit any metric with negative sectional
curvature. Another example is that any manifold with amenable fundamen-
tal group (e.g. trivial, nilpotent, solvable, abelian...) will not be greater
than the ones with negative sectional curvature under the mapping order.
Moreover, we have the following, which is surely known to the experts.

There does not exist two homotopic closed Riemannian manifolds such
that one has negative sectional curvature and the other has

(1) non-negative Ricci curvature; or
(2) almost non-negative sectional curvature.

Proof. By Cheeger-Gromoll [7], if a manifold admits a metric with non-
negative Ricci curvature, then its fundamental group is virtual abelian, i.e.
there is an abelian subgroup of it with finite index. On the other hand,
a group is amenable if it has a finite index amenable subgroup and an
abelian group is amenable, so the fundamental group of a manifold with
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non-negative section curvature has to be amenable. Similarly, if a manifold
admits almost non-negative sectional curvature (i.e. it admits a sequence of
Riemannian metrics {gn}n∈N whose sectional curvatures and diameters sat-
isfy sec(M, gn) ≥ − 1

n and diam(M, gn) ≤ 1
n), then the fundamental groups

of such manifolds are virtually nilpotent [17], which is also amenable. This
implies the Gromov norm of such a manifold is zero. Therefore, it cannot
admit any metric with negative sectional curvature because Gromov norm
of such a manifold would have nonzero Gromov norm [22]. �

Notice that negative sectional curvature cannot be replaced by negative
Ricci curvature because we know that any manifold of dimension greater
than two could admit a metric with negative Ricci curvature [37].

For non-closed manifolds, the situation is different: there are homotopy
types of manifolds, e.g. Rn, which admit complete metrics of non-negative
and negative sectional curvatures respectively. In general, Cheeger-Gromoll
soul takes care of the complete non-negative metrics. On the other hand,
the classical Hadarmard-Cartan theorem says that if Mn is a connected
complete Riemannian manifold with non-positive sectional curvature, then
its universal covering space is diffeomorphic to Rn. It is probably true that
if a closed manifold admits both non-positive and non-negative sectional
curvature, then it has to be flat. All closed flat n-manifolds are finitely
covered by Tn.

References

[1] M. Aschenbrenner, S. Friedl, H. Wilton, 3-manifold groups, EMS Series of Lectures
in Mathematics. European Mathematical Society (EMS), Zürich, 2015. xiv+215 pp.
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